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Abstract

Brain is the most important and complicated apparatus of human beings. EEG has been
widely applied in functional brain studies due to its high temporal resolution and low cost.
In this work, we focus on the development of an accurate and efficient EEG forward model
as well as the inverse solution for neuronal source estimation from the EEG measurements.

Our forward model successfully gains its accuracy by fitting an overlapping sphere for
each EEG sensor. The computation of the overlapping sphere requires only the multi-shell
geometry, instead of boundary element method, thus the proposed forward model is easy
to compute. Based on the proposed forward model, the beamforming technique is applied
to calculate the distributed sources in the brain space. We maximize the power contrast
between active state and control state of EEG recorded data to improve the accuracy of
inverse solution. Hierarchical search in the solution space is applied to save the amount
of computation by searching:grid point level by level instead of searching the whole brain
space.

According to our experiments using phantom data and visual-evoked potential data, the
proposed forward model and inverse solution can efficiently and accurately estimate the
source of brain activation. A‘quick and.reliable source localization technique for EEG is
successfully developed which can be applied on applications when MRI is not available,
such as fundamental brain research and brain-computer interface.
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Figure 1.1: EEG has some advantages than MEG, such as it can sense the radial oriented
brain activities (red arrows).

1.1 Background

Brain, like the CPU (Central Process Unit) of computer, is the central controller of hu-
man body. It is the unique and most important apparatus of human beings that controls all
of the human activities, such as musclée ' movement, action reaction, our feeling of some-
thing, the emotion, and so on. Brain is alsothe'mast complicated apparatus of our body.

To understand what our brain does we can use-several noninvasive functional brain
imaging tools such as EEG (ElectroEncephaloGraphy), MEG (MagnetoEncephaloGraphy),
and fMRI (functional Magnetic Resenance Imaging) to help us unravel dynamics of corti-
cal function. EEG records the electric potential on the scalp surface produced by the neural
activation using its electrodes attached on the scalp. MEG record the magnetic field pro-
duced by neural currents by the array of superconductive sensors [10]. fMRI provides a
method of visualizing a correlate of neural activity in the human brain [26].

EEG is a recording (graph) of electric signals (electro) from the brain (encephalo). It
has sensors that can measure electric potential on scalp surface. In 1929, H. Berger first
published EEG of human beings. He successfully distinguisiy thvaves (13-35 Hz) by
EEG signal.

EEG / MEG have high sampling rate (temporal resolution) that can reach 1000Hz. Be-
sides, EEG has some advantages compared with MEG, for example, EEG is more portable
than MEG because EEG does not need shielding-room when sensing head surface poten-
tial. And, EEG can sense the brain activities with radial orientation to the scalp surface but
MEG can not do this (See Figure 1.1).
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The recorded EEG data can be used in many applications. For example, we can apply
the “source localization” technique (to localize the neural activitives in the brain using
EEG / MEG recorded data, also called “source estimation”) to determine the brain neural
source. In clinical application, we can measure EEG of the epileptic patients and penetrate
the disease focus and cortical dynamics using “source localization” technique. Or, we
can extend “source localization” on the fundamental brain research and brain-computer
interface systems.

After the event-related potential (ERP) method is widely applied, scientists have great
advancement in discovering brain activity from EEG. When giving a specific stimulus on
nervous system, the induced surface potential variance is called ERP. For example, if we
give the subject light, sound, or electrical stimuli, evoked surface potential can be extracted
from EEG measured data. ERP component in EEG data is much smaller than noise com-
ponent; we can generally assume that noise of each EEG sensor is zero mean, such that
SNR (Signal-to-Noise Ratio) canbe improved by applying synchronized averaging on EEG
measured data.

In reality, brain functions 'are the networks of many neural activities. Figure 1.2 shows
“open field” (top part) and-“closed field” (bottom part) concepts of neural activities. The
principle cortical neurons are the pyramidal cells (left-most part, transverse section through
the gray matter of rat cortex). Their'apical dendrites from above reach out parallel to each
other, so that they tend to be perpendicular to the cortical surface (open field) [11]. So they
can be macroscopically modeled as some source model (bottom part). Besides, pyramidal
cells connecting together may cancel out their current influences each other (top part, closed
field).

From above we know that actually characterizing all the neural activation in detail is
difficult. We can macroscopically model the behavior of neural activation as many source
models such as infinite cylindrical source, dipolar source, and octupolar source (Figure
1.3). ECD (Equivalent Current Dipole) form is proved as a better assumption of source
modeling.

Given a current dipole, the forward model can be used to calculate the scalp potential
induced by this dipole source. On the other hand, the inverse problem is about how to es-
timate the brain activation from the scalp potentials recorded by EEG. Accuracy of inverse
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Figure 1.2: Difference between open field and closed field. Left-most part shows the trans-
verse section through the gray matter of rat cortex drawn by Ramon y Cajal in 1888. The

principle cortical neurons are the pyramidal cells, and their apical dendrites from above

reach out parallel to each other so thatthey tend to be perpendicular to the cortical sur-
face (open field). They can be equivalently modeled as some source model (bottom part).
Besides, pyramidal cells connecting together may cancel out their current influences each
other (top part, closed field).

problem is influenced by the accuracy of forward model, the SNR of EEG recording data,
and the inverse methodology. If the source number is known a priori, least-square estima-
tion can solve the inverse problem by fitting the potential field predicted by the forward
model to the EEG recordings. Alternatively, distributed source estimation methods impose
various kinds of constraints and obtain the neuronal activities for all the probed area in the
brain. Figure 1.4 shows the flowchart of forward model and inverse problem estimation.

1.2 Thesis scope

In this thesis, we propose a accurate and efficient EEG source estimation technique
including forward model and inverse solution.

In our new forward model, we use multi-spheres as head model and apply the over-
lapping spheres (OS) technique to improve the accuracy of forward model. The proposed
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Figure 1.3: Comparison of various source models. Left figure is infinite cylindrical source,
center figure is dipolar source, and right figure is octupolar source. Dipolar source is proved
as the best way to model neural activation.

forward model has following benefits:

1) Efficient calculation of surface potential-by using a simplified formula.

2) Better accuracy by usingithe OS.

