
國立交通大學

資訊工程學系

碩士論文

有效率抵抗污染攻擊的多點傳送認證協定

Lightweight, Pollution-Attack Resistant Multicast

Authentication Scheme

研 究 生：林亞正

指導教授：謝續平 博士

中華民國九十四年六月

有效率抵抗污染攻擊的多點傳送認證協定

Lightweight, Pollution-Attack Resistant Multicast

Authentication Scheme

研 究 生：林亞正 Student: Ya-Jeng Lin
指導教授：謝續平 博士 Advisor: Dr. Shiuh-Pyng Shieh

國 立 交 通 大 學
資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

in
Computer Science and Information Engineering

June 2004
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 四 年 六 月

 ii

有效率抵抗污染攻擊的多點傳送認證協定
研究生：林亞正 指導教授：謝續平 博士

國立交通大學資訊工程學系

摘要

 在每個多點傳送的封包加上數位簽章會耗費很多資源。為了減少安全性所帶

來的花費，有人提出平攤產生簽章花費的方法。另一方面，為了容忍在多點傳送

環境中封包遺失的情況，通常會加上容錯的編碼方法。 然而當攻擊者傳送不合

法封包時，容錯的解碼流程會被搗亂，因而產生錯誤的資訊。這種攻擊方式被稱

之為污染攻擊。目前解決污染攻擊的方法非常沒有效率，為了改善這個問題，我

們提出了一個有效率解決污染攻擊的多點傳送認證協定。

 iii

Lightweight, Pollution-Attack Resistant Multicast

Authentication Scheme

Student: Ya-Jeng Lin Advisor: Shiuh-Pyng Shieh

Department of Computer Science and Information Engineering

National Chaio Tung University

Abstract

Signing every multicast packet incurs high overhead. To reduce security

overhead, signature amortization is proposed. On the other hand, to tolerate packet

loss, erasure codes is used to enhance signature amortization. However, signature

amortization is weak against pollution attack which occurs when an attacker injects

packets to disturb the erasure decoding procedure, and consequently denies the

service. Current solution to this pollution attack is heavyweight and inefficient. To

cope with this problem, we propose a new lightweight, pollution-attack resistant

multicast authentication scheme (PARM), which generates evidence for each packet

that can validated by the receiver. This approach effectively resists pollution attacks

and has better performance than previous proposed solutions.

 iv

誌 謝

首先感謝交通大學網路安全實驗室在我兩年研究生生活中給了

我許多寶貴的經驗以及知識，感謝在這兩年中，指導老師謝續平教授

給我的諄諄教導，教導我如何做研究，同時也感謝實驗室的學長、同

學以及學弟們的互相討論、切磋，讓我的研究可以更完整。另外父母

的全力支持讓我能無後顧之憂的專心做研究，非常感謝他們。

 v

Table of contents
1. Introduction..1
2. Related work ..5

2.1. Signature amortization ...5
2.2. SAIDA ...8
2.3. Distillation codes ...10

3. Proposed scheme..13
3.1. Lightweight and pollution attack resistant multicast authentication
protocol (PARM)..13

3.1.1. Initialization Phase...13
3.1.2. Evidence Generation Phase..15
3.1.3. Evidence Validation Phase ...17
3.1.4. Temporal key renewal phase..19

3.2. Practical considerations ...21
3.3. Attacks resistance...22

4. Comparison ..24
4.1. Storage overhead..24
4.2. Communication overhead ..25
4.3. Computation overhead...25

5. Security analysis ..28
6. Evaluation ..30
7. Conclusion ...34
References..35

 vi

List of Figures

Figure 2-1 Merkle Hash Tree...6
Figure 2-2 SAIDA (Signature Amortization using the Information Dispersal

Algorithm)..9
Figure 2-3 Distillation codes.. 11
Figure 3-1 Temporal key pair generation...14
Figure 3-2 Appearance times table. ...16
Figure 3-3 Evidence generation phase...17
Figure 3-4 Evidence validation phase..18
Figure 3-5 Temporal key renewal phase. ...21
Figure 4-1 Computation overhead at sender. ...27
Figure 4-2 Computation overhead at receiver..27
Figure 6-1 The security strength of different evidence size (1).30
Figure 6-2 The security strength of different evidence size (2).31
Figure 6-3 The security strength of different TSK chain length.32
Figure 6-4 The security strength with key renewal. ..32

 vii

1. Introduction

Multicast protocol enables a sender to efficiently disseminate digital media data

to many receivers. Due to the time-sensitive requirement of some applications,

reliable transmission protocol like TCP (Transmission Control Protocol) is impractical

for multicast. Therefore, unreliable transmission protocol such as UDP (User

Datagram Protocol) is generally adopted for multicast applications. Multicast protocol

is suitable for many applications, for example, video transmission, live broadcast,

stock quotation or news feed. These applications have the common characteristics that

the receiver might be plenty and the communication data is time-sensitive. However

security is an important issue for multicast to ensure secure communication between

sender and receivers. An attacker is able to impersonate sender to send malicious

packets to receivers and the malicious information might injure the receivers or

intercept the communication. To defend against forged packets injected by attackers,

multicast authentication is proposed for this purpose. Multicast authentication enables

receiver to authenticate the packet source and malicious packets will be denied. There

have been many multicast authentication approaches and these approaches could be

roughly divided into two categories: symmetric cryptographic primitives and

asymmetric cryptographic primitives. Symmetric cryptographic primitive generally

uses symmetric key to authenticate data source and MAC (Message Authentication

Code) is the well-known approach in this category. In MAC, an identical secret key is

maintained at sender and receiver. Sender uses the secret key to generate a MAC for a

packet and receiver is able to authenticate the packet source by verifying the MAC of

the packet with secret key. Asymmetric cryptographic primitive uses asymmetric key

pair to authenticate data source. Asymmetric key pair generally means that there are

two keys, one key is used to generate signature and another key is for verifying the

signature. Digital signature is a well-known approach in this category and is believed

secure enough. Using RSA to generate digital signature is popular, nevertheless,

digital signature generation and verification incur high computation overhead and

signing every packet significantly downgrades the system performance. According to

this practical concern, a compromised approach which is signature amortization

[10][11][15][16][17][18][19][20], was proposed to amortize the overhead of

generating one signature over a block of packets. For a block of packets, only one

digital signature will be generated. These packets will be considered authentic if the

signature of this block can be correctly verified by receiver. Signature amortization

makes tradeoff between security and computation overhead. Due to the unreliable

transmission and packet loss in multicast protocol, an elaborate signature amortization

scheme should be able to work well even thought some packets get lost. For this

reason, signature amortization schemes with fault-tolerant coding algorithms are

proposed. In this kind of scheme, the digital signature for a block of packets is always

encoded at sender by fault-tolerant coding algorithms and decoded at receiver.

