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摘要

所謂的量子相變 (quantum phase transition) 是指在絕對零度經由調整某些參數所以引

起的基態的連續相變。 然而這些相變是因為量子擾動而非熱擾動。 另一方面, 近藤效應 (Kondo
effect) 也是凝態物理中的重要課題, 它是一個磁性雜質被電子自旋屏蔽而引起的物理現象。 因

為奈米科技的進步,近藤效應在量子點 (quantum dot) 系統的想法得以實現, 也因此, 與近藤效

應破滅相關的量子臨界現象 (quantum criticality) 也變成了重要的課題。 如果我們可以讓磁性

雜質同時和兩個獨立的電子庫耦合, 雙渠道的近藤效應 (two-channel Kondo) 就能被實現。 雙

渠道的近藤效應會造成非費米液體行為 (non-Fermi liquid), 這是有別於一般費米金屬的行為。

本論文中, 我們使用的是雙渠道贗能隙安德森雜質模型 (two-channel pseudogap single impu-
rity Anderson model), 所謂的贗能隙能態密度 (pseudogap density of states) 就是能態密度

(ρ(ω) ∼ |ω|r, 0 ≤ (r ≤ 1) 在接近w = 0時會呈現冪次方的消逝。 然而贗能隙能態密度的指數 r
也分別對應不同的磁性物質參雜材料, 例如加入磁性雜質的石墨稀 (doped graphene) 就是對應

r=1, 而常數能態密度則對應 r=0。 如果指數 r 過於大, 能態密度會消失過快而沒有足夠的電子

去屏蔽雜質, 因此雙渠道的近藤效應會破滅, 取而代之的是矩限態 (local moment, LM). 只要 r
夠小的話, 系統就會停留在雙渠道的近藤效應基態 (two-channel Kondo ground state)。 我們

研究雙渠道贗能隙安德森雜質模型 (0 ≤ (r ≤ 1) 在化學能為零 (µ0 = 0) 的情況下, 靠著調整

指數 r 來觀察雙渠道近藤效應和矩限態的量子相變。 我們只用 slave-boson 大 N 近似法 (large
N approach) 去自洽的解雜質電子的格林函數, 其中我們忽略所有有不交叉的費曼圖, 所以又稱

不交叉近似法 (NCA)。 從磁性雜質的能態密度, 我們可以觀察到量子臨界點 (r = rc), 更進一

步的, 同時在平衡態和非平衡的導電度 (conductance) 上找出統一標度律 (universal scaling)。
本論文可以提供未來研究非費米液體及量子臨界行為的理論基礎。
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ABSTRACT

Quantum phase transition (QPT) are the continuous phase transition of ground states
by tuning couplings in the quantum system. They are due to zero-temperature quantum
fluctuations, not thermal fluctuations. Meanwhile, Kondo effect is an important phe-
nomenon in condensed matter systems, which is an effect describing the screening of
magnetic impurity by the spin of conduction electrons in magnetical doped metals. Due
the advances in nano-technology, Kondo effect in quantum dots (QD) have been realized
in single electron tunneling transistor (SET), therefore QPT associated with the broken
down of the Kondo effect becomes an interesting subject. If two independent electron
reservoirs exist, two-channel Kondo effect (2CK) becomes possible. It leads to non-Fermi
liquid (NFL) behavior, which shows different electric transport from Fermi liquid metals.
In our study, we use the 2CK pseudogap Anderson impurity model to describe the system
where the single impurity is coupled to 2CK pseudogap electron bath, where its density
of states (ρ(ω)) vanishes in a power law fashion (ρ(ω) ∼ |ω|r, 0 ≤ r ≤ 1) for ω → 0. The
exponent r of pseudogap density of states varies with different materials. The magnetical
doped graphene (r=1) is an example of 2CK pseudogap Anderson single impurity model
system, and two-channel quantum dot system with constant density of states corresponds
to r = 0 case. If r is too large, there is no sufficient electron density of states to screen
the impurity spin, 2CK state is broken down, resulting in unscreened local moment (LM)
ground state. Let r be small enough, two-channel Kondo effect becomes possible. We
study QPT in 2CK pseudogap single impurity Anderson model at zero-chemical potential
by tuning r (0 < r < 1) both of equilibrium and out of equilibrium. We use slave-
boson large-N approach to self-consistently solve Green’s functions of electron on the dot
by including all non-crossing diagrams, so-called non-crossing approximation (NCA). We
extract the quantum critical point (rc) from impurity density of states, and find the uni-
versal scaling both in equilibrium and non-equilibrium conductances near rc. This thesis
provides theoretical basis for further study in Kondo break down, quantum criticality and
non-Fermi liquid behavior in condensed matter systems.

Keywords: Quantum Criticality, Quantum Phase Transition, Kondo, two-channel Kondo,
Pseudogap, Anderson Model, Universal Scaling
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Chapter 1

Introduction

1.1 Kondo Effect

In 1930s, there was an important discovery in solid state physics, where the resistivity

in some non-magnetic metals with magnetic impurities manifest itself a minimum at a

certain temperature shown as Fig.(1.1.a). This important phenomenon was known as

Kondo effect. There are many review papers, books, thesis and related information about

Kondo effect [1, 2, 3, 4, 5, 6]. Due the advances in nano-technology, Kondo effect was

applied in quantum dot systems, therefore Kondo effect shows different characteristic in

bulk system compared to quantum dot (QD) system. The conductance in a QD system

as shown in Fig.(1.1.b). We will illustrate the phenomenon of the Kondo effect in bulk

system below [1, 5, 7], then introduce Kondo effect in QD system in Section 1.1.2.

The original Kondo phenomenon cannot be explained by the scattering theory between

electron and phonon. J.Kondo successfully explained this phenomenon in 1964 by spin-

flip scattering as shown in Fig.(1.2) [8]. Theoretically, a magnetic impurity is screened

by the spin of nearby conduction electrons, leading to a spin singlet, so-called Kondo

singlet. The Kondo singlet appears when T < Tk, Tk is defined as Kondo temperature.

The size of Kondo cloud made of conduction electrons defined as ξ0k ∼ hνF
kBTk

, where νF is

Fermi velocity. The larger Kondo cloud implies a weaker Kondo coupling. Alternatively,

1



1.1. KONDO EFFECT

� � � �
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Figure 1.1: (a) Redline shows resistivity in metals contained magnetic impurities: at low

temperature, using third order perturbation theory, Kondo found that this scattering pro-

cess leads to a lnT behavior in resistivity. Blueline shows resistivity in normal metals.

(b) In quantum dot system, Coulomb blockade influence conductance. At low tempera-

ture, when temperature decreases, conductance increases (decreases) if electron number

is odd (even). Kondo effect appears only odd number, Kondo effect leads to conductance

increased at low temperature in QD system. Adapted from [1, 7].

Kondo effect can be conveniently described by the s-d model proposed by Zener [9], where

magnetic moments carry spin Sd coupling to conduction electrons via Js · Sd, where the

exchange interaction J was called as Kondo coupling (J > 0), Sd is the impurity spin,

and s is spin of conduction electrons. The s-d model can be related to Anderson model

at certain parameters regime, presented by P.W. Anderson [5, 6, 11]. Coqblin-Schrieffer

transformation can transform Anderson model to Coqblin-Schrieffer model, also called as

Kondo model [5, 10, 12]. Note that perturbation theory used to explain Kondo effect

only for T > TK . It breaks down for T < TK , one needs Numerical Renormalization

Group (NRG) to resolve this issue. More theoretical calculations will be introduced in

this chapter.
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Figure 1.2: (a) Kondo effect happened because of impurity screened by spin one half of

electrons. Adapted from [58]. (b) Electron-impurity spin-flip scattering.

1.1.1 Kondo Hamiltonian

From previous section, we know that the magnetic moment of impurity is screened by

conduction electrons, leading to Kondo effect. In this section, we provide a mathemat-

ical description of the Kondo effect. We start from a single impurity S = 1
2
Anderson

Hamiltonian [5, 6].

H =
∑

σ

ǫdd
†
σdσ +

∑

kσ

ǫ(k)c†kσckσ + Un↑n↓ +
∑

kσ

(Vkσd
†
σckσ +H.C.) (1.1)

The first term in Eq.(1.1) describes the local moment state of impurity with energy ǫd,

where σ is the spin index. The second term describes conduction electrons, where k is the

momentum space of Fermi sea. The third and fourth term are the on-site Coulomb repul-

sion and the hopping between the leads and the dot. The Coulomb repulsion potential U is

the energy cost for the localized state occupied by two electrons (of opposite spins). From

Anderson model, If ǫd < ǫF (which is the Fermi energy of the metal) and ǫd+U > ǫF , the

single occupied site will have a net spin-1/2. By using Coqblin-Schrieffer transformation,

Anderson model Hamiltonian can be mapped onto the Kondo Hamiltonian in U >> V

regime [5, 12]:

H ≃
∑

kσ

ǫ(k)c†kσckσ +
∑

k,k′

Jkk′skk′ · Sd, (1.2)
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1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

where Jk,k′ represents the anti-ferromagnetic coupling which is given by:

Jkk′ = VkσV
∗
k′σ[

1

ǫd − ǫk + U
+

1

ǫ′k − ǫd
], (1.3)

where ǫk is energy level of conduction electrons, ǫd is energy level of quantum dot, skk′ is

the spin of conduction electrons, and Sd is an impurity spin. Because the Kondo resonance

lies exactly at the Fermi energy, the contribution of exchange process is only from states

around Fermi energy(ǫF ). So we set that ǫd ≡ ǫd−ǫF , ǫk ≡ ǫk−ǫF and ǫk ∼ 0. Since ǫd < 0

and the Coulomb potential U is larger than ǫd, Jkk′(∼ JkF kF ) is the anti-ferromagnetic

coupling(Jkk′ > 0). For U >> |ǫd|, the expression reduces to:

JkF kF ≡ J ∼ −|V 2
kσ|
ǫd

= − |V 2
kσ|

ǫd − ǫkF
> 0. (1.4)

The second term of Eq.(1.2) is precisely the s-d interaction term written as Hex = J(r) ·

S. It describes the spin exchange between an impurity and the surrounding conduction

electrons. The distance r is measured from the impurity site to conduction electrons. This

simple model explains the Kondo problem that resistivity of metals in magnetic impurity

bulk system at low temperature will increase logarithmically. We will discuss Kondo effect

in QD system in Section 1.1.2 and two-channel Kondo in Section 1.1.4.

1.2 Kondo Effect In Quantum Dot System

Due to the progress of science and technology, scientist can fabricate semiconductor struc-

ture under nano-mater scale. The advance of micro-fabrication and cooling technology

make a chance that we can research Kondo effect in nano-size system. Kondo physics

can be realized in a tunable quantum dot (TQD). TQD is made by the single electron

tunneling transistor (SET) with two dimensional electron gas (2DEG) heterostructure,

as shown in Fig.(1.3) [1, 18, 21]. SET device has GaAs/AlGaAs layer and multiple elec-

trodes, where three gate electrodes on left and the other one on right in the picture.

Then GaAs layer confines 2DEG repelled by electrodes, and induces two tunneling junc-

tions under and above it. A metallic island is confined between two tunneling junctions

called ”quantum dot (QD)”. One of early experiments of Kondo effect in QD system was

4
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Figure 1.3: (a) Scanning electron micrograph of SET device. The top and down electrodes

on the left side and the electrode on the right side are used to operate the barrier of

quantum dot. The middle electrode on the left side are used to tune the energy level of

QD relative to 2DEG [13, 14]. (b) Schematic SET device [21].

made by D. Gordhrber-Golen et.al in 1998 [13, 14, 17]. The conductance in QD systems

is quantized by Coulomb blockade (CB) oscillations, leading to the difference of Kondo

effect between QD systems and bulk systems.

1.2.1 Coulomb Blockade Oscillations With Kondo Effect

The original Kondo physics (in bulk system) was introduced in last section, where Kondo

effect induce resistivity to be enhanced. This section, we will discuss the Kondo effect

in QD system, which is very different from bulk system. In the single electron tunneling

transistor (SET) device, the Coulomb blockade (CB) oscillations affects the conductivity

[21, 22] as shown in Fig.(1.4). In Fig.(1.4.a), it exhibits conductance increasing as odd

number in quantum dot (blue line), and there are peaks at VSD = 0 in Fig.(1.4.b). The

peaks at VSD = 0 are temperature dependent, as temperature is lower, peak is higher.

