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This study developed a novel model, HGA-SVR, for type of kernel function and kernel parameter value
optimization in support vector regression (SVR), which is then applied to forecast the maximum electrical
daily load. A novel hybrid genetic algorithm (HGA) was adapted to search for the optimal type of kernel
function and kernel parameter values of SVR to increase the accuracy of SVR. The proposed model was
tested at an electricity load forecasting competition announced on the EUNITE network. The results
showed that the new HGA-SVR model outperforms the previous models. Specifically, the new HGA-

SVR model can successfully identify the optimal type of kernel function and all the optimal values of
the parameters of SVR with the lowest prediction error values in electricity load forecasting.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machines (SVMs) have been successfully applied
to a number of applications such as including handwriting recogni-
tion, particle identification (e.g., muons), digital images identifica-
tion (e.g., face identification), text categorization, bioinformatics
(e.g., gene expression), function approximation and regression,
and database marketing, and so on. Although SVMs have become
more widely employed to forecast time-series data (Tay & Cao,
2001; Cao, 2003; Kim, 2003) and to reconstruct dynamically cha-
otic systems (Miiller et al., 1997; Mukherjee, Osuna, & Girosi,
1997; Mattera & Haykin, 1999; Kulkarni, Jayaraman, & Kulkarni,
2003), a highly effective model can only be built after the parame-
ters of SVMs are carefully determined (Duan, Keerthi, & Poo, 2003).

Min and Lee (2005) stated that the optimal parameter search on
SVM plays a crucial role in building a prediction model with high
prediction accuracy and stability. The kernel-parameters are the
few tunable parameters in SVMs controlling the complexity of
the resulting hypothesis (Cristianini, Campell, & Taylor, 1999).
Shawkat and Kate (2007) pointed out that selecting the optimal de-
gree of a polynomial kernel is critical to ensure good generalization
of the resulting support vector machine model. They proposed an
automatic selection for determining the optimal degree of polyno-
mial kernel in SVM by Bayesian and Laplace approximation meth-
od estimation and a rule based meta-learning approach. In

* Corresponding author. Tel.: +886 939013100; fax: +886 422183270.
E-mail addresses: chwu@ntcu.edu.tw (C.-H. Wu), ghtzeng@cc.nctu.edu.tw,
ghtzeng@mail.knu.edu.tw (G.-H. Tzeng).

addition, to construct an efficient SVM model with RBF kernel,
two extra parameters: (a) sigma squared and (b) gamma, have to
be carefully predetermined. However, few studies have been de-
voted to optimizing the parameter values of SVMs. Evolutionary
algorithms often have to solve optimization problems in the pres-
ence of a wide range of problems (Dastidar, Chakrabarti, & Ray,
2005; Shin, Lee, Kim, & Zhang, 2005; Yaochu & Branke, 2005;
Zhang, Sun, & Tsang, 2005). In these algorithms, genetic algorithms
(GAs) have been widely and successfully applied to various types
of optimization problems in recent years (Goldberg, 1989; Fogel,
1994; Cao, 2003; Alba & Dorronsoro, 2005; Aurnhammer &
Tonnies, 2005; Venkatraman & Yen, 2005; Hokey, Hyun, & Chang,
2006; Cao & Wu, 1999; McCall, 2005). Therefore, this paper pro-
poses a hybrid genetic-based SVR model, HGA-SVR, which can
automatically optimize the SVR parameters integrating the real-
valued genetic algorithm (RGA) and integer genetic algorithm, for
increasing the predictive accuracy and capability of generalization
compared with traditional machine learning models.

In addition, a wide range of approaches including time-varying
splines (Harvey & Koopman, 1993), multiple regression models
(Ramanathan, Engle, Granger, Vahid-Araghi, & Brace, 1997), judg-
mental forecasts, artificial neural networks (Hippert & Pedreira,
2001) and SVMs (Chen, Chang, & Lin, 2004; Tian & Noore, 2004)
have been employed to forecast electricity load. One of the most
crucial demands for the operation activities of power systems is
short-term hourly load forecasting and the extension to several
days in the future. Improving the accuracy of short-term load fore-
casting (STLF) is becoming even more significant than before due
to the changing structure of the power utility industry (Tian &
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Noore, 2004). SVMs have been applied to STLF and performed well.
Unfortunately, there is still no consensus as to the perfect approach
to electricity demand forecasting (Taylor & Buizza, 2003).