3) Easier calculation of the OS by using the multi-shell geometry instead of using the
boundary element method(BEM) model.

We also propose a new inverse estimation method, named hierarchical-search beam-

forming. This new inverse method has the following benefits:

1) A closed-form solution of the dipole source orientation.
2) Less tendency to trap into local optimum.

3) Efficient search by using the hierarchical framework.

1.3 Organization of this thesis

In Chapter 2 we describe our forward model including previous works (Berg method
and Sun method) and proposed OS technique. Solutions of inverse problem including
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Figure 1.4: Flowchart of the forward model and the inverse estimation. The forward model
can calculate the surface potential using known current dipole, and the inverse estimation
can estimate the current dipole using known surface potential.

fitting method and scanning method are described in,Chapter 3. In Chapter 4 we introduce
the experiment result applying our forward model and-inverse method on phantom data and
visual-evoked potential data. Finally,-conclusionsfor our method and the relative results

are described in Chapter 5.
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Figure 2.1: Single-shell geometry. Surface potential is measuredla¢re dipole located

atr with m as moment (orientation and magnitude). The angle between vectors pointing
to s andr is denoted). The angle the dipole momeni makes with the radial direction

atr is denotedy, andg is the angle between the plane formedrigndm, and the plane
formed byr ands.

In this section, we first briefly describe the previously-proposed forward models that
are related to the proposed one. Then we will introduce the proposed forward model using
the OS.

2.1 Previous works

2.1.1 Single-shell model

Although the real human brain is complicated which include cortex (gray matter and
white matter), cerebrospinal fluid (CSF), skull, and scalp, we simply assume the head
model as a sphere with homogeneous conductivity. By this assumption, we can calcu-
late the forward model in a very simple way but does not guarantee the accuracy. In this
section we introduce this easy and simple forward model.

Before calculating the surface potential based on the single-shell head model, we need
some pre-work. First, calculate a best-fit sphere among all the sensor locations. Use the
least-square estimation to find out the best-fit sphere among all EEG sensors. Then, map
the sensor locations onto the best-fit sphere surface such that we can estimate the surface
potential (or leadfield) of the mapped sensor locations.

The surface potentidl (s; r, m) at the sensor locationfor a given dipole located at
r and withm as the moment (See Figure 2.1), can be expressed as the sum of its radial
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V1(s;r,m) and tangential;! (s; r, m) surface component [20]:

my

2(scosf—r) 1 1
_'_

Kl(s;r,m):(47ra)( B ﬁ—g)
Vi (ssr,m) = (47:7:7) cosﬁsin@(ii * sd(s —ii_OZQ + d))
Vi(s;r,m) = V!'(s;r,m) + V'(s;r,m) (2.1)
whered =s —r, s = ||s||, r = ||r||, m = |m]|, d = ||d||, m; = mcos @, mi = msinq,

o is the conductivity of this mediay is the angle betweernandm, 6 is the angle between
s andr, andg is the angle between the plane formedrtandm, and the plane formed by
r ands.

Single-shell forward model.is'the simplest forward model, but contrarily it may cause
large error because our head is notjust.a homogeneous sphere. To improve the accuracy
of forward model, we have other assumptions like multi-shell model (Section 2.1.2) and
BEM (Section 2.1.3) to approximate our-human head geometry.

2.1.2 Multi-shell model

Consider the fact that the human head consists of several kinds of tissues, such as scalp,
skin, skull, cortex, and CSF. Different tissues have different conductivities. It will be more
accurate to model the head as multiple concentric spheres. The conductivity is homo-
geneous in the volume between consecutive layers. In this work, we use four concentric
spheres to model the following tissues: scalp, skull, cortex, and CSF. Based on the multiple-
shell spherical head model, we can calculate the scalp poténtiaat sensor locatios
induced by the dipole source at positioand with orientatiomnm [5, 24]:

1 & Pl(cos )
M. _ n—1 n
V¥ (s;r,m) = o T2 ,;1 Cnf" m- (ro P, (cos ) + tg . ) (2.2)

with
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Figure 2.2: Central cross-section of the multi-shell (four shell) model. The brain, CSF,
skull, and scalp regions are shown, and their respective conductivity values are labeled by
o1,09,03,04. The outmost boundary of these four shellsi@ecR, dR, R.
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whereR = |s||, f = ||r||/R, ro andt, are the radial and tangential unit vectors, respec-
tively, 6 denote the angle betweerands, and P, and P! are the Legendre and associated
Legendre polynomials of degree respectively. Multi-shell geometry is defined as Figure
2.2.

Notice that in Equation (2.2) we need to calculate the recursive Legendre and associ-
ated Legendre polynomials which cost much time. Typically, the summation term will be
converged after 200 to 300 iterations, which make this method inefficient. So this direct
method is really an inefficient method.

02
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Figure 2.3: In Berg method, a single source in a multi-shell model (left figure) can be well
approximated by three sources in a homogeneous sphere model (right figure) [1, 29].

P. Berg, et al. [1, 29] and Mingui Sun [25] have introduced two different ways to
enhance the efficiency of multi-shell forward model. Following we describe how these two
methods work.

Berg method

In [1], P. Berg and M. Scherg presented an efficient way to calculate the forward
model based on multi-shell'spherical’head model. This method uses the true dipole location
r to select three dipole locations along‘the same radial line, and calculate these surface
potentials using single-shell model (Equation (2.1)) three times (Figure 2.3). The surface
potential of multi-shell model using Berg’s method will be approximated as

VM (s;r,m) = Vi(s; e, Aom) + V(s; por, dom) + V(s; par, Asm) (2.3)

whereyp; and \; (: = 1,2,3) are called “Berg Parameters” which are only related to the
head conductivities and shell thickness such that can be predetermined to save the calcu-
lation time. See [29] for details of “Berg Parameters” computation according to the head
geometry.

In this method, infinite summation term in Equation (2.2) for a single dipole using the
multiple-shell spherical head model can then be replaced by a summation of these three
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Figure 2.4: Values of,, f*~! with respect ton (solid line, f = 0.85) for the four shell
model of Cuffin and Cohen [5]. The polynomial fitting;_, axn”* ! is plotted as cross
patterns. The circular patterns denote the original values. It's clear that the fitting (cross
patterns) is very close to the real values (solid line). (Figure source: [25].)

dipoles using the single-shell spherical head model.. Because of above event, using Berg
method will let multi-shell model faster.

