
國 立 交 通 大 學

資訊工程系

碩 士 論 文

使用依區塊大小排列的分離式串列的物件配置器

在垃圾蒐集環境下的尋訪之減少

Reducing the Traversals in Size-Order Segregated List

Object Allocator for Garbage Collection Environment

研 究 生：黃 欽 毓

指導教授：鍾 崇 斌 博士

中華民國 九十四 年 八 月

使用依區塊大小排列的分離式串列的物件配置器

在垃圾蒐集環境下的尋訪之減少

Reducing the Traversals in Size-Order Segregated List

Object Allocator for Garbage Collection Environment

研 究 生：黃欽毓 Student：Chin-Yu Huang

指導教授：鍾崇斌 博士 Advisor：Dr. Chung-Ping Chung

國 立 交 通 大 學

資 訊 工 程 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer Science and Information Engineering

August 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年八月

使用依區塊大小排列的分離式串列的物件配置器

在垃圾蒐集環境下的尋訪之減少

學生：黃欽毓 指導教授：鍾崇斌 博士

國立交通大學資訊工程學系碩士班

摘要

使用依區塊大小排列的分離式串列之物件配置器是一種常見的物件配置器。使用依

區塊大小排列的分離式串列的物件配置器，在作物件配置時，需要做尋訪以找出存放合

適大小的區塊的串列。因為串列可能會變成空的，使得尋訪的串列增加，所以其效能仍

然有改善的空間，這種情形在垃圾收集環境之下尤為顯著。

因此，我們在這份研究中提出了一個查表機制，以減少在配置物件時的尋訪動作。

機制中的主要結構是一個要求區塊大小–最靠近的存放夠大區塊的非空串列的對映

表。在配置物件之時，藉由查詢此對映表，只需要一次尋訪就能定位出存放有合適大小

的區塊的串列，使得物件配置的速度大幅增快；我們並且以爪哇語言，一種使用自動垃

圾回收機制的物件導向程式語言為例。結果顯示我們提出的機制能使管理堆積區的效能

增加一倍。我們也研究了不同的區塊合併策略在自動垃圾回收環境之下，對堆積區管理

的效能的影響；並且指出了在選擇區塊合併策略上的權衡，會在加入我們所提出的機制

之後發生變化。原本會使得物件配置速度較慢而不傾向被使用的立即合併策略，在加入

了我們的機制之後，成為較好的合併策略。這個結果也說明了在自動垃圾收集環境之

下，只要物件配置速度夠快，空間破碎問題才是較重要的議題。

 i

Reducing the Traversals in Size-Order Segregated List

Object Allocator for Garbage Collection Environment

Student：Chin-Yu Huang Advisor：Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Size-ordered segregated list allocator is a widely-used object allocator. Upon object

allocation, traversals are required to locate the free list holding large enough free chunks.

Because some free lists might become empty, increasing the traversals upon object allocation,

the performance of size-ordered segregated list allocator still has room for improvement. This

is especially true in garbage collection environment.

Therefore, we propose a table lookup mechanism to reduce the traversals. The main

structure in this mechanism is a table which is a mapping from allocation request of each size

to the closest non-empty free list holding large enough chunks. By looking up the table, only

one traversal is required to locate the closest non-empty free list, hence speeding up object

allocation. We take Java, a popular object-oriented programming language with automatic

garbage collection, as example. The result shows that our proposed mechanism can improve

the heap management performance by 100%. We also studied the impact of using different

coalescing strategies on heap management performance in garbage collection environment,

and showed that the trade-off to choosing a coalescing strategy will change, in the presence of

our proposed mechanism. Immediate coalescing strategy, which is not used because it results

in slower allocation speed, becomes a better one after our proposed mechanism is added. The

result also indicates that fragmentation problem is a more serious issue in garbage collection

environment than allocation performance if the allocation speed is fast enough.

 ii

Acknowledgment

首先我要感謝我的指導教授 鍾崇斌老師。這兩年在交大的時光，老師在學業上面

給了我非常嚴謹的指導和許多寶貴的建議，讓我成長了許多，並且得以順利完成碩士論

文；老師除了在學業上的指導之外，也在做人做事的方法上給我很大的啟發。我也要感

謝實驗室的另一位指導老師 單智君老師，除了擔任我的口試委員，並且在小組討論的

時候給了我非常多的幫助。還要感謝另外一位口試委員 邱日清老師，在口試的時候給

我的建議，讓我的論文更加完善。

我也要感謝實驗室的所有學長、同學們在我做碩士論文的期間給我的協助和鼓勵，

讓我能得以克服遭遇到的種種困難，並且在沮喪與失意之時重燃鬥志。特別感謝喬偉豪

學長，和 Java 研究群的黃俊諭、劉彥志、陳裕生同學。

最後，要感謝我的家人給我的支持，才讓我有信心和動力把碩士論文完成。

 黃欽毓

2005/8/30

 iii

Table of contents

摘要 i

Abstract ii

Acknowledgment iii

Table of contents iv

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

Chapter 2 Background 4
2.1 Java Technology 4

2.2 Heap Management 5
2.3 Mark-Sweep Garbage Collector 7
2.4 Free-List-Based Object Allocators 8

2.4.1 Single List Object Allocator 8
2.4.2 Size-Ordered Segregated List Object Allocator 9
2.4.3 Coalescing Strategies of Allocators 11
2.4.4 Summary of Free-List-Based Object Allocators in Garbage Collection

Environment 15

Chapter 3 Design 16
3.1 Observation on Size-Ordered Segregated List Fit Allocator in Garbage Collection

Environment 16
3.2 Next Hit Table Mechanism 18

3.2.1 Object Allocation with Next Hit Table Mechanism 19
3.2.2 Maintaining Next Hit Table 20
3.2.3 Overhead 23

3.3 Choosing a Coalescing Strategy 24

Chapter 4 Experiment 26
4.1 Methodology 26

 iv

4.2 Environment 27
4.3 Experimental Results 29

4.3.1 The Impact of Different Coalescing Strategies 29
4.3.2 The Effectiveness of Next Hit Table Mechanism 32
4.3.3 The Next Hit Table Mechanism Leads to a Different Choice of Coalescing

