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有效率抵抗污染攻擊的多點傳送認證協定 
研究生：林亞正                指導教授：謝續平 博士 

 

國立交通大學資訊工程學系 

摘要 

 在每個多點傳送的封包加上數位簽章會耗費很多資源。為了減少安全性所帶

來的花費，有人提出平攤產生簽章花費的方法。另一方面，為了容忍在多點傳送

環境中封包遺失的情況，通常會加上容錯的編碼方法。 然而當攻擊者傳送不合

法封包時，容錯的解碼流程會被搗亂，因而產生錯誤的資訊。這種攻擊方式被稱

之為污染攻擊。目前解決污染攻擊的方法非常沒有效率，為了改善這個問題，我

們提出了一個有效率解決污染攻擊的多點傳送認證協定。 
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Lightweight, Pollution-Attack Resistant Multicast 

Authentication Scheme 

Student: Ya-Jeng Lin    Advisor: Shiuh-Pyng Shieh 

Department of Computer Science and Information Engineering 

National Chaio Tung University 

 
Abstract 

Signing every multicast packet incurs high overhead.  To reduce security 

overhead, signature amortization is proposed. On the other hand, to tolerate packet 

loss, erasure codes is used to enhance signature amortization. However, signature 

amortization is weak against pollution attack which occurs when an attacker injects 

packets to disturb the erasure decoding procedure, and consequently denies the 

service. Current solution to this pollution attack is heavyweight and inefficient. To 

cope with this problem, we propose a new lightweight, pollution-attack resistant 

multicast authentication scheme (PARM), which generates evidence for each packet 

that can validated by the receiver. This approach effectively resists pollution attacks 

and has better performance than previous proposed solutions. 
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1. Introduction 

 

Multicast protocol enables a sender to efficiently disseminate digital media data 

to many receivers. Due to the time-sensitive requirement of some applications, 

reliable transmission protocol like TCP (Transmission Control Protocol) is impractical 

for multicast. Therefore, unreliable transmission protocol such as UDP (User 

Datagram Protocol) is generally adopted for multicast applications. Multicast protocol 

is suitable for many applications, for example, video transmission, live broadcast, 

stock quotation or news feed. These applications have the common characteristics that 

the receiver might be plenty and the communication data is time-sensitive. However 

security is an important issue for multicast to ensure secure communication between 

sender and receivers. An attacker is able to impersonate sender to send malicious 

packets to receivers and the malicious information might injure the receivers or 

intercept the communication. To defend against forged packets injected by attackers, 

multicast authentication is proposed for this purpose. Multicast authentication enables 

receiver to authenticate the packet source and malicious packets will be denied. There 

have been many multicast authentication approaches and these approaches could be 

roughly divided into two categories: symmetric cryptographic primitives and 

asymmetric cryptographic primitives. Symmetric cryptographic primitive generally 

uses symmetric key to authenticate data source and MAC (Message Authentication 

Code) is the well-known approach in this category. In MAC, an identical secret key is 

maintained at sender and receiver. Sender uses the secret key to generate a MAC for a 

packet and receiver is able to authenticate the packet source by verifying the MAC of 

the packet with secret key. Asymmetric cryptographic primitive uses asymmetric key 

pair to authenticate data source. Asymmetric key pair generally means that there are 



two keys, one key is used to generate signature and another key is for verifying the 

signature. Digital signature is a well-known approach in this category and is believed 

secure enough. Using RSA to generate digital signature is popular, nevertheless, 

digital signature generation and verification incur high computation overhead and 

signing every packet significantly downgrades the system performance. According to 

this practical concern, a compromised approach which is signature amortization 

[10][11][15][16][17][18][19][20], was proposed to amortize the overhead of 

generating one signature over a block of packets. For a block of packets, only one 

digital signature will be generated. These packets will be considered authentic if the 

signature of this block can be correctly verified by receiver. Signature amortization 

makes tradeoff between security and computation overhead. Due to the unreliable 

transmission and packet loss in multicast protocol, an elaborate signature amortization 

scheme should be able to work well even thought some packets get lost. For this 

reason, signature amortization schemes with fault-tolerant coding algorithms are 

proposed. In this kind of scheme, the digital signature for a block of packets is always 

encoded at sender by fault-tolerant coding algorithms and decoded at receiver. 

Fault-tolerant coding algorithms like erasure codes [7][8][9][12], or diversity codes 

[21] partition an information into many segments and the information is able to be 

correctly reconstructed even though a threshold number of segments get lost. For 

example, an (n,t) erasure encoder generates a set S of n symbols (s1,s2,…, sn) from an 

information. The erasure decoder can tolerate a loss of up to t packets. Although 

signature amortization with fault-tolerant coding algorithms reduces computation 

overhead and tolerates packet loss, it suffers pollution attacks [1]. Pollution attack was 

first defined in [1] and this attack occurs if attackers inject a great quantity of forged 

packets into the block of packets. At receiver, these forged packets will disturb the 

signature decoding procedure of fault-tolerant coding algorithm and then the decoder 
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will consequently reconstruct an incorrect signature. The incorrect signature will fail 

to be verified by receiver with sender’s public key and all the packets in the block will 

be considered invalid. Receiver will drop received packets in the block which 

includes valid packet transmitted by legal sender. The information inside valid 

packets will not be understood by receiver; hence the multicast application is unable 

to serve users fluently. 