Several studies have proposed optimization methods which
used a genetic algorithm for optimizing the SVR parameter val-
ues. To overcome the problem of SVR parameters, a GA-SVR
has been proposed in a earlier paper (Hsu, Wu, Chen, & Peng,
2006) to take advantage of the GAs optimization technique. How-
ever, few studies have focused on concurrently optimizing the
type of SVR kernel function and the parameters of SVR kernel
function. The present study proposed a novel and specialized hy-
brid genetic algorithm for optimizing all the SVR parameters
simultaneously. Our proposed method was applied to predicting
maximum electrical daily load and its performance was analyzed.
An actual case of forecasting maximum electrical daily load is
illustrated to show the improvement in predictive accuracy and
capability of generalization achieved by our proposed HGA-SVR
model.

The remainder of this paper is organized as follows. The re-
search gap for obtaining optimal parameters in SVR is reviewed
and discussed in Section 2. Section 3 details the proposed HGA-
SVR, ideas and procedures. In Section 4 an experimental example
for predicting the electricity load is described to demonstrate the
proposed method. Discussions are presented in Section 5 and con-
clusions are drawn in the final Section.

2. Basic ideas of methods for obtaining optimal parameters in
SVR

SVR is a promising technique for data classification and regres-
sion (Vapnik, 1998). We briefly introduce the basic idea of SVR in
the Section 2.1. To design an effective model, the values of the
essential parameters in SVR must be chosen carefully in advance
(Duan et al., 2003). Thus, various approaches to determine these
values are discussed in Section 2.2. Although many optimization
methods have been proposed, GAs is well suited to the concurrent
manipulation of models with varying resolutions and structures
since they can search non-linear solution spaces without requiring
gradient information or a priori knowledge of model characteris-
tics (McCall & Petrovski, 1999). The genetic algorithm employed
in this study to search for the optimal values of the SVR parameter
is illustrated in Section 2.3.

2.1. Support vector regression (SVR)

This subsection briefly introduces support vector regression
(SVR), which can be used for time-series forecasting. Given training
data (x1,y1).- . .(X,y1), where x; are the input vectors and y; are the
associated output values of x;, the support vector regression is an
optimization problem:

1 Lo
min 5 oo+ C;(cf +&), 0
Subject to y; — (@"$(x) + b) < & + &, 2)
(@'¢(xi) +b) —y; <e+ &, 3)

&8 =20i=1,....1 @

where | denotes the number of samples, x; vector of i-sample is
dataset mapped to a higher dimensional space by the kernel func-
tion ¢, vector, ¢&; represents the upper training error, and ¢& is the
lower training error subject to e-insensitive tube |y — (w'¢
(x) +b)| <e. Three parameters determine the SVR quality: error
cost C, width of tube, and mapping function (also called kernel
function). The basic idea in SVR is to map the dataset x; into a
high-dimensional feature space via non-linear mapping. Kernel
functions perform non-linear mapping between the input space

and a feature space. The approximating feature map for the
Mercer kernel performs non-linear mapping. In machine learning
theories, the popular kernel functions are

w2
Gaussian(RBF) kernel :k(x;, x;) = exp (— ”X'zT);J> (5)
Polynomial kernel :k(x;,x;) = (1 + x; .Xj)d. (6)
Linear kernel :k(x;,x;) = x!x;. (7)

In Eq. (5), x; and x; are input vector spaces; and V denotes the
variance-covariance matrix of the Gaussian kernel.

2.2. Parameter optimization

As mentioned earlier, when designing an effective model, values
of the two essential parameters in SVR have to be chosen carefully
in advance (Duan et al., 2003). These parameters include (1) regu-
larization parameter C, which determines the tradeoff cost be-
tween minimizing the training error and minimizing model
complexity; and (2) parameter sigma (or d) of the kernel function,
which defines the non-linear mapping from the input space to
some high-dimensional feature space. This investigation considers
only the Gaussian kernel, namely sigma square (V), which is the
variance-covariance matrix of the kernel function. Generally speak-
ing, model selection by SVM is still performed in the standard way:
by learning different SVMs and testing them on a validation set to
determine the optimal value of the kernel parameters. Therefore,
(Cristianini et al., 1999) proposed the Kernel-Adatron Algorithm,
which can automatically perform model selection without being
tested on a validation. Unfortunately, this algorithm is ineffective
if the data have a flat ellipsoid distribution (Campbell, 2002).
Therefore, one possible way is to consider the data distribution.

2.3. Genetic algorithms (GAs)

Evolutionary algorithms often have to solve optimization prob-
lems in the presence of a wide range of uncertainties (Yaochu &
Branke, 2005). Genetic algorithms (GAs) are well suited for search-
ing global optimal values in complex search space (multi-modal,
multi-objective, non-linear, discontinuous, and highly constrained
space), coupled with the fact that they work with raw objectives
only when compared with conventional techniques (Holland,
1975; Goldberg, 1989; Waters & Sheble, 1993). For example,
(Venkatraman & Yen, 2005) proposed a generic, two-phase frame-
work for solving constrained optimization problems using GAs.
Although many optimization methods have been proposed (e.g.
Nelder-Mead simplex method), GAs are well suited to the concur-
rent manipulation of models with varying resolutions and struc-
tures since they can search non-linear solution spaces without
requiring gradient information or a priori knowledge of model
characteristics (Darwen & Xin, 1997; McCall & Petrovski, 1999).
Based on fitness sharing, the learning system of GAs outperforms
the tit-for-tat strategy against unseen test opponents. They learn
using a "black box” simulation, with minimal prior knowledge of
the learning task (Darwen & Xin, 1997).

