
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 4, APRIL 2009 1139

Kernel Nonparametric Weighted Feature Extraction
for Hyperspectral Image Classification

Bor-Chen Kuo, Cheng-Hsuan Li, and Jinn-Min Yang

Abstract—In recent years, many studies show that kernel meth-
ods are computationally efficient, robust, and stable for pattern
analysis. Many kernel-based classifiers were designed and applied
to classify remote-sensed data, and some results show that kernel-
based classifiers have satisfying performances. Many studies about
hyperspectral image classification also show that nonparametric
weighted feature extraction (NWFE) is a powerful tool for extract-
ing hyperspectral image features. However, NWFE is still based on
linear transformation. In this paper, the kernel method is applied
to extend NWFE to kernel-based NWFE (KNWFE). The new
KNWFE possesses the advantages of both linear and nonlinear
transformation, and the experimental results show that KNWFE
outperforms NWFE, decision-boundary feature extraction, inde-
pendent component analysis, kernel-based principal component
analysis, and generalized discriminant analysis.

Index Terms—Feature extraction, image classification.

I. INTRODUCTION

IN RECENT years, many studies [1]–[7] show that kernel
methods are computationally efficient, robust, and stable for

pattern analysis. Many kernel-based classifiers were designed
and applied to classify remote-sensed data, and some results
show that kernel-based classifiers have satisfying performances
[5]–[7]. The main idea of kernel methods is to map the input
data from the original space to a convenient feature space by a
nonlinear mapping where inner products in the feature space
can be computed by a kernel function without knowing the
nonlinear mapping explicitly, and linear relations are sought
among the images of the data items in the feature space.

Some studies [8]–[13] have also shown that nonparametric
weighted feature extraction (NWFE) [14] is powerful in reduc-
ing dimensionality of hyperspectral image data. In this paper,
we try to combine the advantages of kernel method and NWFE
and develop a kernel-based NWFE (KNWFE) for hyperspectral
image classification.

This paper is organized as follows. Introduction to the kernel
trick is discussed in Section II. The reviews of some unsu-
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pervised and supervised feature extractions and their kernel
versions are introduced in Section III. KNWFE is proposed in
Section IV. In order to reduce the influence of the singularity
of the kernel matrix, the eigenvalue resolution is discussed in
Section V. For evaluating the performance of the proposed
method on a real hyperspectral image data, experiment is de-
signed in Section VI and experimental results are also reported
in this section. Section VII contains comments and conclusions.

II. KERNEL TRICK

It is easier for classification if pixels are more sparsely dis-
tributed. Generally speaking, images with high dimensionality
(the number of spectral bands) potentially have better class
separability. The strategy of kernel method is to embed the data
from original space Rd into a feature space H , a Hilbert space
with higher dimensionality, where more effective hyperplanes
for classification are expected to exist in this space than in the
original space. From this, we can compute the inner product
of samples in the feature space directly from the original data
items using a kernel function. This is based on the fact that
any kernel function κ : Rd × Rd → R satisfies the Mercer’s
theorem [4], i.e., there is a feature map φ into a Hilbert space
H such that k(x, z) = 〈φ(x), φ(z)〉, where x, z ∈ X , if and
only if it is a symmetric function for which the matrices K =
[κ(xi, xj)]1≤i,j≤N formed by restriction to any finite subset
{x1, . . . , xN} of the space X are positive semidefinite.

Suppose x
(i)
1 , . . . , x

(i)
Ni

∈ Rd are the samples in class
i, i = 1, . . . , L, and N = N1 + · · · + NL. Let XT

i =
[φ(x(i)

1 ), . . . , φ(x(i)
Ni

)] and XT = [XT
1 , . . . , XT

L ], then the
kernel matrix K = [κ(xi, xj)]1≤i,j≤N with respect to κ on
samples is XXT, i.e., K = XXT.

The following are some popular kernels.
1) Linear kernel:

κ(x, z) = 〈x, z〉.
2) Polynomial kernel:

κ(x, z) = (〈x, z〉 + 1)r , r ∈ Z+.

3) Gaussian radial-basis-function (RBF) kernel:

κ(x, z) = exp
(
−‖x − z‖2

2σ2

)
, σ ∈ R − {0}

where x and z are the samples in Rd.
It is worth stressing here that the size of the kernel matrix is

N × N and contains in each position Kij , the information of
distance among all possible pixel pairs (xi and xj) measured
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with a suitable kernel function k, fulfilling the characterization
of kernels, and if we use the linear kernel, then the feature
mapping φ is an identity map, i.e., φ is linear. Otherwise,
the feature mapping can be nonlinear. One important idea for
using kernel method is without knowing the nonlinear mapping
explicitly.