Sun method

Another approximation method based on multi-shell model was introduced by Min-
gui Sun [25]. The main concept of Sun’s method is to use a polynomial function, whose
calculation is more efficient, to approximate the summation term in Equation (2.2).

Figure 2.4 shows a curve of, f*~! (solid line) used in Equation (2.2). Notice that
excepting for first few valuesy(< 5), remaining values tend to follow a smooth v-shaped
curve. In Sun method, the infinite summation term in Equation (2.2) can be separated
into two parts. The first part involves the firdt terms (often takesv = 3) using exact
values (circular patterns). The second part is composed of the remaining terms of the
infinite summation which will be approximated by a closed-form formula (cross patterns).
Following is the refined equation:

Pl
VM(s;r,m) P (cosb)

Z cnf"tm- (ro P, (cos ) + to )

47T0'4 R?
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N [e'S) K
=N e+ Y, O an®) " Qu (2.4)
n=1 n=N-+1 k=0
where
Pl(cos®)
Qn = Wm (r()Pn<COS 0) + t0T>

See [25] for details of how to compute the closed form formiia , a;n”. It has
shown that the best selection8fand K is N = K = 3. Furthermore, a C-code program
of evaluating the surface potential at sensor locasiéor a known dipole locatiomr and
orientationm was also presented in [25].

Both of the Berg and Sun’s methods improve the efficiency of forward calculation at
the expense of losing some accuracy. More detailed comparison between Berg method and
Sun method is described in Chapters 4 and 5.

2.1.3 Boundary element model

BEM model is the most.realistic head model because it uses the triangle meshes to
separate tissues with different conductivities, such as brain, skull, and scalp. Conductivity
can then be well set throughout the head. However, calculation of BEM model is time-
consuming and the head MRI (Magnetic Resonance Imaging) of the subject is required to
reconstruct the tissue surfaces.

2.2 Proposed method

2.2.1 Background of overlapping spheres

There is a problem in using the spherical-based forward model, as shown in Figure 2.5.
Because EEG sensors are attached on the scalp surface, which is not a perfect sphere, there
will be deviation from the EEG sensor to the surface of the spherical model. The farther
EEG sensor is from the sphere surface, the larger error of the estimated surface potential
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Figure 2.5: (Left) Calculation for a single best-fitted sphere is simple, but the sensors are
deviated from the spherical surface. (Right) Using a sensor-fitted sphere for each sensor
can improve the forward model accuracy.

for this sensor will has. In this section, we reform this drawback to reduce the error of
multi-shell based forward model.

One remedy is to use the sensor-fitted sphéres, also called overlapping spheres, for
each sensor instead of using only one!best-fit:single-sphere for all sensors. Mosher et
al. presented the idea of applying OS for MEG in [13], and then extended its application
to EEG in their following work [7].. Their-methed calculates the OS by minimizing the
difference of leadfields between BEM. and multiple-shell spherical forward model using
the approximated OS as the head model:

{R07 CO} = arg }%liélo(ngsph(S’ r,o, BRO) - gBEM(Sv r, Q)H) (25)

whereg = {01, 02, 03, 04} indicates layer conductivitiepRy = {p1 Ro, p2Ro, psRo, paRo}

is sphere radii with assumed fixed relative ratid: = 1, ... ,4). Ry andCq, denote sphere
radius and center, argl,, andggea, are the leadfield vectors for the spherical and BEM
solutions respectively. In this method (OS applied to EEG), we found that BEM lead-
field was required to calculate OS, but we know that calculating BEM leadfield is time-
consuming (Section 2.1.3). And, a significant number of BEM leadfield evaluations are
also required to evaluate the obtained OS
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Sensor 0s Head s Sun
location geometry un parameters
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Forward calculation

Sun
kernel

Surface potential

Current dipole

Figure 2.6: Flowchart of the proposed OS forward model. (Top) Pre-processing procedure,
including OS and Sun’s parameters calculation, can be performed beforehand. (Bottom)
calculation of surface potential using'Sun’s parameters.

2.2.2 Calculation of gverlapping-spheres

In this work, we develop a new calculation method for OS without calculating the time-
consuming BEM model. The proposed method uses the multiple-shell geometry, instead of
the BEM model, to estimate the OS. Thus the computation of the proposed method is much
more efficient than that proposed in [13]. Figure 2.6 shows the flowchart of the proposed
OS method for forward model calculation. Top part containing procedures of OS and Sun
parameters producing. Both of them can be estimated before actually estimating surface
potential. Bottom part is the forward model calculation which estimates surface potential.
In Section 2.2.2, detail of calculating OS is presented; Sections 2.2.3 and 2.2.4 shows other
required estimations and correction of OS.

Assume that the human head hasayers and denote the surfaces between tissues with
different conductivities as$1,5;,...,5,,. The surface potentidl (s) of the sensor location
s on thejth surface can be estimated by the second kind Fredholm integral [8]:
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20 1 ™o —of S—r
V(s) = — "5 Vals) — o= 7/ 1% A < S, (2.6
(S) 0';+0'J'+ (S) 27T;0’;+O’,L+ s, (I‘)n(r) HS_rH3 7 S € ( )
with
Vio(s) = —— PR —— 2.7)
0 dmo ot s =P |

whereo; ando;™ are the conductivities inside / outside thie surface, respectively? (r)

is the primary current, and(r)dsS; is a vector element of surfacg with its direction
aligned to outward surface normal of the surfée Primary current is unrelated to the
spherical geometry and can be dropped. Therefore we can calculate the OS by fitting the
return current contribution term in Equation (2.6) based on the spherical model:

m

S0 )y T )2 sy =0

i=1 75 |s —rre||? 0, +0; .||S—rSP||3 o; +o0;
(2.8)

-

where the superscript stands for the realistic heash stands for the approximated head,
andj¢(r) is the secondary current on each surface:

je(r) = —(o; — oH)V(r)n(r) = j;(r)n(r). (2.9)

Human skull conductivity is about two orders of magnitude less than the other tissue
conductivities, such as brain and scalp. Therefore, the dominant return current contribu-
tions will come from the innermost skull [12]. Thus, we can simply evaluate the integral on
the innermost skull surface. It has been shown that true potentials and spherical potentials
are not dramatically different [13], so we simply assufffe= j;” and rewrite Equations
(2.8) and (2.9) as:

s —rr'e s — r°P
nre I‘ S — nsp I‘ - _—
SR e Eb ) P

innerskull

)75 (r)dS" = 0. (2.10)
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Figure 2.7: An illustration of mapping realistic mesh point¥ (:) andn™ (7)) to approx-
imated sphere. Thus, we can expre¥¥:) andn®P(7) in terms ofr™(i) andn*®(:) (See
Equations (2.12) and (2.13)).

