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摘       要 

 

腦，是人體當中最重要且複雜的器官，對於腦功能的探索，是目前最熱門的

研究課題之一。腦電波儀是常被用來進行腦功能研究的工具之一，因為它具有相

當高的取樣頻率以及低廉的價位。在本篇論文中，我們將會提出一個準確且快速

的腦電波訊號源定位方法，包括了正向模型的計算（針對已知的訊號源計算腦電

波），以及如何去解決反向問題（利用腦電波來進行訊號源定位）。 

在所提出的正向模型中，我們針對每個腦電波儀感應器找出適合的重疊球

體，以增加正向模型的準確度。並且，重疊球體只需要使用多層球體結構即可很

快速的計算出來，而不需要去計算相當耗時的邊界元素模型。基於所提出的正向

模型，我們使用階層搜尋光束構成來解決反向問題。經由最大化腦電波的活動狀

態和控制狀態的強度對比，可以大幅地增加訊號源定位結果的準確度。並且，在

腦空間中搜尋訊號源時我們使用階層搜尋而非全域搜尋，亦能有效地降低解決反

向問題的時間。 

  根據假體實驗以及視覺刺激實驗結果，確認了我們所提出的方法之準確性以

及便利性。我們所提出的訊號源定位法可以有效地被使用在無需磁振造影資料的

情形，例如進行基礎腦科學的研究，或者腦機介面的開發。 



Abstract

Brain is the most important and complicated apparatus of human beings. EEG has been

widely applied in functional brain studies due to its high temporal resolution and low cost.

In this work, we focus on the development of an accurate and efficient EEG forward model

as well as the inverse solution for neuronal source estimation from the EEG measurements.

Our forward model successfully gains its accuracy by fitting an overlapping sphere for

each EEG sensor. The computation of the overlapping sphere requires only the multi-shell

geometry, instead of boundary element method, thus the proposed forward model is easy

to compute. Based on the proposed forward model, the beamforming technique is applied

to calculate the distributed sources in the brain space. We maximize the power contrast

between active state and control state of EEG recorded data to improve the accuracy of

inverse solution. Hierarchical search in the solution space is applied to save the amount

of computation by searching grid point level by level instead of searching the whole brain

space.

According to our experiments using phantom data and visual-evoked potential data, the

proposed forward model and inverse solution can efficiently and accurately estimate the

source of brain activation. A quick and reliable source localization technique for EEG is

successfully developed which can be applied on applications when MRI is not available,

such as fundamental brain research and brain-computer interface.

i



誌       謝 

 

短短的二年碩士生涯即將結束，在這二年當中，首先要感謝 陳永昇老師以

及 陳麗芬老師帶領我踏入生醫訊號處理的領域，並提供完善且齊備的資源、設

備讓初次進行腦科學研究的我，能夠快速地學習到許多專業技能；並且在為人處

世上也常啟迪我許多做人做事的道理，這些都將成為我將來進入社會工作莫大的

助力。其次要感謝口試委員 謝仁俊醫師，在口試當中所給予我的專業意見，對

於我的研究有很大的助益；在此致上最誠摯的謝意。 

二年的研究生涯當中，實驗室的同學們給予了我莫大的幫助以及鼓勵。嘉修

學長常在會議中提出過來人的見解，讓我了解自己看不見的缺失。安廷、福慧常

陪伴我運動，每當我在研究遇上瓶頸時，你們總是能讓我忘卻煩惱。志瑜相當認

真於專業領域的研究，是我在實驗室中的榜樣。同窗好友昭翰、怡岑總是笑臉迎

人，是我心情不佳時最好的聊天對象。當然還有二位可愛的學妹盈盈、承嘉，以

及三位搞笑的學弟政毅、凱為、聖翰，實驗室只要有你們在，總是會不斷地傳出

笑聲；和大家去宜蘭童玩節遊玩的回憶真的是相當開心。 

  最後感謝從小到大辛苦栽培我的父母，沒有你們多年來的教誨，也不會有今

天的我。還有長久以來總是支持我的凡毓，你對我的支持就是我繼續前進的動

力。二年的研究所學業絕對不是我能夠一力完成的，再次由衷地感謝所有曾經幫

助過我的親友、師長、同學們。 

仲凱 2005.7.31 



Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Forward Model 7
2.1 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Single-shell model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Multi-shell model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Boundary element model . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Background of overlapping spheres . . . . . . . . . . . . . . . . . 13
2.2.2 Calculation of overlapping spheres . . . . . . . . . . . . . . . . . . 15
2.2.3 Calculation of innerskull surface . . . . . . . . . . . . . . . . . . 18
2.2.4 Correction of overlapping spheres . . . . . . . . . . . . . . . . . . 19

3 Inverse Problem 21
3.1 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Fitting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Scanning method . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Proposed inverse solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Maximum contrast Beamforming . . . . . . . . . . . . . . . . . . 28
3.2.2 Hierarchical-Search Beamforming . . . . . . . . . . . . . . . . . . 29

4 Experiments 33
4.1 Phantom data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Comparison between forward models . . . . . . . . . . . . . . . . 34
4.1.2 Inverse accuracy verification . . . . . . . . . . . . . . . . . . . . . 36

iii



4.2 Real experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 45

Bibliography 47

iv



List of Figures

1.1 EEG can sense the radial oriented brain activities. . . . . . . . . . . . . . . 2
1.2 Open and closed fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Various source models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Flowchart of the forward model and inverse estimation. . . . . . . . . . . . 6

2.1 Single-shell model diagram with current dipole. . . . . . . . . . . . . . . . 8
2.2 Multi-shell (four-shell) model diagram. . . . . . . . . . . . . . . . . . . . 10
2.3 The concept of Berg method. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Values ofcnf

n−1 with respect ton for the four-shell model of Cuffin and
Cohen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Comparison between the best-fitted sphere model and the overlapping-
sphere model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Flowchart of the proposed OS forward model. . . . . . . . . . . . . . . . . 15
2.7 An illustration of mapping realistic mesh points to approximated sphere. . . 17
2.8 Flowchart of overlapping sphere procedure. . . . . . . . . . . . . . . . . . 19

3.1 Beamforming example : Airplane & radar. . . . . . . . . . . . . . . . . . . 25
3.2 Flowchart of beamforming method. . . . . . . . . . . . . . . . . . . . . . 30
3.3 Two cases that brain source is outside sphere model. . . . . . . . . . . . . . 31

4.1 X-ray projection of the skull phantom and EEG electrodes. . . . . . . . . . 34
4.2 Flowchart of the correctness verification on forward and inverse method. . . 35
4.3 Correlation comparison between Berg method and Sun method. . . . . . . 37
4.4 Snapshot of forward comparison topography with dipole #20. . . . . . . . . 38
4.5 Slice-view of two brain activation results. . . . . . . . . . . . . . . . . . . 40
4.6 Source localization error comparison between our method and EEGLAB. . 41
4.7 VEP comparison between beamforming and dipole-fitting results. . . . . . 42
4.8 AEP comparison between beamforming and dipole-fitting results. . . . . . 43

v



vi



List of Tables

4.1 Averaged correlation comparison between various forward models. . . . . . 36
4.2 Localization error of various forward models and inverse estimation methods. 39

vii



viii



Chapter 1

Introduction



2 Introduction

Scalp
Skull

Cortex

CSF

Figure 1.1: EEG has some advantages than MEG, such as it can sense the radial oriented
brain activities (red arrows).

