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中文摘要 
 

近來由於網路的普及, 許多使用者需要隨時隨地的使用網路資源. 舉例來說, 

使用者可能剛好在戶外卻突然要收發一個緊急的 email.當人們遠離他們的辦公室

或是家裡時, 可以利用廣域的 GPRS網路來持續的使用網路. 然而一個 GPRS頻

道所提供的頻寬卻是非常的低. 除了 GPRS網路, 3G網路也可以提供廣域的服務

和更高的頻寬. 但是不幸的, 在發表本篇論文時, 市場上還沒有 3G的產品.  

 

在本篇論文中, 我們提出了一個方法可以增加GPRS使用者的檔案傳輸速率. 

我們的方法是利用多條的GPRS頻道來平行下載檔案. 使用網路服務的使用者除

了利用自己的GPRS頻道下載資料外, 同時間也利用其他鄰近的GPRS頻道來幫

助下載. 當鄰近的 GPRS 頻道收到資料封包後, 這些鄰近的 GPRS 頻道會利用

802.11b 無線網路來傳送收到的資料封包給要求網路服務的那一位使用者.  

 

我們設計並實作出上述的方法. 且我們的系統並不需要GPRS業者的任何支

援. 我們量測了此系統再真實世界的表現. 實驗結果顯示在同時有四個 GPRS 頻

道平行下載情況中, 我們的系統可以達到約原本傳輸速率的 2.7 倍. 為了量測我

們系統在更複雜的拓撲和移動的情形下之表現. 我們使用 NCTUns2.0 模擬器, 

模擬並量測系統的表現.  
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Abstract 
 

Recently the Internet becomes more and more popular. Users may need Internet 

access everywhere. For example, one may need to browse a web page or want to 

send/receive emails outdoors. To remain connected to the Internet, people may use 

wide-area GPRS networks when they are away from their home and office networks. 

A GPRS channel, however, provides very little bandwidth. Excepting a GPRS 

network, a 3G network is another choice that provides much higher bandwidth. 

Unfortunately, a 3G network has not put to market yet.  

 

In this paper, we propose a scheme to increase the file transfer throughput for a 

GPRS user. Our approach is to transfer a requested file over multiple GPRS channels 

in parallel. The requesting user uses one’s channel and those of one’s neighbors for 

the transfer. When receiving packets from their GPRS channels, these neighbors 

forward them to the requesting user through a mobile ad-hoc network (MANET) 

using IEEE 802.11 (b) WLAN interfaces.  

 

We have designed and implemented our scheme. Our scheme can be deployed 

for a real-world GPRS network without any support from it. We have evaluated the 

performance of our scheme on a real-world GPRS network. Our experimental results 

show that our scheme achieves about 2.7X speedup over 4 GPRS channels. To further 

evaluate our scheme with a much complicated topology, we have simulated our 

scheme and evaluated the performance of it on network simulator NCTUns2.0.  
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1.  INTRODUCTION 

GPRS (General Packet Radio Service) is a data service that allows information to 

be sent and received across a mobile telephone network. In such a network, the 

transmission distance between a base station and a mobile device can range from 

hundreds of meters to thousands of meters. GPRS is wide-area and conveniently 

available in indoor and outdoor places covered with a base station’s signal.  

 

Although GPRS provides several advantages such as high availability and 

support for high mobility, a GPRS user, however, receives very little transfer 

throughput over a GPRS channel. In Taipei city, average throughput of GPRS is 3.5 

Kbytes. The maximum download/upload throughput achieved is only 36/12 Kbps 

using the common 3+1 package, where 3 and 1 time slots are allocated to downlink 

and uplink traffic, respectively. On such a low-bandwidth network, applications that 

demand high bandwidth will not perform satisfactorily. 

 

In this thesis, we propose a scheme to increase the file download throughput for 

a GPRS user. The main idea is to download a requested file over multiple GPRS 

channels in parallel. If a user wants to download a large file through the GPRS 

network (this user is called the request originator in the following description), he 

would ask for bandwidth support from his neighboring users. Those neighboring users 

who are willing to help and are not using their GPRS bandwidth use their GPRS 

channels to help download the file. The requested file then is downloaded over these 

GRRS channels in parallel. When receiving packets from these GPRS channels, these 

helpers forward them to the request originator through a mobile ad-hoc network 

(MANET) using IEEE 802.11 (b) WLAN interfaces. Since the bandwidth of an IEEE 
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802.11(b) interface is 11 Mbps, which is much larger than the bandwidth of a GPRS 

channel, the request originator can simultaneously receive these packets without 

congestion. By this scheme, the time required for downloading a large file over a 

GPRS network can be reduced. We design this scheme for the user both on a wide 

area network with low bandwidth and long latency such as GPRS network and on a 

local area network with high bandwidth and short latency such as IEEE 802.11(b) 

network.  

 

The design and implementation of our scheme can be readily deployed for a 

real-world GPRS network without any support from it. In our scheme, only two 

daemon programs and one slightly modified web proxy server (Apache) need to be 

run. One daemon program is run on the mobile host. The other daemon program and 

the web proxy server are run on an Internet host, which can be located in any subnet 

of the Internet. According to our experimental results, on average, about 2.7X 

throughput speedup can be achieved over 4 GPRS channels. We also evaluated our 

scheme about some issues such as mobility support in MANET on NCTUns2.0 [11].  

 

Recently, cellular phones equipped with GSM/GPRS and WLAN interfaces have 

been introduced to the market. Such phones have the required network interfaces to 

use our scheme. Since our scheme can be readily deployed for a real-world GPRS 

network, before expensive 3G networks and services are widely deployed, our scheme 

provides a low-cost solution for GSM/GPRS network operators to use their current 

2.5G networks to provide high-bandwidth applications for such phones. 

  

In the rest of this paper, we first survey related work in Section 2. Then we 

introduce the design and implementation of our scheme in Section 3. In Section 4, we 
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describe the protocol designs of our scheme in detail. In Section 5, we presented the 

experimental settings and results. In Section 6, we presented the simulation settings 

and results on NCTUns2.0.  In Section 7, we discuss some issues of our scheme. In 

Section 8, we point out future work. Finally, Section 9 concludes this paper. 

 

 

2. RELATED WORK 

 

In the literature, several approaches have been proposed to integrate WLAN and 

GPRS networks to achieve better performance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. We 

categorize those approaches into three different groups. 

 

We group UCAN [1], an approach [5], and 7DS [10] into the first category. 

Protocols in this category transmit users’ data without using parallel transmission 

mechanism. Those protocols extend GPRS network coverage or always download 

data using one better GPRS channel quality by integrating WLAN and GPRS 

networks.  

 

UCAN [1] also aims to reduce the file download time over a GPRS network. In 

UCAN, a download request originator, called the destination node, chooses a 

neighboring node whose GPRS channel’s quality is better than that of its own channel 

to be its proxy node. When the destination node wants to download a large file 

through the GPRS network, it informs the base station of its proxy node. After 

receiving this information, the base station sends the requested file to the proxy node 

through its GPRS channel. The proxy node then forwards the packets of this file to the 
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destination node through a MANET.  

 

The motivation for proposing UCAN is that a low-throughput file transfer is 

mainly due to the use of a low-quality GPRS channel; therefore, finding another 

channel with a better quality to download the file can improve the file transfer 

throughput for a destination node that has a low-quality channel. Although in UCAN 

both GPRS and WLAN are used (which is similar to our scheme), only one GPRS 

channel is used to download a requested file at any time. This is different from our 

multi-channel scheme and it limits the maximum achievable download throughput to 

be a GPRS channel’s bandwidth. Moreover, supports from the GPRS network are 

needed to modify base stations in UCAN whereas in our scheme this is unnecessary. 

 

 In the approach [5], the authors attempt to improve the reliability of coverage in 

cellular networks. Its design extends a mobile phone call by employing an 

intermediary to carry this call. Thus, a mobile phone call may become a 2-hop call. 

The intermediary can be a mobile device or a vehicle with sufficient power resources. 

A MANET is employed to achieve better reliability in a cellular network; however, it 

may increase the intra-cell interference. The goals, design, and implementation of this 

scheme are different from those of our scheme.  

 

In 7DS [10], the authors use the concept of peer-to-peer scheme. Once a user 

downloads data from a GPRS network, all the other users in the formed Ad-Hoc 

network can retrieve the data from this user in MANET. 

 

We group an approach [2], iCAR [3], and MADF [4] into the second category. 

Protocols in this category also transmit users’ data without using parallel transmission 
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mechanism. Those protocols improve the performance of GPRS base station by using 

Ad-Hoc network. 