Fault-tolerant coding algorithms like erasure codes [7][8][9][12], or diversity codes

[21] partition an information into many segments and the information is able to be

correctly reconstructed even though a threshold number of segments get lost. For

example, an (n,t) erasure encoder generates a set S of n symbols (s1,s2,…, sn) from an

information. The erasure decoder can tolerate a loss of up to t packets. Although

signature amortization with fault-tolerant coding algorithms reduces computation

overhead and tolerates packet loss, it suffers pollution attacks [1]. Pollution attack was

first defined in [1] and this attack occurs if attackers inject a great quantity of forged

packets into the block of packets. At receiver, these forged packets will disturb the

signature decoding procedure of fault-tolerant coding algorithm and then the decoder

 2

will consequently reconstruct an incorrect signature. The incorrect signature will fail

to be verified by receiver with sender’s public key and all the packets in the block will

be considered invalid. Receiver will drop received packets in the block which

includes valid packet transmitted by legal sender. The information inside valid

packets will not be understood by receiver; hence the multicast application is unable

to serve users fluently.

Distillation codes [1] is so far the only one solution to defend against pollution

attack for signature amortization. In distillation codes, sender augments each packet

with a witness and receiver is able to partition received packets into many groups

according to the augmented witness. Distillation codes guarantees that all valid

packets will be partitioned into the same group and correct signature could be

decoded from the packets in this group. Therefore, forged packets injected by

attackers will be partitioned into other groups and pollution attack is unable to affect

the decoding procedure. However, in distillation codes, we can not realize which

group contains valid packets in advanced, and every group should execute the

decoding procedure to reconstruct the correct signature. Besides, while packets reach

receiver side, receiver is unable to determine the received packets valid of invalid

instantly and receiver consequently should store all received packets no matter valid

or invalid. Distillation codes incurs high computation overhead and the storage space

at receiver, and the delay of distillation codes is considerable.

Multicast authentication ensures the security for multicast applications. However,

sign every multicast packet with digital signature incurs high overhead and the

cumbersome overhead is impractical for many resource limited devices. Signature

amortization reduces the computation and communication overhead and a

fault-tolerance coding algorithm is always involved in to tolerate packet loss. But a

signature amortization scheme with erasure codes suffers pollution attacks which an

 3

attacker can inject forged packets to disturb the decoding procedure of erasure codes.

Therefore, to solve this problem, we design a lightweight and pollution attack

resistant multicast authentication protocol (PARM). The main advantages of our

proposed scheme are fast and lightweight, since many multicast applications are

time-sensitive and some end devices may have only limited computation power.

Therefore, a high overhead and high delay solution is unsuitable to be wildly

deployed on multicast applications. In contrast to distillation codes, our proposed

scheme requires less computation overhead and less storage space.

In the next section, we briefly discuss related work of signature amortization, and

give some overview of a signature amortization scheme, SAIDA, and distillation

codes. Our proposed scheme and is given in section 3 and we analyze the overhead of

our proposed scheme and compare it with distillation codes in section 4. In section 5,

we derive the security strength of PARM and an evaluation is given in section 6.

Finally, a conclusion of this thesis is in section 7.

 4

2. Related work

We will introduce current works in signature amortization in section 2.1 and a

signature amortization scheme with erasure codes (SAIDA) will be introduced in

section 2.2. In section 2.3, we will give a rough description of distillation codes which

is proposed to resist pollution attacks in SAIDA,

2.1. Signature amortization

Computation and communication overhead is a significant consideration in many

multicast authentication schemes based on digital signature. To reduce the overhead,

signature amortization schemes are proposed to amortize the overhead of generating a

single signature over many packets. Based on different techniques, signature

amortization schemes can be classified into several categories.

Hash chain. Gennaro and Rohatgi in [22] is the first scheme that uses

signature amortization over a hash chain. Each packet pi is augmented with

verification information ai which is recursively defined as the hash value of the

concatenation of next packet pi+1 and next verification information ai+1. For example,

ai=h(pi+1||ai+1) and ai+1=h(pi+2||ai+2) where h means a hash function. Since the

verification information is used to authenticate next packet recursively, only the first

packet with its verification information needs to be signed with digital signature to

protect the first verification information against interference. This scheme has

constant authentication overhead per packet but does not tolerate packets losses. If

one packet gets lost, all continued packets are unable to be authenticated.

 Graph-based. Graph-based technique [15][16][18][19] generalizes the idea of

 5

amortizing a signature over a hash chain in such a way as to tolerate packets losses. A

single-sink directed acyclic graph (DAG) is defined where each vertex corresponds to

a packet. The edges in this graph between two vertexes indicate the authentication

direction that source vertex is authenticated using the verification information of

destination vertex. Instead of augmenting next packet’s hash value in current packet, a

packet pi is augmented with the hash value of the packet pj which points to pi in

single-sink directed acyclic graph. The first packet is also digitally signed.

Graph-based schemes just guarantee probabilistic security strength under packet

losses occur randomly. In particular, they require that the digitally signed packets need

to reach the receiver completely.

 Merkle hash trees. Merkle hash tree [6] is a mechanism for computing a single

cryptographically secure hash digest over a set of data elements. Merkle hash tree is a

binary hash tree and in many signature amortization schemes, Merkle hash tree is

build on top of the packets’ hash values. The internal nodes are recursively defined as

hash values which are produced by hashing the concatenation of its two children.