These peaks are due to Kondo effect, so-call Kondo peaks. We will introduce CB and and

briefly discuss the results in theory and experiment, then discuss Kondo effect in SET.

5



1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

Figure 1.4: (a) Conductance has two different behaviors at even and odd electron number.

(b) The zero bias differential conductance anomaly at VSD ∼ 0, where VSD is the voltage

difference between source and drain. [1, 13, 14].

Coulomb Blockade

Coulomb blockade oscillation appears due to strong Coulomb potential system, that’s why

it called as Coulomb blockade. In the SET device, Coulomb potential affect the electron

tunneling between leads and dot, illustrated in Fig.(1.5). The first order tunneling is

blocked by the Coulomb blockade, where U is Coulomb potential between the electron of

quantum dot and lead. The CB Hamiltonian related to constant interaction model was

constructed as [21, 22]:

HCB
D =

∑

µ

ξµc
†
µcµ + E(N), E(N) = ECN

2 − eVgN (1.5)

, where E(N) is the interaction term of the system, including gate voltage term as eVgN ,

where gate voltage leads to a electric field that increases the energy of dot electrons. In

general, we have to simultaneously think about source, drain, and gate voltage. Here we

lump all terms in a gate voltage term. The energy Ec =
e2

2C
, where C is the capacitance of

a single electron. The bias voltage leads to µL ≥ µdot ≥ µR, and the bias voltage difference

between the left lead (source) and the right lead (drain) was defined as VSD. Because of

the inequality of chemical potential, electrons can flow, therefore an added electron from

source excites dot energy from Edot(N − 1) to Edot(N), then an electron hops from dot to

6
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Figure 1.5: The illustration of Coulomb blockade. The first order tunneling is blocked by

Coulomb potential U , the cotunneling (2nd) solution is solvable. The additional energy

for N to N + 1 state is E2/C + ∆E. The voltage spacing between source and drain is

defined as VSD which is eV here.

drain, leading dot energy from Edot(N) to Edot(N − 1). The tunneling occurs when

αeVg(N) = E(N + 1)−E(N), (1.6)

where α = Cg/Cis the ratio of gate capacitance to total capacitance, called ”gate cou-

pling”. The αeVg(N) is similar to chemical potential of quantum dot, which is

eVg(N) ≡ µdot(N) = Edot(N)−Edot(N − 1) = (n− 1

2
)
e2

C
− eVg + EN , (1.7)

the remain terms defined as EN . The additional energy is given by ∆µdot, where

∆µdot ≡ µdot(N)− µdot(N − 1) =
e2

C
+ EN − EN−1 =

e2

C
−∆E. (1.8)

7



1.2. KONDO EFFECT IN QUANTUM DOT SYSTEM

The irregular spacing of the single electron levels is defined as ∆E. When charging energy

e2

C
is much larger than ∆E, CB oscillations is dependent on it. The peak spacing of CB

as a function of gate voltage is given by

∆Vg = ∆µ(N)/eα = (e/c2 +∆E)/eα, (1.9)

while condition Eq.(1.6) gives the gate voltage of N-th Coulomb peak. We take differential

of E(N) in Eq.(1.5) with respect N, we obtain the optimum number of particles,

Nopt = eVg/2Ec (1.10)

When optimum number is

• Integer: There is an energy gap for adding electrons.

• Half-integer: There are two degenerate charge states, then electrons can transit.

As shown in Fig.(1.4.a), it exhibits difference results indicated different number of

electron on quantum dot, and Fig.(1.4.b) exhibits non-equilibrium differential conductance

with anomaly behavior at VSD ∼ 0 [1]. The electron number can be changed by gate

tuning. The CB oscillation affect the conductance by electron number, then we discuss

how Kondo effect can overcome CB in QD.

Kondo Effect In Quantum Dot System

The tunable QD is sometimes similar to individual artificial magnetic impurity, which

leads to Kondo screening for (T < Tk). When optimum number is odd, the QD with

a single electron which is occupying the top-most quantum state, which is similar to a

magnetic impurity. In other words, Kondo screening occurs with a single spin-degenerate

energy state ǫd, no Kondo effect when optimum number is even. Kondo effect appears

when (T < Tk), where the Kondo temperature Tk found to be:

TK = [UΓ]
1
2 e

−π(µ−ǫd)

2Γ , (1.11)

where (ǫd) is dot level, (Γ) is a coupling between leads and dot, and chemical po-

tential µ [5]. These parameters all influence Kondo temperature. The Kondo effect is

8
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Figure 1.6: (a) Spin-flip cotunneling process of Kondo effect. (b) The density of

states(DOS) of quantum dot, The Kondo resonance lies at the Fermi energy, Kondo

effect occurs when the temperature is below the Kondo temperature Tk. Adapted from

[21].

illustrated in Fig.(1.6), the first order tunneling is blocked by the Coulomb blockade,

second order tunneling (cotunneling) leads to Kondo screening with spin-flip exchange.

A narrow-resonance is seen in the density-of-states (DOS) of the QD. In summary, the

system with tunable tunnel coupling to the leads, there is CB oscillation affected con-

ductivity by electron number when T > Tk. When T < Tk, we have to think about the

coupling between Kondo effect and Coulomb blockade. The odd electron number on the

dot provides a single spin-degenerate state ǫd, which is a single electron with spin up or

down. This condition leads to Kondo screening with spin-flip exchange, and enhanced

conductance. The conductance of Kondo effect in QD system with even and odd number

is shown in Fig.(1.1.b).

1.3 Quantum Phase Transitions (QPT)

Quantum phase transition (QPT) are the continuous phase transition of ground states at

T = 0 by tuning the sets of the system parameters in Hamilton [36]. The energy level
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Figure 1.7: (a) The first order phase transition. Though gc, the ground state becomes B

state from A state with level crossing. (b) The higher order phase transition, avoiding

level crossing. The phase transition whose ground state is form A state to B state as g

exceeds gc is a continuous process. Ref. [36]

diagrams as a function parameter g are shown in Fig.(1.7). H(g)=H0+gH1, where H0 and

H1 commute to each other, and g is the coupling constant. As shown in Fig.(1.7.a), ground

state is state A when the coupling g is below gc, but it becomes state B when g > gc,

where gc is the critical point of the coupling g. This is the first order phase transition,

which is a level crossing. Fig.(1.7.b) shows the 2nd order phase transition, which is a

continuous phase transition from g < gc to g > gc, avoiding level crossing. QPT is the

phase transition as shown in Fig.(1.7.b), continuous process and without level crossing at

zero temperature. The quantum critical behaviors of QPT systems exhibit divergence in

correlation length ξ ∼ |g − gc|−ν . Here, the correlation length exponent ν is a universal

factor. This leads to universal power-law scaling behaviors in all thermal dynamical

observable. These behaviors in quantum critical regime cannot be described in Fermi

liquid theory, so called ”non-Fermi liquid” behaviors. Quantum critical phenomenon is

an important subject in condensed matter as they provided universal behaviors at the

quantum critical point (QCP). Single impurity Kondo problems have been well-known,

we investigate Kondo effect break down for adding other competition ground state in the

10
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system at T → 0, it leads to QPT and quantum critical phenomenon. Examples for QPT

in Kondo system: include the double quantum dots (DQD) system leads to a quantum

phase transition between Kondo effect and spin-singlet, two-channel Kondo ground state,

and pseudogap Kondo problems, as we will introduce below. In this thesis, we investigate

QPT for 2CK pseudogap single impurity Anderson model, the pseudogap Kondo problem

and two-channel Kondo physics will be briefly introduced in below subsections. Here, we

discuss DQD problem for understanding QPT in Kondo system.

Figure 1.8: (a) The diagram is obtained via the scanning electronic micrograph (STM)

in experiment of N. J. Craig et. al. [37]. (b) Conductance of left quantum dot. When

odd number of electrons on the quantum dot and RKKY anti-ferromagnetic interaction is

stronger than Kondo coupling, Kondo effect will be suppressed by RKKY. Adapted from

[37].

The double quantum dot experiment made by N. J. Craig et. al. [37] for under-

standing quantum phase transition is shown in Fig.(1.8). The device in Fig.(1.8.a) shows

two quantum dots coupled through an open conducting region, which provides exchange

coupling between two dots. The gate voltage VgL (VgR) changes the occupation number

and energy of left (right) dot, and the coupling between the right QD and central region

can be tuned by gate voltage VgC. The result is shown in Fig.(1.8.b) that odd number
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of electrons on both dots leads to split zero bias Kondo resonance into two peaks. If the

occupation number of one of QD is even, there is no zero bias Kondo resonance. Theo-

retically, this double QD Kondo problem was studied via the numerical renormalization

group (NRG) [39, 40] and conformal field theory [32, 54], which is relevant for experimen-

tal in Ref. [37]. The quantum critical diagram of double quantum dots system is shown

in Fig.(1.9). Kondo effect can be observed in double QD system as RKKY coupling K is

small. But Kondo effect can be suppressed if RKKY coupling exceeds the critical point

Kc. In this case, two quantum dots are coupled anti-ferromagnetically through an open

conduction region via RKKY effect, inducing a local spin singlet between two spins on the

dots ground state. A quantum critical point located at K=Kc separate Kondo from local

spin-singlet phase. The universal power-law scaling behaviors were identified in quantum

critical region.

� � � � � � � � � � � � � � �
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Figure 1.9: The quantum phase transition coupling K is RKKY coupling, and quantum

critical point (QCP) with criticality at zero temperature is located at the Kc. Adapted

from [39].

1.3.1 Two Channel Kondo (2CK) Physics

We have introduced Kondo effect in single channel QD system in Section 1.2 and 1.3.

Here, two independent electron reservoirs are applied to QD system, it leads to two-
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Figure 1.10: Quantum phase transition diagram of two-channel Kondo, where H2CK ∼

J1S1(r) · S + J2S2(r) · S, and J1, J2 are Kondo coupling of each channel, respectively.

Blue and red phase correspond to blue and red channel in Fig.(1.11), and J1 (J2) is the

Kondo coupling of red (blue) channel. At zero temperature, one can obtain 2CK state

for symmetric coupling. There is still the 2CK state if coupling are some imbalance at

finite temperature. The quantum critical region exhibits 2CK non-Fermi liquid behavior

at finite temperature. [38]

channel Kondo (2CK) effect. Two-channel Kondo model was introduced by Zawadowski

and Nozi‘eres et. al. decades ago, where a local spin S is coupled to two independent

electron reservoirs [19, 20, 23, 6]. The discussion for 2CK details in theory is in Appendix

A. Two independent electron reservoirs all couple to single QD system has been realized

in recently years [16]. Compare to single channel Kondo Hamiltonian Eq.(1.2), the 2CK

Hamiltonian can be written as

H2CK ∼ J1S1(r) · S + J2S2(r) · S. (1.12)
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The S1(r) and S2(r) is a conduction electron spin of each independent channel. The

coupling J1 and J2 of Eq.(1.6) represents anti-ferromagnetic coupling of each independent

channel, respectively, where each reservoir individually attempts to screen the local spin.

The competition between J1 and J2 leads to continuous phase transition of two competi-

tion single channel ground states at zero temperature. The quantum critical region of two

competition single channel QPT is as 2CK fixed point and it exhibits non-Fermi liquid

(NFL) behavior as shown in Fig.(1.10). In a symmetric case, the Kondo couplings J1

and J2 are equally coupled to the magnetic impurity at zero temperature, leading to 2CK

ground state [34]. If J1 6= J2 at zero temperature, the localized impurity spin couples to

one of the electron channel, resulting in single channel Kondo effect (1CK). However, we

can observe 2CK effect at finite temperature even if J1 6= J2, the condition is that the

Kondo coupling asymmetry have to be small enough [6]. At finite temperature, we can

investigate quantum critical region at 2CK fixed point and find universal scaling [38, 6].