 

In [2], the authors proposed a mechanism for smooth handovers between WLAN 

and GPRS networks. The authors defined the area reachable from a base station in 

single hop as a cell. If the source node and the destination node stay in the same cell, 

the packets sent from the source node to the destination node need not pass through 

the base station. Instead, other mobile nodes located in the same cell use a MANET to 

relay these packets. In this case, a multi-hop routing mechanism has to be involved. If 

the source node and destination node do not stay in the same cell, the source node first 

sends its packets to the base station with which it is associated. Then the packets are 

forwarded to the base station with which the destination node is associated through 

the GPRS backbone network. Finally, the destination node receives the packets 

through its GPRS channel. The transmission path between the source node and its 

associated base station may be one-hop (using GPRS) or multi-hop (using MANET), 

so is the path between the destination node and its associated base station. This 

approach aims to smoothly switch the transmission path between a WLAN and a 

GPRS networks. Its goal, design, and implementation are different from those of our 

scheme.  

  

In iCAR [3], some ad hoc relay stations (ARSs) are placed at strategic locations 

so that a mobile host’s packets can be relayed by these ARSs to a base station that is 

not the mobile node’ associated base station. If a cell has a heavy traffic load and its 

adjacent cells do not have heavy loads, a mobile host’s packets can be diverted from 

its cell to an adjacent cell so that its cell’s congestion is reduced. The iCAR approach 

can reduce the call blocking probability for circuit-like traffic by diverting traffic from 
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heavily-loaded cells to nearby lightly-loaded cells. Since a mobile host still uses only 

a channel in iCAR, the goal, design, and implementation of iCAR are different from 

those of our scheme.  

 

Another system is MADF [4]. The authors defined a cell with a heavy traffic 

load as a hot cell while a cell with a light traffic load as a cold cell. MADF proposes a 

dynamic channel allocation scheme that assigns more channels to hot cells. In MADF, 

ad-hoc overlay devices are employed and located at the places between hot cells and 

cold cells. Users in hot cells can connect to adjacent cold cells through these ad-hoc 

relay devices over specific channels. MADF prevents packet delay from increasing in 

a cell with a heavy traffic load. This approach attempts to overcome congestions 

within a heavily-loaded cell. It is different from our multi-channel scheme. 

 

We group pTCP [6], MAR [9], MC2 [8], and MoPED [7] into the third category. 

Protocols in this category transmit users’ data using parallel transmission mechanism.  

pTCP [6] is an end-to-end transport layer protocol for striped connections. It modifies 

TCP protocol for parallel transmission, so users can operate their protocol not only on 

a GPRS network. However, pTCP is not transparent to users, because users must 

modify their kernel in this approach. 

 

In MAR [9], authors implement a computer router infrastructure for the mobile 

Internet, called MAR router. The MAR router can connect to heterogeneous networks 

such as a GPRS network or an 802.11b infrastructure network at the same time. 

Therefore, the MAR router can download data in parallel for the users who connect to 

the MAR router. In their scheme, the authors modify kernels of the MAR router and 

the MAR Server Proxy. In MAR, users must be close to the MAR router, and users’ 
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transmission speed is limited by the bandwidth of their endpoint device. 

 

In MC2 [8], and MoPED [7], their approaches are similar. Those two approaches 

both are about intelligent bandwidth aggregation. The main idea of MC2 or MoPED is 

to download a requested file over multiple channels in parallel. Although, the main 

idea of our scheme is similar to MC2 and MoPED, their approaches don’t study 

mobility issues as well as ours.   

 

In this paper, we propose a multi-channel scheme to improve the file download 

throughput over a GPRS network. The design and implementation of our scheme do 

not require any support from the GPRS cellular network. Moreover, our scheme 

supports mobility in MANET that all approaches above seldom mention about.  

3.  SYSTEM DESIGN AND IMPLEMENTATION 

3.1 System Architecture 

A high-level architecture of our scheme is depicted in Figure 3.1, which shows the 

components of the whole system. The functionalities of each component are described 

below: 

 Web Server (WS): WS is a content provider that provides data for users. It can be 

any on-line information server on the Internet such as a ftp server. 

 Proxy Server (PS): PS is a slightly-modified proxy server that retrieves a 

requested file from a WS on behalf of a user. In our scheme, a daemon program 

(called the trunk daemon) runs on the same machine as the PS. It intercepts the 

packets sent from the PS to the user and sends them over multiple GPRS channels 

to the DN and its helping RNs (see their definitions below). 
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 Relay Node (RN): RN is a node that does not use its GPRS channel for itself but 

instead uses its channel to help download data for the Destination Node (see its 

definition below).  

 Destination Node (DN): DN is a node that uses GPRS channels to download a file 

(e.g., a web page) from the Internet. The requested file is downloaded via the DN’s 

own channel and the channels of its helping RNs. After receiving packets carrying 

the content of the requested file from GPRS channels, these RNs relay them to the 

DN through a mobile ad-hoc network.  

 

Both DN and RN need to learn the existence and channel quality of its neighboring 

nodes. It periodically exchanges hello packets with its neighboring nodes to collect 

such information.  

 

A simple example is given below to illustrate how the system works. Both DN and 

MN should set PS as their proxy server at first. In Figure 3.1, when the DN wants to 

download a web page from the WS located on the Internet, it sends a HTTP web 

request to the PS through its GPRS channel. After DN receives an indication packet 

from the modified Apache in PS, it sends the information regarding its neighboring 

nodes to the trunk daemon so that the trunk daemon can select some of them as the 

helping RNs for this DN. After the PS has retrieved the requested web page, it sends 

the web page to the DN. The trunk daemon intercepts these packets and then sends 

them over the GPRS channels of the DN and its helping RNs using a round-robin 

scheduling method. These RNs relay their received packets to the DN through the 

mobile ad-hoc network. Finally, the DN receives, re-sequences, and delivers all 

packets of the requested web page to the web browser, which then displays the 

downloaded file on the screen or saves it into a disk. Users through our scheme can 
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download their files more quickly. 

 

 

Figure 3.1: The high-level system architecture. 

 

3.2 System Implementation 

 

3.2.1 Trunk Daemon and Web Proxy Server 

 

In the following, we present how to use our scheme to download a requested file 

to a DN over multiple GPRS channels. In Figure 3.2.1-1, the apache server is the 

proxy server (PS) in our scheme. After a DN initiates a web request over its GPRS 

channel, the content of the requested file comes back from the designated WS over an 

Internet path shown on the left. After receiving the file, the apache server sends the 

file’s content to the DN using the DN’s IP address assigned by the GPRS network as 

the destination IP addresses of these packets.  
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The trunk daemon installs several firewall rules in the kernel during the 

initialization protocol mentioned after, before the apache server receives the file 

request. These firewall rules instruct the firewall facility in the kernel to intercept the 

data packets that will be sent from the apache server to the DN. Packets captured by 

these rules are enqueued into the IP queue in the kernel. The trunk daemon will 

dequeue them from the IP queue and then dispatch them to the DN and to its helping 

RNs through their GPRS channels in a round-robin scheduling order. Our scheme 

does some optimizations in a common round-robin scheduling algorithm, such like 

trunk daemon doesn’t dispatch data packets to a RN with bad GPRS link quality. 

 

 

Figure 3.2.1-1: The trunk daemon sets firewall rules to intercept and dispatch  

 packets to the DN and its helping RNs. 

 

The trunk daemon sends the captured data packets (TCP packets when using 

HTTP protocol or FTP protocol) to the DN and its helping RNs through a UDP socket. 

This means that these packets are encapsulated as UDP packets when they travel on 
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GPRS channels. When sending a UDP packet to the DN or a RN, the trunk daemon 

uses the IP address of the receiving machine assigned by the GPRS network as the 

destination IP address of the packet. Doing so enables the packet to be sent over the 

receiving machine’s GPRS channel. The trunk daemon retransmits a UDP packet if it 

detects that the packet is lost on a GPRS channel or on a MANET link. It implements 

an acknowledgement scheme running between itself and a DN or a RN to detect 

packet losses. 

 

 Acknowledgement Scheme between a trunk daemon and mobile nodes 

 

In the trunk daemon, it implements an acknowledgement scheme like TCP 

protocol. There is a sliding window of every mobile node such as a DN and a RN in 

the trunk daemon, and a destination packets queue of every DN in the trunk daemon 

(Figure 3.2.1-2). 

 

A simple example is given below to illustrate how the acknowledgement scheme 

works. When the trunk daemon dequeues a data packet from IP queue, it first try to 

send out this data packet through a DN or RN without a full sliding window by 

Round-Robin scheduling scheme, and maintain a copy of this data packet in the DN’s 

or RN’s sliding window in case of retransmission. If it can find out any DN or RN 

without a full sliding window, the trunk daemon will enqueue this packet back to the 

destination packet queue. The trunk daemon will dequeue this packet and send it out 

once any DN or RN without a full sliding window.  

 

The trunk daemon enqueues the data packet into destination packet queue 

directly, if there is any data packet in destination packet queue. By Doing so, the trunk 
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daemon can maintain data packets enqueued in the destination packet queue in order. 

Every DN or RN sends an ACK packets back to the trunk daemon, when it receives a  

data packet dispatched from the trunk daemon. The trunk daemon will delete the 

related data packet copy in the DN’s or RN’s sliding window, as it receives an ACK 

packet. 

