On Common Profile Matching among Multiparty Users in
Mobile D2D Social Networks

Department of Computer Science

National Chiao Tung University
1001 Ta Hsueh Road, Hsinchu, Taiwan 300, R.O.C.

.:;)ﬂ AT EHD2DAAR AR Z
%25 pP BRICE 7 ik

Rl
i
3
&
ik

@A TR AR

Bl 2 @ K2 Ea TAR A2t AT #8231
HE

WFRAEEFEAFROBET s AFERGERCEBRGTHE > AURAAIAREIR
JER AR mE L P HFRNHAREAZTTHEECRE T ARIEHGFR > KRMHEIEAT
%mmﬁﬁ%%oﬁMﬁ%mmﬁﬁ%%ﬁ¢~@§£ﬁ B o kAR ARG LA o BTFE 8

HFTRGLE > AREANEAZAHRFAGRE HABEXEEH (o2 qR) A
ﬁﬁ&m%ﬂ: @ﬁ%zﬁﬁﬂﬂﬁ%%ﬁ’#m i 42 9B A AR (FEAED2D) AR £ 4%

R 6 FRE R R T E o RGIRF I A —FEA BT AR A% T A€ B Fe @ LM & F
B eEAF ~ A R A A8 DA Kb Bl K - Hh S A WS o 7 A8 T 14w i S RIS R 3R
A2 o RSB R AT S D2D AL #8538 B SR AL AE A H 89 R B AR AAe LA B A4 Z A0

BAT > BT ZAEA M ARICEY A > 25 A ALA B et A B~ 5Ty 281789 B
R o 5 —AE R RE £ B R AE AR X AT A A8 B A 0 da fs i v B LR R SRR S LA A A o &AM
BB T HERBEARANEBE SR BRATERE S > A A A TEETE R GRF R KR TR
DT Fie b9 = {8 R A8 > Sp R A RLE 4F RBRes &AM oy ok 2RI R AR 8 B A o

BMeET: AR ~ D2DAAGR AL A M5 ~ AAICE ~ B B TR Bl

On Common Profile Matching among Multiparty Users
in Mobile D2D Social Networks

Student: Wan-Hsuan Lin Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao Tung University
ABSTRACT

Recently, mobile social networks (MSNs) have been widely discussed due to the rapid growth
of smart mobile devices. This work focuses on mobile D2D social networks (MDSNs), where
users in an MSN are physical neighbors. An important social application of MDSNs is common
profile matching (CPM), which@efers to the scenario where a‘group of smartphone users meet
in a small region (such as a ball toom) and these users are interested in identifying the common
attributes among them from their personal profiles efficiently via'short-range (such as D2D)
communications. For example,.a group of strangers may want to find common hobbies, friends,
or countries they visited before, and a group of students may want to know the common courses
they have ever taken. Assuming that users in'an MDSN form a fully connected network, we
formulate three versions, namely all-common, f-common, and top-y-popular, of the CPM
problem. The first problem _is an extension of an earlier work; while the latter two problems
are newly defined. We present: solutions based on the<basic and the iterative Bloom filters.

Evaluation results show that our mechanisms are quite communication-efficient.

Keywords: Bloom filter, D2D communication, mobile social network, profile matching,

smartphone apps.

il

2 3t
N

Bhew BRHGEME G H R I E B RIEFTHRG ZHNEQUARRE > fb
AR Ao S AR B L ER fe AR A By B P R %ﬁ%?i@%ﬁ@& it &3
ERASD—ATHGT & REKFZREA LR AWKLARFTR > FROEH TR
EEXHOS LOUEH R EAMARAAGERE AT % Ik &E&zﬁi%ﬂ%éﬁm@i%m%
ZERR AFRBECTRG B A RRERBREERT/N L RAET RMHEEN o 77
’ﬁ%ﬁﬂ&%éﬁiﬁﬁﬁ\ﬂﬁﬁﬁ&\ﬁ?Mﬁ&u&ﬁﬂﬁﬁ&’DA*R%%T
BRI > BRROGERTAE R ELE Y G -

AP RELERHHSCCE R FEBMERKE » %%%i@%ﬁﬂ@@£%?§£ﬁi§£%ﬁ%ﬁhﬁﬂéééiéééaﬁﬁs
PHETRETRSE LAMOTRER >, LEBHNRMHNAGRERLER 25K F
o~ AP THARFORBERRY A PEEZRARORE CE R BBAERAT
BN AT > LRI AARE R BRI 0 KA BB D 7 EREARBENELS
o EFHBY B P RRIESIEANHR) Ko BAREIARLEE SEAZERNT
BAe B 0 KA REA 1E AR AROR o MR Bl B A B R 0 SRAREGER A EAT 0 TR T AR — AT
o ¥ AL A — AL) Z TR BB o

% RERBEAZORIA G ARLE FRAZF G ER E X RNAN LEF
o AP FAER 0 BERMMGIES TR TR B AR & o

g A
B 5 R 38 K2 A RAHE L DAL 58 AT A 3
FERE - EWE—A

iii

Contents

Chinese Abstract
English Abstract

Acknowledgement
Contents

List of Figures

1 Introduction

2 Related Works
3 Preliminaries

4 Common Profile Matching in an MDSN
4.1 System Model © 0 e L
4.2 Basic Bloom Filter Solution . . % .00 00 Lo
4.3 ITterative Bloom Filter Solution L.