Landau　Fermi liquid theory is a theoretical model of interacting fermions describes prop-

erties of general metals at low temperature. The behavior in 2CK quantum critical region

can be not be explained under Fermi liquid theory, so called non-Fermi liquid (NFL) be-

havior. NFL behavior appear in heavy fermion materials. Some heavy fermion materials

show specific heat anomalies [24, 25, 26, 27]. The specific heat in heavy fermion metals

[3, 32, 33]and anomalous shrinkage of zero-bias conductance [30, 31] in 2CK system have

been observed. The entropy of impurity spin in 2CK system is anomaly at T → 0, the

entropy of impurity can be written as

S = kBln(Ω), (1.13)

Ω is number of states at T → 0. We find 2CK entropy is S = kBln(
√
2), however, Ω = 2

as T → 0. Theoretically, the anomaly corresponds a free ”Majorana fermion”, which

is the anti-particle of itself, two Majorana fermions is a complete fermion. Note that:

S = kBln(2) at T → 0 for 1CK.

In experiments, it’s difficult to control 2CK fixed-point stability. One needs fine con-

trol of each droplet in electrochemical potential, which can be adjusted near the voltage on

the gate electrode [24]. The 2CK experiment was made by Potok and Goldhaber-Gorden

14



1.3. QUANTUM PHASE TRANSITIONS (QPT)

Figure 1.11: Two independent electron reservoirs couple to a QD in SET device. Two

blue leads and a finite red reservoir represent two independent channel, respectively. Here,

red reservoir has to be much large than QD, therefore, there are sufficient electrons to

compose a conduction electron band. Two blue leads comes a reservoir which is faraway

from QD. Adapted from [16].

et. al. [16], where the modified single-electron tunneling transistor (SET) with two

spatially-separated sets of confined electrons can help us to understand 2CK on quantum

dots. The SET device with two independent electron reservoirs is shown in Fig.(1.11).

For avoiding one of electron reservoirs is scattering to the other, the red channel is hold

zero conductance at low temperature, on the other hand, blue channel is hold finite con-

ductance. There is a experimental scaling analysis can distinguish conductance behavior

between 1CK and 2CK as shown in Fig.(1.12), where the experimental results for 2CK

out of equilibrium system in conductance scaling.

The single-channel Kondo effect shows T 2, (eV/kBT )
2 behavior at T < TK , theo-

retically, it is Fermi liquid with scattering rate that varies as T 2. But the 2CK data

in 1CK scaling deviates from (eV/kBT )
2. However, the non-Fermi liquid as 2CK fixed

shows (eV/kBT )
1/2 behavior at T < TK . In Fig.(1.12), 2CK universal scaling exhibits
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Figure 1.12: 2CK conductance data in 2CK and 1CK scaling, where 1CK scaling follows

Fermi liquid (eV/kBT )
2 behavior. 2CK universal scaling follows (eV/kBT )

1/2 behavior,

not Fermi liquid (eV/kBT )
2, so-called NFL behavior. Adapted from [6, 38].

(
√
eV/kBT ) behavior. Theoretically, 2CK universal scaling in conductance can be ana-

lyzed by field theory, which will be discussed in Chapter 2, and summarized in chapter

4. In theory, 2CK can be extended to multi channel Kondo (M-channel) (M ≥ 2) with

non-trivial solutions [29, 28]. The large N approaches which are feasible theoretically used

to solve the multi-channel Kondo problems. The large N approaches will be introduced

in section 1.5 and Chapter 2.

1.3.2 The Pseudogap Kondo Problems

Here we define the pseudogap kondo problems. These are special Kondo problems where

conduction electron density of states (DOS) vanishes in a power law fashion at ω = 0

(ρc(w) ∼ |w|r, 0 ≤ r ≤ 1). Pseudogap Kondo problems have been extensively studied

in recent years, by RG, NRG [41, 43, 44, 45, 46, 47] ,and slave-boson large N technique

[48, 61]. By tuning the exponent r of the pseudogap DOS, ground state of pseudogap

16



1.3. QUANTUM PHASE TRANSITIONS (QPT)

Kondo systems may undergo a QPT between Kondo and local moment (LM) state. If

exponent r is too large, the conduction DOS is not sufficient to Kondo screening, leading

to LM ground state. On the other hand, Kondo screening was observed at T < TK if the

exponent r is small enough that conduction electrons are sufficient to screen the impurity.

Pseudogap DOS in single channel and two-channel Kondo systems leads to QPT with

particle-hole symmetry and asymmetry. The QPT in pseudogap Kondo can be analyzed

by renormalization group (RG) techniques. We briefly introduce the rich ground phase

diagrams of pseudogap Kondo system given by Matthias Vojta et. al. via perturbative

RG and numerical renormalization group (NRG) approach [41, 43, 44].

Renormalization Group And Numerical Renormalization Group

Renormalization group (RG) approach originally comes from quantum field theory, and

has been applied to condensed matter system. Anderson et. al. applied so called ”poor

man scaling RG” to Kondo problem [49], where all the leading to logarithmic terms

were summed up via perturbation theory. However, perturbation theory breaks down for

T < TK as the system reaches the strong coupling Kondo ground state. K.G. Wilson

use a non-perturbative technique: numerical renormalization group (NRG) approach to

analyze Kondo physics at T < Tk [50, 51, 52]. There is the other non-perturbative method

called Bethe ansatz, confirming Wilson’s NRG calculation [53]. The s-d model was given a

definitive result for ground state by NRG calculation. In condensed matter system, NRG

can accurately describe magnetic doped metals , while methods can not. The QPT of

pseudogap Kondo problems can be studied by using perturbative RG and NRG approach.

RG phase diagrams for 1CK single impurity pseudogap Anderson model

In results by Matthisa Vojta et. al. [41, 43, 44]. Pseudogap Kondo problems analyzed

by perturbative RG leads to non-trivial fixed point and associated phase transitions.

Here, we introduce the single impurity Anderson model coupled to single channel electron

reservoir with particle-hole symmetry and asymmetry. We briefly introduce particle-hole

symmetry and asymmetry below. The full symmetry of 1CK single impurity pseudogap
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Figure 1.13: The RG flow phase diagram of particle-hole symmetric single impurity pseu-

dogap Anderson model. The details are in text. Adapted from [43].

Anderson model with particle-hole symmetry is SU(2)spin × SU(2)charge, where particle-

hole symmetry is SU(2) pseudospin symmetry. The 1CK single impurity Anderson model

as Eq.(1.1) is coupled to pseudogap conduction electron density of states,

H =
∑

σ

ǫdd
†
σdσ +

∫ Λ

−Λ

dk|k|rkc†kσckσ + Un↑n↓ +
∑

kσ

(Vkdd
†
σckσ +H.C.). (1.14)

The second term of in Eq.(1.1) was replaced by the bath Hamiltonian of pseudogap

host conduction electron DOS. The other terms of Eq.(1.14) are the same as Eq.(1.1).

The Λ is the untraviolet (UV) cutoff. In the presence of particle-hole symmetry, the

Coulomb potential is assumed as U0 = −2ǫd. And the Hamiltonian is invariant by below

transformation,

d†σ −→ dσ,

c†kσ −→ c−kσ.

On the other hand, if U0 6= −2ǫd, the particle-hole symmetry is broken. For example,

strong Coulomb potential leads to particle-hole asymmetry. From NRG calculations, the
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fixed-point structure changes at r∗ and r = 1/2 , the relevant case of r=1 case is inaccessi-

ble from weak coupling. [43, 45] r∗ = 0.375 is given by NRG. P-h symmetry is restored for

0 < r < r∗. The RG flows of the particle-hole symmetric 1CK single impurity pseudogap

Anderson model is shown in Fig.(1.13). The horizontal axis denotes the renormalized dot

level ǫ, where U = −2ǫ; the vertical axis is the renormalized hybridization V, hoping of

dot and leads. The continuous boundary phase transitions were represented by the thick

lines; the full (open) circles are stable (unstable) fixed points. Now, we introduce the

fixed points corresponded to the phases,

LM : local moment ground state,

SC : strong coupling as Kondo-screened fixed point,

SSC : symmetric strong coupling fixed point,

SCR : symmetry critical region fixed point,

FImp : free impurity fixed point.

When r=0, the flow is towards to SC fixed point at any finite U . For 0 < r < 1/2 case,

LM fixed points are stable, the SSC fixed point which is stable is located at ǫ = 0, and

SCR (SCR’) fixed point control the phase transition between SSC and LM (LM’). The

SSC fixed point becomes unstable as ≤ r < 1, and SCR (SCR’) fixed point disappears.

The phase transition between LM and LM’ is controlled by SSC fixed point. When r ≥ 1,

there is no QPT. The first order phase transition with level crossing between LM and LM’.

The FImp fixed point is located U = 0, meaning that no hoping between leads and dot. As

particle-hole asymmetric 1CK single impurity pseudogap Anderson model: The RG flow

phase diagram was shown in Fig.(1.14). Particle-hole asymmetric Anderson model can be

realized as Coulomb potential is too large, where U0 −→ ∞. The horizontal axis denotes

the on-site dot energy levelǫ; the vertical axis is the fermionic coupling v. The bare on-site

repulsion is fixed at u0 = ∞. Here, we introduce the fixed points corresponded to the

phases,

LM : local moment ground state,
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LM

ε

v2

0 ∞
ASC

a) r* < r < 1

ε

v2
b) r ≥ 1

−∞ 0 ∞
LM

−∞

ASCVFl

ACR

Figure 1.14: The RG flow phase diagram of particle-hole asymmetric single impurity

pseudogap Anderson model. The details are in text. Adapted from [43].

ASC : asymmetry strong coupling fixed point,

ACR : asymmetry critical region fixed point,

VFI : the valence fluctuation fixed point.

The hybridization V0 which is small leaves the moment unscreened, whereas large V0

directs the flow towards ASC fixed point. When r=0, the constant DOS, where the strong-

coupling fixed point is the same as in the p-h symmetric situation. For 0 < r < r∗ case,

particle-hole symmetry is restored. The phase transition is controlled by ACR unstable

fixed point as r∗ < r < 1. When r ≥ 1, there is no QPT. The first order phase transition

with level crossing controlled by VFL. The VFI fixed point is located at ǫ = U = 0.
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j

v

NFL ∞

a) r = 0

b) 0 < r < rmax

c) r > rmax

LM

j

v

NFL ∞LM

ACR

SCR

j

v

∞LM

ACR

NFL´

LM´

NFL

Figure 1.15: The RG flow phase diagram of 2CK particle-hole asymmetric single impurity

pseudogap Anderson model. The details are in text. Adapted from [44].

RG phase diagrams for 2CK single impurity pseudogap Anderson and Kondo

model

In the results of Matthisa Vojta et. al. [41, 43, 44], the non-Fermi liquid (NFL) phase

in 2CK Kondo model only survives in 0 < rmax region, where rmax = 0.23. The p-h

asymmetry is irrelevant for r > 0.23. We will discuss pseudogap 2CK quantum phase

transition by Kondo model and Anderson model as shown Fig.(1.15) and Fig.(1.16). The

full (open) circles in diagrams are stable (unstable) fixed points and LM fixed means

that local moment state. NFL represents non-Fermi liquid, ACR (SCR) represent critical

p-h asymmetric (symmetric) point. For r=0 case, the lines of NFL fixed point represent

non-Fermi liquid (over-screened Kondo effect, 2CK), it shows that flow is always towards

NFL fixed point at any finite coupling. In the RG flows of 2CK pseudogap single impurity

Kondo model as shown in Fig.(1.1.5): the horizontal axis denotes the renormalized Kondo

coupling j, and renormalized potential scattering v which is representing particle 　hole

asymmetry is the vertical axis. Dashed lines symbolize a flow out of the plane shown here.
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For the metallic case (r=0), all lines flow into NFL fixed point at any finite coupling, 2CK

governs the behaviors everywhere. LM is a unstable fixed point in the metallic case. In

Fig.(1.15.b), the other non-Fermi liquid fixed point, NFL’ represents a phase at large

couplings and asymmetries. For 0 < r < rmax, p-h asymmetry is irrelevant in non-Fermi

liquid phase, a single p-h asymmetric NFL fixed point which separates NFL and NFL’

fixed points is a asymmetric critical region (ACR). The LM fixed point is stable here,

and a critical p-h asymmetric fixed point (SCR) controls the phase transition between

LM and NFL fixed points. For r > rmax = 0.23 case, there is no NFL phase as shown in

Fig.(1.15.b). The other LM phase, LM’ fixed point represents a free local moment. The

ACR fixed point controls phase transition between LM and LM’ fixed points. The RG

flows of the 2CK pseudogap single impurity Anderson model is shown in Fig.(1.16). The

horizontal axis denotes the energy difference between spin and flavor impurity levels, the

renormalized hybridization g is the vertical axis. The diagrams represent cuts, taken at

v = 0, through the full RG flow. LM and LM’ fixed points represent unscreened spin and

free local moment phases, respectively. For r=0 case, the lines accessed to NFL fixed point

at finite coupling ǫ, will access to LM fixed point (unstable) as ǫ → ±∞. For 0 < r < rmax,

LM (LM’) fixed point becomes a stable fixed point. The NFL fixed point in Fig.(1.16.a) is

replaced by ACR fixed point here, and two isolated p-h symmetric fixed point are located

outside the u = 0 plane. The two SCR fixed points control phase transition between

ACR and LM (LM’) fixed point. For rmax < r < 1, the phase transition between LM and

LM’ can be controlled by ACR fixed point. The flow is towards to ACR fixed point as

at ǫ = 0. For r ≥ 1, the transition is a level crossing, in other words, there is no QPT.

