
On Common Profile Matching among Multiparty Users in

Mobile D2D Social Networks

Student: Wan-Hsuan Lin

Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan 300, R.O.C.

應應應用用用於於於行行行動動動D2D社社社群群群網網網路路路之之之

多多多方方方用用用戶戶戶資資資訊訊訊匹匹匹配配配方方方法法法

學生: 林宛萱 指導教授: 曾煜棋 教授

國立交通大學資訊工程與科學研究所碩士班

摘摘摘要要要

近年來隨著智慧型手機的盛行，社群網路的發展已經相當純熟， 因此本論文研究主要

應用在社群網路上，並且特別針對使用者行動裝置已經是在近距離的情況， 我們稱作行

動D2D社群網路。有關行動D2D社群網路其中一項重要應用，就是共同資訊的匹配，所謂的

共同資訊的匹配，是指使用者都各自攜帶行動裝置，相遇在某個空間(例如:宴會廳)，並且

這群使用者都感興趣彼此之間共同具有的特性，藉由裝置間短距離通訊(稱作D2D)來傳送使

用者的資訊並且完成匹配。舉例來說對於一群相互陌生的使用者，可能會想知道彼此間共同

的嗜好、朋友或者是過去曾經都去過某些國家，對於學生而言，可能是想知道共同修過的課

程。 本論文應用在行動D2D社群網路，並假設每位使用者的裝置都可以和其他裝置直接互相

通訊下 ，制定了三種有關資訊匹配的問題，分別是全共有問題、β-共有問題、前γ熱門的問

題， 第一個問題主要是延伸之前的相關研究，而後面兩個問題是此篇論文新制定的。我們

提出的方法會根據基本布隆過濾器及疊代布隆過濾器，利用布隆過濾器的特性解決本篇資訊

匹配的三個問題， 最後利用實作來驗證我們提出方法達到將低通訊成本的目標。

關關關鍵鍵鍵字字字: 布隆過濾器、D2D通訊、社群網路、資訊匹配、智慧手機應用軟體

i

On Common Profile Matching among Multiparty Users

in Mobile D2D Social Networks

Student: Wan-Hsuan Lin Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao Tung University

ABSTRACT

Recently, mobile social networks (MSNs) have been widely discussed due to the rapid growth

of smart mobile devices. This work focuses on mobile D2D social networks (MDSNs), where

users in an MSN are physical neighbors. An important social application of MDSNs is common

profile matching (CPM), which refers to the scenario where a group of smartphone users meet

in a small region (such as a ball room) and these users are interested in identifying the common

attributes among them from their personal profiles efficiently via short-range (such as D2D)

communications. For example, a group of strangers may want to find common hobbies, friends,

or countries they visited before, and a group of students may want to know the common courses

they have ever taken. Assuming that users in an MDSN form a fully connected network, we

formulate three versions, namely all -common, β-common, and top-γ-popular, of the CPM

problem. The first problem is an extension of an earlier work, while the latter two problems

are newly defined. We present solutions based on the basic and the iterative Bloom filters.

Evaluation results show that our mechanisms are quite communication-efficient.

Keywords: Bloom filter, D2D communication, mobile social network, profile matching,

smartphone apps.

