
Chapter 3

Filling - Filling Holes



3.1 Related Work 16

There are many ways to generate polygonal surfaces by computer software. 3D scan

technique and CAD software are both good tools that can be used to produce polygonal

mesh models. Although we can produce polygonal mesh model by the above mentioned

tools, due to the improper operation or limitation of these tools, it is possible that the gener-

ated models contain holes. When a generated model contains holes on it, guilt a number of

existing mesh-based algorithms that are designed for processing 3-D meshes may fail due

to this kind of defects. On the other hand, a mesh model containing holes looks visually

imperfect. Therefore, it seems to have strong reasons to fill the holes of a mesh model if

they do exist.

The types of holes that exist in a 3D object may be variant. For the purpose of filling

different types of holes, different strategies need to be applied []. Among different types

of holes, the simplest hole is the hole having cyclic form. Facing this kind of hole, we

can simply use a patch or apply a surface approximation algorithm to fill it. However, the

hole filling issue is not a must for many real world applications. Generally speaking, the

hole-filling problem can be categorized as a geometry problem in the field of mathematics.

In what follows, we shall provide a brief survey on related problems.

3.1 Related Work

Since a 3D model may contain holes and these defects will make a 3D model recon-

struction process incomplete, many researchers have devoted themselves to solve this crit-

ical issue. In [5], Sharf et al. propose the ”Context-based surface completion” method to

tackle this problem. They transformed the input into a set of points and then derived an ap-

proximated surface by calculating the cloud formed by these points. The above mentioned

approximation process is conduced through a coarse-to-fine manner. After getting the best

patches of holes, they iteratively apply the patches on the holes with rigid and non-rigid

transformation. In contrast to filling holes with smooth patches, the context-based method

locates the neighboring regions of holes in the input model and then completes the filling

process. Although this method can make holes of an object patched, it doest not address



3.2 Definition and Discussion 17

geometry-related issues. In other words, it is possible for this method to find similar skins

from the surrounding area, but may not find meaningful patches for holes.

Mesh model usually contains many fragmentized pieces of a polygonal surface. Fac-

ing this kind of problem, Ju [3] uses the concept of dual graph to transform the original

mesh data into a new domain. In the transformation of dual graph, the original faces be-

come vertices and if two faces have a neighboring relation, there will be a corresponding

edge between two vertices that are transformed from the above two faces. They execute a

model-repairing process using scan-conversion, sign generation and surface reconstruction

step by step.

Barequet and Sharir [1] proposed to fix the gaps of a mesh model along the boundary

of polyhedron. They find the matched boundaries by a voting technique and stitch these

matched boundaries. However, this technique cannot guarantee that all gaps are fixed.

Therefore, they apply a triangulation algorithm to fix the remaining parts. The triangula-

tion algorithm that they adopted uses dynamic programming to locate some patches with

minimum areas to fill holes. However, when the algorithm meets the effect of crenellation,

the resultant outcome is not satisfactory. Under these circumstances, Liepa [4] added an

angle parameter to the original weighting function to improve the performance of the min-

imum area triangulation algorithm. In this work, we shall adopt the approach proposed by

Liepa [4] to generate a hole-free mesh model. Liepa’s approach includes four steps. They

are hole identification, hole triangulation, refinement and finally fairing. Before describing

the process of hole-filling, we shall briefly introduce some definitions that will be used in

the subsequent sections.

3.2 Definition and Discussion

Our input is a triangular surface. A triangular surface is defined as a set of vertices and

a set of faces that form this surface. If two triangular faces share a common edge, we call

they are adjacent faces. Two adjacent triangular faces are said to be consistently oriented if



3.2 Definition and Discussion 18

(a) Outer hole (b) Inner hole

Figure 3.1: Hole Example (1)

their borders traverse their common edge in opposite direction. The dihedral angle of two

oriented faces is the angle of their face normals.

In Chapter 2, we make the input of a triangular surface become a triangular surface that

does not contain singular vertices and isolated singular vertices. The reason why we have

to do this is that the hole-filling algorithm does not accept an input that contains topological

singularities. Despite of singular vertices or isolated singular vertices, their existence will

make the hole-filling method crashed. On the other hand, a boundary edge is defined as an

edge that is adjacent to exactly one face. A hole is a closed cycle which is composed of a

set of neighboring boundary edges.