In addition, the problem in binary coding lies in the fact that a
long string always occupies the computer memory even though
only a few bits are actually involved in the crossover and mutation
operations. This is especially the case when a lot of parameters
have to be adjusted in the same problem and a higher precision
is required for the final result. This is also the main problem when
initialing values of parameters of SVM in advance. To overcome
this inefficient use of computer memory, the underlying real-val-
ued crossover and mutation algorithm are employed (Huang &
Huang, 1997). Contrary to the binary genetic algorithm (BGA),
the real-valued genetic algorithm (RGA) uses real value as a
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parameter of the chromosomes in the population without the
coding and encoding process prior to calculating the fitness value
(Haupt & Haupt, 1998). Consequently, the RGA is more straightfor-
ward, faster, and more efficient than the BGA. Recently, a hybrid
GA (HGA) has been proposed by (Li & Aggarwal, 2000) to take
advantage of both GAs and the local search techniques for speeding
up the search effectiveness and to overcome the premature con-
vergence problem. (Li & Aggarwal, 2000) proposed a relaxed hybrid
genetic algorithm (RHGA) to economically allocate power genera-
tion in a fast, accurate, and relaxed manner.

3. Design of the hybrid genetic-based SVR (HGA-SVR) model for
improving predictive accuracy

In this section, we describe the design of our proposed novel
HGA-SVR model. The optimization process of HGA-SVR is intro-
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duced in the first section. The basic idea of non-linear SVR model
is described in the next section. The design of chromosome repre-
sentations, fitness function and genetic operators in our novel
HGA-SVR are discussed in the final sections.

3.1. Our proposed novel HGA-SVR model

In our proposed novel HGA-SVR model, the type of kernel and
the parameter value of SVR are dynamically optimized by imple-
menting the evolutionary process, and the SVR model then per-
forms the prediction task using these optimal values. Our
approach simultaneously determines the appropriate type of kernel
function and optimal kernel parameter values for optimizing the
SVR model to fit various datasets. The overall process of our pro-
posed approach is illustrated in Fig. 1. The types of kernel function
and optimal values of the SVR’s parameters are determined by our
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Fig. 1. The optimization process of HGA-SVR.
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proposed novel HGAs with a randomly generated initial population
of chromosomes. The types of kernel function (Gaussian (RBF) ker-
nel, polynomial kernel, and linear kernel) and all the values of the
parameters are directly coded into the chromosomes with integers
and real-valued numbers, respectively. The proposed model can
implement either the roulette-wheel method or the tournament
method for selecting chromosomes. Adewuya’s crossover method
and boundary mutation method were used to modify the chromo-
some. Only the one best chromosome in each generation survives to
move on to the succeeding generation.

Christiani and Shawe-Taylor (2000) proposed the Kernel-Ada-
tron Algorithm, which can automatically select models without
them being tested on a validation data. Unfortunately, this algo-
rithm is ineffective if the data have a flat ellipsoid distribution
(Campbell, 2002). Unfortunately, this may happen often in the real
world. Therefore, rather than applying the Kernel-Adatron Algo-
rithm, a new method named HGA-SVR was developed in this study
to optimize all the parameters of SVR simultaneously. The major
SVR training and validation tool used in this study has been previ-
ously developed (Pelckmans et al., 2002; Suykens, Van Gestel, De
Brabanter, De Moor, & Vandewalle, 2002). The proposed model
was developed and implemented in the MATLAB 7.1. The main tool
used, LIBSVM, for training and validating the SVR was developed by
Pelckmans et al. (2002). By using this tool, Comak et al. (2007) inte-
grated the fuzzy weight pre-processing for the medical decision
making system and obtained the highest classification accuracy
in their dataset. Thus, we believe our proposed HGA-SVR model
is able to handle huge data sets and can easily and efficiently be
combined with the integer genetic algorithm and real-valued ge-
netic algorithm for developing the hybrid genetic algorithm.

