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Abstract

Size-ordered segregated list allocator is a widely-used object allocator. Upon object
allocation, traversals are required to locate the free list holding large enough free chunks.
Because some free lists might become empty, increasing the traversals upon object allocation,
the performance of size-ordered segregated list allocator still has room for improvement. This
is especially true in garbage collection environment.

Therefore, we propose a table lookup mechanism to reduce the traversals. The main
structure in this mechanism is a table which is a mapping from allocation request of each size
to the closest non-empty free list holding large enough chunks. By looking up the table, only
one traversal is required to locate the closest non-empty free list, hence speeding up object
allocation. We take Java, a popular object-oriented programming language with automatic
garbage collection, as example. The result shows that our proposed mechanism can improve
the heap management performance by 100%. We also studied the impact of using different
coalescing strategies on heap management performance in garbage collection environment,
and showed that the trade-off to choosing a coalescing strategy will change, in the presence of
our proposed mechanism. Immediate coalescing strategy, which is not used because it results
in slower allocation speed, becomes a better one after our proposed mechanism is added. The
result also indicates that fragmentation problem is a more serious issue in garbage collection
environment than allocation performance if the allocation speed is fast enough.
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Chapter 1

Introduction

A fundamental and important part of modern programming languages is dynamic object
allocation. Many programming languages, such as C, C++, Java, and Smalltalk, allow
programmers to dynamically allocate object in heap, and dynamic object allocation has
became a powerful tool that enables programmers to develop applications with more
flexibility [1]. In object-oriented programming languages such as Java and Smalltalk, since
data are encapsulated in objects and objects are almost allocated dynamically, the use of
dynamic memory allocation is especially extensive, and the concept of software engineering

continues encouraging programmers to use more dynamic allocated object.

In languages with explicit heap management, de-allocation of objects is done by explicit
program statements and thus programmers themselves are responsible for dealing with
de-allocation. Because the vast amount of allocated objects, a programmer might forget
de-allocating dead objects, or might de-allocate an object which should not be de-allocated to
ensure correct program execution. This leads to memory leak and dangling reference problem.
Therefore, some modern programming languages such as Lisp and Java use automatic
garbage collection. Automatic garbage collection means that dynamically allocated objects are
not de-allocated explicitly by the running program itself but the garbage collector is instead
responsible for reclaiming the spaces occupied by dead objects, and typically, garbage
collection is invoked when an object allocation request cannot be satisfied. With the power of
automatic garbage collection, memory leak and dangling reference problem can be avoided,

and it is easier to write applications that are more safe and reliable [2].



Because the extensive use of dynamically allocated object, time spent on object allocation
plays an important role on program total execution time. Thus a fast object allocator is
important for efficient execution. In automatic garbage collection environment, another issue
about object allocator arises. Since garbage collection is typically invoked when object
allocation request cannot be satisfied due to insufficient large contiguous free space, the

fragmentation brought by the object allocator is also important.

Size-ordered segregated list allocator is generally believed a very fast object allocator. By
the use of segregated list, the allocator rare needs to sequentially search the free list to find a
large enough free chunk. However, traversals are still required to locate the closest non-empty
free list which holds sufficient large free chunks. And we found that the time spent on
traversals is especially much in automatic garbage collection environment. This motivates us
to reduce the traversals upon allocation request of size-ordered segregated list allocator in
automatic garbage collection environment. Furthermore, the coalescing of contiguous free
chunks is also an important issue which will affect the performance of object allocation.
Coalescing contiguous free chunks to a large free chunk tends to lower the fragmentation and
thus has a positive impact on reducing the number of garbage collection invocation, but it will
degrade the allocation speed of size-ordered segregated list allocator. The purpose of this
thesis is to compose a size-ordered segregated list object allocator with reduced traversals and

choosing a good coalescing strategy to use with this allocator.

The most popular object-oriented programming language which has garbage collection
incorporated in is Java [3]. The use of Java is widely spread over many fields of computer
system, ranging from high-end server applications to low-end embedded systems. Therefore,

Java will be taken as example in this research.

The organization of the thesis is as follows. In chapter 2, the related background is
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presented. In chapter 3, we first give an important observation on size-order segregated list
allocators in garbage collection environment. Based on that, our design to reduce traversals
upon object allocation is proposed. In chapter 4, the performance of the proposed mechanism
is evaluated via experiments. Conclusion is presented in chapter 5. Complete experimental

results will be presented in Appendix.



Chapter 2

Background

In this chapter, the related background about our research is presented. First, some
important tips on Java are given. Second, the heap management is described. Finally, details

about dynamic object allocation and garbage collection are depicted.

2.1 The Java Technology

Java is an object-oriented programming language whose syntax is similar to C++.
However, Java is a complete system rather than only a programming language. Unlike most
other programming languages such as C, C++, and Fortran, Java programs are not statically
compiled to machine-dependent native code for execution. On the other hand, Java programs
must be compiled to Java virtual machine bytecode, a machine-independent code. Any Java
virtual machine confining the Java virtual machine specification can execute bytecode. Hence,
Java technology consists of the Java programming language and the Java virtual machine.