Distillation codes [1] is so far the only one solution to defend against pollution 

attack for signature amortization. In distillation codes, sender augments each packet 

with a witness and receiver is able to partition received packets into many groups 

according to the augmented witness. Distillation codes guarantees that all valid 

packets will be partitioned into the same group and correct signature could be 

decoded from the packets in this group. Therefore, forged packets injected by 

attackers will be partitioned into other groups and pollution attack is unable to affect 

the decoding procedure. However, in distillation codes, we can not realize which 

group contains valid packets in advanced, and every group should execute the 

decoding procedure to reconstruct the correct signature. Besides, while packets reach 

receiver side, receiver is unable to determine the received packets valid of invalid 

instantly and receiver consequently should store all received packets no matter valid 

or invalid. Distillation codes incurs high computation overhead and the storage space 

at receiver, and the delay of distillation codes is considerable.  

Multicast authentication ensures the security for multicast applications. However, 

sign every multicast packet with digital signature incurs high overhead and the 

cumbersome overhead is impractical for many resource limited devices. Signature 

amortization reduces the computation and communication overhead and a 

fault-tolerance coding algorithm is always involved in to tolerate packet loss. But a 

signature amortization scheme with erasure codes suffers pollution attacks which an 
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attacker can inject forged packets to disturb the decoding procedure of erasure codes. 

Therefore, to solve this problem, we design a lightweight and pollution attack 

resistant multicast authentication protocol (PARM). The main advantages of our 

proposed scheme are fast and lightweight, since many multicast applications are 

time-sensitive and some end devices may have only limited computation power. 

Therefore, a high overhead and high delay solution is unsuitable to be wildly 

deployed on multicast applications. In contrast to distillation codes, our proposed 

scheme requires less computation overhead and less storage space. 

In the next section, we briefly discuss related work of signature amortization, and 

give some overview of a signature amortization scheme, SAIDA, and distillation 

codes. Our proposed scheme and is given in section 3 and we analyze the overhead of 

our proposed scheme and compare it with distillation codes in section 4. In section 5, 

we derive the security strength of PARM and an evaluation is given in section 6. 

Finally, a conclusion of this thesis is in section 7. 
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2. Related work 

 

We will introduce current works in signature amortization in section 2.1 and a 

signature amortization scheme with erasure codes (SAIDA) will be introduced in 

section 2.2. In section 2.3, we will give a rough description of distillation codes which 

is proposed to resist pollution attacks in SAIDA, 

  

2.1. Signature amortization 
 

Computation and communication overhead is a significant consideration in many 

multicast authentication schemes based on digital signature. To reduce the overhead, 

signature amortization schemes are proposed to amortize the overhead of generating a 

single signature over many packets. Based on different techniques, signature 

amortization schemes can be classified into several categories.  

Hash chain.  Gennaro and Rohatgi in [22] is the first scheme that uses 

signature amortization over a hash chain. Each packet pi is augmented with 

verification information ai which is recursively defined as the hash value of the 

concatenation of next packet pi+1 and next verification information ai+1. For example, 

ai=h(pi+1||ai+1) and ai+1=h(pi+2||ai+2) where h means a hash function. Since the 

verification information is used to authenticate next packet recursively, only the first 

packet with its verification information needs to be signed with digital signature to 

protect the first verification information against interference. This scheme has 

constant authentication overhead per packet but does not tolerate packets losses. If 

one packet gets lost, all continued packets are unable to be authenticated. 

 Graph-based.  Graph-based technique [15][16][18][19] generalizes the idea of 
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amortizing a signature over a hash chain in such a way as to tolerate packets losses. A 

single-sink directed acyclic graph (DAG) is defined where each vertex corresponds to 

a packet. The edges in this graph between two vertexes indicate the authentication 

direction that source vertex is authenticated using the verification information of 

destination vertex. Instead of augmenting next packet’s hash value in current packet, a 

packet pi is augmented with the hash value of the packet pj which points to pi in 

single-sink directed acyclic graph. The first packet is also digitally signed. 

Graph-based schemes just guarantee probabilistic security strength under packet 

losses occur randomly. In particular, they require that the digitally signed packets need 

to reach the receiver completely. 

 Merkle hash trees.  Merkle hash tree [6] is a mechanism for computing a single 

cryptographically secure hash digest over a set of data elements. Merkle hash tree is a 

binary hash tree and in many signature amortization schemes, Merkle hash tree is 

build on top of the packets’ hash values. The internal nodes are recursively defined as 

hash values which are produced by hashing the concatenation of its two children.  

 

 
Figure 2-1 Merkle Hash Tree. 

Each leaf node is calculated by hashing the corresponding packet Si, and each internal node is the hash 

value of the concatenation of its two children. The verification sequence, for example, of a leaf node h3 

is (h4, h1,2, h5,8). 
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Figure 2-1 shows a Merkle hash tree and each Si indicates a packet. Each leaf 

node hi is calculated by hashing the corresponding Si, and each internal nodes hi,j 

means the hash results of the concatenation of hi and hj. The verification sequence of a 

Merkle hash tree for a leaf node indicates the hash values of the sibling nodes on the 

path from the leaf node to root. With a leaf node and its verification sequence, the root 

hash value of the tree can be retrieved. For instance, in Figure 2-1, the verification 

sequence of packet s3 can be represented as (h4, h1,2, h5,8). In [20], a Merkle hash tree 

technique is used by Wong and Lam to amortize a digital signature over n packets. 