ii

誌誌誌 謝謝謝

首先由衷感謝曾煜棋老師對我耐心的指導和鼓勵，我非常佩服曾老師的EQ以及專業，他

是個親和力很強的老師，在我研究的道路上時常遇到困難，老師除了正面的鼓勵我，並會指

導我另外一個可行的方向，提醒我不要太過沮喪，因此將近兩年下來，才能順利完成碩論，

在曾老師的身上也學習到很多有關研究該有的態度和方法，此外，也感謝曾老師提供的研究

學習環境，不需要擔心實驗的器材設備，讓我在最後階段實作時，也不用為了設備煩惱。亦

感謝所有口試委員陳文村教授、周百祥教授、陳伶志教授以及陳烈武教授，口試當天所給予

的建議與鼓勵， 讓我的碩論可以更加完整也更加豐富。

另外我也要感謝HSCC實驗室這個大家庭， 學長姊們總是很願意提供他們的專業知識，

並且盡可能給予我學習上相關的幫助及建議，尤其特別感謝同組的陳彥安學長、巫芳璟學

姊、胡淑學姊，這將近兩年的照顧和協助，而其中主要帶領我的陳彥安學長，總願意私底下

額外再花費時間，與我討論碩論中遭遇的問題，從題目的制定到方法最後是驗證的種種過

程，非常謝謝他的這之中不厭其煩的教導與討論，從口頭報告到論文寫作，多虧有學長的帶

領和鼓勵，我才能有這篇碩論成果。也感謝同屆的同學們，讓我的研究生涯裡，除了能一起

面對困難也能一起分享所有喜悅。

最後，我要感謝我親愛的家人，特別是我父母，讓我在學習的道路上不用煩惱其他事

情， 能夠勇往直前，因為有他們的支持，才有完成這篇碩論的我。

林宛萱　於

國立交通大學資訊科學與工程研究所碩士班

中華民國一百零四年一月

iii

Contents

Chinese Abstract i

English Abstract ii

Acknowledgement iii

Contents iv

List of Figures v

1 Introduction 1

2 Related Works 4

3 Preliminaries 6

4 Common Profile Matching in an MDSN 8

4.1 System Model . 8

4.2 Basic Bloom Filter Solution . 9

4.3 Iterative Bloom Filter Solution . 10

5 Prototyping Results and Performance Evaluation 13

5.1 Application Prototyping . 13

5.2 Evaluation Results . 15

6 Conclusions 20

Bibliography 21

iv

List of Figures

1.1 Our CPM application scenario. 2

3.1 An example of insertion and query to a Bloom filter. 6

4.1 Workflow of the basic Bloom filter solution. 10

4.2 Workflow of 2-iteration IBF solution. 11

5.1 The architecture of our MDSN application for CPM. 14

5.2 The personal profile of each user. 14

5.3 Screenshots of the prototyped Android app: (a) Touch the “Start” to participate

in an MDSN. (b) Select the countries the user visited before. (c) Touch the

“MATCH” to start the CPM procedure with nearby users. (d) The answer to

the all -common problem. (e) The answer to the β-common problem. (f) The

answer to the top-γ-popular problem. 16

5.4 Comparison of execution time by increasing the number of inserted items to a

Bloom filter with (a) two parties, (b) three parties, (c) four parties, (d) five

parties and (e) six parties. 17

5.5 Comparison of message cost by increasing the number of inserted items to a

Bloom filter with (a) two parties, (b) three parties, (c) four parties, (d) five

parties and (e) six parties. 18

5.6 Application prototyping on Android phones and evaluation testbed. 19

5.7 Comparison of (a) execution time and (b) message cost by increasing the ex-

pected false positive rate of the IBF. 19

v

Chapter 1

Introduction

Mobile social networks (MSNs) have become increasingly popular due to the explosive growth

of smart mobile devices. Smartphones and pads usually have multiple communication inter-

faces, such as Bluetooth, WiFi, GSM, WCDMA, and LTE, which allow them to communicate

with other remote devices via infrastructures or nearby devices via direct or D2D (device-

to-device) communications. D2D communications have many promising applications, such as

content dissemination, advertisement, broadcasting, location-aware services, gaming, and social

interaction. In particular, when smart devices communicate with others via D2D communica-

tions for socialization purposes, we call the underlying network a mobile D2D social netwo43rk

(MDSN).

Lubricating social interaction is one of the most important MDSN applications. When peo-

ple meet new friends or attend social events, they may be eager to find out some common topics

or backgrounds for initiating conversations with others. For example, a group of strangers may

want to find common hobbies, friends, or countries they visited before to chat, and a group

of students may want to know the common courses they have taken to discuss. Observing

the rapid growth of smart mobile devices, it is possible to improve such social interactions or

social experiences with the assistance of MDSN. Common profile matching (CPM) refers to

the need of finding some common attributes of a group of smartphone users in a small region

under an MDSN. Recently, many MDSN applications for improving social interactions have

been proposed. References [16, 29, 34] propose privacy-preserving mechanisms for finding a

best matched user among a group of users or the common profile of two persons. Reference

[23] presents an intuitive device pairing method based on measuring the time difference of two

sound events. Reference [27] exploits layered information publishing and directional localiza-

tion techniques for lubricating social interactions. Reference [32] demonstrates a handshake

matching mechanism for authenticating information exchange between two users. Reference

1

Bob

Alice
Jenny

Mark

Figure 1.1: Our CPM application scenario.

[33] leverages the Bluetooth Service Discovery Protocol to publish user-defined profiles. How-

ever, these applications mainly focus on the social interaction between two devices in proximity.

Social interactions among multiparty users, i.e., many-to-many social interaction, in an MDSN

have not been well addressed yet. A multiparty private matching scheme is proposed in [15]

for database systems, but it does not consider the message cost incurred during matching.

In this work, we consider the CPM issue in an MDSN where users are willing to cooperate to

find some common attributes among them without privacy violation. Note that user profiles are

available in many social networks, such as Facebook, Twitter, and LinkedIn, for this purpose.

Fig. 1.1 shows the application scenario. Each user carries a smart mobile device with D2D

communication capability. A profile is stored in each mobile device, which contains a list

of attribute profiles of the user. For example, a profile may look like {interest = {NBA,

swimming}, course-taken = {linear algebra, operating system, C language}, country-visited =

{Taiwan, USA, Slovak, Austria}}. Here, “interest”, “course-taken”, and “country-visited” are

called attribute profiles, and “NBA”, “swimming”, etc. are called attribute items. Users are

in proximity, but may form multiple logical groups. Users in the same logical group agree to

execute the matching process, for example, via enabling an app on their smart phones. (We

comment that neighbor discovery [2, 7, 13], and group formation need to be done prior to

the CPM process, but we will omit discussing these parts.) We formulate three CPM-related

2

problems: all-common, β-common, and top-γ-popular problems, where β and γ are integers.

The first problem is an extension of the earlier work [33], while the latter two are newly defined.

The first problem is to find the common attribute items of all users. The second problem is

to find the common attribute items of at least β users, while the third problem is to find the

top-γ attribute items shared by most users. We present communication-efficient solutions to

these problems based on basic and iterative Bloom filters. We exploit Bloom filter since it is a

space-efficient data structure for comparing the items owned by two parties without publishing

their entire attribute profiles. In addition, it can provide privacy against eavesdroppers due to

its property of one-way hashing.