Figure 2-1 illustrates the internal architecture of the Java virtual machine.

Other components Other data areas

Allocating objects

Object allocator >
-

Garbage collector

Heap

De-allocating objects

Figure 2-1: Java Virtual Machine Internal Architectures
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2.2 Heap Management

Inside the Java virtual machine, there is a Java heap which stores dynamically allocated
objects [4]. Java does not allow programs to explicitly de-allocate objects, and it relies on
automatic garbage collection to de-allocate dead objects. An object no longer referenced by
the running program is said to be dead. To identify and reclaim dead objects in heap are both
time consuming thus fewer invocations of garbage collection are preferred. As a result,

garbage collection is typically triggered after an object allocation request cannot be satisfied.

The components responsible for managing the heap are the object allocator and the
garbage collector, and there are two types of heap management scheme. The first scheme is
that allocated objects are never moved (Figure 2-2), and the other is that allocated objects can

be moved to make the heap compacted (Figure 2-3).

In heap management scheme where objects are never moved, garbage collection is less
costly, since garbage collector only needs to identify and reclaim dead objects. However, free
spaces will be scattered around the heap, thus an efficient data structure must be used to
manage these scattered free chunks. Object allocation speed thus depends on the underlying

data structure and allocation policy.

[l Free space || Live objects

Heap before garbage collection Heap after garbage collection

Figure 2-2: Heap free space will be scattered if objects are never move



In heap management scheme where objects can be moved, live objects can be moved to
one end of the heap to make the heap compacted. This will result in a single contiguous free
space in the heap, thus very simple data structure can be used to management free space. And
it makes object allocation almost a non-issue, since upon object allocation request there is

only one free chunk to be considered.

Nevertheless, compacting objects bring extra costs to garbage collection, which are
copying objects and updating references inside objects. Thus, some systems adopt moving
heap management scheme but heap is not always compacted. This means free spaces might

also be scattered around the heap like the situation in non-moving heap management scheme.

] Free space [ ] Live objects

Heap before garbage collection Heap after garbage collection

Figure 2-3: Heap can be compacted if object can be moved

Much research has been focused on non-moving heap management scheme and moving
heap management schemes. However, it is impossible to pick up a winning strategy, since
different strategy leads to different performance tradeoffs [5]. We will focus on heap

management scheme where heap is not always compacted.

For heap management scheme where heap is not always compacted, mark-sweep and
reference counting garbage collectors are most widely know, but there is rare use of reference
counting garbage collector in modern system because of its overhead to count the number of

references is too high.



Mark-Sweep Garbage Collector

Mark-sweep garbage collector collects dead objects by two phases, the mark phase and
the sweep phase. In mark phase, dead objects are identified, and in sweep phase, dead objects

are reclaimed.

Reference variables and dynamically allocated objects form a directed graph, called
reference graph. Those variables are roots of this graph. A node n is reachable if there is a
path of directed edges r — ... — n starting at some root r. In mark phase (Figure 2-4), the
reference graph is traversed and each node visited during traversal is marked. Any node not
marked is not reachable thus no longer referenced by the running program. These unmarked

objects must be garbage, and should be reclaimed.

Then in sweep phase (Figure 2-5), it scans from starting address to the last address of
heap, looking for objects that are not marked. These non-marked nodes are garbage and will

be linked into the underlying data structure which maintains the free space.

D Free space I:I Live objects D Field of object

N TS AN
2..15ll\7371159...9

Marked Marked Marke Marked Marked

Heap |1 20 e | @

Roots

Figure 2-4: Mark phase
(Information source: Figure 13.4(a) of [6])
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D Free space I:I Live objects D Field of abject
N a
2 @ | @®@]15 l l 37 l

K 55 e | @ 20

Heap |1

Roots

Figure 2-5: Sweep phase

(Information source: Figure 13.4(b) of [6])

2.4 Free-List-Based Object Allocator

Because free space might be scattered around the heap in non-moving heap management
scheme, the underlying data structure used to manage free space is generally a graph-like data
structure, and in practice, most allocators use linked-list-based data structure to maintain the
free space in heap and are conventionally called free-list-based object allocators. Many
free-list-based allocators have been proposed and the important free-list-based allocators are

described as follows.

2.4.1 Single List Object Allocator

Typically, a contiguous memory space in heap is called a free chunk. In a single list
object allocator, free chunks of all sizes are chained a single linked list (Figure 2-6) and thus it
must sequentially search the list to find a chunk of appropriate size. Single list first fit, single
list best fit, single list worse fit, and single list next fit alloactors are widely known allocators

in this category.



List Header

— I NULL

Figure 2-6: Single list object allocator

Single list best fit allocator has to search the linked list to find the smallest free block
large enough to satisfy a request. A best fit search is generally exhaustive, although it might
stop when a perfect fit is found. Single list best fit allocator generally exhibits low
fragmentation but the sequential search does not scale well to large heap, which might have

many free chunks.

Single list worst fit requires exhaustive search and it also has high fragmentation, thus it

is rarely used.