Free impurity fixed point(FIMP) is located at g = ǫ = 0, and flow is towards to FIMP at

ǫ = 0.
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Figure 1.16: The RG flow phase diagram of 2CK particle-hole asymmetric single impurity

pseudogap Kondo model. The details are in text. Adapted from [44].
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Chapter 2

Large N Approaches To 2CK

Anderson Model

The ground state and thermodynamic behaviors of s-d model represented by the the non-

degenerate Anderson model can be understood by the Fermi liquid theory [5], conformal

field theory [32, 54], the Bethe ansatz solutions [55], renormalization group, and numerical

renormalization group [51, 56]. The QPT of pseudogap Kondo problems with the N-fold

degenerate Anderson model analyzed by RG and NRG have been introduced in Chapter

1 [41, 43, 44]. Here, we introduce one of large N approaches, so called non-crossing

approximation (NCA) to solve the N-fold degenerate Anderson model, where N → ∞ is

number of different spin flavor of fermions [57, 58, 60, 61]. The N-fold degenerate Anderson

model with infinite U Coulomb potential can be solved by salve-boson representation [62].

The NCA approach has been successfully applied to Anderson impurity modes to address

quantum field theory and critical phenomena. In this chapter, we will solve two-channel

pseudogap Anderson model with infinite U Coulomb potential via NCA and salve-boson

representation.
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2.1 Methods To N-fold Degenerate Anderson Model

2.1.1 The Foundation Of Slave Boson Representation

For simplicity, we start from the Hamiltonian for N-fold degenerate infinite U Anderson

model out of equilibrium [5],

H =E0|0, 0 >< 0, 0|+
∑

σ

E1,σ|1, σ >< 1, σ|+ 1/2U
∑

σ,σ′,σ 6=σ′

nσnσ′ +
∑

k,σ

ǫkc
†
k,σck,σ (2.1)

+
∑

k,σ

(Vk|1, σ >< 0, 0|ck,σ + V ∗
k Ck,σ|0, 0 >< 1, σ),

where infinite U Coulomb potential leads to no doublely-occupied state. The index m

(m=0,1) denotes the spin operator, spin up (m=0) or down (m=1). The diagrammatic

perturbation theory does not work here, because U ∼ ∞ goes beyond the validity of

perturbation theory. The function for coupling strength function of dot and leads is

Γσ(ω) = 2π
∑

k,σ

|Vkσ|2δ(ω − ǫkσ), (2.2)

where Γσ(ω) = Γρc, Γ = πV 2
kσ, and ρc is the conduction electron density of states. Now

we express this model by Hubbard operators,

|1, σ >< 0, 0| = χσ,0, |0, 0 >< 1, σ| = χo,σ, (2.3)

|0, 0 >< 0, 0| = χ0,0, |1, σ >< 1, σ| = χσ,σ.

Diagrammatic approaches based on Wick’s theorem can not be applied here, because the

commutation relations, [χp,q, χq′,p′] = χp,p′δq,q′ ± χq,q′δp′,p. Nevertheless, the slave-boson

representation [62] can solve these problem, where the χ operators are replaced by boson

and fermion operators.

χσ,o = f †
b f, χ0,σ = fσb

†, (2.4)

χ0,0 = b†b, χσ,σ = f †
σfσ,

where f and b operators are called pseudo-fermion and slave-boson satisfying the

communication relation [b, b†]− = 1 and anti-communication relation [fσ, f
†
σ]+ = δσ,σ′ ,
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respectively. This approach enforce a local constraint to ensure no double occupy on the

impurity,

Q = b†b+
∑

σ

f †
σfσ = 1. (2.5)

From this representation, the N-fold degenerate Anderson model becomes

H =
∑

σ

ǫff
†
σfσ +

∑

k,σ

(Vkf
†
σck,σb+ V ∗

k c
†
k,σfσb

†) +
∑

k,σ

ǫkc
†
k,σck,σ. (2.6)

The first two term are quadratic terms, and hybridization Vk can be a expansion parameter

in perturbation theory. We provide more details on slave-boson representation and apply

to study the 2CK infinite U Anderson model out of equilibrium in Section 2.2.

2.1.2 Non crossing approximation (NCA) approach

Non crossing approximation (NCA) approach is one of large N approaches to solve many-

body system. Instead of having two flavors (N=2, spin=↑ or ↓). This method assumes

N → ∞ flavors of fermions in conduction bath and on the impurity. In the limit of

N → ∞, one can self-consistently solve for Green functions of conduction electrons,

impurity fermion and slave-boson, by including all self-energy diagrams with no lines

crossing each other, so called NCA approach. Solutions via NCA are exact when N → ∞.

At a finite N (< ∞), we can systematically calculate the O(1/N) calculations to the large

N solutions [58]. In the physical system where N=2 (not N → ∞), large-N approach

has been successfully used to provide qualitatively correct Kondo physics in a single-

impurity Kondo problem. However, NCA always leads to NFL singular impurity DOS

ρσ(w) in any Kondo models. It does not correctly describe Fermi-liquid behavior of

single channel Kondo system. A more accurate numerical approach, NRG can resolve

this artifact. Nevertheless, NCA approach is able to correctly describe NFL behavior

in multi-channel Kondo problems. In fact, NCA approach has been successfully applied

to 2CK equilibrium and out of equilibrium system [57, 58]. The 2CK infinite U single

impurity Anderson model out of equilibrium will be solved by NCA in Section 2.2.
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2.2 The 2CK Pseudogap AndersonModel out of equi-

librium

Figure 2.1: The set sup of 2CK pseudogap Anderson model out of equilibrium with

strong Coulomb potential. There are two 2CK leads which couple to single QD out of

equilibrium, where 2CK leads with pseudogap conduction electron DOS are in thermal

equilibrium, respectively.

This section, we will solve non-equilibrium 2CK infinite U pseudogap single impurity

Anderson model with SU(M = 2) × SU(N = 2) symmetry, where N and M is the spin

degeneracy of impurity and number of electron reservoirs (or Kondo screening channels),

respectively. Here, non-equilibrium system arises different coupling strength function of

leads and dot different form Eq.(2.2). The pseudogap conduction electron density of states

ρc ∼ |w|r in the 2CK Anderson model corresponds constant density of states Anderson

model for exponent r=0 [44, 61]. The schematic 2CK pseudogap Anderson model out

of equilibrium was shown in Fig.(2.1). For simplicity, we start from the non-equilibrium
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2CK single impurity Anderson model with constant DOS [57, 58],

H =
∑

τ,α,σ,k

(ǫkσ − µα)c
α†
kστ c

α
kστ +

∑

σ

ǫσd
†
σdσ +

1

2
U
∑

σ

∑

σ′ 6=σ

nσnσ′ +
∑

τ,α,σ,k

(V α
kσc

α†
kστdσ +H.C.)

(2.7)

There are different chemical potentials µα of left (α=L) and right(α=R) lead in non-

equilibrium system, where α ∈ L,R. Spin flavors are represented by σ = 1, ....N and

τ = 1, ....M corresponds to independent electron reservoirs. Here, we setN = M = 2. The

cα†kστ (cα†kστ ) in Eq.(2.7) is the operator which creates (destroys) an electron in conduction

electron Fermi sea with momentum k of left or right 2CK leads. The second term in

Eq.(2.7) describes the spin σ electrons on the quantum dot, and the last two terms

represent the electron Coulomb interaction on the quantum dot and leads-dot hopping,

respectively. The retarded conduction electron Green function was defined as

Gr
c(t) = −iθ(t) < {c†kσ(t), ckσ(0)} > . (2.8)

The conduction electron density of states is the imaginary part of the retarded conduction

electron Green function,

ρc(w) = ImGr
c(t). (2.9)

The coupling strength function (without pseudogap DOS) of dot and leads is Γ
L(R)
σ (ω) ∼

ρc(w), it can be written as

ΓL(R)
σ (ω) = 2π

∑

k∈L(R)

|V α
kσ|2δ(ω − ǫkσ − µα). (2.10)

The the chemical potential of two-channel non-equilibrium Anderson model is

µα = µ0 + (−)
eVα

2
, α = L(+), α = R(−), (2.11)

where µ0 is chemical potential of conduction baths, µα represents chemical potential with

bias voltage (eVα) of left or right lead. The Fermi function with bias voltage of left side

or right side is

fα(w) = f(w + µα), α = L(+), α = R(−). (2.12)

In non-equilibrium system, different chemical potentials (µL, µR) lead to different Fermi

functions (fL(w), fR(w)). However, µL = µR and fL(w) = fR(w) correspond to equi-

librium (zero bias). We consider Coulomb repulsion U to be infinite, giving no double
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occupancy on the dot. In this case, our model does not show p-h symmetry, because of

Coulomb repulsion is set to be U → ∞ and ǫd 6= −1/2U . The third term in Eq.(2.7) is

a unperturbed term, where U is the infinite Coulomb interaction of electrons on the dot.

Diagrammatic perturbation theory can not be used here as U → ∞. The hybridization

coupling V α
kσ in Eq.(2.7) seems to be a more useful expansion parameter for perturba-

tion theory. From Section 2.1, the infinite U Anderson model can be made quadratic

by a transformation with the slave-boson and pseudo-fermion operators. Here, we de-

fine the slave-boson and pseudo-fermion operators, where b† creates a empty state and f †
σ

(σ =↑ or ↓) creates a singly occupied state. The d†σ and dσ in Eq.(2.7) can be decomposed

as,

dσ(t) = b†τ (t)fσ, (2.13)

d†σ(t) = f †
σbτ (t),

where σ is spin (up or down), and c†σf
†
σ̄|Ω >= f †

σbτf
†
σ̄|Ω >= 0 , |Ω > is the vacuum state.

Due to no double occupancy on the dot, we add a local constraint,

Q = b†τbτ +
∑

f †
σfσ = 1 (2.14)

where Q is the total physical states, it must be equal to unity (Q=1). Now we rewrite

the Hamiltonian in the slave-boson representation,

H =
∑

kστα

(ǫk − µα)c
α†
kστc

α
kστ + ǫd

∑

σ

f †
σfσ +

∑

kστα

(V α
kσ(f

†
σbτ c

α
kστ ) +H.C) (2.15)

The first two terms in Eq.(2.13) are the unperturbed quadratic terms, and the last term is

the hybridization. Diagrammatic perturbation theory can be used as hybridization V α
kσ is

a small expansion parameter. The Green function of pseudo-particles up to lowest order

self-energy is shown in Fig.(2.2), where pseudo-fermion self-energy involves slave-boson

propagator, and slave-boson self-energy involves pseudo-fermion propagator. Note that

the Hamiltonian represented by salve-boson, pseudo-fermion and the local constraint are

equivalent to Eq.(2.7). Since we study the non-equilibrium infinite U Anderson model,

how to deal with the local constraint is an important problem here. We apply Keldysh

diagrammatic perturbation theory to formulate our equations (see Ref. [57].) We start
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from the action Sc in Q=1 ensemble, defined as:

Sc(−∞,−∞) = e−i
∮
c
dt′H(t′) (2.16)

Next, we write down the non-equilibrium partition function as,

ZQ=n = Tr{e−β(H0−µLNL−µRNR) × δQ.nTc[Sc(−∞,−∞)]}. (2.17)

Here n=1, and TC is the operator which orders operators along the Keldysh contour. If

we have an operator Ô, the expectation value in Q = 1 ensemble is given by

< Ô >Q=1=
1

ZQ=1
Tr{e−β(H0−µLNL−µRNR) × δQ.1Tc[Sc(−∞,−∞)Ô]}. (2.18)

We can rewrite δQ,1 as an integral over a complex chemical potential iλ [63]

δQ,1 =
β

2π

∫ π/β

−π/β

dλe−iβλ(Q−1). (2.19)

Now we divide both numerator and denominator of < Ô >Q=1 by partition function ZQ=0,

it leads to

< Ô >Q=1=
ZQ=0

ZQ=1

< Ô >
(1)
iλ . (2.20)

There are two contributions in non-equilibrium expectation value of Ô in Q=1 ensemble,

< Ô >
(1)
iλ and

ZQ=0

ZQ=1
, where

< Ô >iλ=
1

ZQ=1
Tr{e−β(H0−µLNL−µRNR+iλQ) × Tc[Sc(−∞,−∞)]}, (2.21)

< Ô >
(1)
iλ =

β

2π

∫ π/β

−π/β

eiβλ < Ô >iλ,

and

ZQ=0 = Tr{e−β(H0−µLNL−µRNR) × δQ.0Tc[Sc(−∞,−∞)]}, (2.22)

δQ,0 =
β

2π

∫ π/β

−π/β

dλe−iβλ(Q).