3.2. The non-linear SVR model

The SVR model can be represented as follows. The non-linear
objective function maximizes

1 1 1
Max W (o) = ;ac,- -3 j;ociocjyiyj(k(xm)) (8)
Subjectto0 < o; <C, i=1,...1, 9)
I
> oy =0. (10)
i=1

The optimal weight w* and bias are determined by solving the qua-
dratic programming problem.

w' =

MN

oYX, (11)

1
b =y, —wx. (12)

Il
-

The optimal decision function is as follows:

f(x) = sign <iyioc,-*k(x, X;) + b*> . (13)
i=1

Integer genetic algorithm

3.3. The proposed HGA

The proposed HGA was revised and combined with the integer
genetic algorithm and real-valued genetic algorithm in order to
obtain a higher precise value under various ranges of parameter
values. The HGA is designed as follows.

3.3.1. Chromosome representations

Unlike applying traditional GAs, when using a HGA for optimi-
zation problems, all of the corresponding parameters and types of
kernel function can be coded directly to form a chromosome.
Hence, the representation of the chromosome is straightforward
in a HGA. All the parameters of SVR were directly coded to form
the chromosome in the present approach. Consequently, chromo-
some X was represented as X = {KT,P,P,}, where P; and P, denote
the type of kernel function, and the first and second parameter val-
ues, respectively. The gene structure of our proposed HGA is shown
as Fig. 2.

KTi denotes the types of kernel function which includes three
types of kernel function as follows.

Linear kernel : k(x;, ;) = x!x; (14)
Polynomial kernel : k(x;,x;) = (x/x; + t)* (15)

where t is the intercept and d the degree of the polynomial.

2
Gaussian(RBF)kernel : k(x;,x;) = exp (— %) (16)

with ¢? the variance of the Gaussian kernel.

The values zero, one, and two denote that the system will
choose 'Linear kernel’,Polynomail kernel’, and 'Gaussian (RBF) ker-
nel’, respectively. The first part of the HGA will be implemented in
the integer value type GA.

P1i: optimal parameter 1; P2i: optimal parameter 2.

The various types of SVM kernel function and sufficient kernel
function parameters that need to be optimized are summarized
in Table 1. The definition and type of essential parameters in SVR
is based on the definition of LSSVM tool.

Parameter C is the penalty (cost) parameter of the training error
in the RBF kernel function. Parameterd denotes the degree of poly-
nomial kernel function, t denotes the constant term of the polyno-
mial kernel function, and ¢ denotes the epsilon-insensitive value in
epsilon-SVR. In the LIB-SVM tool, we don’t need the ¢ parameters
for using SVR.

Table 1
Types of various kernel function and sufficient kernel function parameters

KTi P;; (parameter 1) Pi(parameter 1)
0 Linear kernel gamma -
1 Poly kernel d t
2 RBF kernel C 4

Notes: - denotes no parameter needed; and gamma, d, t, C, ¢ denote various types of
kernel function parameters.

Real-valued genetic algorithm

-
- Ll 2

KT;

P2,

Fig. 2. Gene structure of our proposed HGA (population i).
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3.3.2. Genetic operators

The real-valued genetic algorithm uses selection, crossover, and
mutation operators to generate the offspring of the existing popu-
lation. The proposed HGA-SVR model incorporates two well-
known selection methods: roulette-wheel method and tournament
method. The tournament selection method is adopted here to de-
cide whether or not a chromosome can survive into the next gen-
eration. The chromosomes that survive into the next generation
are then placed in a mating pool for the crossover and mutation
operations. Once a pair of chromosomes has been selected for
crossover, one or more randomly selected positions are assigned
into the to-be-crossed chromosomes. The newly-crossed chromo-
somes then combine with the rest of the chromosomes to generate
a new population. However, the problem of frequent overloading
occurs when the RGA is used to optimize values. In this study we
used the method proposed by (Adewuya, 1996), a genetic algo-
rithm with real-valued chromosomes in order to avoid a post-
crossover overload problem. The mutation operation follows the
crossover to determine whether or not a chromosome should mu-
tate to the next generation. In this study, uniform mutation was
designed in the presented model.

Uniform mutation

XOld:{X]7X27"'7xn}7 17)
XY — LBy +1 x (UBy — LBy), (18)
X" = X1, Xg, -, X, X} 19)

where n denotes the number of parameters, r represents a random
number range (0, 1), and k is the mutation location. LB and UB are
the low and upper bounds of the parameter, respectively. LB, and
UBy, denote the low and upper bounds in location k, respectively.
X°! represents the population before the mutation operation; and
X"V represents the new population after the mutation operation.

However, the major problem for optimizing all parameters of
SVR is that various kernel function parameters have a different
range of parameter values. Therefore, we proposed that the new
GA operators in our proposed HGA deal with the range of SVM
parameter values. The new GA operators are shown in Fig. 3.