Strategy 35
4.3.4 Determining the Number of Free Lists 36

Chapter 5 Conclusion 38

References 40

Appendix: Complete Experimental Results 41

 v

List of Figures

FIGURE 2-1: Java Virtual Machine internal architecture 4

FIGURE 2-2: Heap free space might be scattered if objects are never move 5

FIGURE 2-3: Heap can be compacted in heap management scheme where object can be

moved 6

FIGURE 2-4: Mark phase 7

FIGURE 2-5: Sweep phase 8

FIGURE 2-6: Single list allocator 9

FIGURE 2-7: Size-ordered segregated list fit allocator 10

FIGURE 2-8: Coalescing of contiguous free chunks 11

FIGURE 2-9: Free chunk size distribution where small size chunks are sufficient 13

FIGURE 2-10: Free chunk size distribution where small chunks are insufficient 14

FIGURE 3-1: Nodes of traversals of an object allocation request in different point within

program execution 16

FIGURE 3-2: Only the last free list holds a chunk in the beginning of program execution 17

FIGURE 3-3: The change in free chunk size distribution during program execution 18

FIGURE 3-4: Next Hit Table 19

FIGURE 3-5: Initialization state of NHT 20

FIGURE 3-6: NHT update example 1 21

FIGURE 3-7: NHT update example 2 22

FIGURE 4-1: Object allocation time using different coalescing strategy 31

FIGURE 4-2: Garbage collection time using different coalescing strategy 31

FIGURE 4-3: Total heap management time using different coalescing strategy 31

FIGURE 4-4: Object allocation time of using deferred coalescing strategy plus NHT 32

FIGURE 4-5: Garbage collection time of using deferred coalescing strategy plus NHT 33

FIGURE 4-6: Total heap management time of using deferred coalescing strategy plus NHT

 33

FIGURE 4-7: Total heap management time of using never coalescing strategy plus NHT 33

FIGURE 4-8: Object allocation time of using immediate coalescing strategy plus NHT 34

FIGURE 4-9: Garbage collection time of using immediate coalescing strategy plus NHT 34

FIGURE 4-10: Total heap management time of using immediate coalescing strategy plus

 vi

NHT 34

FIGURE 4-11: Object allocation time of 4 configurations 35

FIGURE 4-12: Garbage collection time of 4 configurations 36

FIGURE 4-13: Total heap management time of 4 configurations 36

FIGURE 4-14: The number of free lists and heap management time 37

FIGURE A-1: Object allocation time of different allocators (_202_jess) 41

FIGURE A-2: Garbage collection time of different allocators (_202_jess) 41

FIGURE A-3: Total heap management time of different allocators (_202_jess) 41

FIGURE A-4: Object allocation time of different allocators (_205_raytrace) 42

FIGURE A-5: Garbage collection time of different allocators (_205_raytrace) 42

FIGURE A-6: Total heap management time of different allocators (_205_raytrace) 42

FIGURE A-7: Object allocation time of different allocators (_209_db) 43

FIGURE A-8: Garbage collection time of different allocators (_209_db) 43

FIGURE A-9: Total heap management time of different allocators (_209_db) 43

FIGURE A-10: Object allocation time of different allocators (_213_javac) 44

FIGURE A-11: Garbage collection time of different allocators (_213_javac) 44

FIGURE A-12: Total heap management time of different allocators (_213_javac) 44

FIGURE A-13: Object allocation time of different allocators (_227_mtrt) 45

FIGURE A-14: Garbage collection time of different allocators (_227_mtrt) 45

FIGURE A-15: Total heap management time of different allocators (_227_mtrt) 45

 vii

List of Tables
TABLE 2-1: Most objects are of a small number of sizes 12

TABLE 2-2: Comparison between free-list-based allocator 13

TABLE 3-1: NHT update frequency using deferred coalescing strategy 24

TABLE 4-1: Overview of SPECjvm98 benchmark 28

 viii

Chapter 1

Introduction

 A fundamental and important part of modern programming languages is dynamic object

allocation. Many programming languages, such as C, C++, Java, and Smalltalk, allow

programmers to dynamically allocate object in heap, and dynamic object allocation has

became a powerful tool that enables programmers to develop applications with more

flexibility [1]. In object-oriented programming languages such as Java and Smalltalk, since

data are encapsulated in objects and objects are almost allocated dynamically, the use of

dynamic memory allocation is especially extensive, and the concept of software engineering

continues encouraging programmers to use more dynamic allocated object.

In languages with explicit heap management, de-allocation of objects is done by explicit

program statements and thus programmers themselves are responsible for dealing with

de-allocation. Because the vast amount of allocated objects, a programmer might forget

de-allocating dead objects, or might de-allocate an object which should not be de-allocated to

ensure correct program execution. This leads to memory leak and dangling reference problem.

Therefore, some modern programming languages such as Lisp and Java use automatic

garbage collection. Automatic garbage collection means that dynamically allocated objects are

not de-allocated explicitly by the running program itself but the garbage collector is instead

responsible for reclaiming the spaces occupied by dead objects, and typically, garbage

collection is invoked when an object allocation request cannot be satisfied. With the power of

automatic garbage collection, memory leak and dangling reference problem can be avoided,

and it is easier to write applications that are more safe and reliable [2].

 1

Because the extensive use of dynamically allocated object, time spent on object allocation

plays an important role on program total execution time. Thus a fast object allocator is

important for efficient execution. In automatic garbage collection environment, another issue

about object allocator arises. Since garbage collection is typically invoked when object

allocation request cannot be satisfied due to insufficient large contiguous free space, the

fragmentation brought by the object allocator is also important.

Size-ordered segregated list allocator is generally believed a very fast object allocator. By

the use of segregated list, the allocator rare needs to sequentially search the free list to find a

large enough free chunk. However, traversals are still required to locate the closest non-empty

free list which holds sufficient large free chunks. And we found that the time spent on

traversals is especially much in automatic garbage collection environment. This motivates us

to reduce the traversals upon allocation request of size-ordered segregated list allocator in

automatic garbage collection environment. Furthermore, the coalescing of contiguous free

chunks is also an important issue which will affect the performance of object allocation.