5 Prototyping Results and Performance Evaluation
5.1 Application Prototyping
5.2 Ewvaluation Results

6 Conclusions

Bibliography

v

ii

iii

v

10

13
13
15

20

21

List of Figures

1.1

3.1

4.1
4.2

5.1

0.2

2.3

5.4

2.5

2.6
2.7

Our CPM application scenario.
An example of insertion and query to a Bloom filter.

Workflow of the basic Bloom filter solution.

Workflow of 2-iteration IBF solution: i m s . o o o o o o L

The architecture of ourr MDSN application for €PM.
The personal profile of each user. . . ./. .o . .. o L
Screenshots of the prototyped-Android app: (a) Touch the “Start” to participate
in an MDSN. (b):Select-the countries the user visited before. (c) Touch the
“MATCH” to start the CPM procedure with nearby userss«(d) The answer to
the all-common. problem. (e) The answer to the S-commen problem. (f) The
answer to the top-g-popular preblem.00
Comparison of execution time by increasing the number of inserted items to a
Bloom filter with (a) two.parties, (b) three parties, (c) four parties, (d) five
parties and (e) six parties.” .. L Ul L L L L
Comparison of message cost by increasing the number of inserted items to a
Bloom filter with (a) two parties, (b) three parties, (c) four parties, (d) five
parties and (e) six parties.
Application prototyping on Android phones and evaluation testbed.
Comparison of (a) execution time and (b) message cost by increasing the ex-

pected false positive rate of the IBF.

17

18
19

Chapter 1

Introduction

Mobile social networks (MSNs) have become increasingly popular due to the explosive growth
of smart mobile devices. Smartphones and pads usually have multiple communication inter-
faces, such as Bluetooth, WiFi, GSMyWCDMA, and LTE, which allow them to communicate
with other remote devices viadnfrastructures or nearby devices via direct or D2D (device-
to-device) communications. ‘D2D communications have many promising applications, such as
content dissemination, advertisement, broadcasting; location-awareservices, gaming, and social
interaction. In particularywhen smart devices communicate with others via D2D communica-
tions for socialization purposes, we call the underlying network a mobile D2D social netwo4 3rk
(MDSN).

Lubricating social interaction is one of the most important MDSN applications. When peo-
ple meet new friends or attend social events, they may be eager to find out some common topics
or backgrounds for initiating comversations with others. Forexample, a group of strangers may
want to find common hobbies, friends, or countries they visited before to chat, and a group
of students may want to know the common courses they have taken to discuss. Observing
the rapid growth of smart mobile devices, it is possible to improve such social interactions or
social experiences with the assistance of MDSN. Common profile matching (CPM) refers to
the need of finding some common attributes of a group of smartphone users in a small region
under an MDSN. Recently, many MDSN applications for improving social interactions have
been proposed. References [16, 29, 34] propose privacy-preserving mechanisms for finding a
best matched user among a group of users or the common profile of two persons. Reference
[23] presents an intuitive device pairing method based on measuring the time difference of two
sound events. Reference [27] exploits layered information publishing and directional localiza-
tion techniques for lubricating social interactions. Reference [32] demonstrates a handshake

matching mechanism for authenticating information exchange between two users. Reference

A0 B o

Jenny

@ 0@/4_}@@

<5“—--i> Mark

Ahce

Figure 1:1: Our CPM application scenario.

[33] leverages the Bluetooth Service Discovery Protoeol to publish user-defined profiles. How-
ever, these applications mainly focus on the social interaction between two devices in proximity:.
Social interactions among.multiparty users; i.e:, many-to-many social.interaction, in an MDSN
have not been well addressed yet. ‘A multiparty private matching scheme is proposed in [15]
for database systems, but it_does not consider the message cost incurred during matching.

In this work, we consider the CPMuissue in an MDSN-where users are willing to cooperate to
find some common attributes among them without privacy violation. Note that user profiles are
available in many social networks, such as Facebook, Twitter, and LinkedIn, for this purpose.
Fig. 1.1 shows the application scenario. Each user carries a smart mobile device with D2D
communication capability. A profile is stored in each mobile device, which contains a list
of attribute profiles of the user. For example, a profile may look like {interest = {NBA,
swimming}, course-taken = {linear algebra, operating system, C language}, country-visited =
{Taiwan, USA, Slovak, Austria}}. Here, “interest”, “course-taken”, and “country-visited” are
called attribute profiles, and “NBA”, “swimming”, etc. are called attribute items. Users are
in proximity, but may form multiple logical groups. Users in the same logical group agree to
execute the matching process, for example, via enabling an app on their smart phones. (We
comment that neighbor discovery [2, 7, 13], and group formation need to be done prior to

the CPM process, but we will omit discussing these parts.) We formulate three CPM-related

problems: all-common, [-common, and top-y-popular problems, where S and v are integers.
The first problem is an extension of the earlier work [33], while the latter two are newly defined.
The first problem is to find the common attribute items of all users. The second problem is
to find the common attribute items of at least § users, while the third problem is to find the
top-y attribute items shared by most users. We present communication-efficient solutions to
these problems based on basic and iterative Bloom filters. We exploit Bloom filter since it is a
space-efficient data structure for comparing the items owned by two parties without publishing
their entire attribute profiles. In addition, it can provide privacy against eavesdroppers due to
its property of one-way hashing.