III. REVIEWS OF SOME FEATURE EXTRACTION METHODS

In this section, some well-known supervised and unsuper-
vised feature-extraction methods and their kernel versions are
reviewed.

A. Unsupervised Feature Extraction

Unsupervised feature-extraction methods do not require any
prior knowledge for training data [15]. One typical method
is the “principal component analysis” (PCA), a multivariate
technique that allows us to reduce an original set of correlated
observed variables into a smaller set [16], [17]. The purpose of
PCA is to reduce dimensionality according to what percentage
of the overall variance can be captured. The kernel-based PCA
(KPCA) is to find the directions by performing the PCA in the
kernel feature space [3].

Independent component analysis (ICA) is a statistical tech-
nique for separating the independent signals from overlapping
signals [18]. ICA is related to PCA but is more powerful and
capable of finding the underlying factors or sources when the
principal-component approach fails. ICA defines a generative
model for the observed multivariate data, which is typically
given as a large database of samples. In the model, the data
variables are assumed to be linear mixtures of some unknown
latent variables, and the mixing system is also unknown. The
latent variables are assumed non-Gaussian and mutually inde-
pendent, and they are called the independent components of
the observed data. These independent components, also called
sources or factors, can be found by ICA [18].

Further techniques, based on image-processing approaches,
have been proposed in [12] and [19] by combining PCA/ICA
and morphological transformations in the context of the classi-
fication of hyperspectral images of urban areas.

B. Supervised Feature Extraction

Supervised feature extraction directly takes into account the
training information that is available for a given supervised-
classification problem [15]. Linear discriminant analysis (LDA)
is often used for dimension reduction in classification problems.
It is also called the parametric feature extraction method in
[20], since LDA uses the mean vector and covariance matrix
of each class. Usually, within-class, between-class, and mixture
scatter matrices are used to formulate the criterion of class
separability. A kernel-based LDA was proposed by [2] in 2000
and called generalized discriminant analysis (GDA) using a
kernel approach. There are three drawbacks of LDA. One is that
it works well only if the distributions of classes are normal-like
distributions. When the distributions of classes are nonnormal-
like or multimodal mixture distributions, the performance of
LDA is not satisfactory. The second disadvantage of LDA is

that the rank of the between-class scatter matrix is less than
or equal to L − 1, so assuming sufficient observations and the
rank of within-class scatter matrix is v ≤ d, then only v features
can be extracted. The third limitation is that, if the within-class
covariance is singular, which often occurs in high-dimensional
problems, LDA will have a poor performance on classification.

Lee and Landgrebe [21] proposed the “decision-boundary
feature extraction” (DBFE) that can extract both discriminately
informative features and discriminately redundant features
from the decision boundary. The approach uses the training
samples directly to determine the location of the decision
boundary and employs information about the decision hyper-
surfaces associated with a given classifier to define an intrinsic
dimensionality for the classification problem. Then, the corre-
sponding optimal linear mapping can be obtained.

NWFE was proposed by [14] to solve the problems which
LDA suffered. It also absorbs the idea of DBFE for determining
the location of the decision boundary by training samples. The
main ideals of NWFE are putting different weights on every
sample to compute the “weighted means” and compute the
distance between samples and their weighted means as their
“closeness” to boundary, then defining nonparametric between-
class and within-class scatter matrices which put large weights
on the samples close to the boundary and deemphasize those
samples far from the boundary.

The experimental results of [12] and [19] show that NWFE
outperforms LDA and DBFE under morphological approach. In
[9] and [13], the authors suggest replacing DBFE by NWFE to
obtain more effective features. Other papers show NWFE out-
performs LDA, approximated pairwise accuracy criterion linear
dimension reduction, nonparametric discriminant analysis [14],
and DBFE [8] in remote-sensing data sets.

IV. KNWFE

Although NWFE can improve the problems of LDA, the
feature transformation of NWFE is still linear. To extend NWFE
for nonlinear situation, a KNWFE is proposed in this section.

The between-class scatter matrix SNW
b and the within-class

scatter matrix SNW
w of NWFE in original space Rd are

SNW
b =

L∑
i=1

Pi

L∑
j=1
j �=i

Ni∑
�=1

λ
(i,j)
�

Ni

(
x

(i)
� − Mj

(
x

(i)
�

))

×
(
x

(i)
� − Mj

(
x

(i)
�

))T

SNW
w =

L∑
i=1

Pi

Ni∑
�=1

λ
(i,i)
�

Ni

(
x

(i)
� − Mi

(
x

(i)
�

))
×

(
x

(i)
� − Mi

(
x

(i)
�

))T

where the scatter-matrix weight λ
(i,j)
� is defined by

λ
(i,j)
� =

dist
(
x

(i)
� ,Mj

(
x

(i)
�

))−1

Ni∑
t=1

dist
(
x

(i)
t ,Mj

(
x

(i)
t

))−1
.
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Mj(x
(i)
� ) =

∑Nj

k=1 w
(i,j)
�k x

(j)
k denotes the weighted mean with

respect to x
(i)
� in class j, dist(A,B) represents the distance

between A and B, and

w
(i,j)
�k =

dist
(
x

(i)
� , x

(j)
k

)−1

Nj∑
t=1

dist
(
x

(i)
� , x

(j)
t

)−1
.

