
國 立 交 通 大 學

資訊工程系
碩士論文

透過 802.11b WLAN 來增進 GPRS的傳輸速率

Increasing GPRS Data Transfer Throughput via The

Assistance of WLAN

研究生: 蔡宏儒

指導教授: 王協源

中華民國九十四年六月

透過 802.11b WLAN 來增進 GPRS的傳輸速率

Increasing GPRS Data Transfer Throughput via The Assistance of
WLAN

研究生: 蔡宏儒 Student : Hung-Ju Tsai

指導教授: 王協源 Advisor : Shie-Yuan Wang

國 立 交 通 大 學

資訊工程系

碩士論文

A Thesis
Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of Requirements
for the Degree of

Master
in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 III

中文摘要

近來由於網路的普及, 許多使用者需要隨時隨地的使用網路資源. 舉例來說,

使用者可能剛好在戶外卻突然要收發一個緊急的 email.當人們遠離他們的辦公室

或是家裡時, 可以利用廣域的 GPRS網路來持續的使用網路. 然而一個 GPRS頻

道所提供的頻寬卻是非常的低. 除了 GPRS網路, 3G網路也可以提供廣域的服務

和更高的頻寬. 但是不幸的, 在發表本篇論文時, 市場上還沒有 3G的產品.

在本篇論文中, 我們提出了一個方法可以增加GPRS使用者的檔案傳輸速率.

我們的方法是利用多條的GPRS頻道來平行下載檔案. 使用網路服務的使用者除

了利用自己的GPRS頻道下載資料外, 同時間也利用其他鄰近的GPRS頻道來幫

助下載. 當鄰近的 GPRS 頻道收到資料封包後, 這些鄰近的 GPRS 頻道會利用

802.11b 無線網路來傳送收到的資料封包給要求網路服務的那一位使用者.

我們設計並實作出上述的方法. 且我們的系統並不需要GPRS業者的任何支

援. 我們量測了此系統再真實世界的表現. 實驗結果顯示在同時有四個 GPRS 頻

道平行下載情況中, 我們的系統可以達到約原本傳輸速率的 2.7 倍. 為了量測我

們系統在更複雜的拓撲和移動的情形下之表現. 我們使用 NCTUns2.0 模擬器,

模擬並量測系統的表現.

 IV

Abstract

Recently the Internet becomes more and more popular. Users may need Internet

access everywhere. For example, one may need to browse a web page or want to

send/receive emails outdoors. To remain connected to the Internet, people may use

wide-area GPRS networks when they are away from their home and office networks.

A GPRS channel, however, provides very little bandwidth. Excepting a GPRS

network, a 3G network is another choice that provides much higher bandwidth.

Unfortunately, a 3G network has not put to market yet.

In this paper, we propose a scheme to increase the file transfer throughput for a

GPRS user. Our approach is to transfer a requested file over multiple GPRS channels

in parallel. The requesting user uses one’s channel and those of one’s neighbors for

the transfer. When receiving packets from their GPRS channels, these neighbors

forward them to the requesting user through a mobile ad-hoc network (MANET)

using IEEE 802.11 (b) WLAN interfaces.

We have designed and implemented our scheme. Our scheme can be deployed

for a real-world GPRS network without any support from it. We have evaluated the

performance of our scheme on a real-world GPRS network. Our experimental results

show that our scheme achieves about 2.7X speedup over 4 GPRS channels. To further

evaluate our scheme with a much complicated topology, we have simulated our

scheme and evaluated the performance of it on network simulator NCTUns2.0.

 V

致 謝

首先，感謝恩師王協源教授二年來對我的悉心指導，由於

老師給我們的扎實訓練，研究所這二年讓我在專業領域上

獲益良多。

感謝吳暁光教授以及賴威光教授撥冗來到交通大學進行口

試，以及對論文的建議，讓這篇論文更加完善。

感謝網路與系統實驗室的所有成員，因為有你們的陪伴以

及彼此間的協助，讓我在研究所二年不僅學到很多，生活

也很充實快樂。

感謝許多朋友的幫忙與陪伴，如以前的大學同學和室友，

清大管樂社的學長學弟等，和一旁默默陪伴的嫚綺，讓我

在新竹的生活能順利又愉快。

最後感謝父母的支持，一路走來陪伴我，讓我在求學過程

中順暢無後顧之優能專心於學業之中。

 VI

Table of Contents
1. Introduction………………………………………………………………………..1
2. Related Work………………………………………………………………………3
3. System Design and Implementation ….…………………………………………...7

3.1 System Architecture…………………………………………………………...7
3.2 System Implementation………………………………………………………..9

3.2.1 Trunk Daemon and Web Proxy Server………………………………...9
3.2.2 Mobile Node Daemon and Application………………………………13

4. Protocol Design…………………………………………………………..………15
4.1 Initialization Protocol…………………………………………………...……16
4.2 Data Transfer Protocol………………………………………………….……20

4.2.1 Improvement of Acknowledgement…………………………….……21
4.2.2 Fast Retransmission in our scheme…………………………………..22
4.2.3 Improved Fast Retransmission in our scheme………………….…….22

4.3 Ad-Hoc Routing Protocol………………………………………………..…...23
4.3.1 Mobility Issues……………………………………………………….23

4.4 Reset Protocol…………………………………………………………….….24
5. Experimental Settings and Results…………………………………………….…25

5.1 Experimental Settings………………………………………………………..26
5.2 Experimental Results…………………………………………………………29

5.2.1 Calibration Tests……………………………………………………...29
5.2.2 Evaluation Experiments……………………………………………...33

6. Simulation Settings and Results………………………………………………….39
6.1 Simulation Settings and Modifications………………………………………40
6.2 Simulation Results…….……………………………………………………...40

6.2.1 Calibration Tests for the GPRS package on NCTUns2.0…………….40
6.2.2 Evaluation Experiments with a Simple Wireless Physical Layer

Module……………………………………………………………….44
6.2.2.1 TCP………………………………………………………………44

6.2.2.1.1 Single Hop Count……………………………………...…44
6.2.2.1.2 Multiple Hop Counts…………………………………..…52

6.2.2.2 UDP………………………………………………………………53
6.2.2.2.1 Single Hop Count………………………………………...53
6.2.2.2.2 Multiple Hop Counts……………………………………..60

6.2.3 Evaluation Experiments with an Advanced Wireless Physical Layer
Module……………………………………………….………………61

6.2.3.1 TCP………………………………………………………………61

 VII

6.2.3.1.1 Single Hop Count………………………………………...62
6.2.3.1.2 Multiple Hop Counts……………………………………..63

6.2.3.2 UDP………………………………………………………………65
6.2.3.2.1 Single Hop Count………………………………………...65
6.2.3.2.2 Multiple Hop Counts……………………………………..66

6.3 Routing Experiments…………………………………………………………66
6.3.1 Basic Routing Experiments…………………………………………..66
6.3.2 Integrated Experiment………………………………………………..68

7. Discussions……………………………………………………………………….70
7.1 Market Potential……………………………………………………………...70
7.2 Billing Issues…………………………………………………………………71

8. Future Work………………………………………………………………………72
9. Conclusions………………………………………………………………………73
References……………………………………………………………………………74
Appendix…………………………………………………………………………….76

 VIII

List of Figures
Figure 3.1: The high-level system architecture………………………………………..9
Figure 3.2.1-1: The trunk daemon sets firewall rules to intercept and dispatch packets
to the DN and its helping RNs……………………………………………………….10
Figure 3.2.1-2: the data structure of our acknowledgement scheme…………………12
Figure 3.2.2: The mobile node daemon reorders out-of-order packets, and then sends
them to the web browser through a raw socket………………………………………14
Figure 4.1-1: the initialization protocol (1)…………………………………………..17
Figure 4.1-2: the initialization protocol (2)…………………………………………..18
Figure 4.1-3: the initialization protocol (3)…………………………………………..20
Figure 4.2: The data transfer protocol………………………………………………..21
Figure 4.3.1: a moving motorcade…………………………………………………...24
Figure 4.4: The reset protocol………………………………………………………..25
Figure 5.1-1: The trunk daemon……………………………………………………...27
Figure 5.1-2: Four notebook computers are used in experiments. One of them is used
as the DN while the others are used as the DN’s helping RNs………………………27
Figure 5.1-3: Each notebook computer is equipped with an IEEE 802.11(b) WLAN
interface card and a GPRS interface card…………………………………………….28
Figure 5.2.1-1: The throughput of one GPRS channel……………………………….31
Figure 5.2.1-2: The throughputs of two GPRS channels…………………………….31
Figure 5.2.1-3: The throughputs of three GPRS channels…………………………...32
Figure 5.2.1-4: The throughputs of four GPRS channels…………………….………32
Figure 5.2.2-1: The average file download throughput with different sizes (through
only one GPRS channel)……………………………………………………………..34
Figure 5.2.2-2: The average file download throughput with different sizes (through
two GPRS channels)………………………………………………………………….35
Figure 5.2.2-3: The average file download throughput with different sizes (through
three GPRS channels)………………………………………………………………...36
Figure 5.2.2-4: The average file download throughput with different sizes (through
four GPRS channels)…………………………………………………………………36
Figure 5.2.2-5: experiment results in the real world…………………………………38
Figure 5.2.2-6: experiment speedup in the real world ……………………………….39
Figure 6.2.1-1: simple topology of GPRS network…………………………………..41
Figure 6.2.1-2: the protocol stacks of base station……………….………………..42
Figure 6.2.1-3: GPRS TCP Throughput……………………………………………...43
Figure 6.2.1-4: GPRS UDP Throughput……………………………………………..43
Figure 6.2.2.1.1-1: simulation topology 1……………………………………………45

 IX

Figure 6.2.2.1.1-2: GPRS TCP Throughput………………………………………….45
Figure 6.2.2.1.1-3: GPRS TCP Throughput – One Relay……………………………46
Figure 6.2.2.1.1-4: GPRS TCP Throughput – Two Relay……………………………47
Figure 6.2.2.1.1-5: GPRS TCP Throughput – Three Relay…………………………..47
Figure 6.2.2.1.1-6: GPRS TCP Throughput – Four Relay…………………………...48
Figure 6.2.2.1.1-7: TCP Traffic Flow – Four Relay………………………………….49
Figure 6.2.2.1.1-8: GPRS TCP Throughput – Five Relay……………………………49
Figure 6.2.2.1.1-9: TCP Traffic Flow – Five Relay………………………………….50
Figure 6.2.2.1.1-10: GPRS TCP Throughput – Six Relay…………………………...51
Figure 6.2.2.1.1-11: TCP Traffic Flow – Six Relay………………………………….51
Figure 6.2.2.1.1-12: TCP throughput – One Hop…………………………………….52
Figure 6.2.2.1.2-1: simulation topology 2……………………………………………52
Figure 6.2.2.1.2-2: TCP throughput – Multiple Hops………………………………..53
Figure 6.2.2.2.1-1: GPRS UDP throughput…………………………………………..54
Figure 6.2.2.2.1-2: GPRS UDP throughput – One Relay…………………………….55
Figure 6.2.2.2.1-3: GPRS UDP throughput – Two Relay……………………………55
Figure 6.2.2.2.1-4: GPRS UDP throughput –Three Relay…………………………...56
Figure 6.2.2.2.1-5: GPRS UDP throughput – Four Relay……………………………57
Figure 6.2.2.2.1-6: UDP Traffic Flow – Four Relay………………………………....57
Figure 6.2.2.2.1-7: GPRS UDP throughput – Five Relay……………………………58
Figure 6.2.2.2.1-8: UDP Traffic Flow – Five Relay………………………………….58
Figure 6.2.2.2.1-9: GPRS UDP throughput – Six Relay……………………………..59
Figure 6.2.2.2.1-10: UDP Traffic Flow – Six Relay…………………………………59
Figure 6.2.2.2.1-11: UDP throughput – One Hop……………………………………60
Figure 6.2.2.2.2-1: UDP throughput – Multiple Hops……………………………….61
Figure 6.2.3.1.1-1: simulation topology 3……………………………………………62
Figure 6.2.3.1.1-2: TCP throughput (AWPHY) – One Hop………………………….63
Figure 6.2.3.1.2-1: simulation topology 4……………………………………………64
Figure 6.2.3.1.2-2: TCP throughput (AWPHY) – Multiple Hops……………………64
Figure 6.2.3.2.1: UDP throughput (AWPHY) – One Hop…………………………...65
Figure 6.2.3.2.2: UDP throughput (AWPHY) – Multiple Hops……………………..66
Figure 6.3.1-1: basic routing topology……………………………………………….67
Figure 6.3.1-2: TCP throughput of the basic routing experiment……………………68
Figure 6.3.2-1: integrated experiment topology……………………………………...69
Figure 6.3.2-2: TCP throughput of the integrated experiment……………………….70
Figure A-1: experiment results in the real world…………………………………….76
Figure A-2: experiment speedup in the real world…………………………………. .76
Figure A-3: GPRS TCP Throughput…………………………………………………76