The main contributions of this work are as follows. First, we have formulated three CPM
problems that aim at lubricating social interactions among a group of physically close users via
D2D communications. Second, compared to existing MDSN applications, which are designed
for one-to-one communications, our selutions are formmultiparty users and work in a more
efficient way. Third, we have prototyped these applications via Android apps. Implementation
experiences are presented,swhich do verify their feasibility.

The rest of this paper.is organized-as-follows. Related our works-are reviewed in Section 2.
Preliminaries are given in Section 3. Section 4 presents our solutions. Section 5 shows our

prototyping results and performance evaluation. Finally, Section 6 concludes this paper.

Chapter 2

Related Works

First, We survey related works in MSNs. Then, we review some profile matching works.

Reference [14] discusses the applications, architectures, and protocol designs of MSNs. A
MSN usually needs centralized servers to exchange and share information among mobile de-
vices. Reference [36] presents the design pattern of a web-based MSN service. All information
exchanges need to go through web servers! Ini[l1],7a middleware is proposed to provide a
common platform for rapidly developing-MSN applications. The platform enables capturing,
managing, and sharing the social states of physical communities and offloads the computation
of MSN applications. Location-based services for sharing comments; photos, videos, or activi-
ties are addressed in [10, 20, 21]. Among MSN applications, we are more interested in MDSN,
which allows mobile devices in proximity to communicate directly with each other without
relying on server. Such D2D-communication technologies are actually quite mature (such as
Wi-Fi Direct [30] and Wi-Fi hotspoet+[31]). In [24], a middleware is developed for maintaining
an MDSN over ad-hoc networks by store-carry-and=forward techniques. Reference [22] presents
a query/response matching service in a mobile ad hoc Bluetooth/Wi-Fi network. Reference [28]
infers the shared interests between users with RF-based devices by analyzing patterns of physi-
cal proximity of these people. Reference [33] facilitates social networking in physical proximity
by automatically suggesting common topics between two users in close vicinity.

For profile matching,references [16, 17, 29, 34] focus on the privacy-preserving issue. In [16],
fully distributed protocols are proposed such that an initiating user can find the best matched
person from a group of users. Reference [17] proposes comparison-based profile matching proto-
cols, which maintain anonymity during matching. However, these private matching mechanisms
do not consider the incurred message cost and computation overhead. Reference [29] proposes
a matchmaking mechanism such that users can exchange attributes while others cannot iden-

tify the contents. Reference [34] further considers fine-grained private matching. Reference

[8] addresses social serendipity without concerning the privacy issue. The above works do not
consider the message and computation overheads. Reference [33] does address the message
cost, but as the works reviewed above, it cannot handle multi-party CPM. In this sense, our

all-common, S-common, and, top-S-popular CPM problems are more general.

{ bik — non-member!
interest = { biking, football, ’

watching movies, dancing }

o|j1;,0j0(1(0)J1j0}1)j0(1]|0

biking .ee biking

member!
S\ e | N\ o
1loflof1]of1]o]1]0]1]0 o@oo@o@)o1o1o

Insertion Query

0

Figure 3.1: An example of insertion and query to a Bloom filter.

Chapter 3

Preliminaries

We briefly introduce the basies of Bloom filter [3], which is a’space-efficient probabilistic data
structure for storing membership data..Given a set S, a Bloom filter allows two basic operations:
insertion and query. Initially, the Bloom filteris an array of m bits with all Os . To insert an
element s € S into this Bloom filter, we use z independent hash functions each taking s as the
input and mapping to an integer in [1,m]. Let h() be any hash function. Then the h(s)-th
entry of the m-bit array is set to 1. Repeating this process for all z hash functions, the insertion
of s into the Bloom filter is done. If we repeat the above procedure for all members of S, the
insertion of S is done.

To query whether any s’ is a member of S, we compute z hash values from the same z hash
functions using s’ as the input. For each hash function h(), we check if the h(s")-th bit of the
array is 0. If so, s’ is not a member of S. Otherwise, s’ is very likely to be a member of S.
Fig. 3.1 illustrates an example of inserting an “interest” attribute profile to a Bloom filter and
two query examples.

Since Bloom filter is a probabilistic data structure, it may regard a non-member as a member

by mistake, or known as false positive. The probability of a false positive, also called false
positive rate, is

F=(= (1=) m (1= ey

where m is size of the Bloom filter, z is the number of hash functions, and n = |S|. It represents
the probability that the corresponding z hashed bits are all 1s while s’ is not a member of S
[5]. Therefore, given predefined n, z, and, f values, we can choose a proper array size m. Note
that however there is no false negative.

Bloom filter provides a tradeoff between space complexity and query accuracy. For publish-
subscribe systems, [12, 35] use it to reduce memory and bandwidth costs when storing and
propagating users’ information. It is also possible to extend the original Bloom filter to counting
and weighted Bloom filters [9, 19], which allow a new delete operation. Reference [18] provides
a name service with Bloom filter to'speed up the finding of an object’s location. Reference [6]
performs parallel queries on Bloom filters to determine the address prefix membership in sorted

prefix sets. Our work mainly uses it-to-reduce message costs.

Chapter 4

Common Profile Matching in an
MDSN

4.1 System Model

In an MDSN, we consider onetuser group U and one.atiribute profile of these users. (An
attribute profile could be the hobbies, the countries visited, the eourses taken, or the celebrities
followed by users. Solving this problem-for multiple user groups and attribute profiles can be
done by repeating this foreach user group and attribute profile.) Let'U = {uy, uo, ..., u,} and
the attribute profile of user u; € U be P, i = 1..q. Each element in: P, is called an attribute
item. Let n; = |P;|. The universal set of the attribute items is denoted by P and we assume
that P is known by all users.