Our proposed HGA adopts different GA operators in the integer
GA the real-valued GA. As shown in Fig. 3, the HGA is divided into
two parts—the integer GA and the real-valued GA. Our method se-
lects the same GA reproduction operator and crossover operators.
However, in this study we designed a different GA mutation oper-
ator (i.e. method1 and method2 in Fig. 3) for limiting the range of
the parameter value. The revised mutation operator in KTi (new
method1) is designed by MOD function calculation (remainder)
and ROUND function calculation (by converting the real-value into
the integer value) to limit the range of the value. The revised muta-
tion operator in KTi (new method 2) is first calculated via uniform
mutation operators and then converts the real-value into the inte-
ger value (The KTi value must be an integer value to map the cod-
ing design). Finally, we believe that the boundary mutation which
adopts the upper bound and the lower bound does not need to be
redesigned. The revised parts are shown in red in Fig. 3.

3.3.3. The fitness function

A fitness function assessing the performance for each chromo-
some must be designed before searching for the optimal values
of the SVR parameters. Several measurement indicators have been
proposed and employed to evaluate the prediction accuracy of
models such as MAPE, RMSE, and the maximum error in time-ser-
ies prediction problems. To compare the results achieved by the
present model with those of the EUNITE competition, this study
employed MAPE, which is the same fitness function used in the
above-mentioned competition.

4. Experimental example for predicting electricity load

In this section, the effectiveness of the proposed HGA-SVR mod-
el was demonstrated by forecasting the daily electricity loading
problem as announced on the 'Worldwide Competition within
the EUNITE Network!. The set problem was to predict the maxi-
mum daily electricity load for January 1999 using daily half-an-hour
electricity load values, average daily temperatures, and a list of pub-
lic holidays for the period from 1997 to 1999. There is no consensus
as to the best approach to forecast electricity load (Taylor & Buizza,
2003). The winning model, SVM, demonstrated a superior predictive
accuracy compared with the traditional neural network models that
were employed in the EUNITE competition (e.g. functional network?,
Back-propagation ANN3, adaptive logic networks?). In view of the
above, we used our proposed HGA-SVR model to predict the maxi-
mum daily values of electricity load and compared its prediction
performance with that of other models employed in the previous EU-
NITE competition.

4.1. Descriptions of competition data and structure

The competition data files include Load1997.xls, Load1998.xls,
Temperature 1997.xls, Temperature 1998.xls, and Holidays.xls,
which were downloaded from the EUNITE network. The file, Loa-
d1997and 8.xls, contains all half-hour electricity load values for
1997 and 1998. Temperature199X.xIs comprises the average daily
temperatures for the same two years. Holiday.xls describes the
occurrence of holidays in the period 1997 to 1999. Furthermore,
the prediction file, Load1999.xls, comprises the maximum electric-
ity load values and half-hour loads in January of 1999. All data for-
mats are listed in Table 2.

4.2. Data analysis

Variable selection plays a critical role in building a SVR model as
well as traditional time-series prediction models. Therefore, this
study first analyzed the data to ensure that all essential variables
were included in the GA-SVR model. Only when all essential vari-
ables are included can the model yield a satisfactory prediction
performance.

4.2.1. Temperature influence

As mentioned in most data mining research, the data sets must
be analyzed and cleaned before the proposed model is applied to
them. The maximum electrical loads were strongly influenced by
the temperature factor, with a negative correlation existing be-
tween the two, as shown in Fig. 4. Specifically, people require a
higher electricity load to keep warm in cold weather. Despite the
change in the daily temperature, the data of the maximum loads,
as shown in Fig. 5, also showed a seasonal pattern. There was a
recurrent high peak of electricity demand during the winter and
a lower peak during the summer. According to previous studies,
the distribution of temperature shows Gaussian characteristics
(The indexes for the Gaussian curve are: a=20.85, b=196.04,
c = 64.85, respectively’).

! European Network on Intelligent Technologies for Smart Adaptive Systems
(EUNITE) network organized a competition on the short-term prediction problem in
2001 (http://neuron.tuke.sk/competition/index.php).

2 http://neuron.tuke.sk/competition/reports/BerthaGuijarro.pdf

3 http://neuron.tuke.sk/competition/reports/DaliborZivcak.pdf

4 http://neuron.tuke.sk/competition/reports/DavidEsp.pdf

5 http://neuron.tuke.sk/competition/reports/DaliborZivcak.pdf
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Real-valued Genetic Algorithm