1.1 Background

Brain, like the CPU (Central Process Unit) of computer, is the central controller of hu-

man body. It is the unique and most important apparatus of human beings that controls all

of the human activities, such as muscle movement, action reaction, our feeling of some-

thing, the emotion, and so on. Brain is also the most complicated apparatus of our body.

To understand what our brain does we can use several noninvasive functional brain

imaging tools such as EEG (ElectroEncephaloGraphy), MEG (MagnetoEncephaloGraphy),

and fMRI (functional Magnetic Resonance Imaging) to help us unravel dynamics of corti-

cal function. EEG records the electric potential on the scalp surface produced by the neural

activation using its electrodes attached on the scalp. MEG record the magnetic field pro-

duced by neural currents by the array of superconductive sensors [10]. fMRI provides a

method of visualizing a correlate of neural activity in the human brain [26].

EEG is a recording (graph) of electric signals (electro) from the brain (encephalo). It

has sensors that can measure electric potential on scalp surface. In 1929, H. Berger first

published EEG of human beings. He successfully distinguish theβ waves (13–35 Hz) by

EEG signal.

EEG / MEG have high sampling rate (temporal resolution) that can reach 1000Hz. Be-

sides, EEG has some advantages compared with MEG, for example, EEG is more portable

than MEG because EEG does not need shielding-room when sensing head surface poten-

tial. And, EEG can sense the brain activities with radial orientation to the scalp surface but

MEG can not do this (See Figure 1.1).
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The recorded EEG data can be used in many applications. For example, we can apply

the “source localization” technique (to localize the neural activitives in the brain using

EEG / MEG recorded data, also called “source estimation”) to determine the brain neural

source. In clinical application, we can measure EEG of the epileptic patients and penetrate

the disease focus and cortical dynamics using “source localization” technique. Or, we

can extend “source localization” on the fundamental brain research and brain-computer

interface systems.

After the event-related potential (ERP) method is widely applied, scientists have great

advancement in discovering brain activity from EEG. When giving a specific stimulus on

nervous system, the induced surface potential variance is called ERP. For example, if we

give the subject light, sound, or electrical stimuli, evoked surface potential can be extracted

from EEG measured data. ERP component in EEG data is much smaller than noise com-

ponent; we can generally assume that noise of each EEG sensor is zero mean, such that

SNR (Signal-to-Noise Ratio) can be improved by applying synchronized averaging on EEG

measured data.

In reality, brain functions are the networks of many neural activities. Figure 1.2 shows

“open field” (top part) and “closed field” (bottom part) concepts of neural activities. The

principle cortical neurons are the pyramidal cells (left-most part, transverse section through

the gray matter of rat cortex). Their apical dendrites from above reach out parallel to each

other, so that they tend to be perpendicular to the cortical surface (open field) [11]. So they

can be macroscopically modeled as some source model (bottom part). Besides, pyramidal

cells connecting together may cancel out their current influences each other (top part, closed

field).

From above we know that actually characterizing all the neural activation in detail is

difficult. We can macroscopically model the behavior of neural activation as many source

models such as infinite cylindrical source, dipolar source, and octupolar source (Figure

1.3). ECD (Equivalent Current Dipole) form is proved as a better assumption of source

modeling.

Given a current dipole, the forward model can be used to calculate the scalp potential

induced by this dipole source. On the other hand, the inverse problem is about how to es-

timate the brain activation from the scalp potentials recorded by EEG. Accuracy of inverse
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Figure 1.2: Difference between open field and closed field. Left-most part shows the trans-
verse section through the gray matter of rat cortex drawn by Ramon y Cajal in 1888. The
principle cortical neurons are the pyramidal cells, and their apical dendrites from above
reach out parallel to each other so that they tend to be perpendicular to the cortical sur-
face (open field). They can be equivalently modeled as some source model (bottom part).
Besides, pyramidal cells connecting together may cancel out their current influences each
other (top part, closed field).

problem is influenced by the accuracy of forward model, the SNR of EEG recording data,

and the inverse methodology. If the source number is known a priori, least-square estima-

tion can solve the inverse problem by fitting the potential field predicted by the forward

model to the EEG recordings. Alternatively, distributed source estimation methods impose

various kinds of constraints and obtain the neuronal activities for all the probed area in the

brain. Figure 1.4 shows the flowchart of forward model and inverse problem estimation.

1.2 Thesis scope

In this thesis, we propose a accurate and efficient EEG source estimation technique

including forward model and inverse solution.

In our new forward model, we use multi-spheres as head model and apply the over-

lapping spheres (OS) technique to improve the accuracy of forward model. The proposed
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Figure 1.3: Comparison of various source models. Left figure is infinite cylindrical source,
center figure is dipolar source, and right figure is octupolar source. Dipolar source is proved
as the best way to model neural activation.

forward model has following benefits:

1) Efficient calculation of surface potential by using a simplified formula.

2) Better accuracy by using the OS.

3) Easier calculation of the OS by using the multi-shell geometry instead of using the

boundary element method (BEM) model.

We also propose a new inverse estimation method, named hierarchical-search beam-

forming. This new inverse method has the following benefits:

1) A closed-form solution of the dipole source orientation.

2) Less tendency to trap into local optimum.

3) Efficient search by using the hierarchical framework.

1.3 Organization of this thesis

In Chapter 2 we describe our forward model including previous works (Berg method

and Sun method) and proposed OS technique. Solutions of inverse problem including
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Forward model

Inverse estimationBrain source

Surface potential

EEG measured data

Figure 1.4: Flowchart of the forward model and the inverse estimation. The forward model
can calculate the surface potential using known current dipole, and the inverse estimation
can estimate the current dipole using known surface potential.

fitting method and scanning method are described in Chapter 3. In Chapter 4 we introduce

the experiment result applying our forward model and inverse method on phantom data and

visual-evoked potential data. Finally, conclusions for our method and the relative results

are described in Chapter 5.
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Forward Model
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srm

Figure 2.1: Single-shell geometry. Surface potential is measured ats where dipole located
at r with m as moment (orientation and magnitude). The angle between vectors pointing
to s andr is denotedθ. The angle the dipole momentm makes with the radial direction
at r is denotedα, andβ is the angle between the plane formed byr andm, and the plane
formed byr ands.

In this section, we first briefly describe the previously-proposed forward models that

are related to the proposed one. Then we will introduce the proposed forward model using

the OS.

2.1 Previous works

2.1.1 Single-shell model

Although the real human brain is complicated which include cortex (gray matter and

white matter), cerebrospinal fluid (CSF), skull, and scalp, we simply assume the head

model as a sphere with homogeneous conductivity. By this assumption, we can calcu-

late the forward model in a very simple way but does not guarantee the accuracy. In this

section we introduce this easy and simple forward model.

Before calculating the surface potential based on the single-shell head model, we need

some pre-work. First, calculate a best-fit sphere among all the sensor locations. Use the

least-square estimation to find out the best-fit sphere among all EEG sensors. Then, map

the sensor locations onto the best-fit sphere surface such that we can estimate the surface

potential (or leadfield) of the mapped sensor locations.