We propose three versions of the CPM problem.

e all-common: The goal is todind the intersection of all users’” attribute profiles, i.e., Cyy =
ﬂi:l..q PZ

e (-common: The goal is to find the set of all attribute items such that each attribute item
is in at least 3 users’ attribute profiles. For any a € P, we define a membership function
n(a, P;) such that n(a, P;) =1 if a € P; and 7n(a, P;) = 0 otherwise. The S-common set is
defined as Cg.com = {a|Xiz1.4n(a, B) > (}.

e top-vy-popular: The goal is to find the set of top-y hottest attribute items that are shared
by all users’ profiles. The top- set is defined as Clqp., = {a| the value X;_; ,n(a, P;) of a is ranked

top-v}.

4.2 Basic Bloom Filter Solution

We present a basic Bloom filter solution for solving the CPM problems. Assuming that users
in U form a fully-connected network, our solution first requests each user u;, 7 = 1..q, to insert
her attribute profile P; into a Bloom filter and sends the m-bit array to all other users in U.
On receiving any u;’s m-bit array, ¢ # j, u; tries to recover u;’s attribute profile P;. From
these collected attribute profiles (which possibly contain false-positive elements), u; then tries

to calculate Cyn, Cg.com, and Chop. .

Definition 1. Given any attribute profile P;, define BF(P;) to be the m-bit array obtained
by inserting each attribute item in P; into the Bloom filter. Given any set S C P, define
Qry(S, BF(P,)) to be the set containing each element a € S which returns a positive answer
when querying the existence of a in the Bloom filter BE(P;), i.e., Qry(S, BF(P;)) = {a| (a €
S)N(a € BF(P,))}. (Here, a € BE(P;)means that foreachhashed value of a, the corresponding
bit in BF(P;) is 1.)

The basic solution is detailed as follows. These steps are executed by each user u;,7 = 1..q,

concurrently. (Refer to Fig. 4.1 for illustration.)

1. User u; computes its Bloom filter array BF(F;) and broadcasts BF'(P;) to all other users.
2. User u; collects the Bloom filter arrays BF(P;) of all other users u;, j # i.

3. For each BF(F;) collected from u;, u; computes the'set P/ = Qry(P, BF(FP;)), which is

an estimation of P;.

4. Finally, u; uses its own P; and all other (¢—1) estimated Pj, j # 1, to compute all-common
set Can, B-common set Cg_com, and top-y-popular set Ci,p, . (this involves trivial set and

ranking operations, so we omit the details).

Although this solution is very simple, it may have the following potential drawbacks. First,
since the false positive rate is related to the value of m discussed in Section 3, the communication
cost could be large when m is large. Second, in step 3, the query process needs to exhaustively
check each attribute item in P. The processing complexity O(q-|P|) is high when the universal
set P or the user number ¢ is large. Note that if someone queries by the universal set, the privacy
of users may still be bleached. To resolve this problem, users can determine a shared secret key
[4, 26]. Then we can concatenate the secret key to the attribute items when computing hash

values. Without the secret key, it is hard to recover the original attribute items.

9

U; , [
@ D BF(P) B .

@ BF(P),j #1i

@) Calculate Pj' = er(P, BF(Pj)), forallj, j #i.

@ Calculate C,;, Cp om,and G

topy from P;and P;, j # i.

Figure 4.1: Workflow of the basic Bloom filter solution.

4.3 Iterative Bloom Filter Solution

This solution is based on the iterative-Bloom filter (IBF) [33). The goal is to further reduce
the message cost by using smaller Bloom filters iteratively. Recall that the size of a Bloom
filter should be set according to the expected number of inserted items and the expected false
positive rate. We can use a smaller Bloom filter (thus with a higher false positive rate) in
the first iteration to reduce message cost. Since some items have.been filtered out, in the
subsequent iterations, we can still use smaller Bloom filters while controlling the false positive
rate. Therefore, IBF may keep the.same false positive rate as the basic solution with smaller
message cost. In [33], a 2-iteration IBF.has-been-shown to be quite efficient. Hence, we adopt
the same approach.

The following steps are executed by each user u;,7 = 1..q, concurrently. Note that the value
of m is not necessarily the same as that used in the basic Bloom filter solution. (Refer to

Fig. 4.2 for illustration.)
1. User u; computes its Bloom filter array BF'(F;) and broadcasts BF'(P;) to all other users.
2. User u; collects the Bloom filter arrays BF(FP;) of all other users u;, j # .

3. For each BF(P;) collected from u;, w; computes the set P, ; = Qry(P;, BF(P;)), which
is an estimation of P, N P;. (It contains the set of attribute items that appear in P; as
well as in the Bloom filter BF(P;). Note that the query cost of Qry(F;, BF(P;)) could
be much less than that of Qry(P, BF(P;)) when P is large. Also note that P, ; and P;;

may not be the same.)

10

U;]
@ @ BF (P;) @"’
® BF(Pj),j * 0

@ Compute P,,j+1
@ BF(P)),j#i

et — ~—

® BF (Ppj# 44
|

/ =lak L\
(6) Compute BT'(PL D J * k. |

(7 Construct C[1: m] by the voting process.
Compute'C[1: m] toderive Cyy Cyiom>and G

top-y*

Figure 4.2: Workflow of 2-iteration IBF solution.

