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ABSTRACT

Quantum phase transition (QPT) are the continuous phase transition of ground states
by tuning couplings in the quantum system. They are due to zero-temperature quantum
fluctuations, not thermal fluctuations. Meanwhile, Kondo effect is an important phe-
nomenon in condensed matter systems, which is an effect describing the screening of
magnetic impurity by the spin of conduction electrons in magnetical doped metals. Due
the advances in nano-technology, Kondo effect in quantum-dots (QD) have been realized
in single electron tunneling transistor (SET), therefore QPT associated with the broken
down of the Kondo effect becomes-an_interesting subject.. If two independent electron
reservoirs exist, two-channel Kondo-effect (2CK). becomes possible. It leads to non-Fermi
liquid (NFL) behavior, which shows different electric transport from Fermi liquid metals.
In our study, we use the 2CK pseudogap Anderson impurity model to describe the system
where the single impurity is coupled to 2CK pseudogap electron bath, where its density
of states (p(w)) vanishes in a power law fashion (p(w) ~ |w|",0 < < 1) for w — 0. The
exponent r of pseudogap density of statesvaries with different materials. The magnetical
doped graphene (r=1) isran example of 2CK pseudogap Anderson single impurity model
system, and two-channel'quantum det system with constant density of states corresponds
to r = 0 case. If r is too large, there is no sufficient electron density of states to screen
the impurity spin, 2CK stateis broken down, resulting in unscreened local moment (LM)
ground state. Let r be small enough; two-channel Kondo effect becomes possible. We
study QPT in 2CK pseudogap single impurity Anderson model at zero-chemical potential
by tuning r (0 < r < 1) both of equilibrium and out of equilibrium. We use slave-
boson large-N approach to self-consistently solve Green’s functions of electron on the dot
by including all non-crossing diagrams, so-called non-crossing approximation (NCA). We
extract the quantum critical point (7.) from impurity density of states, and find the uni-
versal scaling both in equilibrium and non-equilibrium conductances near r.. This thesis
provides theoretical basis for further study in Kondo break down, quantum criticality and
non-Fermi liquid behavior in condensed matter systems.

Keywords: Quantum Criticality, Quantum Phase Transition, Kondo, two-channel Kondo,
Pseudogap, Anderson Model, Universal Scaling
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Chapter 1

Introduction

1.1 Kondo Effect

In 1930s, there was an important-discovery in-solid state physics; where the resistivity
in some non-magnetic. metals with magnetic impurities manifest itself a minimum at a
certain temperature shown as Fig.(1.1:a).This important phenomenon was known as
Kondo effect. There areimany review papers, books, thesis and related information about
Kondo effect [1, 2, 3, 4, 5, 6]. "Due the advances in nano-technology, Kondo effect was
applied in quantum dot systems, therefore Kondo effect shows different characteristic in
bulk system compared to quantum dot (QD) system. The conductance in a QD system
as shown in Fig.(1.1.b). We will illustrate the phenomenon of the Kondo effect in bulk
system below [1, 5, 7], then introduce Kondo effect in QD system in Section 1.1.2.

The original Kondo phenomenon cannot be explained by the scattering theory between
electron and phonon. J.Kondo successfully explained this phenomenon in 1964 by spin-
flip scattering as shown in Fig.(1.2) [8]. Theoretically, a magnetic impurity is screened
by the spin of nearby conduction electrons, leading to a spin singlet, so-called Kondo

singlet. The Kondo singlet appears when T' < Ty, T} is defined as Kondo temperature.

hvp
kgTy’

The size of Kondo cloud made of conduction electrons defined as £ ~ where vp is

Fermi velocity. The larger Kondo cloud implies a weaker Kondo coupling. Alternatively,



1.1. KONDO EFFECT

odd

even

~10 K
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Figure 1.1: (a) Redline shows resistivity in metals contained magnetic impurities: at low
temperature, using third order perturbation theory, Kondo found that this scattering pro-
cess leads to a InT" behayvior in' resistivity.. Blueline shows resistivity in normal metals.
(b) In quantum dot system, Coulomb-blockade influence conductance. At low tempera-
ture, when temperature decreases, conductance increases (decreases) if electron number
is odd (even). Kondo effect appears only odd number, Kondo effect leads to conductance

increased at low temperature in, QD system. Adapted from [1; 7).

Kondo effect can be conveniently described by the s-d.model proposed by Zener [9], where
magnetic moments carry spin S; coupling to-conduction electrons via Js - Sy, where the
exchange interaction J was called as Kondo coupling (J > 0), S, is the impurity spin,
and s is spin of conduction electrons. The s-d model can be related to Anderson model
at certain parameters regime, presented by P.W. Anderson [5, 6, 11]. Coqblin-Schrieffer
transformation can transform Anderson model to Cogblin-Schrieffer model, also called as
Kondo model [5, 10, 12]. Note that perturbation theory used to explain Kondo effect
only for T' > Tk. It breaks down for T" < Tk, one needs Numerical Renormalization
Group (NRG) to resolve this issue. More theoretical calculations will be introduced in

this chapter.



1.1. KONDO EFFECT
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Figure 1.2: (a) Kondo effect happened because of impurity screened by spin one half of

electrons. Adapted from [58]. (b) Electron-impurity spin-flip'scattering.
1.1.1 Kondo Hamiltonian

From previous sectiony-we know that the magnetic moment of impurity is screened by
conduction electrons, leading to Kondo effect: In this section, we provide a mathemat-
ical description of therKondo effect. We start from a single impurity S = % Anderson

Hamiltonian [5, 6].
H = Z eddida + Z e(k‘)clackg + Ungn Z(Vk(,dlcka + H.C.) (1.1)
o ko ko

The first term in Eq.(1.1) describes the local moment state of impurity with energy €4,
where ¢ is the spin index. The second term describes conduction electrons, where k is the
momentum space of Fermi sea. The third and fourth term are the on-site Coulomb repul-
sion and the hopping between the leads and the dot. The Coulomb repulsion potential U is
the energy cost for the localized state occupied by two electrons (of opposite spins). From
Anderson model, If ¢; < ep (which is the Fermi energy of the metal) and e;+ U > ep, the
single occupied site will have a net spin-1/2. By using Cogblin-Schrieffer transformation,
Anderson model Hamiltonian can be mapped onto the Kondo Hamiltonian in U >> V
regime [5, 12]:

H ~ Z E(k’)CZUCkU + Z Jkk/skk/ . Sd, (12)
ko

kK



1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

where Jj i represents the anti-ferromagnetic coupling which is given by:

1 1

Jekr = Vie Vi +
K g ]”[ed—ek—i-U €, — €4

, (1.3)

where ¢, is energy level of conduction electrons, €, is energy level of quantum dot, sy is
the spin of conduction electrons, and Sy is an impurity spin. Because the Kondo resonance
lies exactly at the Fermi energy, the contribution of exchange process is only from states
around Fermi energy(er). So we set that € = ¢4—e€p, € = ¢, —ep and ¢ ~ 0. Since g5 < 0
and the Coulomb potential U is larger than €5, Jiw(~ Jxpkp) is the anti-ferromagnetic

coupling(.J,,» > 0). For U >> ||, the expression reduces to:

1% 1%
_| iol — | ko| > 0. (14)
€d €d/ = Ekp

Jipkp = J ~

The second term of Eq.(1.2) is precisely the s-d interaction term written as H., = J(r) -
S. It describes the spin‘exchange-between an impurity and the surrounding conduction
electrons. The distance ris measured-from the impurity site to conduction electrons. This
simple model explains the Kondo problem that resistivity of metals in magnetic impurity
bulk system at low temperature will increase logarithmically. We will discuss Kondo effect

in QD system in Section 1.1.2 and two-channel Kondo in Section 1.1.4.

1.2 Kondo Effect In Quantum Dot System

Due to the progress of science and technology, scientist can fabricate semiconductor struc-
ture under nano-mater scale. The advance of micro-fabrication and cooling technology
make a chance that we can research Kondo effect in nano-size system. Kondo physics
can be realized in a tunable quantum dot (TQD). TQD is made by the single electron
tunneling transistor (SET) with two dimensional electron gas (2DEG) heterostructure,
as shown in Fig.(1.3) [1, 18, 21]. SET device has GaAs/AlGaAs layer and multiple elec-
trodes, where three gate electrodes on left and the other one on right in the picture.
Then GaAs layer confines 2DEG repelled by electrodes, and induces two tunneling junc-
tions under and above it. A metallic island is confined between two tunneling junctions

called ”quantum dot (QD)”. One of early experiments of Kondo effect in QD system was

4



1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

(@) (b)

Figure 1.3: (a) Scanning electron micrograph of SET device. The top and down electrodes
on the left side and the electrode on the right side are used to operate the barrier of
quantum dot. The middle electrode on the left siderare used to tune the energy level of

QD relative to 2DEG [13; 14]. (b)-Schematic SET device [21].

made by D. Gordhrber-Golen et.al in 1998 [13;14,17]. The conductance in QD systems
is quantized by Coulomb blockade (CB) oscillations, leading to the difference of Kondo

effect between QD systems and bulk systems.

1.2.1 Coulomb Blockade Osecillations With Kondo Effect

The original Kondo physics (in bulk system) was introduced in last section, where Kondo
effect induce resistivity to be enhanced. This section, we will discuss the Kondo effect
in QD system, which is very different from bulk system. In the single electron tunneling
transistor (SET) device, the Coulomb blockade (CB) oscillations affects the conductivity
[21, 22] as shown in Fig.(1.4). In Fig.(1.4.a), it exhibits conductance increasing as odd
number in quantum dot (blue line), and there are peaks at Vsp = 0 in Fig.(1.4.b). The
peaks at Vsp = 0 are temperature dependent, as temperature is lower, peak is higher.
These peaks are due to Kondo effect, so-call Kondo peaks. We will introduce CB and and

briefly discuss the results in theory and experiment, then discuss Kondo effect in SET.



1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

Figure 1.4: (a) Conductance has two different behaviors at even and odd electron number.
(b) The zero bias differential conductance anomaly at Vsp ~ 0, where Vgp is the voltage

difference between source and drain. [1, 13,.14].