 

 

Figure 3.2.1-2: the data structure of our acknowledgement scheme 

 

The apache server is slightly modified to make our system work correctly. When 

apache server receives an HTTP request from a DN, it immediately sends a reply back 

to notify DN that it’s time to send the table of its neighboring nodes.  

When the requested file has been downloaded to the DN, it notifies the trunk daemon 

of the completion of the file transfer. The trunk daemon then removes the firewall 

rules that were previously installed in the kernel and releases used data structures and 

other resources. 
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3.2.2 Mobile Node Daemon and Application 

 

The mobile node daemon is executed on each mobile node equipped with a 

GPRS and an IEEE 802.11 (b) WLAN interfaces. In our scheme, a mobile node 

daemon may perform the function of a DN or a RN. This is because when a RN is 

relaying packets for a DN, it may want to become a DN to download its own file. On 

the other hand, When a DN finishes downloading its own file, it may be asked to be a 

RN for another DN.  

 

Every DN or RN broadcasts a hello packet periodically, so it knows its 

neighboring nodes. By our routing scheme, every neighboring DN or RN can share its 

table of neighboring nodes. Therefore, it can know other RN cross multiple hops in 

MANET. This information helps a mobile node daemon choose its RN candidates 

when it becomes a DN. The mobile node daemon also functions as a routing daemon 

using our routing scheme on the IEEE 802.11(b) MANET. With the routing tables 

built by our routing scheme, a routing path between a RN and a DN can be set up. 

On a mobile node, several real-world applications such as the Mozilla web browser 

can be used to download files. They function normally and take advantage of our 

scheme without any modification. When the web browser initiates a web request, the 

mobile node will become a DN and the request is sent over this mobile node’s GPRS 

channel to the PS. Later on, the packets carrying the content of the requested file are 

sent back to the DN through its own GPRS channel or through some ad-hoc links in 

the IEEE 802.11(b) MANET. This is shown in Figure 3.2.2.  
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Figure 3.2.2: The mobile node daemon reorders out-of-order packets, and then  

 sends them to the web browser through a raw socket. 

 

If a mobile node daemon plays the role of a RN, it just needs to relay received 

packets that are sent from the trunk daemon to the DN via it. When relaying a packet 

to the DN, it sends out the packet through a UDP socket in MANET. The destination 

IP address of this packet is set to be the IP address of the DN configured on the 

MANET. As such, the packet is encapsulated as a UDP packet and travels on the 

MANET until it reaches the DN. The mobile node daemon implements an 

acknowledgement scheme running between itself and the DN to detect packet losses 

that occur on the MANET. If any packet is lost on the MANET, it retransmits the 

packet until the DN eventually receives the packet. 

 

If a mobile node daemon plays the role of a DN, it may need to reorder received 

packets, which may be out-of-order because they traverse on different GPRS channels 

and on different MANET paths. The mobile node daemon reorders these packets into 

the correct order and then writes them into the kernel through a raw socket. From the 

viewpoint of the kernel, these packets appear to arrive from a normal network 
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interface such as an Ethernet interface. As such, these packets pass through the 

TCP/IP protocol stack in the kernel and are enqueued into a TCP socket used by the 

web browser. Finally, the web browser reads the TCP socket to get the content carried 

by these packets. It may display the content on the screen or save the content into the 

disk. 

 

 Re-order packets in a DN 

 

The trunk daemon gives every data packet a different sequence number which 

begins at number 1. If a data packet is sent from a different application such as a FTP 

client, the trunk daemon will re-give the data packet a different sequence number 

which begins at number 1. Doing so, DN can reorder data packets from different 

applications separately.  

 

A DN won’t dequeue packets in its reordering queue and send to an application 

through raw socket when those packets are not in order. However, DN can’t queue a 

packet in the reordering queue too long a time, so DN sets a timer for every packet in 

the reordering queue. A DN sends the timeout packet to an application through raw 

socket without waiting. 

 

4.  PROTOCOL DESIGNS 

 

The protocols used in our scheme include the initialization, data transfer, MANET 

routing, and reset protocols. The first goal of the protocol design is that a real-world 
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application, such as a web browser or a FTP client program, should be able to benefit 

from our scheme on a mobile node without any modification. The second goal is that 

our scheme can be deployed for any real-world GPRS network without any support 

from it. For example, in our experiments, we tested two commercial GPRS networks 

that are provided by different operators (ChungHwa and FarEastone) and found that 

one assigns public IP addresses to its GPRS users while the other assigns private IP 

addresses to its GPRS users. In this case, we would like our scheme to work 

successfully for both types of GPRS networks. Our scheme achieves these goals. The 

third goal is that our routing scheme can support the mobility in MANET. We 

describe the details of each protocol in the rest of this section. 

 

4.1 Initialization Protocol 

 

The initialization protocol coordinates the different parts of the system so that they 

work together to download a requested file over multiple channels. In the following, 

we use an example to illustrate the protocol step by step. In Figure 4.1-1, a web 

browser on the DN sends a request to the apache server (PS) (step 1).  The apache 

server then sends a notification packet to the mobile node daemon running on the DN 

(it will be simply called the “DN” for brevity in the following description when there 

is no ambiguity) to inform it that a web browser executed on the same node has 

initiated a web transfer request (step 2). In the meantime, the apache server (acting as 

a proxy server) sends the request to the designated WS on behalf of the DN to retrieve 

the requested file. Because each mobile node daemon maintains the information about 

its neighboring nodes, the DN sends a list of its neighboring nodes to the trunk 

daemon (step 3). The nodes on the list are RN candidates for this DN and the trunk 
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daemon may select some of them as the helping RNs for this DN based on their 

willingness and channel quality. The trunk daemon then sends an acknowledgement 

packet back to the DN (step 4).  

 
Figure 4.1-1: the initialization protocol (1) 

 

Figure 4.1-2 shows how the initialization protocol supports private IP in a GPRS 

network. After receiving the acknowledgement packet from the trunk daemon, the DN 

sends a “NAT Mapping Installation” packet to the trunk daemon (step 5). If the GPRS 

network uses a network address translator (NAT) and assigns private IP addresses to 

its GPRS users, when this packet passes through the GPRS network’s NAT on its way 

to the PS, the NAT will install a mapping entry recording the mapping between the 

packet’ s private IP address and port number used inside the GPRS network and the 

public IP address and port number assigned to it. With this mapping entry, later on 

when the PS sends data packets to the DN from the Internet, these data packets will 

pass through the NAT and reach the DN successfully.   

 

The DN also sends a “NAT Mapping Installation”-request packet to each of its 
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neighboring nodes to ask it to install a NAT mapping (step 6). When a mobile node 

receives a “NAT Mapping Installation”-request packet, it sends a “NAT Mapping 

Installation” packet to the trunk daemon (step 7). With the transmission of this packet, 

later on the data packets sent from the PS to the RN will pass through the NAT and 

reach the RN successfully.  

 

This protocol is designed to work successfully on a GPRS network that uses a 

NAT and assigns private IP addresses to its users (e.g., the FarEastone GPRS network). 

For a GPRS network that does not use a NAT and assigns public IP addresses to its 

users (e.g., the ChungHwa GPRS network), this protocol still works successfully. 

 

Figure 4.1-2: the initialization protocol (2) 

 

Figure 4.1-3 shows the third phase of this protocol. When the trunk daemon 

receives a “NAT Mapping Installation” packet from a mobile node daemon, it sends a 
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“Link Checking” packet to that mobile node daemon (step 8). The mobile node 

daemon then sends back a “Link Checking ACK” packet to the trunk daemon (step 9). 

When receiving such a packet, the trunk daemon knows that the path between the PS 

and the mobile node daemon is working. If the delay between sending the “Link 

Checking” packet and receiving its ACK is relatively small, which indicates good 

channel quality, the trunk daemon may choose the mobile node as a helping RN for 

this DN.  

 

As the trunk daemon receives a “Link Checking ACK” packet from one of relay 

nodes, the trunk daemon sets several firewall rules in the kernel to capture packets 

that will be sent from the PS to the DN (step 10). When such packets are captured, the 

trunk daemon sends them to the DN and its helping RNs in parallel. The details are 

presented in Section 3.2.2. In case the packets sent from the WS to the PS arrives at 

the PS before these firewall rules are set, these early-arriving packets will be directly 

sent back to the DN through the DN’s own GPRS channel without using our scheme. 

In this situation, the performance is not optimized. However, the function of our 

scheme still works correctly. 
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Figure 4.1-3: the initialization protocol (3) 

 

4.2 Data Transfer Protocol 

 

The data transfer protocol deals with packet delivery and retransmission. In Figure 

4.2, the trunk daemon sends data packets to the DN and its helping RNs through their 

GPRS channels in a round-robin sequence (step 11-1). When the RN receives a packet, 

it forwards the packet to the DN through the MANET (step 11-2). The DN then sends 

an acknowledgement packet to the RN (step 12-2). The RN then sends an 

acknowledgement packet to the trunk daemon to inform it that the DN has 

successfully received the packet (step 12-3). When the DN receives a packet that is 

sent directly from the trunk daemon to itself, it sends an acknowledgement packet 

directly to the trunk daemon to acknowledge the receipt of the packet (step 12-1). 
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Figure 4.2: The data transfer protocol. 