. In step 3, u; already has the sets P, ; for all j # i. Then, u; computes (¢ — 1) Bloom filter
arrays BF(P,;),j # i, and broadcasts these arrays to all other users.

. User u; collects (¢ — 1) Bloom filter arrays BF(P;) from each w;, j # i,k # j. (There

are totally (¢ — 1)? arrays received.)

. Combining the (¢ — 1) arrays in step 3 and the (¢ — 1)? arrays in step 5, u; now has
q(q — 1) arrays, namely BF(P;,;) for all s # t. Then w; computes the vector

BF(P,,) = BF(P,;) A BF(P,,),
where A is the bit-wise logical AND operator. It is not hard to see that BF (Psy) =

BF(P,.).

11

7. Next, u; uses a voting process to construct an integer array C[1 : m|. The value of each
C[d] is initially 0, 1 < d < m. Intuitively, in the voting process, each user can cast one
(and only one) vote to C[d] if any hashed value of any attribute item is d. To calculate
Cld], we use a tentative set Ty, which is set to () initially. Then we check the d-th bit of
each gﬁ’(ij) There are three cases:

o If Z?\Z/?(P]k)[d] = 0, do nothing.
o If Z?\Z/?(P]k)[d] = 1 and only one of u; and wy is in T}, increase C[d] by 1 and include

the one of u; and u; which is not in 7} into Tj.

o If Z?\Z/?(P]k)[d] = 1 and none of u; and wuy, is in T}, increase C[d] by 2 and include

both u; and wuy into Tj.

Note that the above process should-be repeated for each BF (Pjx). This process avoids
querying each BF (P} 1) by thetuniversal set P to reduce computation cost. Compared to
the basic Bloom filter solution;-this step may slightly increase the false positive rate of
the final results. To.summarize;-this voting process helps quickly estimate the number of

votes that C[d] receives.
8. Using array C[1 : m], u; derives its answers to the three CPM problems as follows.
e all-common: We convert C[1% m] to an-array C[1 : m] such that C[d] = 1if C[d] = ¢

(i.e., ¢ votes) and/C]d]'= 0'otherwise. The answer of Gy is Qry(P,C).

e [-common: We convert C[L: m}-to.an.array Cf1 :m] such that C[d] = 1 if C[d] > 3
(i.e., B votes) and C[d] = 0 otherwise. The answer of Chcom 18 Qry(P, 0).

e top-y-popular: The answer of Ci,p., can be obtained by repeating the S-common
problem by setting § = ¢ and gradually collecting the attribute items by decreasing

the value of 8 by 1 each time, until v attribute items are collected or (8 is equal to 1.

12

Chapter 5

Prototyping Results and Performance
Evaluation

5.1 Application Prototyping

We implement an MDSN application for CPM on Android phones as shown in Fig. 5.6. The
development of an Android application is based on Android software development kit (SDK) [1]
and is written in Java programming language. “The'goal is for usersto know the common visited
countries among nearby ‘users.. The MDSN is implemented by WiFi hotspot. In the future,
we may use WiFi Directs Fig. 5.3 shows the screenshots of our. Andreid app. In this example,
there are four users. At first, they press the “Start” button to join.the MDSN (Fig. 5.3(a)).
One of them is in charge of being a network router by enabling the WiFi hotspot. Users can
choose their attribute items from ‘the universal set (Fig. 5.3(b)). The user profiles of these
users are presented in Fig. 5.2. Whenuready, users can _press the “MATCH” button to run the
CPM procedure (Fig. 5.3(c)). After CPM is'completed, they can check the results (Fig. 5.3(d),
(e), and (f)). The software architecture presented in Fig. 5.1 is composed of the modules of
user interface, profile manager, transmission, and CPM algorithm. Below, We explain each

component in details.

o User Interface: We provide simple and clear interfaces for user to manipulate our app
Fig. 5.3. The first job of this component is for user to launch the network connection
(i.e., establishing or joining an MDSN) by touching the button ”Start” without any other
manual settings. In addition, touching the button "Matching” launch the CPM procedure.
Second, it provides interfaces for user to configure and check his personal profiles. The

user can look over matching results of each matching problem respectively as shown in

(Fig. 5.3(d), (e), and (f)).
e Profile Manager: This component can store attribute profiles, such as ”interest”, ” course-

13

o

Transmission

Management

User Interface Profiles

CPM Algorithm

CPM Solver

Wireless Bloom Filter Hander

communication

Figure 5.1: The architecture of our MDSN application for CPM.

Alice

{ Austria, America, Bhutan, Brazil,China, Chile, Canada, Egypt, France, Germany, Guinea, Iceland,
Japan, Kenya, Korea South, Nepal, Italy, Norway, Philippines;, Portugal, Singapore, Switzerland,
Taiwan, Thailand, Turkey }

Bob

{ America, Australia, Belgium, Brazil, Canada, Djibouti, France, Germany, Greece, Iceland, Italy,
Japan, Finland, Korea South, Lebanon, Libya, Micronesia, New Zealand, Portugal, Singapore,
Spain, Taiwan, Turkey, Vietnam:}

Mark

{ America, Brunei, Canada, Chile, China, Germany, Greece, Czech, Egypt, France, Italy, Iraq, Japan,
Korea South, New Zealand, Netherlands, Norway, Spain, Switzerland, Taiwan, Thailand, Turkey,
Ukraine, Vanuatu }

Jenny

{ America, Australia, Belgium, Czech, Ecuador, Estonia, Finland, France, Gabon, Greece, Hungary,
Japan, Korea South, New Zealand, Netherlands, Norway, Philippines, Spain, Taiwan, Thailand,
Turkey, Qatar, Romania}

taken” and ”country-visited”, provided by a user.
tribute items like {interest = singing, dancing, swimming, running, and so on}. The
user-configured profiles are the inputs of CPM algorithms. In this application prototyp-
ing, we choose the country-visited (e.g., the countries that a user had been to before.) for
demonstration. Hence, profile manager maintains the handset user’s country-visited pro-

file and the countries around the world as the universal attribute items of a country-visited

Figure 5.2: The personal profile of each user.