Coulomb Blockade

Coulomb blockade oscillation appears due to strong Coulomb potential system, that’s why
it called as Coulomb blockade. In the SET device, Coulomb potential affect the electron
tunneling between leads and dot, illustrated in Fig.(1.5). The first order tunneling is
blocked by the Coulomb blockade, where U is Coulomb peotential between the electron of
quantum dot and lead. The CB Hamiltonian related to constant interaction model was

constructed as [21, 22]:

HEP =3 &ucliou+ B(N),  E(N) = EcN? = eVyN (1.5)
w

, where E(N) is the interaction term of the system, including gate voltage term as eV, N,
where gate voltage leads to a electric field that increases the energy of dot electrons. In
general, we have to simultaneously think about source, drain, and gate voltage. Here we

62

35> Where C is the capacitance of

lump all terms in a gate voltage term. The energy F,. =
a single electron. The bias voltage leads to p;, > paor = pr, and the bias voltage difference
between the left lead (source) and the right lead (drain) was defined as Vsp. Because of

the inequality of chemical potential, electrons can flow, therefore an added electron from

source excites dot energy from Eg, (N —1) to Egn(N), then an electron hops from dot to

6
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€4+ U

Figure 1.5: The illustration of Coulomb blockade. The first order tunneling is blocked by
Coulomb potential U, the cotunneling (2nd) solution issolvable. The additional energy
for N to N + 1 state is E?/C" + AB;The voltage spacing between source and drain is

defined as Vgp which is eV here.
drain, leading dot energy from Eg,;(N) to Eg (N — 1). The tunneling occurs when
aeVy(N)=E(N +1)— E(N), (1.6)

where o = C,;/Cis the ratio of gate capacitance to total capacitance, called "gate cou-

pling”. The aeV,(N) is similar to chemical potential of quantum dot, which is

2

6‘/;7(]\[) = Ndot(N) = Edot(N) — Edot(N — 1) = (TL _ 1)6_

D Vet Ex, (L)

the remain terms defined as Ey. The additional energy is given by Apige, where

2 62

e
Afbgor = ,udot(N) - Ndot(N - 1) = 5 +Exy—En_1= ol — AFE. (1-8)
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The irregular spacing of the single electron levels is defined as AE. When charging energy

% is much larger than AFE, CB oscillations is dependent on it. The peak spacing of CB

as a function of gate voltage is given by
AV, = Ap(N)/ea = (e/ + AE)/ea, (1.9)

while condition Eq.(1.6) gives the gate voltage of N-th Coulomb peak. We take differential

of E(N) in Eq.(1.5) with respect N, we obtain the optimum number of particles,
Nopi = €V /2E. (1.10)
When optimum number is

e Integer: There is an energy. gap for adding electrons.

e Half-integer: There are two degenerate charge states, then electrons can transit.

As shown in Fig.(1.4:a), it exhibits difference results indicated different number of
electron on quantum dot, and Fig.(1.4.b) exhibits non-equilibrium differential conductance
with anomaly behavior at VgD ~ 0 [1]. The electron number can be changed by gate
tuning. The CB oscillation affect the conductance by electron mumber, then we discuss

how Kondo effect can overcome CB in QD.

Kondo Effect In Quantum Dot System

The tunable QD is sometimes similar to individual artificial magnetic impurity, which
leads to Kondo screening for (T < T}). When optimum number is odd, the QD with
a single electron which is occupying the top-most quantum state, which is similar to a
magnetic impurity. In other words, Kondo screening occurs with a single spin-degenerate
energy state €4, no Kondo effect when optimum number is even. Kondo effect appears
when (7' < Tj), where the Kondo temperature 7T}, found to be:

—m(p—eq)

Ty = [UT)ze o ©, (1.11)

where (e4) is dot level, (I') is a coupling between leads and dot, and chemical po-

tential p [5]. These parameters all influence Kondo temperature. The Kondo effect is

8
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Figure 1.6: (a) Spin-flip cotunneling process of Kondo effect. (b) The density of
states(DOS) of quantum dot, The Kondo resonance lies at the Fermi energy, Kondo
effect occurs when the temperature is below the Kondo temperature 7). Adapted from

21].

illustrated in Fig.(1.6), the first order tunneling is blocked by the Coulomb blockade,
second order tunneling (cotunneling) leads to Kondo screening with spin-flip exchange.
A narrow-resonance is seen in the density-of-states (DOS) of the QD. In summary, the
system with tunable tunnel coupling to the leads, there is'CB oscillation affected con-
ductivity by electron number when 7°.> T;.. WhenT" < T}, we have to think about the
coupling between Kondo effect and Coulomb blockade. The odd electron number on the
dot provides a single spin-degenerate state €4, which is a single electron with spin up or
down. This condition leads to Kondo screening with spin-flip exchange, and enhanced
conductance. The conductance of Kondo effect in QD system with even and odd number

is shown in Fig.(1.1.b).

1.3 Quantum Phase Transitions (QPT)

Quantum phase transition (QPT) are the continuous phase transition of ground states at

T = 0 by tuning the sets of the system parameters in Hamilton [36]. The energy level
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Figure 1.7: (a) The first order phase transition. Though g., the ground state becomes B
state from A state with level crossing. (b) The higher order phase transition, avoiding
level crossing. The phase.transition whose ground state s form A state to B state as g

exceeds ¢, is a continuous process.-Ref. [36]

diagrams as a function parameter g are shown in Fig.(1.7). H(g)=Hy+gH;, where Hy and
H; commute to each other, and g is the coupling constant. As shown in Fig.(1.7.a), ground
state is state A when the coupling gis below g., but it becomes state B when g > g.,
where g, is the critical peint of the coupling g. This is the fitst order phase transition,
which is a level crossing. Figd{1.7.b).shows the 2nd order phase transition, which is a
continuous phase transition from g < g. to g > g¢., avoiding level crossing. QPT is the
phase transition as shown in Fig.(1.7.b), continuous process and without level crossing at
zero temperature. The quantum critical behaviors of QPT systems exhibit divergence in
correlation length £ ~ |g — g.|™”. Here, the correlation length exponent v is a universal
factor. This leads to universal power-law scaling behaviors in all thermal dynamical
observable. These behaviors in quantum critical regime cannot be described in Fermi
liquid theory, so called "non-Fermi liquid” behaviors. Quantum critical phenomenon is
an important subject in condensed matter as they provided universal behaviors at the

quantum critical point (QCP). Single impurity Kondo problems have been well-known,

we investigate Kondo effect break down for adding other competition ground state in the

10
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system at T' — 0, it leads to QPT and quantum critical phenomenon. Examples for QPT
in Kondo system: include the double quantum dots (DQD) system leads to a quantum
phase transition between Kondo effect and spin-singlet, two-channel Kondo ground state,
and pseudogap Kondo problems, as we will introduce below. In this thesis, we investigate
QPT for 2CK pseudogap single impurity Anderson model, the pseudogap Kondo problem
and two-channel Kondo physics will be briefly introduced in below subsections. Here, we

discuss DQD problem for understanding QPT in Kondo system.
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Figure 1.8: (a) The diagram is obtained via the scanning electronic micrograph (STM)
in experiment of N. J. Craig ét. al:[37]+(b)-Conductance of left quantum dot. When
odd number of electrons on the quantum dot and RKKY anti-ferromagnetic interaction is
stronger than Kondo coupling, Kondo effect will be suppressed by RKKY. Adapted from

137).

The double quantum dot experiment made by N. J. Craig et. al. [37] for under-
standing quantum phase transition is shown in Fig.(1.8). The device in Fig.(1.8.a) shows
two quantum dots coupled through an open conducting region, which provides exchange
coupling between two dots. The gate voltage V,, (V,r) changes the occupation number
and energy of left (right) dot, and the coupling between the right QD and central region

can be tuned by gate voltage V,C. The result is shown in Fig.(1.8.b) that odd number
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1.3. QUANTUM PHASE TRANSITIONS (QPT)

of electrons on both dots leads to split zero bias Kondo resonance into two peaks. If the
occupation number of one of QD is even, there is no zero bias Kondo resonance. Theo-
retically, this double QD Kondo problem was studied via the numerical renormalization
group (NRG) [39, 40] and conformal field theory [32, 54], which is relevant for experimen-
tal in Ref. [37]. The quantum critical diagram of double quantum dots system is shown
in Fig.(1.9). Kondo effect can be observed in double QD system as RKKY coupling K is
small. But Kondo effect can be suppressed if RKKY coupling exceeds the critical point
K.. In this case, two quantum dots are coupled anti-ferromagnetically through an open
conduction region via RKKY effect, inducing a local spin singlet between two spins on the
dots ground state. A quantum critical point located at K=K separate Kondo from local
spin-singlet phase. The universal power-law scaling behayiors were identified in quantum

critical region.

Non-fermi liguid

D7V AN i |

Kondo 4

Figure 1.9: The quantum phase transition coupling K is RKKY coupling, and quantum
critical point (QCP) with criticality at zero temperature is located at the K.. Adapted

from [39].

1.3.1 Two Channel Kondo (2CK) Physics

We have introduced Kondo effect in single channel QD system in Section 1.2 and 1.3.

Here, two independent electron reservoirs are applied to QD system, it leads to two-

12
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2CK Quantum Phase Transition

Temperature

Figure 1.10: Quantum phase transition diagram of two-channel Kondo, where Hocx ~
J1S1(r) - S + J2S5(r)+.S, and Jy, Jp are Kondo coupling of each-channel, respectively.
Blue and red phase correspond to blue and réd channel in Fig.(1.11), and J; (Js) is the
Kondo coupling of red (blue) channel. At zero temperature, one can obtain 2CK state
for symmetric coupling. There is still the 2CK state if-.coupling are some imbalance at
finite temperature. The quantum critical region-exhibits 2CK non-Fermi liquid behavior
at finite temperature. [38]

channel Kondo (2CK) effect. Two-channel Kondo model was introduced by Zawadowski
and Nozi‘eres et. al. decades ago, where a local spin S is coupled to two independent
electron reservoirs [19, 20, 23, 6]. The discussion for 2CK details in theory is in Appendix
A. Two independent electron reservoirs all couple to single QD system has been realized

in recently years [16]. Compare to single channel Kondo Hamiltonian Eq.(1.2), the 2CK

Hamiltonian can be written as

HQCK ~ JlSl(r) -5 + J2SZ(T‘) -S. (112)

13
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The Si(r) and Sy(r) is a conduction electron spin of each independent channel. The
coupling J; and Jy of Eq.(1.6) represents anti-ferromagnetic coupling of each independent
channel, respectively, where each reservoir individually attempts to screen the local spin.
The competition between J; and J; leads to continuous phase transition of two competi-
tion single channel ground states at zero temperature. The quantum critical region of two
competition single channel QPT is as 2CK fixed point and it exhibits non-Fermi liquid
(NFL) behavior as shown in Fig.(1.10). In a symmetric case, the Kondo couplings .J;
and J, are equally coupled to the magnetic impurity at zero temperature, leading to 2CK
ground state [34]. If J; # Jy at zero temperature, the localized impurity spin couples to
one of the electron channel, resulting in single channel Kondo effect (1CK). However, we
can observe 2CK effect at finite temperature even if J; # J,, the condition is that the
Kondo coupling asymmetry have to be small enough [6]. At finite temperature, we can
investigate quantum critical region-at-2CK fixed point and find universal scaling [38, 6].
Landau Fermi liquid theory is a theoretical model of interacting fermions describes prop-
erties of general metals-at low temperature. The behavior in 2CK quantum critical region
can be not be explained under Fermi liquid theory, so called non=Fermi liquid (NFL) be-
havior. NFL behavior appear in heavy fermion materials. Some heavy fermion materials
show specific heat anomalies {24, 25, 26, 27]. The specific heat in heavy fermion metals
[3, 32, 33]and anomalous shrinkage of zero-bias-conductance [30, 31] in 2CK system have
been observed. The entropy of impurity 'spin in 2CK system is anomaly at 7" — 0, the

entropy of impurity can be written as
S = kpln(Q), (1.13)

Q) is number of states at T — 0. We find 2CK entropy is S = kgln(y/2), however, Q = 2
as T — 0. Theoretically, the anomaly corresponds a free "Majorana fermion”, which
is the anti-particle of itself, two Majorana fermions is a complete fermion. Note that:
S = kgln(2) at T — 0 for 1CK.