As the trace of < Ô >iλ divides by ZQ=0, it does not restrict in Q=1 ensemble, and the

normalization ZQ=0Q=1 can be obtained from identity < Q >Q=1= 1, where

ZQ=1

ZQ=0

=< b†b >
(1)
iλ +

∑

σ

< f †
σfσ >

(1)
iλ . (2.23)
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From these, the constraint Eq.(2.12) can be solved, and expectation value < ô >1
iλ can be

obtained diagrammatically. And the impurity retarded Green function is

Gr
σ(r) = −iθ(t) < {dσ(t), d†σ(0)} > . (2.24)

It can be written as Gr(t) = θ(t)[G>(t)−G<(t)],

Gr<
σ (r) = i < {dσ(o), d†σ(t)} >, (2.25)

Gr>
σ (r) = −i < {dσ(t), d†σ(0)} >, (2.26)

where G<(t) is the impurity lesser Green function, and G>(t) is the impurity greater

Green function.

Figure 2.2: At lowest order, boson self-energy involves the fermion propagator, and

fermion self-energy involves boson propagator. Adapted from [57].

The impurity spectral function is

ρσ(w) = −1

π
ImGr

σ(w), (2.27)

where Gr
σ(w) is the Fourier transform of the impurity retarded Green function. Due to

infinite U potential, we need retarded Green function in the Q=1 ensemble with complex
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chemical potential iλ,

ρσ(w) = −ZQ=0

ZQ=1

| 1
π
ImG

r(1)
σ,iλ(w)| (2.28)

Furthermore, we can write down the current though the dot,

J =
e

~

∫
dω

2ΓL(w)ΓR(w)

ΓL(w) + ΓR(w)
ρσ(w, V )× [f(w + eVα/2− f(w − eVα/2))] (2.29)

Our goal is solve the current, therefore we have to analyze the impurity retarded Green

function first, then density of states can be solved easily. Here, we expand SU(2)×SU(2)

Anderson impurity model to SU(N) × SU(M) Anderson impurity model, where N > 2

and M > 2. We apply the large N approach, non-crossing approximation to our model on

the Keldysh contour. The impurity retarded Green function in the Q=1 ensemble with

iλ can be expressed in terms of pseudo-particles within NCA approach, where neglects

vertex relation.

G
r(1)
σ,iλ(t) = −iθ(t) < {cσ(t), c†σ(0)} >

(1)
iλ (2.30)

=NCA −iθ(t)[D>(−t)G<
fσ(t)−D<(−t)G>

fσ(t)].

Here, we define Green functions of pseudo-fermion:

G>
fσ ≡ −i < fσ(t)f

†
σ(0) >

0
iλ, (2.31)

G<
fσ ≡ i < f †

σ(0)fσ(t) >
1
iλ,

and slave-boson:

D> ≡ −i < bτ (t)b
†
τ (0) >

0
iλ, (2.32)

D< ≡ i < b†τ (0)bτ (t) >
1
iλ,

where the natation < and > represents lesser and greater Green function. The fermion

and boson propagators within NCA as shown in Fig.(2.3) are self-consistent via Dyson’

equations , where the self-energies are iterated to all orders [57]. The lesser (greater )

Green functions can be written as [59]:

D>(<)(w) = Dr(w)Π>(<)(w)Da(w), (2.33)

G
>(<)
fσ = Gr

fσ(w)Σ
<(>)
fσ (w)Ga

fσ,
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where Da(w) and Ga
fσ is advanced Green function of boson and fermion, respectively. The

advanced Green functions are complex conjugates of the retarded Green functions. The

Π>(<)(w) is the self-energy of boson greater (lesser) Green function, and Σ
<(>)
fσ (w) is the

self-energy of fermion greater (lesser) Green function. The boson self-energies of lesser

and greater Green function are given by (see Ref. [57, 60])

Π<
b (w) = (−2i)

∫ +∞

−∞

dǫG<
fσ(ǫd + ω)[|V L

kσ|2]f(−ǫd + µL)× (2.34)

ρL(ǫd − µL − µ0) + [|V R
kσ|2]f(−ǫd + µR)ρR(ǫd − µR − µ0),

Π>
b (w) = 2i

∫ +∞

−∞

dǫG>
fσ(ǫd + ω)[|V L

kσ|2]f(ǫd − µL)× (2.35)

ρL(ǫd − µL − µ0) + [|V R
kσ|2]f(ǫd − µR)ρR(ǫd − µR − µ0),

and fermion self-energies,

Π<
f (w) = 2i

∫ +∞

−∞

dǫD<
fσ(ǫd + ω)[|V L

kσ|2]f(−ǫd + µL)× (2.36)

ρL(−ǫd + µL + µ0) + [|V R
kσ|2]f(−ǫd + µR)ρR(−ǫd + µR + µ0),

Π>
f (w) = 2i

∫ +∞

−∞

dǫD>
fσ(ǫd + ω)[|V L

kσ|2]f(ǫd − µL)× (2.37)

ρL(−ǫd + µL + µ0) + [|V R
kσ|2]f(ǫd − µR)ρR(−ǫd + µR + µ0),

The relation between greater Green function and retarded Green function are,D>(w) =

2iImDr(w), G>
fσ = 2iImGr

fσ, where the self-energies, Π
>(w) = 2iImΠr(w) and Σ>

fσ(w) =

2iImΣr
fσ(w). The retarded self-energies can be solved by greater self-energies, where

Πr(w) =
i

2π

∫ +∞

−∞

dw′ Π>(w)

w − w′ − iη
(2.38)

Σr(w) =
i

2π

∫ +∞

−∞

dw′ Σr(w)

w − w′ − iη
(2.39)

The retarded Greens function for pseudo-fermion is given by

Gr(w) = [w − ǫd − Σr(w)]−1, (2.40)

and for slave-boson,

Dr(w) = [w − Πr(w)]−1. (2.41)

33



2.2. THE 2CK PSEUDOGAP ANDERSON MODEL OUT OF EQUILIBRIUM

The self-energy for pseudo-fermion,

Σr(w) =
M

π

∑

α

∫
dǫΓα(w − ǫ− µα)f(w − ǫ− µα)D

r(ǫ), (2.42)

and self-energy for slave-boson,

Πr(w) =
N

π

∑

α

∫
dǫΓα(w − ǫ− µα)f(w − ǫ− µα)G

r(ǫ). (2.43)

The NCA expressions for the lesser Green of the pseudo-fermion isG<(w) =
∑<(w)|Gr(w)|2

and slave-boson is D<(w) = π<(w)|Dr(w)|2. The lesser Green function self-energy of

pseudo-fermion is,

Σ<(w) =
M

π

∑

α

∫
dǫΓα(w − ǫ− µα)f(w − ǫ− µα)D

<(ǫ) (2.44)

and of slave-boson,

Π<(w) =
N

π

∑

α

∫
dǫΓα(w − ǫ− µα)f(w − ǫ− µα)G

<(ǫ). (2.45)

Within NCA approach onto Keldysh contour, we can solve self-consistent equations

Figure 2.3: Diagrammatic self-consistent Dyson’s equations, Eq.(2.38)-Eq.(2.41).

Adapted from [58].
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(Eq.(2.38)-Eq.(2.43)) numerically. Salving this self-consistent equations corresponds sum-

ming all order diagrams in matrix element V.

Now we couple pseudogap DOS to 2CK single impurity Anderson model as shown in

Fig.(2.1). We assume pseudogap conduction-electron density of states is [60]

ρc(w) = −1

π
ImGc(w) =

r + 1

2Dr+1
|ω|rθ(D − |ω|), (2.46)

where vanish with power-law fashion. The Gc is conduction electron Green function, w in

Eq.(2.44) is the momentum space of conduction electrons, D is half-band width, and r is

the exponent of pseudogap. The 2nd term in 2CK constant DOS single impurity Anderson

Hamiltonian (Eq.(2.7)) describes conduction electrons, which is coupled to Eq.(2.45) now.

The coupling strength of leads and dot with pseudogap DOS is

Γα(w) ≡ Γαρc(w) = [πV α
kσ

2N(0)]
r + 1

2Dr+1
|ω|rθ(D − |ω|), α = L,R (2.47)

The bare density of states, ρc(w) is defined as N∗(w) = N(w)/N(0) [58], and ΓL(R) =

π|V α
kσ|2N(0), where N(0) is bare density of states of per(pseudo) spin and channel, UL =

UR, ΓL = ΓR = Γ
2
. Here, N and M denote the number of spin and charge channels, and

f(w) is the Fermi function, wheref(w) = [1 + eβw]−1. The physical impurity spectral

function, ρσ(w, V ), is the convolution of pseudo-fermion and slave-boson Greens function

ρσ(ω, V ) =
i

2π2Z

∫
dǫ[ImDr(ǫ)G<(ω + ǫ)−D<(ǫ)ImGr(w + ǫ)]. (2.48)

The normalization factor Z = i
2π

∫
dω[M ×D<(ω)−N ×G<(ω)] enforces the constraint,

< Q >= 1. The current is given by

I(V ) = N
e

~

∫
dw

2ΓL(w)ΓR(w)

ΓL(w) + ΓR(w)
ρσ(w, V )× [f(w + eV/2)− f(w − eV/2)]. (2.49)

The linear-response conductance is directly obtained from

G(0, T ) = N
e2

~

∫
dw

2ΓL(w)ΓR(w)

ΓL(w) + ΓR(w)
(−∂f(w)

∂W
)× ρσ(w, V = 0). (2.50)

And the nonlinear conductance G(V) is given by dI(V )
dV

. From self-consistent equations, we

can compute the convolution of impurity DOS by numerics. The results via self-consistent

equations of graphene and constant density of states will be given in next section. The

quantum critical phase transition of 2CK pseudogap Anderson model will discussed in

chapter 3.
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2.3 Constant Density of States And Doped Graphene

We have been introduced quantum phase transition of pseudogap Kondo problems via RG

and NRG in Section 1.5. In this section, we show the numerical results of 2CK pseudogap

Anderson model from NCA self-consistent equations (Eq.(2.40)-Eq.(2.45)). We briefly

discuss the materials correspond to 2CK pseudogap leads [44, 41, 60, 61], it was separated

into three cases:

1. r=0: metals, constant density of states,

2. r=1: magnetic doped graphene,

3. 0 < r < 1: correspond possibly to semiconductor soft gap.

Among these three cases, we were attended in investigating quantum phase transition.

From NCA solutions, we study QPT via impurity spectral function and differential con-

ductance scaling. In next two subsections, we will show the results via NCA of graphene

and constant DOS 2CK Anderson impurity model. The quantum criticality in the interval

0 < r < 1 will be discussed in Chapter 3.