14

oo o e e e e e e e s o o Em =

Each attribute profile contains at-

profile.

Transmission: As for the D2D communication, we exploit Wi-Fi hotspot on Android to
realize the MDSNs. It is because this WiFi hotspot feature is backward compatible to
older Android phones. Thus, WiFi is the interface of wireless communication function in
this module. For controlling WiFi of Android phone, WifiManager and WifiConfiguration
in Android SDK are the fundamental API. However, there is no API to directly configure
WiFi hotspot in Android SDK. We use a Java reflection technique to control and configure
the functionalities of WiFi hotspot. The device opening the WiFi hotspot will act as an

access point (AP) while the other devices can connect to it as a client.

When executing this application, the transmission module first enables WiFi to search
an access point with a predefined SSID: If this AP exists, the smartphone automatically
connects to it for joining the MDSN. Otherwise, the smartphone enables the Wi-Fi hotspot
with the predefined SSID. We call this WiFi hotspot enabled smartphone as AP device and
it is responsible for exchanging-the necessary data among connected devices. Therefore,
the function MDSN Management-provides for AP device to manage the members of the
MDSN. All the other smartphones in this MDSN communicate with each other through
the AP device.

CPM Algorithm: This component contains .two functions, ' Bloom Filter (BF) Handler,
CPM Solver. BF Handler leverages the Bloom filter to insert the user-configured profiles.
As discussed in Section 44 thereware two versions.of BE Handler, i.e., basic Bloom filter
and IBF. Since the performance of IBF is better than basic BF, we adopt IBF in this
application. After finishing exchanges of Bloom filters, CPM solver executes the voting
process presented in Section 4.3 for efficiently computing the results of the all-common,

[-common, and top-S-popular CPM problems.

5.2 Evaluation Results

We evaluate the proposed solutions by two metrics, execution time and message cost, on our

application prototype. The evaluation testbed is six commercial Android smartphones (Google

Nexus 4) as shown in Fig. 5.6. The parameters in the experiments are as follows. We assume

that z = 7 and use MD5 [25] to generate hash values. In the basic Bloom filter solution,

the expected false positive rate f is set to 0.001%. In the iterative Bloom filter solution (2

15

T T
 WeMatch 7 WeMatch
>J— We all had been to- > W Choose K 2 »F-Choose K 10
VISITIER RESET 4 Top-10
) X >3 Top-
America >3—2-Common P

France Australia Belgium America France
Japan Brazil Chile #apan goret:,
China Czech aiwan ou
Ko»rea' pouth Egypt Iceland Germany Canada
Jarian Finland Netherlands ftaly Greece
Philippines Portugal Norway New
Singapore Switzerland Thailand Zealand
Spain
Turkey

MATCH

.....

\>~.~
ﬁ gl leraie| a’the| (@arade
[o = W - o o | - o o]

(c) (d) () (f)

Figure 5.3: Screenshots of the prototyped Android app: (a) Touch the “Start” to participate
in an MDSN. (b) Select the countries the user visited before. (c¢) Touch the “MATCH” to start
the CPM procedure with nearby users. (d) The answer to the all-common problem. (e) The
answer to the S-common problem. (f) The answer to the top-vy-popular problem.

iterations), we respectively set f = 10% and f = 0.01% for the first and the second iterations.
The total false positive rate is also 0:001% as‘that of the basic Bloom filter solution. In addition,
we also use the exact strings of attribute items as the baseline solution. We set the average
string length of attribute items to 10.

Message size is the major factor-that affects the computation and communication perfor-
mance. Recall that we determine the Bloom filter size ms by considering the potential number
of inserted items n , the expected false positive rate f , and the number of hash functions z.
Here, we study the performance issue of the all-common problem by varying n and f with

different numbers of users:

1. Varying n: We vary n from 200.to 1000 in each user’s attribute profile. We observe the
execution time, which contains computation-and communication time during matching.
Fig. 5.4 shows that basic BF and the IBF solutions perform much better than the baseline
solution when n is large. This is because Bloom filter reduces message size with its hashing
mechanism. Also, the result shows that Bloom filter is computation-efficient since the
execution time increases slightly when n increases. Fig. 5.4 shows that the gap between
basic BF and IBF shrinks when the number of users increases. This is because the
messages exchanged during the IBF procedure increase as the number of users increases.
Fig. 5.5 shows the message costs of the entire network incurred by these solutions. As
expected, IBF significantly outperforms baseline and basic BF solutions in message costs.

This is because IBF uses smaller Bloom filter in each iteration.