To solve Equation (2.10) we use-two dense surface meshes containpmjnts to
represent the realistic innermost skull surface and the fitting sphere, respectively. The least-
square fitting problem is simply to_minimize the following equation (cost function):

S Ser() ——
() g () gl 2.11
;Hn (Z) ||S_rre(l')||3 n (Z) ||S—I'Sp(l)||3|| ( )
wherer™ (i) andn®(i) (i = 1,2, ..., N) denote the locations and normal orientations of

the mesh points on the innermost skull surface, respectively;*8(d andn®P (i) are those
for the approximating sphere.

Given a spherd Cy, Ry}, rP(i) can be obtained by radially mappintF(i) to the
surface of the approximated sphere. Thus we can substitute expressiafi®(fprand
n®P(7) in terms of ther™(:) andn*®(i) as

) + Co (2.12)

and
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rre (i) — Co

n°P(i) = —F———. (2.13)
[rre(i) — Col|
Therefore, Equation (2.11) can be written as the final cost function:
N sere() o) —Co 5~ Co— Ropiia)
énlél ZHD <Z> _re(\|I3 re(;) — C ' rre(i)—Co 3H
0,Co l|s — rre(i)]| [[re(7) ol s — Co — Ro(m)”
(2.14)

To solve this non-linear optimization problem, we use the widely-used simplex method —
Nelder-Mead method presented in [22]. For each EEG sensor, a sphere can be yield by
applied Equation (2.14). Repeating Equation (2.14) for each EEG sensor yields a set of
overlapping spheres.

2.2.3 Calculation of inner skull surface

Equation (2.14) needs the realistic parameteiy:) andn*(i) (: = 1,2,...,N). Now
we show how to estimate them using given EEG sensor locatioh§ = 1,2,...,N).

Assume vertex is surrounded withV/ triangles whose normals arg, ns, ...,ny;
and superficial measures arg ao, ..., ay (evaluated by Heron’s formula), respectively.
n*¢(i) can be estimated by:

M
Ilre(i) . ijl a;n;

S e R N (2.15)
15272, ajmy]|

Assume that the thickness of scalp and skull is constant throughout the humar™igad.
can be estimated by:

r'¢(i) = s(i) — T'n"(7) (2.16)

wheres(i) is thei-th sensor location, anfi denote the average thickness of human scalp
and skull [17,19].
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Sensor location s(i) Corrected OS Ry, C'y
Equation 2.15 and 2.16 »| OS correction
(Equation 2.17)

L ]
Realistic innerskull OS cost function

> - —» OS Ry, C
n"e (i), re() (Equation 2.14) 0 “o

Figure 2.8: Flowchart of OS parameter calculation. First, we find uskel normals
n*¢(7) and mesh locations™®(i). Second, Equation (2.14) is used to evaluate the OS radius
Ry and centelCqy. Finally, we can correct the estimated OS to fit EEG sensor location to
the OS boundary.

2.2.4 Correction of overlapping spheres

The calculated OS boundary of each sensor may not perfectly fit the sensor locations
because of the non-linear search procedure in Equation (2.14). Two simple ways can be
used to adjust the OS to fitto each EEG sensor location: 1) to translate the sphere center,
and 2) to change the sphere radius. By-the test on phantom data in Chapter 4, we find that
“Translate the sphere center” performs better than the other correction method. We use
following equation to translate sphere center to fit OS boundary and EEG sensor:

Ry

Co =50+ (e, =5l

)(Co — s(i)) (2.17)
for ith sensor{=1,2,...,N).

Figure 2.8 shows the flowchart of the proposed OS forward model. First, we use
Heron’s formula and the weighted normal to find the inskull normalsn™ (i) and eval-
uate innerskull mesh locations* (i) by assuming that the thickness of scalp and skull is
constant. Then, the OS cost function described in Equation (2.14) is applied to estimate
the sphere radiug, centered aC,. Finally, we can correct estimated OS by translating
its sphere centel to fit the EEG sensor to the OS boundary.
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In this chapter, we start to solve the "inverse problem.” That is, we want to estimate the
neural activation using known measured surface potential.

Before solving the inverse problem, a good forward model is needed. Using a good
forward model, the relative inverse solution will be accurate; on the other hand, the inverse
solution will be inaccurate if the forward model is not good enough.

Inverse problem is an ill-condition problem which may result in variable solutions. Be-
cause of this property, we cannot precisely find a closed-form solution of inverse problem.
In Section 3.1, the non-linear optimization method is applied to solve this. There are several
widely-used non-linear method can be used, such as Nelder-Mead method, Powell method,
and Levenberg-Marquardt method [22]. The same as Section 2.2.2 (Equation (2.14)), we
select Nelder-Mead method as the non-linear optimization method.

Another method to solve ill-condition problem is applying the global-search (grid-
search) method. Solution based on global-search won'’t trap into local minimum where
non-linear optimization will, but it costs much more time than using non-linear optimiza-
tion. In Section 3.2, we develop a:hierarchical grid-search based method. This new method
still preserve the advantage of grid-search based method (won't trap into local minimum),
and, it will cost less time than global-search-method.

3.1 Previous works

Inverse solution can be separated as fitting method and scanning method. Fitting method
including focal source and distributed source solves inverse problem by fitting the measured
surface potential to the predicted surface potential from the EEG forward model. Scanning

method is to scan the whole brain space and reveal locations having significant neuronal
activation.