2.3.1 Results Of Constant Density Of States Anderson Model

The constant DOS Anderson model corresponds to the system where two independent

electron reservoirs coupled to magnetic impurity, as introduced in Section.1.3.2. The DOS

Anderson model have been introduced in Section 2.2, as Eq.(2.1) and Eq.(2.7) which

is represented equilibrium and non-equilibrium case, respectively. Here, we show the

results adapted from Ned S. Wingreen and Yigal Meir, PRB, 1993 [57]. The impurity

DOS (Eq.(2.48)) can be solved numerically via the convolution of the lesser and greater

Green function. As shown in Fig.(2.4), the impurity DOS for constant DOS Anderson

model is illustrated in equilibrium and non-equilibrium system, respectively. There is

non-Lorentzian Kondo peak at w = 0 in equilibrium system , which is shown as the solid

cure. Note that: ”Kondo peak of single channel Kondo screening is a Lorentzian peak,

there is always non-Lorentzian Kondo peak in impurity DOS solved by NCA approach.
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2.3. CONSTANT DENSITY OF STATES AND DOPED GRAPHENE

Figure 2.4: The impurity DOS ρσ(w) for the r=1 2CK pseudogap Anderson model both

in equilibrium and non-equilibrium system, where the magnetic impurity symmetrically

coupled to leads of Lorentzian bandwidth 2W and chemical potential µR and µR. Note

that: in our study, we use D to replace W to be half-bandwidth. Here, all energy is

units of Γ, the coupling constant of leads and dot, the half-bandwidth at half-maximum

is W = 100 and temperature T = 0.005. The dashed cure represents out of equilibrium

impurity DOS, Kondo peak splits into two suppressed peaks. The p-h symmetric impurity

DOS is shown as the solid line, where single Kondo peak is at w = 0. Adapted from Ref.

[57].

The NCA approach is correct for 2CK”. The dash line represents the impurity DOS out

of equilibrium, where the Kondo peak is split up into two peaks by bias voltage. The

width of two split peaks is equal to the quantity of bias voltage. The 2CK impurity DOS

ave been successfully resolved by NCA approach, furthermore, we can solve the current

and conductance by Eq.(2.49) and Eq.(2.40). The more details see Ref. [57, 58].
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2.3. CONSTANT DENSITY OF STATES AND DOPED GRAPHENE

Figure 2.5: The scaling is characteristic of a Fermi liquid when (eV/KBTk)
2 plot. The

conductance does not follow a linear behavior, when (eV/kBTk)
0.5 plot. Therefore, rule

out spurious effects in the real 2CK behavior for type ”π” Co impurities on graphene.

Adapted from [6].

2.3.2 Results And Physics Of Doped Graphene

Graphene is honeycomb lattice structure with two inequivalent carbon atoms per unit

cell. The two inequivalent carbon atoms were labeled by A and B sites. The momentum

space of graphene is also honeycomb lattice structure. The band structure of graphene

resolved by tight-binding method is called as Dirac core, because it satisfied Dirac equa-

tion and linear divergence. The point at w = 0 is called Dirac point. There are two

independent Dirac cores of graphene in momentum space, their Dirac points labeled by

K and K’. Experimentally, the adsorption Co atoms on heavily doped graphene lead to

unusual Kondo resonances [6]. The experimental results of Ref. [6] show two-channel

Kondo behavior as shown in Fig.(2.5). The QPT in doped graphene can be illustrated in

a phase diagram as shown in Fig.(2.6), no Kondo screening in zero chemical potential [41].

Physical explanation for the effective low energy for magnetic impurities in graphene: ”

existence of two Dirac points are related to two independent Kondo screening channels”.

Note that: someone consider doped graphene is 1CK, because they believe two Dirac
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core are scattering to each other at low temperature. The tight-binding description shows

the hybridization between electron states in graphene and impurity states preserves the

A-B sub-lattice symmetry [69]. The Co is located at the center of a graphene’s hexagon

[70], the inter valley scattering does not coupled to two screening channels, therefore ef-

fective 2CK ensues [68]”. Theoretically, electrons in graphene provide a realization of

two-dimensional Dirac electrons [41, 67]. Magnetic impurities coupled to two-dimensional

Dirac electrons corresponds doped graphene [64, 65, 66], obeying the pseudogap conduc-

tion electron density of states (ρc(w) ∼ |w|r) , where exponent r=1. We use the 2CK

infinite U Anderson impurity model (Eq.(2.1) and (Eq.(2.7)) to describes this model. It

is worth mentioning: no vanishing gate voltage Kondo screening in graphene when weak

coupling regime [41, 44, 45]. We can investigate doped graphene QPT by gate tuning as

shown in Fig.(1.14.a).

Figure 2.6: The quantum phase transition in graphene can be investigated by controlling

the chemical potential µ0. When µ = 0, there is no 2CK state, always in LM state.

If µ 6= 0, the quantum phase transition between LM state and 2CK can be observed.

Adapted from [41].

When chemical potential is zero (µ0 = 0), there is no Kondo screening. The QPT

of graphene by gate controlled have been studied via NRG approach (see Ref. [41]).

Here, we introduce QPT out of equilibrium of doped graphene with bias voltage by NCA
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Figure 2.7: (a) The phase diagram for 2CK-LM crossover QPT, parameter j represents

coupling Γ or chemical potential µ, and j∗ is the crossover scale for a fixed temperature

T0 = 5 × 10−7D. All parameters in units of half-bandwidth D=1, and Tk and T0 are

energy scales associated with the 2CK universal scaling. (b) A spin one half impurity

couples symmetrically to the two sub-lattices of two graphene leads out of equilibrium,

where two graphene leads are in thermal equilibrium, respectively. (c) Doped graphene

in momentum space. Adapted from [60].

solutions adapted from Section 2.2 [60]. The schematic setup. corresponds to Eq.(2.7)

as shown in Fig.(2.7.b), a spin one half impurity (red dot) couples symmetrically to

the two sub-lattices of two graphene leads, where different chemical potentials of each

graphene. The two Dirac points at two independent Dirac Core corresponds to two

Kondo screening channels as shown in Fig.(2.7.c). The diagram of QPT between LM and

2CK state as shown in Fig.(2.7.a) can be controlled by Γ and chemical potential, where

Γ is the coupling constant of leads and dot (|V α2
kσ /π|). The impurity spectral function

which is the convolution of the greater and lesser Green functions is calculated via NCA

equations numerically at different chemical potential as shown in Fig.(2.8). NCA solutions

can provide correct physic results at Dirac point as two-channel Kondo. The impurity

spectral function does not present p-h symmetry. The hight of Kondo peak is related to
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2.3. CONSTANT DENSITY OF STATES AND DOPED GRAPHENE

Kondo temperature (Tk), and 2CK Kondo temperature is the function as [57]:

Tk ∼ w(Γ/2π(µ− ǫd))
1/2exp[−π(µ − ǫd)/Γ]. (2.51)

The parameters Γ and µ affect the the hight of Kondo peak. To analyze 2CK conductance

scaling, we start form conductance behavior of two-channel Kondo. The most important

property of 2CK conductance is the square root curve (see Section 1.2). Theoretically, we

analyze two-channel Kondo conductance scaling function both of equilibrium and out of

equilibrium [71]. First of all, we discus equilibrium system conductance, there is no bias

voltage in system, and temperature dominates physics behavior, as a function G(0,T): a

temperature dependent function formulated as,

G(0, T )−G(0, 0) = BcT
1
2 , (2.52)

where G(0,0) is a constant here, we have to omit this constant to observe square root

curve in logarithmic scale. This analyzed function shows non-Fermi liquid behavior of

two-channel Kondo in equilibrium. The non-equilibrium 2CK conductance scaling is

formulated in terms of variable V and T,

G(V, T )−G(0, T ) = BcT
1
2H(A

eV

kBT
). (2.53)

The function H(A eV
kBT

) can be calculated by field theory, where H(A eV
kBT

) ∼ ( eV
kBT

)2 for

eV
kBT

<< 1, and H(A eV
kBT

) ∼ ( eV
kBT

)1/2 for eV
kBT

>> 1. In non-equilibrium case, temperature

T is a constant as T0 = 5 × 10−7D. From NCA equations, we numerically calculate

doped graphene conductance both equilibrium and out of equilibrium. The results via

NCA are shown in Fig.(2.9). Compare Fig.(2.9) to Fig.(2.5), there is comparison between

theory and experiment. The Fig.(2.9.a) and Fig.(2.9.b) are the 2CK scaling of equilib-

rium conductance. The Fig.(2.9.c, d, e) are the 2CK scaling at different interval out of

equilibrium.

Give a summaries of 2CK graphene universal scaling in conductance: In equilibrium,

there is
√
T behavior when T < Tk. In non-equilibrium system, there is

√
(eV/kBT )

behavior when T ′ < T < Tk, and (eV/kBT )
2 when T ′ < T ∗, where T ′ is a small temper-

ature. We have studied QPT of 2CK pseudogap Anderson model for r=0 and r=1 via
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NCA. In next section, we will investigate quantum criticality and find universal scaling

for 0 < r < 1 both in equilibrium and out of equilibirum.
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Figure 2.8: The impurity DOS via NCA v.s. different chemical potential µ in units

of D. Dirac point is located at w/D = 0, and Kondo peaks are pinned near each µ.

Different levels w/D with different chemical potentials µ correspond to different Fermi

levels, respectively. The parameter are T0 = 5× 10−7D, Γ = 0.2D, ǫd = −0.2D, where D

is half-bandwidth. T0 is temperature of the system, Γ is coupling constant of leads and

dot, and ǫd is dot level. Adapted from [60].
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Figure 2.9: (a) The linear conductance in equilibrium system. It show square root behav-

ior at temperature which is lower than Kondo temperature. (b) There is an additional

power law behavior at high temperature in equilibrium conductance scaling. It shows

T ∗ ∼ |Γ− Γ∗|1/µ, where Γ∗is a small number, 0.05D and µ ∼ 0.1. (c) Nonlinear conduc-

tance at Γ = 0.2D. The fixed parameters are T0 = 5 × 10−7D, µ = −0.1D, ǫd = −0.2D,

where D = 1 is half-bandwidth. (d) The (eV/kBT )
2 behavior arises as (eV/kBT ) << T .

(e) The (eV/kBT )
1
2 behavior arises as (eV/kBT ) is between T and TK . Adapted from

[60].
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Chapter 3

Results Of The 2CK Pseudogap

Anderson Model: Quantum Phase

Transition and Quantum Criticality

In this chapter, we provide our NCA results for pseudogap 2CK Anderson model within

quantum critical region for 0 < r < 1. The 2CK QPT with pseudogap density of states

have been investigated via renormalization group (RG) approach (see Section 1.3). Here,

we investigate QPT in 2CK Anderson model by tuning exponent r via NCA approach.

From impurity density of states (DOS), we analyze the quantum phase transition between

LM and 2CK state and extract the quantum critical point. The differential conductance

both in equilibrium and non-equilibrium cases are analyzed in Section 3.2. From our

numerical results in conductance, we find the universal scaling at and near quantum

criticality. The schematic phase diagrams of equilibrium and non-equilibrium are sum-

marized in Fig.(3.1). The quantum critical point is at and near r → rc ≃ 0.115. The

phase diagrams describe equilibrium and non-equilibrium crossover between LM and 2CK

with crossover scales being T ∗ and V ∗, respectively. Both equilibrium and out of equi-

librium phase diagrams in conductance show power law divergence at quantum critical

region. We also observe different universal scaling behavior between equilibrium and out

44



3.1. QUANTUM CRITICALITY SHOWS IN IMPURITY DENSITY OF STATES

of equilibrium systems.

Figure 3.1: The phase diagram of equilibrium and non-equilibrium conductance. The

phase diagrams delineated by T ∗ and V ∗, which is crossover scale in equilibrium and

out of equilibrium, respectively. The inverse of crossover scale is correlation length, ξ,

which is diverge in quantum critical region, and νT = 4, νV = 0.5 are universal factor

called as correlation length exponent. Due to νT , νV are different, the universal scaling

in equilibrium is different from out if equilibrium. Here, critical point is at and near

rc = 0.115, even if G(0,T) and G(V,T) have slightly different parameters (Γ and ǫd).

3.1 Quantum Criticality Shows In Impurity Density

Of States

The pseudogap DOS (ρc(w)) of conduction electrons vanishes in power law fashion at

Fermi energy (ρc ∼ |ω|r). If there is sufficient conduction electron DOS to screen the
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Figure 3.2: The r=0.05 density of states of impurity non-equilibrium system with Γ =

0.3D, ǫd = −0.3D, T = T0 = 5 × 10−7D, where D = 1. The impurity DOS exhibits

asymmetry graph, where no peak at d + U due to particle-hole asymmetry. The non-

equilibrium density of states with bias, V = 0.038D, Kondo peak divided into two peaks,

because the Fermi energy of left and right leads are different, the width between two peaks

is equal to bias.

magnetic impurity in 2CK system, the ground state is going to 2CK fixed point. On the

other hand, it leads to LM fixed point if conduction electron DOS is not sufficiently large.

