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Abstract

Chest X-ray (CXR) is important for clinical diagnosis of pneumonia due to its ability to
reveal pulmonary manifestation. In the early stage of pneumonia, pneumonic findings are
subtle on plain films and can easily escape detection by visual inspection. In this work,
we develop a computer-aided diagnosis (CAD) system in chest radiography for pneumo-
nia. There are two major components in this CAD system. The first component comprises
image processing techniques, such as edge detection and 2-D Haar wavelet transform, for
the feature extraction of pneumonic manifestations in CXR images. The other one consists
of 2-D nonlinear image warping techniques and can reduce the structural displacements in
CXR images due to the variations of acquisition conditions and postures across examina-
tions. Registering CXR images of the same subject can be useful for longitudinal study.
Moreover, registering CXR images across subjects provides the possibility of inter-subject
comparison. According to our experiments, the.proposed CAD system can extract the infil-
tration in the lung field of CXR images. Furthermore, the progress of the extracted features
is coherent to the diagnostic decisions of the timing of intubation and extubation for SARS

patients.
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Chapter 1

Introduction



1.1 Background
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Figure 1.1: Pneumonia is one of the leading causes of death in Taiwan and its order is

arising from the year 2000 to the year 2004.

1.1 Background

According to Anderson [1], the combination of influenza and pneumonia is the seventh
leading cause of death for U.S. people, and the sixth leading cause for the Asian or Pacific
Islander population. In Taiwan, pneumonia is the sixth leading cause of death and its order
is arising as shown in Figure 1.1 [2]. Chest radiology is important for clinical diagnosis
of pulmonary lesions. Pneumonic findings can be revealed in chest X-ray (CXR) images
of pneumonia patients in clinical diagnoses. Although the resolution and information of
chest radiology is less than that of high resolution computed tomography (HRCT), chest
radiology has the advantages of low cost, convenience, and less radiation.

The longitudinal changes in the chest X-ray patterns are very important for the clinical
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diagnosis and treatment. Where the interstitial pattern, alveolar consolidation, and the fi-
brosis are clues to the transitions of stages of pneumonia. In the early stage of pneumonia,
pneumonic findings are unfortunately subtle on plain films and can easily escape detection
by visual inspection despite of considerable upper respiratory complaints and symptoms,
though there will be some abnormality in HRCT. In this work, we aim to retrospectively
analyze the pneumonic pattern of plain chest X-ray films by using image processing tech-
niques and to develop a computer-aided diagnosis (CAD) system in chest radiography to
provide more information which are revealed in plain chest X-ray films. As shown in Fig-
ure 1.2, the pneumonic pattern is extracted and it is overlaid in the CXR image.

In computer analysis of chest radiographs, there are various kinds in modality, acquisi-
tion conditions, and posture of patient, causing the geometric distortions of body structure
in the scanned chest radiographs. The modalities may be standard frontal chest radiograph
or portable chest X-ray where the views, distances-of beam, and even posture of patient are
different. The shadow of the heart in an anterior-posterior (AP) film, that is, film behind
patient and beam in front of patient, is larger than that in an posterior-anterior (PA) film,
that is, film in front of patient and beam behind patient. In a supine film, the diaphragm is
higher and the lung volumes is less than that in a standing patient. The posture of a patient
may affect the shape and position of deformable organs, as well as the projecting shadows
of structures in the chest. Although the modality and acquisition conditions can be con-
trolled carefully to be identical for each examination, the posture of patient is hardly ever
the same, especially for patients, children, and elders that can not hold the same posture.
For inter-subject analysis, the causes of geometric variations between chest radiographs

may also include the variations of fat and the variations of size, shape, and position of
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Figure 1.2: CXR images overlaid with gEOmetrié feature. The left part is a CXR image of
normal subject. The right p;a:rt 1s'a CXR firfnage of ipneumonia subject. The positions with
the color of red have more diaffrerencesioTiﬁehsity.r The edges are thus highlighted with red
in both images while some nofl-edge parts are highlighted in the CXR image of pneumonia

subject because the pneumonic pattern is extracted there.

heart, skeletal structures, and other structures contained in the chest.

Because of the structural variations due to various conditions mentioned above, com-
paring chest radiographs on the same position can be difficult in computer analysis. We
introduce a 2-D image registration method that can reduce the structural displacements
thus can provide a possibility for both of the longitudinal and inter-subject comparison by

using their CXR images normalized in the same stereotaxic space.
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1.2 Thesis Scope