Coalescing contiguous free chunks to a large free chunk tends to lower the fragmentation and

thus has a positive impact on reducing the number of garbage collection invocation, but it will

degrade the allocation speed of size-ordered segregated list allocator. The purpose of this

thesis is to compose a size-ordered segregated list object allocator with reduced traversals and

choosing a good coalescing strategy to use with this allocator.

The most popular object-oriented programming language which has garbage collection

incorporated in is Java [3]. The use of Java is widely spread over many fields of computer

system, ranging from high-end server applications to low-end embedded systems. Therefore,

Java will be taken as example in this research.

 The organization of the thesis is as follows. In chapter 2, the related background is

 2

presented. In chapter 3, we first give an important observation on size-order segregated list

allocators in garbage collection environment. Based on that, our design to reduce traversals

upon object allocation is proposed. In chapter 4, the performance of the proposed mechanism

is evaluated via experiments. Conclusion is presented in chapter 5. Complete experimental

results will be presented in Appendix.

 3

Chapter 2

Background

In this chapter, the related background about our research is presented. First, some

important tips on Java are given. Second, the heap management is described. Finally, details

about dynamic object allocation and garbage collection are depicted.

2.1 The Java Technology

Java is an object-oriented programming language whose syntax is similar to C++.

However, Java is a complete system rather than only a programming language. Unlike most

other programming languages such as C, C++, and Fortran, Java programs are not statically

compiled to machine-dependent native code for execution. On the other hand, Java programs

must be compiled to Java virtual machine bytecode, a machine-independent code. Any Java

virtual machine confining the Java virtual machine specification can execute bytecode. Hence,

Java technology consists of the Java programming language and the Java virtual machine.

Figure 2-1 illustrates the internal architecture of the Java virtual machine.

Figure 2-1: Java Virtual Machine Internal Architectures

 4

2.2 Heap Management

Inside the Java virtual machine, there is a Java heap which stores dynamically allocated

objects [4]. Java does not allow programs to explicitly de-allocate objects, and it relies on

automatic garbage collection to de-allocate dead objects. An object no longer referenced by

the running program is said to be dead. To identify and reclaim dead objects in heap are both

time consuming thus fewer invocations of garbage collection are preferred. As a result,

garbage collection is typically triggered after an object allocation request cannot be satisfied.

The components responsible for managing the heap are the object allocator and the

garbage collector, and there are two types of heap management scheme. The first scheme is

that allocated objects are never moved (Figure 2-2), and the other is that allocated objects can

be moved to make the heap compacted (Figure 2-3).

In heap management scheme where objects are never moved, garbage collection is less

costly, since garbage collector only needs to identify and reclaim dead objects. However, free

spaces will be scattered around the heap, thus an efficient data structure must be used to

manage these scattered free chunks. Object allocation speed thus depends on the underlying

data structure and allocation policy.

Figure 2-2: Heap free space will be scattered if objects are never move

 5

In heap management scheme where objects can be moved, live objects can be moved to

one end of the heap to make the heap compacted. This will result in a single contiguous free

space in the heap, thus very simple data structure can be used to management free space. And

it makes object allocation almost a non-issue, since upon object allocation request there is

only one free chunk to be considered.

Nevertheless, compacting objects bring extra costs to garbage collection, which are

copying objects and updating references inside objects. Thus, some systems adopt moving

heap management scheme but heap is not always compacted. This means free spaces might

also be scattered around the heap like the situation in non-moving heap management scheme.

Figure 2-3: Heap can be compacted if object can be moved

Much research has been focused on non-moving heap management scheme and moving

heap management schemes. However, it is impossible to pick up a winning strategy, since

different strategy leads to different performance tradeoffs [5]. We will focus on heap

management scheme where heap is not always compacted.

For heap management scheme where heap is not always compacted, mark-sweep and

reference counting garbage collectors are most widely know, but there is rare use of reference

counting garbage collector in modern system because of its overhead to count the number of

references is too high.

 6

Mark-Sweep Garbage Collector

Mark-sweep garbage collector collects dead objects by two phases, the mark phase and

the sweep phase. In mark phase, dead objects are identified, and in sweep phase, dead objects

are reclaimed.

Reference variables and dynamically allocated objects form a directed graph, called

reference graph. Those variables are roots of this graph. A node n is reachable if there is a

path of directed edges r → … → n starting at some root r. In mark phase (Figure 2-4), the

reference graph is traversed and each node visited during traversal is marked. Any node not

marked is not reachable thus no longer referenced by the running program. These unmarked

objects must be garbage, and should be reclaimed.

Then in sweep phase (Figure 2-5), it scans from starting address to the last address of

heap, looking for objects that are not marked. These non-marked nodes are garbage and will

be linked into the underlying data structure which maintains the free space.

Figure 2-4: Mark phase

(Information source: Figure 13.4(a) of [6])

 7

Figure 2-5: Sweep phase

(Information source: Figure 13.4(b) of [6])

2.4 Free-List-Based Object Allocator

Because free space might be scattered around the heap in non-moving heap management

scheme, the underlying data structure used to manage free space is generally a graph-like data

structure, and in practice, most allocators use linked-list-based data structure to maintain the

free space in heap and are conventionally called free-list-based object allocators. Many

free-list-based allocators have been proposed and the important free-list-based allocators are

described as follows.

2.4.1 Single List Object Allocator

Typically, a contiguous memory space in heap is called a free chunk. In a single list

object allocator, free chunks of all sizes are chained a single linked list (Figure 2-6) and thus it

must sequentially search the list to find a chunk of appropriate size. Single list first fit, single

list best fit, single list worse fit, and single list next fit alloactors are widely known allocators

in this category.

 8

Figure 2-6: Single list object allocator

Single list best fit allocator has to search the linked list to find the smallest free block

large enough to satisfy a request. A best fit search is generally exhaustive, although it might

stop when a perfect fit is found. Single list best fit allocator generally exhibits low

fragmentation but the sequential search does not scale well to large heap, which might have

many free chunks.