2. Varying f: We vary f for IBF in its second iteration from 0.001% to 10%. Note that the

value of f in the first iteration is fixed. (We omit the performance of basic BF because it

16

—baseline -m-basic BF IBF

900

802

m —+baseline -m-base BF IBF

1400

1226

800 - 12
@ 700 676 =101 /
M 974

3 £ 1000
o 600 >
£ 500 455 € 300 765
= / = 671
(=
§ 400 345 202 354 § 600
5 300 5 4V 408 435
o o 337 —a
g 2284 g 400 L —
i 200 o 224 243 [} B ——— e

100 198 216 200 292 297 292 287 291

0 0+ T
200 400 600 800 1000 200 400 600 800 1000

n
(a)
—+baseline -m-base BF IBF

(b)
—+baseline -m-base BF IBF

1600 1457 1800

1580

1354/

1400 1600

E 1200 1113 @ 1400
- =~ 1200 -
@ 1000 896 [
E s E 1000
< 800 j-
c
g 600 529 / 502 g o
3 « 428 445 3 600
2 400 361 ‘J———_n,,—;—' 2
w 90— 5, 392 418 433 & 400

200 6 200

0 1 0 !)

200 400 600 800 1000 200 400 600 800 1000
n n

(c) (d)
—+baseline =m=base BF =+ IBF

2500 L §

N

o

S

[S]
|

1500
% /
1000

Execution time (ms)

v
o
o
d
a
'\“
\l\\
o
(o)
2
00|
f
D
e\
3

Figure 5.4: Comparison of execution time by increasing the number of inserted items to a
Bloom filter with (a) two parties, (b) three parties, (c) four parties, (d) five parties and (e) six
parties.

is similar to that of IBF.) In this experiment, we set n = 1000. However, in the second
iteration of IBF, the number of attribute items to be inserted is the intersection of two
sets. We assume here that the expected size of the intersected set is 50. We then use
these values and f to choose the Bloom filter sizes in the first and the second iterations of
IBF. Fig. 5.7(a) shows that the execution time only decreases slightly when f increases.

The reason is that the intersected set size of the second iteration (50) is much smaller

17

25000

20000

15000

10000

Message cost (bytes)

v
o
o
o

45000
40000

fZ baseline [basic BF [@IBF

20460
16368
12276

8184

894

262 z
992

30 “e62 324

400 600 800

(a)
baseline & basic BF @ IBF

40920

$ 35000

32736

_%‘ 30000
%@ 25000
o

24552

o
@ 20000
)
® 15000
w

16368

< 10000 -
5000

3260

e

0

200

(e)

baseline E basic BF_[11BF

70000

60000

50000

w s
o Q9
S 9
S o
S o

20000

Message cost (bytes)

10000

24552

12276
4890

Figure 5.5: Comparison of message cost by increasing the number of inserted items to a Bloom
filter with (a) two parties, (b) three parties, (c¢) four parties, (d) five parties and (e) six parties.

than that of the first iteration (1000). Because m is proportional to n if f is fixed, the
reduced message size is small when varying f in IBF’s second iteration. Fig. 5.7(b) shows

the message costs of the entire network in different cases. To sum up, varying f of IBF’s

200

35000

30000

25000

baseline [base BF [@IBF

30690

24552

20000

18414

15000

10000

12776

Message cost (bytes)

5000 +—

aieetetstel

SRR

4893

SRS
s
s
8

| fatavete

161

200 400 600 800 1000
n
baseline £ Basic BF [11BF

60000

50000

51150

40000

40920

Message cost (bytes)
&
(=]
8

30690

20480
16315

2990

800

12235

3740
BT

600

second iteration will not significantly affect the execution time.

18

=48 422 -

pA 0
ez

Figure 5.6: Application prototyping on-Android phones and evaluation testbed.

—e—2-parties -@-3-parties —#—4-parties =<5-parties —=6-parties

700

600

500

400

300

200

Execution time (ms)

100

652
65

2-parties [3-parties [4-parties B 5-parties [-parties

12000

10248
10000

o
S
S

4000

Message cost (bytes)
o
8

2000

oa4 638 621
588 583 575 %
468 454
334 313 201 307
.\ -
273 263
255 FASE)
0.00001 0.0001 0.001 0.01

(a)

Figure 5.7: Comparison of (a) execution time and (b) message cost by increasing the expected
false positive rate of the IBF.

19

Chapter 6

Conclusions

In this work, we have presented CPM in an MDSN, which is to identify common attributes
among physical neighbors via D2D communications. We consider three CPM problems: all-
common, [-common, and top-y-popular. We propose basic and iterative Bloom filter-based
solutions to these problems. We have conducted some evaluations on commercial smartphones
to prove that the proposed solutions are communication-efficient. The basic Bloom filter and
IBF solutions perform well'in execution time whenthe number of attribute items in each profile
is increased. However, the IBF solution incurs lower message costs.. We have also demonstrated
a prototype on Android smartphones. The application verifies that the proposed solutions are

feasible on off-the-shelf smartphones.

20

Bibliography

1]
2]

[10]

Android sdk. http://developer.android.com/sdk/index.html.

M. Bakht, M. Trower, and R. H. Kravets. Searchlight: won’t you be my neighbor? In
Proc. of ACM International Conference on Mobile Computing and Networking (MobiCom),
2012.

B. H. Bloom. Space/time trade-offs in-hash eoding with-allowable errors. Communications

of the ACM, 13(7):422-426, 1970.

E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenticated
group diffie-hellmankey exchange. In Proc. of ACM Conference on Computer and Com-
munications Security-(CCS), 2001.