In this work, we aim to develop a CAD system in chest radiology for helping radiol-
ogists in the evaluation of CXR manifestations of pneumonia. This CAD system is com-
prised of two major parts, image features and image registration methods. We develop a
feature extraction method for quantitative analysis of the pneumonic pattern of chest X-ray
films. An image registration method is applied for registering chest X-ray images in intra-
subject and inter-subject analyses as shown in Figure 1.3. The structural displacements
due to variations in acquisition conditions and postures across examinations can then be re-
duced for intra-subject longitudinal study and inter-subject analyses. The extracted feature
information can be revealed in the registered chest X-ray images by applying both of these

two techniques, as illustrated in Figure 1.4«

1.3 Related Works

1.3.1 Computer-Aided Diagnosis

Computer-aided diagnosis is developed more than thirty years [3] and people have been
looking to the time when computers would output a diagnosis with a set of input images
since it was possible to process images on computers. Among the CAD applications, in-
cluding mammography, chest radiography, chest CT, neuroradiology, and virtual colonog-
raphy, the first Food and Drug Administration (FDA) -approved CAD products were mam-
mography. Where the FDA approval processes contains a requirement that the systems
should be effective. It is expected that only occassional reviews are need for radiologists

with the aid of CAD system. Radiologists thus can focus on the more difficult cases and it
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B

Target Image
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Source Image

Figure 1.3: An example of 2-D image registration. The source image is registered to the
stereotaxic space of the target image. The red grids on the images are the deformation

fields.
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Figure 1.4: Flow chart of the proposed CAD system. The system inputs are training images
in positive and negative classes, an input image, and a target image. From the input of
training images, discriminative features are extracted in the step of feature training. Then
unique feature of each pixel within the input image is computed according to the extracted
features. By applying image registration method, the computed unique features of input

image is transformed to the coordinate system of target image.
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can provides a more accurate and efficient practice of radiology.

Radiograph interpretation is divided into three parts, detection, description, and various
kinds of diagnosis in radiology [3]. These essential parts are the goals of CAD in chest
radiography. There are three techniques, general processing, segmentation, and analysis
involved in the field of computer analysis in chest radiography [4]. The general processing
contains image enhancement and subtraction techniques. The targets of segmentation are
lung field, rib cage, heart, and other structures. The analysis procedure contains size mea-
surements, lung nodule detection, and texture analysis. For the detection of abnormalities,
computerized screening examinations are particularly promising because the examination
procedure is very tedious and can fatigue to radiologist. After being detected, imaging
abnormalities must be characterized with thé.anatomic extent of a lesion, the size of a
structure, and the texture of its density: The quantitative measurements are particularly im-
portant for better description of disease evolution: The diagnosis is the most difficult part
among the three essential tasks'of image interpretation because it involves the combination
of imaging information with medical knowledge.

In the field of diagnostic radiology, evaluation of interstitial disease in radiographs is
difficult due to the following three reasons. First, the involved patterns and variations are
numerous and complex. Second, the correlation between pathologic and radiologic findings
is lacked. Third, the terms used to describe CXR patterns are varied among radiologists.
Katsuragawa [5] proposed a Fourier specturm based textural analysis method for detection
and characterization of interstitial disease. The authour use the root-mean-square and the
first moment of the visual system response filtered 2-D Fourier spectrum as two quantita-

tive measurements to analysis radiographs of abnormal lungs. Four groups of radiographs
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Figure 1.5: The distributions of four groups of CXR patterns with the texture measures.
The four groups of CXR patterns, are‘normal, nodular, reticular, and honeycomb patterns.
The texture measures are root-mean-square and first moment of the visual system response

filtered 2-D Fourier spectrum. (This figure1s referenced from [5].)

are inclucded in the analysis, they are radiographs of normal lungs, abnormal lungs with
nodular pattern, abnormal lungs with reticular pattern, and abnormal lungs with honeycomb
pattern. In the analysis of the four groups of radiographs with the texutre measurements,
it shows a good separation of the four groups of radiographs as shown in Figure 1.5. A
CAD scheme has been developed [6] by the same group using artificial neural networks
(ANNSs) of the textural analysis method. The CAD scheme classifies the input CXR im-
ages as normal or abnormal images. Instead of the classification of the input images, we

provide a trend value that indicate the evolution of pneumonia. In the other words, in place
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of a diagnosis result, we provide the indexes of the progress of pneumonia with quantitative

features fused in the CXR images.

1.3.2 Image Features

Texture analysis is an important technique in many fields of image analysis and CAD
system [7] [8] [9] [10]. These approaches for extracting texture features can be divided to
three groups, geometric features, statistical features, and spatial/spatial-frequency features.
The geometric features are lines, edges, and spots. The statistical features can be entropy,
contrast, and correlation. The spatial/spatial-frequency features can be Gabor filtering fea-
tures, Fourier spectrums, and wavelet transforms. In the application of interstitial disease,
many methods are consists ofsthe procedure for selecting regions of interest (ROIs), the
procedure for computing one of the texture features stated above, and the procedure for

classifying these texture features [1-1]:

1.3.3 Image Registration

Image registration is the process of registering images taken at different times, from
different viewpoints, from different sensor devices, or even from different modalities [12].
The image to be aligned is the target or reference image and the images aligning to target
image are the source images. The function aligning the source image to the target image is
the mapping function.

