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Abstract—Due to the variety of popular video coding 
standards, many efforts have been put into the design of a 
single video decoder chip that supports multiple formats. In 
2004, ISO/IEC MPEG started a new work item to facilitate 
multi-format video codec design and to enable more flexible 
usage of coding tools. The work item has turned into the 
MPEG Reconfigurable Video Coding (RVC) framework. 
The key concept of the RVC framework is to allow flexible 
reconfiguration of coding tools to create different codec 
solutions on-the-fly. In this paper, flexible SoC architecture 
is proposed to support the RVC framework. Some analysis 
has been conducted to show the extra costs required for this 
platform compared to hard-wired codec architecture. In 
conclusion, the RVC framework can be mapped to an SoC 
platform to provide flexibility and scalability for dynamic 
application environment with reasonable cost in hardware 
design. 

I.  INTRODUCTION 
 

Most multimedia devices today have to support 
multiple codec standards. Take video codecs for example, 
a portable multimedia player usually supports the playback 
of the MPEG-1/2, MPEG-4 SP, WMV, and H.264/MPEG-
4 Part 10 video contents. In order to reduce system cost, a 
single-chip SoC solution that supports all these standards is 
a sensible approach. From IC designers’ point of view this 
is not a serious problem since most (if not all) popular 
video codecs share the same block-based motion 
compensated transform coding data flow. In addition, 
many coding tools have similar architecture. However, 
there are some application issues that makes traditional 
codec design approaches unsatisfactory [1]. 

A major problem with existing approach of defining a 
codec standard is the lack of flexibility when new 
applications emerge. A video codec is composed of several 
coding tools (e.g. DCT/IDCT, MC, VLC/VLD, etc.). 
However, for a codec standard, the conformance point is 
defined at codec-level, instead of tool-level. Different 
profiles/levels are created for each codec to address the 
need of different classes of applications. This approach 
works fine in the past since the application scenarios were 
quite simple (e.g. DVD, DTV). However, with the 
exponential growth of new multimedia applications, the 
old approach of defining conformance point at codec-level 
becomes awkward. Quite often, a new application designer 
finds it impossible to find a reasonable codec 

profile@level to fit the target application well. For 
example, the FMO tool of H.264 is useless for many 
applications but a decoder may still need to support it 
simply because it is included in AVC baseline profile. In 
general, application environment is changing faster than an 
international standard can catch up that there should be a 
more efficient way of allowing a codec to adapt to new 
applications while maintaining interoperability among 
different solutions. 

MPEG has recognized this issue and started a new 
work item called Video Coding Tools Repository (VCTR) 
in 2004. After some investigations, the direction and 
benefit of VCTR is becoming clear [2]. Later, this effort 
becomes the Reconfigurable Video Coding (RVC) 
framework in 2006 [3]. This new framework defines the 
conformance point at tool-level. Therefore, in principle, an 
RVC-enabled codec can negotiate on-the-fly with the 
video bitstream encoder/sender about which coding tools is 
required and how the data path can be wired among these 
coding tools in order to decode the video bitstream. After 
the setup stage, the decoder can decode the bitstream 
correctly. With this approach, an SoC can support multiple 
codec standards as well as creating customized codecs in 
real time as long as it contains all the standard-conforming 
tools that is necessary to decode bitstreams from different 
encoders. 

So far, the RVC framework is still in development. 
Most of the investigations are done using C models and 
behavioral model simulators such as Moses [4]. In this 
paper, SoC architecture that can be used to implement the 
RVC framework is proposed. The paper is organized as 
follows.  The RVC framework is introduced in section II.  
The SoC architecture for direct support of RVC is 
presented in section III. Some comparisons of the RVC 
architecture to a common hard-wired solution is also given 
in this section. Section IV studies an implementation to get 
an idea on the cost for such flexibility. Finally, some 
discussions are given in section V. 

II. MPEG RVC FRAMEWORK 
 

The concept of MPEG RVC framework can be 
illustrated by Fig. 1. The key difference between RVC and 
the old MPEG codec standards is that the interface of each 
coding tools is defined precisely so that they can be used 
(like LEGO blocks) to build various codecs. The decoder 
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configuration describes how input bitstream can be parsed 
so that the raw input data to each coding tools can be 
extracted. A decoder description language is under 
development so that the configuration of a specific codec 
(such as H.264) can be described using a (small) 
configuration bitstream. The decoder configuration 
bitstream will be processed by an RVC decoder before 
decoding of a video bitstream conforming to the described 
standard. Note that after processing a configuration 
bitstream, the RVC decoder will generate a Global Control 
Unit (GCU) that governs the operation of the coding tools. 