 

The trunk daemon uses UDP to send packets to the DN and its helping RNs over 

their GPRS channels. RNs also use UDP to forward packets over the MANET to the 

DN. Since UDP does not provide a reliable service, the trunk daemon and mobile 

node daemons retransmit an encapsulated UDP packet in case it is lost on its way to 

its destination. 

 

4.2.1 Improvement of Acknowledgement 

 

An acknowledgement packet to the trunk daemon may be loss in a GPRS 

network, so a DN or RN improves the acknowledgement scheme in case of 

acknowledgement packet loss. As any DN or RN sends an acknowledgement packet 

to the trunk daemon, it also informs the trunk daemon last acknowledgement packet 

that it sent.  Doing so, the trunk daemon can avoid needless retransmissions, when 

an acknowledgement packet loses.  
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4.2.2 Fast Retransmission in Our Scheme 

 

To improve the performance of retransmission, the famous TCP fast 

retransmission mechanism is employed in our scheme to quickly detect and retransmit 

a lost packet. 

 

The trunk daemon would retransmit the data packet when there is a data packet 

loss. Retransmission timeout time can not be too short, because round trip time of data 

packet in GPRS network is almost 3 seconds in the real world. Timeout time in our 

retransmission scheme should be shorter than timeout time in TCP protocol, or TCP 

congestion control would be triggered. Due to the reasons described above, the 

famous TCP fast retransmission mechanism is employed in our scheme. 

 

When a data packet triggers the fast retransmission, the trunk daemon would 

dispatch this data packet to another mobile node different from the former mobile 

node. So, the trunk daemon can avoid dispatch the data packet to the mobile node 

whose GPRS link quality may be poor.   

 

 

4.2.3 Improved Fast Retransmission in Our Scheme  

 

To further improve the performance of the fast retransmission in our scheme, a 

DN sends a selective data acknowledgement packet with some useful information in 

order to speed up a fast recovery. The fast retransmission sometimes can recovery 



 - 23 -

data packet loss fast enough, when a bunch of data packets lose. So, a DN would 

enqueue a data packet in destination packet queue too long, when the trunk daemon 

has not triggered a fast recovery of this data packet. In our improved fast 

retransmission scheme, a DN would inform the trunk daemon that the DN enqueues 

some packets too long a time by sending a selective data acknowledgement packet 

with some useful information. So, the trunk daemon can do a fast recovery even when 

there have not been enough selective data acknowledgement to trigger a fast recovery. 

 

4.3 Ad-Hoc Routing Protocol 

 

Our Ad-Hoc routing scheme can construct a routing table of any DN or RN, and 

support the mobility in MANET. Every DN or RN broadcasts a hello packet 

periodically, so it can construct its routing tables with zero hop count, called “Ad-Hoc 

Neighbor Table”. After constructing its Ad-Hoc Neighbor Table, every DN or RN 

exchanges its Ad-Hoc Neighbor Table periodically. Doing so, a DN or RN can know 

all reachable mobile nodes in MANET even the mobile node cross multiple hops.  

A DN or RN would set a timer for every routing entry. Therefore, a DN or RN would 

delete each routing entry periodically to prevent a routing entry from being out of 

time. 

 

4.3.1 Mobility Issues 

 

To support the mobility in MANET, we improve our Ad-Hoc routing scheme to 

fast recover our system performance from mobile node topology changes. By this 

Ad-Hoc routing, our scheme can apply to a moving motorcade (Figure 4.3.1). An 
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important issue of the mobility in MANET is how to maintain the routing table 

correctly.  

 

A simple description of our improved Ad-Hoc routing scheme is given below. In 

case of some RNs disconnect from DN, a DN checks the connectivity of every its RN 

in MANET periodically. Once a DN check out that it loses connectivity of a RN, this 

DN should delete the routing entry of this disconnected RN, and should inform every 

its RN about this disconnection. Therefore, a DN and every RN can refresh its routing 

table when the Ad-Hoc network topology changes. When a RN disconnects from DN, 

the trunk daemon will retransmit data packets in the RN’s sliding window (Figure 

3.2.1-2), and dispatch those retransmitted data packets to other connected RNs in a 

Round Robin sequence. 

 

Figure 4.3.1: a moving motorcade 

4.4 Reset Protocol 

 

The reset protocol is used to inform the DN and its helping RNs that the file 

download is completed. Figure 4.4 shows this protocol. When the apache server (PS) 
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finishes sending the file content to the DN, it sends an “Ending” packet to the trunk 

daemon through a UDP socket (step 13) to notify it of this event. The trunk daemon in 

turns sends an “Ending” packet to each mobile node daemon involved in this file 

download (step 14). It then removes the firewall rules that were previously installed in 

the kernel and releases all the data structures and other resources allocated for this file 

download. When a mobile node daemon receives an “Ending” packet, it releases the 

used data structures and other resources. It also resets its state to prepare for another 

file download. If an “Ending” packet is lost, the mobile node daemon that should 

receive the packet will automatically release the used data structures and other 

resource after a certain period of channel idle time.  

 

 

Figure 4.4: The reset protocol. 

 

5. EXPERIMENTAL SETTINGS AND RESULTS 
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5.1 Experimental Settings 

 

IBM A31 notebooks computer with 1.8G Hz CPU and 512 MB memory are used 

as PS and DN in our experiments.  

 

Five notebooks tabled below are used as RNs. 

 

Type 
 

IBM A31 IBM R40 IBM T30 Toshiba 

CPU Intel 1.8G Hz Intel 
1.3GHz 

Intel 
2.2GHz 

AMD 
0.475GHz 

Main 
Memory 

512 MB 512MB 512MB 64MB 

number 1 1 1 2 

 

Each of RNs and each DN are equipped with an ASUS WL-14 IEEE 802.11(b) 

WLAN interface card or D-LINK DWL-122 and a Nokia D211 GPRS interface card, 

which is shown in Figure 5.1-2. In our scheme, every RN node is just responsible to 

forward data packets to DN. Therefore, using different machines listed above would 

not affect our system performance.  

 

Because the two PCMCIA slots available on a notebook computer are too close 

to use one PCMCIA IEEE 802.11(b) and one PCMCIA GPRS cards at the same time, 

we used the ASUS WL-14 IEEE 802.11(b) interface card, which uses the USB 

interface rather than the PCMCIA interface to connect to the notebook computer. The 

Red-Hat Linux operating system with the 2.4 kernel is installed on each of these 

machines.  



 - 27 -

 
Figure 5.1-1: The trunk daemon 

 

Figure 5.1-2: Four notebook computers are used in experiments. One of them is used 

as the DN while the others are used as the DN’s helping RNs. 
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Figure 5.1-3: Each notebook computer is equipped with an IEEE 802.11(b) WLAN 

interface card and a GPRS interface card. 

 

One desktop host is used as the PS (Figure 5.1-1). It runs the Red-Hat Linux 

operating system with the 2.4 kernel. This host is located in our laboratory and 

connected to the Internet. A modified apache web server is run on this desktop host to 

provide proxy services for the DN.  

 

ChungHwa Telecom Inc. operates the GPRS network used in these experiments. 

When a GPRS network interface is attached to the GPRS network, ChungHwa 

Telecom Inc. automatically assigns a public IP address to it. As such, an Internet host 

(e.g., the PS) can actively send packets to an attached GPRS user.  

 

We also try to evaluate our scheme on a different GPRS network, which is 
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operated by FarEastone Telecom Inc. On the FarEastone GPRS network, when a 

GPRS interface is attached to the network, it is assigned a private IP address. 

Normally, a machine assigned a private IP address is attached to a private network 

managed by a network address translator (NAT). Such a machine can actively 

exchange packets with a host on the Internet but a host on the Internet cannot actively 

exchange packets with it. This restriction, however, does not cause any problem for 

our scheme because before the PS sends packets to the DN, the DN and each of its 

RN have sent a “NAT Mapping Installation” packet to the PS.  

 

However, the link quality of the GPRS network operated by FarEastone Telecom 

Inc is very unstable in the NCTU campus. Sometimes, our machines can hardly 

connect to the FarEastone GPRS network for five minutes. Due to the unstable link 

quality, the performance would be badly decreased. Therefore, we don’t evaluate our 

scheme on the FarEastone GPRS network. 

 

5.2 Experimental Results  

 

5.2.1 Calibration Test 

 

In the calibration tests, we want to measure how the GPRS network performs 

when there are several CBR traffics activated simultaneously. In these tests, our 

scheme was not used. We measured the CBR throughput that can be achieved over 

one GPRS channel when one, two, three, and four GPRS channels are used 

simultaneously. The used channels were set up between the PS and the DN, and 

between the PS and the 3 RNs. Instead, on a tested GPRS channel, we pumped UDP 

packets at the PS machine into the channel at the constant bit rate. We used UDP 
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packets rather than TCP packets because a TCP traffic source will reduce its sending 

rate at least by a half when encountering packet losses or reordering while a UDP 

traffic source will not. Since we are concerned with instantaneous link quality in a 

GPRS channel, we used UDP packets in the calibration tests.   