\J
A

KTi Pli P2i
GA operators
( Reproduction ) ( Reproduction )
( Crossover ) ( Crossover )
Mutation methods Mutation methods
Method 1: X' = MOD((X' + s* random_noise),Pli); Method 1;: X' = X'+ s* random_noise;
Method 2: NEW Uniform Mutation Method 2: Uniform Mutation
X = [x1,x2,...xk,...xKk] X =[xl x2,..xk,..xk]
Xnew = ROUND(LBk+r*(UBk-LBk)) Xnew = LBk+r*(UBk-LBk)
X'= [x1,x2,...Xnew,...xk| X'= [x1,x2,... Xnew,...xk]
Method 3: Boundary Mutation Method 3: Boundary Mutation
X = [x1,x2,...Xky..XK] X =[xl x2,..xk..xk]
Xnew = LBk or UBk Xnew = LBk or UBk
X'= [x1x2,.. Xnew,..xk] X'= [x1,x2,..Xnew,...xk]
Fig. 3. The new GA operators in our proposed HGA.
Table 2
Given data formats
Data files Content and format description
(Training) Date Half-hour loads (etc.) Max. Loads
Year Month Day 00:30 01:00 01:30.
Load 1997.xls 1997 1 1 797 794 784 . (etc.) 797
Load 1998.xls 1997 1 2 704 697 704 (etc.) 777
. (etc.)
1998 12 31 716 703 690 .. (etc.) 733
1999 1 1 751 735 714 .. (etc.) 751
(Predicting) (etc.)
Load 1999.xls 1999 1 31 712 720 694 .. (etc.) 743
Date Temperature [°C]
(Training) 01/01/97 -7.6
Temperature 1997.xls 02/01/97 -6.3
Temperature 1998.xls O
12/31/98 -8.7
(Predicting) 01/01/99 -10.7
Temperature 1999.xls e .
01/31/99 —6.0
Training) Predicting)
Holiday-1997 Holiday-1998 Holiday-1999
Holidays.xls 1997/01/01 1998/01/01 1999/01/01
1997/01/06 1998/01/06 1999/01/06
1997/03/28 1998/04/10 1999/04/02
1997/12/31 1998/12/31 1999/12/31

4.2.2. Maximum load and the holiday effect

Fig. 6 displays a non-linear pattern of the maximum electricity
loads during 1997 and 1998. The descriptive statistical information
of the maximum loads is summarized in Table 3. The descriptive
statistical information revealed that the lowest peak of electricity
demand during 1997 and 1998 was 464 and the highest peak of
electricity demand was 876. Moreover, the average demand was
670.8 with high volatility. The data sets also offered holiday infor-
mation to help predict the maximum electricity loads, because ear-
lier work in this area noted that holidays will influence the
maximum load demand. According to public holiday information,

the electricity load is generally lower during the holidays and var-
ies with the type of holiday.

4.3. Modeling

Kernel and variable selection are an important step for SVR
modeling. Since the electricity load is a non-linear function of the
weather variables (Taylor & Buizza, 2003) and since some variables
(see Fig. 6) seemed to be more properly used here than others for
fitting the electricity load data, this study chose three major kernel
function types of SVR (linear, poly, and RBF) for the data mapping
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function and obtained the HGA-SVR parameters by HGA evolution.

The daily electricity loads in the training data were adopted as the
target value y;, and the daily temperature values and public holiday

Table 3

Descriptive statistics on maximum loads

Statistics Value
Minimum 464
Maximum 876
Mean 670.8
Std. 93.54
Range 412
Skewness —.043
Kurtosis -1.235

information were adopted as the input variables x; in our model.
For the holiday variable, a code of one or zero was used to indicate
whether or not a day was a holiday. In addition, lagged demands,
such as day-head inputs, which might be useful in short-term de-
mand forecasting were not included in the input variables of this
short-term forecasting problem. Extra variable information was
not used for modeling. In other words, this work adopted the same
variables that were selected by previous competitors in the EUNITE
competition for modeling.

4.4. Results evaluation

To provide a comparison with the prior prediction ability of SVR
models in the ‘Worldwide Competition within the EUNITE Net-
work’, this work evaluated the HGA-SVR model according to the
same criteria employed in the above mentioned competition.

1. Magnitude of MAPE error

n
i=1

MAPE = 100 =

Lg,~Lp,
Iy,

(20)

Lg, denotes the real value of the maximum daily electrical load
on day “i” of 1999, and L, represents the predicted maximum
daily electrical load on the “ith” day of 1999, and n is the number
of days in January of 1999, hence n =31.

2. Magnitude of Maximum Error

M = max(|L, ~ Lp,) (21)

i represents the day in January of 1999, where i=1,2,.. .31

4.5. Design of parameters and fitness function

Some parameters have to be determined in advance before
using HGA-SVR to forecast the electricity loads. Table 4 summa-
rizes all HGA-SVR training parameters. The values of individual
parameters and the value of the fitness function depend on the
prior experiences of HGA-SVR training and problem type. More-
over, the fitness function is designed using the formula of the first

Table 4

HGA-SVR training parameters

Parameter Value
Population size 20
Generations 50-100
Gamma range 0-1000
Sigma range 0-1000
Selection method tournament
Mutation method uniform
Snoise 100

Elite yes
Mutation rate 0.5
Problem type minimum
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criterion (Eq. (14)), MAPE, and its value is taken as the fitness value
in this HGA-SVR.