Single list worst fit requires exhaustive search and it also has high fragmentation, thus it

is rarely used.

Single list first fit allocator is the most notable single list allocator, since its

fragmentation is pretty low and allocation speed is better than single list best fit and single list

worse fit. Upon allocating an object, the allocator searches the free list for the first free chunk

that is sufficient large to satisfy the request, and if the remainder after object allocation is

larger than minimum object size, the remainder is put back and linked to the end of the free

list. Similarly, during garbage collection, contiguous free chunks will always be merged to a

larger free chunk. A free chunk is simply added to the end of the free list.

2.4.2 Size-Ordered Segregated List Allocator

Single list first fit allocator has a very high worst case allocation cost, which requires

linear search through a single list until finding a large enough free chunk, and average

allocation cost in practice is also poor, especially when the heap is large and allocated objects

 9

are of many kinds of sizes.

Hence, segregated list allocators are proposed to reduce the search time of single list

allocators. As the name of segregated list allocator, multiple free lists are used to maintain the

free space. There are many possible variations of allocators using segregated list, and among

all the most notable and efficient one is size-ordered segregated list allocator.

Figure 2-7: Size-ordered segregated list allocator

In size-ordered segregated list allocator (Figure 2-7), each size is associated with a

corresponding free list. Each list holds free chunks of exact size, except for the last free list.

An integer N is selected such that most free chunks are smaller than 4N because there are very

few large objects. It is observed that 95% objects are smaller than 256 bytes and 99% objects

are smaller than 1K bytes [7], and thus the value N is chosen between 64 and 256 in practice.

Suppose a heap where free chunks are multiple of 4-byte. All free chunks whose sizes

are equal to 4N or greater than 4N are linked in the last free list. Thus, size-ordered segregated

list fit allocator has N free lists rather than an unbounded numbers of free lists. Upon

allocating an M-byte object, the allocator first indexes into the free list holding size M free

 10

chunks. If M >= 4N, the allocation request is satisfied by best-fit allocation in the last free list.

Otherwise, the allocation request processes as follow. If there is an M-byte free chunk chained

in the corresponding free list, the allocation request is satisfied by taking the first free chunk

linked in the free list. If the free list corresponding to M-byte chunk is empty, the allocator

traverses up the free list header array until a non-empty free list holding chunks larger than M

is visited. Suppose that the non-empty free list holds free chunks of size K. If K < 4N, the

allocation request is satisfied by taking the first free chunk in the free list. Otherwise, if K >=

4N, best-fit allocation is tried at the last free list. If there is remainder after allocation, the

remainder is put back and inserted into the corresponding free list holds that size.

A notable variant of segregated list allocator is the buddy systems. Buddy systems can

provide faster allocation than size-ordered segregated list allocator, but the internal

fragmentation and external fragmentation are both very high, thus it is not suitable for garbage

collection environment.

2.4.3 Coalescing Strategy of Contiguous Free Chunks

The basic operation of size-ordered segregated list allocator has been described above.

And there is an important issue that affects the performance of size-ordered segregated list

allocator, “Will contiguous free chunks be coalesced? And when?”

Figure 2-8: Coalescing of contiguous free chunks

 11

Never Coalescing Strategy

A characteristic of object allocation activities is the locality of object size, which says if

previously many allocated objects are of some sizes, then objects of these sizes will be

allocated extensively. This concept can be supported by the fact that 90% of objects are of

10% of sizes (Table 2-1). Therefore, never coalescing strategy is used. Using never coalescing

strategy, newly identified contiguous free chunks are never coalesced but on the other hand

each free chunk is directly chained back into the corresponding free list holding that size. This

makes small size chunk very sufficient and enables the allocator to cyclic allocate small size

chunk very quickly (Figure 2-9).

Table 2-1: Most objects are of a small number of sizes

Benchmark

Total number

of

size classes

Number of size

classes

of 90% objects

Number of size

classes of 90%

objects

/

Total number

of size classes

Number of size

classes

of 99% objects

Number of size

classes of 99%

objects

/

Total number of

size classes

_201_compress 73 19 26.0% 36 49.3%

_202_jess 158 12 7.6% 26 16.5%

_205_raytrace 72 5 6.9% 10 13.9%

_209_db 78 7 9.0% 16 20.5%

_213_javac 166 12 7.2% 27 16.3%

_227_mtrt 72 5 7.0% 10 14.0%

_228_jack 448 6 1.3% 18 4.0%

Average 166 10 10% 22 13%

 12

Figure 2-9: Free chunk size distribution where small size chunks are sufficient

Because contiguous free chunks are never coalesced into a larger chunk, it is likely to

produce many small chunks in heap, and larger free chunks are difficult to find. This

fragmentation problem might lead to more frequent invocation of garbage collection, since an

object allocation request for large size might fail when there is still considerable total free

space in heap.

Deferred Coalescing Strategy

Another strategy is to defer the coalescing operation. Its goal is similar to never

coalescing, but has lower fragmentation. Using deferred coalescing strategy, contiguous free

chunks are not coalesced upon garbage collection but on the other hand each free chunk is

directly chained into the corresponding free list holding that size. Coalescing only occurs

upon request a free chunk in the last free list or when allocation request still fails after garbage

collection. When searching the last free list for a best-fit chunk, contiguous large chunks are

merged to a larger chunk. When allocation request still fails after garbage collection, each

group of contiguous free chunks will be coalesced.

 13

Immediate Coalescing Strategy

Never coalescing strategy does not try to merge any contiguous free chunk, and deferred

coalescing strategy only merges contiguous free chunk lazily. Hence, another strategy which

has a fundamental different criteria is used – immediate coalescing.

Immediate coalesce strategy will coalesce each group of contiguous free chunks upon

garbage collection. This can be done during the sweep phase of mark-sweep garbage collector,

thus the coalescing operation incurs little overhead. After coalescing, the resulting bigger free

chunks are added back to the corresponding free list. Thus, the free chunk size distribution

using immediate coalescing strategy is very different from that using deferred coalescing and

never coalescing strategy – smaller chunks are insufficient while larger chunks are more

(Figure 2-10). And this results worse allocation performance, since the allocator is more likely

to traverse more headers to locate the closest non-empty free list. On the other hand, since

coalescing is performing aggressively, it results in less fragmentation.