 

In each CBR UDP packet stream, the packet interval time is 0.33 seconds and 

each UDP packet size is 1400 bytes. So, the maximum throughput of one CBR UDP 

packet stream is 4.2 Kbytes/sec. When UDP packets are sent at a constant bit rate over 

a GPRS channel, we say the channel is active. Figure 5.2.1-1 shows the throughput 

achieved on one channel when only one channel is active. Figure 5.2.1-2 shows the 

throughputs achieved on two channels when two channels are active at the same time. 

Figure 5.2.1-3 shows the throughputs achieved on three channels when three channels 

are active at the same time. Finally, Figure 5.2.1-4 shows the throughputs achieved on 

four channels when four channels are active at the same time. In these figures, we also 

show the total achieved throughputs of all active GPRS channels. 

 

In Figure 5.2.1-1 below, the average throughput of a CBR UDP stream is close to 

3 Kbytes/sec. In a CBR UDP packet stream, the packet interval time is 0.33 seconds 

and each UDP packet size is 1400 bytes. Therefore, we can only get four possible 

throughputs, 0 Kbytes/sec, 1.4 Kbytes/sec, 2.8 Kbytes/sec, 4.2 Kbytes/sec, in the 

calibration tests.  
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Figure 5.2.1-1: The throughput of one GPRS channel. 
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Figure 5.2.1-2: The throughputs of two GPRS channels. 

 

From these figures, we have some observations. First, the maximum throughput 

that can be achieved over one GPRS channel is only about 4 KB/sec. Second, the 

quality of a GPRS channel is unstable. The throughput of a GPRS channel often drops 

to zero, stays at zero for a while, and then rises again. Third, when multiple GPRS 
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channels are active, it is common that at least one channel’s throughput is very poor. 

These observations suggest that achieving N throughput speedup over N GPRS 

channels is almost impossible on current commercial GPRS networks.  
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Figure 5.2.1-3: The throughputs of three GPRS channels 
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Figure 5.2.1-4: The throughputs of four GPRS channels. 

 

Since the best aggregate UDP throughput achieved over N GPRS channels is 

much lower than N times of a GPRS channel’s native bandwidth (i.e., 36 Kbps), it is 

unreasonable to divide the throughput of our scheme by 36 Kbps to calculate its 

throughput speedup over N channels. In our web transfer throughput experiments, 

TCP (used by HTTP) is used to transport web files. Since TCP throughput suffers 

greatly from packet losses, reordering, large round-trip packet delays on the channel 

(3 ~ 4 seconds on a GPRS channel), and long channel blockage periods, our scheme 

faces a very challenging situation in which maintaining good TCP throughput over N 

unstable channels is difficult. It is nature that the aggregate TCP throughput achieved 

over N channels under our scheme is less than the aggregate UDP throughput 

achieved over N channels in the calibration tests.    

 

Therefore, in the following subsection we will divide the TCP throughput of our 

scheme by the TCP throughput achieved over one channel (3.3 KB/sec) to calculate 

its speedup. This speedup represents the ratio of the performance of our N-channel 

scheme to the performance of a 1-channel scheme on the same commercial GPRS 

network. A high ratio value indicates that our scheme can better utilize the given N 

channels while a low value indicates that our scheme cannot.  

 

5.2.2 Evaluation Experiments 

 

We measured the web download throughput of our scheme when one, two, three, 

and four GPRS channels are used. In each of these experiment suites, we measured 

the download throughput under different file sizes. For each file size, we repeated the 



 - 34 -

experiment 10 times and report their average and standard deviation. In the 

experiments, the web server hosting these files resides on the same subnet as the PS. 

 

In the first experiment suite, no RN provides additional GPRS channel 

bandwidth to help the DN download its requested file. Thus, the packets carrying the 

file’s content are transmitted on the DN’s own GRPS channel. Figure 5.2.2-1 shows 

that the average throughput without applying out scheme is about 3.3 KB/sec when 

the file size is greater than 50 KB. For each average throughput data point, the point 

above it is the average plus the standard deviation and the point below it is the 

average minus the standard deviation. 
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Figure 5.2.2-1: The average file download throughput with different sizes (through 

only one GPRS channel). 

 

In the second experiment suite, one RN is used and its channel and the DN’s 

channel are used to download the file in parallel. Figure 5.2.2-2 shows that the 
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average throughput is about 6 KB/sec when the file size exceeds 90 KB. The 

throughput speedup is 1.82 (6/3.3). 

 

In the third experiment suite, two RNs are used and in total three GPRS channels 

are used to download the file in parallel. Figure 5.2.2-3 shows that the average 

throughput is about 8 KB/sec when the file size exceeds 560 KB. The throughput 

speedup is 2.42 (8/3.3). 

 

In the fourth experiment suite, three RNs are used and in total four GPRS 

channels are used to download the requested file in parallel. Figure 5.2.2-4 shows that 

the average throughput is about 9 KB/sec when the file size exceeds 550 KB. The 

throughput speedup is 2.72 (9/3.3). 
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Figure 5.2.2-2: The average file download throughput with different sizes (through 

two GPRS channels). 
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Figure 5.2.2-3: The average file download throughput with different sizes (through 

three GPRS channels).  
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Figure 5.2.2-4: The average file download throughput with different sizes (through 
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four GPRS channels). 

 

From Figure 5.2.2-1 to Figure 5.2.2-4, we see that the average file download 

throughput is low, when the file size is small. This phenomenon can be explained as 

follows. After a TCP connection is set up, it immediately enters the TCP slow-start 

congestion control phase. In this phase, the TCP sender exponentially increases its 

sending rate (its congestion window size ---- the number of unacknowledged packets 

that can be sent out per RTT) in each subsequent RTT, where RTT is the round trip 

time between the TCP sender and receiver. For example, a TCP sender sends out 1, 2, 

4, 8, and 16 packets in the 1st, 2nd, 3rd, 4th, and 5th RTT respectively, If the size of the 

requested file is small and thus only few packets need to carry its content, finishing 

the file transfer will use only the first few RTTs. Since a TCP sender’s sending rate is 

its congestion window size divided by its RTT and the GPRS channel’s RTT is very 

large (3 ~ 4 seconds for a standard-sized 1500-byte packet), the TCP sender’s sending 

rates in the first few RTTs are the lowest. As such, TCP throughputs on GPRS 

channels are low for small files regardless whether our scheme is used or not.  

 

To further evaluate our scheme, we measured the web download throughput 

when five GPRS channels are used. In that experiment suite, because we only have 

four GPRS accounts of ChungHwa Telecom Inc, we used three RN operated on the 

ChungHwa GPRS network, and one RN operated on FarEastone GPRS network. So, 

in total five GPRS channels are used to download the requested file in parallel.  

However, this experiment didn’t perform well, and the throughput even is lower than 

5 Kbytes/sec (twice the TCP GPRS throughput without using our scheme) sometimes. 

The unstable link quality on FarEastone GPRS network in the NCTU campus did 

decrease the performance, and more data packets would be out of order in this 
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experiment. Therefore, adding one more channel doesn’t necessary increase the 

performance of our scheme depending on the signal strength of the new GPRS 

channel.       

Figure 5.2.2-5 is the conclusion from Figure 5.2.2-1 to Figure 5.2.2-4. Readers 

can also reference Figure A-1 in the Appendix. 

 

Figure 5.2.2-6 (Figure A-2) shows the speedup rate when we used different 

number of RNs in our experiments. Our scheme can get triple times of TCP GPRS 

throughput when there are three RNs forwarding data packets. 
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Figure 5.2.2-5: experiment results in the real world 
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Figure 5.2.2-6: experiment speedup in the real world  

 

The results shown in these figures and the above explanation suggest that our 

scheme is more suitable for downloading large files than downloading small files. 

Actually, when the download file size is small, there is no need to use our scheme to 

further reduce the small transfer time. 

 

6. SIMULATION SETTINGS AND RESULTS 

In the simulation experiments, we evaluated our scheme about some issues such 

as system performance when number of RNs increases and mobility support in 

MANET.  
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6.1 Simulation Settings and Modifications 

 

To run our applications such as the trunk daemon and the mobile node daemon on 

NCTUns2.0, some settings and modifications should be done. On NCTUns2.0, 

modified kernel uses Source-Destination-Pair IP address scheme to route packets 

from applications. But by using the fully-integrated GUI environment, a user need not 

know the concept and need not use the source-destination-pair address scheme at all. 

However, when users try to use RAW socket, and install firewall rules to divert 

packets from IP queue, their application should be modified to work well under the 

Source-Destination-Pair IP address scheme of NCTUns2.0. So, due to the 

Source-Destination-Pair IP address scheme on NCTUns2.0, we do some 

modifications in our trunk daemon and mobile node daemon. 