 X

Figure A-4: GPRS UDP Throughput…………………………………………………77
Figure A-5: TCP throughput of the basic routing experiment………………………..77
Figure A-6: TCP throughput of the integrated experiment…………………………...77

 - 1 -

1. INTRODUCTION

GPRS (General Packet Radio Service) is a data service that allows information to

be sent and received across a mobile telephone network. In such a network, the

transmission distance between a base station and a mobile device can range from

hundreds of meters to thousands of meters. GPRS is wide-area and conveniently

available in indoor and outdoor places covered with a base station’s signal.

Although GPRS provides several advantages such as high availability and

support for high mobility, a GPRS user, however, receives very little transfer

throughput over a GPRS channel. In Taipei city, average throughput of GPRS is 3.5

Kbytes. The maximum download/upload throughput achieved is only 36/12 Kbps

using the common 3+1 package, where 3 and 1 time slots are allocated to downlink

and uplink traffic, respectively. On such a low-bandwidth network, applications that

demand high bandwidth will not perform satisfactorily.

In this thesis, we propose a scheme to increase the file download throughput for

a GPRS user. The main idea is to download a requested file over multiple GPRS

channels in parallel. If a user wants to download a large file through the GPRS

network (this user is called the request originator in the following description), he

would ask for bandwidth support from his neighboring users. Those neighboring users

who are willing to help and are not using their GPRS bandwidth use their GPRS

channels to help download the file. The requested file then is downloaded over these

GRRS channels in parallel. When receiving packets from these GPRS channels, these

helpers forward them to the request originator through a mobile ad-hoc network

(MANET) using IEEE 802.11 (b) WLAN interfaces. Since the bandwidth of an IEEE

 - 2 -

802.11(b) interface is 11 Mbps, which is much larger than the bandwidth of a GPRS

channel, the request originator can simultaneously receive these packets without

congestion. By this scheme, the time required for downloading a large file over a

GPRS network can be reduced. We design this scheme for the user both on a wide

area network with low bandwidth and long latency such as GPRS network and on a

local area network with high bandwidth and short latency such as IEEE 802.11(b)

network.

The design and implementation of our scheme can be readily deployed for a

real-world GPRS network without any support from it. In our scheme, only two

daemon programs and one slightly modified web proxy server (Apache) need to be

run. One daemon program is run on the mobile host. The other daemon program and

the web proxy server are run on an Internet host, which can be located in any subnet

of the Internet. According to our experimental results, on average, about 2.7X

throughput speedup can be achieved over 4 GPRS channels. We also evaluated our

scheme about some issues such as mobility support in MANET on NCTUns2.0 [11].

Recently, cellular phones equipped with GSM/GPRS and WLAN interfaces have

been introduced to the market. Such phones have the required network interfaces to

use our scheme. Since our scheme can be readily deployed for a real-world GPRS

network, before expensive 3G networks and services are widely deployed, our scheme

provides a low-cost solution for GSM/GPRS network operators to use their current

2.5G networks to provide high-bandwidth applications for such phones.

In the rest of this paper, we first survey related work in Section 2. Then we

introduce the design and implementation of our scheme in Section 3. In Section 4, we

 - 3 -

describe the protocol designs of our scheme in detail. In Section 5, we presented the

experimental settings and results. In Section 6, we presented the simulation settings

and results on NCTUns2.0. In Section 7, we discuss some issues of our scheme. In

Section 8, we point out future work. Finally, Section 9 concludes this paper.

2. RELATED WORK

In the literature, several approaches have been proposed to integrate WLAN and

GPRS networks to achieve better performance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. We

categorize those approaches into three different groups.

We group UCAN [1], an approach [5], and 7DS [10] into the first category.

Protocols in this category transmit users’ data without using parallel transmission

mechanism. Those protocols extend GPRS network coverage or always download

data using one better GPRS channel quality by integrating WLAN and GPRS

networks.

UCAN [1] also aims to reduce the file download time over a GPRS network. In

UCAN, a download request originator, called the destination node, chooses a

neighboring node whose GPRS channel’s quality is better than that of its own channel

to be its proxy node. When the destination node wants to download a large file

through the GPRS network, it informs the base station of its proxy node. After

receiving this information, the base station sends the requested file to the proxy node

through its GPRS channel. The proxy node then forwards the packets of this file to the

 - 4 -

destination node through a MANET.

The motivation for proposing UCAN is that a low-throughput file transfer is

mainly due to the use of a low-quality GPRS channel; therefore, finding another

channel with a better quality to download the file can improve the file transfer

throughput for a destination node that has a low-quality channel. Although in UCAN

both GPRS and WLAN are used (which is similar to our scheme), only one GPRS

channel is used to download a requested file at any time. This is different from our

multi-channel scheme and it limits the maximum achievable download throughput to

be a GPRS channel’s bandwidth. Moreover, supports from the GPRS network are

needed to modify base stations in UCAN whereas in our scheme this is unnecessary.

 In the approach [5], the authors attempt to improve the reliability of coverage in

cellular networks. Its design extends a mobile phone call by employing an

intermediary to carry this call. Thus, a mobile phone call may become a 2-hop call.

The intermediary can be a mobile device or a vehicle with sufficient power resources.

A MANET is employed to achieve better reliability in a cellular network; however, it

may increase the intra-cell interference. The goals, design, and implementation of this

scheme are different from those of our scheme.

In 7DS [10], the authors use the concept of peer-to-peer scheme. Once a user

downloads data from a GPRS network, all the other users in the formed Ad-Hoc

network can retrieve the data from this user in MANET.

We group an approach [2], iCAR [3], and MADF [4] into the second category.

Protocols in this category also transmit users’ data without using parallel transmission

 - 5 -

mechanism. Those protocols improve the performance of GPRS base station by using

Ad-Hoc network.

In [2], the authors proposed a mechanism for smooth handovers between WLAN

and GPRS networks. The authors defined the area reachable from a base station in

single hop as a cell. If the source node and the destination node stay in the same cell,

the packets sent from the source node to the destination node need not pass through

the base station. Instead, other mobile nodes located in the same cell use a MANET to

relay these packets. In this case, a multi-hop routing mechanism has to be involved. If

the source node and destination node do not stay in the same cell, the source node first

sends its packets to the base station with which it is associated. Then the packets are

forwarded to the base station with which the destination node is associated through

the GPRS backbone network. Finally, the destination node receives the packets

through its GPRS channel. The transmission path between the source node and its

associated base station may be one-hop (using GPRS) or multi-hop (using MANET),

so is the path between the destination node and its associated base station. This

approach aims to smoothly switch the transmission path between a WLAN and a

GPRS networks. Its goal, design, and implementation are different from those of our

scheme.

In iCAR [3], some ad hoc relay stations (ARSs) are placed at strategic locations

so that a mobile host’s packets can be relayed by these ARSs to a base station that is

not the mobile node’ associated base station. If a cell has a heavy traffic load and its

adjacent cells do not have heavy loads, a mobile host’s packets can be diverted from

its cell to an adjacent cell so that its cell’s congestion is reduced. The iCAR approach

can reduce the call blocking probability for circuit-like traffic by diverting traffic from

 - 6 -

heavily-loaded cells to nearby lightly-loaded cells. Since a mobile host still uses only

a channel in iCAR, the goal, design, and implementation of iCAR are different from

those of our scheme.

Another system is MADF [4]. The authors defined a cell with a heavy traffic

load as a hot cell while a cell with a light traffic load as a cold cell. MADF proposes a

dynamic channel allocation scheme that assigns more channels to hot cells. In MADF,

ad-hoc overlay devices are employed and located at the places between hot cells and

cold cells. Users in hot cells can connect to adjacent cold cells through these ad-hoc

relay devices over specific channels. MADF prevents packet delay from increasing in

a cell with a heavy traffic load. This approach attempts to overcome congestions

within a heavily-loaded cell. It is different from our multi-channel scheme.

We group pTCP [6], MAR [9], MC2 [8], and MoPED [7] into the third category.

Protocols in this category transmit users’ data using parallel transmission mechanism.

pTCP [6] is an end-to-end transport layer protocol for striped connections. It modifies

TCP protocol for parallel transmission, so users can operate their protocol not only on

a GPRS network. However, pTCP is not transparent to users, because users must

modify their kernel in this approach.

In MAR [9], authors implement a computer router infrastructure for the mobile

Internet, called MAR router. The MAR router can connect to heterogeneous networks

such as a GPRS network or an 802.11b infrastructure network at the same time.

Therefore, the MAR router can download data in parallel for the users who connect to

the MAR router. In their scheme, the authors modify kernels of the MAR router and

the MAR Server Proxy. In MAR, users must be close to the MAR router, and users’

 - 7 -

transmission speed is limited by the bandwidth of their endpoint device.

In MC2 [8], and MoPED [7], their approaches are similar. Those two approaches

both are about intelligent bandwidth aggregation. The main idea of MC2 or MoPED is

to download a requested file over multiple channels in parallel. Although, the main

idea of our scheme is similar to MC2 and MoPED, their approaches don’t study

mobility issues as well as ours.

In this paper, we propose a multi-channel scheme to improve the file download

throughput over a GPRS network. The design and implementation of our scheme do

not require any support from the GPRS cellular network. Moreover, our scheme

supports mobility in MANET that all approaches above seldom mention about.

3. SYSTEM DESIGN AND IMPLEMENTATION

3.1 System Architecture

A high-level architecture of our scheme is depicted in Figure 3.1, which shows the

components of the whole system. The functionalities of each component are described

below:

 Web Server (WS): WS is a content provider that provides data for users. It can be

any on-line information server on the Internet such as a ftp server.

 Proxy Server (PS): PS is a slightly-modified proxy server that retrieves a

requested file from a WS on behalf of a user. In our scheme, a daemon program

(called the trunk daemon) runs on the same machine as the PS. It intercepts the

packets sent from the PS to the user and sends them over multiple GPRS channels

to the DN and its helping RNs (see their definitions below).