3.1.1 Fitting method

Here we find the inverse solution by fitting our predicted surface potential and EEG
measured surface potential. The source can be focal source or distributed source. Focal
source, so-called dipole source, including single dipole and multiple dipoles needs source
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number as prior knowledge while distributed source does not. Distributed source assump-
tion is obviously more reasonable, but the focal source assumption can quickly indicate
where the area neural activation is.

Focal source

Least-square estimation Assume brain source consists of only a single dipole. Least-
square estimation can be used to solve the inverse problem. Assume the EEG equipment
has N sensorsx is a vector withN dimension which contains the EEG measured data.
Following steps are the algorithm of least-square estimation:

1) For a given initial guess current dipole located@and known EEG sensor locations,
use forward model presented in Chapter 2 to calculate the lea@ield.

2) Use SVD (Singular Value Decomposition) method [22] to estimate the dipole moment
q=Gx.

3) Calculate the predicted potentidl= Gq:
4) Use the non-linear optimization-methed to'solve:||x — x| = min||x — G(G'x)]|.

5) Repeat step 1) — 4) until*‘above-equation converges by adjusting the dipole location
parameter.

In step 4), we choose Nelder-Mead method as the non-linear optimization method once
again.

The degree of accuracy using least-square estimation will depend on the choice of non-
linear optimization method. And, SVD method does not guara@tekis precise enough
when G is not invertible. Thus, although we can solve the inverse problem using least-
square estimation very quickly, the solution won't be quite accurate.

Notice that least-square estimation can also be applied on multiple source inverse prob-
lem. Use least-square estimation to find the first dipole source of measured data, and substi-
tute the component induced by our finding source, then apply least-square estimation again

to find the second source; repeat above procedure we can solve multiple source inverse
problem.
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ICA+Least-square estimation If there are multiple dipoles, we can first use the indepen-
dent component analysis (ICA) to decompose the EEG measured data into several compo-
nents induced by different dipoles, then apply least-square estimation for each component
to solve the inverse problem. The algorithm is described below:

1) Separate surface potential into components induced by different dipoles.

2) Run least-square estimation described in previous section for each separated compo-

nent.

ICA [15] is the widely-used technique in the fields of neural computation, advanced sta-
tistics, and signal processing. It can separate independent components successfully and
efficiently. Therefore, in step 1) we use ICA to separate surface potential into compo-
nents induced by different dipoles. Then we can apply least-square estimation to find out

respective source solutions.

Distributed source

If we have no prior knowledge of hew-many sources in the brain, distributed source
estimation method can be used. LORETA (LOw REsolution brain electromagnetic To-
mogrAphy) [21] is a widely-used method to 'solve the distributed source inverse problem.
It find a smooth area of possible brain activation because the neighboring grid points have

similar activation.

3.1.2 Scanning method
Beamforming

Now we introduce a inverse method, called beamforming, which scans the whole brain
space to reveal possible source locations. Beamforming is a technique to localize the source
signal with known measured data produced by source signal. It is widely-used in various
fields such as radar, sonar, and astronomical telescope systems. As figure 3.1 showing, after
measuring voice signal produced by airplane using radar array, we can apply beamforming
technique to predict where the airplane is.
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Source signal

@@@@@

Measured data

Figure 3.1: A simple beamforming example. If we can measure the voice signal produced
by airplane using radar array, we can know where the airplane is by applying beamforming
technique on measured voice signal.

The EEG inverse problem stands;ferlocalizing brain source signal using known surface
potential measured by EEG sensor array. This is also a source localization problem which
can be solved by beamforming technique.

For EEG recorded data. withv* sensors, beamforming will perform a transformation
on the measured data (spatial’domain wkhdimension spanned by the basis of each
sensor vector). Beamforming adds different coefficients (weights) to each recorded data
by sensors at different location, and combine the weighted data to reconstruct the source
signal. In [27], linearly constrained minimum variance (LCMV) method was presented
which is a implementation of beamforming on EEG / MEG. LCMV can localize the source

signal with given surface potential, following section we will introduce this method.

Linearly Constrained Minimum Variance Let NV be the EEG sensor number,is an
N x 1 vector containing measured surface potential at an instant time. If the brain source
is located at, x can be expressed as:

x = G(r)q = G(r),@luuqu —1(r;q)lq] (3.1)
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where G(r) denotes Gain matrix calculated by forward model with dipole located at
1(r; q) denotes leadfield with dipole locatedratindq is dipole moment containing orien-
tation and magnitude (strength).

Supposex is composed of the potentials due Acactive dipole sources at locatiah
(: =1,2,...,L), and we consider noise effect now. Equation (3.1) can be rewritten as:

L
x = l(ria)faif +n (3.2)

i=1

whereq; (i = 1,2,...,L) isith dipole moment containing orientation and magnitude,iand
isanN x 1 vector denoting measured noise at EEG sensor location.

Notice thatx in Equation (3.2) contains no temporal information since it is obtained
by sampling all electrodes at a single time instant. It represents the spatial distribution of
potential at the measurement sites at the sampling time.

Now we add temporal information into the formula. The electrical activity of an indi-
vidual neuron is assumed to be random process:. We model the dipole moment as a random
quantity and describe its behavier in terms of mean:-and covariance. The moment mean
vectorg; and moment covariance varianegas

7 = E{as} (3.3)
ca = E{llai — Gillllai — @ll"} (3.4)

respectively, wheré’ denotes the expectation transformation [9].
Similarly to Equations (3.3) and (3.4), the meanhand covariance matri&C of mea-
sured data can be written as:

L

m = E{m(q;)} = > I(r;; ;)@ (3.5)

i=1

C = E{|lm(q;) - m[lm(q;) - m|"} = > 1z ai)cql’ (1 a:) + Ca (3.6)
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whereC,, denote covariance matrix of noise data which is assumed as zero mean.

In practice,C is unknown and mush be calculated using recorded EEGMatehich
isanN x T matrix whereT is the sampling number. Covariance maiixof measured
data can be written as

1

where the subscript? D F” denotes Mean-Deviation Form [16]. That is, each element in
M DF matrix is substituted by the arithmetic mean of row of original matrix.