 

We focus on some issues such as system performance when number of RNs 

increases and mobility support in MANET when doing the simulation experiments. 

Therefore, we used our modified traffic generators to take place the modified apache 

server in our scheme. Then, we can evaluate our scheme by one TCP connection or a 

CBR UDP packet stream. We also can evaluate the performance of our routing 

scheme which is hard to be evaluated in the real world.  

 

6.2 Simulations Results 

 

6.2.1 Calibration Tests for the GPRS package on NCTUns2.0 

 

In those calibration tests, we want to evaluate the GPRS system performs on 

NCTUns2.0 without using our scheme.  
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In Figure 6.2.1-1, there is a topology of common GPRS network on NCTUns2.0. 

Node 1 is the Base Station, and the Base station connects to a host (Node 5) in the 

Internet. Node 7 is a cellular phone. Node 6 is the mobile computer equipped with a 

GPRS network card and an 802.11b wireless card.  

 

 

Figure 6.2.1-1: simple topology of GPRS network 

 

Figure 6.2.1-2 shows the protocol stack of a GPRS Base Station. Each RLC 

module has its own transmission queue with a limited number of slots. A packet is 

allowed to enter an RLC module if the transmission queue in that RLC module has 

enough slots to store that packet. Otherwise, the packet will be put back into the 

GPRS FIFO module until the RLC module has enough space for storing this incoming 

packet. 
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Figure 6.2.1-2: the protocol stacks of base station 

 

We present the GPRS TCP throughput in Figure 6.2.1-3 (Figure A-3) without 

using our scheme. The pink line represents the current queue size of GPRS FIFO, and 

the blue line represents the TCP throughput.   

 

The GPRS FIFO is overflow between 36 seconds to 55 seconds, so GPRS base 

station would drop some data packets during that period. This condition would trigger 

the congestion control of a TCP connection, so the TCP throughput drops to zero 

between 61 seconds to 78 seconds. The size of current GPRS FIFO decreases after 58 

seconds, therefore slow start of the TCP connection can progress. After a while, the 

GPRS TCP throughput climbs up again. 

 

We present the GPRS UDP throughput in Figure 6.2.1-4 (Figure A-4) without 

using our scheme. We pump a CBR UDP packet stream about 3.75 Kbytes/sec on PS. 
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Although the GPRS FIFO is overflow after 25 seconds, the UDP throughput keeps 

steady at 3.74 Kbytes/sec. It is because the UDP throughput wouldn’t decrease even 

when there are some packet losses on GPRS network. 
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Figure 6.2.1-3: GPRS TCP Throughput 
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Figure 6.2.1-4: GPRS UDP Throughput 
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6.2.2 Evaluation Experiments with a Simple Wireless Physical Layer Module 

 

We measured the web download throughput of our scheme on NCTUns2.0 using 

a simple wireless physical layer module (PHY) when different numbers of static RNs 

are forwarding packets to DN. By using Simple wireless PHY on NCTUns2.0, a 

receiver would not suffer any packet loss within the transmission range of a sender. 

In each of the simulation experiment suites below, we measured the download 

throughput under different file sizes. For each file size, we repeated the experiment 10 

times and report their average and standard deviation. 

 

6.2.2.1 TCP 

 

First, we measure the TCP throughput of our scheme on NCTUns2.0. 

 

6.2.2.1.1 Single Hop Count 

 

In those experiments below, every RN is just one hop away from DN, so data 

packets can be sent to DN directly from each RN in MANET (Figure 6.2.2.1.1-1). 

Node 7 is a DN, and the red circle represents its transmission range. So, every RN is 

within the transmission range of DN. 
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Figure 6.2.2.1.1-1: simulation topology 1  

 

In the first experiment suite, no RN provides additional GPRS channel 

bandwidth to help the DN download its requested file. Thus, the packets carrying the 

file’s content are transmitted on the DN’s own GRPS channel. Figure 6.2.2.1.1-2 

shows that the average throughput without applying out scheme is about 3.7 KB/sec. 

For each average throughput data point, the point above it is the average plus the 

standard deviation and the point below it is the average minus the standard deviation. 

In this experiment suite, TCP triggered Fast Retransmission about 38 times. 
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Figure 6.2.2.1.1-2: GPRS TCP Throughput 

 

In the second experiment suite, one RN is used and its channel and the DN’s 

channel are used to download the file in parallel. Figure 6.2.2.1.1-3 shows that the 

average throughput is about 7.335 KB/sec. The throughput speedup is 1.98 (7.335 / 

3.7). In this experiment suite, TCP triggered Fast Retransmission about 0~7 times, so 

TCP is well protected in our data transfer protocol.  

 

In the third experiment suite, two RNs are used and in total three GPRS channels 

are used to download the file in parallel. Figure 6.2.2.1.1-4 shows that the average 

throughput is about 10.83 KB/sec. The throughput speedup is 2.92 (10.83/3.7). 

 

In the fourth experiment suite, three RNs are used and in total four GPRS 

channels are used to download the file in parallel. Figure 6.2.2.1.1-5 shows that the 

average throughput is about 11.825 KB/sec. The throughput speedup is 3.19 

(11.825/3.7). 
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Figure 6.2.2.1.1-3: GPRS TCP Throughput – One Relay 
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Figure 6.2.2.1.1-4: GPRS TCP Throughput – Two Relay 
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Figure 6.2.2.1.1-5: GPRS TCP Throughput – Three Relay 

 

In the fifth experiment suite, four RNs are used and in total five GPRS channels 

are used to download the file in parallel. Figure 6.2.2.1.1-6 shows that the average 

throughput is about 13.614 KB/sec. The throughput speedup is 3.68 (13.614/3.7). 
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Figure 6.2.2.1.1-6: GPRS TCP Throughput – Four Relay 

 

In the second to fifth experiments above, each TCP connection triggered Fast 

Retransmission about 0~7 times, so TCP is well protected in the experiments above. 

However, the current GPRS FIFO queue size mentioned in section 6.2.1 is less than 

Max GPRS FIFO size all the time. So, there is no packet loss in GPRS Base Station. 

This is because we queue each packet in GPRS FIFO queue when the block queue of 

RLC module layer in GPRS Base Station is full.  

 

In Figure 6.2.2.1.1-7, there are three TCP traffic flows belonged to three different 

experiments of the fifth experiment suit. The throughput of TCP swings between 20 

Kbytes/sec to 10 Kbytes/sec, because DN should reorder data packets which it 

received and data packets from each RN. 
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Figure 6.2.2.1.1-7: TCP Traffic Flow – Four Relay 

 

In the sixth experiment suite, five RNs are used and in total six GPRS channels 

are used to download the file in parallel. Figure 6.2.2.1.1-8 shows that the average 

throughput is about 14.13 KB/sec. The throughput speedup is 3.81 (14.13/3.7). 
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Figure 6.2.2.1.1-8: GPRS TCP Throughput – Five Relay 

 

In Figure 6.2.2.1.1-9, there are three TCP traffic flows belonged to three different 

experiments of the sixth experiment suit. The throughput of TCP swings between 25 
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Kbytes/sec to 10 Kbytes/sec before 43 seconds. The TCP throughput of this 

experiment suit drops to zero and rises up again several times. This is because there 

are some packet losses in GPRS network, so a DN would enqueue data packets until 

all data packet in its reordering queue are in order. We observe that GPRS Base 

Station dropped some data packets after 43 seconds because the GPRS FIFO queue 

mentioned in section 6.2.1 is overflow. The maximum size of the GPRS FIFO queue 

is fixed, so the GPRS FIFO queue would be overflow more frequently when we pump 

more UDP packets into GPRS network per second. 
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Figure 6.2.2.1.1-9: TCP Traffic Flow – Five Relay 

 

In the seventh experiment suite, six RNs are used and in total seven GPRS 

channels are used to download the file in parallel. Figure 6.2.2.1.1-10 shows that the 

average throughput is about 13.12 KB/sec. The throughput speedup is 3.54 (13.12/3.7) 

even lower than the previous experiment suite using less RNs.  

 

In Figure 6.2.2.1.1-11, the TCP throughput of this experiment suit drops to zero 

and then rises up again more frequency than the previous experiment suite. The 

reason is that a DN waste more time to reorder data packets because there are more 
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packet losses than the previous experiment suite.  
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Figure 6.2.2.1.1-10: GPRS TCP Throughput – Six Relay 

 

TCP Traf f i c Fl ow -  Si x Rel ay

0

10

20

30

40

50

60

70

80

90

100

110

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109

sec

Kb
yt

es
/s

ec

Exp 1 Exp 2 Exp 3

 
Figure 6.2.2.1.1-11: TCP Traffic Flow – Six Relay 

 

In 6.2.2.1.1-12, we conclude the experiment results in section 6.2.2.1.1. 
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Figure 6.2.2.1.1-12: TCP throughput – One Hop 

 

6.2.2.1.2 Multiple Hop Counts 

 

In those experiments below, some RNs are multiple hops away from DN, so data 

packets would be forwarded by other RNs in the MANET (Figure 6.2.2.1.2-1). 