The surface potentialV 1(s; r,m) at the sensor locations for a given dipole located at

r and withm as the moment (See Figure 2.1), can be expressed as the sum of its radial
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V 1
r (s; r,m) and tangentialV 1

t (s; r,m) surface component [20]:

V 1
r (s; r,m) = (

mr

4πσ
)(

2(s cos θ − r)

d3
+

1

rd
− 1

sr
)

V 1
t (s; r,m) = (

mt

4πσ
) cos β sin θ(

2s

d3
+

d + s

sd(s− r cos θ + d)
)

V 1(s; r,m) = V 1
r (s; r,m) + V 1

t (s; r,m) (2.1)

whered = s− r, s = ‖s‖, r = ‖r‖, m = ‖m‖, d = ‖d‖, mr = m cos α, mt = m sin α,

σ is the conductivity of this media,α is the angle betweenr andm, θ is the angle between

s andr, andβ is the angle between the plane formed byr andm, and the plane formed by

r ands.

Single-shell forward model is the simplest forward model, but contrarily it may cause

large error because our head is not just a homogeneous sphere. To improve the accuracy

of forward model, we have other assumptions like multi-shell model (Section 2.1.2) and

BEM (Section 2.1.3) to approximate our human head geometry.

2.1.2 Multi-shell model

Consider the fact that the human head consists of several kinds of tissues, such as scalp,

skin, skull, cortex, and CSF. Different tissues have different conductivities. It will be more

accurate to model the head as multiple concentric spheres. The conductivity is homo-

geneous in the volume between consecutive layers. In this work, we use four concentric

spheres to model the following tissues: scalp, skull, cortex, and CSF. Based on the multiple-

shell spherical head model, we can calculate the scalp potentialV M at sensor locations

induced by the dipole source at positionr and with orientationm [5,24]:

V M(s; r,m) =
1

4πσ4R2

∞∑
n=1

cnf
n−1m· (r0Pn(cos θ) + t0

P 1
n(cos θ)

n
) (2.2)

with
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R dR
cR

bR

Figure 2.2: Central cross-section of the multi-shell (four shell) model. The brain, CSF,
skull, and scalp regions are shown, and their respective conductivity values are labeled by
σ1, σ2, σ3, σ4. The outmost boundary of these four shells arebR, cR, dR, R.

cn =
(2n + 1)4(cd)2n+1

Γ

Γ = d2n+1(b2n+1n(
σ1

σ2

− 1)(
σ2

σ3

− 1)(n + 1) + c2n+1(
σ1

σ2

n + n + 1)(
σ2

σ3

n + n + 1))

· ((σ3

σ4

n + n + 1) + (n + 1)(
σ3

σ4

− 1)d2n+1)

+(n + 1)c2n+1(b2n+1(
σ1

σ2

− 1)(
σ2

σ3

n +
σ2

σ3

+ n) + c2n+1(
σ1

σ2

n + n + 1)(
σ2

σ3

− 1))

· (n(
σ3

σ4

− 1) + (
σ3

σ4

n +
σ3

σ4

+ n)d2n+1)

whereR = ‖s‖, f = ‖r‖/R, r0 andt0 are the radial and tangential unit vectors, respec-

tively, θ denote the angle betweenr ands, andPn andP 1
n are the Legendre and associated

Legendre polynomials of degreen, respectively. Multi-shell geometry is defined as Figure

2.2.

Notice that in Equation (2.2) we need to calculate the recursive Legendre and associ-

ated Legendre polynomials which cost much time. Typically, the summation term will be

converged after 200 to 300 iterations, which make this method inefficient. So this direct

method is really an inefficient method.
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Figure 2.3: In Berg method, a single source in a multi-shell model (left figure) can be well
approximated by three sources in a homogeneous sphere model (right figure) [1,29].

P. Berg, et al. [1, 29] and Mingui Sun [25] have introduced two different ways to

enhance the efficiency of multi-shell forward model. Following we describe how these two

methods work.

Berg method

In [1], P. Berg and M. Scherg presented an efficient way to calculate the forward

model based on multi-shell spherical head model. This method uses the true dipole location

r to select three dipole locations along the same radial line, and calculate these surface

potentials using single-shell model (Equation (2.1)) three times (Figure 2.3). The surface

potential of multi-shell model using Berg’s method will be approximated as

V M(s; r,m) ∼= V 1(s; µ1r, λ1m) + V 1(s; µ2r, λ2m) + V 1(s; µ3r, λ3m) (2.3)

whereµi andλi (i = 1,2,3) are called “Berg Parameters” which are only related to the

head conductivities and shell thickness such that can be predetermined to save the calcu-

lation time. See [29] for details of “Berg Parameters” computation according to the head

geometry.

In this method, infinite summation term in Equation (2.2) for a single dipole using the

multiple-shell spherical head model can then be replaced by a summation of these three
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Figure 2.4: Values ofcnf
n−1 with respect ton (solid line, f = 0.85) for the four shell

model of Cuffin and Cohen [5]. The polynomial fitting,
∑3

k=0 akn
kfn−1 is plotted as cross

patterns. The circular patterns denote the original values. It’s clear that the fitting (cross
patterns) is very close to the real values (solid line). (Figure source: [25].)

dipoles using the single-shell spherical head model. Because of above event, using Berg

method will let multi-shell model faster.

Sun method

Another approximation method based on multi-shell model was introduced by Min-

gui Sun [25]. The main concept of Sun’s method is to use a polynomial function, whose

calculation is more efficient, to approximate the summation term in Equation (2.2).

Figure 2.4 shows a curve ofcnf
n−1 (solid line) used in Equation (2.2). Notice that

excepting for first few values (n < 5), remaining values tend to follow a smooth v-shaped

curve. In Sun method, the infinite summation term in Equation (2.2) can be separated

into two parts. The first part involves the firstN terms (often takesN = 3) using exact

values (circular patterns). The second part is composed of the remaining terms of the

infinite summation which will be approximated by a closed-form formula (cross patterns).

Following is the refined equation:

V M(s; r,m) =
1

4πσ4R2

∞∑
n=1

cnf
n−1m· (r0Pn(cos θ) + t0

P 1
n(cos θ)

n
)
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∼=
N∑

n=1

cnf
n−1Qn +

∞∑
n=N+1

(
K∑

k=0

akn
k)fn−1Qn (2.4)

where

Qn =
1

4πσ4R2
m· (r0Pn(cos θ) + t0

P 1
n(cos θ)

n
).

See [25] for details of how to compute the closed form formula
∑K

k=0 akn
k. It has

shown that the best selection ofN andK is N = K = 3. Furthermore, a C-code program

of evaluating the surface potential at sensor locations for a known dipole locationr and

orientationm was also presented in [25].

Both of the Berg and Sun’s methods improve the efficiency of forward calculation at

the expense of losing some accuracy. More detailed comparison between Berg method and

Sun method is described in Chapters 4 and 5.