The between-class scatter matrix SKNW
b and the within-class

scatter matrix SKNW
w of KNWFE in the feature space H are

SKNW
b =

L∑
i=1

Pi

L∑
j=1
j �=i

Ni∑
�=1

λ
(i,j)
�

Ni

(
φ
(
x

(i)
�

)
− Mj

(
φ
(
x

(i)
�

)))

×
(
φ
(
x

(i)
�

)
− Mj

(
φ
(
x

(i)
�

)))T

SKNW
w =

L∑
i=1

Pi

Ni∑
�=1

λ
(i,i)
�

Ni

(
φ
(
x

(i)
�

)
− Mi

(
φ
(
x

(i)
�

)))
×

(
φ
(
x

(i)
�

)
− Mi

(
φ
(
x

(i)
�

)))T

where the scatter-matrix weight λ
(i,j)
� is defined by

λ
(i,j)
� =

dist
(
φ
(
x

(i)
�

)
,Mj

(
φ
(
x

(i)
�

)))−1

Ni∑
t=1

dist
(
φ
(
x

(i)
t

)
,Mj

(
φ
(
x

(i)
t

)))−1
.

Mj(φ(x(i)
� )) =

∑Nj

k=1 w
(i,j)
�k φ(x(j)

k ) denotes the weighted

mean with respect to φ(x(i)
� ) in class j and

w
(i,j)
�k =

dist
(
φ
(
x

(i)
�

)
, φ

(
x

(j)
k

))−1

Nj∑
t=1

dist
(
φ
(
x

(i)
�

)
, φ

(
x

(j)
t

))−1
.

The following lemmas and theorems show that every part in
SKNW

b and SKNW
w can be evaluated by the elements in kernel

matrix K or the kernel function κ. The proofs of the following
lemmas, theorems, and corollary will be given in the Appendix.

Lemma 1: The weighted mean in class j with respect to
φ(x(i)

� ) is

Mj

(
φ
(
x

(i)
�

))
= XT

j

⎡⎢⎣w
(i,j)
�1
...

w
(i,j)
�Nj

⎤⎥⎦ .

Lemma 2: Let K(i,j) = XiX
T
j , the (i, j) block of the kernel

matrix K, and

W (i,j) =

⎡⎢⎣w
(i,j)
11 · · · w

(i,j)
1Nj

...
. . .

...
w

(i,j)
Ni1

· · · w
(i,j)
NiNj

⎤⎥⎦ .

The scatter matrix weight λ
(i,j)
� is shown at the bottom of

the page.
The following theorem shows that SKNW

b and SKNW
w can be

evaluated by matrices multiplication.
Theorem 3: Suppose that

Λ(i,j) = diag

{
λ

(i,j)
1

Ni
, . . . ,

λ
(i,j)
Ni

Ni

}

W (i,j) =

⎡⎢⎣w
(i,j)
11 · · · w

(i,j)
1Nj

...
...

w
(i,j)
Ni1

· · · w
(i,j)
NiNj

⎤⎥⎦ .

The within-class scatter matrix SKNW
w becomes

SKNW
w = XTWX

where W = W1 − W2 − WT
2 + W3, and

W1 = diag
{

P1Λ(1,1), . . . , PLΛ(L,L)
}

W2 = diag
{

P1Λ(1,1)W (1,1), . . . , PLΛ(L,L)W (L,L)
}

W3 = diag
{

P1W
(1,1)TΛ(1,1)W (1,1), . . . ,

PLW (L,L)TΛ(L,L)W (L,L)
}

.

The between-class scatter matrix SKNW
b becomes

SKNW
b = XT(B − W )X

where B = B1 − B2 − BT
2 + B3, and

B1 = diag

⎧⎨⎩P1

L∑
j=1

Λ(1,j), . . . , PL

L∑
j=1

Λ(L,j)

⎫⎬⎭
B2 =

⎡⎣ P1Λ(1,1)W (1,1) · · · P1Λ(1,L)W (1,L)

...
...

PLΛ(L,1)W (L,1) · · · PLΛ(L,L)W (L,L)

⎤⎦
B3 =

L∑
i=1

Pidiag
{

W (i,1)TΛ(i,1)W (i,1), . . . ,

W (i,L)TΛ(i,L)W (i,L)
}

.