A registration method is a combination of four major steps, including feature detection,
feature matching, transform model estimation, and image resampling and transformation

[13]. In the step of feature detection, salient objects, also called control points when they
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are represented as points, such as landmark points, curves, and surfaces, are manually or
automatically detected. The correspondence between detected features in the target image
and those in the source image are established by means of feature descriptors and similarity
metrics in feature matching step. In the transform model estimation step, the parameters
of mapping functions are computed directly from the available data or are determined by
optimizing some function defined on the parameter space, according to the established
feature correspondence. Finally, in image resampling and transformation step, the source
image is transformed by using the estimated mapping functions. Interpolation [14] can be
applied after transformation for the nature of discrete image coordinate.

In the application of medical imaging [15] [16] [17], landmarks are not easily identi-
fied in images, especially for intrinsic methods based on patient related image properties.
The exact locations of these-landmarks are more-subjective and correspondence between
them may not exist. This is the reason that registration techniques usually use information
from all pixels within the whole images instéad of landmarks only. By using the extrin-
sic methods based on artificial objects, registration is more easy, fast, non-labor-intensive
for manual extraction of features, and has no need for complex optimization algorithms.
Registration results can be visually checked if the artificial objects are well designed to be
well visible and accurately detectable. But extrinsic methods, comparing to intrinsic meth-
ods, have the disadvantages that they can not be used in retrospect and that they are less
patient-friendly. For inter-subject registration, high cross-population variability causes the
complexity. Even intra-subject registration may be complex because of various pathologies

resulting in abnormal structures and highly-deformable tissues contained in the chest.
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1.4 Thesis Organization

This thesis is organized as follows. We describe our image features method in Chap-
ter 2. The 2-D image registration method applied in this work is then described in Chap-
ter 3. The experiment results are shown in Chapter 4. Finally, conclusions are stated in

Chapter 5.



Chapter 2

Image Features
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Input Image
. Feature Extraction - ) Feature Extraction - .
Training Image Feature Training Feature Calculation Unique Feature

Figure 2.1: Flow chart of image features method. Discriminative features are trained with
images of two categories on training process. Then unique feature of each pixel within an

input image is calculated according to the discriminative features.

. Feature Feature ) ( Discriminative
ROI Selection Calculation i Selection Features>

Figure 2.2: Flow chart of feature training. The system inputs train images of two categories

Training
Images

and then output discriminative features between these two categories. Two groups of ROIs
are selected during the ROI'selection‘step. Textural features are calculated during the fea-
ture calculation step for all selected’ROIs. Diseriminative features are finally selected from
calculated features.

In this chapter we describe the image features method that discriminative features are
extracted and an desired unique feature is calculated according to the extracted features, as
illustrated on Figure 2.1. This feature extraction method has two major blocks, discrimina-
tive features are extracted in the first step and unique feature of each pixel within an input
image is calculated in the second step. Each of these two blocks contains more procedures.
During the process of feature training, there are three consecutive steps, ROI selection,
feature calculation, and feature selection involved, as illustrated on Figure 2.2. During the
process of the second step in feature extraction, edge masking, feature calculation, feature

space reduction, and feature quantization are involved, as illustrated on Figure 2.3. By ap-
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Discriminative
Features

Feature > Feature Space < Feature Unique Feature
Calculation Reduction Quantization of Each Pixel

A

—— P Edge Masking

Input Image

Figure 2.3: Flow chart of feature calculation. The system inputs are discriminative features
extracted in the feature training step and an input image. The system output are unique
feature of each pixel within the input image. First, discriminative features of each pixel
within the input image is calculated., ,Then dimension of the discriminative features of
each pixel are reduced to 1-D. Finally, the unique feature of each pixel is calculated. Edge
masking is applied to assure that the discriminative features are not calculated for the pixels

within edges.

plying this feature extraction process, the unique feature calculated for each pixel within
an input image can thus be used for post-processing purposes, including visualization.

In the following sections, the major procedures, ROI selection, feature calculation, fea-
ture selection, feature space reduction, and quantization, involved in the feature extraction

method are stated.

2.1 ROI Selection

The first step in the training process is ROI selection. A ROI is a subregion within
an image selected for further processing. For convenient, we select square ROIs with size

R x R. We select two pneumonia group and normal group of ROIs because we hope the
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difference between CXR images of pneumonia and normal subjects could be stood out.
Pneumonia group of the ROIs is formed by N; ROIs selected from the lung field in CXR
images of pneumonia subjects. Normal group is formed by N, ROIs selected from the lung

field in CXR images of normal subjects.

2.2 Feature Calculation

After the two groups of ROIs are selected, we calculate the features of each ROI. The
image features are calculated by using 2-D Haar wavelet transform. By applying 2-D Haar
wavelet transform, there are R X R spatial-frequency components for each ROI. Each set
of spatial-frequency components of €ach ROI selected from pneumonia subjects is denoted

as

le?(j — 4 17"'7N1)7

and the set of these sets of spatial-frequency.¢omponents is denoted as class 1. Similarly,
the set of spatial-frequency components of each ROI selected from normal subjects is de-

noted as

X2j7(j - ]-7"'7N2)7

and the set of these sets of spatial-frequency components is denoted as class 2.