Figure 2-1 Merkle Hash Tree.

Each leaf node is calculated by hashing the corresponding packet Si, and each internal node is the hash

value of the concatenation of its two children. The verification sequence, for example, of a leaf node h3

is (h4, h1,2, h5,8).

 6

Figure 2-1 shows a Merkle hash tree and each Si indicates a packet. Each leaf

node hi is calculated by hashing the corresponding Si, and each internal nodes hi,j

means the hash results of the concatenation of hi and hj. The verification sequence of a

Merkle hash tree for a leaf node indicates the hash values of the sibling nodes on the

path from the leaf node to root. With a leaf node and its verification sequence, the root

hash value of the tree can be retrieved. For instance, in Figure 2-1, the verification

sequence of packet s3 can be represented as (h4, h1,2, h5,8). In [20], a Merkle hash tree

technique is used by Wong and Lam to amortize a digital signature over n packets.

Each leaf node of Merkle hash tree means a packet hash value. Each packet is

augmented with the verification information which consists of the signed root hash

value and corresponding verification sequence of Merkle hash tree. The scheme

allows packets to be individually and independently verified. Packet losses also can

be tolerated in the scheme, but logarithmic communication overhead per packet exists

since the verification sequence size grows logarithmically with the amount of leaf

nodes. In contrast, our proposed multicast scheme, which also uses signature

amortization, has constant per-packet communication overhead.

 Erasure codes. An erasure code [7][8][9][12] is an encoder and decoder that

use forward error correction to tolerate data loss. The encoder redundantly encodes

information into a set of segments. If the decoder receives sufficiently many segments,

it can reconstruct the original information. An (n,t) erasure encoder generates a set S

of n segments from the input. The decoder can tolerate a loss of up to t packets. Park

et al. [10][11] proposed a signature amortization scheme SAIDA (Signature

Amortization using the Information Dispersal Algorithm) which employs the use of

erasure codes for multicast authentication to tolerate random packet loss. In [10], a

signature is encoded by erasure codes and sender consequently disseminates the

encoded signature over a block of packets. Erasure decoder at receiver is able to

 7

reconstruct the signature if receiving sufficient segments. Our proposed scheme is

based on SAIDA and we will describe SAIDA more detailed in the next section.

However SAIDA is vulnerable to a simple attack that an adversary can disturb the

decoding procedure at receiver by injecting forged packets. In [1], they refer to this

attack as pollution attack and they proposed a solution named distillation codes to

defend against pollution attack where erasure code has been deployed. We will show

the techniques and the shortcomings of distillation codes in the following section.

2.2. SAIDA

The full name of SAIDA is signature amortization using the information dispersal

algorithm. In SAIDA, the multicast packet stream is partitioned into blocks of n

consecutive packets. The hash values of packets in one block are concatenated to form

Hj and Hj is protected by generating a signature Sign(h(Hj) for the hash value of Hj.

The verification information VI which includes Hj and Sign(h(Hj) is encoded by

erasure codes and erasure encoder outputs a set of segments which will be appended

to each packet in the block. An erasure code can reconstruct original verification

information VI even though some packets get lost. While receiving more than a

threshold amount of packets at receiver, receiver is able to decode the VI from these

segments of all received packets. After successfully reconstructing VI, receiver should

first check the validity of Hj by verifying the Sign(h(Hj). Consequently, the hash

values contained in Hj are able to authenticate all received packets in one block.

 8

(a) Signing in SAIDA. All packet values are

concatenated to from Hj and a digital signature

Sign(h(Hj)) is used to protect Hj. Erasure code

is able to tolerate packet loss. The output of

erasure codes disseminates over all packets in

one block.

(b)Verifying in SAIDA. Receiver collects

the information segments and use erasure

codes to reconstruct Hj and Sign(h(Hj)),

and receiver verifies Sign(h(Hj)) to check

the validity of Hj. Hj then is used to

validate packets in the block.

Figure 2-2 SAIDA (Signature Amortization using the Information Dispersal Algorithm).

In Figure 2-2(a), Pi denotes a multicast packet and H(P0) represents the hash value

of packet P0. Hj means the concatenation of these packets hash values and Sign(h(Hj))

is a digital signature for the hash value of Hj. The verification information VI included

Hj and Sign(h(Hj)) is encoded by erasure codes. Sender will disseminate the output

into each packet. Figure 2-2(b) illustrates the SAIDA verifying procedure and the

procedure is inverse to SAIDA signing procedure. After reconstructing the

concatenation of Hj and Sign(h(Hj)), Sign(h(Hj)) needs to be verified to check the

validity of Hj. Consequently, the hash values included in Hj are used to validate each

packet and receiver will accept the packet if its hash values is matched, otherwise,

drop it.

Pollution attacks in SAIDA. In normal case, receiver decodes the verification

 9

information from received packet by erasure codes to validate each packet. However

when an adversary injects forged packets into communication channel, receiver will

be confused and incorrect result will be decoded if there is no packet validation

mechanism. Incorrect Hj is unable to be successfully verified by the signature

Sign(h(Hj)) and all valid received packets will be dropped because these packets can

not be authenticated by the hash values included in Hj. If receiver wants to reconstruct

the correct information while pollution attack occurs, receiver will spend extreme

computation power to try all the possible combinations of received packets to find the

correct information.

2.3. Distillation codes

Karlof et al. [1] proposed distillation codes to defend against pollution attacks

based on a signature amortization scheme SAIDA. They used Merkle hash tree and

one way accumulator to realize distillation codes. First, a Merkle hash tree was

constructed using multicast packets hash values. Sender generated witness for a

packet and appended the witness to the packet. Witness is the verification sequence of

a leaf node in Merkle hash tree and receiver could partition all received packets,

which might include attack packets, into many groups according each packet’s

witness. Distillation codes ensures that there will be a group including all valid

packets and the verification information could be successfully reconstructed from

packets in this group. The verification information consequently is able to

authenticate the packets in one block. Witness plays an important role for distillation

codes to resist pollution attacks.

