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Abstract

This paper introduces one systematic procedure for the manager of an organization to assess units under its governance using
multiple performance indices. The goal of this systematic procedure is to assist the manager in obtaining a preferable and robust
ranking result for units. In this procedure, for all units, one common set of weights attached to the performance indices is determined
in order to maximize the group’s comprehensive score. Then, using the common set of weights, each unit’s comprehensive score is
evaluated and compared for ranking. In order to obtain the preferable ranking, the manager’s subjective preference is considered and
formulated by the virtual weights restrictions while determining the common weights in the procedure. The procedure is applied in
order to obtain a robust ranking by modifying the boundary of the feasible region of virtual weights restrictions in each assessment.
The final statistical ranking of all assessments provides the manager with one robust ranking, which is invariant in different feasible
regions of virtual weights restrictions in the numerical example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is a frequent task for managers to assess units that differ in their values of to-be-minimized and to-be-maximized
performance indices. Intuitively, the larger values in the to-be-maximized indices and the smaller values in the to-be-
minimized indices indicate superior units. In order to integrate the values of different indices into one comprehensive
score for each unit, there is a need for the manager to assign a weight to each performance index in the computation
of the score. Then, the comprehensive score is defined as the ratio of the weighted sum of to-be-maximized indices
to the weighted sum of to-be-minimized indices. In this paper, we developed a systematic procedure to determine a
common set of weights in computing units’ comprehensive scores that can reflect the ranking outcome. Simultaneously,
based on the consideration of the manager’s preference and the statistical ranking of repeatable assessments used in
the procedure, we further obtained a preferable and robust ranking for the manager.

Our problem is similar to the problem of data envelopment analysis (DEA) proposed by Charnes et al. [1], which
viewed input indices and output indices as attributes for evaluating decision making units (DMUs), with the minimization
of input indices and/or the maximization of output indices as associated objectives. However, the discrimination power
of DEA is constrained to only classifying the DMUs, and lacks a complete and clear ranking system. There is much
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follow-up research on increasing the DEA’s discrimination power, especially the use of weight restrictions—absolute
weights restrictions and virtual weights restrictions (VWR)—to reduce the number of efficient DMUs.

Absolute weights restrictions were first proposed by Thompson et al. [2], imposing acceptable bounds on ratios of
weights in DEA that is known as the assurance region method. Dyson et al. [3] proposed that meaningful bounds are
directly imposed upon individual weights. The other famous method, the cone ratio method, proposed and discussed by
Charnes et al. [4,5], is more general than the assurance method. The disadvantage of using absolute weights restrictions
is that the bounds setting are dependent upon the units of the indices and the orders of magnitude in the indices values.

It is not easy for a human to intuitively express their preference for weights restrictions. In order to make it easier
for a human to quantify value judgments in terms of percentage values, VWR was first proposed by Wong et al. [6],
setting the lower and/or upper bounds into the ratio of virtual variables. Sarrico et al. [7] further brought the concept of
assurance regions into VWR. They showed that the use of the assurance region of virtual weights restrictions is more
general and preferable to the use of proportional VWR, Bernroider et al. [8] proposed discussion about the interaction
between bound setting in the assurance region method and the validity of ranking outcomes in the assessment of an
information system. However, because of the infeasibility problem occurring in the incorporation of lots of weights
restrictions, Estellita Lins et al. [9] proposed the existence theorem, which establishes feasibility conditions for DEA
with multiple weights restrictions.

As for the other approaches for ranking in DEA, a review of several ranking methods was proposed by Alder et al.
[10]. An interesting approach for us to obtain the ranking of units in the DEA structure is to apply the common weights
to all DMUs. The use of common weights in DEA was first proposed by Cook et al. [11] and Roll et al. [12] to evaluate
highway maintenance units. Cook et al. [13,14] gave a subjective ordinal preference ranking with common weights
obtained by closing the gap between the upper and lower limits of the weights while they proceed a series of bounded
DEA runs. Ganley et al. [15] ranked each DMU by using the common weights for all the DMUs by maximizing the
sum of efficiency ratios of all the DMUs. Sinuany–Stern et al. [16] used linear discriminant analysis to find a score
function which ranks DMUs while given the DEA efficient and inefficient sets. Sinuany-Stern et al. [17] ranked all the
DMUs on the same scale by developing DR/DEA to provide the best common weights attached to the input indices
and output indices to.

Liu et al. [18] introduced common weight analysis (CWA) to determine the single most favorable common set
of weights for DMUs on the DEA frontier in view of maximizing the group’s efficiency score. The assessment that
proceeded based on the original DEA models shows that each DMU determines the efficiency score under its most
favorable weights attached to its input indices and output indices. The model used in the current procedure was proposed
by Liu et al. [18], different to the original DEA, and shows that the manager chooses the most favorable weights for the
group that compromises all DMUs under the manager’s governance. In other words, one set of weights that maximizes
the group’s comprehensive score is used as the common set of weights for all the units to obtain each individual’s
comprehensive score.

The paper is structured as follows. In Section 2, we review the literature on VWR and CWA. Section 3 introduces
our developed systematic procedure to determine the common weights in obtaining preferable and robust ranking by
adopting the VWR. In Section 4, we take two numerical examples to illustrate our procedure. The first one shows the
procedure is workable in terms of the values of the units’ performance indices across large scale ranges. The second one
shows the realistic assessment for a retail manager governing eight branches. Finally, Section 5 gives our conclusions,
including the notice of application and future research suggestions.