In experiments, it’s difficult to control 2CK fixed-point stability. One needs fine con-
trol of each droplet in electrochemical potential, which can be adjusted near the voltage on

the gate electrode [24]. The 2CK experiment was made by Potok and Goldhaber-Gorden
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Figure 1.11: Two independent electron reservoirs couple to.a QD in SET device. Two
blue leads and a finite red reservoir-represent two independent ehannel, respectively. Here,
red reservoir has to be.much large-than QD, therefore, there aressufficient electrons to

compose a conduction electron band. Two bluedeads comes a reservoir which is faraway

from QD. Adapted from [16].

et. al. [16], where the‘modified single-electron tunneling transistor (SET) with two
spatially-separated sets of confined-eleetrons can-helpus to understand 2CK on quantum
dots. The SET device with two independent electron reservoirs is shown in Fig.(1.11).
For avoiding one of electron reservoirs is scattering to the other, the red channel is hold
zero conductance at low temperature, on the other hand, blue channel is hold finite con-
ductance. There is a experimental scaling analysis can distinguish conductance behavior
between 1CK and 2CK as shown in Fig.(1.12), where the experimental results for 2CK
out of equilibrium system in conductance scaling.

The single-channel Kondo effect shows T2, (eV/kgT)? behavior at T' < Tk, theo-
retically, it is Fermi liquid with scattering rate that varies as 72. But the 2CK data
in 1CK scaling deviates from (eV/kgT)?. However, the non-Fermi liquid as 2CK fixed

shows (eV/kgT)Y? behavior at T < Ty. In Fig.(1.12), 2CK universal scaling exhibits
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Figure 1.12: 2CK conductance data.in 2CK and 1CK scaling, where 1CK scaling follows
Fermi liquid (eV/kpT)? behavior-—2CK universal scaling follows (eV/kzT)'/? behavior,

not Fermi liquid (eV/kgT')?, so-called NFL behavior. Adapted from [6, 38].

(\/W) behavior.Theoretically; 2CK universal scaling in/conductance can be ana-
lyzed by field theory, which will be discussed im Chapter 2, and summarized in chapter
4. In theory, 2CK can be extended to multi channel Konide (M-channel) (M > 2) with
non-trivial solutions [29, 28]. The large N'approaches which are feasible theoretically used
to solve the multi-channel Kondo problems. The large N approaches will be introduced

in section 1.5 and Chapter 2.

1.3.2 The Pseudogap Kondo Problems

Here we define the pseudogap kondo problems. These are special Kondo problems where
conduction electron density of states (DOS) vanishes in a power law fashion at w = 0
(pe(w) ~ Jw|", 0 < r < 1). Pseudogap Kondo problems have been extensively studied
in recent years, by RG, NRG [41, 43, 44, 45, 46, 47] ,and slave-boson large N technique

[48, 61]. By tuning the exponent r of the pseudogap DOS, ground state of pseudogap
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Kondo systems may undergo a QPT between Kondo and local moment (LM) state. If
exponent 1 is too large, the conduction DOS is not sufficient to Kondo screening, leading
to LM ground state. On the other hand, Kondo screening was observed at 1" < T if the
exponent r is small enough that conduction electrons are sufficient to screen the impurity.
Pseudogap DOS in single channel and two-channel Kondo systems leads to QPT with
particle-hole symmetry and asymmetry. The QPT in pseudogap Kondo can be analyzed
by renormalization group (RG) techniques. We briefly introduce the rich ground phase
diagrams of pseudogap Kondo system given by Matthias Vojta et. al. via perturbative

RG and numerical renormalization group (NRG) approach [41, 43, 44].

Renormalization Group And Numerical Renormalization Group

Renormalization group (RG) approach originally comes from quantum field theory, and
has been applied to condensed matter system. “Anderson et. al: applied so called ”poor
man scaling RG” to Konde problem [49], where all the leading to logarithmic terms
were summed up via perturbation theory. However, perturbation theory breaks down for
T < Tk as the system reaches the strong coupling Kondo ground state. K.G. Wilson
use a non-perturbative technique: numerical renormalization group (NRG) approach to
analyze Kondo physics at 1< 7;:[50, 51, 52]. There is the other non-perturbative method
called Bethe ansatz, confirming Wilson’s NRG caleulation [53]. The s-d model was given a
definitive result for ground state by NRG calculation. In condensed matter system, NRG
can accurately describe magnetic doped metals , while methods can not. The QPT of

pseudogap Kondo problems can be studied by using perturbative RG and NRG approach.

RG phase diagrams for 1CK single impurity pseudogap Anderson model

In results by Matthisa Vojta et. al. [41, 43, 44]. Pseudogap Kondo problems analyzed
by perturbative RG leads to non-trivial fixed point and associated phase transitions.
Here, we introduce the single impurity Anderson model coupled to single channel electron
reservoir with particle-hole symmetry and asymmetry. We briefly introduce particle-hole

symmetry and asymmetry below. The full symmetry of 1CK single impurity pseudogap
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Figure 1.13: The RG flow phase diagram of particle-hole symmetric single impurity pseu-

dogap Anderson model. The details are in text. Adapted from [43].

Anderson model with particle-hole symmetry is SU(2)spin X SU(2)charge, Where particle-
hole symmetry is SU(2)pseudospin symmetry. The 1CK single impurity Anderson model
as Eq.(1.1) is coupled to pseudogap conduction electron density of states,
A
H=> edld,+ / . dk |k Tk}, GratUmiin, -+ (Viad)crs + H.C.). (1.14)
o - ko
The second term of in Eq.(1.1) was replaced by the bath Hamiltonian of pseudogap
host conduction electron DOS. The other terms of Eq.(1.14) are the same as Eq.(1.1).
The A is the untraviolet (UV) cutoff. In the presence of particle-hole symmetry, the
Coulomb potential is assumed as Uy = —2¢4. And the Hamiltonian is invariant by below
transformation,
dl — d,,

T
Cka —) C_ko—.

On the other hand, if Uy # —2¢4, the particle-hole symmetry is broken. For example,

strong Coulomb potential leads to particle-hole asymmetry. From NRG calculations, the
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fixed-point structure changes at 7* and = 1/2 | the relevant case of r=1 case is inaccessi-
ble from weak coupling. [43, 45] r* = 0.375 is given by NRG. P-h symmetry is restored for
0 <r <r*. The RG flows of the particle-hole symmetric 1CK single impurity pseudogap
Anderson model is shown in Fig.(1.13). The horizontal axis denotes the renormalized dot
level €, where U = —2¢; the vertical axis is the renormalized hybridization V, hoping of
dot and leads. The continuous boundary phase transitions were represented by the thick
lines; the full (open) circles are stable (unstable) fixed points. Now, we introduce the

fixed points corresponded to the phases,

LM : local moment ground state,

SC : strong coupling as Kondo-screened-fixed point;,
SSC : symmetric strong coupling fixed point;,

SCR : symmetry critieal region fixed point,

FImp : free impurity fixed point.

When r=0, the flow.is towards toSC fixed point at any finite . For 0 < r < 1/2 case,
LM fixed points are stable, the SSC fixed point which is stableis located at e = 0, and
SCR (SCR’) fixed point control the phase transition between SSC and LM (LM’). The
SSC fixed point becomes unstable/as <7 <1;7and SCR (SCR’) fixed point disappears.
The phase transition between LM and LM’ is controlled by SSC fixed point. When r > 1,
there is no QPT. The first order phase transition with level crossing between LM and LM’.
The FImp fixed point is located U = 0, meaning that no hoping between leads and dot. As
particle-hole asymmetric 1CK single impurity pseudogap Anderson model: The RG flow
phase diagram was shown in Fig.(1.14). Particle-hole asymmetric Anderson model can be
realized as Coulomb potential is too large, where Uy — oo. The horizontal axis denotes
the on-site dot energy levele; the vertical axis is the fermionic coupling v. The bare on-site
repulsion is fixed at ug = oo. Here, we introduce the fixed points corresponded to the

phases,

LM : local moment ground state,
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Figure 1.14: The RG flow phase diagram of particle-hole asymmetric single impurity

pseudogap Anderson model." The details are in text.Adapted from [43].
ASC : asymmetry strong coupling fixed point,

ACR : asymmetry critical region fixed point,

VFI : the valence fluctuation fixed peoint.

The hybridization V; which is small leaves the moment unscreened, whereas large 1
directs the flow towards ASC fixed point. When r=0, the constant DOS, where the strong-
coupling fixed point is the same as in the p-h symmetric situation. For 0 < r < rx* case,
particle-hole symmetry is restored. The phase transition is controlled by ACR unstable
fixed point as r* < r < 1. When r > 1, there is no QPT. The first order phase transition

with level crossing controlled by VFL. The VFTI fixed point is located at e = U = 0.
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Figure 1.15: The RG flow phase diagram of 2CK-particle-hole asymmetric single impurity

pseudogap Anderson model.  The details are in text. Adapted from [44].

RG phase diagrams for 2CK single impurity pseudogap Anderson and Kondo

model

In the results of Matthisa Vojta et. al. [41, 43, 44],.the non-Fermi liquid (NFL) phase
in 2CK Kondo model only survives in 0 < #,,,, region, where r,,,, = 0.23. The p-h
asymmetry is irrelevant for r > 0.23. We will discuss pseudogap 2CK quantum phase
transition by Kondo model and Anderson model as shown Fig.(1.15) and Fig.(1.16). The
full (open) circles in diagrams are stable (unstable) fixed points and LM fixed means
that local moment state. NFL represents non-Fermi liquid, ACR (SCR) represent critical
p-h asymmetric (symmetric) point. For r=0 case, the lines of NFL fixed point represent
non-Fermi liquid (over-screened Kondo effect, 2CK), it shows that flow is always towards
NFL fixed point at any finite coupling. In the RG flows of 2CK pseudogap single impurity
Kondo model as shown in Fig.(1.1.5): the horizontal axis denotes the renormalized Kondo
coupling j, and renormalized potential scattering v which is representing particle  hole

asymmetry is the vertical axis. Dashed lines symbolize a flow out of the plane shown here.
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For the metallic case (r=0), all lines flow into NFL fixed point at any finite coupling, 2CK
governs the behaviors everywhere. LM is a unstable fixed point in the metallic case. In
Fig.(1.15.b), the other non-Fermi liquid fixed point, NFL’ represents a phase at large
couplings and asymmetries. For 0 < r < r,,q,, p-h asymmetry is irrelevant in non-Fermi
liquid phase, a single p-h asymmetric NFL fixed point which separates NFL. and NFL’
fixed points is a asymmetric critical region (ACR). The LM fixed point is stable here,
and a critical p-h asymmetric fixed point (SCR) controls the phase transition between
LM and NFL fixed points. For r > r,,.,, = 0.23 case, there is no NFL phase as shown in
Fig.(1.15.b). The other LM phase, LM’ fixed point represents a free local moment. The
ACR fixed point controls phase transition between LM and LM’ fixed points. The RG
flows of the 2CK pseudogap single impurity Anderson model is shown in Fig.(1.16). The
horizontal axis denotes the‘energy difference between spin and flavor impurity levels, the
renormalized hybridization g is the vertical axis. The diagrams represent cuts, taken at
v = 0, through the full RG flow. EM-and LM fixed points represent unscreened spin and
free local moment phases, respectively. For r=0 case, the lines accessed to NFL fixed point
at finite coupling €, willaccess to LM fixed point (unstable) as € —+00. For 0 < r < ryaq,
LM (LM’) fixed point becomes a stable fixed point.- The NFL fixed point in Fig.(1.16.a) is
replaced by ACR fixed point here, and two isolated p-h symmetric fixed point are located
outside the u = 0 plane. The two SCR-fixed-points control phase transition between
ACR and LM (LM’) fixed point. For r,,,, <7 <1, the phase transition between LM and
LM’ can be controlled by ACR fixed point. The flow is towards to ACR fixed point as
at € = 0. For r > 1, the transition is a level crossing, in other words, there is no QPT.
Free impurity fixed point(FIMP) is located at g = € = 0, and flow is towards to FIMP at

e =0.
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Figure 1.16: The RG flow phase diagram of 2CK particle-hole asymmetric single impurity

pseudogap Kondo model. The details are in text. Adapted from [44].
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Chapter 2