Single list first fit allocator is the most notable single list allocator, since its
fragmentation is pretty low and allocation speed is better than single list best fit and single list
worse fit. Upon allocating an object, the allocator searches the free list for the first free chunk
that is sufficient large to satisfy the request, and if the remainder after object allocation is
larger than minimum object size, the remainder is put back and linked to the end of the free
list. Similarly, during garbage collection, contiguous free chunks will always be merged to a

larger free chunk. A free chunk is simply added to the end of the free list.

2.4.2 Size-Ordered Segregated List Allocator

Single list first fit allocator has a very high worst case allocation cost, which requires
linear search through a single list until finding a large enough free chunk, and average
allocation cost in practice is also poor, especially when the heap is large and allocated objects

9



are of many kinds of sizes.

Hence, segregated list allocators are proposed to reduce the search time of single list
allocators. As the name of segregated list allocator, multiple free lists are used to maintain the
free space. There are many possible variations of allocators using segregated list, and among

all the most notable and efficient one is size-ordered segregated list allocator.

4 | 8 12|16 20| ... 4N
NULL i
NULL
NULL 5$E
NULL NULL NULL

Figure 2-7: Size-ordered segregated list allocator

In size-ordered segregated list allocator (Figure 2-7), each size is associated with a
corresponding free list. Each list holds free chunks of exact size, except for the last free list.
An integer N is selected such that most free chunks are smaller than 4N because there are very
few large objects. It is observed that 95% objects are smaller than 256 bytes and 99% objects

are smaller than 1K bytes [7], and thus the value N is chosen between 64 and 256 in practice.

Suppose a heap where free chunks are multiple of 4-byte. All free chunks whose sizes
are equal to 4N or greater than 4N are linked in the last free list. Thus, size-ordered segregated
list fit allocator has N free lists rather than an unbounded numbers of free lists. Upon

allocating an M-byte object, the allocator first indexes into the free list holding size M free

10



chunks. If M >= 4N, the allocation request is satisfied by best-fit allocation in the last free list.
Otherwise, the allocation request processes as follow. If there is an M-byte free chunk chained
in the corresponding free list, the allocation request is satisfied by taking the first free chunk
linked in the free list. If the free list corresponding to M-byte chunk is empty, the allocator
traverses up the free list header array until a non-empty free list holding chunks larger than M
is visited. Suppose that the non-empty free list holds free chunks of size K. If K < 4N, the
allocation request is satisfied by taking the first free chunk in the free list. Otherwise, if K >=
4N, best-fit allocation is tried at the last free list. If there is remainder after allocation, the

remainder is put back and inserted into the corresponding free list holds that size.

A notable variant of segregated list allocator is the buddy systems. Buddy systems can
provide faster allocation than size-ordered segregated list allocator, but the internal
fragmentation and external fragmentation are both very high, thus it is not suitable for garbage

collection environment.

2.4.3 Coalescing Strategy of Contiguous Free Chunks

The basic operation of size-ordered segregated list allocator has been described above.
And there is an important issue that affects the performance of size-ordered segregated list

allocator, “Will contiguous free chunks be coalesced? And when?”

[T] Free chunk

[] Space occupied
by objects

Before coalescing After coalescing

Figure 2-8: Coalescing of contiguous free chunks
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Never Coalescing Strategy

A characteristic of object allocation activities is the locality of object size, which says if

previously many allocated objects are of some sizes, then objects of these sizes will be

allocated extensively. This concept can be supported by the fact that 90% of objects are of

10% of sizes (Table 2-1). Therefore, never coalescing strategy is used. Using never coalescing

strategy, newly identified contiguous free chunks are never coalesced but on the other hand

each free chunk is directly chained back into the corresponding free list holding that size. This

makes small size chunk very sufficient and enables the allocator to cyclic allocate small size

chunk very quickly (Figure 2-9).

Table 2-1: Most objects are of a small number of sizes

Number of size

Number of size

_|classes of 90% _|classes of 99%
Total number |Number of size| = . Number of size| . .
objects objects
Benchmark of classes classes
ize cl f bject f bject
size classes |of 90% objects Total number of 99% objects Total number of
of size classes size classes
_201_compress 73 19 26.0% 36 49.3%
_202_jess 158 12 7.6% 26 16.5%
_205_raytrace 72 5 6.9% 10 13.9%
209 db 78 7 9.0% 16 20.5%
_213_javac 166 12 7.2% 27 16.3%
227 mtrt 72 5 7.0% 10 14.0%
228 jack 448 6 1.3% 18 4.0%
Average 166 10 10% 22 13%
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24 | 28 [ 32 |36 |40 ... 4N
*NULL J NULL
NULL

NULL NuLL IEINULL

NULLNULL NULL
NULL

Figure 2-9: Free chunk size distribution where small size chunks are sufficient

Because contiguous free chunks are never coalesced into a larger chunk, it is likely to
produce many small chunks in heap, and larger free chunks are difficult to find. This
fragmentation problem might lead to more frequent invocation of garbage collection, since an
object allocation request for large size might fail when there is still considerable total free

space in heap.