Each leaf node of Merkle hash tree means a packet hash value. Each packet is 

augmented with the verification information which consists of the signed root hash 

value and corresponding verification sequence of Merkle hash tree. The scheme 

allows packets to be individually and independently verified. Packet losses also can 

be tolerated in the scheme, but logarithmic communication overhead per packet exists 

since the verification sequence size grows logarithmically with the amount of leaf 

nodes. In contrast, our proposed multicast scheme, which also uses signature 

amortization, has constant per-packet communication overhead. 

 Erasure codes.  An erasure code [7][8][9][12] is an encoder and decoder that 

use forward error correction to tolerate data loss. The encoder redundantly encodes 

information into a set of segments. If the decoder receives sufficiently many segments, 

it can reconstruct the original information. An (n,t) erasure encoder generates a set S 

of n segments from the input. The decoder can tolerate a loss of up to t packets. Park 

et al. [10][11] proposed a signature amortization scheme SAIDA (Signature 

Amortization using the Information Dispersal Algorithm) which employs the use of 

erasure codes for multicast authentication to tolerate random packet loss. In [10], a 

signature is encoded by erasure codes and sender consequently disseminates the 

encoded signature over a block of packets. Erasure decoder at receiver is able to 
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reconstruct the signature if receiving sufficient segments. Our proposed scheme is 

based on SAIDA and we will describe SAIDA more detailed in the next section. 

However SAIDA is vulnerable to a simple attack that an adversary can disturb the 

decoding procedure at receiver by injecting forged packets. In [1], they refer to this 

attack as pollution attack and they proposed a solution named distillation codes to 

defend against pollution attack where erasure code has been deployed. We will show 

the techniques and the shortcomings of distillation codes in the following section. 

 

2.2. SAIDA 
 

The full name of SAIDA is signature amortization using the information dispersal 

algorithm. In SAIDA, the multicast packet stream is partitioned into blocks of n 

consecutive packets. The hash values of packets in one block are concatenated to form 

Hj and Hj is protected by generating a signature Sign(h(Hj) for the hash value of Hj. 

The verification information VI which includes Hj and Sign(h(Hj) is encoded by 

erasure codes and erasure encoder outputs a set of segments which will be appended 

to each packet in the block. An erasure code can reconstruct original verification 

information VI even though some packets get lost. While receiving more than a 

threshold amount of packets at receiver, receiver is able to decode the VI from these 

segments of all received packets. After successfully reconstructing VI, receiver should 

first check the validity of Hj by verifying the Sign(h(Hj). Consequently, the hash 

values contained in Hj are able to authenticate all received packets in one block. 
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(a) Signing in SAIDA.  All packet values are 

concatenated to from Hj and a digital signature 

Sign(h(Hj)) is used to protect Hj. Erasure code 

is able to tolerate packet loss. The output of 

erasure codes disseminates over all packets in 

one block. 

(b)Verifying in SAIDA. Receiver collects 

the information segments and use erasure 

codes to reconstruct Hj and Sign(h(Hj)), 

and receiver verifies Sign(h(Hj)) to check 

the validity of Hj. Hj then is used to 

validate packets in the block. 

 

 
 
 
 
 
 

Figure 2-2 SAIDA (Signature Amortization using the Information Dispersal Algorithm). 

 

In Figure 2-2(a), Pi denotes a multicast packet and H(P0) represents the hash value 

of packet P0. Hj means the concatenation of these packets hash values and Sign(h(Hj)) 

is a digital signature for the hash value of Hj. The verification information VI included 

Hj and Sign(h(Hj)) is encoded by erasure codes. Sender will disseminate the output 

into each packet. Figure 2-2(b) illustrates the SAIDA verifying procedure and the 

procedure is inverse to SAIDA signing procedure. After reconstructing the 

concatenation of Hj and Sign(h(Hj)), Sign(h(Hj)) needs to be verified to check the 

validity of Hj. Consequently, the hash values included in Hj are used to validate each 

packet and receiver will accept the packet if its hash values is matched, otherwise, 

drop it. 

 

Pollution attacks in SAIDA.  In normal case, receiver decodes the verification 
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information from received packet by erasure codes to validate each packet. However 

when an adversary injects forged packets into communication channel, receiver will 

be confused and incorrect result will be decoded if there is no packet validation 

mechanism. Incorrect Hj is unable to be successfully verified by the signature 

Sign(h(Hj)) and all valid received packets will be dropped because these packets can 

not be authenticated by the hash values included in Hj. If receiver wants to reconstruct 

the correct information while pollution attack occurs, receiver will spend extreme 

computation power to try all the possible combinations of received packets to find the 

correct information. 

 

2.3. Distillation codes 
 

Karlof et al. [1] proposed distillation codes to defend against pollution attacks 

based on a signature amortization scheme SAIDA. They used Merkle hash tree and 

one way accumulator to realize distillation codes. First, a Merkle hash tree was 

constructed using multicast packets hash values. Sender generated witness for a 

packet and appended the witness to the packet. Witness is the verification sequence of 

a leaf node in Merkle hash tree and receiver could partition all received packets, 

which might include attack packets, into many groups according each packet’s 

witness. Distillation codes ensures that there will be a group including all valid 

packets and the verification information could be successfully reconstructed from 

packets in this group. The verification information consequently is able to 

authenticate the packets in one block. Witness plays an important role for distillation 

codes to resist pollution attacks.  
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(a) Distillation encoder.       (b) Distillation decoder. 