 - 8 -

 Relay Node (RN): RN is a node that does not use its GPRS channel for itself but

instead uses its channel to help download data for the Destination Node (see its

definition below).

 Destination Node (DN): DN is a node that uses GPRS channels to download a file

(e.g., a web page) from the Internet. The requested file is downloaded via the DN’s

own channel and the channels of its helping RNs. After receiving packets carrying

the content of the requested file from GPRS channels, these RNs relay them to the

DN through a mobile ad-hoc network.

Both DN and RN need to learn the existence and channel quality of its neighboring

nodes. It periodically exchanges hello packets with its neighboring nodes to collect

such information.

A simple example is given below to illustrate how the system works. Both DN and

MN should set PS as their proxy server at first. In Figure 3.1, when the DN wants to

download a web page from the WS located on the Internet, it sends a HTTP web

request to the PS through its GPRS channel. After DN receives an indication packet

from the modified Apache in PS, it sends the information regarding its neighboring

nodes to the trunk daemon so that the trunk daemon can select some of them as the

helping RNs for this DN. After the PS has retrieved the requested web page, it sends

the web page to the DN. The trunk daemon intercepts these packets and then sends

them over the GPRS channels of the DN and its helping RNs using a round-robin

scheduling method. These RNs relay their received packets to the DN through the

mobile ad-hoc network. Finally, the DN receives, re-sequences, and delivers all

packets of the requested web page to the web browser, which then displays the

downloaded file on the screen or saves it into a disk. Users through our scheme can

 - 9 -

download their files more quickly.

Figure 3.1: The high-level system architecture.

3.2 System Implementation

3.2.1 Trunk Daemon and Web Proxy Server

In the following, we present how to use our scheme to download a requested file

to a DN over multiple GPRS channels. In Figure 3.2.1-1, the apache server is the

proxy server (PS) in our scheme. After a DN initiates a web request over its GPRS

channel, the content of the requested file comes back from the designated WS over an

Internet path shown on the left. After receiving the file, the apache server sends the

file’s content to the DN using the DN’s IP address assigned by the GPRS network as

the destination IP addresses of these packets.

 - 10 -

The trunk daemon installs several firewall rules in the kernel during the

initialization protocol mentioned after, before the apache server receives the file

request. These firewall rules instruct the firewall facility in the kernel to intercept the

data packets that will be sent from the apache server to the DN. Packets captured by

these rules are enqueued into the IP queue in the kernel. The trunk daemon will

dequeue them from the IP queue and then dispatch them to the DN and to its helping

RNs through their GPRS channels in a round-robin scheduling order. Our scheme

does some optimizations in a common round-robin scheduling algorithm, such like

trunk daemon doesn’t dispatch data packets to a RN with bad GPRS link quality.

Figure 3.2.1-1: The trunk daemon sets firewall rules to intercept and dispatch

 packets to the DN and its helping RNs.

The trunk daemon sends the captured data packets (TCP packets when using

HTTP protocol or FTP protocol) to the DN and its helping RNs through a UDP socket.

This means that these packets are encapsulated as UDP packets when they travel on

 - 11 -

GPRS channels. When sending a UDP packet to the DN or a RN, the trunk daemon

uses the IP address of the receiving machine assigned by the GPRS network as the

destination IP address of the packet. Doing so enables the packet to be sent over the

receiving machine’s GPRS channel. The trunk daemon retransmits a UDP packet if it

detects that the packet is lost on a GPRS channel or on a MANET link. It implements

an acknowledgement scheme running between itself and a DN or a RN to detect

packet losses.

 Acknowledgement Scheme between a trunk daemon and mobile nodes

In the trunk daemon, it implements an acknowledgement scheme like TCP

protocol. There is a sliding window of every mobile node such as a DN and a RN in

the trunk daemon, and a destination packets queue of every DN in the trunk daemon

(Figure 3.2.1-2).

A simple example is given below to illustrate how the acknowledgement scheme

works. When the trunk daemon dequeues a data packet from IP queue, it first try to

send out this data packet through a DN or RN without a full sliding window by

Round-Robin scheduling scheme, and maintain a copy of this data packet in the DN’s

or RN’s sliding window in case of retransmission. If it can find out any DN or RN

without a full sliding window, the trunk daemon will enqueue this packet back to the

destination packet queue. The trunk daemon will dequeue this packet and send it out

once any DN or RN without a full sliding window.

The trunk daemon enqueues the data packet into destination packet queue

directly, if there is any data packet in destination packet queue. By Doing so, the trunk

 - 12 -

daemon can maintain data packets enqueued in the destination packet queue in order.

Every DN or RN sends an ACK packets back to the trunk daemon, when it receives a

data packet dispatched from the trunk daemon. The trunk daemon will delete the

related data packet copy in the DN’s or RN’s sliding window, as it receives an ACK

packet.

Figure 3.2.1-2: the data structure of our acknowledgement scheme

The apache server is slightly modified to make our system work correctly. When

apache server receives an HTTP request from a DN, it immediately sends a reply back

to notify DN that it’s time to send the table of its neighboring nodes.

When the requested file has been downloaded to the DN, it notifies the trunk daemon

of the completion of the file transfer. The trunk daemon then removes the firewall

rules that were previously installed in the kernel and releases used data structures and

other resources.

 - 13 -

3.2.2 Mobile Node Daemon and Application

The mobile node daemon is executed on each mobile node equipped with a

GPRS and an IEEE 802.11 (b) WLAN interfaces. In our scheme, a mobile node

daemon may perform the function of a DN or a RN. This is because when a RN is

relaying packets for a DN, it may want to become a DN to download its own file. On

the other hand, When a DN finishes downloading its own file, it may be asked to be a

RN for another DN.

Every DN or RN broadcasts a hello packet periodically, so it knows its

neighboring nodes. By our routing scheme, every neighboring DN or RN can share its

table of neighboring nodes. Therefore, it can know other RN cross multiple hops in

MANET. This information helps a mobile node daemon choose its RN candidates

when it becomes a DN. The mobile node daemon also functions as a routing daemon

using our routing scheme on the IEEE 802.11(b) MANET. With the routing tables

built by our routing scheme, a routing path between a RN and a DN can be set up.

On a mobile node, several real-world applications such as the Mozilla web browser

can be used to download files. They function normally and take advantage of our

scheme without any modification. When the web browser initiates a web request, the

mobile node will become a DN and the request is sent over this mobile node’s GPRS

channel to the PS. Later on, the packets carrying the content of the requested file are

sent back to the DN through its own GPRS channel or through some ad-hoc links in

the IEEE 802.11(b) MANET. This is shown in Figure 3.2.2.

 - 14 -

Figure 3.2.2: The mobile node daemon reorders out-of-order packets, and then

 sends them to the web browser through a raw socket.

If a mobile node daemon plays the role of a RN, it just needs to relay received

packets that are sent from the trunk daemon to the DN via it. When relaying a packet

to the DN, it sends out the packet through a UDP socket in MANET. The destination

IP address of this packet is set to be the IP address of the DN configured on the

MANET. As such, the packet is encapsulated as a UDP packet and travels on the

MANET until it reaches the DN. The mobile node daemon implements an

acknowledgement scheme running between itself and the DN to detect packet losses

that occur on the MANET. If any packet is lost on the MANET, it retransmits the

packet until the DN eventually receives the packet.

If a mobile node daemon plays the role of a DN, it may need to reorder received

packets, which may be out-of-order because they traverse on different GPRS channels

and on different MANET paths. The mobile node daemon reorders these packets into

the correct order and then writes them into the kernel through a raw socket. From the

viewpoint of the kernel, these packets appear to arrive from a normal network

 - 15 -

interface such as an Ethernet interface. As such, these packets pass through the

TCP/IP protocol stack in the kernel and are enqueued into a TCP socket used by the

web browser. Finally, the web browser reads the TCP socket to get the content carried

by these packets. It may display the content on the screen or save the content into the

disk.

 Re-order packets in a DN

The trunk daemon gives every data packet a different sequence number which

begins at number 1. If a data packet is sent from a different application such as a FTP

client, the trunk daemon will re-give the data packet a different sequence number

which begins at number 1. Doing so, DN can reorder data packets from different

applications separately.

A DN won’t dequeue packets in its reordering queue and send to an application

through raw socket when those packets are not in order. However, DN can’t queue a

packet in the reordering queue too long a time, so DN sets a timer for every packet in

the reordering queue. A DN sends the timeout packet to an application through raw

socket without waiting.

4. PROTOCOL DESIGNS

The protocols used in our scheme include the initialization, data transfer, MANET

routing, and reset protocols. The first goal of the protocol design is that a real-world

 - 16 -

application, such as a web browser or a FTP client program, should be able to benefit

from our scheme on a mobile node without any modification. The second goal is that

our scheme can be deployed for any real-world GPRS network without any support

from it. For example, in our experiments, we tested two commercial GPRS networks

that are provided by different operators (ChungHwa and FarEastone) and found that

one assigns public IP addresses to its GPRS users while the other assigns private IP

addresses to its GPRS users. In this case, we would like our scheme to work

successfully for both types of GPRS networks. Our scheme achieves these goals. The

third goal is that our routing scheme can support the mobility in MANET. We

describe the details of each protocol in the rest of this section.

4.1 Initialization Protocol

The initialization protocol coordinates the different parts of the system so that they

work together to download a requested file over multiple channels. In the following,

we use an example to illustrate the protocol step by step. In Figure 4.1-1, a web

browser on the DN sends a request to the apache server (PS) (step 1). The apache

server then sends a notification packet to the mobile node daemon running on the DN

(it will be simply called the “DN” for brevity in the following description when there

is no ambiguity) to inform it that a web browser executed on the same node has

initiated a web transfer request (step 2). In the meantime, the apache server (acting as

a proxy server) sends the request to the designated WS on behalf of the DN to retrieve

the requested file. Because each mobile node daemon maintains the information about

its neighboring nodes, the DN sends a list of its neighboring nodes to the trunk

daemon (step 3). The nodes on the list are RN candidates for this DN and the trunk

 - 17 -

daemon may select some of them as the helping RNs for this DN based on their

willingness and channel quality. The trunk daemon then sends an acknowledgement

packet back to the DN (step 4).

Figure 4.1-1: the initialization protocol (1)

Figure 4.1-2 shows how the initialization protocol supports private IP in a GPRS

network. After receiving the acknowledgement packet from the trunk daemon, the DN

sends a “NAT Mapping Installation” packet to the trunk daemon (step 5). If the GPRS

network uses a network address translator (NAT) and assigns private IP addresses to

its GPRS users, when this packet passes through the GPRS network’s NAT on its way

to the PS, the NAT will install a mapping entry recording the mapping between the

packet’ s private IP address and port number used inside the GPRS network and the

public IP address and port number assigned to it. With this mapping entry, later on

when the PS sends data packets to the DN from the Internet, these data packets will

pass through the NAT and reach the DN successfully.

The DN also sends a “NAT Mapping Installation”-request packet to each of its

 - 18 -

neighboring nodes to ask it to install a NAT mapping (step 6). When a mobile node

receives a “NAT Mapping Installation”-request packet, it sends a “NAT Mapping

Installation” packet to the trunk daemon (step 7). With the transmission of this packet,

later on the data packets sent from the PS to the RN will pass through the NAT and

reach the RN successfully.