λ
(i,j)
� =

[
K

(i,i)
�� +

(
W (i,j)K(j,j)

(
W (i,j)

)T
)

��
− 2

(
K(i,j)

(
W (i,j)

)T
)

��

]−1/2

Ni∑
t=1

[
K

(i,i)
tt +

(
W (i,j)K(j,j)

(
W (i,j)

)T
)

tt
− 2

(
K(i,j)

(
W (i,j)

)T
)

tt

]−1/2
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From earlier theorem, the linear transformation A ∈ Rd×p of
KNWFE in the feature space H can be obtained by solving the
following problem:

A = arg max
A

tr
(
(ATXTWXA)−1ATXT(B − W )XA

)
.

Since our reduced space is a subspace spanned by all training
samples in H , we can express A in dual form, i.e.,

A = XTÃ

where Ã ∈ RN×p. Then, the earlier optimal problem is equiva-
lent to the following optimization:

Ã = arg max
Ã

tr
(
(ÃTKWKÃ)−1ÃTK(B − W )KÃ

)
.

From the earlier discussion, we can have the following corol-
lary, and its proof is stated in the Appendix.

Corollary 4: If the rank of XT = [x1, . . . , xN ] is d, then
under the Fisher criterion, KNWFE with linear kernel is the
same as NWFE.

V. EIGENVALUE RESOLUTION OF KNWFE

Note that the kernel matrix K is an N × N matrix. Hence,
if N > d, then K is a positive semidefinite matrix, i.e., K is
singular. In order to reduce the influence of the singularity of K,
it is necessary to do a decomposition (eigendecomposition, QR
decomposition, etc.) of K. Let us use the eigendecomposition
of the kernel matrix K, a symmetric matrix, i.e.,

K = PΓPT

where Γ is the diagonal matrix of all eigenvalues of K and P
is a orthogonal matrix. Substituting K in the Fishier criterion
tr((ÃTKWKÃ)−1ÃTK(B − W )KÃ), we have

tr
(
(ÃTPΓPTWPΓPTÃ)−1ÃTPΓPT(B − W )PΓPTÃ

)
.

Let us proceed to variable modification using U such that

U = PTÃ.

Then, the problem

Ã = arg max
Ã

tr
(
(ÃTKWKÃ)−1ÃTK(B − W )KÃ

)
is equivalent to

U = arg max
U

tr
(
(UT(ΓPTWPΓ)U)−1

× UT
(
ΓPT (B − W )PΓ

)
U
)
.

Therefore, the process of finding Ã can be divided into two
parts. The first step is to find the eigenvalues λ and eigenvectors
u for the following generalized eigenvalue problem:(

ΓPT(B − W )PΓ
)
u = λ(ΓPTWPΓ)u.

The extracted p features are the p eigenvectors with the largest
p eigenvalues of the following matrix:

(ΓPTWPΓ)−1
(
ΓPT(B − W )PΓ

)
.

Here, the ΓPTWPΓ is regularized by

0.5(ΓPTWPΓ) + 0.5diag(ΓPTWPΓ).

One can remark that, using the linear kernel, the correspond-
ing feature mapping is identity mapping. This is stated in the
Corollary 4, the NWFE is a special case of KNWFE. However,
using other kernel functions, the only one we can control is
the kernel matrix K, not the samples in the original space.
Hence, the process of the eigenvalue resolution is necessary.
Hence, the regularized within-class matrix is not the same as
that of NWFE. In our experiment, the algorithm of KNWFE
must be done after eigenvalue resolution, except the algorithm
of KNWFE with linear kernel.

Hence, we can build U . After U is calculated, we com-
pute Ã by

Ã = PU.

We finally compute the projection of a point φ(z) by

ATφ(z)=ÃTXφ(z)=ÃT

⎡⎢⎣φ(x1)T
...

φ(xN )T

⎤⎥⎦φ(z)=ÃT

⎡⎢⎣κ(x1, z)
...

κ(xN , z)

⎤⎥⎦.

KNWFE procedure is summarized in the following steps.
1) Compute the distances between each pair of sample

points in the feature space and form the distance matrix.
2) Compute w

(i,j)
�k using the distance matrix and get the

matrix W (i,j).
3) Compute the scatter-matrix weights λ

(i,j)
� and get the

matrix Λ(i,j).
4) By Theorem 2, compute B and W and, hence, SKNW

b =
XT(B − W )X , SKNW

w = XTWX .
5) Do eigendecomposition for K, i.e., K = PΓPT.
6) Extract features by solving (ΓPT(B − W )PΓ)u =

λ(ΓPTWPΓ)u.
7) Compute Ã and the projections of sample points.

