
ANALYSIS OF AN SOC ARCHITECTURE FOR MPEG RECONFIGURABLE VIDEO
CODING FRAMEWORK

Jer-Min Hsiao and Chun-Jen Tsai

Department of Computer Science

National Chiao Tung University, Hsinchu, Taiwan

Abstract—Due to the variety of popular video coding
standards, many efforts have been put into the design of a
single video decoder chip that supports multiple formats. In
2004, ISO/IEC MPEG started a new work item to facilitate
multi-format video codec design and to enable more flexible
usage of coding tools. The work item has turned into the
MPEG Reconfigurable Video Coding (RVC) framework.
The key concept of the RVC framework is to allow flexible
reconfiguration of coding tools to create different codec
solutions on-the-fly. In this paper, flexible SoC architecture
is proposed to support the RVC framework. Some analysis
has been conducted to show the extra costs required for this
platform compared to hard-wired codec architecture. In
conclusion, the RVC framework can be mapped to an SoC
platform to provide flexibility and scalability for dynamic
application environment with reasonable cost in hardware
design.

I. INTRODUCTION

Most multimedia devices today have to support
multiple codec standards. Take video codecs for example,
a portable multimedia player usually supports the playback
of the MPEG-1/2, MPEG-4 SP, WMV, and H.264/MPEG-
4 Part 10 video contents. In order to reduce system cost, a
single-chip SoC solution that supports all these standards is
a sensible approach. From IC designers’ point of view this
is not a serious problem since most (if not all) popular
video codecs share the same block-based motion
compensated transform coding data flow. In addition,
many coding tools have similar architecture. However,
there are some application issues that makes traditional
codec design approaches unsatisfactory [1].

A major problem with existing approach of defining a
codec standard is the lack of flexibility when new
applications emerge. A video codec is composed of several
coding tools (e.g. DCT/IDCT, MC, VLC/VLD, etc.).
However, for a codec standard, the conformance point is
defined at codec-level, instead of tool-level. Different
profiles/levels are created for each codec to address the
need of different classes of applications. This approach
works fine in the past since the application scenarios were
quite simple (e.g. DVD, DTV). However, with the
exponential growth of new multimedia applications, the
old approach of defining conformance point at codec-level
becomes awkward. Quite often, a new application designer
finds it impossible to find a reasonable codec

profile@level to fit the target application well. For
example, the FMO tool of H.264 is useless for many
applications but a decoder may still need to support it
simply because it is included in AVC baseline profile. In
general, application environment is changing faster than an
international standard can catch up that there should be a
more efficient way of allowing a codec to adapt to new
applications while maintaining interoperability among
different solutions.

MPEG has recognized this issue and started a new
work item called Video Coding Tools Repository (VCTR)
in 2004. After some investigations, the direction and
benefit of VCTR is becoming clear [2]. Later, this effort
becomes the Reconfigurable Video Coding (RVC)
framework in 2006 [3]. This new framework defines the
conformance point at tool-level. Therefore, in principle, an
RVC-enabled codec can negotiate on-the-fly with the
video bitstream encoder/sender about which coding tools is
required and how the data path can be wired among these
coding tools in order to decode the video bitstream. After
the setup stage, the decoder can decode the bitstream
correctly. With this approach, an SoC can support multiple
codec standards as well as creating customized codecs in
real time as long as it contains all the standard-conforming
tools that is necessary to decode bitstreams from different
encoders.

So far, the RVC framework is still in development.
Most of the investigations are done using C models and
behavioral model simulators such as Moses [4]. In this
paper, SoC architecture that can be used to implement the
RVC framework is proposed. The paper is organized as
follows. The RVC framework is introduced in section II.
The SoC architecture for direct support of RVC is
presented in section III. Some comparisons of the RVC
architecture to a common hard-wired solution is also given
in this section. Section IV studies an implementation to get
an idea on the cost for such flexibility. Finally, some
discussions are given in section V.

II. MPEG RVC FRAMEWORK

The concept of MPEG RVC framework can be
illustrated by Fig. 1. The key difference between RVC and
the old MPEG codec standards is that the interface of each
coding tools is defined precisely so that they can be used
(like LEGO blocks) to build various codecs. The decoder

7611-4244-0921-7/07 $25.00 © 2007 IEEE.

configuration describes how input bitstream can be parsed
so that the raw input data to each coding tools can be
extracted. A decoder description language is under
development so that the configuration of a specific codec
(such as H.264) can be described using a (small)
configuration bitstream. The decoder configuration
bitstream will be processed by an RVC decoder before
decoding of a video bitstream conforming to the described
standard. Note that after processing a configuration
bitstream, the RVC decoder will generate a Global Control
Unit (GCU) that governs the operation of the coding tools.