Large N Approaches To 2CK

Anderson Model

The ground state and thermodynamic behaviors of s=d model represented by the the non-
degenerate Anderson model can be understood by the Fermi liquid theory [5], conformal
field theory [32, 54|, the Bethe ansatz solutions [55], renormalization group, and numerical
renormalization group [51, 56]. The QPT of pseudogap Kondo problems with the N-fold
degenerate Anderson modelanalyzed by RG and NRG have been introduced in Chapter
1 [41, 43, 44]. Here, we introduce-one of-large N approaches, so called non-crossing
approximation (NCA) to solve the N-fold degenerate Anderson model, where N — oo is
number of different spin flavor of fermions [57, 58, 60, 61]. The N-fold degenerate Anderson
model with infinite U Coulomb potential can be solved by salve-boson representation [62].
The NCA approach has been successfully applied to Anderson impurity modes to address
quantum field theory and critical phenomena. In this chapter, we will solve two-channel
pseudogap Anderson model with infinite U Coulomb potential via NCA and salve-boson

representation.
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2.1 Methods To N-fold Degenerate Anderson Model

2.1.1 The Foundation Of Slave Boson Representation

For simplicity, we start from the Hamiltonian for N-fold degenerate infinite U Anderson
model out of equilibrium [5],

H =FEy[0,0 >< 0,0[+ Y Ei,l,0><Lo|+1/2U Y ngng + Y _ el 00 (2.1)

o,0' ,o#0! k,o

+ > (Vill,0 >< 0,0[cre + Vi Crol0,0 >< 1,0),
k,o

where infinite U Coulomb potential leads to no doublely-occupied state. The index m
(m=0,1) denotes the spin operator, spin-up (m=0) or down (m=1). The diagrammatic
perturbation theory does not work here, because U =~ o0 goes beyond the validity of

perturbation theory. The function-for-coupling strength function of dot and leads is
Fa(w) = 277—2 |Vka|25(w - 6k0)7 (22)
k,o

where T (w) = T'p,, = aV2 , and p,i$ theé conduction electron.density of states. Now

we express this model by Hubbard operators,
11,0 ><0,0.= X00, [0,0><1.6|= Xo0, (2.3)
10,0 >< 0,0/ = x00, |L,a><1,0=Xoo-
Diagrammatic approaches based on Wick’s theorem can not be applied here, because the
commutation relations, [Xp.q, X¢'p/| = Xpp99.00 £ Xa.¢0pp- Nevertheless, the slave-boson

representation [62] can solve these problem, where the x operators are replaced by boson

and fermion operators.

Xo,o = fl;rfu X0,0 = fabTa (24)

Xo0,0 = bTb7 Xo,o = fifgu

where f and b operators are called pseudo-fermion and slave-boson satisfying the

communication relation [b,b']_ = 1 and anti-communication relation [f,, fi], = 5.0/,
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2.1. METHODS TO N-FOLD DEGENERATE ANDERSON MODEL

respectively. This approach enforce a local constraint to ensure no double occupy on the
impurity,

Q=00+ fif, =1 (2.5)

From this representation, the N-fold degenerate Anderson model becomes
H=> erflfo+> Viflernob+ Vel fob)) + > e poro. (2.6)
o k,o k,o

The first two term are quadratic terms, and hybridization Vj can be a expansion parameter
in perturbation theory. We provide more details on slave-boson representation and apply

to study the 2CK infinite U Anderson model out of equilibrium in Section 2.2.

2.1.2 Non crossing approximation (NCA ) approach

Non crossing approximation (NCA)-approach is one of large N approaches to solve many-
body system. Instead of having two-flavors (N=2, spin=? or |). This method assumes
N — oo flavors of fermions in conduction bath-and on the impurity. In the limit of
N — o0, one can self-consistently solve for Green functions of. conduction electrons,
impurity fermion and slave-boson, by including all self-energy diagrams with no lines
crossing each other, so called NCA approach. Solutions via NCA are exact when N — oo.
At a finite N (< 00), we can systematically calculate the O(1/N) calculations to the large
N solutions [58]. In the physical system where N=2 (not N — o0), large-N approach
has been successfully used to provide qualitatively correct Kondo physics in a single-
impurity Kondo problem. However, NCA always leads to NFL singular impurity DOS
po(w) in any Kondo models. It does not correctly describe Fermi-liquid behavior of
single channel Kondo system. A more accurate numerical approach, NRG can resolve
this artifact. Nevertheless, NCA approach is able to correctly describe NFL behavior
in multi-channel Kondo problems. In fact, NCA approach has been successfully applied
to 2CK equilibrium and out of equilibrium system [57, 58]. The 2CK infinite U single

impurity Anderson model out of equilibrium will be solved by NCA in Section 2.2.
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

2.2 The 2CK Pseudogap Anderson Model out of equi-

librium

Figure 2.1: The set sup of 2CK pseudogap Anderson model out of equilibrium with
strong Coulomb potential. /There are two 2CK leads which eouple to single QD out of
equilibrium, where 2CK leads with pseudogap conduction electron DOS are in thermal

equilibrium, respectively.

This section, we will solve non-equilibrium 2CK infinite U pseudogap single impurity
Anderson model with SU(M = 2) x SU(N = 2) symmetry, where N and M is the spin
degeneracy of impurity and number of electron reservoirs (or Kondo screening channels),
respectively. Here, non-equilibrium system arises different coupling strength function of
leads and dot different form Eq.(2.2). The pseudogap conduction electron density of states
pe ~ |w|" in the 2CK Anderson model corresponds constant density of states Anderson
model for exponent r=0 [44, 61]. The schematic 2CK pseudogap Anderson model out

of equilibrium was shown in Fig.(2.1). For simplicity, we start from the non-equilibrium
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

2CK single impurity Anderson model with constant DOS [57, 58],

H = Z €ro — fla)CiT 2+ Zead dy + = UZ Z NeNy + Z (Ve d, + H.C)

T,0,0,k o ¢ +to 7,00,k

(2.7)
There are different chemical potentials p, of left (a=L) and right(a=R) lead in non-
equilibrium system, where o« € L, R. Spin flavors are represented by ¢ = 1,....N and
7 =1, ....M corresponds to independent electron reservoirs. Here, we set N = M = 2. The
(1) in Eq.(2.7) is the operator which creates (destroys) an electron in conduction
electron Fermi sea with momentum k of left or right 2CK leads. The second term in
Eq.(2.7) describes the spin o electrons on the quantum dot, and the last two terms

represent the electron Coulomb interaction on the quantum dot and leads-dot hopping,

respectively. The retarded conduction electron Green function was defined as

Gt) ==10() < {¢h, (1), cra(0)} > (2:8)

The conduction electron density of states is the imaginary part of the retarded conduction
electron Green functiomn,

pe(w) = ImG((t). (2.9)
The coupling strength function (without pseudogap DOS) of dot and leads is L) (w) ~
pe(w), it can be written as

T2 (w) =2n Y T Valolw [i)- (2.10)

keL(R)

The the chemical potential of two-channel non-equilibrium Anderson model is

eV,

Ma:,u0+(_)7> O‘:L(+)v a:R(_)a (2'11)

where 11 is chemical potential of conduction baths, pu, represents chemical potential with
bias voltage (eV,,) of left or right lead. The Fermi function with bias voltage of left side
or right side is

falw) = f(w+ po), a=L+), a=R(-). (2.12)
In non-equilibrium system, different chemical potentials (ur, ur) lead to different Fermi
functions (fr(w), fr(w)). However, uy = pgr and fr(w) = fr(w) correspond to equi-

librium (zero bias). We consider Coulomb repulsion U to be infinite, giving no double
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

occupancy on the dot. In this case, our model does not show p-h symmetry, because of
Coulomb repulsion is set to be U — oo and ¢4 # —1/2U. The third term in Eq.(2.7) is
a unperturbed term, where U is the infinite Coulomb interaction of electrons on the dot.
Diagrammatic perturbation theory can not be used here as U — oco. The hybridization
coupling V2 in Eq.(2.7) seems to be a more useful expansion parameter for perturba-
tion theory. From Section 2.1, the infinite U Anderson model can be made quadratic
by a transformation with the slave-boson and pseudo-fermion operators. Here, we de-
fine the slave-boson and pseudo-fermion operators, where b’ creates a empty state and fJ
(0 =1 or }) creates a singly occupied state. The df and d, in Eq.(2.7) can be decomposed

as,

d,(t) = bL(t) f5 (2.13)

4 ¢ 2 e

where ¢ is spin (up or.down), and-elf1|Q s="fib. QO >= 0 | |Q > is the vacuum state.

Due to no double occupancy on the dot, we add a local constraint;

Q=bbt 3 fofa=1 (2.14)
where Q is the total physical states, it must be equal torunity (Q=1). Now we rewrite
the Hamiltonian in the slave-boson. representations

H = Z (Ek - :ua)cgirczéar + €d Z f;fU + Z (Vkoz;(f;chgaT) + HC) (215)

koTa koTa

The first two terms in Eq.(2.13) are the unperturbed quadratic terms, and the last term is
the hybridization. Diagrammatic perturbation theory can be used as hybridization V,2 is
a small expansion parameter. The Green function of pseudo-particles up to lowest order
self-energy is shown in Fig.(2.2), where pseudo-fermion self-energy involves slave-boson
propagator, and slave-boson self-energy involves pseudo-fermion propagator. Note that
the Hamiltonian represented by salve-boson, pseudo-fermion and the local constraint are
equivalent to Eq.(2.7). Since we study the non-equilibrium infinite U Anderson model,
how to deal with the local constraint is an important problem here. We apply Keldysh

diagrammatic perturbation theory to formulate our equations (see Ref. [57].) We start
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

from the action S, in Q=1 ensemble, defined as:
Se(—o00, —00) = e~ AW HT) (2.16)
Next, we write down the non-equilibrium partition function as,
Zg—n = Tr{e PHo—nNL=1rNR) 5 5, T[S, (—00, —00)]}. (2.17)

Here n=1, and T is the operator which orders operators along the Keldysh contour. If

we have an operator O, the expectation value in () = 1 ensemble is given by

N 1 A
<0 >g1= = Tr{efﬁ(Ho*uLNL*uRNR) X 001 Te[Se(—00, —00)O]}. (2.18)

Q=1
We can rewrite d¢g 1 as an integral over a complex chemical potential i\ [63]
s /B ‘
001 =~ dre™PANR=D), (2.19)
2 e
Now we divide both numerator and denominatorof < O >0-1 by partition function Zg—,

it leads to

. Zo- A
<0 >pa= % <O (2.20)

There are two contributions in non-equilibrium expectation value of O in Q=1 ensemble,

A <D Zg=0
< O >, and Zoo,» Where

. 1 .
<O>n=~ Tr{e PHRHENE I R Q) 5 T[S, (—o00, —o0)]}, (2.21)
Q=1
. /B .
<0 >0= ﬂ/ e < 0>y,
27 J—rys
and
Zg—o = Tr{e PHomnNe=nalNr) s 54 0T, [S.(—00, —00)]}, (2.22)
s /B ,
600 = — dhe PMNQ).
o2 S mys

As the trace of < O >;, divides by Zg—o, it does not restrict in Q=1 ensemble, and the
normalization Zg—¢g=1 can be obtained from identity < @) >g-1= 1, where

Zo—
£Q=1 —< bip >S\) + E < f;fg >g\) . (2.23)
Q=0

g
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

From these, the constraint Eq.(2.12) can be solved, and expectation value < 6 >}, can be

obtained diagrammatically. And the impurity retarded Green function is
G (r) = —if(t) < {d(t),d}(0)} > . (2.24)
It can be written as G"(t) = 0(t)[G~ (t) — G=(t)],
G5 (r) =i < {d,(0),d}(t)} >, (2.25)

G2 (r) = —i < {d,(t),d} (0)} >, (2.26)

where G<(t) is the impurity lesser Green function, and G~ (t) is the impurity greater

Green function.