 10

(a) Distillation encoder. (b) Distillation decoder.

Figure 2-3 Distillation codes.

Figure 2-3 shows the distillation encoder and decoder procedure. In Figure 2-3 (a),

packets in one block are first hashed by a hash function and these hash values are

concatenated to form Hj. In the distillation encode, Hj is encoded by erasure codes

first and the output symbols S’= (s1’, s2’,…, sn’) are regarded as leaf nodes to build a

Merkle hash tree. The s1 in Figure 2-3 (a) is produced to be the concatenation of s1’

and the verification sequence of s1’. These packets are augmented with the output of

distillation encode symbols (s1, s2,…, sn). Since we can calculate the root hash value

of the Merkle hash tree through the verification sequence, in Figure 2-3 (b), receiver

is able to partition the received packets according to the calculated root value from the

witness of the packet. Since the valid witnesses have the same root hash value and

thus the packets with valid witness will be partitioned in the same group.

Consequently, receiver can reconstruct correct verification information from the

packets in the group and pollution attacks can be defended by distillation codes.

However, distillation codes causes logarithmic communication overhead since

witness size grows logarithmically with the number of packets in one block. While

suffering pollution attacks, receiver will spend significant computation power since

each group should operate erasure decoding and signature verifying to produce the

 11

correct information. In addition, since receiver does not know the correct root hash

value of the Merkle hash tree in advanced, the received packets should be buffered no

matter invalid or valid until the correct information was reconstructed. This will

require large buffer size to store these packets temporarily.

Besides, a weakness occurs in distillation codes. An attacker can construct his

own Merkle hash tree and send packets which are augmented with corresponding

witness. These packets will be partitioned into same group at receiver since these

witnesses are constructed from the same Merkle hash tree. The receiver is not aware

of the correct root hash value of Merkle hash tree in advanced, so an attacker is able

to inject large number of forged packets into one group to exhaust receiver’s

computation power. Therefore, in this group, receiver needs to pay lots of

computation overhead to decode the results and the performance of receiver will

downgrade dramatically.

 12

3. Proposed scheme

To resist pollution attacks, we design a lightweight and pollution attack resistant

multicast authentication protocol (PARM) based on SAIDA. The main concept of our

proposed scheme is that each packet will be appended an evidence. Evidence means

the verification information for a packet to prove the validity of the packet. Evidence

of a packet is used for a receiver to judge the validity of a packet. Our proposed

scheme is fast and lightweight, since many multicast applications are time-sensitive

and some end devices may have only limited computation power. Therefore, a high

overhead and high delay solution is unsuitable to be wildly deployed on multicast

applications.

3.1. Lightweight and pollution attack resistant multicast

authentication protocol (PARM)

Our proposed scheme can be roughly divided into four phases: initialization

phase, evidence generation phase, evidence validation phase and temporal key

renewal phase. We describe the four phases in individual sections.

3.1.1. Initialization Phase

In this phase, we mainly define how to generate temporal key pair, a temporal

secret key (TSK) chain and a temporal public key (TPK). One-way hash function is

the main technique to generate the temporal key pair. Sender will use TSK chain to

generate the evidence of a packet and receiver will validate the evidence of received

 13

packet by TPK.

 Sender will generate TSK chain and TPK in advanced before communicating

with receivers. First of all, sender generates k random number (R0, R1, R2… Rk-1)

where each random number is n-bits, and these numbers are considered the first TSK

of TSK chain, TSK0. Let h be a one-way hash function and we will use this one-way

hash function to recursively generate other TSKs of TSK chain. Based on existed

TSK0, TSK1 is generated by hashing each element in TSK0 with one-way hash

function h and these hash results are collected to form TSK1. TSK1 can be denoted

(h(R0), h(R1), h(R2), …, h(Rk-1)). According to the same manner, TSK2 and latter TSKs

can be recursively produced by sender, and we assume that totally L TSKs will be

generated. That means the TSK chain length is L and TSK chain can be represented as

(TSK0, TSK1, TSK2… TSKL-1). Temporal public key (TPK) is generated in the same

technique that hashing every elements in TSKL-1 which is the last TSK of TSK chain

with one-way hash function h.

Figure 3-1 Temporal key pair generation.

Figure 3-1 shows the procedure of generating TSK and TPK. For instance, R0

means the random generated number and the arrows indicate an one-way hash

function h. Therefore, h(R0) indicates the hash result of R0, and h2(R0) is the hash

result of h(R0). All these TSK elements can be seen as a TSK elements array as shown

 14

in the right part of Figure 3-1. The collection set of the elements in the same row

indicates a TSK, for example, TSK0= (R0, R1, …, Rk-1) and TSK1= (h(R0), h(R1),…,

h(Rk-1)). Each column represents the elements of different TSK with same column

index. The elements in the last row are collected to form TPK.

After successfully generating TSK and TPK, sender transfers TPK to receivers.

Since receivers will use TPK to determine the validity of received packet, it is very

important for receiver to check the correctness of received TPK. If TPK is transferred

without any protection, an attacker is able to produce a forged TPK to cheat the

receivers. Once receiver accepts the forged TPK which is produced by an attacker, all

the valid packets will fail to pass the evidence validation. Consequently, the

transmitted TPK should be protected by signing digital signature with sender’s private

key to prove the data source. After receiving the TPK, received will verify the

signature to determine if the TPK is transferred by valid sender. If signature

verification is correct, TPK will be stored at receiver.

For latter operations, sender should store all these TSK elements and this will be a

considerable storage size for sender. However, the role of sender in our multicast

environment is always a multicast server which has more computation power and

storage size. It is feasible for a server to store the information. The receiver only needs

to store TPK for correctly operating consequent phase.