2.1.3 Boundary element model

BEM model is the most realistic head model because it uses the triangle meshes to

separate tissues with different conductivities, such as brain, skull, and scalp. Conductivity

can then be well set throughout the head. However, calculation of BEM model is time-

consuming and the head MRI (Magnetic Resonance Imaging) of the subject is required to

reconstruct the tissue surfaces.

2.2 Proposed method

2.2.1 Background of overlapping spheres

There is a problem in using the spherical-based forward model, as shown in Figure 2.5.

Because EEG sensors are attached on the scalp surface, which is not a perfect sphere, there

will be deviation from the EEG sensor to the surface of the spherical model. The farther

EEG sensor is from the sphere surface, the larger error of the estimated surface potential
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Figure 2.5: (Left) Calculation for a single best-fitted sphere is simple, but the sensors are
deviated from the spherical surface. (Right) Using a sensor-fitted sphere for each sensor
can improve the forward model accuracy.

for this sensor will has. In this section, we reform this drawback to reduce the error of

multi-shell based forward model.

One remedy is to use the sensor-fitted spheres, also called overlapping spheres, for

each sensor instead of using only one best-fit single-sphere for all sensors. Mosher et

al. presented the idea of applying OS for MEG in [13], and then extended its application

to EEG in their following work [7]. Their method calculates the OS by minimizing the

difference of leadfields between BEM and multiple-shell spherical forward model using

the approximated OS as the head model:

{R0,C0} = arg min
R0,C0

(‖gsph(s, r, σ, ρR0)− gBEM(s, r, σ)‖) (2.5)

whereσ = {σ1, σ2, σ3, σ4} indicates layer conductivities;ρR0 = {ρ1R0, ρ2R0, ρ3R0, ρ4R0}
is sphere radii with assumed fixed relative ratioρi (i = 1, . . . ,4). R0 andC0 denote sphere

radius and center, andgsph andgBEM are the leadfield vectors for the spherical and BEM

solutions respectively. In this method (OS applied to EEG), we found that BEM lead-

field was required to calculate OS, but we know that calculating BEM leadfield is time-

consuming (Section 2.1.3). And, a significant number of BEM leadfield evaluations are

also required to evaluate the obtained OS
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Sun
kernel

Surface potential

Sensor
location

   Head
geometry

     Sun
parameters

Current dipole

Pre-process

Forward calculation

Figure 2.6: Flowchart of the proposed OS forward model. (Top) Pre-processing procedure,
including OS and Sun’s parameters calculation, can be performed beforehand. (Bottom)
calculation of surface potential using Sun’s parameters.

2.2.2 Calculation of overlapping spheres

In this work, we develop a new calculation method for OS without calculating the time-

consuming BEM model. The proposed method uses the multiple-shell geometry, instead of

the BEM model, to estimate the OS. Thus the computation of the proposed method is much

more efficient than that proposed in [13]. Figure 2.6 shows the flowchart of the proposed

OS method for forward model calculation. Top part containing procedures of OS and Sun

parameters producing. Both of them can be estimated before actually estimating surface

potential. Bottom part is the forward model calculation which estimates surface potential.

In Section 2.2.2, detail of calculating OS is presented; Sections 2.2.3 and 2.2.4 shows other

required estimations and correction of OS.

Assume that the human head hasm layers and denote the surfaces between tissues with

different conductivities asS1,S2,. . . ,Sm. The surface potentialV (s) of the sensor location

s on thejth surface can be estimated by the second kind Fredholm integral [8]:
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V (s) =
2σm

σ−j + σ+
j

V∞(s)− 1

2π

m∑
i=1

σ−i − σ+
i

σ−i + σ+
i

∫
Si

V (r)n(r)· s− r

‖s− r‖3
dS ′i s ∈ Si (2.6)

with

V∞(s) =
1

4πσm

∫
G

jp(r)· s− r

‖s− r‖3
dv′ (2.7)

whereσ−i andσ+
i are the conductivities inside / outside theith surface, respectively,jp(r)

is the primary current, andn(r)dS ′i is a vector element of surfaceSi with its direction

aligned to outward surface normal of the surfaceSi. Primary current is unrelated to the

spherical geometry and can be dropped. Therefore we can calculate the OS by fitting the

return current contribution term in Equation (2.6) based on the spherical model:

m∑
i=1

(
∫

Sre
i

(nre(r)· s− rre

‖s− rre‖3
)

jre
f (r)

σ−i + σ+
i

dS ′i −
∫

Ssp
i

(nsp(r)· s− rsp

‖s− rsp‖3
)

jsp
f (r)

σ−i + σ+
i

dS ′i)
∼= 0

(2.8)

where the superscriptre stands for the realistic head,sp stands for the approximated head,

andjf (r) is the secondary current on each surface:

jf (r) = −(σ−i − σ+
i )V (r)n(r) = jf (r)n(r). (2.9)

Human skull conductivity is about two orders of magnitude less than the other tissue

conductivities, such as brain and scalp. Therefore, the dominant return current contribu-

tions will come from the innermost skull [12]. Thus, we can simply evaluate the integral on

the innermost skull surface. It has been shown that true potentials and spherical potentials

are not dramatically different [13], so we simply assumejre
f = jsp

f and rewrite Equations

(2.8) and (2.9) as:

∫
Sre

innerskull

(nre(r)· s− rre

‖s− rre‖3
− nsp(r)· s− rsp

‖s− rsp‖3
)jre

f (r)dS ′ ∼= 0. (2.10)
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(0,0,0)

R0

C0

rsp(i)

rre(i)

Figure 2.7: An illustration of mapping realistic mesh points (rre(i) andnre(i)) to approx-
imated sphere. Thus, we can expressrsp(i) andnsp(i) in terms ofrre(i) andnre(i) (See
Equations (2.12) and (2.13)).

To solve Equation (2.10) we use two dense surface meshes containingN points to

represent the realistic innermost skull surface and the fitting sphere, respectively. The least-

square fitting problem is simply to minimize the following equation (cost function):

N∑
i=1

‖nre(i)· s− rre(i)

‖s− rre(i)‖3
− nsp(i)· s− rsp(i)

‖s− rsp(i)‖3
‖2 (2.11)

whererre(i) andnre(i) (i = 1, 2, . . . ,N ) denote the locations and normal orientations of

the mesh points on the innermost skull surface, respectively, andrsp(i) andnsp(i) are those

for the approximating sphere.

Given a sphere{C0, R0}, rsp(i) can be obtained by radially mappingrre(i) to the

surface of the approximated sphere. Thus we can substitute expressions forrsp(i) and

nsp(i) in terms of therre(i) andnre(i) as

rsp(i) = R0(
rre(i)−C0

‖rre(i)−C0‖
) + C0 (2.12)

and
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nsp(i) =
rre(i)−C0

‖rre(i)−C0‖
. (2.13)

Therefore, Equation (2.11) can be written as the final cost function:

min
R0,C0

N∑
i=1

‖nre(i)· s− rre(i)

‖s− rre(i)‖3
− rre(i)−C0

‖rre(i)−C0‖
·

s−C0 −R0(
rre(i)−C0

‖rre(i)−C0‖)

‖s−C0 −R0(
rre(i)−C0

‖rre(i)−C0‖)‖
3
‖2.