2.3 Feature Selection

After the spatial-frequency components are calculated for all ROIs, we select discrim-

inative features according to the result of t-statistic. The selected discriminative spatial-
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Figure 2.4: The discriminability evaluated with t-statistic. By comparing (a) and (b), we
know that the larger the difference between means of the two distributions the better the
discriminability of these two categories. By comparing (b) and (c), we know that the less

the variances of the two distributions the better the discriminability of these two categories.

frequency components thus can significantly differentiate the pneumonic pattern of CXR
images most accurately, as shown in Figure 2.4.

Before performing t-statistic ,on’'the two classes of CXR patterns, the highest order
spatial-frequency components are rejected initially. The components with the highest order
are always the noises or lung markings which are: not actually the discriminative compo-
nents for the two classes of CXR patterns.

Assume X;i, ..., Xy, are independent random variables for : = 1 or ¢ = 2. First, we
calculate sample mean X; and sample variance Z; for class 1 and class 2 separately, where
they are defined as

X+ ...+ Xin;

Xi: 7.:1727
N, '

! i(xu—i)2 i=1,2
Ni_ljzl 1] i) )

Zi:

Then we can calculate the t-value between class 1 and class 2,

NN, X; — X5
N1+ Ny \/(N1 —10)Z+ (N, —1)Zy
Ni+ N, —2

To select the discriminative features, we first reject the spatial-frequency components



2.4 Linear Discriminant Analysis 18

whose t-values are smaller than the critical value ¢(< ,). Where o is the significance level

and v is the degree of freedom,

_ (Za/Ni + Zo/Ns)?
(Z1/N1)* | (Zo/No)*
(NMi—1)  (N2—1)

After some spatial-frequency components are rejected according to the t-values, a sec-
ond screening process is performed to assure that the number of selected features is not too
large. Assume m spatial-frequency components are left after the rejection stated above is
performed. We sort the spatial-frequency components according to corresponding t-values
in descending order. The sorted components are denoted as f, k = 1,...,m, and the cor-
responding t-values are denoted as t;. Then the set of selected features after performing

the second screening process isidenoted. as

l m
fz{fz Ztiévxzti},0<7§1.
3=1: =T

After all, d spatial-frequency components with'that the corresponding t-values are in top d

values among all the R x R t-values are selected. We denote these selected components as
x;; for each X;;, x;; C X;;. They can differentiate pneumonic pattern of CXR images and

normal pattern of CXR images most accurately.

2.4 Linear Discriminant Analysis

After the d most discriminant spatial-frequency components are selected, we project the
d dimension space to one dimension space by Fisher linear discriminant analysis (LDA) for
the purpose of computation efficiency and the projected unique value is the most separable

feature between class 1 and class 2, as illustrated in Figure 2.5.
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Figure 2.5: The direction to be projected from multi-dimension to one dimension. For the
two lines to be projected, the line on the right part has a greater separation between the red

and black points. (This figure 1s referenced. from [18].)

By applying LDA, we first calculate-the sample mean m; for each class and scatter

matrix S; and Sy,
N,

Si= > (xiy —my) (x5 —my)",
j=1

Sw =851+ Ss.

N

Then we calculate the direction w that can separate class 1 and class 2 best,
W:S‘;}(ml—mz)
Finally, we calculate the value y that are the value projected from x to the direction w,

_ t
y—WX,

where y is a unique value that can easily address whether a ROI has pneumonic CXR

pattern or not.
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2.5 Feature Calculation of Discriminative Features

For each pixel X in a CXR image, a square region centered on X with size R x R are
obtained and the spatial-frequency components X are obtained by using 2-D Haar wavelet
transform with the framework for multilevel structure construction [19]. Using the result of
t-statistic as described in section 2.3, the d discriminative components x are obtained from
X. Then the unique feature y is calculated using w calculated in section 2.4. Before further
processing, we apply Canny edge detection to the input CXR image because we assume
the image features are affected by edge components. Thus we mask out edges and only do

further process on pixels which are not masked out by the edge mask.

2.6 Discriminant Function

Assume that each class is Gaussian distribution, the posterior probability that y is in

class 7 is defined as
p(y|wi)P(Wi)
Zj:LQp(y‘wi)P(wi)’

where w; is the pneumonic pattern of CXR images and w; is the normal pattern of CXR

P(wily) =

images. We can divide P(w;|y) by P(w2|y) as

P(wily)  plylw)P(w:)

P(waly)  plylwz)P(ws)’
If the ratio is larger than one, we can say that it is more probably that y has the pneumonic
pattern of CXR images. Since the ratio may approach to limit, we calculate the natural log

of this ratio,

o (2t

p(w2|y)) = (Inp(y|w:) +1In P(w1)) — (Inp(y|ws) + In P(wsy)).
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Figure 2.6: The discriminant function in two-category case. A decision boundary for clas-
sifying the two categories is formed by applying the discriminant function. We use the

value of the discriminant function as the quantitative measurement.