Deferred Coalescing Strategy

Another strategy is to defer the coalescing operation. Its goal is similar to never
coalescing, but has lower fragmentation. Using deferred coalescing strategy, contiguous free
chunks are not coalesced upon garbage collection but on the other hand each free chunk is
directly chained into the corresponding free list holding that size. Coalescing only occurs
upon request a free chunk in the last free list or when allocation request still fails after garbage
collection. When searching the last free list for a best-fit chunk, contiguous large chunks are
merged to a larger chunk. When allocation request still fails after garbage collection, each

group of contiguous free chunks will be coalesced.
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Immediate Coalescing Strategy

Never coalescing strategy does not try to merge any contiguous free chunk, and deferred
coalescing strategy only merges contiguous free chunk lazily. Hence, another strategy which

has a fundamental different criteria is used — immediate coalescing.

Immediate coalesce strategy will coalesce each group of contiguous free chunks upon
garbage collection. This can be done during the sweep phase of mark-sweep garbage collector,
thus the coalescing operation incurs little overhead. After coalescing, the resulting bigger free
chunks are added back to the corresponding free list. Thus, the free chunk size distribution
using immediate coalescing strategy is very different from that using deferred coalescing and
never coalescing strategy — smaller chunks are insufficient while larger chunks are more
(Figure 2-10). And this results worse allocation performance, since the allocator is more likely

to traverse more headers to locate the closest non-empty free list. On the other hand, since

4N

NULL

coalescing is performing aggressively, it results in less fragmentation.

12 | 16 | 20 | 24 | 28 | 32

8 36 | 40
NULL NULL
NULL NULL
NULL NULL
NULL
NULL

y NULL

Figure 2-10: Free chunk size distribution where small chunks are insufficient
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2.4.4 Summary of Free-List-Based Object Allocators in Garbage

Collection Environment

We have described two important categories of object allocator, single list first fit
allocator and size-ordered segregated list allocator. Single list first fit allocator requires
searching a single linked list upon allocation, thus performs badly in large heap size because
there are potentially more free chunks. Hence single list first fit allocator is only suitable for
memory-constrained embedded system. On the other hand, size-ordered segregated list
allocator is more scalable than single list first fit allocator. Moreover, three important

coalescing strategies used in size-ordered segregated list allocactor have also presented.
Table 2-2 is the comparison among these free-list-based allocators.

Table 2-2: Comparison among free-list-based allocators (SPECjvm98 with 6M heap size)

Worst case cost per  |Average cost per |External
Allocator ‘ . .
allocation allocation Fragmentation

O(n),

. A . Several hundreds
Single List First Fit n = the number of free Low
of node traversals

chunks
. . O(m+k),
Size-Ordered Segregated List + 15 ~ 40 node ,
, m = the number of High
Never Coalescing , traversals
free lists,
Size-Ordered S ted List + 17 ~ 40 nod
17e-IEere eg.rega ce The same as above noce High
Deferred Coalescing traversals

Size-Ordered Segregated List +
) s .g The same as above 50 node traversals [Low
Immediate Coalescing

15



Chapter 3

Design

In this chapter, we will first present an important observation on the change of allocation
performance with time, which inspires our design. Then, our design for accelerating object
allocation is presented. Finally, we will give a discussion on what might be the best coalescing

strategy to incorporate into design.

3.1 Observation on Size-Ordered Segregated List Allocator

in Garbage Collection Environmant

Nodes of 100
traversals per
allocation

250

200
150

100
50

o
147 83 139 185 231 277 323 369 415 461 507 553 599 645 691 737

o

Number of object Allocated (in hundreds)

Figure 3-1: Nodes of traversals of an object allocation request in different point within

program execution (SPECjvm98 with 6M heap size)

From the Figure 3-1, it is observed that before the first invocation of garbage collection,

the size-ordered segregated list allocator pays excessive traversals upon object allocation
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request. This is because the heap is itself a big free chunk in the beginning of program
execution, and until the first invocation of garbage collection, there is only a single free chunk
in heap and this chunk is linked in the last free list while other free lists are empty. Any
allocation request for small sizes must be satisfied at the last free list, after traversing through

the free list headers. (Figure 3-2)

4 8 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | ...... 4N
' J ’ l ! }
NULL NULL NULL NULL
NULL NULL NULL
NULL NULL
NULL
NULL

Figure 3-2: Only the last free list holds a chunk in the beginning of program execution

Another observation from the figure is that allocation performance is very good after
garbage collection just finishing, however, the allocation performance is dropping as the next
invocation of garbage collection is approaching. The explanation of this phenomenon is that
during the execution of a Java program, dead objects can be de-allocated and the spaces
occupied by them are returned to free lists only during garbage collection. This indicates that
free chunks are continuously consumed upon allocation request and free spaces cannot be
reclaimed until garbage collection. Therefore, free chunks of some sizes become exhausted as
the program executes. As the program continues its execution and garbage collection is
approaching, more free lists become empty and thus the speed performance of object
allocation degrades sharply. (Figure 3-3)
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NULL

* *NUJLLNULL

NULLNULL

NULL NULL
NULL
NULL

NULL

NULL
Figure 3-3: The change in free chunk size distribution during program execution

3.2 Reducing Traversal during Object Allocation — Next Hit

Table Mechanism

By observing the object allocation process of size-ordered segregated list allocator, we
know that it must traverses up the free list headers if the free list corresponding to the

requested size contains no chunk and a sufficient large chunk is found until the closest
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non-empty free list is visited. Since many free lists become empty as the program execution,

why not to remember allocation request of each size can be satisfied at which free list?