The main idea of beamforming is to design a special kind of spatial filter that can lin-
early combine the recorded EEG data from every sensor to reconstruct the source activation.
Above statement can be written:as:

Y WT(ro; do)x (3.8)

wherey is the reconstructed moment of the dipole with locatigrand orientatiorm
andw(rg; qo) is an/N x 1 vector denoting the spatial filter.
The purpose of this spatial filter is to extract the target source with the parametey

andq = qo; restrain other sources,# ro Or q # qg. This statement can be written as:

w (ro; qo)l(ro; qo) = 1. (3.9)

The idea of LCMV is to minimizes the variance at the filter output while satisfying Equation
(3.9). Therefore, a linear constrained and minimum variance spatial filter can be design by:

min ¢,s.t.w’ (ro; qo)l(re; qo) = 1 (3.10)

w(ro;qo)
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wherec, denotes the covariance of filtered signal, or the estimated power of filtered signal.
The detailed solving method &f(ry; qo) in Equation (3.10) is described in [27]. Solution
of spatial filterw(ro; qo) presented in [27] is:

4 (C+al)™

w=(C+al) 11" (C+al) ) = 7(C 1 al) 1l

(3.11)
wherel is the leadfield represent the regularization parameter, @hi$ the covariance
matrix of measured data. We dréy; qo) for w andl for simplicity and clarity.

Notice that the induced surface potential is inversely cubic-proportional to the source
depth (Equation (2.1)). Therefore, if the spatial filter is computed for a deeper position, the
reconstructed neural activation will be larger. Therefore, we calculate the f statistic of the
activation power:

wlC,w
F=— 3.12
WLCW ( )
whereC, andC, denote the covariance matrices estimated from the measured data in the
active and control states respectively. The active state stands for the period of brain activity
in which we are interested. Contrarily, control state is the period of brain activity in which

we are not interested.

3.2 Proposed inverse solution

In Equation (3.11), we need to know the source orientaﬁ%ﬁl before we calculate
the spatial filterw. In general, we can assume source orientation is along to the normal
orientation of cortical surface. Here we adopt the method proposed in [18] to analytically
calculate the optimal source orientation in a closed-form manner. In the following we
describe the proposed inverse solution.

3.2.1 Maximum contrast Beamforming

Substitutd = G 2. = Gj into Equation (3.11) to obtain:

llall
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w_ (CtaDl _ (CHal)'Gj . Aj
TI(C+al) 1 JIGI(C+ol)'Gj j7Bj

(3.13)

where we define matrice& = (C + ol)~'G andB = G*(C + ol)'G.
Consequently, we can determine the optimal source orientation [18, 23, 28] by maxi-
mizing the power contrast between the active and control states:

wlC,w
j = max WiC.w (3.14)
Combine Equations (3.13) and (3.14), we get
AT C, (A1)
) T a(3ms
j = max JAijJ G (JAiJJ . (3.15)
i’ Bj C\jTBj

Notice thatj” Bj in above equation is a scalar that can be eliminated from the numerator
and denominator. The formula has became:

T T : T
j= mjax‘;T::—Tg% = mjax ‘J]Tg:]] (3.16)
where we define matriceB = ATC,A andQ = ATC.A. The solution of Equation
(3.16) is the eigenvector with respect to the maximum eigenvalue of n@Qtri [4].

In short, maximum contrast beamforming can determine the optimal source orientation,
based on the maximum contrast criterion, and the resulted spatiakfilter each source
locationry. Then Equation (3.12) can be used to measure the f statistic for the loegtion
Figure 3.2 shows procedure of proposed inverse solution.

3.2.2 Hierarchical-Search Beamforming

In Section 3.1.1 we uses non-linear search in least-square estimation. It is a quick
search method, but may easily trap into local optimum such that decreases the accuracy
of inverse solution. Global search has less tendency to trap into local optimum while it
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Target location r

l

Maximum contrast
Beamforming

l

Optimal source orientation j, and spatial filter w

l

F-statistic of power

Figure 3.2: Flowchart of beamforming method including LCMV and maximum contrast
beamforming. For given source locatedrgt use maximum contrast beamforming to cal-
culate the optimal source orientatigrand relative spatial filtekw. Then, calculate F-
statistic of power (Equation (3.12)) to measure the source power (scalar source activation)
located atry.

costs more time. To compromise between the computational cost and spatial resolution
of the probed search space in the brain,.we adopt & hierarchical framework to search for
the activation region in a coarse-to-fine:manner. .Inthe following we list the algorithm of

hierarchical-search beamforming:
1) Initialize the region of interest (ROI) manually.
2) Spatially sample the ROI with low resolution.

3) Estimate the power statistics of the sampled points using the beamforming technique
described in Section 3.2.1.

4) Select the points with large power statistics as the new ROI.
5) Resample the new ROI with higher spatial resolution.
6) Repeat step 3) — 5) until the spatial resolution is high enough.

By specifying a proper ROI we can avoid the estimated source to be outside the human
head area. However, we still need to further consider the source located inside the head
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Figure 3.3: Two different cases when brain source is outside sphere model. Brain source
located outside human head (right case) will be omitted from ROI. Left case shows brain
source is inside human head but outside sphere model (red arrow), we cannot omit it. Use
“Image dipole” technique [2, 3, 7] to mirror the source to be inside sphere model (green
arrow) in order to fit the assumption (source will be inside sphere model) in Chapter 2.

but outside the sphere model-becausethe spherical forward model assumes that the dipole
source is located inside the sphere (refer to Chapter 2). For a dipole outside the sphere,
we use a “similar” dipole that falls within:the boundaries of the sphere [2, 3, 7] as the
representative of the original dipole.

For the purpose of image dipole, we represent a dipole external to a sphere by a “sim-
ilar” dipole that falls within the boundaries of the sphere. In [2, 3, 7], for a dipole outside
the sphere with location and orientatiory, the image dipole location and orientation can
be expressed as:

,_ R

r = r
[ [f?

(3.17)

q =779 (3.18)
Il



32 Inverse Problem

where R denotes sphere outermost radius. Notice that this procedure only needs source
information and sphere radius, so it can be processed easily. Thus, we can calculate for all
the dipole sources inside the whole ROI, no matter inside or outside the sphere model.