3.1.2. Evidence Generation Phase

When sender wants to send packets to receiver, this phase will be operated to

generate the evidence for each packet. Evidence means the verification information

for receivers to judge the validity of a packet. Since each packet will be augmented

with evidence at sender, the evidence generation phase should be very lightweight and

 15

fast. In evidence generation phase, sender should maintain an appearance times table,

and evidence is generated according to this table. The appearance times table counts

the appearance times of each column index of TSK elements array. Figure 3-2

represents an example of appearance times table. Each element contained in row

Index denotes the column index in TSK elements array. Each number in row

Appearance times shows the used times of the corresponding index in evidence

generation phase. All elements of each TSK are considered a TSK elements array, and

the row x of this array indicates TSKx and column index y indicates the elements

which is the y-th in each TSK.

Figure 3-2 Appearance times table.

Assume the packet size is m-bits, and to generate evidence for this packet, we first

hash the packet with one-way hash function h. The hash value is divided into p

segments, where each segment size is b-bits, and each segment is interpreted as an

integer between 0 and 2b-1. We denote these p segments S= (i0, i1… ip-1). Each

segment in the set S stands for the column index of TSK elements array. For each

index i, the appearance times of index i is used to determine which TSK will be

selected and index i means the i-th element should be chosen in selected TSK. If the

appearance times of index i is ai, then TSK(L-1)-ai will be selected,. Therefore, if index i

never appears before, the last TSK, TSKL-1, of TSK chain will be selected. For

example, if the appearance times of i0 is 4, then sender will choose the i0-th element in

TSKL-5. Each index in (i0, i1… ip-1) will be operated using above manner and

consequently p elements of TSK will be produced for each index. These p elements

 16

are composed to form the evidence of the input packet and the evidence is then

appended to the packet. Sender transfers the packet with its evidence to receivers and

receivers are able to validate the evidence to determine the validity of this packet.

Figure 3-3 Evidence generation phase.

Figure 3-3 shows a illustration for evidence generation phase. In this figure, i

means the index number of TSK elements array and EM indicates the evidence for a

packet M. For example, i0 is zero and the appearance times of i0 is L-1, and thus R0 is

selected. Each index i and its corresponding appearance times are used to select the

relative elements and these elements are concatenated to form the evidence EM.

Note that the evidence generation in our proposed scheme is very lightweight

and fast, since it needs no complicated operation to generate evidence but few

one-way hash operations. Lightweight and fast evidence generation is a significant

feature to raise the performance of multicast applications.

3.1.3. Evidence Validation Phase

While receiving a packet, receiver can validate the evidence attached to the

 17

packet to check the packet valid or invalid. If an attacker wants to forge a packet to

cheat receiver, he must have the ability to generate the valid evidence for the forged

packet. It is very hard to generate the evidence for forged packet without the

knowledge of TSK, and we will show the complexity for an attacker to successfully

cheat the receiver in section 5. At receiver, temporal public key (TPK) is used to

validate the evidence. As the sender, receiver also needs to maintain an appearance

times table for each column index of TSK elements array based on received packets.

Figure 3-4 Evidence validation phase.

 We illustrate the evidence validation phase in Figure 3-4 Evidence validation

phase.. As shown in this figure, the evidence validation procedure at receiver is a little

similar to evidence generation phase at sender. Assume the receiver has received a

packet with its evidence, and to validate the evidence for this packet, receiver first

hashes the packet M with one-way hash function h which is identical to the one-way

hash function used in evidence generation phase at sender. We denote the received

evidence E= (e0, e1… ep). The hash value h(M) is divided into p segments where each

segment size is b-bits and each segment is interpreted as an integer between 0 and

2b-1. We denote these p segments (i0, i1… ip-1). Each segment in this set stands for the

 18

column index of TSK elements array. For each index i, the appearance times of index

i is used to individually determine the number of times to hash the elements in

evidence. For instance, if the appearance times of index ij is ai, the corresponding

element ej in evidence should be hashed ai+1 times. According to the same manner, if

index ij never appears before, the element ej in evidence only needs to be hash one

times. Each element in evidence E will be hashed for corresponding times according

to above-mentioned manner. The hash results of the elements can be denoted HR= (h0,

h1… hp). Receiver consequently choose the verification subset VS= (hL(Ri0),

hL(Ri1), …, hL(Rip)) from TPK where hL(Rij) means the ij-th element in TPK. Receiver

compare the two sets, HR and VS, and if all elements are identical between these two

set, the evidence will be considered valid. On the contrary, the evidence will be

considered invalid if any difference between the two sets. If the evidence validation is

correct, receiver will accepts the packet, otherwise, the packet will be dropped.

3.1.4. Temporal key renewal phase

With previous three proposed phases, sender can generate the evidence using

TSK and receiver is able to judge the validity of packets by verifying the evidence

with TPK. The evidence of packet prevents receiver from accepting forged packet.

Therefore, pollution attacks will not occurs in our proposed scheme. However, in

evidence generation phase, each evidence includes some elements of TSK, and an

attacker can sniff the network to obtain these elements contained in evidence. When

an attacker obtains enough portions of TSK elements, the probability of forging valid

evidence will rise dramatically, and it means the security strength decreases as the

portion of TSK an attacker has obtained increases. Thus periodically renew the used

TSK elements is necessary to ensure the secure communication between sender and

 19

receivers. We first define a threshold value T in our key renewal phase. UTSK0 denotes

the numbers of used elements in TSK0 since the last time temporal key renewal phase

has been operated till now. TSK0 stands for the first TSK of TSK chain. The occasion

to execute temporal key renewal phase is when the numbers of used elements in TSK0,

UTSK0, has exceeded the threshold T. In this phase, assume the indexes of these used

elements in TSK0 are denoted (j0, j1, j2… jt-1). Sender consequently generates t new

random numbers for these indexes in TSK0. Based on these random numbers, we use

one-way hash function h to generate other elements in TSKj, and new partial TPK also

be generated. The above-mentioned operation is the same as the temporal key

generation procedure in initialization phase. Since we only partially generate new

TSK, we name this new information partial TSK. We update original TSK elements

with partial TSK elements, whose column index is in (j0, j1, j2… jt-1). The original

TPK in receiver also needs to be updated to cooperate with the renewed TSK. The

new partial TPK will be concatenated with Hj and Sign(h(Hj)) in SAIDA to form a

new verification information VI’. The new verification information is then encoded by

erasure codes as usual in SAIDA and the output segments are appended to each packet.