(a) boson propagator

W\”: NN+ W+

(b) fermion propagator

Figure 2.2: At lowest order, boson self-energy involves the fermion propagator, and

fermion self-energy involves boson propagator. Adapted from [57].

The impurity spectral function is
1
po(w) = —=ImG. (w), (2.27)
T

where G (w) is the Fourier transform of the impurity retarded Green function. Due to

infinite U potential, we need retarded Green function in the Q=1 ensemble with complex
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

chemical potential 7],
Zg—o, 1

ZQ:1 ™

pol(w) = ImGy3 (w) (2.28)

Furthermore, we can write down the current though the dot,

7= [ e V) X Va2 = S = o) 29

Our goal is solve the current, therefore we have to analyze the impurity retarded Green
function first, then density of states can be solved easily. Here, we expand SU(2) x SU(2)
Anderson impurity model to SU(N) x SU(M) Anderson impurity model, where N > 2
and M > 2. We apply the large N approach, non-crossing approximation to our model on
the Keldysh contour. The impurity retarded Green function in the Q=1 ensemble with
1A can be expressed in terms of pseudo-particles within NCA approach, where neglects

vertex relation.

G = — i (B <o () (0)} > (2.30)

T,

="CE —i0(t)[D” (- 1)G7F, (&) = DS(—1)GF (1)].
Here, we define Green functions of pseudo-fermion:

G7, = —i < f,(1) f1(0) >, (2.31)

G?U =1 < f;<0>f0(t) >i1)\7
and slave-boson:

D> = —i < b (t)bL(0) >, (2.32)

D= =i < bl(0)b(t) >},

where the natation < and > represents lesser and greater Green function. The fermion
and boson propagators within NCA as shown in Fig.(2.3) are self-consistent via Dyson’
equations , where the self-energies are iterated to all orders [57]. The lesser (greater )

Green functions can be written as [59]:

D> (w) = D" (w)II” ) (w) D*(w), (2.33)

G =@, (w)S ) ()G,
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

where D*(w) and G, is advanced Green function of boson and fermion, respectively. The
advanced Green functions are complex conjugates of the retarded Green functions. The
I1>(<)(w) is the self-energy of boson greater (lesser) Green function, and E?f)(w) is the
self-energy of fermion greater (lesser) Green function. The boson self-energies of lesser
and greater Green function are given by (see Ref. [57, 60])

+o0

T () = (~20) / 0G5, (eq + W)V (—ea + ) % (2.34)

—0o0

PL(Gd — HL — MO) + [|V}£|2]f(—€d + MR)PR(Gd — MR — Mo),

1 (w) = 2 | 4G (e + W) VEPIf (d — 1) % (2.35)

[e.e]

pr(ea — pr — po) £ (Ve P (ea = p@)pr(ed — pr — o),

and fermion self-energies,

+o0
IT5 (1) =24 / deD e ) VK- 1 by ) (2.36)

— 00

pr(—€q 4+ L, + o) + [|V£|Q]f(—€d +Jur)pr(—€q + i + o),

—+00

I () = 24 / deD%, (eq + W)[VE P fea — pn) % (2.37)

— 00

pr(—€q + fir + po) + [|V£|2]f(€d — 1R)PR(—€a + 1t + o),

The relation between greater Green function and retarded Green function are, D~ (w) =
2ilmD"(w), G7, = 2ilmG?,, where the self-energies, I1”(w) = 2iImlI"(w) and 37 (w) =

2i1 mE}U(w). The retarded self-energies can be solved by greater self-energies, where

i [t 1~ (w)
I = — dw ———— 2.38
(w) 27r/ ww—w’—i'r] (2:38)

i [T ¥ (w)
3" = — dw' ————— 2.39
(w) 27?/_00 ww—w’—in (2:39)

The retarded Greens function for pseudo-fermion is given by
G"(w) = [w — eqg — X" (w)] 7, (2.40)

and for slave-boson,

D(w) = [w — II" (w)] 1. (2.41)
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The self-energy for pseudo-fermion,

S (w) = g Z/dd’a(w — € — o) f(w — € — pa) D' (e), (2.42)

and self-energy for slave-boson,

" (w) = gZ/deFa(w — € — o) f(w — € — 1a)G" (€). (2.43)

The NCA expressions for the lesser Green of the pseudo-fermion is G<(w) = >~ (w)|G" (w)|?
and slave-boson is D<(w) = 7<(w)|D"(w)|?>. The lesser Green function self-energy of

pseudo-fermion is,

Y (w) = % > / dél (= €~ 1) f(w — € — 1) D= (€) (2.44)

and of slave-boson,

< (w)= gZ/deFa(w = e o) = € = pa)G<(e). (2.45)

Within NCA approach onto Keldysh contour, we can solve self-consistent equations

(a) boson propagator
C

| :
D) <0 b
W _— W
R
f

Figure 2.3: Diagrammatic self-consistent Dyson’s equations, Eq.(2.38)-Eq.(2.41).

Adapted from [58].
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2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

(Eq.(2.38)-Eq.(2.43)) numerically. Salving this self-consistent equations corresponds sum-
ming all order diagrams in matrix element V.

Now we couple pseudogap DOS to 2CK single impurity Anderson model as shown in
Fig.(2.1). We assume pseudogap conduction-electron density of states is [60]

r+1

ol 0(D = |wl), (2.46)

pelw) = = ImG(w) =

where vanish with power-law fashion. The G, is conduction electron Green function, w in
Eq.(2.44) is the momentum space of conduction electrons, D is half-band width, and r is
the exponent of pseudogap. The 2nd term in 2CK constant DOS single impurity Anderson
Hamiltonian (Eq.(2.7)) describes conduction electrons, which is coupled to Eq.(2.45) now.
The coupling strength of leads and.dot with pseudogap DOS is

r+1
2Dr+1

The bare density of states, p.(w)-is-defined as. N*(w) = N(w)/N(0) [58], and ') =

La(w) = Cape(w) =[xVi5*N(0)] WD = |w]), o = L, R (2.47)

7|V,2|2N(0), where Ni(0) is bare density of states of per(pseudo)spin and channel, U, =
Ur, 'y =T = g Here, N and M denote the number of spin and charge channels, and
f(w) is the Fermi funétion, wheref(w) =[1 4+ e?“]=1. The physical impurity spectral
function, p,(w, V), is the convolution of pseudo-fermion and slave-boson Greens function

?

pol.V) = o / delImD’ () G<(w + €) — DAOIMG" (w + €)]. (2.48)

The normalization factor Z = 5= [dw[M x D%(w) =N x G=<(w)] enforces the constraint,

< @ >= 1. The current is given by

~ NS / QPL PRO0) o V) x [f(w 4 eV/2) — flw —eV/2)].  (2.49)

+ I'r(w)
The linear-response conductance is directly obtained from
2l (w)l'g(w) ~— 9f(w)
G(0,T) NS — X po(w,V =0). 2.50
- +PR()< 8W>p< L
And the nonlinear conductance G(V) is given by . From self-consistent equations, we

can compute the convolution of impurity DOS by numerics. The results via self-consistent
equations of graphene and constant density of states will be given in next section. The
quantum critical phase transition of 2CK pseudogap Anderson model will discussed in

chapter 3.
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2.3 Constant Density of States And Doped Graphene

We have been introduced quantum phase transition of pseudogap Kondo problems via RG
and NRG in Section 1.5. In this section, we show the numerical results of 2CK pseudogap
Anderson model from NCA self-consistent equations (Eq.(2.40)-Eq.(2.45)). We briefly
discuss the materials correspond to 2CK pseudogap leads [44, 41, 60, 61], it was separated

into three cases:
1. r=0: metals, constant density of states,
2. r=1: magnetic doped graphene,
3. 0 <r < 1: correspond possibly to semiconductor soft gap.

Among these three cases, we were attended in_investigating quantum phase transition.
From NCA solutions, we study QPT via impurity spectral function and differential con-
ductance scaling. In next two subsections, we will show the results via NCA of graphene
and constant DOS 2CK Anderson impurity model. The quantum eriticality in the interval

0 < r < 1 will be discussed in Chapter 3.

2.3.1 Results Of Constant Density Of States Anderson Model

The constant DOS Anderson model corresponds to the system where two independent
electron reservoirs coupled to magnetic impurity, as introduced in Section.1.3.2. The DOS
Anderson model have been introduced in Section 2.2, as Eq.(2.1) and Eq.(2.7) which
is represented equilibrium and non-equilibrium case, respectively. Here, we show the
results adapted from Ned S. Wingreen and Yigal Meir, PRB, 1993 [57]. The impurity
DOS (Eq.(2.48)) can be solved numerically via the convolution of the lesser and greater
Green function. As shown in Fig.(2.4), the impurity DOS for constant DOS Anderson
model is illustrated in equilibrium and non-equilibrium system, respectively. There is
non-Lorentzian Kondo peak at w = 0 in equilibrium system , which is shown as the solid
cure. Note that: "Kondo peak of single channel Kondo screening is a Lorentzian peak,

there is always non-Lorentzian Kondo peak in impurity DOS solved by NCA approach.
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Figure 2.4: The impurity DOS p,(w) for the r=1 2CK pseudogap Anderson model both
in equilibrium and non-equilibrium system, where the magnetic impurity symmetrically
coupled to leads of Lorentzian bandwidth 2W and chemical potential pp and pr. Note
that: in our study, we use D to replace W to be half-bandwidth. Here, all energy is
units of I'; the coupling constant of leads and-dot, the half-bandwidth at half-maximum
is W = 100 and temperature T"'= 0.005. The dashed cure represents out of equilibrium
impurity DOS, Kondo peak splits into two suppressed peaks: The p-h symmetric impurity
DOS is shown as the solid line, where single ' Kondo peak is at w = 0. Adapted from Ref.
[57].