We can add a table to direct allocation request of each size to the closest non-empty free

list holding sufficient large size. The table is essentially a mapping from requested size to the

right free list, thus each size has a corresponding table entry. We called the table Next Hit

Table (NHT) since by looking up the table, the right free list is located without traversing up.

In the following subsections, we suppose that heap chunks are multiple of 4 bytes because

most Java virtual machines use 4-byte as the unit of heap spaces.

4 |8 (12|16 |20 | ... 4N
4 | 8 |20 |20 |20 | . 4N

I

NULLNULL |

!

nuLLNULL |

!
NULL NULL

Figure 3-4: Next Hit Table

3.2.1 Object Allocation with Next Hit Table

Array of list Headers

Next Hit Table

Obiject allocation with NHT support is done as follow. Upon allocation request of a size

S object, the allocator first lookup the table to know that a sufficient large chunk can be found

in free list F, holding 4F-byte objects. If F < N, the allocation request is satisfied by taking the

first free chunk in free list F. Otherwise, it searches a best-fitting chunk in the last free list

(free list N) to satisfy the allocation request.
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3.2.2 Maintaining Next Hit Table

NHT will be initialized to N, which indicates the last free list because in the beginning of
execution, the heap is itself a single large free chunk. Note that because there is only a free
chunk in the heap until the first invocation of garbage collection, the initially bad allocation
performance before the first invocation of garbage collection becomes very quick, a table

lookup plus direct allocating the only chunk without searching.

4 8 (12 |16 20 | ... 4N | Array of list headers
AN [ 4N | 4N | 4N | 4N | ...... 4N | Next Hit Table
) ’ ) !
NULL NULL NULL
NULL NULL
v
NULL

Figure 3-5: Initialization state of NHT

For maintaining the right mapping, NHT must be updated when a free list becomes
empty and when a free list becomes non-empty. A free list will become empty if it runs out of
chunk in list after object allocation request, and there are two cases that a free list will become
non-empty. The first case is when the remainder of an allocated chunk is linked back to a free
list and the free list is previous empty. The second case occurs during garbage collection -
when a free chunk is swept and then linked back to a free list and the free list has been empty

before garbage collection.

When a free list F becomes empty after object allocation, the update process is as follow.

Suppose the NHT entries corresponding to free lists F-1, F -2, ..., F - i are of value F, and the
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NHT entry corresponding to F - i - 1 is not of value F. Then the NHT entries corresponding to
free lists F, F-1, F -2, ..., F - i are updated to the value of NHT entry corresponding to free list
F + 1. This is to reflect the fact that afterwards allocation requests of size 4F, 4F-4, ..., 4F - 4i
can no longer be satisfied at free list F. Figure 3-6 depicts the update operation when the free

list holding 20-byte chunk becomes empty.

Array of list Headers

Next Hit Table

NULLNULL

NULL NULL

Array of list Headers

Next Hit Table

NULL NULL NULL

Array of list Headers

Next Hit Table

NULL NULL
NULL NULL

NULL NULL NULL

Figure 3-6: NHT update example 1
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When a free list F becomes non-empty, the update process is as follow. Suppose the NHT
entry corresponding to free list F -1 is not of value F - 1, the NHT entry corresponding to free
list F - 2 is not of value F - 2, ..., and the NHT entry corresponding to free list F - i is not of
value F - i, but the NHT entry corresponding to free list F - i - 1 is of value F - i — 1, then the
NHT entries corresponding to free lists F, F-1, F -2, ..., F — i are updated to F to reflect that
next allocation request of size 4F, 4F-4, ..., 4F - 4i can be satisfied at free list F. Figure 3-7
depicts the update operation when the free list holding 16-byte chunk becomes non-empty due

to the remainder being added back.

...... 4N | Array of list headers

Next Hit Table
NULL
NULL NULL NULL
4|8 [12|16 |20 24 2832 .. 4N | Array of list headers
Next Hit Table
NULL ULL NULL
NULL
MNULL
NULL The remainder NULL
MNULL NULL

...... 4N | Array of list headers
Next Hit Table

NULL

NULL NULL

Figure 3-7: NHT update example 2
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If the update occurs during garbage collection, we use special handling. Because there is
no object allocation request during garbage collection, we can postpone the update to the end
of garbage collection process. By such treatment, the table only needs to be updated once

during garbage collection.

3.2.3 Overhead

We have described how our proposed mechanism, NHT, works to reduce the traversals
upon object allocation in size-ordered segregated list allocator. We discuss the overhead using

NHT now.

NHT mechanism incurs both space and speed overhead. The space overhead comes from
the data structure implementing NHT, which can be simply an array of integer. And because
typically size-ordered segregated list allocator uses no more than hundreds of free lists which

mean hundreds of 4 bytes, the overhead only counts up several KB.