This protocol is designed to work successfully on a GPRS network that uses a

NAT and assigns private IP addresses to its users (e.g., the FarEastone GPRS network).

For a GPRS network that does not use a NAT and assigns public IP addresses to its

users (e.g., the ChungHwa GPRS network), this protocol still works successfully.

Figure 4.1-2: the initialization protocol (2)

Figure 4.1-3 shows the third phase of this protocol. When the trunk daemon

receives a “NAT Mapping Installation” packet from a mobile node daemon, it sends a

 - 19 -

“Link Checking” packet to that mobile node daemon (step 8). The mobile node

daemon then sends back a “Link Checking ACK” packet to the trunk daemon (step 9).

When receiving such a packet, the trunk daemon knows that the path between the PS

and the mobile node daemon is working. If the delay between sending the “Link

Checking” packet and receiving its ACK is relatively small, which indicates good

channel quality, the trunk daemon may choose the mobile node as a helping RN for

this DN.

As the trunk daemon receives a “Link Checking ACK” packet from one of relay

nodes, the trunk daemon sets several firewall rules in the kernel to capture packets

that will be sent from the PS to the DN (step 10). When such packets are captured, the

trunk daemon sends them to the DN and its helping RNs in parallel. The details are

presented in Section 3.2.2. In case the packets sent from the WS to the PS arrives at

the PS before these firewall rules are set, these early-arriving packets will be directly

sent back to the DN through the DN’s own GPRS channel without using our scheme.

In this situation, the performance is not optimized. However, the function of our

scheme still works correctly.

 - 20 -

Figure 4.1-3: the initialization protocol (3)

4.2 Data Transfer Protocol

The data transfer protocol deals with packet delivery and retransmission. In Figure

4.2, the trunk daemon sends data packets to the DN and its helping RNs through their

GPRS channels in a round-robin sequence (step 11-1). When the RN receives a packet,

it forwards the packet to the DN through the MANET (step 11-2). The DN then sends

an acknowledgement packet to the RN (step 12-2). The RN then sends an

acknowledgement packet to the trunk daemon to inform it that the DN has

successfully received the packet (step 12-3). When the DN receives a packet that is

sent directly from the trunk daemon to itself, it sends an acknowledgement packet

directly to the trunk daemon to acknowledge the receipt of the packet (step 12-1).

 - 21 -

Figure 4.2: The data transfer protocol.

The trunk daemon uses UDP to send packets to the DN and its helping RNs over

their GPRS channels. RNs also use UDP to forward packets over the MANET to the

DN. Since UDP does not provide a reliable service, the trunk daemon and mobile

node daemons retransmit an encapsulated UDP packet in case it is lost on its way to

its destination.

4.2.1 Improvement of Acknowledgement

An acknowledgement packet to the trunk daemon may be loss in a GPRS

network, so a DN or RN improves the acknowledgement scheme in case of

acknowledgement packet loss. As any DN or RN sends an acknowledgement packet

to the trunk daemon, it also informs the trunk daemon last acknowledgement packet

that it sent. Doing so, the trunk daemon can avoid needless retransmissions, when

an acknowledgement packet loses.

 - 22 -

4.2.2 Fast Retransmission in Our Scheme

To improve the performance of retransmission, the famous TCP fast

retransmission mechanism is employed in our scheme to quickly detect and retransmit

a lost packet.

The trunk daemon would retransmit the data packet when there is a data packet

loss. Retransmission timeout time can not be too short, because round trip time of data

packet in GPRS network is almost 3 seconds in the real world. Timeout time in our

retransmission scheme should be shorter than timeout time in TCP protocol, or TCP

congestion control would be triggered. Due to the reasons described above, the

famous TCP fast retransmission mechanism is employed in our scheme.

When a data packet triggers the fast retransmission, the trunk daemon would

dispatch this data packet to another mobile node different from the former mobile

node. So, the trunk daemon can avoid dispatch the data packet to the mobile node

whose GPRS link quality may be poor.

4.2.3 Improved Fast Retransmission in Our Scheme

To further improve the performance of the fast retransmission in our scheme, a

DN sends a selective data acknowledgement packet with some useful information in

order to speed up a fast recovery. The fast retransmission sometimes can recovery

 - 23 -

data packet loss fast enough, when a bunch of data packets lose. So, a DN would

enqueue a data packet in destination packet queue too long, when the trunk daemon

has not triggered a fast recovery of this data packet. In our improved fast

retransmission scheme, a DN would inform the trunk daemon that the DN enqueues

some packets too long a time by sending a selective data acknowledgement packet

with some useful information. So, the trunk daemon can do a fast recovery even when

there have not been enough selective data acknowledgement to trigger a fast recovery.

4.3 Ad-Hoc Routing Protocol

Our Ad-Hoc routing scheme can construct a routing table of any DN or RN, and

support the mobility in MANET. Every DN or RN broadcasts a hello packet

periodically, so it can construct its routing tables with zero hop count, called “Ad-Hoc

Neighbor Table”. After constructing its Ad-Hoc Neighbor Table, every DN or RN

exchanges its Ad-Hoc Neighbor Table periodically. Doing so, a DN or RN can know

all reachable mobile nodes in MANET even the mobile node cross multiple hops.

A DN or RN would set a timer for every routing entry. Therefore, a DN or RN would

delete each routing entry periodically to prevent a routing entry from being out of

time.

4.3.1 Mobility Issues

To support the mobility in MANET, we improve our Ad-Hoc routing scheme to

fast recover our system performance from mobile node topology changes. By this

Ad-Hoc routing, our scheme can apply to a moving motorcade (Figure 4.3.1). An

 - 24 -

important issue of the mobility in MANET is how to maintain the routing table

correctly.

A simple description of our improved Ad-Hoc routing scheme is given below. In

case of some RNs disconnect from DN, a DN checks the connectivity of every its RN

in MANET periodically. Once a DN check out that it loses connectivity of a RN, this

DN should delete the routing entry of this disconnected RN, and should inform every

its RN about this disconnection. Therefore, a DN and every RN can refresh its routing

table when the Ad-Hoc network topology changes. When a RN disconnects from DN,

the trunk daemon will retransmit data packets in the RN’s sliding window (Figure

3.2.1-2), and dispatch those retransmitted data packets to other connected RNs in a

Round Robin sequence.

Figure 4.3.1: a moving motorcade

4.4 Reset Protocol

The reset protocol is used to inform the DN and its helping RNs that the file

download is completed. Figure 4.4 shows this protocol. When the apache server (PS)

 - 25 -

finishes sending the file content to the DN, it sends an “Ending” packet to the trunk

daemon through a UDP socket (step 13) to notify it of this event. The trunk daemon in

turns sends an “Ending” packet to each mobile node daemon involved in this file

download (step 14). It then removes the firewall rules that were previously installed in

the kernel and releases all the data structures and other resources allocated for this file

download. When a mobile node daemon receives an “Ending” packet, it releases the

used data structures and other resources. It also resets its state to prepare for another

file download. If an “Ending” packet is lost, the mobile node daemon that should

receive the packet will automatically release the used data structures and other

resource after a certain period of channel idle time.

Figure 4.4: The reset protocol.

5. EXPERIMENTAL SETTINGS AND RESULTS

 - 26 -

5.1 Experimental Settings

IBM A31 notebooks computer with 1.8G Hz CPU and 512 MB memory are used

as PS and DN in our experiments.

Five notebooks tabled below are used as RNs.

Type

IBM A31 IBM R40 IBM T30 Toshiba

CPU Intel 1.8G Hz Intel
1.3GHz

Intel
2.2GHz

AMD
0.475GHz

Main
Memory

512 MB 512MB 512MB 64MB

number 1 1 1 2

Each of RNs and each DN are equipped with an ASUS WL-14 IEEE 802.11(b)

WLAN interface card or D-LINK DWL-122 and a Nokia D211 GPRS interface card,

which is shown in Figure 5.1-2. In our scheme, every RN node is just responsible to

forward data packets to DN. Therefore, using different machines listed above would

not affect our system performance.

Because the two PCMCIA slots available on a notebook computer are too close

to use one PCMCIA IEEE 802.11(b) and one PCMCIA GPRS cards at the same time,

we used the ASUS WL-14 IEEE 802.11(b) interface card, which uses the USB

interface rather than the PCMCIA interface to connect to the notebook computer. The

Red-Hat Linux operating system with the 2.4 kernel is installed on each of these

machines.

 - 27 -

Figure 5.1-1: The trunk daemon

Figure 5.1-2: Four notebook computers are used in experiments. One of them is used

as the DN while the others are used as the DN’s helping RNs.

 - 28 -

Figure 5.1-3: Each notebook computer is equipped with an IEEE 802.11(b) WLAN

interface card and a GPRS interface card.

One desktop host is used as the PS (Figure 5.1-1). It runs the Red-Hat Linux

operating system with the 2.4 kernel. This host is located in our laboratory and

connected to the Internet. A modified apache web server is run on this desktop host to

provide proxy services for the DN.

ChungHwa Telecom Inc. operates the GPRS network used in these experiments.

When a GPRS network interface is attached to the GPRS network, ChungHwa

Telecom Inc. automatically assigns a public IP address to it. As such, an Internet host

(e.g., the PS) can actively send packets to an attached GPRS user.

We also try to evaluate our scheme on a different GPRS network, which is

 - 29 -

operated by FarEastone Telecom Inc. On the FarEastone GPRS network, when a

GPRS interface is attached to the network, it is assigned a private IP address.

Normally, a machine assigned a private IP address is attached to a private network

managed by a network address translator (NAT). Such a machine can actively

exchange packets with a host on the Internet but a host on the Internet cannot actively

exchange packets with it. This restriction, however, does not cause any problem for

our scheme because before the PS sends packets to the DN, the DN and each of its

RN have sent a “NAT Mapping Installation” packet to the PS.

However, the link quality of the GPRS network operated by FarEastone Telecom

Inc is very unstable in the NCTU campus. Sometimes, our machines can hardly

connect to the FarEastone GPRS network for five minutes. Due to the unstable link

quality, the performance would be badly decreased. Therefore, we don’t evaluate our

scheme on the FarEastone GPRS network.

5.2 Experimental Results

5.2.1 Calibration Test

In the calibration tests, we want to measure how the GPRS network performs

when there are several CBR traffics activated simultaneously. In these tests, our

scheme was not used. We measured the CBR throughput that can be achieved over

one GPRS channel when one, two, three, and four GPRS channels are used

simultaneously. The used channels were set up between the PS and the DN, and

between the PS and the 3 RNs. Instead, on a tested GPRS channel, we pumped UDP

packets at the PS machine into the channel at the constant bit rate. We used UDP

 - 30 -

packets rather than TCP packets because a TCP traffic source will reduce its sending

rate at least by a half when encountering packet losses or reordering while a UDP

traffic source will not. Since we are concerned with instantaneous link quality in a

GPRS channel, we used UDP packets in the calibration tests.

In each CBR UDP packet stream, the packet interval time is 0.33 seconds and

each UDP packet size is 1400 bytes. So, the maximum throughput of one CBR UDP

packet stream is 4.2 Kbytes/sec. When UDP packets are sent at a constant bit rate over

a GPRS channel, we say the channel is active. Figure 5.2.1-1 shows the throughput

achieved on one channel when only one channel is active. Figure 5.2.1-2 shows the

throughputs achieved on two channels when two channels are active at the same time.