(2.14)

To solve this non-linear optimization problem, we use the widely-used simplex method –

Nelder-Mead method presented in [22]. For each EEG sensor, a sphere can be yield by

applied Equation (2.14). Repeating Equation (2.14) for each EEG sensor yields a set of

overlapping spheres.

2.2.3 Calculation of inner skull surface

Equation (2.14) needs the realistic parameters:rre(i) andnre(i) (i = 1,2,. . . ,N ). Now

we show how to estimate them using given EEG sensor locationss(i) (i = 1,2,. . . ,N ).

Assume vertexi is surrounded withM triangles whose normals aren1, n2, . . . ,nM

and superficial measures area1, a2, . . . ,aM (evaluated by Heron’s formula), respectively.

nre(i) can be estimated by:

nre(i) =

∑M
j=1 ajnj

‖∑M
j=1 ajnj‖

. (2.15)

Assume that the thickness of scalp and skull is constant throughout the human head.rre(i)

can be estimated by:

rre(i) = s(i)− Tnre(i) (2.16)

wheres(i) is thei-th sensor location, andT denote the average thickness of human scalp

and skull [17,19].
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Sensor location s(i)

Equation 2.15 and 2.16

Realistic innerskull
         nre(i), rre(i)

OS cost function
(Equation 2.14) OS R0, C0

OS correction
(Equation 2.17)

Corrected OS R0, C'0

Figure 2.8: Flowchart of OS parameter calculation. First, we find innerskull normals
nre(i) and mesh locationsrre(i). Second, Equation (2.14) is used to evaluate the OS radius
R0 and centerC0. Finally, we can correct the estimated OS to fit EEG sensor location to
the OS boundary.

2.2.4 Correction of overlapping spheres

The calculated OS boundary of each sensor may not perfectly fit the sensor locations

because of the non-linear search procedure in Equation (2.14). Two simple ways can be

used to adjust the OS to fit to each EEG sensor location: 1) to translate the sphere center,

and 2) to change the sphere radius. By the test on phantom data in Chapter 4, we find that

“Translate the sphere center” performs better than the other correction method. We use

following equation to translate sphere center to fit OS boundary and EEG sensor:

C′
0 = s(i) + (

R0

‖C0 − s(i)‖
)(C0 − s(i)) (2.17)

for ith sensor (i = 1,2,. . . ,N ).

Figure 2.8 shows the flowchart of the proposed OS forward model. First, we use

Heron’s formula and the weighted normal to find the innerskull normalsnre(i) and eval-

uate innerskull mesh locationsrre(i) by assuming that the thickness of scalp and skull is

constant. Then, the OS cost function described in Equation (2.14) is applied to estimate

the sphere radiusR0 centered atC0. Finally, we can correct estimated OS by translating

its sphere centerC0 to fit the EEG sensor to the OS boundary.
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Chapter 3

Inverse Problem
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In this chapter, we start to solve the ”inverse problem.” That is, we want to estimate the

neural activation using known measured surface potential.

Before solving the inverse problem, a good forward model is needed. Using a good

forward model, the relative inverse solution will be accurate; on the other hand, the inverse

solution will be inaccurate if the forward model is not good enough.

Inverse problem is an ill-condition problem which may result in variable solutions. Be-

cause of this property, we cannot precisely find a closed-form solution of inverse problem.

In Section 3.1, the non-linear optimization method is applied to solve this. There are several

widely-used non-linear method can be used, such as Nelder-Mead method, Powell method,

and Levenberg-Marquardt method [22]. The same as Section 2.2.2 (Equation (2.14)), we

select Nelder-Mead method as the non-linear optimization method.

Another method to solve ill-condition problem is applying the global-search (grid-

search) method. Solution based on global-search won’t trap into local minimum where

non-linear optimization will, but it costs much more time than using non-linear optimiza-

tion. In Section 3.2, we develop a hierarchical grid-search based method. This new method

still preserve the advantage of grid-search based method (won’t trap into local minimum),

and, it will cost less time than global-search method.

3.1 Previous works

Inverse solution can be separated as fitting method and scanning method. Fitting method

including focal source and distributed source solves inverse problem by fitting the measured

surface potential to the predicted surface potential from the EEG forward model. Scanning

method is to scan the whole brain space and reveal locations having significant neuronal

activation.

3.1.1 Fitting method

Here we find the inverse solution by fitting our predicted surface potential and EEG

measured surface potential. The source can be focal source or distributed source. Focal

source, so-called dipole source, including single dipole and multiple dipoles needs source
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number as prior knowledge while distributed source does not. Distributed source assump-

tion is obviously more reasonable, but the focal source assumption can quickly indicate

where the area neural activation is.

Focal source

Least-square estimation Assume brain source consists of only a single dipole. Least-

square estimation can be used to solve the inverse problem. Assume the EEG equipment

hasN sensors,x is a vector withN dimension which contains the EEG measured data.

Following steps are the algorithm of least-square estimation:

1) For a given initial guess current dipole located atr0 and known EEG sensor locations,

use forward model presented in Chapter 2 to calculate the leadfieldGN×3.

2) Use SVD (Singular Value Decomposition) method [22] to estimate the dipole moment

q = G−1x.

3) Calculate the predicted potentialx′ = Gq.

4) Use the non-linear optimization method to solvemin‖x−x′‖ = min‖x−G(G−1x)‖.

5) Repeat step 1) – 4) until above equation converges by adjusting the dipole location

parameterr0.

In step 4), we choose Nelder-Mead method as the non-linear optimization method once

again.

The degree of accuracy using least-square estimation will depend on the choice of non-

linear optimization method. And, SVD method does not guaranteeG−1 is precise enough

whenG is not invertible. Thus, although we can solve the inverse problem using least-

square estimation very quickly, the solution won’t be quite accurate.

Notice that least-square estimation can also be applied on multiple source inverse prob-

lem. Use least-square estimation to find the first dipole source of measured data, and substi-

tute the component induced by our finding source, then apply least-square estimation again

to find the second source; repeat above procedure we can solve multiple source inverse

problem.
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ICA+Least-square estimation If there are multiple dipoles, we can first use the indepen-

dent component analysis (ICA) to decompose the EEG measured data into several compo-

nents induced by different dipoles, then apply least-square estimation for each component

to solve the inverse problem. The algorithm is described below:

1) Separate surface potential into components induced by different dipoles.

2) Run least-square estimation described in previous section for each separated compo-

nent.

ICA [15] is the widely-used technique in the fields of neural computation, advanced sta-

tistics, and signal processing. It can separate independent components successfully and

efficiently. Therefore, in step 1) we use ICA to separate surface potential into compo-

nents induced by different dipoles. Then we can apply least-square estimation to find out

respective source solutions.

Distributed source

If we have no prior knowledge of how many sources in the brain, distributed source

estimation method can be used. LORETA (LOw REsolution brain electromagnetic To-

mogrAphy) [21] is a widely-used method to solve the distributed source inverse problem.

It find a smooth area of possible brain activation because the neighboring grid points have

similar activation.