The speed overhead might be more critical than space overhead, since if the speedup
gained by fast object allocation can not amortize the time cost to maintain NHT, our ambition
will simply fail. Remember that the update only occurs in three cases, and these occur
infrequently. A free list might become empty only when it runs out of free chunks, and free
chunks are reclaimed only during garbage collection, thus this case rarely occurs. However,
the speed overhead of NHT when using immediate coalescing strategy might be higher,
because it is more potential to have the remainder after allocating a larger chunk and the
remainder will be linked back into a free list. Our simulation result shows that update does not
occur frequently — only one update occurs averagely during 1000 allocation request using

deferred coalescing strategy (Table 3-1).
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Table 3-1: NHT update frequency using deferred coalescing strategy

Number of
A free list A free list [Total allocation
Total number of
Benchmark becomes becomes  [number of . )
object allocation
non-empty  |empty update Number of
update
201 _compress 145 116 261 6479 25
~202_jess 254 225 479 110471 231
_205_raytrace 118 93 211 575724 2729
209 _db 138 113 251 123166 491
213 javac 152 122 274 222891 813
227 mtrt 111 81 192 677785 3530

3.3 Choosing a Coalescing Strategy

Another interesting question is, “Is our mechanism more suitable to combine with

deferred coalescing, never coalescing, or immediate coalescing strategy?”

Remember that in automatic garbage collection environment, an allocator can affect two

parts of program execution time, which are time for object allocation and time for garbage

collection. An allocator using deferred coalescing or never coalescing strategy can provide

very fast allocation while introducing longer garbage collection time. In contrast, an allocator

using immediate coalescing strategy has slower allocation speed but result in shorter time for

garbage collection.
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To our knowledge, no previous research figured out that in garbage collection
environment, whether fast allocation is more important or low fragmentation. Although
deferred coalescing is generally considered the best strategy among the three, to what extend
it wins over never coalescing or immediate coalescing strategy is not clear. Moreover, with
our proposed Next Hit Table mechanism, many allocation request can be satisfied by a table
lookup and then direct get the chunk from the right free list, even if immediate coalescing
strategy is used. This let us to pose an ambitious assumption, immediate coalescing is the best
coalescing strategy in the presence of Next Hit Table’s support. We will prove this by

experiment.
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Chapter 4

Experiment

The goal of this chapter is to set up some experiment to see the following things. First,
the comparison between different coalescing strategies using in size-ordered segregated list
allocators is shown. Second, we want to see to what extent the performance will gain after
adding NHT. Third, it is interesting that whether adding Next Try Table will really change the

feasible coalescing strategy.

4.1 Methodology

For evaluating the performance of allocators, several methodologies have been proposed.
For study the fragmentation incurred by an allocator, traditionally memory- trace-driven
simulation is used. For study the allocation speed of an allocator, some research do simulation
of the number of node being searched during object allocation and uses the number of node
being searched to judge an allocator, while other research direct implement their allocators

and uses execution time to evaluate the speed performance.

For our research, we do not look at fragmentation and speed separately like many
previous research, since we are interested in the allocator’s speed performance and the
interaction between the allocator and garbage collector. In a programming language with
automatic garbage collection, the seriousness of fragmentation is converted to execution time,
that the higher the fragmentation, the greater the time will be spent on garbage collection
since higher fragmentation results in more frequent invocation of garbage collection. Whether
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an allocator is good should be judged by the time spent on object allocation plus garbage
collection, since garbage collection is a very sophisticated process and thus difficult to
simulate its speed performance. Therefore, we implement our allocator and measure the

execution time spent on object allocation and garbage collection.

Since we want to use execution time to judge the performance of allocator, we must use
some way to collect the time information. A traditional technique to measure time is to use
operating system’s system calls, but system calls are so expensive and object allocation
activities occur very frequently, so the overhead using system calls will disturb the accuracy.

Thus we decide to use alternative approach to collect execution time information.

Some processor have built in hardware event counter which counts elapsed clock cycles
and special registers which can be used to record clock cycles information. And using a single
assembly instruction can read the content of the register. Thus, we decide to use cycles as the

measure of time.

4.2 Environment

Sun’s CVM is chosen as the based Java virtual machine in our implementation because it
is open-source and widely known. CVM is pure interpreter-based virtual machine intended to
be used in embedded systems [8]. The underlying hardware is Pentium 4 and the chosen

operating system is Debian Linux.

We have gathered many benchmarks, including SPECjvm98 and Embedded
CaffeineMark. Embedded CaffeineMark is aimed for testing the performance of Java virtual
machine in embedded environments. It a synthetic benchmark suite and only do very simple

operation, such as looping, calling method, and allocated String. Hence it is not a
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representative benchmark to reflect the object allocation behavior in real Java programs.

SPECjvm98 is an industry-standard benchmark suite for evaluating the performance of
Java virtual machines [9]. Benchmarks in SPECjvm98 are for solving real-world problem and
several of them are commercial applications. Thus, SPECjvm98 is chosen as our test
benchmark suite, since we are interesting in the performance of dynamic object allocation.