After executing the hole-filling process, we can say that the result is hole-free from the

view point of topology if we do not care whether the input is consistently oriented and

manifold. But from the view point of geometry, the hole does exist. For this reason, we

limit the input of a triangular surface to be consistently oriented. Under the circumstance,

we can guarantee to generate better experiment results.

The definition of a hole is entirely topological. Due to this definition, when executing

triangulation algorithm, the self-intersection effect may occur. Additionally, while using

this definition, we usually do not know whether the hole is the right one to be filled. The

strategy of hole-filling is to apply the triangulation algorithm to all the holes that are iden-



3.3 Hole-Identification 19

(a) Isolated island (b) broken pipe

Figure 3.2: Hole Example (2)

tified. It cannot automatically judge which one should be filled and which one should not

be filled. In Fig. 3.1(a), the thick cycle is an outside hole, and sometimes we do not need

to fill it. However, for the care of Fig. 3.1(b), the inside hole is definitely needed to be filled.

When we only handle one hole, it seems that a triangulation algorithm is a good choice

for hole-filling. However, if two or more holes are geometrically related, we should take the

following situations into consideration. As shown in Fig. 3.2(a), there is an isolated island

A inside the hole of B. According to the strategy of filling one hole, we need to execute

the triangulation algorithm twice on this mesh model: one for the hole A, and one for the

hole B. After executing the triangulation algorithm, we will have two hole-free connected

components. As a matter of fact, it is worthy of a discussion on this situation. Fig. 3.2(b)

shows a broken pipe having two holes (C and D). The best solution to the hole-filling issue

is to connect them. However, this kind of case is rare and can be considered as a special

case. In this work, we shall put our emphasis on filling a single hole.

3.3 Hole-Identification

In order to identify every hole of a mesh model, we must start the process from the

boundary edges. First of all, we label every boundary edge that has only one adjacent face.

From the pool that keeps all the boundary edges, we select a boundary edge as the pivot



3.3 Hole-Identification 20

(a) Clockwise direction (b) Counterclockwise direction

Figure 3.3: Hole Identification

and then find the next neighboring boundary edge.

However, a boundary edge in a hole always has two neighboring boundary edges. We

have to make decision which one to choice. Choosing the right direction, we can get the

correct normals of faces. To solve this problem, we have to make use of the information of

the face which is adjacent to the boundary edge. One key to the success of this section is

that the input model must be consistently oriented.

For example, Fig. 3.3 illustrates, the boundary edge E is the pivot edge that we choose,

the face F is the adjacent face of E, and the hole is inside the cycle. Fig. 3.3(a) and Fig.

3.3(b) show two different directions of face F, thus resulting in different rotating manners,

e.g., counter-clockwise or clockwise. The output mesh model will be consistently oriented.

A most important thing that should be concerned about is that there can be no topolog-

ical singularities in an input mesh model. Under the circumstances, the hole-identification

process will face a serious problem if the above mentioned problem exists. In general, the

definition of a hole is a closed cycle which is composed of boundary edges. If one wants to

traverse the constituent boundary edges of a hole, he/she will encounter difficulties when

there exists an isolated singular vertex in the hole. In order to guarantee the success of the

hole-identification process, we shall apply the method proposed in chapter 2 to remove all

topological problems.



3.4 Hole Triangulation 21

3.4 Hole Triangulation

After completing hole-identification, the next step is to find a triangulation method to

fill these identified holes. For a given 3D closed polygonal curve, we can always find a

minimum-area triangular surface to fill it by using the dynamic programming technique. It

is well-known that the adjustment of weight functions plays an important role in a dynamic

programming process. For perfectly filling a hole, a dynamic programming process usually

requires to balance the weight functions between two triangular faces. The most commonly

adopted parameter that can be used to adjust the weight functions of two neighboring tri-

angular faces is their areas. There are two ways to calculate the area of a triangular face.

The first is to utilize the two vectors formed by three vertices of a triangular face. One can

take the cross product of these two vectors and measure its length. The magnitude of this

length can be used as a reference to determine the weight. However, the computation time

consumed in this process is extensive. The second way to determine the weight is to use the

total length of the three edges. However, this method is not as accurate as the first method.