3.1.2 Scanning method

Beamforming

Now we introduce a inverse method, called beamforming, which scans the whole brain

space to reveal possible source locations. Beamforming is a technique to localize the source

signal with known measured data produced by source signal. It is widely-used in various

fields such as radar, sonar, and astronomical telescope systems. As figure 3.1 showing, after

measuring voice signal produced by airplane using radar array, we can apply beamforming

technique to predict where the airplane is.
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Source signal

Measured data

Figure 3.1: A simple beamforming example. If we can measure the voice signal produced
by airplane using radar array, we can know where the airplane is by applying beamforming
technique on measured voice signal.

The EEG inverse problem stands for localizing brain source signal using known surface

potential measured by EEG sensor array. This is also a source localization problem which

can be solved by beamforming technique.

For EEG recorded data withN sensors, beamforming will perform a transformation

on the measured data (spatial domain withN dimension spanned by the basis of each

sensor vector). Beamforming adds different coefficients (weights) to each recorded data

by sensors at different location, and combine the weighted data to reconstruct the source

signal. In [27], linearly constrained minimum variance (LCMV) method was presented

which is a implementation of beamforming on EEG / MEG. LCMV can localize the source

signal with given surface potential, following section we will introduce this method.

Linearly Constrained Minimum Variance Let N be the EEG sensor number,x is an

N × 1 vector containing measured surface potential at an instant time. If the brain source

is located atr, x can be expressed as:

x = G(r)q = G(r)
q

‖q‖
‖q‖ = l(r;q)‖q‖ (3.1)
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whereG(r) denotes Gain matrix calculated by forward model with dipole located atr;

l(r;q) denotes leadfield with dipole located atr, andq is dipole moment containing orien-

tation and magnitude (strength).

Supposex is composed of the potentials due toL active dipole sources at locationri

(i = 1,2,. . . ,L), and we consider noise effect now. Equation (3.1) can be rewritten as:

x =
L∑

i=1

l(ri;qi)‖qi‖+ n (3.2)

whereqi (i = 1,2,. . . ,L) is ith dipole moment containing orientation and magnitude, andn

is anN × 1 vector denoting measured noise at EEG sensor location.

Notice thatx in Equation (3.2) contains no temporal information since it is obtained

by sampling all electrodes at a single time instant. It represents the spatial distribution of

potential at the measurement sites at the sampling time.

Now we add temporal information into the formula. The electrical activity of an indi-

vidual neuron is assumed to be random process. We model the dipole moment as a random

quantity and describe its behavior in terms of mean and covariance. The moment mean

vectorqi and moment covariance variancecqi
as

qi = E{qi} (3.3)

cqi
= E{‖qi − qi‖‖qi − qi‖T} (3.4)

respectively, whereE denotes the expectation transformation [9].

Similarly to Equations (3.3) and (3.4), the meanm and covariance matrixC of mea-

sured data can be written as:

m = E{m(qi)} =
L∑

i=1

l(ri;qi)qi (3.5)

C = E{‖m(qi)−m‖‖m(qi)−m‖T} =
L∑

i=1

l(ri;qi)cqi
lT (ri;qi) + Cn (3.6)
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whereCn denote covariance matrix of noise data which is assumed as zero mean.

In practice,C is unknown and mush be calculated using recorded EEG dataM which

is anN × T matrix whereT is the sampling number. Covariance matrixC of measured

data can be written as

C =
1

N − 1
MMDFMT

MDF (3.7)

where the subscript “MDF ” denotes Mean-Deviation Form [16]. That is, each element in

MDF matrix is substituted by the arithmetic mean of row of original matrix.

The main idea of beamforming is to design a special kind of spatial filter that can lin-

early combine the recorded EEG data from every sensor to reconstruct the source activation.

Above statement can be written as:

y = wT (r0;q0)x (3.8)

wherey is the reconstructed moment of the dipole with locationr0 and orientation q0

‖q0‖

andw(r0;q0) is anN × 1 vector denoting the spatial filter.

The purpose of this spatial filter is to extract the target source with the parameterr = r0

andq = q0; restrain other sources,r 6= r0 or q 6= q0. This statement can be written as:

wT (r0;q0)l(r0;q0) = 1. (3.9)

The idea of LCMV is to minimizes the variance at the filter output while satisfying Equation

(3.9). Therefore, a linear constrained and minimum variance spatial filter can be design by:

min
w(r0;q0)

cys.t.w
T (r0;q0)l(r0;q0) = 1 (3.10)
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wherecy denotes the covariance of filtered signal, or the estimated power of filtered signal.

The detailed solving method ofw(r0;q0) in Equation (3.10) is described in [27]. Solution

of spatial filterw(r0;q0) presented in [27] is:

w = (C + αI)−1l(lT (C + αI)−1l)−1 =
(C + αI)−1l

lT (C + αI)−1l
(3.11)

wherel is the leadfield,α represent the regularization parameter, andC is the covariance

matrix of measured data. We drop(r0;q0) for w andl for simplicity and clarity.

Notice that the induced surface potential is inversely cubic-proportional to the source

depth (Equation (2.1)). Therefore, if the spatial filter is computed for a deeper position, the

reconstructed neural activation will be larger. Therefore, we calculate the f statistic of the

activation power:

F =
wTCaw

wTCcw
(3.12)

whereCa andCc denote the covariance matrices estimated from the measured data in the

active and control states respectively. The active state stands for the period of brain activity

in which we are interested. Contrarily, control state is the period of brain activity in which

we are not interested.

3.2 Proposed inverse solution

In Equation (3.11), we need to know the source orientationq0

‖q0‖ before we calculate

the spatial filterw. In general, we can assume source orientation is along to the normal

orientation of cortical surface. Here we adopt the method proposed in [18] to analytically

calculate the optimal source orientation in a closed-form manner. In the following we

describe the proposed inverse solution.

3.2.1 Maximum contrast Beamforming

Substitutel = G q
‖q‖

.
= Gj into Equation (3.11) to obtain:
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w =
(C + αI)−1l

lT (C + αI)−1l
=

(C + αI)−1Gj

jTGT (C + αI)−1Gj
.
=

Aj

jTBj
(3.13)

where we define matricesA = (C + αI)−1G andB = GT (C + αI)−1G.

Consequently, we can determine the optimal source orientation [18, 23, 28] by maxi-

mizing the power contrast between the active and control states:

j = max
j

wTCaw

wTCcw
. (3.14)

Combine Equations (3.13) and (3.14), we get

j = max
j

( Aj
jT Bj

)TCa(
Aj

jT Bj
)

( Aj
jT Bj

)TCc(
Aj

jT Bj
)
. (3.15)

Notice thatjTBj in above equation is a scalar that can be eliminated from the numerator

and denominator. The formula has became:

j = max
j

jTATCaAj

jTATCcAj
.
= max

j

jTPj

jTQj
(3.16)

where we define matricesP = ATCaA andQ = ATCcA. The solution of Equation

(3.16) is the eigenvector with respect to the maximum eigenvalue of matrixQ−1P [4].

In short, maximum contrast beamforming can determine the optimal source orientation,

based on the maximum contrast criterion, and the resulted spatial filterw for each source

locationr0. Then Equation (3.12) can be used to measure the f statistic for the locationro.

Figure 3.2 shows procedure of proposed inverse solution.