Node 7 is a DN, and the red circle represents its transmission range. So, only Node 6, 

8, and 12 are within the transmission range of DN. 
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Figure 6.2.2.1.2-1: simulation topology 2 

 

Figure 6.2.2.1.2-2 presents the experiment results of section 6.2.2.1.2. 

The experiment results in Figure 6.2.2.1.2-2 are similar to those results in Figure 

6.2.2.1.1-12. The throughput results show that the number of hop counts of routing 

paths in the ad hoc network does not affect the TCP throughputs experienced by end 

users because the underlying ad hoc network provides much more bandwidths than 

GPRS channels. 
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Figure 6.2.2.1.2-2: TCP throughput – Multiple Hops 

 

6.2.2.2 UDP 

 

We measure the UDP throughput of our scheme on NCTUns2.0, so we can 

evaluate our scheme without the affection of TCP congestion control. We used a CBR 

UDP packet stream in each experiment suit of this section. 

 

6.2.2.2.1 Single Hop Count 
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In those experiments below, every RN is just one hop away from DN, so data 

packets can be sent to DN directly from each RN in MANET (Figure 6.2.2.1.1-1). 

In the first experiment suite, no RN provides additional GPRS channel bandwidth to 

help the DN download its requested file. Thus, the packets carrying the file’s content 

are transmitted on the DN’s own GRPS channel. We pumped a CBR UDP packet 

stream about 3.75 KB/sec on PS. 

 

Figure 6.2.2.2.1-1 shows that the average throughput without applying out 

scheme is about 3.74 KB/sec. 
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Figure 6.2.2.2.1-1: GPRS UDP throughput 

 

In the second experiment suite, one RN is used and its channel and the DN’s 

channel are used to download the file in parallel. We pumped a CBR UDP packet 

stream about 7.5 KB/sec on PS. Figure 6.2.2.2.1-2 shows that the average throughput 

is about 7.45 KB/sec. The throughput speedup is 1.99 (7.45 / 3.74). 
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Figure 6.2.2.2.1-2: GPRS UDP throughput – One Relay 

 

In the third experiment suite, two RNs are used and in total three GPRS channels 

are used to download the file in parallel. We pumped a CBR UDP packet stream about 

11.25 KB/sec. Figure 6.2.2.2.1-3 shows that the average throughput is about 11.21 

KB/sec. The throughput speedup is 2.99 (11.21/3.74). 
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Figure 6.2.2.2.1-3: GPRS UDP throughput – Two Relay 

 

In the fourth experiment suite, three RNs are used and in total four GPRS 
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channels are used to download the file in parallel. We pumped a CBR UDP packet 

stream about 15 KB/sec on PS. Figure 6.2.2.2.1-4 shows that the average throughput 

is about 14.08 KB/sec. The throughput speedup is 3.76 (14.08/3.74). 
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Figure 6.2.2.2.1-4: GPRS UDP throughput –Three Relay 

 

In the fifth experiment suite, four RNs are used and in total five GPRS channels 

are used to download the file in parallel. We use a traffic generator program to 

generate a CBR UDP packet stream, the sending rate of which is about 18.75 KB/sec 

on a PS. Figure 6.2.2.2.1-5 shows that the average throughput is about 18.4 KB/sec. 

The throughput speedup is 4.91 (18.4/3.74). 
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Figure 6.2.2.2.1-5: GPRS UDP throughput – Four Relay 

 

In Figure 6.2.2.2.1-6, there are two CBR UDP traffic flows belonged to two 

different experiments of the fifth experiment suit. The throughput of TCP swings 

between 20 Kbytes/sec to 16 K. 

 

UDP Traf f i c Fl ow - Four Rel ay

0

2

4

6

8

10

12

14

16

18

20

22

24

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Sec

Kb
yt

es
/s

ec

Exp 1 Exp 2

 

Figure 6.2.2.2.1-6: UDP Traffic Flow – Four Relay 

 

In the sixth experiment suite, five RNs are used and in total six GPRS channels 

are used to download the file in parallel. We pumped a CBR UDP packet stream about 
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22.5 KB/sec on PS.  The performance when using five RNs is even worse than the 

performance when using four RNs when the download file size exceeds 200 KB.  

In Figure 6.2.2.2.1-8, there are two CBR UDP traffic flows belonged to two different 

experiments of the sixth experiment suit. The UDP throughput of this experiment suit 

drops to zero and rises up again several times. This is also because there are some 

packet losses in GPRS network, so a DN would enqueue data packets until all data 

packet in its reordering queue are in order. In our data transfer protocol, a DN would 

reorder data packets by the sequence number that is given by our scheme. 
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Figure 6.2.2.2.1-7: GPRS UDP throughput – Five Relay 
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Figure 6.2.2.2.1-8: UDP Traffic Flow – Five Relay 
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In the seventh experiment suite, six RNs are used and in total seven GPRS 

channels are used to download the file in parallel. We pumped a CBR UDP packet 

stream about 26.25 KB/sec on PS. 
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Figure 6.2.2.2.1-9: GPRS UDP throughput – Six Relay 

 

In Figure 6.2.2.2.1-10, there are two CBR UDP traffic flows belonged to two 

different experiments of the seventh experiment suit. 
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Figure 6.2.2.2.1-10: UDP Traffic Flow – Six Relay 

 

In Figure 6.2.2.2.1-11, we conclude the experiment results in section 6.2.2.2.1. 
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When the GPRS FIFO queue mentioned in section 6.2.1 is overflow, the throughput 

of our scheme would decrease as showed in sixth and seventh experiment suits.  
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Figure 6.2.2.2.1-11: UDP throughput – One Hop 

 

6.2.2.2.2 Multiple Hop Counts 

 

In those experiments below, some RNs are multiple hops away from DN, so data 

packets would be forwarded by other RNs in the MANET (Figure 6.2.2.1.2-1). 

 

Figure 6.2.2.2.2-1 presents the experiment results of section 6.2.2.2.2. 

 

The experiment results in Figure 6.2.2.2.2-1 are similar to those results in  

Figure 6.2.2.2.1-11. 
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UDP Throughput  -  Mul t i pl e Hops
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Figure 6.2.2.2.2-1: UDP throughput – Multiple Hops 

 

6.2.3 Evaluation Experiments with an Advanced Wireless Physical Layer 

Module 

 

We measured the web download throughput of our scheme on NCTUns2.0 using 

an advanced wireless physical layer module (PHY) when different numbers of static 

RNs are forwarding packets to DN. By using advanced wireless PHY on NCTUns2.0, 

our experiments would suffer the real world like propagation loss and BER. 

In each of the simulation experiment suites below, we measured the download 

throughput under different file sizes. For each file size, we repeated the experiment 10 

times and report their average and standard deviation. 

 

6.2.3.1 TCP 

 

First, we measure the TCP throughput of our scheme on NCTUns2.0 with 

advanced wireless PHY. 
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6.2.3.1.1 Single Hop Count 

 

In those experiments below, every RN is just one hop away from DN, and we 

place each RN very close to DN (Figure 6.2.3.1.1-1). 

 
Figure 6.2.3.1.1-1: simulation topology 3 

 

The transmission radius of AWPHY is about 225 meters. In Figure 6.2.3.1.1-1, 

the distance between each RN and a DN is about 100 meters, so there are few packet 

losses in this experiment. 
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Figure 6.2.3.1.1-2: TCP throughput (AWPHY) – One Hop 

 

In Figure 6.2.3.1.1-2, the experiment results when using advanced wireless PHY 

are similar to the experiment results in section 6.2.2.1.1 when using simple wireless 

PHY. 

 

6.2.3.1.2 Multiple Hop Counts 

 

In those experiments below, some RNs are multiple hops away from DN, and we 

place each mobile node from neighboring nodes within its transmission range as far as 

possible (Figure 6.2.3.1.2-1). 
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Figure 6.2.3.1.2-1: simulation topology 4 

 

In Figure 6.2.3.1.2-2, we would suffer some packet losses when data packets are 

forwarded to DN by other RNs in MANET. This phenomenon might increase the 

number of out-of-order packets. Therefore, the performance on a multiple hop 

network case could not be as good as expected.  
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Figure 6.2.3.1.2-2: TCP throughput (AWPHY) – Multiple Hops 
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6.2.3.2 UDP 

 

We measure the UDP throughput of our scheme on NCTUns2.0 with advanced 

wireless PHY, so we can evaluate our scheme without the affection of TCP congestion 

control. 

  

6.2.3.2.1 Single Hop Count 

 

In those experiments below, every RN is just one hop away from DN, and we 

place each RN very close to DN (Figure 6.2.3.1.1-1). 