The main contributions of this work are as follows. First, we have formulated three CPM

problems that aim at lubricating social interactions among a group of physically close users via

D2D communications. Second, compared to existing MDSN applications, which are designed

for one-to-one communications, our solutions are for multiparty users and work in a more

efficient way. Third, we have prototyped these applications via Android apps. Implementation

experiences are presented, which do verify their feasibility.

The rest of this paper is organized as follows. Related our works are reviewed in Section 2.

Preliminaries are given in Section 3. Section 4 presents our solutions. Section 5 shows our

prototyping results and performance evaluation. Finally, Section 6 concludes this paper.

3

Chapter 2

Related Works

First, We survey related works in MSNs. Then, we review some profile matching works.

Reference [14] discusses the applications, architectures, and protocol designs of MSNs. A

MSN usually needs centralized servers to exchange and share information among mobile de-

vices. Reference [36] presents the design pattern of a web-based MSN service. All information

exchanges need to go through web servers. In [11], a middleware is proposed to provide a

common platform for rapidly developing MSN applications. The platform enables capturing,

managing, and sharing the social states of physical communities and offloads the computation

of MSN applications. Location-based services for sharing comments, photos, videos, or activi-

ties are addressed in [10, 20, 21]. Among MSN applications, we are more interested in MDSN,

which allows mobile devices in proximity to communicate directly with each other without

relying on server. Such D2D communication technologies are actually quite mature (such as

Wi-Fi Direct [30] and Wi-Fi hotspot [31]). In [24], a middleware is developed for maintaining

an MDSN over ad-hoc networks by store-carry-and-forward techniques. Reference [22] presents

a query/response matching service in a mobile ad hoc Bluetooth/Wi-Fi network. Reference [28]

infers the shared interests between users with RF-based devices by analyzing patterns of physi-

cal proximity of these people. Reference [33] facilitates social networking in physical proximity

by automatically suggesting common topics between two users in close vicinity.

For profile matching,references [16, 17, 29, 34] focus on the privacy-preserving issue. In [16],

fully distributed protocols are proposed such that an initiating user can find the best matched

person from a group of users. Reference [17] proposes comparison-based profile matching proto-

cols, which maintain anonymity during matching. However, these private matching mechanisms

do not consider the incurred message cost and computation overhead. Reference [29] proposes

a matchmaking mechanism such that users can exchange attributes while others cannot iden-

tify the contents. Reference [34] further considers fine-grained private matching. Reference

4

[8] addresses social serendipity without concerning the privacy issue. The above works do not

consider the message and computation overheads. Reference [33] does address the message

cost, but as the works reviewed above, it cannot handle multi-party CPM. In this sense, our

all -common, β-common, and, top-β-popular CPM problems are more general.

5

0 1 0 0 1 0 1 0 1 0 1 0

biking football

0 1 0 0 1 0 1 0 1 0 1 0

0 1 0 0 1 0 1 0 1 0 1 0

basketball

biking

non-member!

…

Insertion Query

interest = { biking, football,

watching movies, dancing }

member!

Figure 3.1: An example of insertion and query to a Bloom filter.

Chapter 3

Preliminaries

We briefly introduce the basics of Bloom filter [3], which is a space-efficient probabilistic data

structure for storing membership data. Given a set S, a Bloom filter allows two basic operations:

insertion and query. Initially, the Bloom filter is an array of m bits with all 0s . To insert an

element s ∈ S into this Bloom filter, we use z independent hash functions each taking s as the

input and mapping to an integer in [1, m]. Let h() be any hash function. Then the h(s)-th

entry of the m-bit array is set to 1. Repeating this process for all z hash functions, the insertion

of s into the Bloom filter is done. If we repeat the above procedure for all members of S, the

insertion of S is done.

To query whether any s′ is a member of S, we compute z hash values from the same z hash

functions using s′ as the input. For each hash function h(), we check if the h(s′)-th bit of the

array is 0. If so, s′ is not a member of S. Otherwise, s′ is very likely to be a member of S.

Fig. 3.1 illustrates an example of inserting an “interest” attribute profile to a Bloom filter and

two query examples.

Since Bloom filter is a probabilistic data structure, it may regard a non-member as a member

6

by mistake, or known as false positive. The probability of a false positive, also called false

positive rate, is

f = (1− (1−
1

m
)zn)z ≈ (1− e−zn/m)z ,

where m is size of the Bloom filter, z is the number of hash functions, and n = |S|. It represents

the probability that the corresponding z hashed bits are all 1s while s′ is not a member of S

[5]. Therefore, given predefined n, z, and, f values, we can choose a proper array size m. Note

that however there is no false negative.

Bloom filter provides a tradeoff between space complexity and query accuracy. For publish-

subscribe systems, [12, 35] use it to reduce memory and bandwidth costs when storing and

propagating users’ information. It is also possible to extend the original Bloom filter to counting

and weighted Bloom filters [9, 19], which allow a new delete operation. Reference [18] provides

a name service with Bloom filter to speed up the finding of an object’s location. Reference [6]

performs parallel queries on Bloom filters to determine the address prefix membership in sorted

prefix sets. Our work mainly uses it to reduce message costs.

7

Chapter 4

Common Profile Matching in an

MDSN

4.1 System Model

In an MDSN, we consider one user group U and one attribute profile of these users. (An

attribute profile could be the hobbies, the countries visited, the courses taken, or the celebrities

followed by users. Solving this problem for multiple user groups and attribute profiles can be

done by repeating this for each user group and attribute profile.) Let U = {u1, u2, . . . , uq} and

the attribute profile of user ui ∈ U be Pi, i = 1..q. Each element in Pi is called an attribute

item. Let ni = |Pi|. The universal set of the attribute items is denoted by P and we assume

that P is known by all users.