Figure 2-10: Free chunk size distribution where small chunks are insufficient

 14

2.4.4 Summary of Free-List-Based Object Allocators in Garbage

Collection Environment

We have described two important categories of object allocator, single list first fit

allocator and size-ordered segregated list allocator. Single list first fit allocator requires

searching a single linked list upon allocation, thus performs badly in large heap size because

there are potentially more free chunks. Hence single list first fit allocator is only suitable for

memory-constrained embedded system. On the other hand, size-ordered segregated list

allocator is more scalable than single list first fit allocator. Moreover, three important

coalescing strategies used in size-ordered segregated list allocactor have also presented.

Table 2-2 is the comparison among these free-list-based allocators.

Table 2-2: Comparison among free-list-based allocators (SPECjvm98 with 6M heap size)

Allocator
Worst case cost per

allocation

Average cost per

allocation

External

Fragmentation

Single List First Fit

O(n),

n = the number of free

chunks

Several hundreds

of node traversals
Low

Size-Ordered Segregated List +

Never Coalescing

O(m+k),

m = the number of

free lists,

15 ~ 40 node

traversals
High

Size-Ordered Segregated List +

Deferred Coalescing
The same as above

17 ~ 40 node

traversals
High

Size-Ordered Segregated List +

Immediate Coalescing
The same as above 50 node traversals Low

 15

Chapter 3

Design

In this chapter, we will first present an important observation on the change of allocation

performance with time, which inspires our design. Then, our design for accelerating object

allocation is presented. Finally, we will give a discussion on what might be the best coalescing

strategy to incorporate into design.

3.1 Observation on Size-Ordered Segregated List Allocator

in Garbage Collection Environmant

Figure 3-1: Nodes of traversals of an object allocation request in different point within

program execution (SPECjvm98 with 6M heap size)

From the Figure 3-1, it is observed that before the first invocation of garbage collection,

the size-ordered segregated list allocator pays excessive traversals upon object allocation

 16

request. This is because the heap is itself a big free chunk in the beginning of program

execution, and until the first invocation of garbage collection, there is only a single free chunk

in heap and this chunk is linked in the last free list while other free lists are empty. Any

allocation request for small sizes must be satisfied at the last free list, after traversing through

the free list headers. (Figure 3-2)

Figure 3-2: Only the last free list holds a chunk in the beginning of program execution

Another observation from the figure is that allocation performance is very good after

garbage collection just finishing, however, the allocation performance is dropping as the next

invocation of garbage collection is approaching. The explanation of this phenomenon is that

during the execution of a Java program, dead objects can be de-allocated and the spaces

occupied by them are returned to free lists only during garbage collection. This indicates that

free chunks are continuously consumed upon allocation request and free spaces cannot be

reclaimed until garbage collection. Therefore, free chunks of some sizes become exhausted as

the program executes. As the program continues its execution and garbage collection is

approaching, more free lists become empty and thus the speed performance of object

allocation degrades sharply. (Figure 3-3)

 17

Figure 3-3: The change in free chunk size distribution during program execution

3.2 Reducing Traversal during Object Allocation – Next Hit

Table Mechanism

By observing the object allocation process of size-ordered segregated list allocator, we

know that it must traverses up the free list headers if the free list corresponding to the

requested size contains no chunk and a sufficient large chunk is found until the closest

 18

non-empty free list is visited. Since many free lists become empty as the program execution,

why not to remember allocation request of each size can be satisfied at which free list?

We can add a table to direct allocation request of each size to the closest non-empty free

list holding sufficient large size. The table is essentially a mapping from requested size to the

right free list, thus each size has a corresponding table entry. We called the table Next Hit

Table (NHT) since by looking up the table, the right free list is located without traversing up.

In the following subsections, we suppose that heap chunks are multiple of 4 bytes because

most Java virtual machines use 4-byte as the unit of heap spaces.

Figure 3-4: Next Hit Table

3.2.1 Object Allocation with Next Hit Table

Object allocation with NHT support is done as follow. Upon allocation request of a size

S object, the allocator first lookup the table to know that a sufficient large chunk can be found

in free list F, holding 4F-byte objects. If F < N, the allocation request is satisfied by taking the

first free chunk in free list F. Otherwise, it searches a best-fitting chunk in the last free list

(free list N) to satisfy the allocation request.

 19

3.2.2 Maintaining Next Hit Table

NHT will be initialized to N, which indicates the last free list because in the beginning of

execution, the heap is itself a single large free chunk. Note that because there is only a free

chunk in the heap until the first invocation of garbage collection, the initially bad allocation

performance before the first invocation of garbage collection becomes very quick, a table

lookup plus direct allocating the only chunk without searching.

Figure 3-5: Initialization state of NHT

For maintaining the right mapping, NHT must be updated when a free list becomes

empty and when a free list becomes non-empty. A free list will become empty if it runs out of

chunk in list after object allocation request, and there are two cases that a free list will become

non-empty. The first case is when the remainder of an allocated chunk is linked back to a free

list and the free list is previous empty. The second case occurs during garbage collection -

when a free chunk is swept and then linked back to a free list and the free list has been empty

before garbage collection.

When a free list F becomes empty after object allocation, the update process is as follow.

Suppose the NHT entries corresponding to free lists F-1, F -2, …, F - i are of value F, and the

 20

NHT entry corresponding to F - i - 1 is not of value F. Then the NHT entries corresponding to

free lists F, F-1, F -2, …, F - i are updated to the value of NHT entry corresponding to free list

F + 1. This is to reflect the fact that afterwards allocation requests of size 4F, 4F-4, …, 4F - 4i

can no longer be satisfied at free list F. Figure 3-6 depicts the update operation when the free

list holding 20-byte chunk becomes empty.