The NCA approach is correct for 2CK”. The dash line represents the impurity DOS out
of equilibrium, where the Kondo peak is split up into two peaks by bias voltage. The
width of two split peaks is equal to the quantity of bias voltage. The 2CK impurity DOS

ave been successfully resolved by NCA approach, furthermore, we can solve the current

and conductance by Eq.(2.49) and Eq.(2.40). The more details see Ref. [57, 58].
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Figure 2.5: The scaling is characteristic of a Fermi liquid when (eV/KpT)? plot. The
conductance does not follow. a linear behavior, when (eV//k#T} )% plot. Therefore, rule
out spurious effects in the real 2CK-behavior for type ”7n” Co.impurities on graphene.

Adapted from [6].

2.3.2 Results And Physics Of Doped Graphene

Graphene is honeycomb lattice structure with-two inequivalent carbon atoms per unit
cell. The two inequivalent carbon atoms were labeled by A and B sites. The momentum
space of graphene is also honeycomb. lattice structure. The band structure of graphene
resolved by tight-binding method is called as Dirac core, because it satisfied Dirac equa-
tion and linear divergence. The point at w = 0 is called Dirac point. There are two
independent Dirac cores of graphene in momentum space, their Dirac points labeled by
K and K’. Experimentally, the adsorption Co atoms on heavily doped graphene lead to
unusual Kondo resonances [6]. The experimental results of Ref. [6] show two-channel
Kondo behavior as shown in Fig.(2.5). The QPT in doped graphene can be illustrated in
a phase diagram as shown in Fig.(2.6), no Kondo screening in zero chemical potential [41].
Physical explanation for the effective low energy for magnetic impurities in graphene: ”

existence of two Dirac points are related to two independent Kondo screening channels”.

Note that: someone consider doped graphene is 1CK, because they believe two Dirac
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core are scattering to each other at low temperature. The tight-binding description shows
the hybridization between electron states in graphene and impurity states preserves the
A-B sub-lattice symmetry [69]. The Co is located at the center of a graphene’s hexagon
[70], the inter valley scattering does not coupled to two screening channels, therefore ef-
fective 2CK ensues [68]”. Theoretically, electrons in graphene provide a realization of
two-dimensional Dirac electrons [41, 67]. Magnetic impurities coupled to two-dimensional
Dirac electrons corresponds doped graphene [64, 65, 66|, obeying the pseudogap conduc-
tion electron density of states (p.(w) ~ |w|") , where exponent r=1. We use the 2CK
infinite U Anderson impurity model (Eq.(2.1) and (Eq.(2.7)) to describes this model. It
is worth mentioning: no vanishing gate voltage Kondo screening in graphene when weak
coupling regime [41, 44, 45]. We can-investigate doped graphene QPT by gate tuning as

shown in Fig.(1.14.a).

Figure 2.6: The quantum phase transition in graphene can be investigated by controlling
the chemical potential pg. When p = 0, there is no 2CK state, always in LM state.
If 4 # 0, the quantum phase transition between LM state and 2CK can be observed.
Adapted from [41].

When chemical potential is zero (ug = 0), there is no Kondo screening. The QPT

of graphene by gate controlled have been studied via NRG approach (see Ref. [41]).

Here, we introduce QPT out of equilibrium of doped graphene with bias voltage by NCA
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Figure 2.7: (a) The phase diagram for 2CK-LM crossover QPT, parameter j represents
coupling I' or chemical potential p, and y*is-the crossover scale for a fixed temperature
Ty = 5 x 1077D. All parameters in units of-half<bandwidth D=1, and 7}, and T, are
energy scales associated with the-2CK universal scaling.. (b) A spin one half impurity
couples symmetrically to the two sub-lattices of two graphene leads out of equilibrium,
where two graphene leads are in thermal equilibrium, respectively. (c¢) Doped graphene

in momentum space. Adapted from [60].

solutions adapted from Section 2.2.[60]. The schematie setup. corresponds to Eq.(2.7)
as shown in Fig.(2.7.b), a spin one half impurity (red dot) couples symmetrically to
the two sub-lattices of two graphene leads, where different chemical potentials of each
graphene. The two Dirac points at two independent Dirac Core corresponds to two
Kondo screening channels as shown in Fig.(2.7.c). The diagram of QPT between LM and
2CK state as shown in Fig.(2.7.a) can be controlled by I' and chemical potential, where
[ is the coupling constant of leads and dot (|V2?/7]). The impurity spectral function
which is the convolution of the greater and lesser Green functions is calculated via NCA
equations numerically at different chemical potential as shown in Fig.(2.8). NCA solutions
can provide correct physic results at Dirac point as two-channel Kondo. The impurity

spectral function does not present p-h symmetry. The hight of Kondo peak is related to
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Kondo temperature (7}), and 2CK Kondo temperature is the function as [57]:
Ti ~ w(T /271 (1 — €)Y ?exp[—m (1 — €q)/T). (2.51)

The parameters I and p affect the the hight of Kondo peak. To analyze 2CK conductance
scaling, we start form conductance behavior of two-channel Kondo. The most important
property of 2CK conductance is the square root curve (see Section 1.2). Theoretically, we
analyze two-channel Kondo conductance scaling function both of equilibrium and out of
equilibrium [71]. First of all, we discus equilibrium system conductance, there is no bias
voltage in system, and temperature dominates physics behavior, as a function G(0,T): a

temperature dependent function formulated as,
G0, 7Y = G(0,0) =BTz, (2.52)

where G(0,0) is a constant here,-we-have to omit this constant to observe square root
curve in logarithmic scale. This analyzed function shows non-Fermi liquid behavior of
two-channel Kondo in equilibrium. The non-equilibrium 2CK conductance scaling is

formulated in terms of variable V and T,

eV

G(V, T) = G(0,T) = BT H(A
kT

). (2.53)

The function H(A keBVT) can be calculated by field-theory, where H(A keBVT) ~ (I;—VT>2 for

I:BVT << 1l,and H(A k;VT) ~ ( k;VT)l/ > for ISTVT >> 1. In non-equilibrium case, temperature
T is a constant as Ty, = 5 x 1077D. From NCA equations, we numerically calculate
doped graphene conductance both equilibrium and out of equilibrium. The results via
NCA are shown in Fig.(2.9). Compare Fig.(2.9) to Fig.(2.5), there is comparison between
theory and experiment. The Fig.(2.9.a) and Fig.(2.9.b) are the 2CK scaling of equilib-
rium conductance. The Fig.(2.9.c, d, e) are the 2CK scaling at different interval out of
equilibrium.

Give a summaries of 2CK graphene universal scaling in conductance: In equilibrium,
there is v/T behavior when T' < Tj. In non-equilibrium system, there is \/(eV/kgT)
behavior when T" < T < Ty, and (eV/kgT)? when T” < T*, where T" is a small temper-

ature. We have studied QPT of 2CK pseudogap Anderson model for r=0 and r=1 via
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2.3. CONSTANT DENSITY OF STATES AND DOPED GRAPHENE

NCA. In next section, we will investigate quantum criticality and find universal scaling

for 0 <r <1 bot.

8 | I I
— pu=-01
— n=-0.09 _
6- | p=-0.08 = i
— IJ = _007 \x
1 =-0.06 a

| | L | L | |
92 %015 01 005 0 005

Figure 2.8: The impurity, DOS via-NCA"v.s." different chemical potential p in units
of D. Dirac point is located at w/D = 0, and Kondo peaks are pinned near each p.
Different levels w/D with different chemical potentials ;1 correspond to different Fermi
levels, respectively. The parameter are 1Ty =5 X 10-7D, I' = 0.2D, ¢; = —0.2D, where D
is half-bandwidth. Tj is temperature of the system, I" is coupling constant of leads and

dot, and ¢, is dot level. Adapted from [60].
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Figure 2.9: (a) The lineariconductance in equilibrium systeém. It show square root behav-
ior at temperature which is lower than Kende-temperature. (b) There is an additional
power law behavior at high temperature in equilibrium conductance scaling. It shows
T* ~ | — I'*|"# where T'*is a small number, 0.05D and z ~ 0.1. (c) Nonlinear conduc-
tance at I' = 0.2D. The fixed parameters are Ty = 5 x 107D,y = —0.1D,¢; = —0.2D,
where D = 1 is half-bandwidth. (d) The (eV/kgT)? behavior arises as (eV/kgT) << T.
(e) The (eV/kgT)z behavior arises as (eV/kgT) is between T and Txk. Adapted from

[60].
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Chapter 3

Results Of The 2CK Pseudogap
Anderson Model: Quantum Phase

Transition and Quantum Criticality

In this chapter, we provide our NCA results for pseudogap 2CK Anderson model within
quantum critical region for 0 <'r < 1. The 2CK QPT with pseudogap density of states
have been investigated via renormalization group (RG) approach (see Section 1.3). Here,
we investigate QPT in 2CK Anderson model by tuning exponent r via NCA approach.
From impurity density of states (DOS), we analyze the quantum phase transition between
LM and 2CK state and extract the quantum critical point. The differential conductance
both in equilibrium and non-equilibrium cases are analyzed in Section 3.2. From our
numerical results in conductance, we find the universal scaling at and near quantum
criticality. The schematic phase diagrams of equilibrium and non-equilibrium are sum-
marized in Fig.(3.1). The quantum critical point is at and near r — 7. ~ 0.115. The
phase diagrams describe equilibrium and non-equilibrium crossover between LM and 2CK
with crossover scales being T and V*, respectively. Both equilibrium and out of equi-
librium phase diagrams in conductance show power law divergence at quantum critical

region. We also observe different universal scaling behavior between equilibrium and out
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of equilibrium systems.

Equilibrium Conductance G(0,T) Non-equilibrium Conductance G(V,T)
g  Quantum Critical region Quantum Critical region
=3
= L.
E i (]
e ~ y :
£ T et g VA~ — e

. ° .
= S L
2CK 2CK i

0 0 I r

Figure 3.1: The phase diagram of equilibrium and non-equilibrium conductance. The
phase diagrams delineated by T and V* which is crossover scale in equilibrium and
out of equilibrium, respectively. The inverse of crossover scale is correlation length, &,
which is diverge in quantum critical region, and vp=4, v, = 0.5 are universal factor
called as correlation length exponent. Due to vy, vy are different, the universal scaling
in equilibrium is different from out if equilibrium. Here, critical point is at and near

r. = 0.115, even if G(0,T) and G(V,T) have slightly different parameters (I" and ¢;).