Figure 2-3 Distillation codes. 

 

Figure 2-3 shows the distillation encoder and decoder procedure. In Figure 2-3 (a), 

packets in one block are first hashed by a hash function and these hash values are 

concatenated to form Hj. In the distillation encode, Hj is encoded by erasure codes 

first and the output symbols S’= (s1’, s2’,…, sn’) are regarded as leaf nodes to build a 

Merkle hash tree. The s1 in Figure 2-3 (a) is produced to be the concatenation of s1’ 

and the verification sequence of s1’. These packets are augmented with the output of 

distillation encode symbols (s1, s2,…, sn). Since we can calculate the root hash value 

of the Merkle hash tree through the verification sequence, in Figure 2-3 (b), receiver 

is able to partition the received packets according to the calculated root value from the 

witness of the packet. Since the valid witnesses have the same root hash value and 

thus the packets with valid witness will be partitioned in the same group. 

Consequently, receiver can reconstruct correct verification information from the 

packets in the group and pollution attacks can be defended by distillation codes. 

However, distillation codes causes logarithmic communication overhead since 

witness size grows logarithmically with the number of packets in one block. While 

suffering pollution attacks, receiver will spend significant computation power since 

each group should operate erasure decoding and signature verifying to produce the 
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correct information. In addition, since receiver does not know the correct root hash 

value of the Merkle hash tree in advanced, the received packets should be buffered no 

matter invalid or valid until the correct information was reconstructed. This will 

require large buffer size to store these packets temporarily. 

Besides, a weakness occurs in distillation codes. An attacker can construct his 

own Merkle hash tree and send packets which are augmented with corresponding 

witness. These packets will be partitioned into same group at receiver since these 

witnesses are constructed from the same Merkle hash tree. The receiver is not aware 

of the correct root hash value of Merkle hash tree in advanced, so an attacker is able 

to inject large number of forged packets into one group to exhaust receiver’s 

computation power. Therefore, in this group, receiver needs to pay lots of 

computation overhead to decode the results and the performance of receiver will 

downgrade dramatically. 
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3. Proposed scheme 

 

To resist pollution attacks, we design a lightweight and pollution attack resistant 

multicast authentication protocol (PARM) based on SAIDA. The main concept of our 

proposed scheme is that each packet will be appended an evidence. Evidence means 

the verification information for a packet to prove the validity of the packet. Evidence 

of a packet is used for a receiver to judge the validity of a packet. Our proposed 

scheme is fast and lightweight, since many multicast applications are time-sensitive 

and some end devices may have only limited computation power. Therefore, a high 

overhead and high delay solution is unsuitable to be wildly deployed on multicast 

applications.  

 

3.1. Lightweight and pollution attack resistant multicast 

authentication protocol (PARM) 

 

Our proposed scheme can be roughly divided into four phases: initialization 

phase, evidence generation phase, evidence validation phase and temporal key 

renewal phase. We describe the four phases in individual sections. 

 

3.1.1. Initialization Phase 

 

In this phase, we mainly define how to generate temporal key pair, a temporal 

secret key (TSK) chain and a temporal public key (TPK). One-way hash function is 

the main technique to generate the temporal key pair. Sender will use TSK chain to 

generate the evidence of a packet and receiver will validate the evidence of received 
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packet by TPK.  

 Sender will generate TSK chain and TPK in advanced before communicating 

with receivers. First of all, sender generates k random number (R0, R1, R2… Rk-1) 

where each random number is n-bits, and these numbers are considered the first TSK 

of TSK chain, TSK0. Let h be a one-way hash function and we will use this one-way 

hash function to recursively generate other TSKs of TSK chain. Based on existed 

TSK0, TSK1 is generated by hashing each element in TSK0 with one-way hash 

function h and these hash results are collected to form TSK1. TSK1 can be denoted 

(h(R0), h(R1), h(R2), …, h(Rk-1)). According to the same manner, TSK2 and latter TSKs 

can be recursively produced by sender, and we assume that totally L TSKs will be 

generated. That means the TSK chain length is L and TSK chain can be represented as 

(TSK0, TSK1, TSK2… TSKL-1). Temporal public key (TPK) is generated in the same 

technique that hashing every elements in TSKL-1 which is the last TSK of TSK chain 

with one-way hash function h.  

 

Figure 3-1 Temporal key pair generation. 

 

Figure 3-1 shows the procedure of generating TSK and TPK. For instance, R0 

means the random generated number and the arrows indicate an one-way hash 

function h. Therefore, h(R0) indicates the hash result of R0, and h2(R0) is the hash 

result of h(R0). All these TSK elements can be seen as a TSK elements array as shown 
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in the right part of Figure 3-1. The collection set of the elements in the same row 

indicates a TSK, for example, TSK0= (R0, R1, …, Rk-1) and TSK1= (h(R0), h(R1),…, 

h(Rk-1)). Each column represents the elements of different TSK with same column 

index. The elements in the last row are collected to form TPK.  