2. Literature review

2.1. Common weights analysis

CWA proposed by Liu et al. [18] aims to assist the manager in determining one set of weights attached to the
performance indices, in order to have the best efficiency score for the group of efficient DMUs. Then, the set of weights
is regarded as one common set of weights across each efficient DMU, in order to compute its absolute efficiency score
for the ranking of DMUs. In order to solve the ranking problem thoroughly, the assessed target is further expanded to
all DMUs, including the inefficient DMUs. The CWA model to determine the common set of weights for n units with
m input indices and s output indices is formulated as (P1):
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(P1) CWA-FP

�∗ = min
n∑

j=1

(�O
j + �I

j ),

s.t.

∑s
r=1yrjUr + �O

j∑m
i=1xijVi − �I

j

= 1, j = 1, . . . , n,

�O
j , �I

j �0, j = 1, . . . , n,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

xij is the value of input index i of DMUj , yrj the value of output index r of DMUj , Vi the common weights for all
DMUs attached to the input index i, Ur the common weights for all DMUs attached to the output index r,

∑m
i=1xijVi

the virtual input of DMUj ,
∑s

r=1yrjUr the virtual output of DMUj , �I
j and �O

j denote the input virtual gap and
output virtual gap of DMUj to the benchmark, which are expressed by the maximal efficiency score 1.0. � is a positive
Archimedean infinitesimal constant, which is used in order to avoid the appearance of zero weights. The criteria of
(P1) are to minimize the total virtual gaps of all DMUs to benchmark in consideration of group performance.

The optimal common set of weights U∗
r (r = 1, 2, . . . , s) and V ∗

i , (i = 1, 2, . . . , m) would be solved in (P1) and
then used to obtain the absolute efficiency score for each DMU as the standard for comparison. Then, the ranking of
all DMUs would be completed.

2.2. Virtual weights restrictions

VWR means that the restrictions are imposed on virtual input/output, comprising the product of input/output level
and optimal weight for the input/output, rather than on weights directly. It is noted that VWR are developed with
reference to the original absolute weights restrictions in DEA formulation. Different to the difficult ascertainment of
meaningful bounds in absolute weights restrictions, VWR make it intuitive and easy for a manager to express their
subjective preference in the assessment.

The proportional VWR and virtual assurance regions separately provide a different expression in the preference
relationships among performance indices. The former represents the importance of one certain input/output attached to
the input/output measure, and the latter further expresses the known relationship between any two indices, even among
more indices. In this subsection, we give a brief review of virtual assurance regions and proportional VWR.

2.2.1. Virtual assurance regions
Sarrico et al. [7] proposed that all the VWR can be described by the general set of restrictions expressed by

m∑
i=1

�iwxijVi +
s∑

r=1

�rwyrjUr �kw, w = 1, . . . , W, j = 1, . . . , n, (1)

where xij is the amount of input i to DMUj , yrj the amount of output r to DMUj , Vi the weight given to input i, Ur

the weight given to output r, m the number of inputs, s the number of outputs, W the number of VWR, n the number of
DMUs,

∑m
i=1xijVi the virtual input given to DMUj ,

∑s
r=1yrjUr the virtual output given to DMUj , �iw the preference

of virtual input to restriction w, �rw the preference of virtual output to restriction w, and kw the intercept of line
restriction w.

While we set �iw = 0 (for all i) or �rw = 0 (for all r) with kw = 0, Eq. (1) translates an ordering of preference in
outputs or inputs, as expressed in the following equations:

s∑
r=1

�rwyrjUr �0, w = 1, . . . , W, j = 1, . . . , n, (2)

m∑
i=1

�iwxijVi �0, w = 1, . . . , W, j = 1, . . . , n. (3)



F.H.F. Liu, H.H. Peng / Computers & Operations Research 36 (2009) 1012–1025 1015

These kinds of restrictions mentioned above in Eqs. (2) and (3) are useful while managers concentrate the preferences
on indices of the same measure.

Besides, if there is at least one �iw �= 0 (for all i) and one �rw �= 0 (for all r) with kw = 0, Eq. (1) can be translated
as an ordering of preference in input–output, as expressed in the following equation:

m∑
i=1

�iwxijVi +
s∑

r=1

�rwyrjUr �0, w = 1, . . . , W, j = 1, . . . , n, (4)

Eq. (4) is used to express a known relationship between a pair of inputs and outputs. For instance, to produce one unit
of output, one needs to consume at least a certain level of an input.

2.2.2. The proportional VWR
Wong et al. [6] proposed the use of VWR, and in particular, proportional VWR, which were intended to make it

easier for managers to quantify value judgments in terms of contribution percentage in the same measure, that is, input
measure or output measure. Conceptually the proportional virtual output r of DMUj represents the importance attached
to the output measure (a similar reasoning can be applied to the virtual input i). Let P O

rj and P I
ij , respectively denote

the proportional virtual output r and input i of DMUj , as follows in Eqs. (5) and (6). Thus, the manager can intuitively
set limits on this proportion to reflect value judgments, as follows in Eqs. (7) and (8).

P O
rj = yrjUr∑s

r=1yrjUr

, r = 1, . . . , s, j = 1, . . . , n, (5)

P I
ij = xijVi∑m

i=1xijVi

, i = 1, . . . , m, j = 1, . . . , n, (6)

ar �P O
rj �br , r = 1, . . . , s, j = 1, . . . , n, (7)

ci �P I
ij �di, i = 1, . . . , m, j = 1, . . . , n. (8)

The constant values ar , br , ci , di are the subjective preference limits provided by the manager for output r and input
i. Sarrico et al. [7] discussed the possible infeasibility of multiple proportional VWR resulting from the setting of
lower and upper bounds, while there exists a large scale range in the index value across all units. They proposed one
formulation to determine the feasible lower (upper) bound according to the given upper (lower) bound. Estellita Lins et
al. [9] proposed one model to test the feasibility in DEA models with given weight restrictions, including the absolute
and VWR, and further modified the bounds using their hyperplane adjusting model while infeasibility occurs.