We propose three versions of the CPM problem.

• all -common: The goal is to find the intersection of all users’ attribute profiles, i.e., Call =
⋂

i=1..q Pi.

• β-common: The goal is to find the set of all attribute items such that each attribute item

is in at least β users’ attribute profiles. For any a ∈ P , we define a membership function

η(a, Pi) such that η(a, Pi) = 1 if a ∈ Pi and η(a, Pi) = 0 otherwise. The β-common set is

defined as Cβ-com = {a|Σi=1..qη(a, Pi) ≥ β}.

• top-γ-popular: The goal is to find the set of top-γ hottest attribute items that are shared

by all users’ profiles. The top-γ set is defined as Ctop-γ = {a| the value Σi=1..qη(a, Pi) of a is ranked

top-γ}.

8

4.2 Basic Bloom Filter Solution

We present a basic Bloom filter solution for solving the CPM problems. Assuming that users

in U form a fully-connected network, our solution first requests each user ui, i = 1..q, to insert

her attribute profile Pi into a Bloom filter and sends the m-bit array to all other users in U .

On receiving any uj’s m-bit array, i 6= j, ui tries to recover uj’s attribute profile Pj . From

these collected attribute profiles (which possibly contain false-positive elements), ui then tries

to calculate Call, Cβ-com, and Ctop-γ.

Definition 1. Given any attribute profile Pi, define BF (Pi) to be the m-bit array obtained

by inserting each attribute item in Pi into the Bloom filter. Given any set S ⊆ P , define

Qry(S,BF (Pi)) to be the set containing each element a ∈ S which returns a positive answer

when querying the existence of a in the Bloom filter BF (Pi), i.e., Qry(S,BF (Pi)) = {a| (a ∈

S)∧(a ∈ BF (Pi))}. (Here, a ∈ BF (Pi) means that for each hashed value of a, the corresponding

bit in BF (Pi) is 1.)

The basic solution is detailed as follows. These steps are executed by each user ui, i = 1..q,

concurrently. (Refer to Fig. 4.1 for illustration.)

1. User ui computes its Bloom filter array BF (Pi) and broadcasts BF (Pi) to all other users.

2. User ui collects the Bloom filter arrays BF (Pj) of all other users uj, j 6= i.

3. For each BF (Pj) collected from uj, ui computes the set P ′

j = Qry(P,BF (Pj)), which is

an estimation of Pj .

4. Finally, ui uses its own Pi and all other (q−1) estimated P ′

j , j 6= i, to compute all -common

set Call, β-common set Cβ-com, and top-γ-popular set Ctop-γ (this involves trivial set and

ranking operations, so we omit the details).

Although this solution is very simple, it may have the following potential drawbacks. First,

since the false positive rate is related to the value ofm discussed in Section 3, the communication

cost could be large when m is large. Second, in step 3, the query process needs to exhaustively

check each attribute item in P . The processing complexity O(q · |P |) is high when the universal

set P or the user number q is large. Note that if someone queries by the universal set, the privacy

of users may still be bleached. To resolve this problem, users can determine a shared secret key

[4, 26]. Then we can concatenate the secret key to the attribute items when computing hash

values. Without the secret key, it is hard to recover the original attribute items.

9

.

...

…

Figure 4.1: Workflow of the basic Bloom filter solution.

4.3 Iterative Bloom Filter Solution

This solution is based on the iterative Bloom filter (IBF) [33]. The goal is to further reduce

the message cost by using smaller Bloom filters iteratively. Recall that the size of a Bloom

filter should be set according to the expected number of inserted items and the expected false

positive rate. We can use a smaller Bloom filter (thus with a higher false positive rate) in

the first iteration to reduce message cost. Since some items have been filtered out, in the

subsequent iterations, we can still use smaller Bloom filters while controlling the false positive

rate. Therefore, IBF may keep the same false positive rate as the basic solution with smaller

message cost. In [33], a 2-iteration IBF has been shown to be quite efficient. Hence, we adopt

the same approach.

The following steps are executed by each user ui, i = 1..q, concurrently. Note that the value

of m is not necessarily the same as that used in the basic Bloom filter solution. (Refer to

Fig. 4.2 for illustration.)

1. User ui computes its Bloom filter array BF (Pi) and broadcasts BF (Pi) to all other users.

2. User ui collects the Bloom filter arrays BF (Pj) of all other users uj, j 6= i.

3. For each BF (Pj) collected from uj, ui computes the set Pi,j = Qry(Pi, BF (Pj)), which

is an estimation of Pi ∩ Pj. (It contains the set of attribute items that appear in Pi as

well as in the Bloom filter BF (Pj). Note that the query cost of Qry(Pi, BF (Pj)) could

be much less than that of Qry(P,BF (Pj)) when P is large. Also note that Pi,j and Pj,i

may not be the same.)

10

...

…
…

…

Figure 4.2: Workflow of 2-iteration IBF solution.

4. In step 3, ui already has the sets Pi,j for all j 6= i. Then, ui computes (q−1) Bloom filter

arrays BF (Pi,j), j 6= i, and broadcasts these arrays to all other users.