From Table 4, a uniform mutation method with high mutation
ratio was selected to avoid the local optimum and pre-maturity
problems. The present study activated the elite mechanism to en-
sure that the MAPE was efficiently minimized and that it remained
in a convergent state during the early generation evolution. Conse-
quently, both the RMSE and maximum error fluctuated sharply
with the generation evolution. Meanwhile, the population size
and the generations were increased to ensure that the global opti-
mum values of all the parameters could be found. Fig. 7 illustrates
the whole optimization process of MAPE in the proposed HGA-SVR.

The focus of the issue here was to predict the real maximum
electricity loads in January 1999. Fig. 8 shows the results of the
HGA-SVR conducted. Although the real values fluctuated sharply
during January 1999, our prediction values (dashed line) were still
very close to the real values (solid line).

In the proposed model, the best MAPE was 0.76, RMSE=7.73 and
the maximum error (MW) was 20.88. The optimal type of kernel
function is the Poly kernel function, and the optimal values of
parameters 1 and 2 of SVR were 4.42 and 184.98, respectively.
Comparing the results obtained by HGA-SVR with the previous re-
sults revealed that the best MAPE generated by our previous work,
GA-SVR in the EUNITE dataset was 0.8501 (Hsu et al., 2006). Table 5
lists the results of our previously proposed GA-SVR during various
generations. The new HGA-SVR model outperformed the previous
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Fig. 7b. Optimization process of MAPE in HGA-SVR (100 generations).
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Table 5
Results in various generations of GA-SVR

Generations

50 100 200 500
RMSE 9.68 9.70 9.60 9.46
MAPE 0.8551 0.8540 0.8519 0.8501
Max. error 3847 38.21 37.20 35.02
Optimal parameter 1 (Sigma) 436.81 223.32 171.48 106.49
Optimal parameter 2 (Gamma) 9042.72 2916.76 2179.52 817.32

GA-SVR model in the ‘Worldwide EUNITE Network Competition’
dataset, achieving a lower MAPE and MW. Complete EUNITE net-
work competition reports can be found at the EUNITE website
(http://neuron.tuke.sk/competition/index.php).

The comparison results in various generations for GA-SVR and
HGA-SVR are shown in Table 6. The best model is marked in bold
style fonts. In all models, the best model is the poly kernel function
with 7.84 RMSE, 0.81 MAPE, and 23.67 maximum forecasting error.
The optimal values which were obtained by HGA-SVR are quite
astounding. In our previous experience, the RBF seemed to be the
best choice for the type of SVR kernel function for non-linear fore-
casting. However, our research results reveal that besides the RBF
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Table 6
Comparison results of GA-SVR and HGA-SVR in various generations

4733

Optimal kernel Generations

50 generations

100 generations

GA-SVR (RBF only)

HGA-SVR® (Optimize all)

GA-SVR (RBF only) HGA-SVR? (Optimize all)

RBF Poly RBF RBF
Optimal RMSE 9.68 7.84 9.70 9.44
Optimal MAPE 0.86 0.81 0.85 0.85
Optimal max. error 38.47 23.67 38.21 34.28
Optimal parameter 1 436.81 4.55 223.32 87.43
Optimal parameter 2 9042.72 192.85 2916.76 457.44

Notes: GA-SVR only optimize the parameter values with RBF kernel; and HGA-SVR*® optimize all parameters (i.e. type of kernel function and all kernel function parameter

values).

kernel function, the HGA-SVR found that the Poly kernel function
also performed well in the electricity load forecasting problem,
but only if it has optimal values. Another interesting point is the
fact that the local optimal values can be found in only a few gener-
ations (in this case 50 generations). We tried to increase the num-
ber from 50 generations to 100 generations, but the forecasting
error did not decrease significantly.

Based on the results obtained by HGA-SVR in Table 6, we found
that the optimal kernel function type of SVR is Poly and the optimal
parameters are 4.55 and 192.85 in the electricity loading dataset.
In the next experiment, we tried to limit the range of the first
parameter in SVR from O to 5 in order to obtain more precise opti-
mal values. The results of HGA-SVR are shown in Table 7. Two ex-
tra models are implemented (HGA-SVR® and HGA-SVRY) in this
experiment. The HGA-SVR? and HGA-SVRd are optimized with a
lower range of parameters of SVR. The new limited HGA-SVR mod-
els are run in 50 generations and 100 generations in order to com-
pare them with the results of the HGA-SVR models (HGA-SVR® and
HGA-SVRY) in Table 6.