However, there exists another trap to set the constant value of ar , br , ci , di while the manager has no idea about the
implicit restrictions

∑s
r=1P

O
rj = 1 and

∑m
i=1P

I
ij = 1. For instance, there exits two output indices y1j and y2j in the

output measure for all DMUj . While the manager sets a1 = 0.2 and b1 = 0.4 with 20%�P O
1j �40%, a2 = 0.2 and

b2 = 0.4 with 20%�P O
2j �40% for intuitive convenience, the setting obviously cannot satisfy the implicit restriction

P O
1j + P O

2j = 1. In other words, there exists no such feasible P O
1j and P O

2j to satisfy these proportional VWR in the
output measure. The current paper introduces one method to set initial feasible bounds on the virtual weights to avoid
the possible infeasibility in the VWR mentioned above.

3. Our procedure

This section introduces one procedure to use the VWR in the CWA model for the purpose of obtaining one preferable
and robust ranking in the assessment results. For the proportional VWR, the infeasibility which occurs in the setting
of the lower and upper bound is discussed and solved in the current procedure. In order to express the scenario of units
under the manager’s governance, referred to by Sarrico et al. [7], we call the unit a unit of assessment (UOA) in this
paper in order to discriminate it from the DMU in the DEA model. Besides, in order to unify the terms in the context
of the following sections, we regard the to-be-minimized and to-be-maximized indices in our initial problem as input
and output indices, respectively.
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3.1. The new setting of bounds in proportional VWR

In order to solve the potential infeasibility issue that occurs in the proportional VWR, the current paper proposes one
systematic setting in the lower and upper bounds of the proportional virtual inputs and outputs to ensure the feasibility of
proportional VWR. Besides solving the infeasibility problems, we use the systematic setting to analyze the relationship
between ranking and proportional VWR in Section 4.

Exploring the reasoning of infeasibility in proportional VWR, under the same measure, the sum of the upper bound
to all outputs (

∑s
r=1br) cannot reach 1.0 or the sum of the lower bound to all outputs (

∑s
r=1ar) exceeds 1.0. In order

to avoid this problem, we rewrite Eqs. (7) and (8) to Eqs. (9) and (10), respectively, by formulating the lower bound
and upper bound of input and output with the function of parameters �−

i , �+
i , �−

r and �+
r . For the purposes of ensuring

the proportion is between 0 and 1.0, we give the following range 0��−
i �1, 0��+

i �m− 1, 0��−
r �1 and 0��+

r �s − 1:

1

s
(1 − �−

r )�P O
rj � 1

s
(1 + �+

r ), r = 1, . . . , s, j = 1, . . . , n, (9)

1

m
(1 − �−

i )�P I
ij � 1

m
(1 + �+

i ), i = 1, . . . , m, j = 1, . . . , n. (10)

Eqs. (9) and (10) can then be rewritten as Eqs. (11) and (12), respectively. BOL
r (BOU

r ) is a function of �−
r (�+

r ), that is

BOL
r = 1

s
(1 − �−

r ) (BOU
r = 1

s
(1 + �+

r )), the lower (upper) bound of the P O
rj of UOAj . Similarly, BIL

i = 1
m

(1 − �−
i ) and

BIU
i = 1

m
(1 + �+

i ) are the lower bound and upper bound of the P I
ij of UOAj . In other words, P O

rj and P I
ij can only vary

within the interval [BOL
r , BOU

r ] and [BIL
i , BIU

i ], respectively.

BOL
r �P O

rj �BOU
r , r = 1, . . . , s, j = 1, . . . , n, (11)

BIL
i �P I

ij �BIU
i , i = 1, . . . , m, j = 1, . . . , n. (12)

By using Eqs. (9) and (10), a manager easily avoids the infeasibility problem discussed in Section 2.2.2 generated by
the implicit restrictions

∑s
r=1P

O
rj = 1 and

∑m
i=1P

I
ij = 1. This is because, for instance, Eq. (9) implies the property

that the sum of lower bound is not greater than 1.0, and the sum of upper bound is not less than 1.0, with the highest
value 1/s to BOL

r and lowest value 1/s to BOU
r . The above property also ensures that there exists P O

rj satisfying the

implication restriction
∑s

r=1P
O
rj = 1. The illustration is similar to Eqs. (10) and (12).

In order to match the virtual assurance region, we have rewritten Eqs. (11) and (12) as Eq. (4) with appropriate values
�iw and �rw. For instance, Eq. (11) can be divided into two parts, P O

rj �BOL
r and P O

rj �BOU
r . The former and the latter

can be rewritten as Eq. (4) with the setting of parameters �iw and �rw shown in Eqs. (13) and (14), respectively:

�iw = 0, i = 1, . . . , m,

�rw =
{−BOL

z , r �= z

1 − BOL
z , r = z

r = 1, . . . , s, z = 1, . . . , s, (13)

�iw = 0, i = 1, . . . , m,

�rw =
{

BOU
z , r �= z

BOU
z − 1, r = z

r = 1, . . . , s, z = 1, . . . , s. (14)

Similarly, while Eq. (12) is divided into two parts, P I
ij �BIL

i and P I
ij �BIU

i , they can be rewritten as Eq. (4) with the
setting of parameters �iw and �rw shown in Eqs. (15) and (16), respectively.

�iw =
{−BIL

z , i �= z,

1 − BIL
z , i = z,

i = 1, . . . , m, z = 1, . . . , m,

�rw = 0, r = 1, . . . , s, (15)
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�iw =
{

BIU
z , i �= z

BIU
z − 1, i = z

i = 1, . . . , m, z = 1, . . . , m,

�rw = 0, r = 1, . . . , s. (16)

As for the amount of restrictions, if there exist m inputs and s outputs, the proportional VWR, both Eqs. (11) and (12),
can be written as 2s + 2m restrictions of Eq. (4) with W = 2s + 2m.