Chapter 4

Experiments
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Figure 4.1: X-ray projection of the phantom skull and EEG electrodes. The 32 coaxial

cables that form the dipoles were inserted through the skull. The other ends of the cables
were connected with the driver through the source connector. The EEG electrodes were
attached on a conductive latex “scalp” layer totrecord surface potential. (Figure source:

[17].) Y —=EF

4.1 Phantom data

o B T HSI
P B *

Leahy et al. constructed a EEG/MEG' 7phant-(.)m containing brain, skull, and scalp lay-
ers stuffed with tissues with realistic conductivities [17]. Thirty-two independent current
dipoles were positioned in the phantom and EEG / MEG data were recorded separately for
each dipole (Figure 4.1).

Figure 4.2 shows the flowchart of correctness and accuracy assessment of forward
model and inverse estimation. By comparing the predicted surface potential using our
forward model with measured phantom surface potential, we can evaluate the accuracy of
our forward model. Similarly, by comparing the estimated source using our inverse method
with the ground-truth phantom source, we can evaluate the accuracy of our inverse method.

4.1.1 Comparison between forward models

The following equation (normalized correlation) was used as the comparison criterion:
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Predicted H Phantom
potential .
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Figure 4.2: Flowchart of the correctness and accuracy verification on forward and inverse
method. The predicted potential produced from forward model can be compared with
phantom potential to verify the forward model correctness (left part). The predicted source
produced from inverse estimation,can be compared with phantom source to verify the in-
verse estimation correctness:(right part).

/-
2R L100% (4.1)
3¢/ [} ]¢}

wherex’ andx are the vectors wittv dimension and denote the predicted surface potential
and phantom surface potential, respectively.

As mentioned in Section 2.2.4, we determine a method to refine the calculated OS.
Table 4.1 shows the normalized correlation results averaged across all the 32 dipoles. We
can see that “change sphere center” results in better correlation for these two kinds of
forward model. We can conclude tHatanslate the sphere center” is the better way to
refine OS.

After deciding correction method on OS, we still have to choose a better forward model
from Berg method and Sun method. Figure 4.3 shows the comparison based on correlation
between Berg method (circular pattern) and Sun method (cross pattern) using OS both. X-
axis denotes current dipole index (from #1 to #32) in phantom data, while Y-axis denotes
correlation value. We found that the averaged value of Berg method using OS (85.8325%)
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Table 4.1: The comparison based on the average of normalized correlation for 32 dipoles
between various forward models. The bold-faced numbers denote the better correlation
(change sphere center).

Correlation Berg with OS| Sun with OS
Change sphere centgr 85.8325% 84.9416%
Change sphere radiys 83.2218% 83.3575%

No change 85.7538% 84.8485%

is higher than Sun method using OS (84.9416%). So, refer to accuracy consideration by
correlation comparison, Berg method is better than Sun method. But we cannot conclude
that Berg method is better than Sun method because their correlation difference is quite
small (0.8909%< 1%). More detailed comparison between these two methods including
accuracy and efficiency consideration will'bediscussed in next section and Chapter 5.

Figure 4.4 shows a snapshot of topography. comparison using dipole #20 on phantom
data at 0.099 sec where Sun method with OS is the forward model. Left topography denotes
our predicted surface potential; right topegraphy denotes phantom surface potential. They
seem to be much similar.

4.1.2 Inverse accuracy verification

In this section we show the result of applying inverse estimation method on phantom
data. The comparison criterion here is the localization error, which measures the distance
between the estimated source location to the ground-truth source location in the phantom.
The smaller localization error is, the better inverse result will be which implies that the
better inverse estimation method will be.

In Chapter 3, several inverse estimation methods have been introduced, such as least-
square estimation (Section 3.1.1) and hierarchical-search beamforming (Section 3.2.2). Ta-
ble 4.2 shows the comparison between several forward-inverse combinations. The unit of
localization error value is millimeter.

Comparing the least-square estimation with the hierarchical-search beamforming, ob-
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Figure 4.3: The comparison based on correlation between Berg method (circular patterns)
and Sun method (cross patterns) using OS. X-axis denotes dipole index in phantom data,
and Y-axis denotes correlation. The averaged correlation using Berg method (85.8325%)
is higher than using Sun method (84.9416%).

viously the localization error using hierarchical-search beamforming is much smaller than
that using the least-square estimation, no matter what kind of forward model is used. That
is because when we use non-linear search of least-square estimation, the result easily traps
into local optimum such that increases the localization error. And, non-linear search is not
a stable solution on searching problem, so here we don’t use its inverse results as criterion
of deciding which forward model is better. Also, we can see that Sun’s method of forward
model is much better than Berg method of forward model, whenever the OS is used or not.
Furthermore, the localization error of Sun’s method of forward model is smaller when the
OSis used (7.87 mm) than that when the OS is not used (8.00 mm). Thus, we can conclude
that“Sun method with OS” is the best choice, among these forward models. Notice that

in [17], the localization error using BEM forward model (the most realistic one) and the
MUSIC inverse method is 7.62 mm. Although our method achieve a little bit higher error,
computation of our method is much more efficient because our method do not compute the
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Dipole Number : 20
Source Location : [-3.90, 2.25, 2.64)cm
Time : 0.000 sec Source Orientation : [0.28, 0.96, -0.01]nA

Frquency : T0Hz
I 34.853723 u¥

Model : Spherical and Multi-Shell Model [Sun Method]
0 u¥y

I -33.811704 uy

Qur prediction Phantom data

Figure 4.4: Topography snapshot of dipole #20 on phantom data at 0.099 sec. Forward
model uses Sun method with OS. Left figure denotes our predicted surface potential topog-
raphy while right figure denotes phantom surface potential.

time-consuming BEM.

Figure 4.5 shows slice-view of two brain activation results. We cut the slices by z-axis,
and interval between slices is 1.5 mm where‘each slice is 30x130 mm. Red color
represent location with larger activation while blue color represent location with smaller
activation. Black square denotes phantom ground truth location (real dipole location) while
blue square denotes our predicted source location using Sun method with OS as forward
model and hierarchical-search beamforming as inverse estimation. Left figure is dipole #2
whose localization error is smallest (2.59 mm); right figure is dipole #11 whose localization
error is largest (12.72 mm) among 32 dipoles (ignoring dipole #5 and #12 because their
locations are too deep in head [17]).