Let
gi(y) =Inp(ylw) + In P(w;),

then

9(y) Dhia)— gal@ = In (M) |

P(waly)

where g(y) is the discriminant function. If the value of ¢(y) is larger than zero, the proba-

bility of y in Class 1 is larger than the probability of y in Class 2, as shown in Figure 2.6.

As we assumed, these two classes both are Gaussian distributions. That is,

1 1 1
p(ylw;) = W exXp <—§(y — )X (y — Mz')) )

where p; and ¥; are the sample mean and sample variance of the N; y’s projected from x;;

to the direction w. Then g;(y) can be calculated as

1 _ 1 1
9i(y) = —5(9 — )Ny — ) — 511127T — §ln|2i| + In P(w;).
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After the computation of each ¢(y), we can show the probability that this point has the
pneumonic CXR pattern when 7 = 1 and the probability that this point has the normal
CXR pattern with ¢ = 2 for each points within this image.

For a CXR image, a quantitative measurement is calculated. First, a single feature value
for each pixel without masked out by an edge mask is computed. Then the feature values
within the lung field of this CXR image are averaged to be the trend value. The trend value

is the quantitative measurement for the image features method.



Chapter 3

Image Registration
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Target Image

Control Points Control Points of\
Selection Target Image j

Calculate Coefficients
of Transformation
Function

Control Points Control Points of\
Selection Source Image j

Source Image

Y A 4

Transformation ><Deformation FielD

A A

Coefficients of
Transformation Function

Figure 3.1: Flow chart of the image registration method. Control points are first selected
from the source image and target image. ‘Coefficients of the transformation function are
calculated according to the selected control point pairs. Deformation field is transformed

from the source image to the stereotaxic space of the target image.

In this chapter, we introduce an.imagetegistration method that produces a deformation
field of a image pair, as illustrated ‘in' Figure 3.1. The deformation field is needed for
mapping information within an image, that is, the source image, to the stereotaxic space of
the other image, that is, the target image. In the feature detection step of the registration
process, we select some salient control point pairs of the source and target image as the
correspondence constraints. In next step, we use the correspondence constraints to solve
the coefficients of the basis function splines. Finally, the deformation field is constructed
by applying the basis function splines with the correspondence constraints of control points
to every pixel within the source image. According to the deformation field, information
contents of each pixel within the source image can be mapped to the stereotaxic space of

the target image with geometric constraints.
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In the following sections, the main parts of introduced image registration method are
stated, including correspondence constraints, basis function splines, coefficients of the ba-

sis function splines, and the basis functions.

3.1 Correspondence Constraints

Thin-plate splines registration technique [20] [21] is based on an assumption that a set
of corresponding control points can be identified in the source and in the target images.
At these control points, spline-based transformations either interpolate or approximate the
displacements which are necessary to map the location of the control point in the source
image into its corresponding counterpart in:the target image. Between control points, they

provide a smoothly varying displacement field. The interpolation condition can be written

as

T(¢:;) =&}, i="1,...,n, (3.1)
where ¢; = (i1, ..., Pq) denotes the location of the control point in the d dimension
source image, ¢; = (¢}, ..., ¢,,) denotes the location of the corresponding control point

in the d dimension target image, and n denote the number of control point pairs.

3.2 Basis Function Splines

Thin-plate splines are based on radial basis functions and they have been widely used

for image registration. Radial basis function splines can be defined as a linear combination
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of n radial basis functions (7). The general form can be formulated as

d+1

fs) = Zajgj +Zb9 (lp; —s|). (3.2)

In Equation 3.2, s = (s1, ..., s4) denotes the location of an arbitrary point in the d dimen-

sion source image space and g;(s) is defined by

S
sj_1, ifj>2.
The value of f(s) represents the deformation of s in respect to a respective orientation. Co-
efficients a’s characterize the affine part of the spline-based transformation which control
the global translation and rotation while the coefficients b’s characterize the non-affine part
of the transformation which assure that the. deformation is localized.
For 2-D image registration'purpose, two linear combination equations are needed for

guiding the deformations of X and’ Y ofientations respectively. By extending a’s and b’s in

(3.2) to d dimension, the resultedd dimensional deformation is defined as

d+1

= ag5(s) + Y _bi0 (|9 — ), (3.3)
Jj=1 j=1

where the coefficients
a; = (aj1,~~~7ajd), j=1,...,d+1,

and

bj:(bjla'-'abjd)ajzl,.._7n7

are extended from a and b in (3.2). The value of f(s), also denoted as (fi(s), ..., fa(s)), is

the location of the corresponding point of s in the resulting stereotaxic space of registration.
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3.3 Coefficients of Basis Function Splines

Following the constraints of correspondence stated on (3.1), we get n equations with
the same form as (3.3). The other d + 1 equations required for defining the coefficients a

and b are given by

Z b; = 0, (3.4)

and

(3.5)