A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet

Mathematics, 1(4):485-509, 2004.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching using
bloom filters. In Proc. of ACM Special-dnterest Group on Data Communication (SIG-
COMM), 2003.

P. Dutta and D. Culler. Practical asynchronous neighbor discovery and rendezvous for
mobile sensing applications. In Proc. of ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2008.

N. Eagle and A. Pentland. Social serendipity: Mobilizing social software. IEEE Pervasive
Computing, 4(2):28-34, 2005.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area web

cache sharing protocol. ACM Trans. on Networking, 8(3):281-293, 2000.

Foursquare. http://foursquare.com/.

21

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

A. Gupta, A. Kalra, D. Boston, and C. Borcea. Mobisoc: A middleware for mobile social
computing applications. Mobile Networks and Applications, 14(1):35-52, 2009.

P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander. Llipsin: Line
speed publish/subscribe inter-networking. In Proc. of ACM Special Interest Group on Data
Communication (SIGCOMM), 2009.

A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: a low-latency energy-
efficient asynchronous neighbor discovery protocol. In Proc. of International Conference

on Information Processing in Sensor Networks (IPSN), 2010.

N. Kayastha, D. Niyato, P. Wang, and E. Hossain. Applications, architectures, and
protocol design issues for mobile social networks: A survey. Proceedings of the IEEE,

99(12):2130-2158, 2011.

P. K. Y. Lai, S.-M. Yiu, K: P. Chow, and C. F. Chong. An efficient bloom filter based
solution for multiparty private matching. In Proc. of International Conference on Security

and Management (SAM), 2006.

M. Li, N. Cao, S. Yu; and W. Lou. Findu: Privacy-preserving personal profile matching
in mobile social networks. In Proc. of IEEE Conference on Computer Communications

(INFOCOM), 2011.

X. Liang, X. Li, K. Zhang;R. Iiu, X. Lin, and X. S. Shen. Fully anonymous profile matching

in mobile social networks. In IEEE Journal-om Selected Areas in Communications, 2012.

M. C. Little, S. K. Shrivastava, and N. A. Speirs. Using bloom filters to speed-up name
lookup in distributed systems. The Computer Journal, 45(6):645-652, 2002.

S. Liu, L. Kang, L. Chen, and L. Ni. Distributed incomplete pattern matching via a novel
weighted bloom filter. In Proc. of International Conference on Distributed Computing

Systems (ICDCS), 2012.
Loopt. http://www.loopt.com.
Mobiluck. http://www.mobiluck.com.

M. Motani, V. Srinivasan, and P. S. Nuggehalli. Peoplenet: Engineering A wireless virtual
social network. In Proc. of ACM International Conference on Mobile Computing and

Networking (MobiCom,), 2005.

22

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

C. Peng, G. Shen, Y. Zhang, and S. Lu. Point&Connect: Intention-based device pairing for
mobile phone users. In Proc. of International Conference on Mobile Systems, Applications,

and Services (MobiSys), 2009.

A -K. Pietildinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. Mobiclique: Middleware
for mobile social networking. In Proc. of ACM Workshop on Online Social Networks
(WOSN), 2009.

R. Rivest. The MD5 message-digest algorithm. In IETF RFC (1521), 2003.

M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distribution extended to group
communication. In Proc. of ACM Conference on Computer and Communications Security

(CCS), 1996.

J. Teng, B. Zhang, X. Li, X. Bai,-and D. Xuan.. E-shadow: Lubricating social interac-
tion using mobile phones. In Proc. of International Conference on Distributed Computing

Systems (ICDCS), 2011.

M. Terry, E. D. Mynatt, K. Ryall, and D. Leigh. Social Net: Using patterns of physical
proximity over time to infer shared interests. In Proc. of ACM SIGCHI Conference on
Human Factors in Computing Systems_ (CHI), 2002.

Y. Wang, T.-T. Zhang, H.-Z. [i,. .-P. He; and J. Peng: Efficient privacy preserving
matchmaking for mobile social networking against malicious users. In Proc. of IEEE In-

ternational Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2012.

Wi-fi peer-to-peer (P2P) specification. https://www.wi-fi.org/knowledge-center/

published-specifications.

Android 2.2 platform highlights - portable hotspot. http://developer.android.com/
sdk/android-2.2-highlights.html.

F.-J. Wu, F.-I. Chu, and Y .-C. Tseng. Cyber-physical handshake. In Proc. of ACM Special
Interest Group on Data Communication (SIGCOMM), 2011.

Z. Yang, B. Zhang, J. Dai, A. C. Champion, D. Xuan, and D. Li. E-SmallTalker: A
distributed mobile system for social networking in physical proximity. In Proc. of Inter-

national Conference on Distributed Computing Systems (ICDCS), 2010.

23

[34] R. Zhang, Y. Zhang, J. Sun, and G. Yan. Fine-grained private matching for proximity-
based mobile social networking. In Proc. of IEEE Conference on Computer Communica-

tions (INFOCOM), 2012.

[35] Y. Zhao and J. Wu. B-sub: A practical bloom-filter-based publish-subscribe system for

human networks. In Proc. of International Conference on Distributed Computing Systems

(ICDCS), 2010.

[36] H.Zhong, L. Bi, Z. Feng, and N. Li. Research on the design method of mobile social network
services. In Proc. of International Conference on Information Management, Innovation

Management and Industrial Engineering (ICIII), 2008.

24