Figure 5.2.1-3 shows the throughputs achieved on three channels when three channels

are active at the same time. Finally, Figure 5.2.1-4 shows the throughputs achieved on

four channels when four channels are active at the same time. In these figures, we also

show the total achieved throughputs of all active GPRS channels.

In Figure 5.2.1-1 below, the average throughput of a CBR UDP stream is close to

3 Kbytes/sec. In a CBR UDP packet stream, the packet interval time is 0.33 seconds

and each UDP packet size is 1400 bytes. Therefore, we can only get four possible

throughputs, 0 Kbytes/sec, 1.4 Kbytes/sec, 2.8 Kbytes/sec, 4.2 Kbytes/sec, in the

calibration tests.

 - 31 -

One UDP Flow

0

1

2

3

4

5

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Time (sec)

U
D
P
 T
hr
ou
gh
pu
t

(K
B
/s
ec
)

Node 1

Figure 5.2.1-1: The throughput of one GPRS channel.

Two UDP Flows

0
1
2
3
4
5
6
7
8

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Time (sec)

U
D
P
 T
hr
ou
gh
pu
t
(K
B
/s
ec
)

Node 1 Node 2 Total

Figure 5.2.1-2: The throughputs of two GPRS channels.

From these figures, we have some observations. First, the maximum throughput

that can be achieved over one GPRS channel is only about 4 KB/sec. Second, the

quality of a GPRS channel is unstable. The throughput of a GPRS channel often drops

to zero, stays at zero for a while, and then rises again. Third, when multiple GPRS

 - 32 -

channels are active, it is common that at least one channel’s throughput is very poor.

These observations suggest that achieving N throughput speedup over N GPRS

channels is almost impossible on current commercial GPRS networks.

Three CBR UDP Flows

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145

Time (sec)

U
D
P
T
hr
ou
gh
pu
t (
K
B
/s
ec
)

Node 1 Node 2 Node 3 Total

Figure 5.2.1-3: The throughputs of three GPRS channels

Four UDP Flows

0

2

4

6

8

10

12

14

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145

Time (sec)

U
D
P
T
hr
ou
gh
pu
t
(K
B
/s
ec
)

Node 1 Node 2 Node 3 Node 4 Total

 - 33 -

Figure 5.2.1-4: The throughputs of four GPRS channels.

Since the best aggregate UDP throughput achieved over N GPRS channels is

much lower than N times of a GPRS channel’s native bandwidth (i.e., 36 Kbps), it is

unreasonable to divide the throughput of our scheme by 36 Kbps to calculate its

throughput speedup over N channels. In our web transfer throughput experiments,

TCP (used by HTTP) is used to transport web files. Since TCP throughput suffers

greatly from packet losses, reordering, large round-trip packet delays on the channel

(3 ~ 4 seconds on a GPRS channel), and long channel blockage periods, our scheme

faces a very challenging situation in which maintaining good TCP throughput over N

unstable channels is difficult. It is nature that the aggregate TCP throughput achieved

over N channels under our scheme is less than the aggregate UDP throughput

achieved over N channels in the calibration tests.

Therefore, in the following subsection we will divide the TCP throughput of our

scheme by the TCP throughput achieved over one channel (3.3 KB/sec) to calculate

its speedup. This speedup represents the ratio of the performance of our N-channel

scheme to the performance of a 1-channel scheme on the same commercial GPRS

network. A high ratio value indicates that our scheme can better utilize the given N

channels while a low value indicates that our scheme cannot.

5.2.2 Evaluation Experiments

We measured the web download throughput of our scheme when one, two, three,

and four GPRS channels are used. In each of these experiment suites, we measured

the download throughput under different file sizes. For each file size, we repeated the

 - 34 -

experiment 10 times and report their average and standard deviation. In the

experiments, the web server hosting these files resides on the same subnet as the PS.

In the first experiment suite, no RN provides additional GPRS channel

bandwidth to help the DN download its requested file. Thus, the packets carrying the

file’s content are transmitted on the DN’s own GRPS channel. Figure 5.2.2-1 shows

that the average throughput without applying out scheme is about 3.3 KB/sec when

the file size is greater than 50 KB. For each average throughput data point, the point

above it is the average plus the standard deviation and the point below it is the

average minus the standard deviation.

No Relay Node

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

File Size (KB)

T
C

P
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Avg (Avg + Std Dev) (Avg - Std Dev)

Figure 5.2.2-1: The average file download throughput with different sizes (through

only one GPRS channel).

In the second experiment suite, one RN is used and its channel and the DN’s

channel are used to download the file in parallel. Figure 5.2.2-2 shows that the

 - 35 -

average throughput is about 6 KB/sec when the file size exceeds 90 KB. The

throughput speedup is 1.82 (6/3.3).

In the third experiment suite, two RNs are used and in total three GPRS channels

are used to download the file in parallel. Figure 5.2.2-3 shows that the average

throughput is about 8 KB/sec when the file size exceeds 560 KB. The throughput

speedup is 2.42 (8/3.3).

In the fourth experiment suite, three RNs are used and in total four GPRS

channels are used to download the requested file in parallel. Figure 5.2.2-4 shows that

the average throughput is about 9 KB/sec when the file size exceeds 550 KB. The

throughput speedup is 2.72 (9/3.3).

One Relay Node

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

File Size (KB)

T
C

P
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Avg (Avg + Std Dev) (Avg - Std Dev)

Figure 5.2.2-2: The average file download throughput with different sizes (through

two GPRS channels).

 - 36 -

Two Relay Nodes

0
1
2
3
4
5
6
7
8
9

10

0 100 200 300 400 500 600

File Size (KB)

T
C

P
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Avg (Avg + Std Dev) (Avg - Std Dev)

Figure 5.2.2-3: The average file download throughput with different sizes (through

three GPRS channels).

Three Relay Nodes

0

2

4

6

8

10

12

0 100 200 300 400 500 600

File Size (KB)

T
C

P
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Avg (Avg + Std Dev) (Avg - Std Dev)

Figure 5.2.2-4: The average file download throughput with different sizes (through

 - 37 -

four GPRS channels).

From Figure 5.2.2-1 to Figure 5.2.2-4, we see that the average file download

throughput is low, when the file size is small. This phenomenon can be explained as

follows. After a TCP connection is set up, it immediately enters the TCP slow-start

congestion control phase. In this phase, the TCP sender exponentially increases its

sending rate (its congestion window size ---- the number of unacknowledged packets

that can be sent out per RTT) in each subsequent RTT, where RTT is the round trip

time between the TCP sender and receiver. For example, a TCP sender sends out 1, 2,

4, 8, and 16 packets in the 1st, 2nd, 3rd, 4th, and 5th RTT respectively, If the size of the

requested file is small and thus only few packets need to carry its content, finishing

the file transfer will use only the first few RTTs. Since a TCP sender’s sending rate is

its congestion window size divided by its RTT and the GPRS channel’s RTT is very

large (3 ~ 4 seconds for a standard-sized 1500-byte packet), the TCP sender’s sending

rates in the first few RTTs are the lowest. As such, TCP throughputs on GPRS

channels are low for small files regardless whether our scheme is used or not.

To further evaluate our scheme, we measured the web download throughput

when five GPRS channels are used. In that experiment suite, because we only have

four GPRS accounts of ChungHwa Telecom Inc, we used three RN operated on the

ChungHwa GPRS network, and one RN operated on FarEastone GPRS network. So,

in total five GPRS channels are used to download the requested file in parallel.

However, this experiment didn’t perform well, and the throughput even is lower than

5 Kbytes/sec (twice the TCP GPRS throughput without using our scheme) sometimes.

The unstable link quality on FarEastone GPRS network in the NCTU campus did

decrease the performance, and more data packets would be out of order in this

 - 38 -

experiment. Therefore, adding one more channel doesn’t necessary increase the

performance of our scheme depending on the signal strength of the new GPRS

channel.

Figure 5.2.2-5 is the conclusion from Figure 5.2.2-1 to Figure 5.2.2-4. Readers

can also reference Figure A-1 in the Appendix.

Figure 5.2.2-6 (Figure A-2) shows the speedup rate when we used different

number of RNs in our experiments. Our scheme can get triple times of TCP GPRS

throughput when there are three RNs forwarding data packets.

4.8

6.2

8.3 8.5
9.1

2.8
3.2 3.3 3.4 3.3

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500 550 600

Fi l e Si ze(KB)

Th
ro

ug
hp

ut
(K

B/
se

c)

Thr ee r el ay nodes Two r el ay nodes

One r el ay node No r el ay node

Figure 5.2.2-5: experiment results in the real world

 - 39 -

1.71
1.9

2.5
2.7

2.91

1.6 1.69

2.2
2.4

1.42

1.75 1.81 1.85
1.68

1.93

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500 550 600

Fi l e Si ze (KB)

Sp
ee

du
p

Ra
te

Three rel ay nodes Two rel ay nodes

One rel ay node No rel ay node

Figure 5.2.2-6: experiment speedup in the real world

The results shown in these figures and the above explanation suggest that our

scheme is more suitable for downloading large files than downloading small files.

Actually, when the download file size is small, there is no need to use our scheme to

further reduce the small transfer time.

6. SIMULATION SETTINGS AND RESULTS

In the simulation experiments, we evaluated our scheme about some issues such

as system performance when number of RNs increases and mobility support in

MANET.

 - 40 -

6.1 Simulation Settings and Modifications

To run our applications such as the trunk daemon and the mobile node daemon on

NCTUns2.0, some settings and modifications should be done. On NCTUns2.0,

modified kernel uses Source-Destination-Pair IP address scheme to route packets

from applications. But by using the fully-integrated GUI environment, a user need not

know the concept and need not use the source-destination-pair address scheme at all.

However, when users try to use RAW socket, and install firewall rules to divert

packets from IP queue, their application should be modified to work well under the

Source-Destination-Pair IP address scheme of NCTUns2.0. So, due to the

Source-Destination-Pair IP address scheme on NCTUns2.0, we do some

modifications in our trunk daemon and mobile node daemon.

We focus on some issues such as system performance when number of RNs

increases and mobility support in MANET when doing the simulation experiments.

Therefore, we used our modified traffic generators to take place the modified apache

server in our scheme. Then, we can evaluate our scheme by one TCP connection or a

CBR UDP packet stream. We also can evaluate the performance of our routing

scheme which is hard to be evaluated in the real world.

6.2 Simulations Results

6.2.1 Calibration Tests for the GPRS package on NCTUns2.0

In those calibration tests, we want to evaluate the GPRS system performs on

NCTUns2.0 without using our scheme.

 - 41 -

In Figure 6.2.1-1, there is a topology of common GPRS network on NCTUns2.0.

Node 1 is the Base Station, and the Base station connects to a host (Node 5) in the

Internet. Node 7 is a cellular phone. Node 6 is the mobile computer equipped with a

GPRS network card and an 802.11b wireless card.

Figure 6.2.1-1: simple topology of GPRS network

Figure 6.2.1-2 shows the protocol stack of a GPRS Base Station. Each RLC

module has its own transmission queue with a limited number of slots. A packet is

allowed to enter an RLC module if the transmission queue in that RLC module has

enough slots to store that packet. Otherwise, the packet will be put back into the

GPRS FIFO module until the RLC module has enough space for storing this incoming

packet.