The improvement in reducing the forecasting error via HGA-
SVR is shown in Table 8. Compared with our previous work,
GA-SVR, the proposed HGA-SVR can lower the forecasting error
further. The optimal RMSE, MAPE and maximum error by HGA-
SVR is 7.73 (a decrease of 1.73), 0.76 (a decrease of 0.09), and
20.88 (a decrease of 14.14), respectively. The HGA-SVR also found
all the optimal values—type of kernel function (i.e. Poly) and opti-
mal values for parameters 1 and 2 to be 4.42 and 184.98,
respectively.

Although most research results point out that the RBF kernel
outperforms any other kinds of kernel function in a non-linear
case, the fact is that our proposed HGA-SVR found that the Poly
kernel function is not only good for the non-linear case but that
it also performs well, even better than the RBF kernel function in
this electronic loading forecasting problem.

Table 7
Results of HGA-SVR in various generations

Table 8
Improvement of forecasting error of HGA-SVR

Generations

50 generations 100 generations

EUNITE winner  GA-SVR HGA-SVR Forecasting
(Model A) (Model B)  (Model C)  error
Optimal values (B)-(C)
Optimal kernel RBF RBF Poly
Optimal RMSE - 9.46 7.73 1 1.73
Optimal MAPE 2.0 0.85 0.76 10.09
Optimal max. error 50-60 35.02 20.88 114.14
Optimal parameter 1 - 106.49 4.42
Optimal parameter 2 - 817.32 184.98

Notes: The winning SVM model in EUNITE was proposed by Chen et al. (2004).
Parameter 1 for the RBF kernel is sigma, and for the poly kernel it is d; and
Parameter 2 for the RBF kernel is gamma, and for the poly kernel it is p.

4.6. Discussions

The performance of our proposed HGA-SVR approach has been
tested and compared with that of the traditional SVR model, other
neural network approaches, and GA-SVR. During the competition
other researchers tried other artificial neural network approaches,
besides SVR. Various ideas were employed for the different pro-
posed solutions to improve the accuracy, when they approached
the selection of input variables and splitting data.

Among all the models on EUNITE network published, our ap-
proach provides a better generalization capability and a lower pre-
diction error than the neural network approaches, traditional SVM
models, and GA-SVR without variable selection and data segmen-
tation. Our HGA-SVR model shows that the STLF can be improved
by setting proper values for all parameters (parameter values and
type of kernel function) in the SVR model. In addition to the RBF

Generations

50 generations

100 generations

HGA-SVR? HGA-SVR® HGA-SVR® HGA-SVR!
Range of parameter 1 0-10000 0-5 0-10000 0-5
Range of parameter 2 0-10000 0-200 0-10000 0-200
Optimal values
Optimal kernel Poly Poly RBF Poly
Optimal RMSE 7.84 7.73 9.44 7.77
Optimal MAPE 0.81 0.76 0.85 0.75
Optimal max. error 23.67 20.88 34.28 26.34
Optimal parameter 1* 4.55 4.42 87.43 4.0
Optimal parameter 2* 192.85 184.98 457.44 186.34
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kernel function, this study also found that the Poly kernel function
may be an appropriate choice of SVR kernel function in forecasting
daily electricity loading. The research results reveals that the Poly
kernel function may outperform the RBF kernel function in a non-
linear electricity loading forecasting problem. According to previ-
ous studies (Clements & Galvao, 2004), a non-linear model usually
shows superior results in more accurate short-horizon forecasts.
We believe that our proposed non-linearity model can be applied
to other complex forecasting problems in the future.

In addition, the structural risk minimization principle (SRM),
shown to be superior to the traditional empirical risk minimization
principle (ERM) employed by the traditional neural networks, was
embodied in SVM. SRM is able to minimize an upper bound of the
generalization error as opposed to ERM that minimizes the error on
training data (Tian & Noore, 2004). Thus, the solution of SVM may
be a global optimum while other neural network models tend to
fall into a local optimal solution, and overfitting is unlikely to occur
with SVM (Hearst, Dumais, Osman, Platt, & Scholkopf, 1998; Cris-
tianini et al., 1999; Kim, 2003). Therefore, most traditional neural
network models yield an acceptable predictive error for training
data, but when out-of-sample data are presented to these models,
the error becomes unpredictably large, which yields limited gener-
alization capability (Tian & Noore, 2004).

5. Conclusions

This study proposed a novel hybrid genetic algorithm for
dynamically optimizing all the essential parameters of SVR. Our
experimental results demonstrated the successful application of
our proposed new model, HGA-SVR, for the complex forecasting
problem. It demonstrated that it increased the electricity load fore-
casting accuracy more than any other model employed in the EU-
NITE network competition. Specifically, the new HGA-SVR model
can successfully identify all the optimal values of the SVR parame-
ters with the lowest prediction error values, MAPE, in electricity
load forecasting.
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