5. User ui collects (q − 1) Bloom filter arrays BF (Pj,k) from each uj, j 6= i, k 6= j. (There

are totally (q − 1)2 arrays received.)

6. Combining the (q − 1) arrays in step 3 and the (q − 1)2 arrays in step 5, ui now has

q(q − 1) arrays, namely BF (Ps,t) for all s 6= t. Then ui computes the vector

B̃F (Ps,t) = BF (Ps,t) ∧ BF (Pt,s),

where ∧ is the bit-wise logical AND operator. It is not hard to see that B̃F (Ps,t) =

B̃F (Pt,s).

11

7. Next, ui uses a voting process to construct an integer array C[1 : m]. The value of each

C[d] is initially 0, 1 ≤ d ≤ m. Intuitively, in the voting process, each user can cast one

(and only one) vote to C[d] if any hashed value of any attribute item is d. To calculate

C[d], we use a tentative set Td, which is set to ∅ initially. Then we check the d-th bit of

each B̃F (Pj,k). There are three cases:

• If B̃F (Pj,k)[d] = 0, do nothing.

• If B̃F (Pj,k)[d] = 1 and only one of uj and uk is in Td, increase C[d] by 1 and include

the one of uj and uk which is not in Td into Td.

• If B̃F (Pj,k)[d] = 1 and none of uj and uk is in Td, increase C[d] by 2 and include

both uj and uk into Td.

Note that the above process should be repeated for each B̃F (Pj,k). This process avoids

querying each B̃F (Pj,k) by the universal set P to reduce computation cost. Compared to

the basic Bloom filter solution, this step may slightly increase the false positive rate of

the final results. To summarize, this voting process helps quickly estimate the number of

votes that C[d] receives.

8. Using array C[1 : m], ui derives its answers to the three CPM problems as follows.

• all -common: We convert C[1 : m] to an array C̃[1 : m] such that C̃[d] = 1 if C[d] = q

(i.e., q votes) and C̃[d] = 0 otherwise. The answer of Call is Qry(P, C̃).

• β-common: We convert C[1 : m] to an array C̃[1 : m] such that C̃[d] = 1 if C[d] ≥ β

(i.e., β votes) and C̃[d] = 0 otherwise. The answer of Cβ-com is Qry(P, C̃).

• top-γ-popular: The answer of Ctop-γ can be obtained by repeating the β-common

problem by setting β = q and gradually collecting the attribute items by decreasing

the value of β by 1 each time, until γ attribute items are collected or β is equal to 1.

12

Chapter 5

Prototyping Results and Performance

Evaluation

5.1 Application Prototyping

We implement an MDSN application for CPM on Android phones as shown in Fig. 5.6. The

development of an Android application is based on Android software development kit (SDK) [1]

and is written in Java programming language. The goal is for users to know the common visited

countries among nearby users. The MDSN is implemented by WiFi hotspot. In the future,

we may use WiFi Direct. Fig. 5.3 shows the screenshots of our Android app. In this example,

there are four users. At first, they press the “Start” button to join the MDSN (Fig. 5.3(a)).

One of them is in charge of being a network router by enabling the WiFi hotspot. Users can

choose their attribute items from the universal set (Fig. 5.3(b)). The user profiles of these

users are presented in Fig. 5.2. When ready, users can press the “MATCH” button to run the

CPM procedure (Fig. 5.3(c)). After CPM is completed, they can check the results (Fig. 5.3(d),

(e), and (f)). The software architecture presented in Fig. 5.1 is composed of the modules of

user interface, profile manager, transmission, and CPM algorithm. Below, We explain each

component in details.

• User Interface: We provide simple and clear interfaces for user to manipulate our app

Fig. 5.3. The first job of this component is for user to launch the network connection

(i.e., establishing or joining an MDSN) by touching the button ”Start” without any other

manual settings. In addition, touching the button ”Matching” launch the CPM procedure.

Second, it provides interfaces for user to configure and check his personal profiles. The

user can look over matching results of each matching problem respectively as shown in

(Fig. 5.3(d), (e), and (f)).

• Profile Manager : This component can store attribute profiles, such as ”interest”, ”course-

13

User Interface

MDSN

Management

Wireless

communication

Profiles

CPM Solver

Bloom Filter Hander

CPM AlgorithmTransmission

Figure 5.1: The architecture of our MDSN application for CPM.

Alice
{ Austria, America, Bhutan, Brazil, China, Chile, Canada, Egypt, France, Germany, Guinea, Iceland,

Japan, Kenya, Korea South, Nepal, Italy, Norway, Philippines, Portugal, Singapore, Switzerland,

Taiwan, Thailand, Turkey }

Bob
{ America, Australia, Belgium, Brazil, Canada, Djibouti, France, Germany, Greece, Iceland, Italy,

Japan, Finland, Korea South, Lebanon, Libya, Micronesia, New Zealand, Portugal, Singapore,

Spain, Taiwan, Turkey, Vietnam }

Mark
{ America, Brunei, Canada, Chile, China, Germany, Greece, Czech, Egypt, France, Italy, Iraq, Japan,

Korea South, New Zealand, Netherlands, Norway, Spain, Switzerland, Taiwan, Thailand, Turkey,

Ukraine, Vanuatu }

Jenny
{ America, Australia, Belgium, Czech, Ecuador, Estonia, Finland, France, Gabon, Greece, Hungary,

Japan, Korea South, New Zealand, Netherlands, Norway, Philippines, Spain, Taiwan, Thailand,

Turkey, Qatar, Romania}

Figure 5.2: The personal profile of each user.

taken” and ”country-visited”, provided by a user. Each attribute profile contains at-

tribute items like {interest = singing, dancing, swimming, running, and so on}. The

user-configured profiles are the inputs of CPM algorithms. In this application prototyp-

ing, we choose the country-visited (e.g., the countries that a user had been to before.) for

demonstration. Hence, profile manager maintains the handset user’s country-visited pro-

file and the countries around the world as the universal attribute items of a country-visited

14

profile.