Here, we study quantum phase transition of pseudogap 2CK Anderson model by tuning

r (0 < r < 1) at µ0 = 0 with fixed parameters Γ and ǫd, where µ0 is chemical potential of

the conduction bath. Not that: There is no Kondo screening in graphene (r=1) if µ0 = 0.

We investigate quantum critical region form analyzing numerical data via NCA. In this

chapter, we define two-channel Kondo temperature, T2CK . In quantum dot system, three

important features arise as 2CK ground state emerges (T < T2CK),

1. The entropy of impurity spin (S(Ω)) at T → 0 is that S(Ω = 2) ≃ kBln
√
2, where

T is the temperature of the system,

2. A non-Lorentzian Kondo peak occurs at Fermi level in impurity DOS.

3. As T < T2Ck, the conductance follows the scaling function Eq.(2.51) and Eq.(2.52).
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From the 2nd feature of 2CK, we study impurity DOS for extract the critical point at

and near rc in this section. The conductance behavior and the universal scaling will be

discussed in Section 3.2. The non-equilibrium impurity for r=0.05 is shown in Fig.(3.2),

where Kondo peak is spilt up into two peaks due to bias voltage. We find Kondo peak in

impurity DOS for r=0.05 is short, because QPT between 2CK and LM leads to Kondo

peak shorter as r is close to rc more and more. The impurity DOS for different r is

demonstrated in Fig.(3.3.a), it exhibits QPT between LM and 2CK by varying r in Kondo

peak (Fig.(3.3.b)). Numerically, we can not address zero temperature, so T0 = 5× 10−7D

is used to approach to zero temperature, where T0 is the lowest numerically accessible

temperature. The Kondo peaks are shorter as r increases ,and there is a dip of Kondo

peak for r > 0.13, we predict that LM state occurs while r > 0.13. The height of

Kono peak is related to Kondo temperature which is as a function in Eq.(2.51). We

can predict the critical point form the change of Kondo peaks. In order to study the

quantum phase transition of two-channel pseudogap Anderson model both in equilibrium

and non-equilibrium cases, we choose two sets of parameters to do so.

1. Equilibrium: Γ = 0.28D, ǫd = −0.2D, zero bias voltage, varying temperature T,

and the lowest temperature T = T0,

2. Non-equilibrium: Γ = 0.3D, ǫd = −0.3D, T0 = 5× 10−7D, varying bias voltage V,

when we study QPT in non-equilibrium conductance with bias voltage, temperature of

the system is fixed at T0. The parameter Γ (∼ V 2/π) is the coupling strength of leads and

dot, ǫd is the dot level, and D=1 is half bandwidth. The parameters Γ and ǫd all affect 2CK

Kondo temperature. But we find critical point is at and near rc = 0.115 both in parameter

Γ = 0.28D, ǫd = −0.2D and Γ = 0.3D, ǫd = −0.3D. thus forecast quantum critical point

is fixed as Γ and ǫd does not change too much. From the change of Kondo peaks for

different r in impurity DOS, the QPT is observed and we can extract quantum critical

region and critical point. Furthermore, we find the universal scaling both of equilibrium

and non-equilibrium conductance in the quantum critical region, these details will be

discussed in next section.
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Figure 3.3: The Kondo peak of impurity spectral function with Γ = 0.28D5, ǫd = −0.2D,

and T0 = 5 × 10−7D by varying exponent r. (a) The full impurity DOS with p-h asym-

metry. (b) Kondo peaks for different r in Fig.(3.3.a).

3.2 Conductance near LM-2CKQuantum Critical Point

In Section 3.1, the quantum phase transition is signaled by the diversification of Kondo

peaks for different r in impurity DOS at r ∼ rc, as a result, we extract the critical

point rc ≃ 0.15. From the 3rd feature of 2CK in last section, we analyze conductance

in special case of 2CK pseudogap Anderson model (0 < r < 1) to observe QPT between

LM and 2CK. The behavior of 2CK conductance in the constant DOS Anderson model

and graphene have been introduced in Section 1.3.2 and Section 2.3. In the next two

subsections, we will discuss conductance and their universal scaling behavior, more details

both in equilibrium and non-equilibrium cases for 0 < r < 1. We further compare that the

universal scaling in equilibrium and out of equilibrium. The conductance in equilibrium is

a function of temperature T, G(V=0,T), most contribution comes from thermally excited

electrons near Fermi surface. On the other hand, most contribution in non-equilibrium

system comes from electrons excited by V. As a result, different Fermi energy in left and

right right leads may lead to different G(V,T0) as a function of V from that in equilibrium,

G(0,T). In our study, we set T = T0 ∼ 5 × 10−7D as the lowest numerically accessible

temperature. We study further the universal scalings in conductance in quantum critical
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region.

3.2.1 Equilibrium Conductance G(0.T)
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Figure 3.4: The conductance v.s. T with varying r in equilibrium system , where µ = 0,

Γ = 0.28D, ǫd = −0.2D are fixed, and the half-bandwidth D=1.

Here, we focus on conductance of 2CK pseudogap Anderson model for 0 < r < 1 in

equilibrium (V = 0, T > 0). As shown in Fig.(3.4), it exhibits G(0,T) by varying T for

different r with Γ = 0.28D, µ0 = 0, ǫd = −.2D, and D = 1. We expect that it follows

the 2CK scaling function G(0, T )−G(0, 0) = BcT
1
2 in 2CK regime, therefore it exhibits

√
T behavior at T < Tk. Numerically, we can not exactly address zero temperature

system, therefore G(0, 0) ≃ G(0,T0 = 5×10−7D). The 2CK scaling behavior of differential

conductance for different r exhibits
√
T as shown in Fig.(3.5). However, the region of

√
T

scaling gets narrow as r increase. In Fig.(3.5), the
√
T behavior is clear for r=0 , but

almost disappears for r → 0.11. We find the reason that G(0,T) deviates more and more

from
√
T behavior (violet dash line) as r → rc, because the system approaches to the

G(0,T) is expected to show quantum critical point where a universal power law scaling
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Figure 3.5: To illustrate G(0, T )−G(0, 0) = BkT
1
2 scaling for 0 < r < 1, but we can’t get

a reasonable result. The
√
T behavior of differential conductance is obvious for small r,

but it gradually disappears as r increase. Here, Td is the non-universal factor, and µ = 0,

Γ = 0.28D, ǫd = −0.2D, D = 1.

in T. As shown in Fig.(3.6), we find the power of conductance for each exponent r in

Fig.(3.5) are related to |r − rc| at the interval between 5 × 10−4D and 5 × 10−7D. We

define the power in conductance for each r between 5×10−4D and 5×10−7D as σT . There

is a linear relationship between |r − rc| and σT , where rc = 0.115. The region between

5× 10−4D and 5× 10−7D is expect to show the quantum criticality. So we suppose that

the conductance G(0, T ) ≡ GQCP (0, T ) at quantum critical region, which is analyzed as:

GQCP (0, T ) ∼ T σT = T βT−αT |r−rc|, (3.1)

where βT and αT are non-universal factors, T σT = T βT as r = rc. Next, G(0, T ) divides

by T σT , then it becomes

G̃(0, T ) = G(0, T )/T σT =
G(0, T )

T βT−αT |r−rc|
, (3.2)

G̃QCP (0, T ) = GQCP (0, T )/T
σT = constant.

The curves between Eq.(3.1) become flat. We rescale y axis (G̃(0, T )) by a non-universal
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Figure 3.6: To illustrate σT v.s. |r − rc| plot with µ = 0, Γ = 0.28D, ǫd = −0.2D,

whereD = 1.

factor d0 such that every flat in y-axis overlap in the same value. Furthermore, x-axis is

rescaled by factor T ∗ for normalization, the universal scaling is

G(0,
T

T ∗
) ≡ G(0, T

T ∗
)

(T/T ∗)βT−αT |r−rc|d0
, (3.3)

where T ∗ is inverse of correlation length ξ,

T ∗ ∝ 1

ξ
= |r − rc|νT , (3.4)

νT is the power exponent of T ∗. The universal scaling as Eq.(3.3) is shown in Fig.(3.7).

As r → rc, correlation length ξ → ∞, the scaling is the universal function. And the

crossover scale can be described by T ∗. As r → rc, T
∗ ≃ 0, there is quantum criticality.

The universal scaling in equilibrium for 0 < r < 1 normalized by T ∗ was shown in

Fig.(3.8). The T ∗ V.S. r − rc plot was shown in Fig.(3.8). Fig.(3.8) in the logarithm

scale shows linear relationship between T ∗ and |r − rc|. The results of conductance in

equilibrium for 0 < r < 1 can be described as a phase diagram as shown in Fig.(3.1.a).

The quantum critical region diverges in power law fashion as rc. In summary, the QPT

in equilibrium with µ0 = 0 can be observed by tuning exponent r and T. There is
√
T

scaling at T < TK , but it become more and more narrow as r increases. Conductance
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at region between 5 × 10−4D and 5 × 10−7D is universal. The QPT in non-equilibrium

system will be discussed in next subsection .
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Figure 3.7: The universal scaling in G(0,T) is given by Eq.(3.1) with Γ = 0.28D, ǫd =

−0.2D and µ = 0, whereD = 1. Setr = 0.115 is the critical point.

3.2.2 Non-equilibrium Conductance G(V,T0)

In this section, we investigate quantum phase transition of the 2CK pseudogap Ander-

son model out of equilibrium for 0 < r < 1 described by Eq.(2.15) via NCA approach.

In particular, we address universal scaling in non-equilibrium conductance near quan-

tum critical point. Here, we analyze conductance by adding bias voltage at fixed low

temperature T0 ∼ 5 × 10−7D. For simplicity, we focus on the simple case with parity

symmetry (left and right side), where ΓL = ΓR = Γ
2
, and µL = µR = eV/2. The conduc-

tance G(V,T0), is shown in Fig.(3.10), with Γ = 0.3D, ǫd = −0.3D at fixed temperature

T0 ∼ 5 × 10−7D. As shown in Fig.(3.9), the conductance for each r saturates at low

bias region, and we find that it follows 2CK scaling function for small r and T < Tk:

G(V, T )−G(0, T ) = BcT
1
2H(A eV

kBT
), where the universal function H(A eV

kbT
) is ( eV

kBT
)2 for

eV
kBT

<< 1 and ( eV
kBT

)1/2 for eV
kBT

>> 1. In other words, in the 2CK regime, the conductance
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Figure 3.8: Crossover scale T ∗ v.s. r − rc plot with Γ = 0.28D, ǫd = −0.2D and µ = 0,

whereD = 1.

should exhibits
√
eV/kBT and (eV/kBT )

2 scaling behavior as T < Tk. The differential

scaling in conductance is shown in Fig.(3.10), and it exhibit non-Fermi liquid behavior
√
V at T̃0 < V < Tk, and V 2 for small bias region V < T̃0. The region gets narrow more

and more as r increases. For r=0.03, it exhibits the obvious
√

eV/kBT and (eV/kBT )
2

behavior, but the curve for r=0.07 shows clear deviations from
√

eV/kBT and (eV/kBT )
2.

The deviation is due to the fact that the system is close to the 2CK-LM quantum critical

point, where distinct of universal scaling function is expected to show. In our study, the

exponent r=0.115 is at and near critical point rc. We analyzed the power σV in conduc-

tance for each r between V=5× 10−3D and 5× 10−5D. As shown in Fig.(3.11), there is

linear relationship between σV and |r− rc| as r → rc, where a red dashed line is fitted to

|r − rc|1. In quantum critical regime, the region between V=5 × 10−3D and 5 × 10−5D

which exhibits power law behavior in conductance is expected to show. So we suppose

that G(V, T0) ≡ GQCP (V, t0) at the quantum critical region which can analyzed as:

GQCP (V, T0) ∝ V σV ∼ V βV +αV |r−rc|, (3.5)
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Figure 3.9: Non-equilibrium conductance of 2CK pseudogap Anderson model. G(V,T)

saturates at a constant value for V << T , other parameters are T = T0 = 5 × 10−7D,

ǫd = −0.3D and Γ = 0.3D, D = 1. The bias voltage V is in unit of half-bandwidth D.

where βV and αV are non-universal factor. We find βV = 0, αV = −5. AS r → rc, σV ∼ 0.