 - 42 -

Figure 6.2.1-2: the protocol stacks of base station

We present the GPRS TCP throughput in Figure 6.2.1-3 (Figure A-3) without

using our scheme. The pink line represents the current queue size of GPRS FIFO, and

the blue line represents the TCP throughput.

The GPRS FIFO is overflow between 36 seconds to 55 seconds, so GPRS base

station would drop some data packets during that period. This condition would trigger

the congestion control of a TCP connection, so the TCP throughput drops to zero

between 61 seconds to 78 seconds. The size of current GPRS FIFO decreases after 58

seconds, therefore slow start of the TCP connection can progress. After a while, the

GPRS TCP throughput climbs up again.

We present the GPRS UDP throughput in Figure 6.2.1-4 (Figure A-4) without

using our scheme. We pump a CBR UDP packet stream about 3.75 Kbytes/sec on PS.

 - 43 -

Although the GPRS FIFO is overflow after 25 seconds, the UDP throughput keeps

steady at 3.74 Kbytes/sec. It is because the UDP throughput wouldn’t decrease even

when there are some packet losses on GPRS network.

GPRS TCP Throughput

-1
4
9
14
19
24
29
34
39
44
49
54
59

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121

sec

Kb
yt

es
/s

ec
 &

Cu
rr

en
t

Qu
eu

e
Si

ze

TCP Throughput GFIFO Current Queue Size

Figure 6.2.1-3: GPRS TCP Throughput

GPRS UDP Throughput

0
5
10
15
20
25
30
35
40
45
50
55

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Kbytes

Kb
yt

es
/s

ec

UDP Throughput GFIFO Current Queue Size

Figure 6.2.1-4: GPRS UDP Throughput

 - 44 -

6.2.2 Evaluation Experiments with a Simple Wireless Physical Layer Module

We measured the web download throughput of our scheme on NCTUns2.0 using

a simple wireless physical layer module (PHY) when different numbers of static RNs

are forwarding packets to DN. By using Simple wireless PHY on NCTUns2.0, a

receiver would not suffer any packet loss within the transmission range of a sender.

In each of the simulation experiment suites below, we measured the download

throughput under different file sizes. For each file size, we repeated the experiment 10

times and report their average and standard deviation.

6.2.2.1 TCP

First, we measure the TCP throughput of our scheme on NCTUns2.0.

6.2.2.1.1 Single Hop Count

In those experiments below, every RN is just one hop away from DN, so data

packets can be sent to DN directly from each RN in MANET (Figure 6.2.2.1.1-1).

Node 7 is a DN, and the red circle represents its transmission range. So, every RN is

within the transmission range of DN.

 - 45 -

Figure 6.2.2.1.1-1: simulation topology 1

In the first experiment suite, no RN provides additional GPRS channel

bandwidth to help the DN download its requested file. Thus, the packets carrying the

file’s content are transmitted on the DN’s own GRPS channel. Figure 6.2.2.1.1-2

shows that the average throughput without applying out scheme is about 3.7 KB/sec.

For each average throughput data point, the point above it is the average plus the

standard deviation and the point below it is the average minus the standard deviation.

In this experiment suite, TCP triggered Fast Retransmission about 38 times.

GPRS TCP Throughput

0

1020 50 100 200
300 400 500 600

0
2
4
6
8
10
12
14
16
18

Kbytes

Kb
yt

es
/s

ec

GPRS TCP throughput +stddev -stddev

 - 46 -

Figure 6.2.2.1.1-2: GPRS TCP Throughput

In the second experiment suite, one RN is used and its channel and the DN’s

channel are used to download the file in parallel. Figure 6.2.2.1.1-3 shows that the

average throughput is about 7.335 KB/sec. The throughput speedup is 1.98 (7.335 /

3.7). In this experiment suite, TCP triggered Fast Retransmission about 0~7 times, so

TCP is well protected in our data transfer protocol.

In the third experiment suite, two RNs are used and in total three GPRS channels

are used to download the file in parallel. Figure 6.2.2.1.1-4 shows that the average

throughput is about 10.83 KB/sec. The throughput speedup is 2.92 (10.83/3.7).

In the fourth experiment suite, three RNs are used and in total four GPRS

channels are used to download the file in parallel. Figure 6.2.2.1.1-5 shows that the

average throughput is about 11.825 KB/sec. The throughput speedup is 3.19

(11.825/3.7).

One Rel ay Node - One Hop

0

1020
50

100 200 300 400 500 600

0
2
4
6
8
10
12
14
16
18

kbytes

kb
yt

es
/s

ec

One Relay Throughput +stddev -stddev

Figure 6.2.2.1.1-3: GPRS TCP Throughput – One Relay

 - 47 -

Two Rel ay Nodes-One Hop

0

10
20

50
100

200 300 400 500 600

0
2
4
6
8
10
12
14
16
18

kbytes

kb
yt

es
/s

ec
Two Relay Node Throughput +stddev -stddev

Figure 6.2.2.1.1-4: GPRS TCP Throughput – Two Relay

Three Rel ay Nodes - One Hop

0

10

20

50

100
200 300 400 500 600

0
2
4
6
8
10
12
14
16
18

kbytes

kb
yt

es
/s

ec

Three Relay Node Throughput +stddev -stddev

Figure 6.2.2.1.1-5: GPRS TCP Throughput – Three Relay

In the fifth experiment suite, four RNs are used and in total five GPRS channels

are used to download the file in parallel. Figure 6.2.2.1.1-6 shows that the average

throughput is about 13.614 KB/sec. The throughput speedup is 3.68 (13.614/3.7).

 - 48 -

Four Rel ay Nodes - One Hop

0

10
20

50

100
200 300 400 500 600

0
2
4
6
8
10
12
14
16
18

Kbytes

Kb
yt

es
/s

ec
Four Relay Node Throughput +stddev -stddev

Figure 6.2.2.1.1-6: GPRS TCP Throughput – Four Relay

In the second to fifth experiments above, each TCP connection triggered Fast

Retransmission about 0~7 times, so TCP is well protected in the experiments above.

However, the current GPRS FIFO queue size mentioned in section 6.2.1 is less than

Max GPRS FIFO size all the time. So, there is no packet loss in GPRS Base Station.

This is because we queue each packet in GPRS FIFO queue when the block queue of

RLC module layer in GPRS Base Station is full.

In Figure 6.2.2.1.1-7, there are three TCP traffic flows belonged to three different

experiments of the fifth experiment suit. The throughput of TCP swings between 20

Kbytes/sec to 10 Kbytes/sec, because DN should reorder data packets which it

received and data packets from each RN.

 - 49 -

TCP Traf f i c Fl ow- Four Rel ay

-5

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

sec

Kb
yt

es
/s

ec
Exp 1 Exp 2 Exp 3

Figure 6.2.2.1.1-7: TCP Traffic Flow – Four Relay

In the sixth experiment suite, five RNs are used and in total six GPRS channels

are used to download the file in parallel. Figure 6.2.2.1.1-8 shows that the average

throughput is about 14.13 KB/sec. The throughput speedup is 3.81 (14.13/3.7).

Fi ve Rel ayNodes -One Hop

0

10

20

50

100
200

300
400

500 600

0
2
4
6
8
10
12
14
16
18

Kbytes

Kb
yt

es
/s

ec

Five Relay Node Throughput +stddev -stddev

Figure 6.2.2.1.1-8: GPRS TCP Throughput – Five Relay

In Figure 6.2.2.1.1-9, there are three TCP traffic flows belonged to three different

experiments of the sixth experiment suit. The throughput of TCP swings between 25

 - 50 -

Kbytes/sec to 10 Kbytes/sec before 43 seconds. The TCP throughput of this

experiment suit drops to zero and rises up again several times. This is because there

are some packet losses in GPRS network, so a DN would enqueue data packets until

all data packet in its reordering queue are in order. We observe that GPRS Base

Station dropped some data packets after 43 seconds because the GPRS FIFO queue

mentioned in section 6.2.1 is overflow. The maximum size of the GPRS FIFO queue

is fixed, so the GPRS FIFO queue would be overflow more frequently when we pump

more UDP packets into GPRS network per second.

TCP Traf f i c Fl ow- Fi ve Rel ay

0

5

10

15

20

25

30

35

40

45

50

55

60

65

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

sec

Kb
yt

es
/s

ec

Exp 1 Exp 2 Exp 3 Exp 4

Figure 6.2.2.1.1-9: TCP Traffic Flow – Five Relay

In the seventh experiment suite, six RNs are used and in total seven GPRS

channels are used to download the file in parallel. Figure 6.2.2.1.1-10 shows that the

average throughput is about 13.12 KB/sec. The throughput speedup is 3.54 (13.12/3.7)

even lower than the previous experiment suite using less RNs.

In Figure 6.2.2.1.1-11, the TCP throughput of this experiment suit drops to zero

and then rises up again more frequency than the previous experiment suite. The

reason is that a DN waste more time to reorder data packets because there are more

 - 51 -

packet losses than the previous experiment suite.

Si x Rel ay Nodes - One Hop

0

10

20

50

100

200
300

400
500

600

0
2
4
6
8
10
12
14
16
18

kbytes

kb
yt

es
/s

ec

Six Relay Node Throughput +stddev -stddev

Figure 6.2.2.1.1-10: GPRS TCP Throughput – Six Relay

TCP Traf f i c Fl ow - Si x Rel ay

0

10

20

30

40

50

60

70

80

90

100

110

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109

sec

Kb
yt

es
/s

ec

Exp 1 Exp 2 Exp 3

Figure 6.2.2.1.1-11: TCP Traffic Flow – Six Relay

In 6.2.2.1.1-12, we conclude the experiment results in section 6.2.2.1.1.

 - 52 -

 TCP Throughput - One Hop

0

10

20

50

100

200
300

400
500 600

0

2

4

6

8

10

12

14

16

18

Kbytes

Kb
yt

es
/s

ec
No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.2.1.1-12: TCP throughput – One Hop

6.2.2.1.2 Multiple Hop Counts

In those experiments below, some RNs are multiple hops away from DN, so data

packets would be forwarded by other RNs in the MANET (Figure 6.2.2.1.2-1).

Node 7 is a DN, and the red circle represents its transmission range. So, only Node 6,

8, and 12 are within the transmission range of DN.

 - 53 -

Figure 6.2.2.1.2-1: simulation topology 2

Figure 6.2.2.1.2-2 presents the experiment results of section 6.2.2.1.2.

The experiment results in Figure 6.2.2.1.2-2 are similar to those results in Figure

6.2.2.1.1-12. The throughput results show that the number of hop counts of routing

paths in the ad hoc network does not affect the TCP throughputs experienced by end

users because the underlying ad hoc network provides much more bandwidths than

GPRS channels.

TCP Throughput - Mul t i pl e Hops

0

10

20

50

100

200 300 400 500 600

0
2
4
6
8
10
12
14
16
18

Kbytes

Kb
yt

es
/s

ec

No RN One RN
Two RNs Three RNs
Four RNs Five RNs
Six RNs

Figure 6.2.2.1.2-2: TCP throughput – Multiple Hops

6.2.2.2 UDP

We measure the UDP throughput of our scheme on NCTUns2.0, so we can

evaluate our scheme without the affection of TCP congestion control. We used a CBR

UDP packet stream in each experiment suit of this section.

6.2.2.2.1 Single Hop Count

 - 54 -

In those experiments below, every RN is just one hop away from DN, so data

packets can be sent to DN directly from each RN in MANET (Figure 6.2.2.1.1-1).