In principle, the configuration description tells the
RVC decoder how to wire the coding tools to form a data
path. In the RVC framework, each coding tools is called a
functional unit (FU) and is specified in Fig. 2 [1]. In Fig. 2,
a control signal is a signal embedded in the video bitstream
(for example, the width and height of the video frame). A
context signal is a signal generated from the processing of
bitstream data (for example, the AC prediction direction in
the MPEG-4 Part 2 video standard). The context-control
unit reads in the context and control signals generated by
previous FU’s and generates (or passes on) some context
and control signals to the next FU’s based on the result of
the processing unit.

A partial example of a configured RVC codec that
behaves like an H.264 baseline decoder is shown in Fig. 3.
In Fig. 3, the functional blocks encircled in the dashed
rectangles will be implemented using the proposed
architecture in next two sections.

8×8 IDCT 4×4 GBT 4×4 intra-
prediction ¼-Pel MC ½-Pel MC

H.264 Decoder
Configuration and API

MPEG-4 Decoder
Configuration and API

Tools in RVC Toolbox

Applications
Old MPEG

conformance point

New RVC
conformance point

Fig. 1. Concept of MPEG RVC framework

Processing
Unit

Input
bitstream

data

Output
bitstream

data

Context & control [in]
e.g. coding parameters,

mode selection signals

Context & control [out]
e.g. derived parameters

from the video data

Context-Control
Unit

Fig. 2. Definition of a functional unit in RVC

Parser

Networks of HW/SW FUs
Encoded Bitstream

GCU

SE1 SE2 SE3
… SEK

Data
for FU1

Data
for FU2

… Data
for FUn

parsing

Decoder Description

FU Network
Configuration

Inloop
deblocking

filter

TQ-1

+Intra/Inter
Comp

Demux Entropy
(coeff)

YCBCRFrame

MV/Intra mode
decoding

Ref 1
Ref 2
Ref 3

Ref 1
Ref 2
Ref 3

mode, model

slice info QP

Scan-1

Fig. 3. Example of RVC configuration

III. PROPOSED SOC ARCHITECTURE FOR RVC

Since the specification of the video decoder

configuration language and the actual mechanism of a
GCU are still under development at MPEG, this paper
proposes a potential VLSI architecture that is suitable for
supporting the RVC framework and perform some early
analysis on such architecture. The RVC framework
actually fits the platform-based design principle of SoC
quite well. For maximal flexibility, the GCU will be
implemented in software and running on the processor core
of an SoC. Each coding tool can be implemented as an IP
on the bus with limited configurability via a private
register file. The proposed architecture is show in Fig. 4.

It is important to note that in the proposed architecture,
hardware FUs and software FUs (stored in SDRAM) can
be mixed to compose a network of functional units for a
specific codec. It is also important to note that the
hardware coding tools are not attached to the main system
bus (AMBA AHB) directly. A local bus, Multi-Media Bus
(MMB), is used to off-load the bandwidth from the main
system bus. In our implementation, MMB is a simplified
version of AHB. A two-way DMA is used to transfer data
between external SDRAM and internal SRAM banks. The
DMA can be invoked from either the ARM core or the
coding tool IPs. The reason for multiple SRAM’s on the
MMB is to reduce the memory bandwidth requirement for
parallel operations of the coding tools.

DMA

H.264
ILF

ARM SDRAM

SRAM 1

AHB

MMB

H.264
CAVLD

DMA
Register

file

DMA
Register

file

H.264
TQ

H.264
INTRA

H.264
CABAC

MPEG-2
IDCT

SRAM 2 SRAM 3

MPEG-2
MC

H.264
MC

DMA

H.264
ILF

ARM SDRAM

SRAM 1

AHB

MMB

H.264
CAVLD

DMA
Register

file

DMA
Register

file

H.264
TQ

H.264
INTRA

H.264
CABAC

MPEG-2
IDCT

SRAM 2 SRAM 3

MPEG-2
MC

H.264
MC

Fig. 4. SoC architecture for RVC framework

762

ARM memory

AHB

Deblocking
filter

INTRA Decode

MCTQ–1

CAVLD

Fig. 5. Hard-wired decoder example

Although local bus and multiple SRAM banks are

used to alleviate the bandwidth issue, the performance of
this architecture still cannot match that of a hard-wired
architecture. For example, a hard-wired H.264 baseline
decoder may have a tighter MB decoding pipeline as
shown in Fig. 5. There are two main advantages of the
architecture in Fig. 5. First of all, the decoding pipeline is
controlled by a hard-wired FSM with cycle-based
synchronization. On the other hand, for the RVC
framework, the GCU controller will be implemented in
software, and hence, cannot guarantee cycle-based
operation of the pipeline. Another advantage of the hard-
wired approach is that it does not require excessive
accesses to external memory.