For comparison, the localization error using a public domain software, EEGLAB [6,
14], is 14.16 mm (Figure 4.6). EEGLAB provides an interactive Matlab toolbox for
processing continuous and event-related EEG data using ICA, time / frequency analysis,
and other methods including artifact rejection. Its inverse estimation method uses ICA to
separate the measured EEG data, then do the source localization method on the separated
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Table 4.2: Localization error of various forward models and inverse estimation meth-
ods. The unit is millimeter. Least-square estimation is described in Section 3.1.1, and
hierarchical-search beamforming is described in Section 3.2.2. Bold-faced numbers indi-
cate the minimum values of all combinations.

Localization error| Least-square estimationHierarchical-Search Beamformirlg
Berg without OS 16.52 9.11
Sun without OS 15.34 8.00
Berg with OS 17.04 9.14
Sun with OS 15.01 7.87

signal. Our method obviously outperforms EEGLAB.

4.2 Real experiment

We also apply our methed to estimate the neuronal activity from the EEG data dur-
ing visual and audio tasks. Recorded EEG data is first applied some signal pre-processing
procedures, such as baseline-correction (remove DC-drift), band-pass filter (remove power-
line signal), artifact rejection (reduce eye-moving influence), and synchronized averaging
(improve signal-to-noise ratio) using SCAN 4.3 software (Compumedics, NeuroScan Cor-
poration). After extracting ERP, our proposed source localization technique is applied to
solve the brain source.

The subjects in experiment of visual-evoken potential (VEP) are two females with 21-
year-old (Subject A) and 24-year-old (Subject B); another subject for experiment of audio-
evoked potential (AEP) is a 22-year-old male (Subject C). During the experiment of VEP, a
white square appeared on the center of LCD (liquid crystal display) screen once per 0.3 sec
as the visual stimulus. Similarly, during the experiment of AEP, a monotone with duration
0.05 sec displayed once per 2 sec as the audio stimulus.

From the visual ERP obtained by averaging trials, as shown in the bottom part of Figure
4.7, we found a positive peak at 155 ms for Subject A and another negative peak at 153
ms for Subject B respectively, where stimulus on-set time is 0 ms. Functional mapping by
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Figure 4.5: Slice-view of brain activation result. We cut the slices by z-axis, and inter-
val between slices is 1.5 mm where each slice is 30 mB80 mm. Red color represent
location with larger activation while blue color represent location with smaller activation.
Black square denotes phantom ground truth while blue square denotes our predicted source
location. Left figure is dipole #2 whose localization error is smallest (2.59 mm), and right
figure is dipole #11 whose localization€rror istlargest (12.72 mm) among 32 dipoles.

using the proposed method (Sun with OS and fhierarcrhical-search beamforming), as well as
the dipole-fitting results, for each-of the th"’rﬁeaks are illustrated in the top part of Figure
4.7. Itis obvious that our method suceessfully:reveal the region in the occipital area with
strong significance of neuronal activity. Figure 4.8 shows audio ERP obtained by averaging
trails, as well as VEP, the revealed region using our method is located in the temporal region
with strong neuronal activity. Notice that the functional mappings for Subjects A, B, and C
all use the same MRI structure, such that the visualized results may have some bias.
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Figure 4.6: Source localization error comparison between our method (Sun method with

OS and hierarchical-search beamforming as inverse estimation, circular patterns) and
EEGLAB (cross patterns). X-axis denotes dipole index in phantom data, and Y-axis de-

notes localization error (unit: millimeter). Evidently, localization error using our method

is much smaller than using EEGLAB.
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Figure 4.7: VEP comparison between beamforming and dipole-fitting results. We show
subjects A and B here which are experiments for VEP. A positive peak is at 155 ms for
Subject A and another negative peak is at 153 ms for Subject B respectively, where stimulus
on-set time is 0 ms. The dipole-fitting results is roughly drawn on the MRI figures; where
we can see the difference between beamforming and dipole-fitting results.
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Figure 4.8: AEP comparison between beamforming and dipole-fitting results. We show
subject C with experiments for AEP. A positive peak is at 94 ms, where stimulus on-set
time is 0 ms. The dipole-fitting results is roughly drawn on the MRI figures; where we can
see the difference between beamforming and dipole-fitting results.
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We have developed an efficient and accurate EEG source estimation technique. Ac-
cording to our experiments using phantom data, the localization error using our method
is very close to that using the most realistic BEM forward model and the MUSIC inverse
estimation. But our method is more efficient because there is no need to calculate the time-
consuming BEM model. In Chapter 2, we mentioned that the OS method proposed by
Mosher et al. uses the BEM forward model and requires a set of significant dipole sources
to estimate the OS. In the proposed method we eliminated the primary current term because
it is irrelevant to the shell geometry. Also, only the inrsdwull surface mesh is required to
estimate the OS, such that estimation can be simplified very much. Furthermore, the in-
ner_skull surface mesh can be approximated by using the EEG sensor location. Thus the
proposed method is convenient, particularly when the MRI of the subject is not available
to be used for surface extraction.

Using Equation 2.15 to calculate inngkull surface point normai*e (i) will depend on
the triangle superficial measures surrounded with the target mesh point. In factskutier
surface normals is assumed to be equal to scalp surface normals which can be estimated
from EEG sensor locations. When EEG sensor distribution is unbalanced, the calculated
normals will not be precise. We can adopting “Gaussian curvature” to estimate the surface
curvature including locations and normals of surface points. By using Gaussian curvature,
accuracy o™ (z) will be improve, but it costs more time than just using Equation 2.15. A
trade-off between using Equation 2.15 and Gaussian curvature will be judged in following
works.

In Section 4.1.2, we have compared source localization error with Berg method and Sun
method to determine which method is better. Localization result shows that Sun method has
smaller error than Berg method. And, Sun method uses a closed-form solution rather than
a non-linear search formula used in Berg method to generate the pre-processing parameters
[25, 29]. Thus Sun method is more efficient and stable than Berg method obviously. In
short, whether we mention to accuracy or efficiency, Sun method performs better than Berg
method does.
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