In addition to the area feature, it is also possible to use the dihedral angle between two

triangular faces as a judging criterion. Usually, the minimum area triangulation method

is suitable for holes that do not have crenellations. However, if the above mentioned con-

ditions exist, the algorithm is not feasible. Hence, we combine the area and the dihedral

angle together to determine the coefficient of the weight function.

The new weights on the triangles are defined as an ordered pair (angle, area). The

following equation is a test function for new weight

Lnew = [0, π] ∗ [0,∞) ,with 0Lnew = (0, 0),

where ”*” links the two range of angle and area, respectively.

Once we have the values of weight, an important thing is to pre-determine which one of

the two weights is more important. In this work, we consider the angle is more important

than the area. Therefore, the comparison criteria should be as follows:

(a, b) < (c, d) if and only if a < c or (a = c and b < d)



3.4 Hole Triangulation 22

Furthermore, the addition operator sums the areas but retains the largest dihedral angle:

(a, b) + (c, d) := (max(a, c), b + d)

Usually, a triangulation algorithm operates on every known hole that is composed of a

sequence of vertices v1, v2, v3, ..., vn−1. Define a weight function Ω V 3 → L, where L is a

weight set and Ω maps a triangular face into a weight value. For 0 < i < j < n, let Wi,j be

the weight of the minimum-weight triangulation. The triangulation algorithm is elaborated

in details as follows:

Triangulation Algorithm

[1] For i = 0, 1, ..., n-2, let Wi,j+1 = 0.

For i = 0, 1, ..., n-3, let Wi,i+2 = Ω(vi, vi+1, vi+2).

Set j = 2.

[2] Set j = j + 1 For i = 0, 1, ..., n-j-1 and k = i + j,

Let Wi,k = mini<m<k [Wi,m + Wm,k +Ω(vi, vm, vk],

Save index m into Ti,k when the minimum is achieved.

[3] If j < n− 1 then go to step 2; otherwise the weight of the minimum-weight

triangulation is W0,n−1.

[4] Trace back the path from the matrix T, and then we add the result triangles into the

face list.

The triangulation algorithm acts like performing a convex hull finding problem even

facing the crenellation situation. However, the triangulation algorithm will face the topo-

logical singularity problem if an edge is not a boundary edge but its two endpoints are

boundary vertices. We will provide an example to show how topological singularities

emerged when the above situation occurred.

As illustrated in Fig. 3.4, there exists a hole A, B, C, D, E, F, G in the surface shown

in Fig. 3.4(a). In the triangulation algorithms, they didn’t consider a special case. That is,



3.4 Hole Triangulation 23

(a) Before filling process (b) After filling process

Figure 3.4: Potential problem of triangulation algorithm (1)

(a) Before filling process (b) After filling process

Figure 3.5: Potential problem of triangulation algorithm (2)

when an edge is shared by two faces, it will ignore the case when another face would like

to share the same edge. However, according to the case shown in Fig. 3.4(a), this situation

does exist. Therefore, we proposed a revised version which deals with this problem at the

cutting stage (which has been described in Chapter 2). If we apply the original triangula-

tion algorithm, the newly formed patch may contain a set of face {f {A, B, C}, f{A, E, C},

f{C, E, D}, f{A, G, E}, f{G, F, E}} as shown in Fig. 3.4(b). The edge A, C is now adjacent

to three faces and make it become singular. However, it is incorrect. Therefore, we revise

the existing method by the following processing method.

If a face that is adjacent to the boundary vertices is adjacent to zero or one boundary

edge, our triangulation algorithm will never produce a surface with topological singularities



3.4 Hole Triangulation 24

(for the convenience of explanation, we name the face adjacent to boundary vertices a

boundary face). Our triangulation algorithm applied the dynamic programming technique

to find all possible vertex pairs (v1, v2) and then form a triangular patch. When there exists

zero or only one boundary edges on a boundary face, all the vertex pairs that can be used

to make patches will always be the boundary edges. Fig. 3.5 shows that all the boundary

faces are adjacent to one or zero boundary edge. And the triangulation algorithm will find

a patch to fill the hole without generating topological singularities.