In principle, the configuration description tells the 
RVC decoder how to wire the coding tools to form a data 
path. In the RVC framework, each coding tools is called a 
functional unit (FU) and is specified in Fig. 2 [1]. In Fig. 2, 
a control signal is a signal embedded in the video bitstream 
(for example, the width and height of the video frame). A 
context signal is a signal generated from the processing of 
bitstream data (for example, the AC prediction direction in 
the MPEG-4 Part 2 video standard). The context-control 
unit reads in the context and control signals generated by 
previous FU’s and generates (or passes on) some context 
and control signals to the next FU’s based on the result of 
the processing unit. 

A partial example of a configured RVC codec that 
behaves like an H.264 baseline decoder is shown in Fig. 3. 
In Fig. 3, the functional blocks encircled in the dashed 
rectangles will be implemented using the proposed 
architecture in next two sections. 
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Fig. 1. Concept of MPEG RVC framework 
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Fig. 2. Definition of a functional unit in RVC 

 

Parser

Networks of HW/SW FUs
Encoded Bitstream

GCU

SE1 SE2 SE3
… SEK

Data
for FU1

Data
for FU2

… Data
for FUn

parsing

Decoder Description

FU Network
Configuration

Inloop
deblocking

filter

TQ-1

+Intra/Inter
Comp

Demux Entropy
(coeff)

YCBCRFrame

MV/Intra mode
decoding

Ref 1
Ref 2
Ref 3

Ref 1
Ref 2
Ref 3

mode, model

slice info QP

Scan-1

 
Fig. 3. Example of RVC configuration 

 
III. PROPOSED SOC ARCHITECTURE FOR RVC 

 
Since the specification of the video decoder 

configuration language and the actual mechanism of a 
GCU are still under development at MPEG, this paper 
proposes a potential VLSI architecture that is suitable for 
supporting the RVC framework and perform some early 
analysis on such architecture. The RVC framework 
actually fits the platform-based design principle of SoC 
quite well. For maximal flexibility, the GCU will be 
implemented in software and running on the processor core 
of an SoC. Each coding tool can be implemented as an IP 
on the bus with limited configurability via a private 
register file. The proposed architecture is show in Fig. 4. 

It is important to note that in the proposed architecture, 
hardware FUs and software FUs (stored in SDRAM) can 
be mixed to compose a network of functional units for a 
specific codec. It is also important to note that the 
hardware coding tools are not attached to the main system 
bus (AMBA AHB) directly. A local bus, Multi-Media Bus 
(MMB), is used to off-load the bandwidth from the main 
system bus. In our implementation, MMB is a simplified 
version of AHB. A two-way DMA is used to transfer data 
between external SDRAM and internal SRAM banks. The 
DMA can be invoked from either the ARM core or the 
coding tool IPs. The reason for multiple SRAM’s on the 
MMB is to reduce the memory bandwidth requirement for 
parallel operations of the coding tools. 
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Fig. 4. SoC architecture for RVC framework 

762



ARM memory

AHB

Deblocking
filter

INTRA Decode

MCTQ–1

CAVLD

 
Fig. 5. Hard-wired decoder example 

 
Although local bus and multiple SRAM banks are 

used to alleviate the bandwidth issue, the performance of 
this architecture still cannot match that of a hard-wired 
architecture. For example, a hard-wired H.264 baseline 
decoder may have a tighter MB decoding pipeline as 
shown in Fig. 5. There are two main advantages of the 
architecture in Fig. 5. First of all, the decoding pipeline is 
controlled by a hard-wired FSM with cycle-based 
synchronization. On the other hand, for the RVC 
framework, the GCU controller will be implemented in 
software, and hence, cannot guarantee cycle-based 
operation of the pipeline. Another advantage of the hard-
wired approach is that it does not require excessive 
accesses to external memory. 

It is important to point out that the purpose of the 
RVC framework is not to obtain the most efficient design 
of a single codec, but to allow a flexible and extensible 
design of codec systems. Multi-standard codec support (or 
even generating customized codecs on-the-fly) can be 
achieved by configuring a new GCU via decoder 
description bitstreams. In the next section, we will study 
an actual implementation of the proposed architecture in 
Fig. 4 to get an idea about the cost one has to pay for such 
flexibility. 
 

IV. IMPLEMENTATION STUDY OF THE 
PROPOSED SYSTEM 

In this section, an implementation of the proposed 
system architecture (Fig. 4) is investigated. The 
implementation is based on an SoC emulation platform, 
the ARM Integrator [6]. The platform is composed of a 
main board, an ARM 9 processor core module, and a 
Xilinx VirtexE XCV2000E FPGA logic module. The 
platform adopts the AMBA bus protocol. The RVC 
coding toolbox logic of the proposed system is 
implemented in the FPGA. The local bus protocol, MMB, 
of the toolbox logic is a reduced version of AHB with 
much less wires and a minimal implementation of bus 
arbiter and decoder. 