After successfully generating TSK and TPK, sender transfers TPK to receivers. 

Since receivers will use TPK to determine the validity of received packet, it is very 

important for receiver to check the correctness of received TPK. If TPK is transferred 

without any protection, an attacker is able to produce a forged TPK to cheat the 

receivers. Once receiver accepts the forged TPK which is produced by an attacker, all 

the valid packets will fail to pass the evidence validation. Consequently, the 

transmitted TPK should be protected by signing digital signature with sender’s private 

key to prove the data source. After receiving the TPK, received will verify the 

signature to determine if the TPK is transferred by valid sender. If signature 

verification is correct, TPK will be stored at receiver. 

For latter operations, sender should store all these TSK elements and this will be a 

considerable storage size for sender. However, the role of sender in our multicast 

environment is always a multicast server which has more computation power and 

storage size. It is feasible for a server to store the information. The receiver only needs 

to store TPK for correctly operating consequent phase. 

 

3.1.2. Evidence Generation Phase 

 

When sender wants to send packets to receiver, this phase will be operated to 

generate the evidence for each packet. Evidence means the verification information 

for receivers to judge the validity of a packet. Since each packet will be augmented 

with evidence at sender, the evidence generation phase should be very lightweight and 
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fast. In evidence generation phase, sender should maintain an appearance times table, 

and evidence is generated according to this table. The appearance times table counts 

the appearance times of each column index of TSK elements array. Figure 3-2 

represents an example of appearance times table. Each element contained in row 

Index denotes the column index in TSK elements array. Each number in row 

Appearance times shows the used times of the corresponding index in evidence 

generation phase. All elements of each TSK are considered a TSK elements array, and 

the row x of this array indicates TSKx and column index y indicates the elements 

which is the y-th in each TSK. 

 

 

Figure 3-2 Appearance times table. 

 

Assume the packet size is m-bits, and to generate evidence for this packet, we first 

hash the packet with one-way hash function h. The hash value is divided into p 

segments, where each segment size is b-bits, and each segment is interpreted as an 

integer between 0 and 2b-1. We denote these p segments S= (i0, i1… ip-1). Each 

segment in the set S stands for the column index of TSK elements array. For each 

index i, the appearance times of index i is used to determine which TSK will be 

selected and index i means the i-th element should be chosen in selected TSK. If the 

appearance times of index i is ai, then TSK(L-1)-ai will be selected,. Therefore, if index i 

never appears before, the last TSK, TSKL-1, of TSK chain will be selected. For 

example, if the appearance times of i0 is 4, then sender will choose the i0-th element in 

TSKL-5. Each index in (i0, i1… ip-1) will be operated using above manner and 

consequently p elements of TSK will be produced for each index. These p elements 
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are composed to form the evidence of the input packet and the evidence is then 

appended to the packet. Sender transfers the packet with its evidence to receivers and 

receivers are able to validate the evidence to determine the validity of this packet. 

 

 
Figure 3-3 Evidence generation phase. 

 

Figure 3-3 shows a illustration for evidence generation phase. In this figure, i 

means the index number of TSK elements array and EM indicates the evidence for a 

packet M. For example, i0 is zero and the appearance times of i0 is L-1, and thus R0 is 

selected. Each index i and its corresponding appearance times are used to select the 

relative elements and these elements are concatenated to form the evidence EM. 

Note that the evidence generation in our proposed scheme is very lightweight 

and fast, since it needs no complicated operation to generate evidence but few 

one-way hash operations. Lightweight and fast evidence generation is a significant 

feature to raise the performance of multicast applications. 

 

3.1.3. Evidence Validation Phase 

 

While receiving a packet, receiver can validate the evidence attached to the 
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packet to check the packet valid or invalid. If an attacker wants to forge a packet to 

cheat receiver, he must have the ability to generate the valid evidence for the forged 

packet. It is very hard to generate the evidence for forged packet without the 

knowledge of TSK, and we will show the complexity for an attacker to successfully 

cheat the receiver in section 5. At receiver, temporal public key (TPK) is used to 

validate the evidence. As the sender, receiver also needs to maintain an appearance 

times table for each column index of TSK elements array based on received packets. 

 

 
Figure 3-4 Evidence validation phase. 

 

 We illustrate the evidence validation phase in Figure 3-4 Evidence validation 

phase.. As shown in this figure, the evidence validation procedure at receiver is a little 

similar to evidence generation phase at sender. Assume the receiver has received a 

packet with its evidence, and to validate the evidence for this packet, receiver first 

hashes the packet M with one-way hash function h which is identical to the one-way 

hash function used in  evidence generation phase at sender. We denote the received 

evidence E= (e0, e1… ep). The hash value h(M) is divided into p segments where each 

segment size is b-bits and each segment is interpreted as an integer between 0 and 

2b-1. We denote these p segments (i0, i1… ip-1). Each segment in this set stands for the 
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column index of TSK elements array. For each index i, the appearance times of index 

i is used to individually determine the number of times to hash the elements in 

evidence. For instance, if the appearance times of index ij is ai, the corresponding 

element ej in evidence should be hashed ai+1 times. According to the same manner, if 

index ij never appears before, the element ej in evidence only needs to be hash one 

times. Each element in evidence E will be hashed for corresponding times according 

to above-mentioned manner. The hash results of the elements can be denoted HR= (h0, 

h1… hp). Receiver consequently choose the verification subset VS= (hL(Ri0), 

hL(Ri1), …, hL(Rip)) from TPK where hL(Rij) means the ij-th element in TPK. Receiver 

compare the two sets, HR and VS, and if all elements are identical between these two 

set, the evidence will be considered valid. On the contrary, the evidence will be 

considered invalid if any difference between the two sets. If the evidence validation is 

correct, receiver will accepts the packet, otherwise, the packet will be dropped. 