The advantage of bound setting in the proportional VWR mentioned above is that the manager can systematically
choose the different �−

i , �+
i , �−

r and �+
r to analyze the relationship between ranking and the interval, which is composed

of the lower and upper bound. For instance, the manager can start the analysis from the unconstrained case, �−
i = 1,

�+
i = m − 1, �−

r = 1 and �+
r = s − 1, with the interval [BOL

r , BOU
r ] = [0%, 100%] and [BIL

i , BIU
i ] = [0%, 100%] to P O

rj

and P I
ij , and step by step shorten the interval to the extreme cases, �−

i = 0, �+
i = 0, �−

r = 0 and �+
r = 0, where each

input or output index has equal proportion determined separately.

3.2. CWA with VWR (VWR-CWA)

Because the proportional weights restrictions are one case of the virtual assurance regions, we add the general form
of VWR Eq. (1) into the constraints of CWA fractional programming (P1). Then, (P1) can be translated into (P2):

(P2) VWR-CWA-FP

�∗ = min
n∑

j=1

(�O
j + �I

j ),

s.t.

∑s
r=1yrjUr + �O

j∑m
i=1xijVi − �I

j

= 1, j = 1, . . . , n,

m∑
i=1

�iwVixij +
s∑

r=1

�rwUryrj �kw, j = 1, . . . , n, w = 1, . . . , W ,

�O
j , �I

j �0, j = 1, . . . , n,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

Following the transformation of the CWA model, the ratio from (P2) can be rewritten in a linear form (P3) and (P4),
step by step:

(P3) VWR-CWA-LP1

�∗ = min
n∑

j=1

�j ,

s.t.
s∑

r=1

yrjUr −
m∑

i=1

xijVi + �j = 0, j = 1, . . . , n,

m∑
i=1

�iwVixij +
s∑

r=1

�rwUryrj �kw, j = 1, . . . , n, w = 1, . . . , W ,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m,

�j �0, j = 1, . . . , n.
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(P4) VWR-CWA-LP2

−�∗ = max
s∑

r=1

YrUr −
m∑

i=1

XiVi ,

s.t.
s∑

r=1

yrjUr −
m∑

i=1

xijVi �0, j = 1, . . . , n,

m∑
i=1

�iwVixij +
s∑

r=1

�rwUryrj �kw, j = 1, . . . , n, w = 1, . . . , W ,

Yr =
n∑

j=1

yrj , r = 1, . . . , s,

Xi =
n∑

j=1

xij , i = 1, . . . , m

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

Assume that variable value �∗
j is the shadow price of the first set of constraints in linear programming (P4). Then,

according to the definition of shadow price, the variations of criterion Eq. (17) will result in the variation of constraint
Eq. (18). That is, if the right-hand side of the jth constraint increases 1 unit, then the criterion Eq. (18) gets the
variation �∗

j :

s∑
r=1

yrjUr −
m∑

i=1

xijVi �0 + 1, (17)

⎛
⎝ s∑

r=1

⎛
⎝ n∑

j=1

yrj

⎞
⎠ Ur −

m∑
i=1

⎛
⎝ n∑

j=1

xij

⎞
⎠ Vi

⎞
⎠ + �∗

j (0 + 1), (18)

�∗
j represents the marginal influence on the criteria of linear programming (P4), that is, the marginal influence upon the

group’s overall performance. It gives another priority reference while UOAs possess equivalent comprehensive score.
In the following subsections, we analyze further the ranking rules of those UOAs.

3.3. Ranking rules

In this subsection, we define the ranking rules by comparing the absolute comprehensive score and the shadow price
mentioned above with the comprehensive score 	∗

j of UOAj , as defined as follows:

	∗
j =

∑s
r=1yrjU

∗
r∑m

i=1xijV
∗
i

, j = 1, . . . , n, (19)

V ∗
i and U∗

r denote the optimal common weights obtained in (P3) for all UOAs attached to the input index i and output
index r. One can easily distinguish the UOAs according to the following properties.

Property 1. The performance of UOAj is better than UOAi if 	∗
j > 	∗

i .

Property 2. If 	∗
j = 	∗

i < 1.0, then the performance of UOAj is better than UOAi if �∗
j < �∗

i .

Property 3. If 	∗
j = 	∗

i = 1.0, then the performance of UOAj is better than UOAi if �∗
j > �∗

i .
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4. Numerical example

In this section, there are two numerical examples to be discussed. We first give a test example to demonstrate the
discrimination power of the proposed approach in the current paper. The example with the characteristic of a large
scale range in the values of performance indices across UOAs could appeal to the intuitive ranking of UOAs by merely
observing the value in the performance indices. Then, it showed that VWR-CWA obtained the consistent ranking with
the intuitive ranking. Secondly, one illustrative example shows how the manager of a retailer could obtain preferable
and robust ranking results for all branches.

4.1. Test example

Table 1 gives the simulated data set proposed by Liu et al. [18], with two inputs and one output for seven UOAs.
The test example possesses the characteristic of a large scale range in the value across UOAs, such that UOA1, UOA2,
UOA3, UOA5, UOA6 and UOA7 are shown to be many times larger than UOA4. These UOAs are ranked intuitively as
UOA1, UOA2, UOA3, UOA4, UOA5, UOA6, UOA7 by comparing the value of input index x1j . The rankings assessed
in CWA, as shown in Table 2, are consistent with intuitive ranking in Table 1. By observing the proportion in input
measure, x2j plays a more important role than x1j for all UOAs (P I

1j < P I
2j ) according to the assessment results of

CWA. We try to add the preference of the performance indices to understand whether VWR-CWA works to obtain the
consistent ranking with intuitive ranking.