VI. EXPERIMENTS

A. Data Set

In this paper, for investigating the influences of training
sample sizes to the dimension, three distinct cases, Ni = 20 <
N < d (case 1), Ni = 150 < d < N (case 2), and d < Ni =
300 < N (case 3), will be discussed. Due to these sample
size constraints, some of the classes in selected hyperspectral
images for the experiment are used. The MultiSpec [22] was
used to select training and testing samples (100 testing samples
per class) in our experiments which is the same method in [12],
[15], and [22].

In this paper, three real data sets are applied to compare the
performances of KNWFE and other famous feature-extraction
methods. They are the Indian Pine, a mixed forest/agricultural
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Fig. 1. Simulated grayscale IR image of the Indian Pine Site data set.

Fig. 2. Ground truth of the area with eight classes.

site in Indiana [22], Kennedy Space Center (KSC), FL [23], and
the Washington, DC Mall hyperspectral image [22] as an urban
site. The first two of these data sets were gathered by a sensor
known as the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). The Indian Pine image, mounted from an aircraft
flown at 65 000 ft altitude and operated by the NASA/Jet
Propulsion Laboratory, with the size of 145 × 145 pixels has
220 spectral bands measuring approximately 20 m across on the
ground. The simulated grayscale IR image and the ground-truth
map are shown in Figs. 1 and 2, respectively. Since the size of
samples in some classes are too small to retain enough disjoint
samples for training and testing, only eight classes, Corn-
min, Corn-notill, Soybean-clean, Grass/Pasture, Soybeans-min,
Hay-windrowed, Soybeans-notill, and Woods, were selected for
the experiments.

The KSC data set was acquired over the KSC by the NASA
AVIRIS instrument on March 23, 1996. AVIRIS acquires data
in 224 bands of 10-nm width with center wavelengths from
400–2500 nm. The KSC data, acquired from an altitude of
approximately 20 km, have a spatial resolution of 18 m. After
removing water absorption and low SNR bands, 176 bands were
used for the analysis [23]. Due to the sample-size constraints,
seven classes, Scrub, Graminoid marsh, Spartina marsh, Cattail
marsh, Salt marsh, Mud flats, and Water, are selected.

The third data set, Washington, DC Mall from an urban
area, is a Hyperspectral Digital Imagery Collection Experiment

airborne hyperspectral data flight line over the Washington,
DC Mall. Two hundred and ten bands were collected in the
0.4–2.4 m region of the visible and infrared spectrum. Some
water-absorption channels are discarded, resulting in 191 chan-
nels. The data set is available in the student CD-ROM of [22].
There are seven information classes in the Washington, DC
data, roofs, roads, trails, grass, trees, water, and shadows, in the
data set.

B. Methods

The purpose of this experiment is to compare the multiclass-
classification performances using maximum likelihood (ML),
1-nearest neighbor (1NN), and soft-margin support vector
machine (SVM) classifiers with the original hyperspectral data
and NWFE, DBFE, KPCA, GDA, and KNWFE features. Three
kernel-based feature extractions, KPCA, GDA, and KNWFE,
and one kernel-based classifier, soft-margin SVM, are applied
with two types of kernels, polynomial kernels of degree d (d =
1 and 2) and the RBF kernel with σ. Here, we use the five-
fold cross validation to find the best σ within the given set
{25, 26, . . . , 220} of parameters.

In this paper, PRTools [24] and LIBSVM [25] were used
to implement 1NN and soft-margin SVM classifiers, respec-
tively. DBFE, ICA, and KPCA were implemented by MultiSpec
[26]–[28], and GDA was implemented by [2]. For the soft-
margin SVM classifier, there is a parameter C to control the
tradeoff between the margin and the size of the slack variables.
Again, we use the five-fold cross validation to find the best C
within the given set {2−5, 2−3, . . . , 215} (suggested by [25]) of
parameters.

C. Results

Tables I–III display the classification accuracies of testing
data in cases 1, 2, and 3, respectively. In those tables, “poly-d”
indicates the polynomial kernel when degree d is used, and
“RBF” means the RBF kernel is applied. Note that the best
accuracy of each data set (in column) is highlighted in shadow
cell. From Tables I–III, we can find the following conditions.

1) In the small sample size situation (case 1, Ni = 20 <
N < d), the highest accuracies among all methods
are 0.8 (KNWFE–RBF with SVM–RBF classifier),
0.937 (KNWFE–RBF with 1NN classifier), and 0.840
(KNWFE–RBF with 1NN classifier) in Indian Pine, KSC,
and Washington, DC data sets, respectively.

2) In the case 2 (Ni = 150 < d < N), the highest accu-
racies among all methods are 0.903 (KNWFE–poly1
with ML classifier), 0.971 (KNWFE–RBF with 1NN
classifier), and 0.851 (KNWFE–RBF with SVM–poly1
and SVM–RBF classifiers) in Indian Pine, KSC, and
Washington, DC data sets, respectively.