• Transmission: As for the D2D communication, we exploit Wi-Fi hotspot on Android to

realize the MDSNs. It is because this WiFi hotspot feature is backward compatible to

older Android phones. Thus, WiFi is the interface of wireless communication function in

this module. For controlling WiFi of Android phone, WifiManager and WifiConfiguration

in Android SDK are the fundamental API. However, there is no API to directly configure

WiFi hotspot in Android SDK. We use a Java reflection technique to control and configure

the functionalities of WiFi hotspot. The device opening the WiFi hotspot will act as an

access point (AP) while the other devices can connect to it as a client.

When executing this application, the transmission module first enables WiFi to search

an access point with a predefined SSID. If this AP exists, the smartphone automatically

connects to it for joining the MDSN. Otherwise, the smartphone enables the Wi-Fi hotspot

with the predefined SSID. We call this WiFi hotspot enabled smartphone as AP device and

it is responsible for exchanging the necessary data among connected devices. Therefore,

the function MDSN Management provides for AP device to manage the members of the

MDSN. All the other smartphones in this MDSN communicate with each other through

the AP device.

• CPM Algorithm: This component contains two functions, Bloom Filter (BF) Handler,

CPM Solver. BF Handler leverages the Bloom filter to insert the user-configured profiles.

As discussed in Section 4, there are two versions of BF Handler, i.e., basic Bloom filter

and IBF. Since the performance of IBF is better than basic BF, we adopt IBF in this

application. After finishing exchanges of Bloom filters, CPM solver executes the voting

process presented in Section 4.3 for efficiently computing the results of the all -common,

β-common, and top-β-popular CPM problems.

5.2 Evaluation Results

We evaluate the proposed solutions by two metrics, execution time and message cost, on our

application prototype. The evaluation testbed is six commercial Android smartphones (Google

Nexus 4) as shown in Fig. 5.6. The parameters in the experiments are as follows. We assume

that z = 7 and use MD5 [25] to generate hash values. In the basic Bloom filter solution,

the expected false positive rate f is set to 0.001%. In the iterative Bloom filter solution (2

15

(a) (b) (c) (d) (e) (f)

Figure 5.3: Screenshots of the prototyped Android app: (a) Touch the “Start” to participate
in an MDSN. (b) Select the countries the user visited before. (c) Touch the “MATCH” to start
the CPM procedure with nearby users. (d) The answer to the all -common problem. (e) The
answer to the β-common problem. (f) The answer to the top-γ-popular problem.

iterations), we respectively set f = 10% and f = 0.01% for the first and the second iterations.

The total false positive rate is also 0.001% as that of the basic Bloom filter solution. In addition,

we also use the exact strings of attribute items as the baseline solution. We set the average

string length of attribute items to 10.

Message size is the major factor that affects the computation and communication perfor-

mance. Recall that we determine the Bloom filter size m by considering the potential number

of inserted items n , the expected false positive rate f , and the number of hash functions z.

Here, we study the performance issue of the all -common problem by varying n and f with

different numbers of users.

1. Varying n: We vary n from 200 to 1000 in each user’s attribute profile. We observe the

execution time, which contains computation and communication time during matching.

Fig. 5.4 shows that basic BF and the IBF solutions perform much better than the baseline

solution when n is large. This is because Bloom filter reduces message size with its hashing

mechanism. Also, the result shows that Bloom filter is computation-efficient since the

execution time increases slightly when n increases. Fig. 5.4 shows that the gap between

basic BF and IBF shrinks when the number of users increases. This is because the

messages exchanged during the IBF procedure increase as the number of users increases.

Fig. 5.5 shows the message costs of the entire network incurred by these solutions. As

expected, IBF significantly outperforms baseline and basic BF solutions in message costs.

This is because IBF uses smaller Bloom filter in each iteration.

2. Varying f : We vary f for IBF in its second iteration from 0.001% to 10%. Note that the

value of f in the first iteration is fixed. (We omit the performance of basic BF because it

16

244

345

455

676

802

228

241 255
302

354

198 216 212 224 243

0

100

200

300

400

500

600

700

800

900

200 400 600 800 1000

E
x
e

cu
ti

o
n

 t
im

e
 (

m
s)

n

2 parties baseline basic BF IBF

435

671

765

974

1226

284
275

337
408 435

292 297 292 287 291

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000

E
x
e

cu
ti

o
n

 t
im

e
 (

m
s)

n

3 parties baseline base BF IBF

(a) (b)

529

785

896

1113

1457

290

361
428 445

502

362
381 392 418 433

0

200

400

600

800

1000

1200

1400

1600

200 400 600 800 1000

E
x
e

cu
ti

o
n

 t
im

e
 (

m
s)

n

4 parties baseline base BF IBF

540

717

1125

1354

1580

299 451
549

710
799

421

563
588

537
599

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000

E
x
e

cu
ti

o
n

 t
im

e
 (

m
s)

n

5 parties baseline base BF IBF

(c) (d)