Figure 3-6: NHT update example 1

 21

When a free list F becomes non-empty, the update process is as follow. Suppose the NHT

entry corresponding to free list F -1 is not of value F - 1, the NHT entry corresponding to free

list F - 2 is not of value F - 2, …, and the NHT entry corresponding to free list F - i is not of

value F - i, but the NHT entry corresponding to free list F - i - 1 is of value F - i – 1, then the

NHT entries corresponding to free lists F, F-1, F -2, …, F – i are updated to F to reflect that

next allocation request of size 4F, 4F-4, …, 4F - 4i can be satisfied at free list F. Figure 3-7

depicts the update operation when the free list holding 16-byte chunk becomes non-empty due

to the remainder being added back.

Figure 3-7: NHT update example 2

 22

If the update occurs during garbage collection, we use special handling. Because there is

no object allocation request during garbage collection, we can postpone the update to the end

of garbage collection process. By such treatment, the table only needs to be updated once

during garbage collection.

3.2.3 Overhead

We have described how our proposed mechanism, NHT, works to reduce the traversals

upon object allocation in size-ordered segregated list allocator. We discuss the overhead using

NHT now.

NHT mechanism incurs both space and speed overhead. The space overhead comes from

the data structure implementing NHT, which can be simply an array of integer. And because

typically size-ordered segregated list allocator uses no more than hundreds of free lists which

mean hundreds of 4 bytes, the overhead only counts up several KB.

The speed overhead might be more critical than space overhead, since if the speedup

gained by fast object allocation can not amortize the time cost to maintain NHT, our ambition

will simply fail. Remember that the update only occurs in three cases, and these occur

infrequently. A free list might become empty only when it runs out of free chunks, and free

chunks are reclaimed only during garbage collection, thus this case rarely occurs. However,

the speed overhead of NHT when using immediate coalescing strategy might be higher,

because it is more potential to have the remainder after allocating a larger chunk and the

remainder will be linked back into a free list. Our simulation result shows that update does not

occur frequently – only one update occurs averagely during 1000 allocation request using

deferred coalescing strategy (Table 3-1).

 23

Table 3-1: NHT update frequency using deferred coalescing strategy

Benchmark

A free list

becomes

non-empty

A free list

becomes

empty

Total

number of

update

Total number of

object allocation

Number of

allocation

/

Number of

update

_201_compress 145 116 261 6479 25

_202_jess 254 225 479 110471 231

_205_raytrace 118 93 211 575724 2729

_209_db 138 113 251 123166 491

_213_javac 152 122 274 222891 813

_227_mtrt 111 81 192 677785 3530

average 153 125 278 286086 1029

3.3 Choosing a Coalescing Strategy

Another interesting question is, “Is our mechanism more suitable to combine with

deferred coalescing, never coalescing, or immediate coalescing strategy?”

Remember that in automatic garbage collection environment, an allocator can affect two

parts of program execution time, which are time for object allocation and time for garbage

collection. An allocator using deferred coalescing or never coalescing strategy can provide

very fast allocation while introducing longer garbage collection time. In contrast, an allocator

using immediate coalescing strategy has slower allocation speed but result in shorter time for

garbage collection.

 24

To our knowledge, no previous research figured out that in garbage collection

environment, whether fast allocation is more important or low fragmentation. Although

deferred coalescing is generally considered the best strategy among the three, to what extend

it wins over never coalescing or immediate coalescing strategy is not clear. Moreover, with

our proposed Next Hit Table mechanism, many allocation request can be satisfied by a table

lookup and then direct get the chunk from the right free list, even if immediate coalescing

strategy is used. This let us to pose an ambitious assumption, immediate coalescing is the best

coalescing strategy in the presence of Next Hit Table’s support. We will prove this by

experiment.

 25

Chapter 4

Experiment

The goal of this chapter is to set up some experiment to see the following things. First,

the comparison between different coalescing strategies using in size-ordered segregated list

allocators is shown. Second, we want to see to what extent the performance will gain after

adding NHT. Third, it is interesting that whether adding Next Try Table will really change the

feasible coalescing strategy.

4.1 Methodology

For evaluating the performance of allocators, several methodologies have been proposed.

For study the fragmentation incurred by an allocator, traditionally memory- trace-driven

simulation is used. For study the allocation speed of an allocator, some research do simulation

of the number of node being searched during object allocation and uses the number of node

being searched to judge an allocator, while other research direct implement their allocators

and uses execution time to evaluate the speed performance.

For our research, we do not look at fragmentation and speed separately like many

previous research, since we are interested in the allocator’s speed performance and the

interaction between the allocator and garbage collector. In a programming language with

automatic garbage collection, the seriousness of fragmentation is converted to execution time,

that the higher the fragmentation, the greater the time will be spent on garbage collection

since higher fragmentation results in more frequent invocation of garbage collection. Whether

 26

an allocator is good should be judged by the time spent on object allocation plus garbage

collection, since garbage collection is a very sophisticated process and thus difficult to

simulate its speed performance. Therefore, we implement our allocator and measure the

execution time spent on object allocation and garbage collection.

Since we want to use execution time to judge the performance of allocator, we must use

some way to collect the time information. A traditional technique to measure time is to use

operating system’s system calls, but system calls are so expensive and object allocation

activities occur very frequently, so the overhead using system calls will disturb the accuracy.

Thus we decide to use alternative approach to collect execution time information.

Some processor have built in hardware event counter which counts elapsed clock cycles

and special registers which can be used to record clock cycles information. And using a single

assembly instruction can read the content of the register. Thus, we decide to use cycles as the

measure of time.

4.2 Environment

Sun’s CVM is chosen as the based Java virtual machine in our implementation because it

is open-source and widely known. CVM is pure interpreter-based virtual machine intended to

be used in embedded systems [8]. The underlying hardware is Pentium 4 and the chosen

operating system is Debian Linux.

We have gathered many benchmarks, including SPECjvm98 and Embedded

CaffeineMark. Embedded CaffeineMark is aimed for testing the performance of Java virtual

machine in embedded environments. It a synthetic benchmark suite and only do very simple

operation, such as looping, calling method, and allocated String. Hence it is not a

 27

representative benchmark to reflect the object allocation behavior in real Java programs.