It is important to point out that the purpose of the
RVC framework is not to obtain the most efficient design
of a single codec, but to allow a flexible and extensible
design of codec systems. Multi-standard codec support (or
even generating customized codecs on-the-fly) can be
achieved by configuring a new GCU via decoder
description bitstreams. In the next section, we will study
an actual implementation of the proposed architecture in
Fig. 4 to get an idea about the cost one has to pay for such
flexibility.

IV. IMPLEMENTATION STUDY OF THE
PROPOSED SYSTEM

In this section, an implementation of the proposed
system architecture (Fig. 4) is investigated. The
implementation is based on an SoC emulation platform,
the ARM Integrator [6]. The platform is composed of a
main board, an ARM 9 processor core module, and a
Xilinx VirtexE XCV2000E FPGA logic module. The
platform adopts the AMBA bus protocol. The RVC
coding toolbox logic of the proposed system is
implemented in the FPGA. The local bus protocol, MMB,
of the toolbox logic is a reduced version of AHB with
much less wires and a minimal implementation of bus
arbiter and decoder.

In the proposed system architecture, the controller
that drives the operation of the network of FUs is
implemented in software. As a result, the codec pipeline is
not executed in a lock step fashion but instead driven by
the software controller via signals triggered by read/write

of register files. Each coding tool FU (please refer to Fig.
2) is implemented so that the input bitstream data is
coming from a SRAM bank on the MMB and the output
bitstream data will be stored in another SRAM bank on
the MMB. Block RAMs of the Virtex II FPGA and the
ZBT SRAM of the ARM Integrator are used for this
purpose. Note that in the proposed architecture, the
input/output SRAM banks for a FU (either software or
hardware) are dynamically controlled by a memory
allocator module (see Fig. 6). Table I and Table II list the
required memory for the input data and output data. It is
obvious that such implementation is not as efficient as a
tightly-coupled pipeline [5] where different pipeline
stages are connected via registers or FIFO.

On the other hand, since the system controller is
implemented in software, the Global Control Unit of the
MPEG RVC framework can be dynamically implemented
as in Fig. 6. In Fig. 6, tool state table is a runtime table
that record the states of each running FUs. The table is
used by the controller to synchronize the operation of the
codec pipelines. The network description table is extracted
from the decoder description which is attached to the
encoded video bitstream. It basically describes the
input/output connections (i.e. SRAM banks) of the
networks of the functional units. Note that this table can
be modified by the memory allocator to allow optimal use
of the available SRAM banks. An example of the tool
state table and the network description table is shown in
Fig.7.

GCU

Controller

Network
Description

Table

Tool State
Table Memory

allocator

Decoder
Description

GCU

Controller

Network
Description

Table

Tool State
Table Memory

allocator

Decoder
Description

Fig. 6. Proposed GCU Architecture

doneN-34

…

doneN-23

runningN1
doneN-12

of MB stateFU ID

doneN-34

…

doneN-23

runningN1
doneN-12

of MB stateFU ID

Tool
State
Table

Network
Description
Table

Parameter
Count

out addrin addrPointerFU ID

0nullnull&MC(…)1
0nullnull0x02
0nullnull0x13

0nullnull&intra(…)4
0nullnull&transform(…)5
0nullnull&CABAD(…)6 …

Parameter
Count

out addrin addrPointerFU ID

0nullnull&MC(…)1
0nullnull0x02
0nullnull0x13

0nullnull&intra(…)4
0nullnull&transform(…)5
0nullnull&CABAD(…)6 …

Fig. 7. Tool State and Network Description Tables

Also note that in Fig. 7, the “Pointer” field of the
network description table stores a pointer to the entry

763

point of software FU and the address of the control
register for hardware FU. For hardware FUs, the
implementation of the processing unit and context-control
unit follows traditional hard-wired IP design methodology
where the processing unit is implemented as a data path
and the context-control unit is a hard-wired FSM with
register files for memory-mapped I/O configuration and
signaling. Currently, most of the FUs supported in the
proposed platforms are for H.264. The synthesis report of
some of the implemented FUs is shown in TABLE III.