In the first experiment suite, no RN provides additional GPRS channel bandwidth to

help the DN download its requested file. Thus, the packets carrying the file’s content

are transmitted on the DN’s own GRPS channel. We pumped a CBR UDP packet

stream about 3.75 KB/sec on PS.

Figure 6.2.2.2.1-1 shows that the average throughput without applying out

scheme is about 3.74 KB/sec.

GPRS Udp throughput

0

1020 50 100 200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

Kbytes

Kb
yt

es
/s

ec

GPRS UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-1: GPRS UDP throughput

In the second experiment suite, one RN is used and its channel and the DN’s

channel are used to download the file in parallel. We pumped a CBR UDP packet

stream about 7.5 KB/sec on PS. Figure 6.2.2.2.1-2 shows that the average throughput

is about 7.45 KB/sec. The throughput speedup is 1.99 (7.45 / 3.74).

 - 55 -

One Rel ay Node -One Hop

0

10
20 50 100 200 300 400 500 600

0
2
4
6
8
10
12
14
16
18
20

Kbytes

Kb
yt

es
/s

ec
UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-2: GPRS UDP throughput – One Relay

In the third experiment suite, two RNs are used and in total three GPRS channels

are used to download the file in parallel. We pumped a CBR UDP packet stream about

11.25 KB/sec. Figure 6.2.2.2.1-3 shows that the average throughput is about 11.21

KB/sec. The throughput speedup is 2.99 (11.21/3.74).

Two Rel ay Nodes - One Hop

0

10
20

50 100 200 300 400 500 600

0
2
4
6
8
10
12
14
16
18
20

Kbytes

Kb
yt

es
/s

ec

 UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-3: GPRS UDP throughput – Two Relay

In the fourth experiment suite, three RNs are used and in total four GPRS

 - 56 -

channels are used to download the file in parallel. We pumped a CBR UDP packet

stream about 15 KB/sec on PS. Figure 6.2.2.2.1-4 shows that the average throughput

is about 14.08 KB/sec. The throughput speedup is 3.76 (14.08/3.74).

Three Rel ay Nodes - One Hop

0

10

20

50
100 200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

Kbytes

Kb
yt

es
/s

ec

UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-4: GPRS UDP throughput –Three Relay

In the fifth experiment suite, four RNs are used and in total five GPRS channels

are used to download the file in parallel. We use a traffic generator program to

generate a CBR UDP packet stream, the sending rate of which is about 18.75 KB/sec

on a PS. Figure 6.2.2.2.1-5 shows that the average throughput is about 18.4 KB/sec.

The throughput speedup is 4.91 (18.4/3.74).

 - 57 -

Four Rel ay Nodes - One Hop

0

1020

50

100
200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

Kbytes

Kb
yt

es
/s

ec
UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-5: GPRS UDP throughput – Four Relay

In Figure 6.2.2.2.1-6, there are two CBR UDP traffic flows belonged to two

different experiments of the fifth experiment suit. The throughput of TCP swings

between 20 Kbytes/sec to 16 K.

UDP Traf f i c Fl ow - Four Rel ay

0

2

4

6

8

10

12

14

16

18

20

22

24

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Sec

Kb
yt

es
/s

ec

Exp 1 Exp 2

Figure 6.2.2.2.1-6: UDP Traffic Flow – Four Relay

In the sixth experiment suite, five RNs are used and in total six GPRS channels

are used to download the file in parallel. We pumped a CBR UDP packet stream about

 - 58 -

22.5 KB/sec on PS. The performance when using five RNs is even worse than the

performance when using four RNs when the download file size exceeds 200 KB.

In Figure 6.2.2.2.1-8, there are two CBR UDP traffic flows belonged to two different

experiments of the sixth experiment suit. The UDP throughput of this experiment suit

drops to zero and rises up again several times. This is also because there are some

packet losses in GPRS network, so a DN would enqueue data packets until all data

packet in its reordering queue are in order. In our data transfer protocol, a DN would

reorder data packets by the sequence number that is given by our scheme.

Fi ve Rel ay Nodes - One Hop

0

1020

50
100 200

300

400
500 600

0

2

4

6

8

10

12

14

16

18

20

Kbytes

Kb
yt

es
/s

ec

UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-7: GPRS UDP throughput – Five Relay

UDP Traf f i c Fl ow - Fi ve Rel ay

0

5

10

15

20

25

30

35

40

45

50

55

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

seconds

Kb
yt

es
/s

ec

Exp 1 Exp 2

Figure 6.2.2.2.1-8: UDP Traffic Flow – Five Relay

 - 59 -

In the seventh experiment suite, six RNs are used and in total seven GPRS

channels are used to download the file in parallel. We pumped a CBR UDP packet

stream about 26.25 KB/sec on PS.

Si x Rel ay Nodes - One Hop

0

10

20

50

100 200

300

400

500
600

0

2

4

6

8

10

12

14

16

18

20

22

Kbytes

Kb
yt

es
/s

ec

UDP Throughput +stddev -stddev

Figure 6.2.2.2.1-9: GPRS UDP throughput – Six Relay

In Figure 6.2.2.2.1-10, there are two CBR UDP traffic flows belonged to two

different experiments of the seventh experiment suit.

UDP Traf f i c Fl ow - Si x Rel ay

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

seconds

Kb
yt

es
/s

ec

Exp 1 Exp 2

Figure 6.2.2.2.1-10: UDP Traffic Flow – Six Relay

In Figure 6.2.2.2.1-11, we conclude the experiment results in section 6.2.2.2.1.

 - 60 -

When the GPRS FIFO queue mentioned in section 6.2.1 is overflow, the throughput

of our scheme would decrease as showed in sixth and seventh experiment suits.

UDP Throughput - One Hop

0

1020

50

100
200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

22

Kbytes

Kb
yt

es
/s

ec

No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.2.2.1-11: UDP throughput – One Hop

6.2.2.2.2 Multiple Hop Counts

In those experiments below, some RNs are multiple hops away from DN, so data

packets would be forwarded by other RNs in the MANET (Figure 6.2.2.1.2-1).

Figure 6.2.2.2.2-1 presents the experiment results of section 6.2.2.2.2.

The experiment results in Figure 6.2.2.2.2-1 are similar to those results in

Figure 6.2.2.2.1-11.

 - 61 -

UDP Throughput - Mul t i pl e Hops

0

1020

50

100
200

300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

Kbytes

Kb
yt

es
/s

ec
No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.2.2.2-1: UDP throughput – Multiple Hops

6.2.3 Evaluation Experiments with an Advanced Wireless Physical Layer

Module

We measured the web download throughput of our scheme on NCTUns2.0 using

an advanced wireless physical layer module (PHY) when different numbers of static

RNs are forwarding packets to DN. By using advanced wireless PHY on NCTUns2.0,

our experiments would suffer the real world like propagation loss and BER.

In each of the simulation experiment suites below, we measured the download

throughput under different file sizes. For each file size, we repeated the experiment 10

times and report their average and standard deviation.

6.2.3.1 TCP

First, we measure the TCP throughput of our scheme on NCTUns2.0 with

advanced wireless PHY.

 - 62 -

6.2.3.1.1 Single Hop Count

In those experiments below, every RN is just one hop away from DN, and we

place each RN very close to DN (Figure 6.2.3.1.1-1).

Figure 6.2.3.1.1-1: simulation topology 3

The transmission radius of AWPHY is about 225 meters. In Figure 6.2.3.1.1-1,

the distance between each RN and a DN is about 100 meters, so there are few packet

losses in this experiment.

 - 63 -

TCP Throughput (AWPHY) - One Hop

0

10

20

50

100

200 300
400

500 600

0

2

4

6

8

10

12

14

16

18

Kbytes

Kb
yt

es
/s

ec
No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.3.1.1-2: TCP throughput (AWPHY) – One Hop

In Figure 6.2.3.1.1-2, the experiment results when using advanced wireless PHY

are similar to the experiment results in section 6.2.2.1.1 when using simple wireless

PHY.

6.2.3.1.2 Multiple Hop Counts

In those experiments below, some RNs are multiple hops away from DN, and we

place each mobile node from neighboring nodes within its transmission range as far as

possible (Figure 6.2.3.1.2-1).

 - 64 -

Figure 6.2.3.1.2-1: simulation topology 4

In Figure 6.2.3.1.2-2, we would suffer some packet losses when data packets are

forwarded to DN by other RNs in MANET. This phenomenon might increase the

number of out-of-order packets. Therefore, the performance on a multiple hop

network case could not be as good as expected.

TCP Throughput (AWPHY) - Mul t i pl e Hops

0

10
20

50
100

200 300
400 500 600

0

2

4

6

8

10

12

14

16

18

Kbytes

Kb
yt

es
/s

ec

No RN One RN Two RNs Three RNS

Four RNs Five RNs Six RNs

Figure 6.2.3.1.2-2: TCP throughput (AWPHY) – Multiple Hops

 - 65 -

6.2.3.2 UDP

We measure the UDP throughput of our scheme on NCTUns2.0 with advanced

wireless PHY, so we can evaluate our scheme without the affection of TCP congestion

control.

6.2.3.2.1 Single Hop Count

In those experiments below, every RN is just one hop away from DN, and we

place each RN very close to DN (Figure 6.2.3.1.1-1).

In Figure 6.2.3.2.1, the experiment results when using advanced wireless phy are

similar to the experiment results in section 6.2.2.2.1 when using simple wireless phy.

UDP Throughput (AWPHY) - One Hop

0

1020

50

100
200 300 400 500 600

0

2

4

6

8

10

12

14

16

18

20

22

Kbytes

Kb
yt

es
/s

ec

No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.3.2.1: UDP throughput (AWPHY) – One Hop

 - 66 -

6.2.3.2.2 Multiple Hop Counts

In those experiments below, some RNs are multiple hops away from DN, and we

place each mobile node from neighboring nodes within its transmission range as far as

possible (Figure 6.2.3.1.2-1). In Figure 6.2.3.2.2, the performance on a multiple hop

network case could not be as good as expected like section 6.2.3.1.2.

UDP Throughput (AWPHY) - Mul t i pl e Hops

0

1020

50
100

200 300
400

500
600

0

2

4

6

8

10

12

14

16

18

Kbytes

Kb
yt

es
/s

ec

No RN One RN Two RNs Three RNs Four RNs Five RNs Six RNs

Figure 6.2.3.2.2: UDP throughput (AWPHY) – Multiple Hops

6.3 Routing Experiments

Our scheme can support the mobility in MANET. We evaluated our routing

scheme in section 6.3.

6.3.1 Basic Routing Experiment

 - 67 -

In this basic routing experiment (Figure 6.3.1-1), node 7 is a DN and node 8

moved out and in the DN’s transmission range. Node 9 and node 10 is out of the DN’s

transmission range, so node 8 forwarded data packets to the DN for them at the

beginning. During total 73 seconds simulation time, node 8 moved out the DN’s

transmission range in 31 seconds and moved in the DN’s transmission range again in

59 seconds. So, there was only one RN relaying for the DN between 31 seconds to 59

seconds.

Figure 6.3.1-1: basic routing topology

In Figure 6.3.1-2 (Figure A-5), we evaluated TCP throughput in this routing

experiment. During 13 seconds to 31 seconds, there were four RNs relaying for the

DN, and the TCP throughput swung between 20 Kbytes/sec to 10 K as same as the

results measured before. Node 8, 9 and 10 lose connection with the DN in 31 seconds.