3.2.2 Hierarchical-Search Beamforming

In Section 3.1.1 we uses non-linear search in least-square estimation. It is a quick

search method, but may easily trap into local optimum such that decreases the accuracy

of inverse solution. Global search has less tendency to trap into local optimum while it
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Target location r0

Maximum contrast
Beamforming

Optimal source orientation j, and spatial filter w

F-statistic of power

Figure 3.2: Flowchart of beamforming method including LCMV and maximum contrast
beamforming. For given source located atr0, use maximum contrast beamforming to cal-
culate the optimal source orientationj and relative spatial filterw. Then, calculate F-
statistic of power (Equation (3.12)) to measure the source power (scalar source activation)
located atr0.

costs more time. To compromise between the computational cost and spatial resolution

of the probed search space in the brain, we adopt a hierarchical framework to search for

the activation region in a coarse-to-fine manner. In the following we list the algorithm of

hierarchical-search beamforming:

1) Initialize the region of interest (ROI) manually.

2) Spatially sample the ROI with low resolution.

3) Estimate the power statistics of the sampled points using the beamforming technique

described in Section 3.2.1.

4) Select the points with large power statistics as the new ROI.

5) Resample the new ROI with higher spatial resolution.

6) Repeat step 3) – 5) until the spatial resolution is high enough.

By specifying a proper ROI we can avoid the estimated source to be outside the human

head area. However, we still need to further consider the source located inside the head
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Figure 3.3: Two different cases when brain source is outside sphere model. Brain source
located outside human head (right case) will be omitted from ROI. Left case shows brain
source is inside human head but outside sphere model (red arrow), we cannot omit it. Use
“Image dipole” technique [2, 3, 7] to mirror the source to be inside sphere model (green
arrow) in order to fit the assumption (source will be inside sphere model) in Chapter 2.

but outside the sphere model because the spherical forward model assumes that the dipole

source is located inside the sphere (refer to Chapter 2). For a dipole outside the sphere,

we use a “similar” dipole that falls within the boundaries of the sphere [2, 3, 7] as the

representative of the original dipole.

For the purpose of image dipole, we represent a dipole external to a sphere by a “sim-

ilar” dipole that falls within the boundaries of the sphere. In [2, 3, 7], for a dipole outside

the sphere with locationr and orientationq, the image dipole location and orientation can

be expressed as:

r′ =
R2

‖r‖2
r (3.17)

q′ =
R

‖r‖
q (3.18)
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whereR denotes sphere outermost radius. Notice that this procedure only needs source

information and sphere radius, so it can be processed easily. Thus, we can calculate for all

the dipole sources inside the whole ROI, no matter inside or outside the sphere model.
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Experiments
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Figure 4.1: X-ray projection of the phantom skull and EEG electrodes. The 32 coaxial
cables that form the dipoles were inserted through the skull. The other ends of the cables
were connected with the driver through the source connector. The EEG electrodes were
attached on a conductive latex “scalp” layer to record surface potential. (Figure source:
[17].)

4.1 Phantom data

Leahy et al. constructed a EEG/MEG phantom containing brain, skull, and scalp lay-

ers stuffed with tissues with realistic conductivities [17]. Thirty-two independent current

dipoles were positioned in the phantom and EEG / MEG data were recorded separately for

each dipole (Figure 4.1).

Figure 4.2 shows the flowchart of correctness and accuracy assessment of forward

model and inverse estimation. By comparing the predicted surface potential using our

forward model with measured phantom surface potential, we can evaluate the accuracy of

our forward model. Similarly, by comparing the estimated source using our inverse method

with the ground-truth phantom source, we can evaluate the accuracy of our inverse method.

4.1.1 Comparison between forward models

The following equation (normalized correlation) was used as the comparison criterion:
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Figure 4.2: Flowchart of the correctness and accuracy verification on forward and inverse
method. The predicted potential produced from forward model can be compared with
phantom potential to verify the forward model correctness (left part). The predicted source
produced from inverse estimation can be compared with phantom source to verify the in-
verse estimation correctness (right part).

x′·x
‖x′‖‖x‖

× 100% (4.1)

wherex′ andx are the vectors withN dimension and denote the predicted surface potential

and phantom surface potential, respectively.

As mentioned in Section 2.2.4, we determine a method to refine the calculated OS.

Table 4.1 shows the normalized correlation results averaged across all the 32 dipoles. We

can see that “change sphere center” results in better correlation for these two kinds of

forward model. We can conclude that“translate the sphere center” is the better way to

refine OS.

After deciding correction method on OS, we still have to choose a better forward model

from Berg method and Sun method. Figure 4.3 shows the comparison based on correlation

between Berg method (circular pattern) and Sun method (cross pattern) using OS both. X-

axis denotes current dipole index (from #1 to #32) in phantom data, while Y-axis denotes

correlation value. We found that the averaged value of Berg method using OS (85.8325%)
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Table 4.1: The comparison based on the average of normalized correlation for 32 dipoles
between various forward models. The bold-faced numbers denote the better correlation
(change sphere center).

Correlation Berg with OS Sun with OS

Change sphere center 85.8325% 84.9416%

Change sphere radius 83.2218% 83.3575%

No change 85.7538% 84.8485%

is higher than Sun method using OS (84.9416%). So, refer to accuracy consideration by

correlation comparison, Berg method is better than Sun method. But we cannot conclude

that Berg method is better than Sun method because their correlation difference is quite

small (0.8909%< 1%). More detailed comparison between these two methods including

accuracy and efficiency consideration will be discussed in next section and Chapter 5.

Figure 4.4 shows a snapshot of topography comparison using dipole #20 on phantom

data at 0.099 sec where Sun method with OS is the forward model. Left topography denotes

our predicted surface potential; right topography denotes phantom surface potential. They

seem to be much similar.

4.1.2 Inverse accuracy verification

In this section we show the result of applying inverse estimation method on phantom

data. The comparison criterion here is the localization error, which measures the distance

between the estimated source location to the ground-truth source location in the phantom.

The smaller localization error is, the better inverse result will be which implies that the

better inverse estimation method will be.

In Chapter 3, several inverse estimation methods have been introduced, such as least-

square estimation (Section 3.1.1) and hierarchical-search beamforming (Section 3.2.2). Ta-

ble 4.2 shows the comparison between several forward-inverse combinations. The unit of

localization error value is millimeter.

Comparing the least-square estimation with the hierarchical-search beamforming, ob-
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Figure 4.3: The comparison based on correlation between Berg method (circular patterns)
and Sun method (cross patterns) using OS. X-axis denotes dipole index in phantom data,
and Y-axis denotes correlation. The averaged correlation using Berg method (85.8325%)
is higher than using Sun method (84.9416%).

viously the localization error using hierarchical-search beamforming is much smaller than

that using the least-square estimation, no matter what kind of forward model is used. That

is because when we use non-linear search of least-square estimation, the result easily traps

into local optimum such that increases the localization error. And, non-linear search is not

a stable solution on searching problem, so here we don’t use its inverse results as criterion

of deciding which forward model is better. Also, we can see that Sun’s method of forward

model is much better than Berg method of forward model, whenever the OS is used or not.