The general form of virtual assurance region Eq. (4) can be rewritten as Eq. (20) for the test example with two input
indices and one output index:

�1x1jV1 + �2x2jV2 + �1y1jU1 �0, j = 1, . . . , 7. (20)

If we have the preference that the proportion of x1j is larger than twice of x2j , then the parameters (�1, �2, �1, �2) are
substituted by (1, −2, 0, 0). Eq. (20) is further rewritten as Eq. (21) for all UOAj :

x1jV1 − 2x2jV2 �0, j = 1, . . . , 7. (21)

Table 1
Test example with large scale ranges across UOAs

UOAj Input index Output index Intuitive ranking

x1j x2j y1j

UOA1 470 000 700 000 200 000 1
UOA2 4800 7000 2000 2
UOA3 49 70 20 3
UOA4 5 7 2 4
UOA5 510 700 200 5
UOA6 52 000 70 000 20 000 6
UOA7 530 000 700 000 200 000 7

Table 2
The assessment results of CWA and VWR-CWA in test example

UOAj (1) CWA (V ∗
1 , V ∗

2 , U∗
1 ) = (1.00, 1.00, 5.85) (2) VWR-CWA with Eq. (21) (V ∗

1 , V ∗
2 , U∗

1 ) = (2.98, 1.00, 10.50)

Score Ranking P I
1j (%) P I

2j P O
1j (%) Score Ranking P I

1j (%) P I
2j (%) P O

1j (%)

UOA1 1.000 1 40 60 100 1.000 1 67 33 100
UOA2 0.998 2 41 59 100 0.986 2 67 33 100
UOA3 0.996 3 41 59 100 0.972 3 68 32 100
UOA4 0.994 4 42 58 100 0.959 4 68 32 100
UOA5 0.992 5 42 58 100 0.946 5 68 32 100
UOA6 0.990 6 43 57 100 0.933 6 69 31 100
UOA7 0.988 7 43 57 100 0.921 7 69 31 100
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Table 3
The indices data in illustrative example

Branch j Input index Output index

Employee x1j Cost x2j Turnover y1j Profit y2j

A 20 6583 7929 419
B 21 7713 8414 406
C 18 6980 8020 359
D 24 8273 9947 373
E 28 8566 9741 412
F 23 8397 9408 500
G 29 7011 7890 621
H 26 8680 9701 705

Similar to CWA, as Table 2 depicted, VWR-CWA obtains a consistent ranking in the large scale range in the value
of performance indices across UOAs with our preference in input measure. It implies that VWR-CWA provides the
available discrimination power in assessing the UOAs.

4.2. Illustrative example

A manager of a retail company governs eight branches and periodically assesses them by observing four performance
indices: number of Employees, Cost, Turnover and Profit, as depicted in Table 3. Employees and Cost are treated as
input indices, while Turnover and Profit are the output indices. Lower inputs and higher outputs are preferred to generate
a higher comprehensive score. Different to the first example, the characteristic of a large scale range in the value is
across indices, not UOAs (branches). In the following subsections, we illustrate how to obtain the preferable ranking
and robust ranking for the manager.

4.2.1. Preferable ranking
In order to discuss the proportion of each index in different models, we assess these branches by using DEA (CCR

input-oriented model), VWR-DEA (CCR input-oriented model with VWR), CWA and VWR-CWA models. The general
form of VWR Eq. (4) can be rewritten as Eq. (22) for the current numerical example, with two input and two output
indices:

�1x1jV1 + �2x2jV2 + �1y1jU1 + �2y2jU2 �0, j = A, . . . , H . (22)

If the manager has the preference that the proportion of Profit is no less than half of Turnover, then the parameters
(�1, �2, �1, �2) are substituted by (0, 0, −1, 2). Eq. (22) is further rewritten as Eq. (23) for all branches j:

−y1jU1 + 2y2jU2 �0, j = A, . . . , H . (23)

The proportion allocation of each index obtained from the original DEA model, as depicted in column (1) of Table 4, is
extremely disproportional in most branches, even though we add the VWR Eq. (23) in the DEA model (VWR-DEA),
as depicted in column (2) of Table 4.For instance, despite the preferable VWR Eq. (23), branches G and H still choose
their favorable weight to create a feasible disproportion in Turnover (0%) and Profit (100%). Besides, comparing DEA
with CWA, as depicted in column (1) of Table 5, the proportion allocation in the DEA model is more unstable than the
CWA model, without large variation in all branches. The comparison between VWR-DEA and VWR-CWA, as depicted
in column (2) of Tables 4 and 5, would have similar results. These results imply that the proportion allocation obtained,
whether in the DEA or VWR-DEA models of all branches, cannot reflect the manager’s preference altogether.