Figure 3-5 gives an illustration of above-mentioned procedure. As receiver

successfully reconstructs the VI’ original TPK stored in receiver can be updated with

the new partial TPK contained in VI’.

 20

Figure 3-5 Temporal key renewal phase.

After successfully renewing TSK and TPK, sender and receiver are able to use

new TSK and TPK to generate and validate evidence.

3.2. Practical considerations

In this section, we list the features of our proposed scheme in the following:

Efficient evidence generation and validation. Our proposed PARM uses

one-way hash function to generate and validate evidence instead of conventional

complicated cryptography algorithm. PARM is also suitable for those devices with

restricted computation power due to the advantage of lightweight operations.

Instant validation. Receiver is able to validate each packet based on appended

evidence once a packet is arriving. Thus, no redundant storage space is required to

buffer invalid packets. Instant validation also prevents attacker overloads receiver by

sending large amounts of packets to overwhelm the receiver’s storage space.

Packet loss tolerant and individual validation. Since in many multicast

 21

applications, lost packets are not retransmitted, our proposed scheme PARM can

tolerate up to a threshold number of packet loss. Moreover, packet loss will not affect

the validation of other packets that each packet is able to be validated individually and

independently. The feature is very important for a multicast authentication scheme

since packet loss occurs frequently in Internet.

Constant verification information (Evidence). In order to validate individual

packets instantly, every packet will be augmented with its own evidence. If each

evidence size is too large or the evidence grows with the scale expanded, the overhead

of evidence will significantly affect the performance. In our proposed scheme, the

evidence size remains constant per-packet communication overhead.

3.3. Attacks resistance

There are many kinds of attacks in Internet and a considerate multicast

authentication scheme should be able to defend against kinds of attacks. In this

section, we show that how PARM could resist common attacks. Here we assume an

adversary is infeasible to successfully forge evidence, and we will show the degree of

difficulty for this assumption in section 5.

Injection. Attackers always inject random or pre-designed packets to cheat the

receiver and may induce the receiver to make illegal behavior. This attack will not

gain its purpose since each valid packet will bring corresponding evidence and

receiver will accepts the packets only if the evidence validation is correct.

Modification. Another often seen attack is modification that attacker captures

 22

transmission packets and retransfers it after modifying the content. The evidence of a

packet is related to the packet content, thus the modification will be aware for the

receiver by validating the evidence.

Signature flooding attacks. Since almost all authentication mechanism uses

additional verification information for a receiver to validate the received packets.

However, an adversary may realize signature flooding attacks by sending large

amount of packets with invalid verification information. If the validation operation is

high overhead, receiver consequently exhaust its resources to validate those invalid

verification information. Nevertheless, our proposed PARM is resistant to this attack

due to the lightweight validation procedure of our scheme.

Pollution attacks. To pollute the erasure decoding procedure is infeasible because

each valid packet should be appended with evidence which will be validated by

receiver. Thus, only valid packets will be accepted by receiver and pollution attack is

unable to be realized under our proposed scheme.

 23

4. Comparison

A distillation code proposed by Karlof et al was so far the one which has solved

the pollution attacks in SAIDA. However, distillation codes needs more

communication and computation overhead and we make a comparison between

distillation codes and our proposed scheme (PARM).

Before the comparison, we first define some parameters to complete the

comparison.

CE: computation overhead of operating erasure codes per time.

CH: computation overhead of operating hash functions per time.

SG: computation overhead of generating one digital signature in SAIDA.

SV: computation overhead of verifying one digital signature in SAIDA.

NK: number of packets in one SAIDA block.

NP: verification information size of our proposed scheme.

NA: total amount of attack packets in one block.

4.1. Storage overhead

In the initial stage, our proposed scheme requires to store some information in

sender and receiver, and Distillation codes requires no additional storage size. In our

proposed scheme, assume the TSK chain length is L and each TSK contains k

elements, then the size of TSK elements array is L*k and TPK size is k. Therefore,

sender has to store L*k elements and receiver has to store k elements. If the TSK chain

length L is very large, then the storage overhead at sender will be impressive.

However, the environment of this paper is multicast and the sender means a multicast

server which generally has larger storage size and higher computation power. Thus the

 24

storage size consumption will not cause significant overhead to sender.

 While pollution attack occurs in multicast communication, our proposed scheme

is able to save considerable storage space in contrast to Distillation codes. Since our

proposed scheme check the validity of received packets instantly, only valid packets

will be buffered. However Distillation codes can not judge the correctness of received

packets and all packets, no matter valid or invalid, should be buffered to be used in

the followed procedure. Due to the characteristic of limited resource at receiver,

buffering amount of invalid packets impressively affect the receiver’s performance.

Therefore, our PARM is more efficient than Distillation codes at receiver side while

pollution attack occurs.

4.2. Communication overhead

A distillation code appends witness to each packet and the witness is generated

by Merkle hash tree and packets hash values. As we described in related work, a

Merkle hash tree is established by the hash values of the block of packets in SAIDA,

and the witness of a packet means the verification sequence of the packet in this tree.

However verification sequence of Merkle hash tree increases in logarithmic to the

number of leaf nodes. Therefore, if the number of packets in one block is scaled, the

witness size is consequently increased in logarithmic.

In contrast to distillation codes, our proposed scheme uses constant size evidence

no matter number of packets in one block. Thus, our proposed scheme has lightweight

communication overhead than distillation codes.

4.3. Computation overhead

 25

In this section, we would compare the computation overhead with Distillation Codes.

We first show the computation overhead at receiver and sender to send or

receiver one block packets when there is no pollution attack. When Distillation Codes

is deployed, the computation overhead of sending one block packets at sender could

be denoted

GHK SCN +∗−)12(.

The computation overhead of receiving one block packets at receiver could be

denoted

VEHKK SCCNN ++∗+∗)1(log2 .

In contrast to Distillation codes, our proposed scheme costs

GHK SCN +∗

computation overhead at sender. And at receiver, the computation overhead to validate

received packets in one block could be denoted

VEHPK SCCNN ++∗∗ .