3) In the case 3 (d < Ni = 300 < N), the highest accura-
cies among all methods are 0.954 (KNWFE–poly1 with
ML classifier), 0.987 (KNWFE–RBF with 1NN clas-
sifier), and 0.959 (KNWFE–poly1 with ML classifier)
in Indian Pine, KSC, and Washington, DC data sets,
respectively.
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TABLE I
HIGHEST ACCURACIES USING EXTRACTED FEATURES

(PUTTING IN BRACKETS) APPLIED TO THREE

DIFFERENT DATA SETS (Ni = 20, CASE 1)

TABLE II
HIGHEST ACCURACIES USING EXTRACTED FEATURES

(PUTTING IN BRACKETS) APPLIED TO THREE

DIFFERENT DATA SETS (Ni = 150, CASE 2)
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TABLE III
HIGHEST ACCURACIES USING EXTRACTED FEATURES

(PUTTING IN BRACKETS) APPLIED TO THREE

DIFFERENT DATA SETS (Ni = 300, CASE 3)

Fig. 3. Thematic map resulting from the classification of the area of Fig. 1 by
SVM–poly1 classifier without feature extraction (Ni = 300, p = 220).

4) We can observe that the best accuracy in each column all
occurs when applying KNWFE. It means that KNWFE
outperforms other feature extraction under the best
condition of all feature extractions.

5) The performance of applying only single classifier is
worse than the others “FE + classifier” methods. Many
studies show that kernel-based classifiers are robust and
insensitive about hyperspectral images and may outper-
form traditional statistical classifiers. However, in the
experimental results of this paper, many “FE + classifier”
methods outperform single SVM.

6) SVM classifier did not perform well in Washington, DC
data set, but if using feature extraction as a preprocessing
process, then SVM has a great improvement.

7) For KSC data set, KNWFE–RBF with 1NN classifier is
the best choice through the three cases. However, for
the other two data sets, the best combination of feature
extraction and classifier is not consistent.

Due to the length of this paper, we choose the well-known
Indian Pine Site image as an example, and only some classified
images are shown for comparison. The best classification mech-
anisms under case 3 (Ni = 300) and seven feature-extraction
conditions (none, DBFE, ICA, NWFE, KPCA, GDA, and
KNWFE ) are selected to generate the classified images.

Figs. 1 and 2 are the Indian Pine Site image and the
ground truth, respectively. Figs. 3–9 are the thematic map
resulting from the classification of the area of Fig. 1 using the
SVM–poly1 classifier (without feature extraction) and applying
DBFE, ICA, NWFE, KPCA, GDA, and KNWFE with different
classifiers which are the combination with highest classifica-
tion accuracy. Here, p is the number of features extracted by
these methods with the highest accuracies in the corresponding
methods. For instance, KNWFE–poly1 with ML classifier has
highest accuracy among all combinations of KNWFE and clas-
sifiers, and Fig. 9 is the classification result of this combination.
From Figs. 3–9, we can find that KNWFE outperforms other
feature-extraction methods in “Corn-min,” “Corn-notill,” and
“Soybean-notill” parts.
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Fig. 4. Thematic map resulting from the classification of the area of Fig. 1 by
DBEF with ML classifier (Ni = 300, p = 15).

Fig. 5. Thematic map resulting from the classification of the area of Fig. 1 by
ICA with ML classifier (Ni = 300, p = 9).

Fig. 6. Thematic map resulting from the classification of the area of Fig. 1 by
NWEF with ML classifier (Ni = 300, p = 14).

Fig. 7. Thematic map resulting from the classification of the area of Fig. 1 by
KPCA–poly1 with ML classifier (Ni = 300, p = 13).

Fig. 8. Thematic map resulting from the classification of the area of Fig. 1 by
GDA–poly2 with SVM–poly1 classifier (Ni = 300, p = 7).

Fig. 9. Thematic map resulting from the classification of the area of Fig. 1 by
KNWFE–poly1 with ML classifier (Ni = 300, p = 11).
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TABLE IV
BEST COMBINATION IN DIFFERENT NUMBER

OF FEATURES (Ni = 20, CASE 1)

From Tables I–III, we can also find that different classifiers
are needed to achieve the highest results with the KNWFE. For
example, classifying data set 1 (in Table I), the highest accuracy
is based on the KNWFE–RBF followed by a SVM–RBF. In
contrast to this, on data set 2, KNWFE–RBF followed by a 1NN
classifier achieved the highest result.

We think that the reason of occurring this situation is that
the distributions of data sets may be very different. Some may
be simple or single mode, and the others may be mixture and
complex. From many related papers [39], [41], [42] and the ex-
perimental results of this paper, we can find that there is no the
“best” classifier which can have the highest accuracy on “every
data set.” Similarly, we also think that it is hard to find the
best combination of feature extraction + classifier which can
have the highest accuracy on “every data set.” The experimental
results (Tables I–III) also show that DBFE, KPCA, ICA, and
GDA also have this unstable condition. Therefore, we think that
this unstable situation of KNWFE is normal and acceptable.
Under this unstable situation, KNWFE with suitable classifier
can achieve the best classification accuracy.