Among the benchmarks, 222 mpegaudio and _228 jack are not tested because of porting

problems.
Table 4-1: Overview of SPECjvm98 benchmark
Benchmarks Short Description
Modified Lempel-Ziv method (LZW).
_201_compress Basically finds common substrings and replaces them with a
variable size code.
, Java Expert Shell System 13 based on NASA's CLIPS expert
_202_jess
shell system.
_205_raytrace A raytracer that works on a scene depicting a dinosaur.
209 db Performs multiple database functions on memory resident
-7 database.
_213_javac This 1s the Java compiler from the JDK 1.0.2.
A raytracer that works on a scene depicting a dinosaur,
227 mtrt where two threads each renders the scene in the input file
time-test model.
, A Java parser generator that 1s based on the Purdue Compiler
_228 jack .
Construction Tool Set (PCCTY).
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4.3 Experimental Results

We now give the experimental results and discuss on them. We will first clarify the
impact of different coalescing strategies on size-ordered segregated list allocator. Second, we
will show how well NHT improve object allocation performance, using different coalescing
strategies. Then, we will prove our former assumption that with the power of NHT, immediate
coalescing strategy comes back to flavor via empirically results. In the end, we will use
experiment to find the number of free lists of size-ordered segregated list allocator resulting in
the best performance using NHT. We will only show the results of 205 raytrace in this
chapter because it is representative, and the results of other benchmarks are presented in the

appendix.

4.3.1 Impact of Different Coalescing Strategies

Three important coalescing strategies, never coalescing, deferred coalescing, and
immediate coalescing strategy, have been described in chapter 2. Generally speaking, never
coalescing has the fastest allocation speed, but results in most serious fragmentation. Deferred
coalescing strategy is believed to have lower fragmentation than never coalescing strategy and
it still has fast allocation speed. Immediate coalescing strategy has poor allocation

performance but on the other hand, it has the lowest fragmentation.

From Figure 4-1, we can see that immediate coalescing strategy has the worst allocation
performance among the three strategies, and deferred coalescing has comparable allocation
performance to never coalescing strategy. The allocation performance of deferred coalescing
and never coalescing strategy are 2.5 time the allocation performance of immediate coalescing

until the heap becomes too small. When heap size is less than about 2 times minimum heap
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size, the allocation performance of deferred coalescing and never coalescing degrade sharply.
This is because garbage collection is invoked excessively, and each last allocation before
triggering the garbage collection is an unsatisfied allocation request, indicating that the
allocator must traverse up to the last free list. On the other hand, the allocation performance of

immediate coalescing strategy does not have much degradation.

Considering the influence of coalescing strategy on time spent on garbage collection, we
can see from Figure 4-2 that immediate coalescing constantly result in far shorter garbage
collection time, especially when heap size becomes too small. Never coalescing and deferred
coalescing strategy bring unacceptable long garbage collection time because of excessive

invocation of garbage collection.

Another interesting trend observed from Figure 4-2 in the figure is that within some
range of heap size, the garbage collection performance does not improve as the heap size
grows. This results from the way mark-sweep garbage collector to reclaim free space. In the
sweep phase, it scans from one end of the heap to the other end, thus if the number of garbage

collection invocation is the same, smaller heap size could have short garbage collection time.

When taking both object allocation time and garbage collection time into accounts (see
Figure 4-3), deferred coalescing and never coalescing strategy have 2 times speedup over
immediate coalescing strategy if heap is sufficient large. However, in very constrained heap

size, immediate coalescing strategy is the only usable strategy.
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Figure 4-1: Object allocation time using different coalescing strategy
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Figure 4-2: Garbage collection time using different coalescing strategy
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Figure 4-3: Heap management time using different coalescing strategy
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4.3.2 The Effectiveness of Next Hit Table Mechanism

After our NHT is added, size-order segregated list allocator using either deferred
coalescing, never coalescing, and immediate coalescing strategy has improvement in
allocation performance and the improvement is most significant when applying NHT with
immediate coalescing strategy (see Figure 4-4 and 4-8). This is because using immediate
coalescing strategy makes many free lists holding small chunks more likely to become
insufficient or empty after garbage collection, thus originally many allocation requests spend
considerable traversal to locate the right free list to get a large enough chunk. The allocation
performance using deferred coalescing and never coalescing strategy are still comparable after
adding NHT. And, as expected, the presence of NHT does not effect garbage collection time

(see Figure 4-5 and 4-9).