The computation costs constant overhead in our proposed scheme and costs

logarithmic overhead in Distillation codes. Because computation overhead would not

be affected at sender when happening attacks, we then only analyze the computation

overhead at receiver when pollution attacks occurred. Some attack parameters should

be defined in prior.

Distillation codes costs

VGEGHKAK SNCNCNNN ∗+∗+∗+∗+)1(log)(2

computation overhead at receiver where NG denotes the number of partitions

Distillation codes would partition. Compared to our proposed scheme, the overhead

might be derived as

VEHPAK SCCNNN ++∗∗+)(.

 26

Erasure codes and signature verification cost high computation power and

Distillation codes requires several computation times of these two

computation-consumed operations. Thus, our proposed scheme is much lightweight

than Distillation codes.

Figure 4-1 Computation overhead at sender.

Figure 4-2 Computation overhead at receiver.

 27

5. Security analysis

We now analyze the degree of computational difficulty to compute the valid

evidence without gaining any elements in TSK. Assume each TSK elements is b-bits,

the amount of hash values that an adversary has to guess is (2b-1)p on average. The

complexity of finding a valid evidence of a packet can be denoted as

complexity = O(2bp)

where b denotes number of bytes for each symbol and p denotes number of symbols

in each evidence.

 If an adversary has obtained n TSK elements, we then derive the probability that

the valid evidence can be produced. Since each element in TSK will not be reused

except those elements in the first TSK chain, TSK0, we can assume that only the

elements in TSK0 an adversary has known will affect the security PARM. If these

elements an adversary has obtained are normally distributed among each TSK, the

amount of these symbols in TSK0 can be roughly denoted n/L. Assume the TSK chain

length is L and each TSK has k elements. The evidence of each packet contains p TSK

elements. Under no temporal key renewal, we derive that a tight upper bound of the

probability Pf for an adversary to forge a valid evidence using obtained n TSK

elements.

 pp
L
n

f Lk
n

k
P ⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠

⎞
⎜
⎝

⎛=
(equation 5.1)

And we define the security strength as
p

f n
Lk

P
S ⎟

⎠
⎞

⎜
⎝
⎛==

1

(equation 5.2)

The equation shows that the security strength S increased in inverse proportion to

 28

amounts of used TSK elements n and evidence size p. The S increased in direct

proportion to amount of TSK elements k and TSK chain length L. The security

strength S gets down if probability Pf gets high. In other words, it is securer if an

adversary obtained less TSK elements or extending the evidence size.

Once the temporal key renewal phase is deployed, the TSK elements attacker has

obtained would be useless to forge the evidence. T means the threshold which is

defined in temporal key renewal phase. The upper bound probability of forging

evidence can be derived as

T

L
n

k
P

p
L
n

f ≤⎟
⎠

⎞
⎜
⎝

⎛=
(equation 5.3)

The security strength can be represented as

T

L
n

n
Lk

P
S

p

f

≤⎟
⎠
⎞

⎜
⎝
⎛==

1
(equation 5.4)

We denote n/L to be number of elements in TSK0 which has been used. If n/L is more

than T, n/L would be set to zero since temporal key would be renewed and there

would be no more used elements in TSK0.

 29

6. Evaluation

In this section, we will make some evaluations to show the security strength of

our proposed scheme under different conditions. According to previous derived

equations in section 5, we will vary the parameter value to perform the change of

security strength.

 First, we discuss the situation while no key renewal is adopted. Equation 5.2 in

section 5 shows the security strength. We vary the evidence size and illustrate the

change of security strength while attacker obtained different number of TSK elements

in the following two figures. In Figure 6-1 and Figure 6-2, we assume the parameters

in equation 5.2 as follows: each TSK contains k=512 symbols and TSK chain length is

L=10. Each evidence contains p TSK elements. These two figures show the

relationship between the security strength and number of TSK elements attacker has

obtained.

1E+00

1E+07

1E+14

1E+21

1E+28

1E+35

1E+42

1E+49

1E+56

1E+63

1E+70

1E+77

1E+84

1E+91

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

Number of TSK symbols

Se
cu

ri
ty

 S
tr

en
gt

h

p=2 p=4 p=8 p=16 p=32

Figure 6-1 The security strength of different evidence size (1).

 30

1E+00

1E+05

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

10
0

40
0

70
0
10
00

13
00

16
00

19
00

22
00

25
00

28
00

31
00

34
00

37
00

40
00

43
00

46
00

49
00

52
00

Number of TSK symbols

Se
cu

ri
ty

 S
tr

en
gt

h

p=2 p=4 p=8 p=16 p=32

Figure 6-2 The security strength of different evidence size (2).

The y-axis represents the security strength and the x-axis represents the number

of TSK elements attacker has obtained. The y-axis is denoted as a logarithmic axis for

conveniently displaying the values. In Figure 6-1, the total TSK symbols are 5120 and

we show the probability when an adversary obtained 10 to 500 TSK symbols. We

could see that the security strength gets higher when evidence size p is bigger. Since

temporal key renewal phase is not deployed, the probability would exponentially

increase when number of TSK elements attacker obtained increased. Figure 6-2

illustrates the security strength of our proposed scheme when more TSK elements

have known by attacker. The number of TSK elements is from 100 to 5120. We could

find out the phenomenon that the security would significantly downgrade when there

are much TSK elements disclosed.

TSK chain length L is also an important factor to security strength. Figure 6-3

represents the relations while different chain lengths are used. In Figure 6-3, we

assume the evidence size p is 16 and each TSK contains k= 512 elements. This figure

shows the relationship between the security strength or PARM and different TSK

chain lengths.

 31

1E+00

1E+03

1E+06

1E+09

1E+12

1E+15

1E+18

1E+21

1E+24

1E+27

100 400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000

Number of TSK symbols

Se
cu

ri
ty

 S
tr

en
gt

h

L=1 L=2 L=4 L=8

Figure 6-3 The security strength of different TSK chain length.