In the proposed system architecture, the controller 
that drives the operation of the network of FUs is 
implemented in software. As a result, the codec pipeline is 
not executed in a lock step fashion but instead driven by 
the software controller via signals triggered by read/write 

of register files. Each coding tool FU (please refer to Fig. 
2) is implemented so that the input bitstream data is 
coming from a SRAM bank on the MMB and the output 
bitstream data will be stored in another SRAM bank on 
the MMB. Block RAMs of the Virtex II FPGA and the 
ZBT SRAM of the ARM Integrator are used for this 
purpose. Note that in the proposed architecture, the 
input/output SRAM banks for a FU (either software or 
hardware) are dynamically controlled by a memory 
allocator module (see Fig. 6).  Table I and Table II list the 
required memory for the input data and output data. It is 
obvious that such implementation is not as efficient as a 
tightly-coupled pipeline [5] where different pipeline 
stages are connected via registers or FIFO. 

On the other hand, since the system controller is 
implemented in software, the Global Control Unit of the 
MPEG RVC framework can be dynamically implemented 
as in Fig. 6. In Fig. 6, tool state table is a runtime table 
that record the states of each running FUs. The table is 
used by the controller to synchronize the operation of the 
codec pipelines. The network description table is extracted 
from the decoder description which is attached to the 
encoded video bitstream. It basically describes the 
input/output connections (i.e. SRAM banks) of the 
networks of the functional units. Note that this table can 
be modified by the memory allocator to allow optimal use 
of the available SRAM banks. An example of the tool 
state table and the network description table is shown in 
Fig.7.  
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Fig. 6. Proposed GCU Architecture 
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Fig. 7. Tool State and Network Description Tables 

 

Also note that in Fig. 7, the “Pointer” field of the 
network description table stores a pointer to the entry 
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point of software FU and the address of the control 
register for hardware FU. For hardware FUs, the 
implementation of the processing unit and context-control 
unit follows traditional hard-wired IP design methodology 
where the processing unit is implemented as a data path 
and the context-control unit is a hard-wired FSM with 
register files for memory-mapped I/O configuration and 
signaling. Currently, most of the FUs supported in the 
proposed platforms are for H.264. The synthesis report of 
some of the implemented FUs is shown in TABLE III. 
 

V. CONCLUSIONS 
This paper introduces the MPEG RVC framework 

and proposes SoC architecture to support the framework. 
Since the RVC framework is still under development at 
MPEG. There is not much research on how the framework 
can be efficiently supported using an SoC platform design 

paradigm. In particular, the reconfigurable video bitstream 
parser and the decoder configuration language are still yet 
to be defined by MPEG [7]. However, based on our study, 
the proposed architecture is very feasible for practical SoC 
implementation of the RVC framework. Although a 
reconfigurable video codec cannot compete with a hard-
wired codec for performance given current VLSI 
implementation technology, it is much more scalable in 
the sense that any new codecs (coding tools) can be added 
into the platform with minimal effort. The potential of 
exploring parallelism dynamically at runtime when 
multiple codecs tasks are issued is also very promising. 
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TABLE I. The memory requirement for SDRAM for each FU in the proposed RVC architecture 
Data form External Memory 

Luma Chroma Total Cycles Intra predictor (input) 
256 bytes 128 bytes 384 bytes 96 

Luma Chroma Block info Total Cycles Deblocking filter (input) 
384 bytes 256 bytes 120 bytes 760 bytes 190 

TABLE II. The memory requirement from internal SRAM for each FUs in the proposed RVC architecture 
Data from Internal Memory 

Residual Luma Residual Chroma Total Cycles Intra predictor(output) 
256 bytes 128 bytes 384 bytes 96 

Trans.&quant. Luma Trans.&quant Chroma Total Cycles TQ/TQ-1(outpupt) 
512 bytes 256 bytes 768 bytes 192 

Luma Chroma Total Cycles TQ/TQ-1(input) 
256 bytes 128 bytes 384 bytes 96 

Deblocked Luma Deblocked Chroma Total Cycles Deblocking 
filter(output) 256 bytes 128 bytes 384 bytes 96 

residual data MVD Total Cycles CAVLC(input) 
768 bytes 64 bytes 832 bytes 208 

TABLE III. The Synthesis Report of some Logics 
Module name H.264 Transform Quantizer Intra predictor 1 

(other modes) 
Intra predictor 2 

(DC mode) Inloop Filter CAVLC* MPEG-2 IDCT 

Clock rate 72MHZ NA 198 MHZ 158 MHZ 60MHZ 50MHZ 77MHZ 

Logic size 252 LUTS 197 LUTS plus 
Virtex-4 Multiplier 879 LUTS 188 LUTS 3105 LUTS 3125 LUTS 3232 

LUTS 

Bandwidth 16/18 (output/clk) 1/1 (output/clk) 4/1 output/clk 1/1 output/clk (I4MB) 
1/5 output/clk (I16MB) 2/1 (output/clk) depend on 

content 
64/158 

(output/clk) 

Memory usage 1 (16x16 bit) 1760 bits NA NA 16x384 bits 
 

128x22-bit 
16x16-bit 64x16 bit 

*CAVLC is based on a Spartan II FPGA device, and the others are based on a VirtexE FPGA device 
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