Next, The conductance G(V,T0) divides by V σV , then it becomes

G̃(V, T0) = G(V, 0)/V σV , (3.6)

G̃QCP (V, T0) =
V αV |r−rc|

V σV
= constant.

Eq.(3.6) for different r becomes flat curves. Furthermore, we rescale y-axis G̃QCP (V, T0)

by a non-universal factor d0, therefore, each curve for different r overlap in the same value,

where scaling in conductance is

Ĝ(V, T0) ∝
G(V, 0)

V σV d0
=

V αV |r−rc|

V σV d0
. (3.7)

We rescale x-axis by V ∗ for normalization, the universal scaling is

Ĝ(
V

V ∗
, T0) ∝

G(( V
V ∗

, 0)

(V/V ∗)σV d0
=

(V/V ∗)αV |r−rc|

(V/V ∗)σV d0
, (3.8)

as shown in Fig.(3.12). Here, V ∗ is inverse of the correction length, ξV ,

V ∗ ∝ 1

ξV
= |r − rc|νV . (3.9)
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Figure 3.10: Scaling of non-equilibrium conductance, G(V,T) follows Eq.(2.53). The

parameters are set as T = T0 = 5 × 10−7D, ǫd = −0.3D and Γ = 0.3D, D = 1. The

scaling exhibits the square root and square behavior of eV/kBT , but reduced as exponent

r increases.

To illustrate the quantum phase transition between LM and 2CK regimes, V ∗ describe

the crossover state in power-law fashion. As r → rc, V
∗ ∼ 0, there is quantum criticality,

no crossover regime. The V ∗ v.s. |r − rc| plot is shown in Fig.(3.13), and it exhibits

power-law behavior as r is close to rc. This power is fitted to |r − rc|0.5, where νV = 2.

For r close to rc, Eq.(3.9) is the universal function, and the result can be summarized

by Fig.(3.1.b). In summary, the QPT in non-equilibrium for 0 < r < 1 sets µ0 = 0 and

which can be observed by tuning r and V. The differential conductance scaling exhibits
√
V behavior at T < TK and V 2 behavior at V < T . But it deviates the differential

conductance scaling function (Eq.(2.53)) as exponent r increases. The region between

V=5 × 10−3D and 5 × 10−5D is universal. We have studied the QPT for r=0, r=1, and

0 < r < 1 both in equilibrium and non-equilibrium conductance. The QPT behavior of

2CK pseudogap Anderson model is manifest.
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Figure 3.11: σV v.s. |r − rc| plot with µ = 0, Γ = 0.3D and ǫd = −0.3D. We set D=1.

10
-3

10
0

10
3

V/V*

0.001

0.01

G
(V

,T
)/(

V
 σ

V
  d

0 
)

r=0.03
r=0.05
r=0.07
r=0.09
r=0.095
r=0.1
r=0.11

r
c
=0.115

Figure 3.12: The non-equilibrium universal scaling in conductance for different r at low

temperature, T = 5× 10−7D. we set dot level ǫe = −0.3D, Γ = 0.3D, and D=1.
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We set D=1.
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Chapter 4

Summary And Conclusion

In recent years, there has been numerous studies of quantum phase transition (QPT) in

condensed matter physics, especially the QPT between Kondo and other phases. With the

improvement of nano-material fabrication, we are able to observe Kondo effect in quantum

dot (QD) system. There are many examples of QPT of Kondo effect, such as: double

quantum dot (DQD) system, two-channel Kondo effect (2CK) and pseudogap Kondo

model. For DQD system, the competition between Kondo and RKKY coupling leads

to the QPT between Kondo effect and spin singlet. For 2CK system, two independent

electron sources exist and hence two-Kondo coupling constants J1 and J2 are needed to

label the interactions, i.e. the Kondo screening from the two electron baths. There is a

competition between J1 and J2, both of them simultaneously want to screen the impurity;

therefore, leads to the QPT between two independent electron reservoirs. As a quantum

dot couple to pseudogap conduction electron bath, the conduction electron density of

states (DOS) ρc ∼ |w|r vanishes at w = 0 in power-law fashion, where 0 ≤ r ≤ 1. In our

study, we investigate QPT by the 2CK pseudogap Anderson model with 0 < r < 1 via

large N slave-boson NCA approach both in equilibrium and non-equilibrium cases. In the

2CK pseudogap Anderson model, the constant DOS Anderson model corresponds to r=0,

and r=1 for doping graphene. Note that: in our study, dope graphene is a 2CK system.

The region 0 < r < 1 possibly corresponds to semiconductor with soft gap. We employ

slave-boson representation to solve infinite-U Anderson model, and self-consistently solve
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for Green functions of impurity and slave-bosons, by including all self-energy diagrams

with no lines crossing each other, so-called NCA. Numerically, we investigate the QPT

by the impurity DOS and conductance via NCA equations both in equilibrium and non-

equilibrium cases. The impurity DOS ρσ(w) via NCA exhibits non-Lorentzian Kondo

peak at w = 0. Kondo peak is separated into two peaks due to bias voltage, and the

width between two peaks is equal to the amount of bias. The QPT between LM and 2CK

can be observed by emergence of the dip of Kondo peaks for r > rc. From the dip of

Kondo peak in the impurity DOS at T = 5× 10−7D, V = 0, we define the critical point

which is at and near rc ≃ 0.115. The 2CK feature in QD is defined in the differential

conductance scaling as shown in Eq.(2.52) and Eq.(2.53). Here, we rewrite the 2CK

differential conductance scaling as,

G(0, T )−G(V, T )

T α
= κY (

eV

kBT
), (4.1)

Y (x) = 1− F2CK(x/π) ≈ π

3

√
x for x >> 1,

Y (x) = 1− F2CK(x/π) ≈ cx2, c ≈ 0.0758 for x << 1,

with κ = (g0/2)(π/T2CK)
α, and α = 0.5 for 2CK. We discover that the region satisfied

Eq.(4.1) becomes narrower for 0 < r < 1 both in equilibrium and non-equilibrium situa-

tions. The conductance both in equilibrium and non-equilibrium are analyzed as shown

in Eq.(3.1) and Eq.(3.6), respectively. The universal scaling in equilibrium conductance

for 0 < r < 1 satisfies Eq.(3.3), and Eq.(3.5) describing the universal crossover scale

between LM and 2CK phase, as shown in Fig.(3.1.a). On the other hand, Fig.(3.1.a) is

the phase diagram in non-equilibrium for 0 < r < 1, the crossover scale is described by

Eq.(3.10), and Eq.(3.9) is the universal scaling out of equilibrium. In our study, we find

the hybridization does not influence the critical point too much for 0 < r < 1 as shown

in Fig.(3.1.a) and Fig.(3.1.b). The QPT for 0 < r < 1 can be described by distance to

criticality in terms of both |r − rc|, T (equilibrium) and V (non-equilibrium). We choose

two sets of parameter in equilibrium and non-equilibrium, but we find the same critical

point rc = 0.115.
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Figure 4.1: This figure depicts the equilibrium thermal transport and Fermi function. Red

line represents T 6= 0 Fermi function, where particles may be excited by thermal energy.

For the cases for r=0 and r=1, there have been many studies and the QPT between LM

and 2CK by tuning Γ and µ0 are well-known. We investigate the QPT between 2CK and

LM for 0 < r < 1 and find the universal scaling both in equilibrium and non-equilibrium

cases. And we find out that the scalings of G(V,T0 ∼ 0) and G(V = 0,T) are different,

even if V and T are exchanged. We discover that the universal scaling in equilibrium and

non-equilibrium are not identical. The conductance G(0,T) is a function of T, within re-

sults from thermally excited electrons near Fermi surface as shown in Fig.(4.1). As shown

in Fig.(4.2), the conductance in non-equilibrium system is mostly coming from those elec-

trons excited by the bias voltage V, leading to different Fermi energy in left and right

leads. The difference between the conductance scaling in equilibrium G(V,T0 ∼ 0) and

non-equilibrium G(V=0,T) can be understood by this argument. The QPT both in equi-
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librium and out of equilibrium are summarized in a three dimensional phase diagram as

shown in Fig.(4.3), it exhibits different universal scaling behavior in equilibrium and out

of equilibrium, respectively. In experiments, we can investigate non-equilibrium system

with the advancement of nano-technology in recently years. The non-equilibrium sys-

tem becomes an important subject in condensed matter both in experiments and theory.

Our study provides theoretical basis for further study in Kondo break down, quantum

criticality and non-Fermi liquid behavior in condensed matter systems.
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Figure 4.2: The non-equilibrium transport in our system depends on current. The Fermi

function for non-equilibrium case is different from the one in equilibrium because of the

difference between chemical potential of the left and right leads. Fermi function of the

left and right are different. The Fermi function of non-equilibrium system shows a jump

fL − fR across the impurity.
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Figure 4.3: The three dimensional phase diagram to describe QPT between LM and 2CK

both in equilibrium (G(0,T)) and out of equilibrium (G(V,T0)). The quantum criticality

can be accessed either by G(0,T) in equilibrium and or by G(V,T0) out of equilibrium.

The equilibrium and non-equilibrium conductance show distinct scalings at criticality.
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Appendix A

Here, we give a supplemental material: discussion for two-channel Kondo effect. We think

about a simple model out of equilibrium where two leads couple to a quantum dot, where

H =
∑

kσα

ǫkσ(C
α†
kσC

α
kσ − µα) +

∑

σ

ǫσd
†
σdσ +

U

2

∑

σ

ǫdd
†
σdσ +

∑

kσα

(V α
kσC

α†
kσd+H.C.). (4.2)

The momentum of Fermi sea and electron spin are represented by index k, σ, respectively.

The leads of left and right are represented by α ∈ L,R. We give new linear-combination

operators by conduction electron operators,

Ce
kσ =

CL
kσ + CR

kσ√
2

, (4.3)

C0
kσ =

CL
kσ − CR

kσ√
2

.

The first term of Eq.(4.2), ǫkσ(C
L†
kσC

L
kσ + CR†

kσC
R
kσ) becomes ǫkσ(C

e†
kσC

e
kσ + C0†

kσC
0
kσ). The

last term of Eq.(4.2) which represents hybridization of leads and dot becomes V α
kσ(C

e†
kσd+

d†Ce
kσ). The full Hamiltonian can be rewritten as

H =
∑

kσ

ǫkσ(C
e†
kσC

e
kσ − µα) +

∑

kσ

ǫkσ(C
0†
kσC

0
kσ − µα)+ (4.4)

∑

σ

ǫσd
†
σdσ +

U

2

∑

σ

ǫdd
†
σdσ +

∑

kσ

(V α
kσC

e†
kσd+H.C.),

where no hybridization coupling between operator dσ and C0
kσ. The second term of

Eq.(4.4) has no contribution to the quantum dot. There is no second channel contribu-

tion to the quantum dot, there is single channel case in this system. The condition for

two-channel Kondo effect is that two independent electron reservoirs exist, and there is
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no scattering between two conduction electron band of reservoirs. Otherwise, we can use

a linear-combination transformation to rewrite the Hamiltonian, and there is only single

channel contribution to the quantum dot. The two-channel Kondo model out of equilib-

rium is shown in Fig.3.1, two electron leads coupled to a quantum dot are two-channel

leads, respectively, where Hamiltonian can be written as

H =
∑

τ,α,σ,k

(ǫkσ−µα)c
α†
kστ c

α
kστ+

∑

σ

ǫσd
†
σdσ+

U

2

∑

σ

ǫdd
†
σdσ+

∑

τ,α,σ,k

(V α
kστc

α†
kστdσ+H.C.). (4.5)

Here, we add a new channel index τ ∈ 1, 2, and we assume hybridization V α
kστ for different

chemical potentials are the same. Simplicity, we set V L
kσ1 = V R

kσ1 = V L
kσ2 = V R

kσ2 in

our study. Theoretically, two-channel Kondo lead can comes from two degenerate states

in momentum space [19, 20, 23, 6], or two independent Dirac core in doped graphene

citegnauck37. The two channel Kondo has been realized by a quantum dot couple to

a finite reservoir and two electron leads come from the other reservoir [16]. Note that:

doped graphene is two-channel Kondo system in our study.
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