L Z?:l ¢7,de = 07

Above equations guarantee that the summation of coefficients b, is zero and the cross
products of b; with every coordinates of the peints ¢; are zero. Thus the coefficients a’s

and b’s are defined by resolving the matrix equation

()t B 0]
|7 (3.6)
M () A 0
where
q)ij:¢ij7 izlu--'7n7 jIL...,d,
©,; =0(|¢i — ¢51), i,j=1,...,n,
Pi':gj(si)7 izla"'?”? j:l,,d—i-l, (37)
Aij:aijv Z:177d—i_17 j:17"'7d7
sz:sz’ /l:]_,,n7 ]:1,7d

3.4 Basis Functions

There are a wide number of choices for radial basis functions including multiquadrics

and Gaussians [22]. The kriging covariance [23] is another alternative form of the basis
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functions and it is formulated as

re « not an integer,

O(r) = (3.8)
r**logr, « an integer,

where « is a smoothing parameter and thin-plate splines is a special case of the kriging

covariance with &« = 1 in 2-D case.



Chapter 4

Results
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N1 N2 N3 N4

Figure 4.1: Experiment data of normal subjects. They are labeled as N1, N2, N3, N4 from

left to right. The ROIs in negative group are selected in these images.

In this chapter, the experiment results are described. The materials of experiment data
are stated. Then the verification of the,image features method and the image registration
method are stated respectiveb}:. 'Fin,a%_l}/, we re%’r_ospectively analyze series of chest x-ray

images of some pneumonia _§1ibjects by:uéiﬁg the ﬁroposed CAD system.

4.1 Materials M

The training and testing images are chest X-ray images collected from Taipei Veteran
General Hospital. They are divided into two groups, the normal group and the pneumonia
group. The normal group contains 4 CXR images from 4 subjects as shown in Figure 4.1.
These images are labeled as N1, N2, N3, N4 from left to right in Figure 4.1. The pneumonia
group contains 53 chest X-ray images from 5 severe acute respiratory syndrome (SARS)
patients. We label the five subjects as A, B, X, Y, and Z as shown in Figure 4.2, 4.3, 4.4,
4.5, and 4.6 respectively. For each subject, the CXR images are ordered from left to

right and from top to bottom by taken time. The first CXR image for each subject is the
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Haar wavelet
transform

Discriminative
features

Quantization

Figure 4.7: A result of the image features method. The left part is the original image and the
right part is the image overlaid with image features. The middle part shows the processing

steps of the unique feature for each pixels.

target image for that series of CXR images. We use the CXR images of SARS patients as
experiment data due to the rapid changes.of the.chest X-ray images which are obtained in
just a few days for each subject: That inﬁlpl’iesrthe‘sre chest X-ray images of SARS patients

provide a suitable data set fo;{longit}jrcflh;aharnalysi's'.

4.2 Image Features

In this section, the verification of the image features method are performed by first
training discriminative features, then classifying the training data according to the unique
feature computed by applying trained discriminative features. The sensitivity and speci-
ficity of the trained discriminative features are thus computed. Where the effect of different
ROI sizes and different locations of the ROIs of normal group are compared according to
the sensitivity and specificity. We also show a rough result of our image features applied to

one chest X-ray image of a SARS patient in Figure 4.7.
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Pneumonia Normal

Figure 4.8: ROIs selected from the lower region of lung field of both pneumonia and normal
groups.

To train the features which are discriminative to the pneumonic CXR pattern and nor-
mal CXR pattern, the ROIs with the,size. of 732><32 are selected from chest X-ray images
of SARS patients or normal stibjects. as shown ii'nr Figure 4.8. Pneumonic patterns are con-
tained in the subregions for:pneumonia é’réupwhile no pneumonic patterns are contained
in the subregions for normal group. B;bﬁoup of VROIs are selected from the lower region
of lung field. The spatial-frequency componér{ts of each ROIs are obtained by applying
2-D Haar wavelet transform. Afterwards, these abundant components of each ROI are ex-
amined according to the result of t-statistic with the parameters a = 0.05 and v = 0.4. The
components with large discriminant capability thus can be determined. An example of such
selected components are shown in the left plot of Figure 4.9. Besides, we also illustrated
the results of these components in spatial domain after performing inverse Haar wavelet
transform in the right plot.

To classify the training data, we apply the discriminant function to all selected ROIs.
Besides, additional normal ROIs selected from upper region of lung field are included in

the normal group. A ROI is assigned positive when the result of discriminant function is
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Inverse Haar W avelet Transform

Figure 4.9: The selected features. The image on the left side shows the selected spatial-
frequency components with green points. The image on the right side shows the extracted
pneumonic CXR pattern.

greater than zero; in contrast, a negative assignment is given when the result is less than
zero. Here we define the sensitivity and specificity as follows,

true positive

sensitivity'=
4 (trltélpositive) + (false negative)’

truemnegative

specificity = .
pecifictdy (true megative) + (false positive)

In table 4.1, we give three analysis results of the training data represented for case 1 to
case 3 respectively. For the case 1, we assess the specificity and sensitivity of each selected
feature. After examining all the selected features, we can obtain the maximum, the mini-
mum, and the averaged results of this analysis. In case 2 and case 3, all selected features
are involved to assess the specificity and sensitivity. The difference between case 2 and
case 3 is that whether the process of LDA is performed or not. For case 3, we calculate the
quantitative feature values of every training ROIs as shown in Figure 4.10. We can see that
the two group of ROIs are seperated by the quantitative feature value.