 

3.1.4. Temporal key renewal phase 

 

With previous three proposed phases, sender can generate the evidence using 

TSK and receiver is able to judge the validity of packets by verifying the evidence 

with TPK. The evidence of packet prevents receiver from accepting forged packet. 

Therefore, pollution attacks will not occurs in our proposed scheme. However, in 

evidence generation phase, each evidence includes some elements of TSK, and an 

attacker can sniff the network to obtain these elements contained in evidence. When 

an attacker obtains enough portions of TSK elements, the probability of forging valid 

evidence will rise dramatically, and it means the security strength decreases as the 

portion of TSK an attacker has obtained increases. Thus periodically renew the used 

TSK elements is necessary to ensure the secure communication between sender and 
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receivers. We first define a threshold value T in our key renewal phase. UTSK0 denotes 

the numbers of used elements in TSK0 since the last time temporal key renewal phase 

has been operated till now. TSK0 stands for the first TSK of TSK chain. The occasion 

to execute temporal key renewal phase is when the numbers of used elements in TSK0, 

UTSK0, has exceeded the threshold T. In this phase, assume the indexes of these used 

elements in TSK0 are denoted (j0, j1, j2… jt-1). Sender consequently generates t new 

random numbers for these indexes in TSK0. Based on these random numbers, we use 

one-way hash function h to generate other elements in TSKj, and new partial TPK also 

be generated. The above-mentioned operation is the same as the temporal key 

generation procedure in initialization phase. Since we only partially generate new 

TSK, we name this new information partial TSK. We update original TSK elements 

with partial TSK elements, whose column index is in (j0, j1, j2… jt-1). The original 

TPK in receiver also needs to be updated to cooperate with the renewed TSK. The 

new partial TPK will be concatenated with Hj and Sign(h(Hj)) in SAIDA to form a 

new verification information VI’. The new verification information is then encoded by 

erasure codes as usual in SAIDA and the output segments are appended to each packet. 

Figure 3-5 gives an illustration of above-mentioned procedure. As receiver 

successfully reconstructs the VI’ original TPK stored in receiver can be updated with 

the new partial TPK contained in VI’.  
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Figure 3-5 Temporal key renewal phase. 

 

After successfully renewing TSK and TPK, sender and receiver are able to use 

new TSK and TPK to generate and validate evidence. 

 

3.2. Practical considerations 

 

In this section, we list the features of our proposed scheme in the following:  

Efficient evidence generation and validation.  Our proposed PARM uses 

one-way hash function to generate and validate evidence instead of conventional 

complicated cryptography algorithm. PARM is also suitable for those devices with 

restricted computation power due to the advantage of lightweight operations. 

 

Instant validation.  Receiver is able to validate each packet based on appended 

evidence once a packet is arriving. Thus, no redundant storage space is required to 

buffer invalid packets. Instant validation also prevents attacker overloads receiver by 

sending large amounts of packets to overwhelm the receiver’s storage space. 

 

Packet loss tolerant and individual validation.  Since in many multicast 

 21



applications, lost packets are not retransmitted, our proposed scheme PARM can 

tolerate up to a threshold number of packet loss. Moreover, packet loss will not affect 

the validation of other packets that each packet is able to be validated individually and 

independently. The feature is very important for a multicast authentication scheme 

since packet loss occurs frequently in Internet. 

 

Constant verification information (Evidence).  In order to validate individual 

packets instantly, every packet will be augmented with its own evidence. If each 

evidence size is too large or the evidence grows with the scale expanded, the overhead 

of evidence will significantly affect the performance. In our proposed scheme, the 

evidence size remains constant per-packet communication overhead. 

 

3.3. Attacks resistance 
 

There are many kinds of attacks in Internet and a considerate multicast 

authentication scheme should be able to defend against kinds of attacks. In this 

section, we show that how PARM could resist common attacks. Here we assume an 

adversary is infeasible to successfully forge evidence, and we will show the degree of 

difficulty for this assumption in section 5. 

 

Injection. Attackers always inject random or pre-designed packets to cheat the 

receiver and may induce the receiver to make illegal behavior. This attack will not 

gain its purpose since each valid packet will bring corresponding evidence and 

receiver will accepts the packets only if the evidence validation is correct. 

 

Modification. Another often seen attack is modification that attacker captures 
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transmission packets and retransfers it after modifying the content. The evidence of a 

packet is related to the packet content, thus the modification will be aware for the 

receiver by validating the evidence. 

 

Signature flooding attacks. Since almost all authentication mechanism uses 

additional verification information for a receiver to validate the received packets. 

However, an adversary may realize signature flooding attacks by sending large 

amount of packets with invalid verification information. If the validation operation is 

high overhead, receiver consequently exhaust its resources to validate those invalid 

verification information. Nevertheless, our proposed PARM is resistant to this attack 

due to the lightweight validation procedure of our scheme. 