 

In Figure 6.2.3.2.1, the experiment results when using advanced wireless phy are 

similar to the experiment results in section 6.2.2.2.1 when using simple wireless phy. 
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Figure 6.2.3.2.1: UDP throughput (AWPHY) – One Hop 
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6.2.3.2.2 Multiple Hop Counts 

 

In those experiments below, some RNs are multiple hops away from DN, and we 

place each mobile node from neighboring nodes within its transmission range as far as 

possible (Figure 6.2.3.1.2-1). In Figure 6.2.3.2.2, the performance on a multiple hop 

network case could not be as good as expected like section 6.2.3.1.2.  
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Figure 6.2.3.2.2: UDP throughput (AWPHY) – Multiple Hops 

 

6.3 Routing Experiments 

 

Our scheme can support the mobility in MANET. We evaluated our routing 

scheme in section 6.3. 

 

6.3.1 Basic Routing Experiment 
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In this basic routing experiment (Figure 6.3.1-1), node 7 is a DN and node 8 

moved out and in the DN’s transmission range. Node 9 and node 10 is out of the DN’s 

transmission range, so node 8 forwarded data packets to the DN for them at the 

beginning. During total 73 seconds simulation time, node 8 moved out the DN’s 

transmission range in 31 seconds and moved in the DN’s transmission range again in 

59 seconds. So, there was only one RN relaying for the DN between 31 seconds to 59 

seconds. 

 

 

Figure 6.3.1-1: basic routing topology  

 

In Figure 6.3.1-2 (Figure A-5), we evaluated TCP throughput in this routing 

experiment. During 13 seconds to 31 seconds, there were four RNs relaying for the 

DN, and the TCP throughput swung between 20 Kbytes/sec to 10 K as same as the 

results measured before. Node 8, 9 and 10 lose connection with the DN in 31 seconds. 

The data packets sent to those nodes can’t arrive the DN. This situation would 
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increase the number of out-of-order packets in DN’s reordering queue, so the TCP 

throughput dropped to zero in 33 seconds. If this situation caused 20 packets loss, our 

data transfer protocol can quickly fast retransmit some former holes in the DN’s 

reordering queue. However, retransmitting the later holes in the DN’s reordering 

queue may take more time due to the constraints of SACK recovery mechanism. 

Therefore, the TCP throughput was raised up in 37 seconds due to fast recovery of 

former holes, and raised up again in 44 seconds due to fast recovery of later holes.  

 

Between 44 seconds to 59 seconds, there was only one RN relaying for DN, the 

average TCP throughput was 7 Kbytes/sec as same as experiment results before. Node 

8 moved within the transmission range of the DN in 59 seconds, so there were four 

RNs relaying packets between 59 seconds to 73 seconds. The TCP throughput was 

raised up in 64 seconds and swung between 20 Kbytes/sec to 10 K again.  

 

 

Figure 6.3.1-2: TCP throughput of the basic routing experiment 

 

6.3.2 Integrated Experiment 
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We did an experiment that integrates our data transfer scheme and our ad hoc 

routing scheme. We used five vehicles running on a closed road shown in Figure 

6.3.2-1 (the road encloses a rectangular area, each segment of which is of length 1 

kilometer) to form a mobile ad hoc network. Each vehicle corresponds to a mobile 

node in this MANET. All of those five nodes move in the clockwise direction on the 

road at different speeds. As such, distances of routing paths from one node to another 

change over time. In this field trial, we are interested in the TCP throughput received 

by the DN when one of these vehicles turns its direction at a corner because at this 

moment the topology of the formed Ad-Hoc network changes severely. 

 

 

Figure 6.3.2-1: integrated experiment topology 

 

In Figure 6.3.2-2 (Figure A-6), we show the TCP throughput traffic flow of DN 

in this experiment. Every red line in Figure 6.3.2-2 represents the topology changes of 

the formed Ad-Hoc network, and every pink dot represents the moment when the DN 

turns its direction at a corner. So, the DN turns its direction at a corner in 40, 48, 55, 
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and 64 seconds. At those four critical moments, the formed Ad-Hoc topology changed 

frequently (as there were more red lines), and the TCP throughput changed severely. 

 

This experiment result (Figure 6.3.2-2) points out that the performance of our 

scheme decreases when the Ad-Hoc topology changes severely. To improve the 

performance when the Ad-Hoc topology changes severely, we will use another 

Ad-Hoc routing protocol that is suitable for inter-vehicle communications in the 

future. 

 

 

Figure 6.3.2-2: TCP throughput of the integrated experiment 

7. DISCUSSIONS 

7.1 Market Potential 

 

Currently, cellular phones with both GSM/GPRS and WLAN interfaces have been 

introduced to the market. Such phones have the required network interfaces to use our 

scheme to speed up their file transfer throughputs over GPRS networks. Using our 
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scheme, a typical web page that contains several images or a large file can be 

downloaded quickly. Video conferencing is also feasible due to increased throughput. 

Because our scheme does not need any support from a GPRS network, the 

GPRS+WLAN trunking service provided by it can be immediately deployed in the 

current operational GPRS networks. Currently, 3G cellular networks and services are 

still very expensive and not widely available. Our GPRS+WLAN trunking service can 

use the current 2.5G networks to support high-bandwidth applications for such phones. 

The cost of our software solution is lower than the cost incurred for replacing existing 

2.5G networks with expensive 3G networks.   

 

7.2 Billing Issues 

 

A good billing policy is important to the success of our scheme if it is to be 

deployed in the real world for commercial uses. In our scheme, a user who requests to 

download a file needs to borrow the GPRS channels of his (her) neighbors to speed up 

the file download over a GPRS network. Because receiving packets from a GPRS 

channel consumes battery power and reduces the battery’s lifetime, and the cost of 

receiving packets from a GPRS channel is charged to the owner of the GPRS channel, 

there must be a good billing policy to provide incentives for GPRS users to “help” 

other users.  

 

The first step is not to charge the GPRS packets downloaded for another user to 

the owner of the used GPRS channel. Instead, they should be charged to the user who 

requests them. This step can be easily done. A GPRS network operator can set up the 

trunk daemon and web proxy server in his (her) GPRS core network. The trunk 

daemon knows which users lend their GPRS channels to the requesting user for 
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downloading data and how many packets are transferred over each of these channels. 

The borrow/lend usage statistics and accounting information can be transmitted to the 

GPRS network’s billing service center to avoid such a problem. 

 

The next step is to encourage GPRS users to help download other users’ packets. 

To provide such incentives, a network operator may credit a certain number of points 

to a helping user’s billing account for each relayed packet. Such points may be 

redeemed for gifts or be used to reduce a GPRS user’s monthly payment. Although a 

network operator may lose some profit due to these credit points, the net profit of the 

network may be increased due to increased GPRS usages.      

8. FUTURE WORK 

In the integrated experiment, the simulation result (Figure 6.3.2-2) points out that 

the performance of our scheme decreases when the Ad-Hoc topology changes 

severely. So, current Ad-Hoc routing protocol should be improved or replaced by 

other Ad-Hoc routing protocol. We plan to use the FloodRD [12] which is suitable for 

high mobility in MANET.  

 

We also plan to study how to select appropriate RNs for a DN. The relationship 

between the achieved throughput speedup and the number of helping RNs may 

depend on several factors. We need to identify several important metrics that can be 

used to select better RNs. Such metrics may include a RN’s GPRS channel quality 

and the hop count between it and the DN.  
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9. CONCLUSIONS 

In this paper, we propose, design, and implement a scheme to increase the file 

download throughput over a GPRS network. In this scheme, GPRS and WLAN 

networks are integrated. When a GPRS user issues a web request to download a file, 

several GPRS channels including one’s own channel and the channels of one’s 

neighboring users are used together to download the requested file in parallel. These 

participated users use an IEEE 802.11(b) MANET to relay their received data to the 

requesting user. Since the bandwidth of an IEEE 802.11(b) interface is much larger 

than that of a GPRS channel, these packets are forwarded to the user without 

congestion. By this scheme, the time required for downloading a large file over a 

GPRS network can be significantly reduced.  

 

Due to the design and implementation of our scheme, our scheme can be deployed 

for a real-world GPRS network without any support from it. We have evaluated the 

performance of our scheme on a real-world GPRS network and on a network 

simulator, NCTUns2.0. Our experimental results show that our scheme achieves about 

2.7X speedup over 4 GPRS channels in the real world. The simulation results are 

almost similar to our experiment results. With a smaller RTT and a better signal 

quality of the GPRS network on NCTUns2.0, we achieved better performances on 

NCTUns2.0 than the real world.  

 

Recently, cellular phones with GSM/GPRS and WLAN interfaces have been 

introduced to the market. Since our scheme can be quickly deployed for a real-world 

GPRS network, our scheme enables GSM/GPRS network operators to provide 

high-bandwidth applications for such phones using the current GSM/GPRS networks. 
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Figure A-1: experiment results in the real world 
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Figure A-2: experiment speedup in the real world  
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Figure A-3: GPRS TCP Throughput 
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GPRS UDP Throughput
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Figure A-4: GPRS UDP Throughput 

 

 
Figure A-5: TCP throughput of the basic routing experiment 

 
Figure A-6: TCP throughput of the integrated experiment 