For the decision of ROI size in our image feature method, we compare the classification
result with the ROI size of 32 x 32 to the classification result with the ROI size of 16 x 16.

Where the 16 x 16 ROIs are splitted from the 32 x 32 ROIs, that is, four 16 x 16 ROIs
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Table 4.1: The discriminability of selected features. ROI size is 32 x 32. 64 ROIs are
selected from the lower region of lung field for pneumonic group and 118 ROIs are selected
from the lower region of lung field for normal group. Additional 100 ROIs selected from
the upper region of lung field are included in the normal group while performing the testing
procedure. In Case 1, each selected feature is assumed to be the only one discriminative
feature. In Case 2, all selected features are involved in the process of classification. In Case

3, it has the same setting of the Case 2 except that the process of LDA is included.

specificity ~ sensitivity
Case 1 (mean) 78.13% 39.44%
(max) 86.70% 68.75%
(min) 61.01% 29.69%
Case 2 99.54% 100%
Case 3 83:49% 93.75%

are splitted from each 32 x 32 ROL: In'table 4.2, the classification result of both cases are
shown. The sensitivity and specificity in the case of 32 x 32 ROIs are both larger than the
sensitivity and specifictiy of 16 x 16 ROIs. Therefore, we choose 32 x 32 as the ROI size
in this work.

To compare the difference of the effect of the location of ROIs in normal group, we
perform the ROI selection step in the image feature method for three different configura-
tions. For the first configuration, the ROIs of normal group are selected from upper region
of lung field in CXR images of normal subjects. For the second configuration, the ROIs of
normal group are selected from lower region of lung field in CXR images of normal sub-
jects. For the third configuration, the ROIs of normal group are selected from both upper

and lower regions of lung field in CXR images of normal subjects. The selected features
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Figure 4.10: Distribution of two group-of ROIs. X-axis is the quantitative feature value of
a ROLI. Y-axis is the number of ROIs:

with each configurations are thus applied to do classifications for the same set of ROIs. The
classification results are shown in table 4.3. By comparing the sensitivity of three different
configurations, we can see that the configuration of lower region of lung field provides the
best sensitivity. Although the false alarms in this configuration are more than that in the
configuration of both regions of lung field, it is more probably to justice the false alarm
than to reveal a misdetection. Therefore, we selected normal ROIs in lower region of lung

field in this work.
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Table 4.2: The discriminability for selected features with different ROI size. The ROI sizes
are 32 x 32 and 16 x 16.

ROI size | specificity sensitivity

32 x 32 | 83.49% 93.75%

16 x 16 | 76.72% 71.88%

Table 4.3: The discriminability of selected features for different location of ROIs of normal
group. The locations are upper region of lung field, lower region of lung field, and both

regions.

location | specificity sensitivity

Upper 81.65% 92.19%
Lower 83.49% 93.75%

Both 91:28% 90.63%

4.3 Image Registration

In this section, we show a result of the image registration method. Pairs of control
points are selected in the target image and the source image, as shown in Figure 4.11. For
registration of the lung field in the source image and that in the target image, the control
points are selected in the center of spines, the lateral part of the ribs, and the clavicles. After
the estimation of the coefficients of the transformation function, the deformation field from
the source image to the stereotaxic space of the target image is transformed as shown in
Figure 4.12. We can see that the control points in the source image is exactly mapped to
the position of the corresponding counter parts in the target image. The lung field in the

source image is warped to map the shape of the lung field of the target image and it is our
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Target Image Source Image

Figure 4.11: The green points are the selected control points in the target image and the
source image. These points are selected for mapping the lung field in the target image and
that in the source image. ! A

| = |
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ffé.'ti'(:}n:r ri%étﬁod in the proposed CAD system.
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4.4 Retrospective KilaIYSis_

In this section, a series of chest X-ray images of each SARS patient is analyzed by
using the proposed CAD system because the chest X-ray images of SARS patients provide
a suitable data set for longitudinal analysis of pneumonia. We first show the adapted result
comprising the image features method and the image registration method. The performance
and computation efficiency are stated for both the case that LDA is performed and the case
that LDA is not performed. Then we show the results of normal subjects. Retrospective
analyses of five subjects are stated finally.

The result of the adaptation of the two major components in the proposed CAD system
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Target Image

Warped Image

Source Image

. B 1THDE
e .