SPECjvm98 is an industry-standard benchmark suite for evaluating the performance of

Java virtual machines [9]. Benchmarks in SPECjvm98 are for solving real-world problem and

several of them are commercial applications. Thus, SPECjvm98 is chosen as our test

benchmark suite, since we are interesting in the performance of dynamic object allocation.

Among the benchmarks, _222_mpegaudio and _228_jack are not tested because of porting

problems.

Table 4-1: Overview of SPECjvm98 benchmark

Benchmarks Short Description

_201_compress

Modified Lempel-Ziv method (LZW).

Basically finds common substrings and replaces them with a

variable size code.

_202_jess
Java Expert Shell System is based on NASA's CLIPS expert

shell system.

_205_raytrace A raytracer that works on a scene depicting a dinosaur.

_209_db
Performs multiple database functions on memory resident

database.

_213_javac This is the Java compiler from the JDK 1.0.2.

_227_mtrt

A raytracer that works on a scene depicting a dinosaur,

where two threads each renders the scene in the input file

time-test model.

_228_jack
A Java parser generator that is based on the Purdue Compiler

Construction Tool Set (PCCTS).

 28

4.3 Experimental Results

We now give the experimental results and discuss on them. We will first clarify the

impact of different coalescing strategies on size-ordered segregated list allocator. Second, we

will show how well NHT improve object allocation performance, using different coalescing

strategies. Then, we will prove our former assumption that with the power of NHT, immediate

coalescing strategy comes back to flavor via empirically results. In the end, we will use

experiment to find the number of free lists of size-ordered segregated list allocator resulting in

the best performance using NHT. We will only show the results of _205_raytrace in this

chapter because it is representative, and the results of other benchmarks are presented in the

appendix.

4.3.1 Impact of Different Coalescing Strategies

Three important coalescing strategies, never coalescing, deferred coalescing, and

immediate coalescing strategy, have been described in chapter 2. Generally speaking, never

coalescing has the fastest allocation speed, but results in most serious fragmentation. Deferred

coalescing strategy is believed to have lower fragmentation than never coalescing strategy and

it still has fast allocation speed. Immediate coalescing strategy has poor allocation

performance but on the other hand, it has the lowest fragmentation.

From Figure 4-1, we can see that immediate coalescing strategy has the worst allocation

performance among the three strategies, and deferred coalescing has comparable allocation

performance to never coalescing strategy. The allocation performance of deferred coalescing

and never coalescing strategy are 2.5 time the allocation performance of immediate coalescing

until the heap becomes too small. When heap size is less than about 2 times minimum heap

 29

size, the allocation performance of deferred coalescing and never coalescing degrade sharply.

This is because garbage collection is invoked excessively, and each last allocation before

triggering the garbage collection is an unsatisfied allocation request, indicating that the

allocator must traverse up to the last free list. On the other hand, the allocation performance of

immediate coalescing strategy does not have much degradation.

Considering the influence of coalescing strategy on time spent on garbage collection, we

can see from Figure 4-2 that immediate coalescing constantly result in far shorter garbage

collection time, especially when heap size becomes too small. Never coalescing and deferred

coalescing strategy bring unacceptable long garbage collection time because of excessive

invocation of garbage collection.

Another interesting trend observed from Figure 4-2 in the figure is that within some

range of heap size, the garbage collection performance does not improve as the heap size

grows. This results from the way mark-sweep garbage collector to reclaim free space. In the

sweep phase, it scans from one end of the heap to the other end, thus if the number of garbage

collection invocation is the same, smaller heap size could have short garbage collection time.

When taking both object allocation time and garbage collection time into accounts (see

Figure 4-3), deferred coalescing and never coalescing strategy have 2 times speedup over

immediate coalescing strategy if heap is sufficient large. However, in very constrained heap

size, immediate coalescing strategy is the only usable strategy.

 30

Figure 4-1: Object allocation time using different coalescing strategy

Figure 4-2: Garbage collection time using different coalescing strategy

Figure 4-3: Heap management time using different coalescing strategy

 31

4.3.2 The Effectiveness of Next Hit Table Mechanism

After our NHT is added, size-order segregated list allocator using either deferred

coalescing, never coalescing, and immediate coalescing strategy has improvement in

allocation performance and the improvement is most significant when applying NHT with

immediate coalescing strategy (see Figure 4-4 and 4-8). This is because using immediate

coalescing strategy makes many free lists holding small chunks more likely to become

insufficient or empty after garbage collection, thus originally many allocation requests spend

considerable traversal to locate the right free list to get a large enough chunk. The allocation

performance using deferred coalescing and never coalescing strategy are still comparable after

adding NHT. And, as expected, the presence of NHT does not effect garbage collection time

(see Figure 4-5 and 4-9).

We can also observe that when heap size is less than a threshold, which is about 2 times

minimum heap size, the allocation performance gap between the allocator using immediate

coalescing with NHT and the allocator using immediate coalescing without NHT is closer in

smaller heap size. This is because in such a constrained heap size, the time to update NHT

occupies more fraction of heap management time.

Figure 4-4: Object allocation time of using deferred coalescing strategy plus NHT

 32

Figure 4-5: Garbage collection time of using deferred coalescing strategy plus NHT

Figure 4-6: Heap management time of using deferred coalescing strategy plus NHT

Figure 4-7: Heap management time of using never coalescing strategy plus NHT

 33

Figure 4-8: Object allocation time of using immediate coalescing strategy plus NHT

Figure 4-9: Garbage collection time of using immediate coalescing strategy plus NHT

Figure 4-10: Heap management time of using immediate coalescing strategy plus NHT

 34

4.3.3 NHT Leads to a Different Choice of Coalescing Strategy

As the experimental results shown in subsection 4.3.1, we already known that size-order

segregated list allocator using deferred coalescing and never coalescing strategy outperform

that using immediate coalescing, without our NHT mechanism. However, after adding NHT,

the order changes dramatically. No matter the heap size is constrained or more sufficient, the

allocator with NHT using immediate coalescing strategy constantly beats the other two

strategies with NHT (see Figure 4-13). Although using deferred coalescing plus NHT has the

fastest allocation speed because of the update of NHT is most infrequent if using deferred

coalescing strategy, the allocation speed gap between using immediate coalescing strategy

with Next Hit Table and using deferred coalescing strategy with Next Hit Table are too small

to be observable. The advantage of low fragmentation of immediate coalescing strategy

becomes a dominate factor because of NHT’s ability to reduce many traversals during

allocation.