558

961

1376

1543

1918

305

570

644
797 802

397

584

618
678 665

0

500

1000

1500

2000

2500

200 400 600 800 1000

E
x
e

cu
ti

o
n

 t
im

e
 (

m
s)

n

6 parties baseline base BF IBF

(e)

Figure 5.4: Comparison of execution time by increasing the number of inserted items to a
Bloom filter with (a) two parties, (b) three parties, (c) four parties, (d) five parties and (e) six
parties.

is similar to that of IBF.) In this experiment, we set n = 1000. However, in the second

iteration of IBF, the number of attribute items to be inserted is the intersection of two

sets. We assume here that the expected size of the intersected set is 50. We then use

these values and f to choose the Bloom filter sizes in the first and the second iterations of

IBF. Fig. 5.7(a) shows that the execution time only decreases slightly when f increases.

The reason is that the intersected set size of the second iteration (50) is much smaller

17

4092

8184

12276

16368

20460

1630

3262

4894

6526

8158

330 662 992 1324 1656

0

5000

10000

15000

20000

25000

200 400 600 800 1000

M
e

ss
a

g
e

 c
o

st
 (

b
y

te
s)

n

2 parties baseline basic BF IBF

6138

12776

18414

24552

30690

2445

4893

7341

9789

12237

579 1161 1740 2322 2904

0

5000

10000

15000

20000

25000

30000

35000

200 400 600 800 1000

M
e

ss
a

g
e

 c
o

st
 (

b
y

te
s)

n

3 parties baseline base BF IBF

(a) (b)

8184

16368

24552

32736

40920

3260

6524

9788

13052

16316

884 1772 2656 3544 4432

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

200 400 600 800 1000

M
e

ss
a

g
e

 c
o

st
 (

b
y

te
s)

n

4 parties baseline basic BF IBF

10230

20480

30690

40920

51150

4075

8155

12235

16315

20395

1245 2495 3740 4990 6240

0

10000

20000

30000

40000

50000

60000

200 400 600 800 1000

M
e

ss
a

g
e

 c
o

st
 (

b
y

te
s)

n

5 parties baseline Basic BF IBF

(c) (d)

12276

24552

36828

49104

61380

4890

9786

14682

19578

24474

1662
3330

4992
6660

8328

0

10000

20000

30000

40000

50000

60000

70000

200 400 600 800 1000

M
e

ss
a

g
e

 c
o

st
 (

b
y

te
s)

n

6 parties baseline basic BF IBF

(e)

Figure 5.5: Comparison of message cost by increasing the number of inserted items to a Bloom
filter with (a) two parties, (b) three parties, (c) four parties, (d) five parties and (e) six parties.

than that of the first iteration (1000). Because m is proportional to n if f is fixed, the

reduced message size is small when varying f in IBF’s second iteration. Fig. 5.7(b) shows

the message costs of the entire network in different cases. To sum up, varying f of IBF’s

second iteration will not significantly affect the execution time.

18

Figure 5.6: Application prototyping on Android phones and evaluation testbed.

273 263
255 253

334
313 301 307

468 454 437 442

588 583 575
562

644 652 638 621

0

100

200

300

400

500

600

700

0.00001 0.0001 0.001 0.01

E
x
e
cu
ti
o
n
ti
m
e
(m

s)

f

2 parties 3 parties 4 parties 5 parties 6 parties

1748 1656 1562
1496

3288
2904

2622
2424

5200

4432
3868

3472

7520

6240

5300
4640

10248

8328

6918

5928

0

2000

4000

6000

8000

10000

12000

0.001% 0.010% 0.100% 1.000%

M
e
ss
a
g
e
co
st
(b
y
te
s)

f

2 parties 3 parties 4 parties 5 parties 6 parties

(a) (b)

Figure 5.7: Comparison of (a) execution time and (b) message cost by increasing the expected
false positive rate of the IBF.

19

Chapter 6

Conclusions

In this work, we have presented CPM in an MDSN, which is to identify common attributes

among physical neighbors via D2D communications. We consider three CPM problems: all -

common, β-common, and top-γ-popular. We propose basic and iterative Bloom filter-based

solutions to these problems. We have conducted some evaluations on commercial smartphones

to prove that the proposed solutions are communication-efficient. The basic Bloom filter and

IBF solutions perform well in execution time when the number of attribute items in each profile

is increased. However, the IBF solution incurs lower message costs. We have also demonstrated

a prototype on Android smartphones. The application verifies that the proposed solutions are

feasible on off-the-shelf smartphones.

20

Bibliography

[1] Android sdk. http://developer.android.com/sdk/index.html.

[2] M. Bakht, M. Trower, and R. H. Kravets. Searchlight: won’t you be my neighbor? In

Proc. of ACM International Conference on Mobile Computing and Networking (MobiCom),

2012.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications

of the ACM, 13(7):422–426, 1970.

[4] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenticated

group diffie-hellman key exchange. In Proc. of ACM Conference on Computer and Com-

munications Security (CCS), 2001.

[5] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet

Mathematics, 1(4):485–509, 2004.