CWA provided the assessment results in column (1) of Table 5. They show that branch A and B are the best and
worst, respectively. Following these common weights (V ∗

1 , V ∗
2 , U∗

1 , U∗
2 ) = (1.00, 1.27, 1.00, 1.00) used in CWA, as

depicted in column (1) of Table 5, the manager would observe a large difference in relative proportion, whether between
the virtual inputs (P I

1j , P
I
2j ) or outputs (P O

1j , P
O
2j ); for instance, in the row of branch A, Employee (0.02%) vs. Cost

(99.8%) and Turnover (95.0%) vs. Profit (5.0%).
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Table 4
The proportion results of DEA and VWR-DEA in illustrative example

Branch j (1) DEA (2) VWR-DEA with Eq. (23)

P I
1j , v∗

1j P I
2j , v∗

2j P O
1j , u∗

1j P O
2j , u∗

2j P I
1j , v∗

1j P I
2j , v∗

2j P O
1j , u∗

1j P O
2j , u∗

2j

A 35.2%, 17.58 64.8%, 0.10 95.1%, 0.12 4.9%, 0.12 13.0%, 06.49 87.0%, 0.13 58.7%, 0.07 41.3%, 0.92
B 45.8%, 21.82 54.2%, 0.07 82.6%, 0.09 17.4%, 0.40 100.0%, 47.62 0.0%, 0.00 60.8%, 0.06 39.2%, 0.86
C 65.4%, 36.33 34.6%, 0.05 78.1%, 0.10 21.9%, 0.61 100.0%, 55.56 0.0%, 0.00 62.6%, 0.08 37.4%, 1.01
D 34.1%, 14.21 65.9%, 0.08 96.5%, 0.10 3.5%, 0.09 100.0%, 41.67 0.0%, 0.00 66.6%, 0.06 33.4%, 0.76
E 0.0%, 00.00 100.0%, 0.12 100.0%, 0.10 0.0%, 0.00 0.0%, 00.00 100.0%, 0.15 63.9%, 0.07 36.1%, 0.88
F 46.0%, 19.98 54.0%,0.06 81.2%, 0.08 18.8%, 0.37 11.7%, 06.44 88.3%, 0.13 58.4%, 0.07 41.6%, 0.93
G 10.1%, 03.49 89.9%, 0.13 72.4%, 0.09 27.6%, 0.44 30.1%, 10.38 69.9%, 0.10 0.0%, 0.00 100.0%, 1.61
H 7.5%, 02.90 92.5%, 0.11 73.9%, 0.08 26.1%, 0.37 100.0%, 38.46 0.0%, 0.00 0.0%, 0.00 100.0%, 1.42

Table 5
The assessment results of CWA and VWR-CWA in illustrative example

Branch j (1) CWA (V ∗
1 , V ∗

2 , U∗
1 , U∗

2 ) =
(1.00, 1.27, 1.00, 1.00)

(2) VWR-CWA with Eq. (23) (V ∗
1 , V ∗

2 , U∗
1 , U∗

2 ) =
(94.25, 1.92, 1.00, 13.30)

Score Ranking P I
1j (%) P I

2j (%) P O
1j (%) P O

2j (%) Score Ranking P I
1j (%) P I

2j (%) P O
1j (%) P O

2j (%)

A 1.000 1 0.02 99.8 95.0 5.0 1.000 1 13.0 87.0 58.7 41.3
B 0.902 8 0.02 99.8 95.4 4.6 0.935 6 11.8 88.2 60.9 39.1
C 0.947 4 0.02 99.8 95.7 4.3 0.996 3 11.2 88.8 62.6 37.4
D 0.984 2 0.02 99.8 96.4 3.6 0.964 5 12.5 87.5 66.6 33.4
E 0.934 6 0.03 99.7 95.9 4.1 0.878 7 13.8 86.2 63.9 36.1
F 0.931 7 0.02 99.8 95.0 5.0 0.975 4 11.9 88.1 58.5 41.5
G 0.956 3 0.03 99.7 92.7 7.3 0.875 8 16.9 83.1 48.8 51.2
H 0.945 5 0.02 99.8 93.2 7.8 0.998 2 12.8 87.2 50.8 49.2

From a managerial perspective, it reveals that the input index Cost and output index Turnover take a considerably
large proportion of branch A’s rating. The other branches appear to be in a similar situation. This kind of extreme
disproportion may not be accepted under specific practical exercises, even though the manager expects quick business
development. In fact, in any case, Profit still plays an important role in rating. The virtual assurance region can assist
the manager in easily adding his preference in Profit.

The manager reassesses these branches using the VWR-CWA model. The assessment results of VWR-CWA are
arranged in column (2) of Table 5 by using the other common weights (V ∗

1 , V ∗
2 , U∗

1 , U∗
2 ) = (94.25, 1.92, 1.00, 13.3).

Focusing on the row of branch A in Table 5, the proportion of Turnover (P O
1j ) vs. Profit (P O

2j ) changes from the
CWA disproportion 95.0% vs. 5.0% to the 58.7% vs. 41.3% in VWR-CWA. Similar changes also can be seen in other
branches. The rankings of the eight branches under CWA and VWR-CWA are completely different. However, the
ranking obtained from VWR-CWA is more preferable and reliable to the manager because its preference is considered.

Obviously, the virtual restriction Eq. (23) has an influence upon the final ranking of the branches. In the above case,
Eq. (23) is one of general form of Eq. (4) with the parameter W = 1. In order to strengthen the preference for the
manager, they can add more restrictions to obtain its most preferable ranking for all branches in VWR-CWA.

4.2.2. Robust ranking
Column (2) of Table 5 shows the single preference that the manager assigned. It is common that there exists a

situation in which the manager has no preference about the relationship among indices. What they are concerned about
is one acceptable and feasible proportion of virtual inputs and virtual outputs in the same measure. The manager can
determine a set of values (�−

r , �+
r ) and (�−

i , �+
i ) in Eqs. (9) and (10) to obtain the acceptable interval [BOL

r , BOU
r ] and

[BIL
i , BIU

i ] for P O
rj and P I

ij , respectively. For the current numerical example with two inputs (m = 2) and two outputs

(s =2), all the values of �−
r , �+

r , �−
i and �+

i are set within 0 and 1 to ensure that P O
rj and P I

ij are between 0 and 1. For the
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Table 6
The 25 combinations of interval limitation for P O

rj and P I
ij

Combination symbol [BIL
i , BIU

i ]
[0%, 100%] [10%, 90%] [20%, 80%] [30%, 70%] [40%, 60%]