3.1 Quantum Criticality Shows In Impurity Density

Of States

The pseudogap DOS (p.(w)) of conduction electrons vanishes in power law fashion at

Fermi energy (p. ~ |w|"). If there is sufficient conduction electron DOS to screen the
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Figure 3.2: The r=0.05 density of states of impurity non-equilibrium system with I" =
0.3D,eq = —0.3D,T = Ty =5 x 10°"D,where D = 1. The impurity DOS exhibits
asymmetry graph, where/no peak at ; + U due to particle-hole asymmetry. The non-
equilibrium density of states with-bias, V' =0.038D, Kondo peak divided into two peaks,
because the Fermi energy of left and right leads are different, the width between two peaks
is equal to bias.

magnetic impurity in 2CK system, the ground state is going to:2CK fixed point. On the
other hand, it leads to LM fixed peint if conduction eleetron DOS is not sufficiently large.
Here, we study quantum phase transition of pseudogap 2CK Anderson model by tuning
r (0 <r<1)at py =0 with fixed parameters I and ¢;, where p is chemical potential of
the conduction bath. Not that: There is no Kondo screening in graphene (r=1) if o = 0.
We investigate quantum critical region form analyzing numerical data via NCA. In this

chapter, we define two-channel Kondo temperature, Tooi. In quantum dot system, three

important features arise as 2CK ground state emerges (7" < Thox),

1. The entropy of impurity spin (S(2)) at T — 0 is that S(Q = 2) ~ kplny/2, where

T is the temperature of the system,
2. A non-Lorentzian Kondo peak occurs at Fermi level in impurity DOS.
3. As T < Tyey, the conductance follows the scaling function Eq.(2.51) and Eq.(2.52).
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From the 2nd feature of 2CK, we study impurity DOS for extract the critical point at
and near r. in this section. The conductance behavior and the universal scaling will be
discussed in Section 3.2. The non-equilibrium impurity for r=0.05 is shown in Fig.(3.2),
where Kondo peak is spilt up into two peaks due to bias voltage. We find Kondo peak in
impurity DOS for r=0.05 is short, because QPT between 2CK and LM leads to Kondo
peak shorter as r is close to r. more and more. The impurity DOS for different r is
demonstrated in Fig.(3.3.a), it exhibits QPT between LM and 2CK by varying r in Kondo
peak (Fig.(3.3.b)). Numerically, we can not address zero temperature, so Tp = 5 x 107D
is used to approach to zero temperature, where Tj is the lowest numerically accessible
temperature. The Kondo peaks are shorter as r increases ,and there is a dip of Kondo
peak for » > 0.13, we predict that- LM state occurs while » > 0.13. The height of
Kono peak is related to Kondo temperature which. is as.a function in Eq.(2.51). We
can predict the critical. point form the change of Kondo peaks.. In order to study the
quantum phase transition of two-channel pseudogap Anderson model both in equilibrium

and non-equilibrium cases, we choose two sets of parameters to de so.

1. Equilibrium: T' =0.28D, €4 = —0.2D, zero bias voltage, varying temperature T,

and the lowest temperature T" = Ty,
2. Non-equilibrium: I' = 0.3D, €; =-0.3D, Ty= 5% 107D, varying bias voltage V,

when we study QPT in non-equilibrium conductance with bias voltage, temperature of
the system is fixed at Ty. The parameter I' (~ V?/7) is the coupling strength of leads and
dot, €4 is the dot level, and D=1 is half bandwidth. The parameters I" and ¢, all affect 2CK
Kondo temperature. But we find critical point is at and near r. = 0.115 both in parameter
I'=0.28D,¢;=—0.2D and I' = 0.3D, ¢ = —0.3D. thus forecast quantum critical point
is fixed as I' and ¢4 does not change too much. From the change of Kondo peaks for
different r in impurity DOS, the QPT is observed and we can extract quantum critical
region and critical point. Furthermore, we find the universal scaling both of equilibrium
and non-equilibrium conductance in the quantum critical region, these details will be

discussed in next section.
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Figure 3.3: The Kondo peak of impurity spectral function with I' = 0.28D5,¢; = —0.2D,
and Ty = 5 x 1077D by varying exponent r. (a).The. full. impurity DOS with p-h asym-

metry. (b) Kondo peaks for different r in Fig.(3:3.a).

3.2 Conductance near LM-2CK Quantum Critical Point

In Section 3.1, the quantum phase transition is signaled by the diversification of Kondo
peaks for different r in impurity DOS at r ~ 7., as a result, we extract the critical
point r. ~ 0.15. From the 3rd feature of 2CK in last section, we analyze conductance
in special case of 2CK pseudogap.Anderson model (0 < 7'< 1) to observe QPT between
LM and 2CK. The behavior of 2CK conductance in the constant DOS Anderson model
and graphene have been introduced in Section 1.3.2 and Section 2.3. In the next two
subsections, we will discuss conductance and their universal scaling behavior, more details
both in equilibrium and non-equilibrium cases for 0 < r < 1. We further compare that the
universal scaling in equilibrium and out of equilibrium. The conductance in equilibrium is
a function of temperature T, G(V=0,T'), most contribution comes from thermally excited
electrons near Fermi surface. On the other hand, most contribution in non-equilibrium
system comes from electrons excited by V. As a result, different Fermi energy in left and
right right leads may lead to different G(V,Tp) as a function of V from that in equilibrium,
G(0,T). In our study, we set T'= Ty ~ 5 x 107D as the lowest numerically accessible

temperature. We study further the universal scalings in conductance in quantum critical
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region.

3.2.1 Equilibrium Conductance G(0.T)
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Figure 3.4: The conductance v.s. T with varying r in equilibrium system , where p = 0,

I'=0.28D, ¢; = —0.2D are fixed, and the half-bandwidth D=1.

Here, we focus on conductance of 2CK pseudogap Anderson model for 0 < r < 1 in
equilibrium (V' = 0,7 > 0). As shown in Fig.(3.4), it exhibits G(0,T) by varying T for
different r with I' = 0.28D, pug = 0, ¢4 = —.2D, and D = 1. We expect that it follows
the 2CK scaling function G(0,T) — G(0,0) = B,T? in 2CK regime, therefore it exhibits
VT behavior at T < Tj. Numerically, we can not exactly address zero temperature
system, therefore G(0,0) ~ G(0,Ty = 5x1077D). The 2CK scaling behavior of differential
conductance for different r exhibits v/T as shown in Fig.(3.5). However, the region of VT
scaling gets narrow as r increase. In Fig.(3.5), the VT behavior is clear for r=0 , but
almost disappears for r — 0.11. We find the reason that G(0,T) deviates more and more
from /T behavior (violet dash line) as r — r., because the system approaches to the

G(0,T) is expected to show quantum critical point where a universal power law scaling
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Figure 3.5: To illustrate G(0, T) = G(0,0) = BT scaling for0 < r < 1, but we can’t get
a reasonable result. The /7 behavior of differential conductance is obvious for small r,

but it gradually disappears as r increase. Here, 7, s the non-universal factor, and p = 0,

['=0.28D, ¢ =—02D, D = 1.

in T. As shown in Fig«(3.6), we find the power of conductance.for each exponent r in
Fig.(3.5) are related to | — r.|.at the interval between 5 X 107D and 5 x 107"D. We
define the power in conductance foreach.x between5 x10~%D and 5x 1077D as op. There
is a linear relationship between |r —r.| and op, where r. = 0.115. The region between
5x 107D and 5 x 107D is expect to show the quantum criticality. So we suppose that

the conductance G(0,T) = Ggep(0,T) at quantum critical region, which is analyzed as:
Gocp(0,T) ~ T = Thr-orlr=re (3.1)

where 87 and ar are non-universal factors, T°T = TPT as r = r.. Next, G(0,T) divides

by 77, then it becomes

- T
G0.1) = . 1)1 = T

(3.2)
éQcp(O, T) = Ggep(0,T)/T°T = constant.

The curves between Eq.(3.1) become flat. We rescale y axis (G(0,7")) by a non-universal
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Figure 3.6: To illustrate ag w8 |r — r.| plot with .= 0, T = 0.28D, ¢4 = —0.2D,

whereD = 1.

factor dy such that every flat in y-axis overlap in the same value. Furthermore, x-axis is

rescaled by factor 7™ for normalization, the iniversal scaling is

_ AT G(0, L)
( % T*) (T/T*),BT—aT|T—Tc|dO’ ( )
where T™ is inverse of correlation length &,
.
T < 3 = |r —r."7, (3.4)

vr is the power exponent of T*. The universal scaling as FEq.(3.3) is shown in Fig.(3.7).
As r — r., correlation length & — oo, the scaling is the universal function. And the
crossover scale can be described by T*. As r — r., T* ~ 0, there is quantum criticality.
The universal scaling in equilibrium for 0 < r < 1 normalized by 7% was shown in
Fig.(3.8). The T* V.S. r — r. plot was shown in Fig.(3.8). Fig.(3.8) in the logarithm
scale shows linear relationship between T* and |r — r.|. The results of conductance in
equilibrium for 0 < r < 1 can be described as a phase diagram as shown in Fig.(3.1.a).
The quantum critical region diverges in power law fashion as r.. In summary, the QPT
in equilibrium with 110 = 0 can be observed by tuning exponent r and T. There is /T

scaling at T' < Tk, but it become more and more narrow as r increases. Conductance
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at region between 5 x 107D and 5 x 1077D is universal. The QPT in non-equilibrium

system will be discussed in next subsection .

%xﬁ \

L UNOSUOORRY V. s===" N i

%b >

o r =0.115

£ a0’ C -

= - — r=0.03 .

<) i — 1r=0.05 ]

© L r=0.07 4
L >—1=0.09 i
I r=0.11 |

1x10* 1x10° 1x10"

T/T*

Figure 3.7: The universal scaling-in-G(0,T) is-given by Eq.(3.1) with T' = 0.28D, ¢; =

—0.2D and p = 0, whereD = 1. Setr = 0.115 is.the critical point.

3.2.2 Non-equilibrinm Conductance G(V,T)

In this section, we investigate quantum-phase transition of the 2CK pseudogap Ander-
son model out of equilibrium for 0 < r < 1 described by Eq.(2.15) via NCA approach.
In particular, we address universal scaling in non-equilibrium conductance near quan-
tum critical point. Here, we analyze conductance by adding bias voltage at fixed low
temperature Ty ~ 5 x 1077D. For simplicity, we focus on the simple case with parity
symmetry (left and right side), where I';, = 'y = £, and p;, = g = €V//2. The conduc-
tance G(V,Tp), is shown in Fig.(3.10), with I' = 0.3D, ¢4 = —0.3D at fixed temperature
Ty ~ 5 x 107", As shown in Fig.(3.9), the conductance for each r saturates at low

bias region, and we find that it follows 2CK scaling function for small r and 7" < Tj:

GV, T)—-G(0,T) = BCT%H(AISTVT), where the universal function H(Al;—‘;) is (l,fBVT)2 for

eV
kT

<< land (;2%)Y2 for ;2% >> 1. In other words, in the 2CK regime, the conductance
kuT knT
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Figure 3.8: Crossover scale 1™ v.s r — r. plot with I"=10.28D, ¢; = —0.2D and p = 0,

whereD = 1.

should exhibits \/eV/kgT and(eV/kpT)? scalingbehavior-as T" < Tj,. The differential
scaling in conductance is shown in Fig.(3.10), and it exhibit non-Fermi liquid behavior
VV at TO <V < T}, and V? for/small bias region V' < T, 0. The region gets narrow more
and more as 1 increases.«For r=0.03, it exhibits the obvious \/W and (eV/kgT)?
behavior, but the curve for #=0.07.shows clear deviations from/eV/kgT and (eV/kgT)>?.
The deviation is due to the fact that the system-is‘close to the 2CK-LM quantum critical
point, where distinct of universal scaling function is expected to show. In our study, the
exponent r=0.115 is at and near critical point r.. We analyzed the power oy in conduc-
tance for each r between V=5 x 1073D and 5 x 107°D. As shown in Fig.(3.11), there is
linear relationship between oy and |r — r.| as r — ., where a red dashed line is fitted to
|r —r.|'. In quantum critical regime, the region between V=5 x 107D and 5 x 107°D
which exhibits power law behavior in conductance is expected to show. So we suppose

that G(V,Ty) = Goep(V, ty) at the quantum critical region which can analyzed as:

Gocp(V,Tp) oc VOV ~ VPvavirrel (3.5)
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Figure 3.9: Non-equilibrium conductance of 2CK pseudogap Anderson model. G(V,T)
saturates at a constant. value for V-<< T, other parameters are T = Ty = 5 x 1077D,
€qg = —0.3D and I' = 0:3D, D = 1. The bias voltage V is in_unit of half-bandwidth D.

where By and ay are non-universal factor. Wefind gy = 0, ayy = =5. ASr — r., o ~ 0.