Due to the length of this paper, we also choose the Indian
Pine Site image as an example to explore the performances of
different methods if the same number of features is extracted.
Tables IV–VI demonstrate the feature extraction and classifier
combination with highest classification accuracies of Indian
Pine data set when different number of extracted features is
applied.

From Tables IV–VI, we have the following findings.

1) KNWFE outperforms the other feature extraction meth-
ods when the number of extracted features is greater or
equal than eight. When the number of extracted features
is less than eight, the best feature extraction is hard to
define.

2) As the number of training samples increases (Table VI),
KNWFE can have a better performance even in small
number of features condition.

TABLE V
BEST COMBINATION IN DIFFERENT NUMBER

OF FEATURES (Ni = 150, CASE 2)

TABLE VI
BEST COMBINATION IN DIFFERENT NUMBER

OF FEATURES (Ni = 300, CASE 3)

3) From Indian Pine data set part of Table I, the highest ac-
curacy among all combinations except KNWFE family is
0.783 achieved by NWFE + ML with ten features. How-
ever, Table IV shows that KNWFE–RBF + SVM–RBF
can obtain the same accuracy with the same number of
features and achieve better performance as the number of
features increases.

4) Table IV shows that KNWFE–RBF with SVM–RBF can
have a better performance in ill-posed condition (case 1).
However, when the number of training samples increases
(cases 2 and 3), KNWFE–poly1 with ML can be a better
choice.

In a more insightful observation, we can see that, in Fig. 10
for case 1, the training and testing samples of three classes
of Indian Pine data set are projected into the feature space
formed by the first two eigenvectors of the six feature-extraction
methods. The distributions of KNWFE-projected data are more
separable as compared with those of DBFE, ICA, NWFE,
KPCA, and GDA. The training and testing data of ICA and
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Fig. 10. Distributions of training samples and testing samples for “Soybeans-min,” “Soybeans-notill,” and “Woods” of Fig. 2 using the first two significant
features obtained from the methods. (a) DBFE. (b) ICA. (c) NWFE.
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Fig. 10. (Continued.) Distributions of training samples and testing samples for “Soybeans-min,” “Soybeans-notill,” and “Woods” of Fig. 2 using the first two
significant features obtained from the methods. (d) KPCA–RBF. (e) GDA–RBF. (f) KNWFE–RBF. In each method, the left scatter plot is for training data and the
right one is for testing data (Ni = 20, case 1).
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KPCA are projected in a parallel form; therefore, it is difficult
for classification. Fig. 10(e) shows that GDA has an overfitting
problem.

VII. CONCLUSION

In this paper, a new KNWFE was proposed, and we have ana-
lyzed and compared KNWFE and other kernel-based methods
both theoretically and experimentally. From a theoretical point
of view, NWFE is a special case of KNWFE with linear kernel.
With KNWFE, more kernels can be used to obtain better classi-
fication results. The experimental results of three hyperspectral
images show that KNWFE can have the highest classification
accuracy under three training-sample-size conditions. Experi-
mental results also show that the performance of KNWFE is not
consistently better than those of the other methods under small
number of features and training-sample condition. However,
when the number of training samples is large enough, KNWFE
outperforms other methods under both small and large numbers
of feature conditions. Because the proposed method is kernel
based, it is disadvantaged in that it is time consuming when the
training sample size is large.

In the next steps, we will consider the use of composite ker-
nels and the development of semisupervised-version KNWFE.
Furthermore, we will try to develop a feature extraction which
can achieve the best result no matter what kind of classifier is
applied.
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Note that we have the following expressions.
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Λ(i,j)

⎞⎠Xi.

2)

L∑
j=1

XT
j W (i,j)TΛ(i,j)W (i,j)Xj

=
[
XT

1 , . . . , XT
L

]
×

⎡⎣W (i,1)TΛ(i,1)W (i,1) 0
. . .

0 W (i,L)TΛ(i,L)W (i,L)

⎤⎦
×

⎡⎣ X1
...

XL

⎤⎦
= XT

⎡⎣W (i,1)TΛ(i,1)W (i,1) 0
. . .

0 W (i,L)TΛ(i,L)W (i,L)

⎤⎦X.

3)

L∑
j=1

XT
i Λ(i,j)W (i,j)Xj

= XT
i

L∑
j=1

Λ(i,j)W (i,j)Xj

= XT
i

[
Λ(i,1)W (i,1), . . . ,Λ(i,L)W (i,L)

]⎡⎣ X1
...