[BOL
r , BOU

r ] [0%, 100%] C1 C2 C3 C4 C5
[10%, 90%] C6 C7 C8 C9 C10
[20%, 80%] C11 C12 C13 C14 C15
[30%, 70%] C16 C17 C18 C19 C20
[40%, 60%] C21 C22 C23 C24 C25

Table 7
The assessment results in VWR-CWA of C12 and C22

(1) VWR-CWA of C12 (V1, V2, U1, U2) =
(191.30, 1.09, 1.00, 6.67)

(2) VWR-CWA of C22 (V1, V2, U1, U2) =
(121.38, 2.20, 1.00, 17.78)

Branch j Score Ranking P I
1j (%) P I

2j (%) P O
1j (%) P O

2j (%) Score Ranking P I
1j (%) P I

2j (%) P O
1j (%) P O

2j (%)

A 0.975 2 35 65 74 26 0.909 3 14 86 52 48
B 0.895 7 32 68 76 24 0.801 6 13 87 54 46
C 0.942 3 31 69 77 23 0.821 5 12 88 56 44
D 0.914 5 34 66 80 20 0.785 7 14 86 60 40
E 0.850 8 36 64 78 22 0.767 8 15 85 57 43
F 0.940 4 32 68 74 26 0.860 4 13 87 51 49
G 0.912 6 42 58 66 34 1.000 1 19 81 42 58
H 1.000 1 34 66 67 33 0.998 2 14 86 44 56

purposes of clearly illustrating our approach, we set �−
r = �+

r = 0.2 for r = 1, 2 to obtain the lower bound BOL
r = 0.4

and upper bound BOU
r = 0.6, respectively. In other words, P O

rj would be limited within the interval [40%, 60%]. If a

larger interval is allowed, one may set �−
r = �+

r = 0.6 to have the interval [20%, 80%].
From a managerial perspective, while managers desire to understand the ranking of branches under variant kinds

of limitations for P O
rj and P I

ij , Eqs. (9) and (10) provide one systematic setting of lower bound and upper bound. For

the cases where �−
r and �+

r are set at five levels 0.2, 0.4, 0.6, 0.8 and 1.0, P O
rj would be limited in the gradually wider

intervals [40%, 60%], [30%, 70%], [20%, 80%], [10%, 90%] and [0%, 100%], respectively. With the same setting for
�−
i and �+

i , P I
ij would have the same limitations as above.

As depicted in Table 6, there are 25 combinations of interval limitation for P O
rj and P I

ij . Obviously, different interval

limitations for P O
rj and P I

ij may have different assessment results for the ranking. In this numerical example, we
can employ the VWR-CWA model in carrying out an assessment for each combination with corresponding intervals
[BIL

i , BIU
i ] and [BOL

r , BOU
r ]. For instance, the results for C12 and C22 are depicted in Table 7. For the combination C12,

the general VWR Eq. (22) can be rewritten as Eqs. (24)–(27) by removing four of the same and repeatable restrictions
for all branches from the setting of parameters in Eqs. (13)–1(6):

0.8y1jU1 − 0.2y2jU2 �0, j = A, . . . , H , (24)

−0.2y1jU1 + 0.8y2jU2 �0, j = A, . . . , H , (25)

0.9x1jV1 − 0.1x2jV2 �0, j = A, . . . , H , (26)

−0.1x1jV1 + 0.9x2jV2 �0, j = A, . . . , H , (27)

As Table 7 depicted, the ranking is inconsistent between the two combinations C12 and C22. For managers, it is
expected that more ranking outcomes form all kinds of combinations that can help them make more accurate and robust
judgments in the ranking of branches.
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Table 8
The summary of the 25 ranking results with C1–C25 restrictions

Branch j Ranking

1st 2nd 3rd 4th 5th 6th 7th 8th

A 10 8 7 0 0 0 0 0
B 0 0 0 0 0 18 7 0
C 0 0 15 1 9 0 0 0
D 0 0 0 0 15 3 7 0
E 0 0 0 0 0 0 10 15
F 0 0 1 24 0 0 0 0
G 2 5 2 0 1 4 1 10
H 13 12 0 0 0 0 0 0

Total 25 25 25 25 25 25 25 25

Robust Ranking H A C F D B E G

Table 9
The ranking of G in the 25 ranking results with the C1–C25 restrictions

Ranking of branch G [BIL
i , BIU

i ]
[0%, 100%] [10%, 90%] [20%, 80%] [30%, 70%] [40%, 60%]

[BOL
r , BOU

r ] [0%, 100%] 8th 8th 8th 8th 8th
[10%, 90%] 8th 8th 8th 8th 8th
[20%, 80%] 6th 6th 6th 6th 7th
[30%, 70%] 2nd 2nd 2nd 3rd 5th
[40%, 60%] 1st 1st 2nd 2nd 3rd

While compiling statistics from 25 combinations, we obtained the percentage of occurrence frequency in each
ranking, as depicted in Table 8. It is not hard to observe that except for branch G, the high occurrence frequency
centralizes in a few rankings for each branch. For instance, branch H is only ranked 1st and 2nd. For branch E, the
ranking of 7th and 8th occurs in all combinations. Undoubtedly, branch H is always better than branch E. If managers
choose the highest occurrence frequency as the representative branch of each ranking level, the ranking list for 1st–8th
is H, A, C, F, D, B, E and G.