Figure 4.12: The deformation field _transfor'mgd from a source image to the stereotaxic
space of the target image. The red grid is the deformation field and the green points are the
control points. The lung field in the source image is mapped to the lung field in the target
image.

is shown in Figure 4.13. The unique feature for each pixel within the CXR image and
the deformation field from the CXR image to the stereotaxic space of the target image
are computed by applying the image features method and the image registration method
respectively. Then the image features are transformed to the stereotaxic space of the target
image and are masked with the lung field in the target image. The transformed and masked

image features are thus averaged to a value that indicates the trend of the progress of SARS
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Target Image Registered Image

Registered Image Features

Source Image Image Features

Figure 4.13: The adapted result of the 1mage features method and the image registration

method. The resulted image. 1s masked by the lung field of the target image.

Table 4.4: Comparing the computatlon tlme for the calculation of the image features. Cal-

culations are based on the same CXR 1mage L

\ LDA isused LDA is not used

28sec 2hrs, 8min

computation time

for that patient.

The performance and the computation efficiency for both the case that LDA is per-
formed and the case that LDA is not performed are illustrated in Figure 4.14 and Table 4.4.
We can see that the trend of the progress for subject A are almost the same except that the
scales are different while the computation time of one image running the image features
method for the case that LDA is performed is much less than that for the case that LDA is

not performed.
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Figure 4.14: Comparing the trend of the progress for including or excluding LDA. Both

are the trends of the progress for subject A.

Before performing the restrospectiveranalysis of each pneumonia subjects, we show
the experiment results of all:the four normal subjects in Figure 4.15. The result of the
first image of subject A is also shown for comparing the image features of normal subjects
and pneumonia subject. In the image of pneumonia subject, the image features with larger
scale spread out larger area in lungfield. /Al 'the trend values of normal subjects are smaller
than that of pneumonia subject. We conclude that the image features and trend value are
different in normal and pneumonia CXR images.

The experiment results of subject A, B, X, Y, and Z are shown in Figure 4.16, 4.17,
4.18, 4.19, and 4.20 respectively. For subject A, three important signs are noticed. First,
the maximum average of the image features occurred on the last CXR image taken before
intubation. Second, the average of the image features for the first CXR image taken after
intubation is much less than the average of the image features for the last CXR image
taken before intubation. Third, The last three images have the least average of the image

features while they are taken around the time of extubation. By these signs, we can say
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that the trend of the progress for subject A calculated by using the proposed CAD system
is close to the history of diagnosis. For subject B, the average of the image features for
the first image taken after intubation is less than the average of the image features for the
last one taken before intubation. The maximum average of the image features occurred
on the image that has a largest area of infiltration among all the CXR images of subject
B. Because we don’t have the films taken after extubation, we can not verify the trend of
progress of SARS for subject B. We can only conclude that the information of infiltration
in CXR image is extracted for this subject. For subject X, the average of the image features
for the first image taken after intubation is less than the average of the image features for
the last image taken before intubation. The average of the image features for the last seven
images are the least among all the average of the image features for images of this subject.
The only exception in these seven images is the first image taken after extubation and some
misclassifications are revealed in the border of lung field in this exception. For this subject,
the trend calculated by using this CAD system is' close to the history of the diagnosis except
one image mentioned above. For subject Y, the average of the image features for the first
image taken after intubation is less than the average of the image features for the last image
taken before intubation. The average of the image features for the last two images are
both less than that for all the previous ones. We assume that the trend calculated by using
this CAD system 1is close to the diagnosis of the doctor. Since there are no diagnostic
information for subject Z, we can’t verify the trend for this subject.

With above results, we have observations that the trend value changes in the following
conditions. First, it becomes larger when the area of infiltration becomes larger. Second, it

becomes smaller after intubation. Third, it becomes smaller after extubation with the ex-
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ception that it becomes larger after extubation for subject X. According to the observations,
we can conclude that the trend value is affected by the area of infiltration and the progress

of trend value is corresponding to the timing of intubation and extubation.



Chapter 5

Conclusions
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We have developed a CAD system in chest radiography to provide the radiologist the
trend of the progress of a series of CXR images for a pneumonia patient. The CAD system
consists of two major components: image features method and image registration method.

The image features method is used to find out the geometric features of pneumonia. By
classifying the pneumonic and normal patterns with the discriminative spatial-frequency
features in CXR images, this method provides the information that whether pneumonic
pattern is revealed in an area. The computation time for extracting image features is much
less with LDA while the extracted image features have slightly lower specificity and sensi-
tivity.

The image registration method can reduce the structural displacements due to various
kinds of acquisition conditions afd postures-across examinations. The lung field in a image
is mapped to the shape of the lung field in the target image. It provides the comparison be-
tween the image features extracted by uising the image features method in the corresponding
area in two or more CXR images:

Since the rapid changes in CXR images for SARS of a patient, we have used the CXR
images of SARS patients for training and analyzing the pneumonic CXR pattern. Retro-
spective analyses for SARS patients have been done by using the proposed CAD system.
According to our experiments, we conclude that the infiltration in the lung field in CXR
images are extracted by using the proposed CAD system and the trend of the progress of
SARS for a patient is corresponding to the diagnostic information of the timing of intuba-

tion and extubation.
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