[6] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching using

bloom filters. In Proc. of ACM Special Interest Group on Data Communication (SIG-

COMM), 2003.

[7] P. Dutta and D. Culler. Practical asynchronous neighbor discovery and rendezvous for

mobile sensing applications. In Proc. of ACM Conference on Embedded Networked Sensor

Systems (SenSys), 2008.

[8] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software. IEEE Pervasive

Computing, 4(2):28–34, 2005.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area web

cache sharing protocol. ACM Trans. on Networking, 8(3):281–293, 2000.

[10] Foursquare. http://foursquare.com/.

21

[11] A. Gupta, A. Kalra, D. Boston, and C. Borcea. Mobisoc: A middleware for mobile social

computing applications. Mobile Networks and Applications, 14(1):35–52, 2009.

[12] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander. Llipsin: Line

speed publish/subscribe inter-networking. In Proc. of ACM Special Interest Group on Data

Communication (SIGCOMM), 2009.

[13] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: a low-latency energy-

efficient asynchronous neighbor discovery protocol. In Proc. of International Conference

on Information Processing in Sensor Networks (IPSN), 2010.

[14] N. Kayastha, D. Niyato, P. Wang, and E. Hossain. Applications, architectures, and

protocol design issues for mobile social networks: A survey. Proceedings of the IEEE,

99(12):2130–2158, 2011.

[15] P. K. Y. Lai, S.-M. Yiu, K. P. Chow, and C. F. Chong. An efficient bloom filter based

solution for multiparty private matching. In Proc. of International Conference on Security

and Management (SAM), 2006.

[16] M. Li, N. Cao, S. Yu, and W. Lou. Findu: Privacy-preserving personal profile matching

in mobile social networks. In Proc. of IEEE Conference on Computer Communications

(INFOCOM), 2011.

[17] X. Liang, X. Li, K. Zhang, R. Lu, X. Lin, and X. S. Shen. Fully anonymous profile matching

in mobile social networks. In IEEE Journal on Selected Areas in Communications, 2012.

[18] M. C. Little, S. K. Shrivastava, and N. A. Speirs. Using bloom filters to speed-up name

lookup in distributed systems. The Computer Journal, 45(6):645–652, 2002.

[19] S. Liu, L. Kang, L. Chen, and L. Ni. Distributed incomplete pattern matching via a novel

weighted bloom filter. In Proc. of International Conference on Distributed Computing

Systems (ICDCS), 2012.

[20] Loopt. http://www.loopt.com.

[21] Mobiluck. http://www.mobiluck.com.

[22] M. Motani, V. Srinivasan, and P. S. Nuggehalli. Peoplenet: Engineering A wireless virtual

social network. In Proc. of ACM International Conference on Mobile Computing and

Networking (MobiCom), 2005.

22

[23] C. Peng, G. Shen, Y. Zhang, and S. Lu. Point&Connect: Intention-based device pairing for

mobile phone users. In Proc. of International Conference on Mobile Systems, Applications,

and Services (MobiSys), 2009.

[24] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. Mobiclique: Middleware

for mobile social networking. In Proc. of ACM Workshop on Online Social Networks

(WOSN), 2009.

[25] R. Rivest. The MD5 message-digest algorithm. In IETF RFC (1321), 2003.

[26] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distribution extended to group

communication. In Proc. of ACM Conference on Computer and Communications Security

(CCS), 1996.

[27] J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan. E-shadow: Lubricating social interac-

tion using mobile phones. In Proc. of International Conference on Distributed Computing

Systems (ICDCS), 2011.

[28] M. Terry, E. D. Mynatt, K. Ryall, and D. Leigh. Social Net: Using patterns of physical

proximity over time to infer shared interests. In Proc. of ACM SIGCHI Conference on

Human Factors in Computing Systems (CHI), 2002.

[29] Y. Wang, T.-T. Zhang, H.-Z. Li, L.-P. He, and J. Peng. Efficient privacy preserving

matchmaking for mobile social networking against malicious users. In Proc. of IEEE In-

ternational Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), 2012.

[30] Wi-fi peer-to-peer (P2P) specification. https://www.wi-fi.org/knowledge-center/

published-specifications.

[31] Android 2.2 platform highlights - portable hotspot. http://developer.android.com/

sdk/android-2.2-highlights.html.

[32] F.-J. Wu, F.-I. Chu, and Y.-C. Tseng. Cyber-physical handshake. In Proc. of ACM Special

Interest Group on Data Communication (SIGCOMM), 2011.

[33] Z. Yang, B. Zhang, J. Dai, A. C. Champion, D. Xuan, and D. Li. E-SmallTalker: A

distributed mobile system for social networking in physical proximity. In Proc. of Inter-

national Conference on Distributed Computing Systems (ICDCS), 2010.

23

[34] R. Zhang, Y. Zhang, J. Sun, and G. Yan. Fine-grained private matching for proximity-

based mobile social networking. In Proc. of IEEE Conference on Computer Communica-

tions (INFOCOM), 2012.

[35] Y. Zhao and J. Wu. B-sub: A practical bloom-filter-based publish-subscribe system for

human networks. In Proc. of International Conference on Distributed Computing Systems

(ICDCS), 2010.

[36] H. Zhong, L. Bi, Z. Feng, and N. Li. Research on the design method of mobile social network

services. In Proc. of International Conference on Information Management, Innovation

Management and Industrial Engineering (ICIII), 2008.

24