 

Pollution attacks. To pollute the erasure decoding procedure is infeasible because 

each valid packet should be appended with evidence which will be validated by 

receiver. Thus, only valid packets will be accepted by receiver and pollution attack is 

unable to be realized under our proposed scheme. 
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4. Comparison 

 

A distillation code proposed by Karlof et al was so far the one which has solved 

the pollution attacks in SAIDA. However, distillation codes needs more 

communication and computation overhead and we make a comparison between 

distillation codes and our proposed scheme (PARM). 

Before the comparison, we first define some parameters to complete the 

comparison. 

CE: computation overhead of operating erasure codes per time. 

CH: computation overhead of operating hash functions per time. 

SG: computation overhead of generating one digital signature in SAIDA. 

SV: computation overhead of verifying one digital signature in SAIDA. 

NK: number of packets in one SAIDA block. 

NP: verification information size of our proposed scheme. 

NA: total amount of attack packets in one block. 

 

4.1. Storage overhead 
 

In the initial stage, our proposed scheme requires to store some information in 

sender and receiver, and Distillation codes requires no additional storage size. In our 

proposed scheme, assume the TSK chain length is L and each TSK contains k 

elements, then the size of TSK elements array is L*k and TPK size is k. Therefore, 

sender has to store L*k elements and receiver has to store k elements. If the TSK chain 

length L is very large, then the storage overhead at sender will be impressive. 

However, the environment of this paper is multicast and the sender means a multicast 

server which generally has larger storage size and higher computation power. Thus the 
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storage size consumption will not cause significant overhead to sender. 

 While pollution attack occurs in multicast communication, our proposed scheme 

is able to save considerable storage space in contrast to Distillation codes. Since our 

proposed scheme check the validity of received packets instantly, only valid packets 

will be buffered. However Distillation codes can not judge the correctness of received 

packets and all packets, no matter valid or invalid, should be buffered to be used in 

the followed procedure. Due to the characteristic of limited resource at receiver, 

buffering amount of invalid packets impressively affect the receiver’s performance. 

Therefore, our PARM is more efficient than Distillation codes at receiver side while 

pollution attack occurs. 

 

4.2. Communication overhead 
 

A distillation code appends witness to each packet and the witness is generated 

by Merkle hash tree and packets hash values. As we described in related work, a 

Merkle hash tree is established by the hash values of the block of packets in SAIDA, 

and the witness of a packet means the verification sequence of the packet in this tree. 

However verification sequence of Merkle hash tree increases in logarithmic to the 

number of leaf nodes. Therefore, if the number of packets in one block is scaled, the 

witness size is consequently increased in logarithmic. 

In contrast to distillation codes, our proposed scheme uses constant size evidence 

no matter number of packets in one block. Thus, our proposed scheme has lightweight 

communication overhead than distillation codes. 

 

4.3. Computation overhead 
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In this section, we would compare the computation overhead with Distillation Codes.  

 

We first show the computation overhead at receiver and sender to send or 

receiver one block packets when there is no pollution attack. When Distillation Codes 

is deployed, the computation overhead of sending one block packets at sender could 

be denoted  

GHK SCN +∗− )12( . 

The computation overhead of receiving one block packets at receiver could be 

denoted 

VEHKK SCCNN ++∗+∗ )1(log2 . 

In contrast to Distillation codes, our proposed scheme costs 

GHK SCN +∗  

computation overhead at sender. And at receiver, the computation overhead to validate 

received packets in one block could be denoted 

VEHPK SCCNN ++∗∗ . 

The computation costs constant overhead in our proposed scheme and costs 

logarithmic overhead in Distillation codes. Because computation overhead would not 

be affected at sender when happening attacks, we then only analyze the computation 

overhead at receiver when pollution attacks occurred. Some attack parameters should 

be defined in prior. 

Distillation codes costs 

VGEGHKAK SNCNCNNN ∗+∗+∗+∗+ )1(log)( 2  

computation overhead at receiver where NG denotes the number of partitions 

Distillation codes would partition. Compared to our proposed scheme, the overhead 

might be derived as 

VEHPAK SCCNNN ++∗∗+ )( . 
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Erasure codes and signature verification cost high computation power and 

Distillation codes requires several computation times of these two 

computation-consumed operations. Thus, our proposed scheme is much lightweight 

than Distillation codes. 

 
Figure 4-1 Computation overhead at sender. 

 

 

Figure 4-2 Computation overhead at receiver. 
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5. Security analysis 

 

We now analyze the degree of computational difficulty to compute the valid 

evidence without gaining any elements in TSK. Assume each TSK elements is b-bits, 

the amount of hash values that an adversary has to guess is (2b-1)p on average. The 

complexity of finding a valid evidence of a packet can be denoted as 

complexity = O(2bp) 

where b denotes number of bytes for each symbol and p denotes number of symbols 

in each evidence. 