We can also observe that when heap size is less than a threshold, which is about 2 times
minimum heap size, the allocation performance gap between the allocator using immediate
coalescing with NHT and the allocator using immediate coalescing without NHT is closer in
smaller heap size. This is because in such a constrained heap size, the time to update NHT

occupies more fraction of heap management time.
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Figure 4-4: Object allocation time of using deferred coalescing strategy plus NHT
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4.3.3 NHT Leads to a Different Choice of Coalescing Strategy

As the experimental results shown in subsection 4.3.1, we already known that size-order
segregated list allocator using deferred coalescing and never coalescing strategy outperform
that using immediate coalescing, without our NHT mechanism. However, after adding NHT,
the order changes dramatically. No matter the heap size is constrained or more sufficient, the
allocator with NHT using immediate coalescing strategy constantly beats the other two
strategies with NHT (see Figure 4-13). Although using deferred coalescing plus NHT has the
fastest allocation speed because of the update of NHT is most infrequent if using deferred
coalescing strategy, the allocation speed gap between using immediate coalescing strategy
with Next Hit Table and using deferred coalescing strategy with Next Hit Table are too small
to be observable. The advantage of low fragmentation of immediate coalescing strategy

becomes a dominate factor because of NHT’s ability to reduce many traversals during

allocation.
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Figure 4-11: Object allocation time of 4 configurations
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Figure 4-12: Garbage collection time of 4 configurations
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Figure 4-13: Total heap management time of 4 configurations

4.3.4 Determining the Number of Free Lists

The above result has told us size-order segregated list allocator with NHT plus
immediate coalescing strategy is the best configuration. Another import parameter for
size-ordered segregated list fit allocator is the number of free lists. The number of free lists

determines a size such that all free chunks larger than this size are chiained in the last free list.

For our experimental environment where heap objects are

lists means all free chunks of sizes equal to or larger than 4N are chained in the last free list. A
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good value N should be chosen such that it can result in a balance between time spent on
header traversals plus NHT updates, and time spent on best-fitting search in the last free lists.

We determine N by experiment.

As the result shown in Figure 4-14, we can observe that using more free lists gives better
performance, until the number of free lists reaches 256. Using fewer free lists indicates that
more time will be spent on best-fitting search in the last free list, and because immediate
coalescing strategy tends to produce larger free chunks, N should not be chosen too small.
Also, using more than 256 free lists does not give further improvement because there is rare
free chunk larger than 1K bytes using immediate coalescing strategy. We can conclude that

256 free lists are enough.
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Figure 4-14: Using 256 free lists are good enough
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Chapter 5

Conclusion

In this thesis, we proposed a mechanism, Next Hit Table, to accelerate object allocation
for size-ordered segregated list object allocator in automatic garbage collection environment,
with negligible space overhead. Our proposed mechanism is based on the observation that
many free lists will become empty within the interval between two invocations of garbage
collection. The concept of Next Hit Table is very simple, a mapping from allocation request
for each size to the closest non-empty free list holding sufficient large chunks. The
mechanism is very effective that the result shows that our proposed mechanism can improve

the overall heap management performance by 100%.

Another issue we studied is the coalescing strategies of contiguous free chunks.
Although deferred coalescing is generally considered a better strategy than never coalescing
strategy and immediate coalescing strategy, we showed that with the power of Next Hit Table
mechanism, immediate coalescing is better, rather than deferred coalescing strategy. Although
the update of Next Hit Table is more frequent if using immediate coalescing strategy, the
allocation speed gap between using immediate coalescing strategy with Next Hit Table and
using deferred coalescing strategy with Next Hit Table are very small. Such an upside-down
result tells us that if allocation can be done very fast then fragmentation is the most important

problem in garbage collection environment.

Explicitly managing heap and incremental garbage collection environment also have
dynamic object allocation, thus they can benefit from the Next Hit Table mechanism.

However, because dead objects are de-allocated using explicit de-allocation statement in
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explicit heap management environment, free chunks of each sizes are less likely to become
insufficient due to the locality of object size. Therefore, the benefit of using Next Hit Table

will be less.

Moreover, since using incremental garbage collector means the heap space might still be
sufficient at garbage collection, free chunks of each sizes are less likely to become insufficient.
Furthermore, because not all dead objects at garbage collection triggering point will be
collected at once, more time is spent on garbage collection due to more frequent garbage
collection. These two factors make the benefit of Next Hit Table less if using incremental

garbage collector.

Our proposed mechanism might also be incorporated in generational mark-sweep
garbage collector to accelerate the promotion process which copies live objects from young

space to old space, since the copying is essentially object allocation in old space.
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Appendix: Complete Experimental Results
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Figure A-1: Object allocation time of different allocators (_202_jess)
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Figure A-2: Garbage collection time of different allocators (_202_jess)
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Figure A-3: Total heap management time of different allocators (_202_jess)
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Figure A-4: Object allocation time of different allocators (_205_raytrace)
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Figure A-5: Garbage collection time of different allocators (_205_raytrace)
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Figure A-6: Total heap management time of different allocators (_205_raytrace)
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Figure A-7: Object allocation time of different allocators (_209_db)
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Figure A-8: Garbage collection time of different allocators (_209_db)
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Figure A-9: Total heap management time of different allocators (_209_db)
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Figure A-10: Object allocation time of different allocators (_213 javac)
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Figure A-11: Garbage collection time of different allocators (_213_javac)
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Figure A-12: Total heap management time of different allocators (_213 javac)
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Figure A-13: Object allocation time of different allocators (_227_mtrt)
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Figure A-14: Garbage collection time of different allocators (_227_mtrt)
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Figure A-15: Total heap management time of different allocators (_227_mtrt)
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