Figure 4-11: Object allocation time of 4 configurations

 35

Figure 4-12: Garbage collection time of 4 configurations

Figure 4-13: Total heap management time of 4 configurations

4.3.4 Determining the Number of Free Lists

The above result has told us size-order segregated list allocator with NHT plus

immediate coalescing strategy is the best configuration. Another import parameter for

size-ordered segregated list fit allocator is the number of free lists. The number of free lists

determines a size such that all free chunks larger than this size are chiained in the last free list.

For our experimental environment where heap objects are multiple of 4-byte, having N free

lists means all free chunks of sizes equal to or larger than 4N are chained in the last free list. A

 36

good value N should be chosen such that it can result in a balance between time spent on

header traversals plus NHT updates, and time spent on best-fitting search in the last free lists.

We determine N by experiment.

As the result shown in Figure 4-14, we can observe that using more free lists gives better

performance, until the number of free lists reaches 256. Using fewer free lists indicates that

more time will be spent on best-fitting search in the last free list, and because immediate

coalescing strategy tends to produce larger free chunks, N should not be chosen too small.

Also, using more than 256 free lists does not give further improvement because there is rare

free chunk larger than 1K bytes using immediate coalescing strategy. We can conclude that

256 free lists are enough.

Figure 4-14: Using 256 free lists are good enough

 37

Chapter 5

Conclusion

In this thesis, we proposed a mechanism, Next Hit Table, to accelerate object allocation

for size-ordered segregated list object allocator in automatic garbage collection environment,

with negligible space overhead. Our proposed mechanism is based on the observation that

many free lists will become empty within the interval between two invocations of garbage

collection. The concept of Next Hit Table is very simple, a mapping from allocation request

for each size to the closest non-empty free list holding sufficient large chunks. The

mechanism is very effective that the result shows that our proposed mechanism can improve

the overall heap management performance by 100%.

Another issue we studied is the coalescing strategies of contiguous free chunks.

Although deferred coalescing is generally considered a better strategy than never coalescing

strategy and immediate coalescing strategy, we showed that with the power of Next Hit Table

mechanism, immediate coalescing is better, rather than deferred coalescing strategy. Although

the update of Next Hit Table is more frequent if using immediate coalescing strategy, the

allocation speed gap between using immediate coalescing strategy with Next Hit Table and

using deferred coalescing strategy with Next Hit Table are very small. Such an upside-down

result tells us that if allocation can be done very fast then fragmentation is the most important

problem in garbage collection environment.

Explicitly managing heap and incremental garbage collection environment also have

dynamic object allocation, thus they can benefit from the Next Hit Table mechanism.

However, because dead objects are de-allocated using explicit de-allocation statement in

 38

explicit heap management environment, free chunks of each sizes are less likely to become

insufficient due to the locality of object size. Therefore, the benefit of using Next Hit Table

will be less.

Moreover, since using incremental garbage collector means the heap space might still be

sufficient at garbage collection, free chunks of each sizes are less likely to become insufficient.

Furthermore, because not all dead objects at garbage collection triggering point will be

collected at once, more time is spent on garbage collection due to more frequent garbage

collection. These two factors make the benefit of Next Hit Table less if using incremental

garbage collector.

Our proposed mechanism might also be incorporated in generational mark-sweep

garbage collector to accelerate the promotion process which copies live objects from young

space to old space, since the copying is essentially object allocation in old space.

 39

References

[1] Wilson, P. R., et al. “Dynamic Storage Allocation – A Survey and Critical Review”. In

Proceedings of 1995 International Workshop on Memory Management, Kinross,

Scotland, UK, September 27-29, 1995.

[2] Jones, R., Lins, R. Garbage Collection: Algorithms for Automatic Dynamic Memory

Management, Wiley, 1996.

[3] Arnold, K., et al. The Java Programming Language, Addison Wesley, 3rd edition, 2000.

[4] Lindholm T., Yelling, F., The Java Virtual Machine Specification, Addison Wesley, 2nd

edition, 1999.

[5] Johnstone, M. S. Non-Compacting Memory Allocation and Real-Time garbage

Collection, University of Texas in Austin, PhD’s Dissertation, 1996.

[6] Appel, A. W., Palsberg J. Modern Compiler Implementation in Java, Cambridge

University Press, 2nd edition, 2002.

[7] Fong, A. S., Li, R. C. L. “Dynamic Memory Allocation/Deallocation Behavior in Java

Programs”. In Proceedings of 2002 IEEE Region 10 Conference on Computers,

Communications, Control and Power Engineering, October 28-31, 2002.

[8] Sun Microsystems Inc. CVM. http://java.sun.com.

[9] Standard Performance Evaluation Corporation. SPECjvm98. http://www.spec.org.

 40

Appendix: Complete Experimental Results

Figure A-1: Object allocation time of different allocators (_202_jess)

Figure A-2: Garbage collection time of different allocators (_202_jess)

Figure A-3: Total heap management time of different allocators (_202_jess)

 41

Figure A-4: Object allocation time of different allocators (_205_raytrace)

Figure A-5: Garbage collection time of different allocators (_205_raytrace)

Figure A-6: Total heap management time of different allocators (_205_raytrace)

 42

Figure A-7: Object allocation time of different allocators (_209_db)

Figure A-8: Garbage collection time of different allocators (_209_db)

Figure A-9: Total heap management time of different allocators (_209_db)

 43

Figure A-10: Object allocation time of different allocators (_213_javac)

Figure A-11: Garbage collection time of different allocators (_213_javac)

Figure A-12: Total heap management time of different allocators (_213_javac)

 44

Figure A-13: Object allocation time of different allocators (_227_mtrt)

Figure A-14: Garbage collection time of different allocators (_227_mtrt)

Figure A-15: Total heap management time of different allocators (_227_mtrt)

 45

	Skin.pdf
	Preface-0830.pdf
	Contents.pdf