Furthermore, the localization error of Sun’s method of forward model is smaller when the

OS is used (7.87 mm) than that when the OS is not used (8.00 mm). Thus, we can conclude

that “Sun method with OS” is the best choice, among these forward models. Notice that

in [17], the localization error using BEM forward model (the most realistic one) and the

MUSIC inverse method is 7.62 mm. Although our method achieve a little bit higher error,

computation of our method is much more efficient because our method do not compute the
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Figure 4.4: Topography snapshot of dipole #20 on phantom data at 0.099 sec. Forward
model uses Sun method with OS. Left figure denotes our predicted surface potential topog-
raphy while right figure denotes phantom surface potential.

time-consuming BEM.

Figure 4.5 shows slice-view of two brain activation results. We cut the slices by z-axis,

and interval between slices is 1.5 mm where each slice is 30 mm× 30 mm. Red color

represent location with larger activation while blue color represent location with smaller

activation. Black square denotes phantom ground truth location (real dipole location) while

blue square denotes our predicted source location using Sun method with OS as forward

model and hierarchical-search beamforming as inverse estimation. Left figure is dipole #2

whose localization error is smallest (2.59 mm); right figure is dipole #11 whose localization

error is largest (12.72 mm) among 32 dipoles (ignoring dipole #5 and #12 because their

locations are too deep in head [17]).

For comparison, the localization error using a public domain software, EEGLAB [6,

14], is 14.16 mm (Figure 4.6). EEGLAB provides an interactive Matlab toolbox for

processing continuous and event-related EEG data using ICA, time / frequency analysis,

and other methods including artifact rejection. Its inverse estimation method uses ICA to

separate the measured EEG data, then do the source localization method on the separated
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Table 4.2: Localization error of various forward models and inverse estimation meth-
ods. The unit is millimeter. Least-square estimation is described in Section 3.1.1, and
hierarchical-search beamforming is described in Section 3.2.2. Bold-faced numbers indi-
cate the minimum values of all combinations.

Localization error Least-square estimationHierarchical-Search Beamforming

Berg without OS 16.52 9.11

Sun without OS 15.34 8.00

Berg with OS 17.04 9.14

Sun with OS 15.01 7.87

signal. Our method obviously outperforms EEGLAB.

4.2 Real experiment

We also apply our method to estimate the neuronal activity from the EEG data dur-

ing visual and audio tasks. Recorded EEG data is first applied some signal pre-processing

procedures, such as baseline-correction (remove DC-drift), band-pass filter (remove power-

line signal), artifact rejection (reduce eye-moving influence), and synchronized averaging

(improve signal-to-noise ratio) using SCAN 4.3 software (Compumedics, NeuroScan Cor-

poration). After extracting ERP, our proposed source localization technique is applied to

solve the brain source.

The subjects in experiment of visual-evoken potential (VEP) are two females with 21-

year-old (Subject A) and 24-year-old (Subject B); another subject for experiment of audio-

evoked potential (AEP) is a 22-year-old male (Subject C). During the experiment of VEP, a

white square appeared on the center of LCD (liquid crystal display) screen once per 0.3 sec

as the visual stimulus. Similarly, during the experiment of AEP, a monotone with duration

0.05 sec displayed once per 2 sec as the audio stimulus.

From the visual ERP obtained by averaging trials, as shown in the bottom part of Figure

4.7, we found a positive peak at 155 ms for Subject A and another negative peak at 153

ms for Subject B respectively, where stimulus on-set time is 0 ms. Functional mapping by
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Figure 4.5: Slice-view of brain activation result. We cut the slices by z-axis, and inter-
val between slices is 1.5 mm where each slice is 30 mm× 30 mm. Red color represent
location with larger activation while blue color represent location with smaller activation.
Black square denotes phantom ground truth while blue square denotes our predicted source
location. Left figure is dipole #2 whose localization error is smallest (2.59 mm), and right
figure is dipole #11 whose localization error is largest (12.72 mm) among 32 dipoles.

using the proposed method (Sun with OS and hierarchical-search beamforming), as well as

the dipole-fitting results, for each of the three peaks are illustrated in the top part of Figure

4.7. It is obvious that our method successfully reveal the region in the occipital area with

strong significance of neuronal activity. Figure 4.8 shows audio ERP obtained by averaging

trails, as well as VEP, the revealed region using our method is located in the temporal region

with strong neuronal activity. Notice that the functional mappings for Subjects A, B, and C

all use the same MRI structure, such that the visualized results may have some bias.
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Figure 4.6: Source localization error comparison between our method (Sun method with
OS and hierarchical-search beamforming as inverse estimation, circular patterns) and
EEGLAB (cross patterns). X-axis denotes dipole index in phantom data, and Y-axis de-
notes localization error (unit: millimeter). Evidently, localization error using our method
is much smaller than using EEGLAB.
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Subject A Subject B

Oz Oz

Figure 4.7: VEP comparison between beamforming and dipole-fitting results. We show
subjects A and B here which are experiments for VEP. A positive peak is at 155 ms for
Subject A and another negative peak is at 153 ms for Subject B respectively, where stimulus
on-set time is 0 ms. The dipole-fitting results is roughly drawn on the MRI figures; where
we can see the difference between beamforming and dipole-fitting results.
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Figure 4.8: AEP comparison between beamforming and dipole-fitting results. We show
subject C with experiments for AEP. A positive peak is at 94 ms, where stimulus on-set
time is 0 ms. The dipole-fitting results is roughly drawn on the MRI figures; where we can
see the difference between beamforming and dipole-fitting results.
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Chapter 5

Conclusions
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We have developed an efficient and accurate EEG source estimation technique. Ac-

cording to our experiments using phantom data, the localization error using our method

is very close to that using the most realistic BEM forward model and the MUSIC inverse

estimation. But our method is more efficient because there is no need to calculate the time-

consuming BEM model. In Chapter 2, we mentioned that the OS method proposed by

Mosher et al. uses the BEM forward model and requires a set of significant dipole sources

to estimate the OS. In the proposed method we eliminated the primary current term because

it is irrelevant to the shell geometry. Also, only the innerskull surface mesh is required to

estimate the OS, such that estimation can be simplified very much. Furthermore, the in-

ner skull surface mesh can be approximated by using the EEG sensor location. Thus the

proposed method is convenient, particularly when the MRI of the subject is not available

to be used for surface extraction.

Using Equation 2.15 to calculate innerskull surface point normalnre(i) will depend on

the triangle superficial measures surrounded with the target mesh point. In fact, innerskull

surface normals is assumed to be equal to scalp surface normals which can be estimated

from EEG sensor locations. When EEG sensor distribution is unbalanced, the calculated

normals will not be precise. We can adopting “Gaussian curvature” to estimate the surface

curvature including locations and normals of surface points. By using Gaussian curvature,

accuracy ofnre(i) will be improve, but it costs more time than just using Equation 2.15. A

trade-off between using Equation 2.15 and Gaussian curvature will be judged in following

works.

In Section 4.1.2, we have compared source localization error with Berg method and Sun

method to determine which method is better. Localization result shows that Sun method has

smaller error than Berg method. And, Sun method uses a closed-form solution rather than

a non-linear search formula used in Berg method to generate the pre-processing parameters

[25, 29]. Thus Sun method is more efficient and stable than Berg method obviously. In

short, whether we mention to accuracy or efficiency, Sun method performs better than Berg

method does.
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