XL

⎤⎦
= XT

i

[
Λ(i,1)W (i,1), . . . ,Λ(i,L)W (i,L)

]
X.

4)

L∑
j=1

XT
j W (i,j)TΛ(i,j)Xi

=

⎛⎝ L∑
j=1

XT
j W (i,j)TΛ(i,j)

⎞⎠Xi

=
[
XT

1 , . . . , XT
L

] ⎡⎣ W (i,1)TΛ(i,1)

...
W (i,L)TΛ(i,L)

⎤⎦Xi

= XT

⎡⎣ W (i,1)TΛ(i,1)

...
W (i,L)TΛ(i,L)

⎤⎦Xi.

From earlier, we obtain the expression shown at the bottom of
the page. From the following calculations, we can obtain the
formula of SKNW

b .

1)

L∑
i=1

PiX
T
i

⎛⎝ L∑
j=1

Λ(i,j)

⎞⎠Xi

=
[
XT

1 , . . . , XT
L

]
×

⎡⎢⎣P1

∑L
j=1 Λ(1,j) 0

. . .
0 PL

∑L
j=1 Λ(L,j)

⎤⎥⎦
⎡⎣ X1

...
XL

⎤⎦
= XTB1X.

2)

L∑
i=1

PiX
T

⎡⎣W (i,1)TΛ(i,1)W (i,1) 0
. . .

0 W (i,L)TΛ(i, L)W (i,L)

⎤⎦X
= XTB2X.

3)

L∑
i=1

PiX
T
i

[
Λ(i,1)W (i,1), . . . ,Λ(i,L)W (i,L)

]
X

=
[
XT

1 , . . . , XT
L

]
×

⎡⎣ P1Λ(1,1)W (1,1) · · · P1Λ(1,L)W (1,L)

...
. . .

...
PLΛ(L,1)W (L,1) · · · PLΛ(L,L)W (L,L)

⎤⎦X

= XTB3X.

L∑
i=1

Pi

L∑
j=1

(
XT

i Λ(i,j)Xi + XT
j W (i,j)TΛ(i,j)W (i,j)Xj − XT

i Λ(i,j)W (i,j)Xj − XT
j W (i,j)TΛ(i,j)Xi

)

=
L∑

i=1

Pi

⎛⎝XT
i

⎛⎝ L∑
j=1

Λ(i,j)

⎞⎠Xi + XT

⎡⎣W (i,1)TΛ(i,1)W (i,1) 0
. . .

0 W (i,L)TΛ(i,L)W (i,L)

⎤⎦X

− XT
i

[
Λ(i,1)W (i,1), . . . ,Λ(i,L)W (i,L)

]
X − XT

⎡⎣ W (i,1)TΛ(i,1)

...
W (i,L)TΛ(i,L)

⎤⎦Xi
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4)

L∑
i=1

PiX
T

⎡⎣ W (i,1)TΛ(i,1)

...
W (i,L)TΛ(i,L)

⎤⎦Xi

= XT

⎡⎢⎣P1W
(1,1)TΛ(1,1) · · · PLW (L,1)TΛ(L,1)

...
. . .

...
P1W

(1,L)TΛ(1,L) · · · PLW (L,L)TΛ(L,L)

⎤⎥⎦
⎡⎣ X1

...
XL

⎤⎦
= XTBT

3 X.

Therefore, we have

SKNW
b = XT

(
B1 + B2 − B3 − BT

3

)
X − XTWX

= XT(B − W )X. �
Corollary 4: If the rank of XT = [x1, . . . , xN ] is d, then

under the Fisher criterion, KNWFE with linear kernel is the
same as NWFE.

Proof: Since the rank of X is d, thus the columns of A is
a linear combination of X , i.e.,

A = XTÃ.

(Note that Ã is not unique.) Then

tr
(
(ATXTWXA)−1ATXT(B − W )XA

)
= tr

(
(ÃTXXTWXXTÃ)−1ÃTXXT(B − W )XXTÃ

)
.

The

XXT =

⎡⎢⎣ xT
1
...

xT
N

⎤⎥⎦ [x1, . . . , xN ] =

⎡⎢⎣ xT
1 x1 · · · xT

1 xN

...
. . .

...
xT

Nx1 · · · xT
NxN

⎤⎥⎦

=

⎡⎢⎣ κ(x1, x1) · · · κ(x1, xN )
...

. . .
...

κ(xN , x1) · · · κ(xN , xN )

⎤⎥⎦
= K

where κ is linear kernel and K is the corresponding kernel
matrix. Therefore

tr
(
(ATXTWXA)−1ATXT(B − W )XA

)
= tr

(
(ÃTKWKÃ)−1ÃTK(B − W )KÃ

)
i.e., under the Fisher criterion, KNWFE with linear kernel is the
same as NWFE.
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