Next, The conductance'G(V,Tp) divides by 7V then it becomes

GV, 1) = G(V,0)/v°Y, (3.6)
~ VaV‘Tfrc‘
Gocr(V, T). = —_—y constant.

Eq.(3.6) for different r becomes flat curves. Furthermore, we rescale y-axis Gocp(V, Tp)
by a non-universal factor dy, therefore, each curve for different r overlap in the same value,

where scaling in conductance is

5 G(V,0) Vovir=rl
T = : :
R A (3.7)
We rescale x-axis by V* for normalization, the universal scaling is
AV G((y%,0 V/VEyovir=rd
V= (V/V*)ovdy, (V/V*)ovd,
as shown in Fig.(3.12). Here, V* is inverse of the correction length, &y,
. 1
Vix — =|r—r™. (3.9)
v
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Figure 3.10: Scaling of non-equilibrium conductance; G(V4T) follows Eq.(2.53). The
parameters are set as T = Ty, = 5 x 107D, ¢; = 03D and I’ = 0.3D, D = 1. The
scaling exhibits the square root-and square behavior of eV//kgT', but reduced as exponent

I increases.

To illustrate the quantum phase transition between LM and 2CK regimes, V* describe
the crossover state in power-law fashion. As r — r., V* ~0; there is quantum criticality,
no crossover regime. The V¥ w8 “jr.— r.| plot issshewn in Fig.(3.13), and it exhibits

0.5 _
|, where vy = 2.

power-law behavior as r is close to 7. This power is fitted to |r — r.
For r close to r., Eq.(3.9) is the universal function, and the result can be summarized
by Fig.(3.1.b). In summary, the QPT in non-equilibrium for 0 < r < 1 sets g = 0 and
which can be observed by tuning r and V. The differential conductance scaling exhibits
V'V behavior at T < Ty and V2 behavior at V' < T. But it deviates the differential
conductance scaling function (Eq.(2.53)) as exponent r increases. The region between
V=5 x 103D and 5 x 107°D is universal. We have studied the QPT for r=0, r=1, and

0 < r < 1 both in equilibrium and non-equilibrium conductance. The QPT behavior of

2CK pseudogap Anderson model is manifest.
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Figure 3.12: The non-equilibrium universal scaling in conductance for different r at low

temperature, T =5 x 1077D. we set dot level ¢, = —0.3D, I' = 0.3D, and D=1.

56



3.2. CONDUCTANCE NEAR LM-2CK QUANTUM CRITICAL POINT
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Figure 3.13: Crossover scale V* v.s. |r — r.| plot with p =0, I' = 0.3D and ¢; = —0.3D.

We set D=1.
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Chapter 4

Summary And Conclusion

In recent years, there has beén numerous studies of quantiim phase transition (QPT) in
condensed matter physics, especially.the QPT between Kondo and other phases. With the
improvement of nano-material fabrication, we are able to.observe IKondo effect in quantum
dot (QD) system. There are many examples of QPT of Kondoreffect, such as: double
quantum dot (DQD)rsystem, two-channel Kondo effect (2CK) ‘and pseudogap Kondo
model. For DQD system, the competition between-Kondo and RKKY coupling leads
to the QPT between Kondo effect.and spin singlet. For 2CK system, two independent
electron sources exist and hence two-Kondo coupling constants J; and J, are needed to
label the interactions, i.e. the Kondo sereening from the two electron baths. There is a
competition between J; and J,, both of them simultaneously want to screen the impurity;
therefore, leads to the QPT between two independent electron reservoirs. As a quantum
dot couple to pseudogap conduction electron bath, the conduction electron density of
states (DOS) p. ~ |w|" vanishes at w = 0 in power-law fashion, where 0 < r < 1. In our
study, we investigate QPT by the 2CK pseudogap Anderson model with 0 < r < 1 via
large N slave-boson NCA approach both in equilibrium and non-equilibrium cases. In the
2CK pseudogap Anderson model, the constant DOS Anderson model corresponds to r=0,
and r=1 for doping graphene. Note that: in our study, dope graphene is a 2CK system.
The region 0 < r < 1 possibly corresponds to semiconductor with soft gap. We employ

slave-boson representation to solve infinite-U Anderson model, and self-consistently solve
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for Green functions of impurity and slave-bosons, by including all self-energy diagrams
with no lines crossing each other, so-called NCA. Numerically, we investigate the QPT
by the impurity DOS and conductance via NCA equations both in equilibrium and non-
equilibrium cases. The impurity DOS p,(w) via NCA exhibits non-Lorentzian Kondo
peak at w = 0. Kondo peak is separated into two peaks due to bias voltage, and the
width between two peaks is equal to the amount of bias. The QPT between LM and 2CK
can be observed by emergence of the dip of Kondo peaks for » > r.. From the dip of
Kondo peak in the impurity DOS at T'=5 x 107D, V = 0, we define the critical point
which is at and near r. ~ 0.115. The 2CK feature in QD is defined in the differential
conductance scaling as shown in Eq.(2.52) and Eq.(2.53). Here, we rewrite the 2CK

differential conductance scaling as,
T)— T
GO.T) — G iy
T« kT
Y (z) = b FyCK(z/m)~ g\/; for s> 1,

(4.1)

Y(z) =T FL,OK(z/7) = ca®, <¢~0.0758  for "z << 1,

with & = (g0/2)(7/Tack)® and @ = 0.5 for 2CK. We discover: that the region satisfied
Eq.(4.1) becomes narrower for 0. <. < 1 both in equilibrium and non-equilibrium situa-
tions. The conductance both in‘equilibrium and non-equilibrium are analyzed as shown
in Eq.(3.1) and Eq.(3.6), respectively. The universal scaling in equilibrium conductance
for 0 < r < 1 satisfies Eq.(3.3), and Eq.(3.5) describing the universal crossover scale
between LM and 2CK phase, as shown in Fig.(3.1.a). On the other hand, Fig.(3.1.a) is
the phase diagram in non-equilibrium for 0 < r < 1, the crossover scale is described by
Eq.(3.10), and Eq.(3.9) is the universal scaling out of equilibrium. In our study, we find
the hybridization does not influence the critical point too much for 0 < r» < 1 as shown
in Fig.(3.1.a) and Fig.(3.1.b). The QPT for 0 < r < 1 can be described by distance to
criticality in terms of both |r — r.|, T (equilibrium) and V (non-equilibrium). We choose
two sets of parameter in equilibrium and non-equilibrium, but we find the same critical

point r. = 0.115.
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Figure 4.1: This figure depicts the equilibrium thermal transport.and Fermi function. Red

line represents T' # 0 Fermi function, where particles may be excited by thermal energy.

For the cases for r=0 and r=1, there have been many studies and the QPT between LM
and 2CK by tuning I' and pg are well-known. We investigate the QPT between 2CK and
LM for 0 < r < 1 and find the universal scaling both in equilibrium and non-equilibrium
cases. And we find out that the scalings of G(V,Tj ~ 0) and G(V = 0,T) are different,
even if V and T are exchanged. We discover that the universal scaling in equilibrium and
non-equilibrium are not identical. The conductance G(0,T) is a function of T, within re-
sults from thermally excited electrons near Fermi surface as shown in Fig.(4.1). As shown
in Fig.(4.2), the conductance in non-equilibrium system is mostly coming from those elec-
trons excited by the bias voltage V, leading to different Fermi energy in left and right
leads. The difference between the conductance scaling in equilibrium G(V, Ty ~ 0) and

non-equilibrium G(V=0,T) can be understood by this argument. The QPT both in equi-
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librium and out of equilibrium are summarized in a three dimensional phase diagram as
shown in Fig.(4.3), it exhibits different universal scaling behavior in equilibrium and out
of equilibrium, respectively. In experiments, we can investigate non-equilibrium system
with the advancement of nano-technology in recently years. The non-equilibrium sys-
tem becomes an important subject in condensed matter both in experiments and theory.
Our study provides theoretical basis for further study in Kondo break down, quantum

criticality and non-Fermi liquid behavior in condensed matter systems.
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Figure 4.2: The non-equilibrium transport in our system depends on current. The Fermi
function for non-equilibrium case is different from the one in equilibrium because of the
difference between chemical potential of the left and right leads. Fermi function of the
left and right are different. The Fermi function of non-equilibrium system shows a jump

fr — fr across the impurity.
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Figure 4.3: The three dimensional phase diagram to describe QPT between LM and 2CK
both in equilibrium (G(0,T)) and out of equilibrium (G(V,Ty)). The quantum criticality
can be accessed either by G(0,T) in equilibrium and or by G(V,Tj) out of equilibrium.

The equilibrium and non-equilibrium conductance show distinct scalings at criticality.
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Appendix A

Here, we give a supplemental material: discussion for two-channel Kondo effect. We think
about a simple model out of equilibrium where two leads couple to a quantum dot, where

Ul
H=> e, (CoiCr, — pia) + Y. € didy, + 5 > eadid, + Y (VaCild+ HC). (4.2)

koo o koo

The momentum of Fermi sea and electron spin are represented by index k, o, respectively.
The leads of left and right are represented by o € L, R. We givenew linear-combination

operators by conduction electron operators,

. _CE+CE
Cka — %,
C/fa T lea
7\/5 )

The first term of Bq.(4.2), o (CrICE 4=CHCE Y becomes e, (CLL O+ CYCY ). The

(4.3)

0 _
Cka_

last term of Eq.(4.2) which represents hybridization of leads and dot becomes V& (C! d 4

d'C¢_). The full Hamiltonian can be rewritten as

H = Z EkU(CELC,iO — Ha) + Z ekU(CISlClgo — Ha)t (4.4)
ko

ko

> epdid, + % > eadid, + Y (Vi Cild+ H.C.),
ko

g g
where no hybridization coupling between operator d, and CP . The second term of
Eq.(4.4) has no contribution to the quantum dot. There is no second channel contribu-
tion to the quantum dot, there is single channel case in this system. The condition for

two-channel Kondo effect is that two independent electron reservoirs exist, and there is
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no scattering between two conduction electron band of reservoirs. Otherwise, we can use
a linear-combination transformation to rewrite the Hamiltonian, and there is only single
channel contribution to the quantum dot. The two-channel Kondo model out of equilib-
rium is shown in Fig.3.1, two electron leads coupled to a quantum dot are two-channel
leads, respectively, where Hamiltonian can be written as

(o (o U a o
H = Z (eka_ﬂa)ckirck07+z€0d¢1-7d0+§Zeddj;d0+ Z (‘/;CUTCledU+H‘C')' (45)

0,0,k o Tk
Here, we add a new channel index 7 € 1,2, and we assume hybridization V,% _ for different
chemical potentials are the same. Simplicity, we set Vik, = VB = VL, = VI in
our study. Theoretically, two-channel Kondo lead can comes from two degenerate states
in momentum space [19, 20, 23; 6], or two-independent: Dirac core in doped graphene
citegnauck37. The two channel Kondo has been realized by.a quantum dot couple to

a finite reservoir and two electron-leads come from the other reservoir [16]. Note that:

doped graphene is two=echannel Kondo system in our study.
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