Under the above ranking rule, the ranking of branch G is debatable due to its average occurrence in multiple ranking
levels. In other words, branch G’s ranking varies largely under different combinations. We further trace the ranking
status of branch G in all combinations, as depicted in Table 9. While fixing the interval [BOL

r , BOU
r ] with [0%, 100%]

or [10%, 90%] for P O
rG, branch G is ranked the last of all branches, whatever the interval for P I

iG. On the contrary,
while we shorten the interval [BOL

r , BOU
r ] step by step from [0%, 100%] to [40%, 60%] for P O

rG, fixing the interval
[BIL

i , BIU
i ] at [0%, 100%] for P I

iG, branch G can reach the best form of all branches.
Following the above observation, we observe that the ranking of branch G is deeply affected by the variation of

interval [BOL
r , BOU

r ]. If the manager is asked to only select some combinations as the reference of assessment, they
should concentrate more attention in determining the appropriate interval [BOL

r , BOU
r ]. Branch G will obtain a different

ranking while the manager determines a different interval [BOL
r , BOU

r ]. As for the determination of interval [BIL
i , BIU

i ],
in this case it is not necessary for the manager to cost more effort because these combinations show the same ranking
while the interval [BIL

i , BIU
i ] varies.

In order to explore the cause of the above phenomenon, we observe the relationship between the ranking variations
and proportion variations of branch G while varying interval [BIL

i , BIU
i ] or [BOL

r , BOU
r ], as Tables 10 and 11 depicted.

It is obvious that the values of P I
1G (54%) and P I

2G (46%) obtained in C1 are simultaneously satisfied with a narrower
interval [BIL

i , BIU
i ] in C2, C3, C4 and C5. Therefore, as depicted in Table 10, while fixing the interval [BOL

r , BOU
r ]

at [0%, 100%] and shortening the interval [BIL
i , BIU

i ], we still obtain the invariant values of proportion and ranking
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Table 10
The proportion variations of indices of branch G while varying [BIL

i , BIU
i ]

Combination Ranking [BIL
i , BIU

i ] P I
1G (%) P I

2G (%) [BOL
r , BOU

r ] P O
1G (%) P O

2G (%)

C1 8th [0%, 100%] 54 46 [0%, 100%] 74 26
C2 8th [10%, 90%] 54 46 [0%, 100%] 74 26
C3 8th [20%, 80%] 54 46 [0%, 100%] 74 26
C4 8th [30%, 70%] 54 46 [0%, 100%] 74 26
C5 8th [40%, 60%] 54 46 [0%, 100%] 74 26

Table 11
The proportion variations of indices of branch G while varying [BOL

r , BOU
r ]

Combination Ranking [BIL
i , BIU

i ] P I
1G (%) P I

2G (%) [BOL
r , BOU

r ] P O
1G (%) P O

2G (%)

C1 8th [0%, 100%] 54 46 [0%, 100%] 74 26
C6 8th [0%, 100%] 54 46 [10%, 90%] 74 26
C11 6th [0%, 100%] 42 58 [20%, 80%] 66 34
C16 2nd [0%, 100%] 23 77 [30%, 70%] 53 47
C21 1st [0%, 100%] 19 81 [40%, 60%] 42 58

for branch G. However, as depicted in Table 11, P O
1G (74%) and P O

2G (26%) obtained in C1 are not satisfied with the
narrower interval [BOL

r , BOU
r ] in C6, C11, C16 and C21. In order to satisfy narrower intervals [BOL

r , BOU
r ], the smaller

P O
1G and P O

2G are necessary. Therefore, the above variation in interval [BOL
r , BOU

r ] easily results in the variations of
P I

1G, P I
2G and ranking.

Following the above discussion, we conclude that given the fixed interval [BOL
r , BOU

r ], if the value of P I
1G and P I

2G

obtained in C1 is feasible in the narrowest interval [BIL
i , BIU

i ] of C5, then the value of P I
1G and P I

2G is also feasible
in C2, C3 and C4. Most importantly, the ranking is invariant with the same proportion in these combinations. If the
manager needs to complete all combinations, it is helpful for them to deduce the times of assessment by omitting C2,
C3 and C4 while fixing the interval [BOL

r , BOU
r ] at [0%, 100%].

5. Conclusion

The systematic procedure proposed in this paper provides both preferable and robust ranking for UOAs. The original
CWA model provides one common set of weights for the complete and clear ranking of UOAs. The preferable ranking
for the manager is obtained by considering the manager’s preference among performance indices with a virtual assurance
region. Besides, the systematic setting of upper and lower bounds in proportional weights restriction provides the UOAs
with different ranking levels. The ranking statistics finally give the manager one robust ranking which is invariant with
the different values of lower and upper bounds.

There are some suggestions to be noted in the application of the current procedure. In carrying out the assessment, if
the manager categorizes the performance indices as input indices and output indices according to its subject or intuitive
judgment, including the casual relationship among the performance indices, it is easy to confuse input indices and
to-be-minimized indices, or output indices and to-be-maximized indices. For instance, the lower defective rate of a
product is superior and desirable for a manager of factories. The manager may think the defective rate of the product
is the output indices in assessing the production efficiency of factories with input resources. However, based on the
current procedure, the defective rate of a product is a to-be-minimized index. This is a possible conflict in the category
of performance index in two systems. Therefore, the category of performance indices is suggested first by the idea of
to-be-maximized/to-be-minimized indices, and then they are transferred to the output/input indices used in the model.
Besides, for the assessment without a to-be-minimized index (input index), an artificial input index is added for all
units with value 1.0. It is similar to the assessment without a to-be-maximized index (output index).

As for the future development of the current procedure, we offer the following directions. The application of the
procedure proposed in this paper is simplified in order to set the same interval in input measure and output measure,
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for the convenience of observing the interaction between the ranking and boundary of the feasible region. In reality,
the application can be expanded to the case that sets different intervals for variant indices in the same measure, even
in different measures. Besides, one appropriate size of combinations is a point of further analysis in the approach. The
influence on the size of combinations plays an important role in the robustness of the ranking.
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