V. CONCLUSIONS
This paper introduces the MPEG RVC framework

and proposes SoC architecture to support the framework.
Since the RVC framework is still under development at
MPEG. There is not much research on how the framework
can be efficiently supported using an SoC platform design

paradigm. In particular, the reconfigurable video bitstream
parser and the decoder configuration language are still yet
to be defined by MPEG [7]. However, based on our study,
the proposed architecture is very feasible for practical SoC
implementation of the RVC framework. Although a
reconfigurable video codec cannot compete with a hard-
wired codec for performance given current VLSI
implementation technology, it is much more scalable in
the sense that any new codecs (coding tools) can be added
into the platform with minimal effort. The potential of
exploring parallelism dynamically at runtime when
multiple codecs tasks are issued is also very promising.

V. ACKNOWLEDGEMENT
This research is partly funded by National Science

Council, Taiwan, R.O.C., under grant number NSC 95-
2219-E-002-012.

TABLE I. The memory requirement for SDRAM for each FU in the proposed RVC architecture
Data form External Memory

Luma Chroma Total Cycles Intra predictor (input)
256 bytes 128 bytes 384 bytes 96

Luma Chroma Block info Total Cycles Deblocking filter (input)
384 bytes 256 bytes 120 bytes 760 bytes 190

TABLE II. The memory requirement from internal SRAM for each FUs in the proposed RVC architecture
Data from Internal Memory

Residual Luma Residual Chroma Total Cycles Intra predictor(output)
256 bytes 128 bytes 384 bytes 96

Trans.&quant. Luma Trans.&quant Chroma Total Cycles TQ/TQ-1(outpupt)
512 bytes 256 bytes 768 bytes 192

Luma Chroma Total Cycles TQ/TQ-1(input)
256 bytes 128 bytes 384 bytes 96

Deblocked Luma Deblocked Chroma Total Cycles Deblocking
filter(output) 256 bytes 128 bytes 384 bytes 96

residual data MVD Total Cycles CAVLC(input)
768 bytes 64 bytes 832 bytes 208

TABLE III. The Synthesis Report of some Logics
Module name H.264 Transform Quantizer Intra predictor 1

(other modes)
Intra predictor 2

(DC mode) Inloop Filter CAVLC* MPEG-2 IDCT

Clock rate 72MHZ NA 198 MHZ 158 MHZ 60MHZ 50MHZ 77MHZ

Logic size 252 LUTS 197 LUTS plus
Virtex-4 Multiplier 879 LUTS 188 LUTS 3105 LUTS 3125 LUTS 3232

LUTS

Bandwidth 16/18 (output/clk) 1/1 (output/clk) 4/1 output/clk 1/1 output/clk (I4MB)
1/5 output/clk (I16MB) 2/1 (output/clk) depend on

content
64/158

(output/clk)

Memory usage 1 (16x16 bit) 1760 bits NA NA 16x384 bits

128x22-bit
16x16-bit 64x16 bit

*CAVLC is based on a Spartan II FPGA device, and the others are based on a VirtexE FPGA device
REFERENCES

[1] E. S. Jang, K. Asai, and C.-J. Tsai, Study of Video Coding
Tool Repository v5.0, MPEG Meeting Document N7329,
Poznan, July 2005.

[2] C.-J. Tsai, Suggestions on the Direction of VCTR, MPEG
Input Document M12074, Busan, April, 2005.

[3] ISO/IEC MPEG Video Group, Final Call for Proposals on
Reconfigurable Video Coding, MPEG Meeting Document
N8070, Montreux, April 2006.

[4] J. Janneck et al., Moses Tool Suite,
https://sourceforge.net/projects/mosestoolsuite/.

[5] T.-C Chen, Y.-W. Huang, and L.-G. Chen, “Analysis and

design of macroblock pipelining for H.264/AVC VLSI
architecture,” Proc. of IEEE ISCAS 2004, Kobe, 2004.

[6] http://www.arm.com/products/DevTools/IntegratorAP.html
[7] S. Lee, E. S. Jang, M. Matavelli, C. –J. Tsai, Working

Draft of ISO/IEC 23001-4: Codec Configuration
Representation, MPEG Meting Document N8762,
Marrakech, Jan. 2007.

764