Based on the equation 5.2, we could obviously find out that TSK chain length

has exponential effect to the security strength of proposed scheme, and longer TSK

chain length refers to higher security. These figures shown above did not deploy the

key renewal mechanism and the security strength will drop dramatically with the

number of disclosed TSK elements increased.

1E+00

1E+05

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

0 50 10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
55
0
60
0
65
0
70
0
75
0
80
0
85
0
90
0
95
0
10
00

Rounds

Se
cu

ri
ty

 S
tr

en
gt

h

No threshold T=50 T=200

Figure 6-4 The security strength with key renewal.

To enhance the security, we proposed the key renewal mechanism and equation

 32

5.4 represents the security strength when deploying this mechanism. Temporal key

renewal phase occurs while the number of used TSK elements in TSK0 reaches a

threshold T and those used TSK elements and TPK would be partially renewed. We

then illustrate the equation to show the enhancement of security after deploying key

renewal mechanism in our proposed scheme. In Figure 6-4, we show an evaluation of

our proposed scheme with different key renewal threshold T. The x-axis represents the

number of transmission rounds between sender and receivers. The first curve didn’t

deploy key renewal mechanism and thus the security strength drops continuously. The

other curves deploy temporal key renewal mechanism and obviously they are able to

sustain above certain security strength. For example, when threshold T is set to 200,

the security strength can be always higher than E+11, and the security strength can be

always higher than E+19 when T=50. We could discover from the figure that the

small threshold would sustain higher security strength than large threshold. This

figure also gives us an important conclusion that key renewal is essential to guarantee

the security.

 33

7. Conclusion

Pollution attack is a significant problem in multicast authentication, but previous

researches solved the problem without efficiency. This paper has proposed a new

approach to resisting pollution attack. This approach not only demanded lightweight

computation overhead for sender and receiver but also allowed receiver to instantly

validate packets without buffering invalid packets. The idea of partial key renewal in

proposed scheme guaranteed a lower bound security regardless of amount of

disclosed TSK elements. In addition to SAIDA, the proposed approach could be also

used in other signature amortization schemes which had involved fault-tolerant

algorithm in to defend against pollution attack.

 We derived some overhead analyses and evaluations, and the results shows the

proposed scheme is relatively lightweight than previous solutions. The evaluation of

threshold of partial key renewal can help sender define the value suitable for local

network. Our future work is to reduced the communication overhead of PARM to

achieve same security strength and reduce the storage overhead for the considerable

requirement of storage size to store TSK elements.

 34

References

[1] Chris Karlof, Naveen Sastry, Yaping Li, Adrian Perrig, and J.D. Tygar. Distillation

Codes and Applications to DoS Resistant Multicast Authentication. In Proceedings

of the 11th Annual Network and Distributed System Security Symposium (NDSS

'04), February 2004.

[2] J. M. Park, E. Chong, and H. J. Siegel. Efficient multicast packet authentication

using erasure codes. ACM Transactions on Information and System Security

(TISSEC), 6(2):258–285, May 2003.

[3] J. M. Park, E. K. Chong, and H. J. Siegel. Efficient multicast packet authentication

using signature amortization. In Proceedings of the IEEE Symposium on Research

in Security and Privacy, pages 227–240, May 2002.

[4] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In

Proceedings of the Eighth ACM Conference on Computer and Communications

Security (CCS-8), pages 28–37, Philadelphia PA, USA, Nov. 2001.

[5] L. Reyzin and N. Reyzin. Better than BiBa: Short onetime signatures with fast

signing and verifying. In Seventh Australasian Conference on Information

Security and Privacy (ACISP 2002), July 2002.

[6] R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, pages 122–134, Apr. 1980.

[7] M. Luby. LT codes. In 43rd Annual IEEE Symposium on Foundations of Computer

Science (FOCS ’02), 2002.

[8] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Efficient erasure

correcting codes. IEEE Transactions on Information Theory, 47(2):569–584, February

2001.

[9] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault

 35

tolerance. Journal of ACM, 36(2):335–348, 1989.

[10] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast packet authentication

using signature amortization. In IEEE Symposium on Security and Privacy, pages

227–240, 2002.

[11] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast packet authentication

using erasure codes. ACM Transactions on Information and System Security, pages

6(2):258–285, May 2003.

[12] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of

the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[13] H. Krawczyk. Distributed fingerprints and secure information dispersal. In 13th

ACM Symposium on Principles of Distributed Computing, pages 207–218. ACM,

1993.

[14] R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, pages 122–134, Apr. 1980.

[15] P. Golle and N. Modadugu. Authenticating streamed data in the presence of

random packet loss. In Proceedings of the Symposium on Network and Distributed

Systems Security (NDSS 2001), pages 13–22. Internet Society, Feb. 2001.

[16] S. Miner and J. Staddon. Graph-based authentication of digital streams. In

Proceedings of the IEEE Symposium on Research in Security and Privacy, pages

232–246, May 2001.

[17] A. Pannetrat and R. Molva. Efficient multicast packet authentication. In

Proceedings of the Symposium on Network and Distributed System Security

Symposium (NDSS 2003). Internet Society, Feb. 2003.

[18] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and

signature of multicast streams over lossy channels. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, pages 56–73, May 2000.

 36

[19] D. Song, D. Zuckerman, and J. D. Tygar. Expander graphs for digital stream

authentication and robust overlay networks. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, pages 258–270, May 2002.

[20] C. Wong and S. Lam. Digital signatures for flows and multicasts. In Proceedings

on the 6th International Conference on Network Protocols (ICNP ‘98), pages

198–209. IEEE, October 1998.

[21] E. Ayanoglu, I. Chih-Lin, R.D. Gitlin, J.E. Mazo. Diversity Coding for

Transparent Self-Healing and Fault-Tolerant Communication Networks. IEEE

Transactions on Communications, 41(11), 1993.

[22] R. Gennaro and P. Rohatgi. How to sign digital streams. In Advances in

Cryptology, volume 1294 of Lecture Notes in Computer Science, pages 180--197.

Springer, 1997.

 37