 If an adversary has obtained n TSK elements, we then derive the probability that 

the valid evidence can be produced. Since each element in TSK will not be reused 

except those elements in the first TSK chain, TSK0, we can assume that only the 

elements in TSK0 an adversary has known will affect the security PARM. If these 

elements an adversary has obtained are normally distributed among each TSK, the 

amount of these symbols in TSK0 can be roughly denoted n/L. Assume the TSK chain 

length is L and each TSK has k elements. The evidence of each packet contains p TSK 

elements. Under no temporal key renewal, we derive that a tight upper bound of the 

probability Pf for an adversary to forge a valid evidence using obtained n TSK 

elements. 
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The equation shows that the security strength S increased in inverse proportion to 
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amounts of used TSK elements n and evidence size p. The S increased in direct 

proportion to amount of TSK elements k and TSK chain length L. The security 

strength S gets down if probability Pf gets high. In other words, it is securer if an 

adversary obtained less TSK elements or extending the evidence size. 

Once the temporal key renewal phase is deployed, the TSK elements attacker has 

obtained would be useless to forge the evidence. T means the threshold which is 

defined in temporal key renewal phase. The upper bound probability of forging 

evidence can be derived as 
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The security strength can be represented as 
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(equation 5.4) 

We denote n/L to be number of elements in TSK0 which has been used. If n/L is more 

than T, n/L would be set to zero since temporal key would be renewed and there 

would be no more used elements in TSK0. 

 

 29



6. Evaluation 

 

In this section, we will make some evaluations to show the security strength of 

our proposed scheme under different conditions. According to previous derived 

equations in section 5, we will vary the parameter value to perform the change of 

security strength. 

 First, we discuss the situation while no key renewal is adopted. Equation 5.2 in 

section 5 shows the security strength. We vary the evidence size and illustrate the 

change of security strength while attacker obtained different number of TSK elements 

in the following two figures. In Figure 6-1 and Figure 6-2, we assume the parameters 

in equation 5.2 as follows: each TSK contains k=512 symbols and TSK chain length is 

L=10. Each evidence contains p TSK elements. These two figures show the 

relationship between the security strength and number of TSK elements attacker has 

obtained. 
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Figure 6-1 The security strength of different evidence size (1). 
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Figure 6-2 The security strength of different evidence size (2). 

 

The y-axis represents the security strength and the x-axis represents the number 

of TSK elements attacker has obtained. The y-axis is denoted as a logarithmic axis for 

conveniently displaying the values. In Figure 6-1, the total TSK symbols are 5120 and 

we show the probability when an adversary obtained 10 to 500 TSK symbols. We 

could see that the security strength gets higher when evidence size p is bigger. Since 

temporal key renewal phase is not deployed, the probability would exponentially 

increase when number of TSK elements attacker obtained increased. Figure 6-2 

illustrates the security strength of our proposed scheme when more TSK elements 

have known by attacker. The number of TSK elements is from 100 to 5120. We could 

find out the phenomenon that the security would significantly downgrade when there 

are much TSK elements disclosed. 

TSK chain length L is also an important factor to security strength. Figure 6-3 

represents the relations while different chain lengths are used. In Figure 6-3, we 

assume the evidence size p is 16 and each TSK contains k= 512 elements. This figure 

shows the relationship between the security strength or PARM and different TSK 

chain lengths. 
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Figure 6-3 The security strength of different TSK chain length. 

 

Based on the equation 5.2, we could obviously find out that TSK chain length 

has exponential effect to the security strength of proposed scheme, and longer TSK 

chain length refers to higher security. These figures shown above did not deploy the 

key renewal mechanism and the security strength will drop dramatically with the 

number of disclosed TSK elements increased.  
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Figure 6-4 The security strength with key renewal. 

 

To enhance the security, we proposed the key renewal mechanism and equation 
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5.4 represents the security strength when deploying this mechanism. Temporal key 

renewal phase occurs while the number of used TSK elements in TSK0 reaches a 

threshold T and those used TSK elements and TPK would be partially renewed. We 

then illustrate the equation to show the enhancement of security after deploying key 

renewal mechanism in our proposed scheme. In Figure 6-4, we show an evaluation of 

our proposed scheme with different key renewal threshold T. The x-axis represents the 

number of transmission rounds between sender and receivers. The first curve didn’t 

deploy key renewal mechanism and thus the security strength drops continuously. The 

other curves deploy temporal key renewal mechanism and obviously they are able to 

sustain above certain security strength. For example, when threshold T is set to 200, 

the security strength can be always higher than E+11, and the security strength can be 

always higher than E+19 when T=50. We could discover from the figure that the 

small threshold would sustain higher security strength than large threshold. This 

figure also gives us an important conclusion that key renewal is essential to guarantee 

the security.  
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7. Conclusion 

Pollution attack is a significant problem in multicast authentication, but previous 

researches solved the problem without efficiency. This paper has proposed a new 

approach to resisting pollution attack. This approach not only demanded lightweight 

computation overhead for sender and receiver but also allowed receiver to instantly 

validate packets without buffering invalid packets. The idea of partial key renewal in 

proposed scheme guaranteed a lower bound security regardless of amount of 

disclosed TSK elements. In addition to SAIDA, the proposed approach could be also 

used in other signature amortization schemes which had involved fault-tolerant 

algorithm in to defend against pollution attack. 

 We derived some overhead analyses and evaluations, and the results shows the 

proposed scheme is relatively lightweight than previous solutions. The evaluation of 

threshold of partial key renewal can help sender define the value suitable for local 

network. Our future work is to reduced the communication overhead of PARM to 

achieve same security strength and reduce the storage overhead for the considerable 

requirement of storage size to store TSK elements.  
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