The data packets sent to those nodes can’t arrive the DN. This situation would

 - 68 -

increase the number of out-of-order packets in DN’s reordering queue, so the TCP

throughput dropped to zero in 33 seconds. If this situation caused 20 packets loss, our

data transfer protocol can quickly fast retransmit some former holes in the DN’s

reordering queue. However, retransmitting the later holes in the DN’s reordering

queue may take more time due to the constraints of SACK recovery mechanism.

Therefore, the TCP throughput was raised up in 37 seconds due to fast recovery of

former holes, and raised up again in 44 seconds due to fast recovery of later holes.

Between 44 seconds to 59 seconds, there was only one RN relaying for DN, the

average TCP throughput was 7 Kbytes/sec as same as experiment results before. Node

8 moved within the transmission range of the DN in 59 seconds, so there were four

RNs relaying packets between 59 seconds to 73 seconds. The TCP throughput was

raised up in 64 seconds and swung between 20 Kbytes/sec to 10 K again.

Figure 6.3.1-2: TCP throughput of the basic routing experiment

6.3.2 Integrated Experiment

 - 69 -

We did an experiment that integrates our data transfer scheme and our ad hoc

routing scheme. We used five vehicles running on a closed road shown in Figure

6.3.2-1 (the road encloses a rectangular area, each segment of which is of length 1

kilometer) to form a mobile ad hoc network. Each vehicle corresponds to a mobile

node in this MANET. All of those five nodes move in the clockwise direction on the

road at different speeds. As such, distances of routing paths from one node to another

change over time. In this field trial, we are interested in the TCP throughput received

by the DN when one of these vehicles turns its direction at a corner because at this

moment the topology of the formed Ad-Hoc network changes severely.

Figure 6.3.2-1: integrated experiment topology

In Figure 6.3.2-2 (Figure A-6), we show the TCP throughput traffic flow of DN

in this experiment. Every red line in Figure 6.3.2-2 represents the topology changes of

the formed Ad-Hoc network, and every pink dot represents the moment when the DN

turns its direction at a corner. So, the DN turns its direction at a corner in 40, 48, 55,

 - 70 -

and 64 seconds. At those four critical moments, the formed Ad-Hoc topology changed

frequently (as there were more red lines), and the TCP throughput changed severely.

This experiment result (Figure 6.3.2-2) points out that the performance of our

scheme decreases when the Ad-Hoc topology changes severely. To improve the

performance when the Ad-Hoc topology changes severely, we will use another

Ad-Hoc routing protocol that is suitable for inter-vehicle communications in the

future.

Figure 6.3.2-2: TCP throughput of the integrated experiment

7. DISCUSSIONS

7.1 Market Potential

Currently, cellular phones with both GSM/GPRS and WLAN interfaces have been

introduced to the market. Such phones have the required network interfaces to use our

scheme to speed up their file transfer throughputs over GPRS networks. Using our

 - 71 -

scheme, a typical web page that contains several images or a large file can be

downloaded quickly. Video conferencing is also feasible due to increased throughput.

Because our scheme does not need any support from a GPRS network, the

GPRS+WLAN trunking service provided by it can be immediately deployed in the

current operational GPRS networks. Currently, 3G cellular networks and services are

still very expensive and not widely available. Our GPRS+WLAN trunking service can

use the current 2.5G networks to support high-bandwidth applications for such phones.

The cost of our software solution is lower than the cost incurred for replacing existing

2.5G networks with expensive 3G networks.

7.2 Billing Issues

A good billing policy is important to the success of our scheme if it is to be

deployed in the real world for commercial uses. In our scheme, a user who requests to

download a file needs to borrow the GPRS channels of his (her) neighbors to speed up

the file download over a GPRS network. Because receiving packets from a GPRS

channel consumes battery power and reduces the battery’s lifetime, and the cost of

receiving packets from a GPRS channel is charged to the owner of the GPRS channel,

there must be a good billing policy to provide incentives for GPRS users to “help”

other users.

The first step is not to charge the GPRS packets downloaded for another user to

the owner of the used GPRS channel. Instead, they should be charged to the user who

requests them. This step can be easily done. A GPRS network operator can set up the

trunk daemon and web proxy server in his (her) GPRS core network. The trunk

daemon knows which users lend their GPRS channels to the requesting user for

 - 72 -

downloading data and how many packets are transferred over each of these channels.

The borrow/lend usage statistics and accounting information can be transmitted to the

GPRS network’s billing service center to avoid such a problem.

The next step is to encourage GPRS users to help download other users’ packets.

To provide such incentives, a network operator may credit a certain number of points

to a helping user’s billing account for each relayed packet. Such points may be

redeemed for gifts or be used to reduce a GPRS user’s monthly payment. Although a

network operator may lose some profit due to these credit points, the net profit of the

network may be increased due to increased GPRS usages.

8. FUTURE WORK

In the integrated experiment, the simulation result (Figure 6.3.2-2) points out that

the performance of our scheme decreases when the Ad-Hoc topology changes

severely. So, current Ad-Hoc routing protocol should be improved or replaced by

other Ad-Hoc routing protocol. We plan to use the FloodRD [12] which is suitable for

high mobility in MANET.

We also plan to study how to select appropriate RNs for a DN. The relationship

between the achieved throughput speedup and the number of helping RNs may

depend on several factors. We need to identify several important metrics that can be

used to select better RNs. Such metrics may include a RN’s GPRS channel quality

and the hop count between it and the DN.

 - 73 -

9. CONCLUSIONS

In this paper, we propose, design, and implement a scheme to increase the file

download throughput over a GPRS network. In this scheme, GPRS and WLAN

networks are integrated. When a GPRS user issues a web request to download a file,

several GPRS channels including one’s own channel and the channels of one’s

neighboring users are used together to download the requested file in parallel. These

participated users use an IEEE 802.11(b) MANET to relay their received data to the

requesting user. Since the bandwidth of an IEEE 802.11(b) interface is much larger

than that of a GPRS channel, these packets are forwarded to the user without

congestion. By this scheme, the time required for downloading a large file over a

GPRS network can be significantly reduced.

Due to the design and implementation of our scheme, our scheme can be deployed

for a real-world GPRS network without any support from it. We have evaluated the

performance of our scheme on a real-world GPRS network and on a network

simulator, NCTUns2.0. Our experimental results show that our scheme achieves about

2.7X speedup over 4 GPRS channels in the real world. The simulation results are

almost similar to our experiment results. With a smaller RTT and a better signal

quality of the GPRS network on NCTUns2.0, we achieved better performances on

NCTUns2.0 than the real world.

Recently, cellular phones with GSM/GPRS and WLAN interfaces have been

introduced to the market. Since our scheme can be quickly deployed for a real-world

GPRS network, our scheme enables GSM/GPRS network operators to provide

high-bandwidth applications for such phones using the current GSM/GPRS networks.

 - 74 -

REFERENCES

 [1] Haiyun Luo, Ramachandran Ramjeey, Prasun Sinhaz, Li (Erran) Li, Songwu Lu,
“UCAN: A Unified Cellular and Ad-Hoc Network Architecture,” ACM
MOBICOM 2003, September 2003, San Diego, California, USA.

[2] Ying-Dar Lin and Yu-Ching Hsu, “Multihop Cellular: A New Architecture for

Wireless Communications,” IEEE INFOCOM 2000, March 2000, Tel Aviv,
Israel.

[3] S. De, O. Tonguz, H. Wu, and C. Qiao, “Integrated Cellular and Ad Hoc Relay

(iCAR) Systems: Pushing the Performance Limits of Conventional Wireless
Networks,” 35th Annual Hawaii International Conference on System Sciences
(HICSS’02), Volume 9, Januar 2002, Hawaii, USA.

[4] X. Wu, S. Chan, and B. Mukherjee, “MADF: A Novel Approach to Add an

Ad-hoc Overlay on a Fixed Cellular Infrastructure,” IEEE WCNC 2000, Volume
2, pp. 549-554, September 2000, Chicago, USA.

[5] Ansuya Negi, Suresh Singh, “Improvement in reliability of coverage using 2-hop

relaying in cellular networks,” IEEE PIMRC 2003, Volume 3, pp. 2348-2352,
September 2003, Beijing International. Convention Center, Beijing, China.

[6] Hung-Yun Hsieh and Raghupathy Sivakumar, “pTCP: An End-to-End Transport

Layer Protocol for Striped Connections,” ICNP 2002: 24-33

[7] Casey Carter, and Robin Kravets, ”User Devices Cooperating to Support

Resource Aggregation,” Fourth IEEE Workshop on Mobile Computing Systems
and Applications p. 59

[8] Puneet Sharma, Sung-Ju Lee,_ Jack Brassil, and Kang G. Shiny Mobile & Media
Systems Lab, Hewlett-Packard Laboratories, Palo Alto, ” Handheld Routers:
Intelligent Bandwidth Aggregation for Mobile Collaborative Communities,”
BROADNETS 2004: 537-547

[9] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield, Ian Pratt, Suman

 - 75 -

Banerjee, “MAR: A Commuter Router Infrastructure for the Mobile Internet,”
ACM MOBISYS 2004, Boston. June 2004

[10] Maria Papadopouli and Henning Schulzrinne."Design and Implementation of a

Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users", First
NY Metro Area Networking Workshop, March 12th, 2001, IBM TJ Watson
Research Center, Hawthorne, New York.

[11] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and

C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network
Simulator”, Computer Networks, Vol. 42, Issue 2, pp. 175-197, June 2003.

[12] S.Y. Wang, C.C. Lin, Y.W. Hwang, K.C. Tao, and C.L. Chou, “A Practical

Routing Protocol for Vehicle-Formed Mobile Ad Hoc Networks on the Roads,”
IEEE ITSC 2005 (International Conference on Intelligent Transportation
Systems), September 13-16 2005, Vienna, Austria

 - 76 -

APPENDIX

4.8

6.2

8.3 8.5
9.1

2.8 3.2 3.3 3.4 3.3

0
1
2
3
4
5
6
7
8
9
10

0 50 100 150 200 250 300 350 400 450 500 550 600

Fi l e Si ze(KB)

Th
ro

ug
hp

ut
(K

B/
se

c)

Thr ee r el ay nodes Two r el ay nodes

One r el ay node No r el ay node

Figure A-1: experiment results in the real world

1.71
1.9

2.5
2.7

2.91

1.6 1.69

2.2
2.4

1.42
1.75 1.81 1.85

1.68
1.93

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500 550 600

Fi l e Si ze (KB)

Sp
ee

du
p

Ra
te

Thr ee r el ay nodes Two r el ay nodes One r el ay node No r el ay node

Figure A-2: experiment speedup in the real world

GPRS TCP Throughput

-1
4
9
14
19
24
29
34
39
44
49
54
59

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121

sec

Kb
yt

es
/s

ec
 &

Cu
rr

en
t

Qu
eu

e
Si

ze

TCP Throughput GFIFO Current Queue Size

Figure A-3: GPRS TCP Throughput

 - 77 -

GPRS UDP Throughput

0
5
10
15
20
25
30
35
40
45
50
55

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Kbytes

Kb
yt

es
/s

ec

UDP Throughput GFIFO Current Queue Size

Figure A-4: GPRS UDP Throughput

Figure A-5: TCP throughput of the basic routing experiment

Figure A-6: TCP throughput of the integrated experiment

