
國立交通大學

資訊工程系
碩士論文

在 NCTUns 網路模擬器支援平行模擬

Supporting Parallel Simulations on the NCTUns

Network Simulator

研究生： 陳彥廷

指導教授： 王協源 教授

中華民國九十四年六月

在 NCTUns 網路模擬器支援平行模擬

Supporting Parallel Simulations on the NCTUns Network Simulator

研 究 生：陳彥廷 Student：Yen-Ting Chen

指導教授：王協源 Advisor：Shie-Yuan Wang

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

中文摘要

 對發展以及診斷網路協定的研究人員而言，以軟體實做的網路模擬器是相當

有價值的工具。對某些中小型的網路來說，模擬足已能夠洞悉這些網路內在的關

鍵行為。然而，對於要模擬上千個節點，且每個節點上面都執行數個應用程式的

模擬案例，單一機器因為在中央處理器速度以及記憶體空間的限制下，難以完成

如此大規模模擬。因此，設計實做平行模擬方法來延伸模擬器的模擬規模是有其

價值的。NCTUns為分散式事件驅動的網路模擬器，在本論文中，我們將數種保

守法應用平行分散事件模擬於NCTUns網路模擬引擎上，並且比較不同版本保守

法在NCTUns網路模擬引擎上執行的效能差別。

 本篇論文中，我們首先會描述如何將保守法應用在NCTUns網路模擬器上，

然後檢驗這些保守法的效能，接下來比較兩個網路模擬器，NCTUns以及NS2 上

平行模擬的效能，最後討論一些影響平行模擬效能的因子。

 i

ABSTRACT

 Network simulators implemented in software are valuable tools for researchers to

develop and diagnose network protocols. In certain cases, simulations of small to

medium sized networks may be sufficient to gain critical insights into the behaviors of

those networks. However, for simulation cases with thousands of nodes, each node

may have several application programs that need to be run on it. A single machine

cannot accommodate the required CPU and memory resources for running such

large-scale simulations. Therefore, it is valuable for a simulator to design and

implement a parallel simulation methodology to expand its scalability. NCTUns is a

network simulator that uses discrete event-driven system. In this thesis, we

implemented a parallel discrete event simulation engine using several conservative

algorithms for NCTUns and compared the performances of several versions of

NCTUns simulation engine.

In this paper, we first describe how conservative algorithms for parallel

simulations are applied to the NCTUns network simulator. Then we examine the

performances of a set of parallel conservative algorithms. Next, we compare the

performances of parallel simulations between two popular network simulators,

NCTUns and NS2. Finally, we discuss the effects of several important factors in

parallel simulation.

 ii

致 謝

首先，感謝恩師王協源教授二年來對我的悉心指導，老師給我的

札實訓練，讓我在研究所這二年中，專業領域上獲益良多。

感謝林華君教授以及廖婉君教授撥冗來到交通大學進行口試，以

及對論文的建議，讓這篇論文更加完善。

另外還要感謝網路與系統實驗室的學長及所有成員，因為有你們

的陪伴，討論以及鼓勵，讓我在研究所二年不僅學到很多，生活也很

充實快樂。

最後，我要感謝我家人，一路走來陪伴我，在我求學過程中給我

許多指導及建議，支持我度過種種難關。

 iii

Table of Contents

1 Introduction……………………………………………………………………...1

2 Background Overview…………………………………………………………..4

2.1 Related Work………………………………………………………………6

2.2 Conservative Synchronization Overview………………………………...6

2.2.1 Null Message Algorithm…………………………………………….10

2.2.2 Conditional Event Algorithm……………………………………….12

2.2.3 Accelerated Null Message Algorithm………………………………14

3 Design and Implementation……………………………………………………16

3.1 System Architecture Overview………………………………………….16

3.2 Simulation Engine Modification………………………………………...19

3.3 Modules Modification……………………………………………………23

3.4 Kernel Modification……………………………………………………...25

4 Performance Evaluation……………………………………………………….29

4.1 Conservative Algorithms Comparison………………………………….29

4.1.1 Conservative Algorithms Comparison By Lookahead……………30

4.1.2 Conservative Algorithms Comparison By Event-Processing Rate and

Speedup……………………………………………………………...32

4.2 Simulator Comparison…………………………………………………..37

4.3 The Impact Factors for Parallel Simulation……………………………40

4.3.1 Lookahead…………………………………………………………...41

4.3.2 Connectivity between Simulation Engines………………………...44

4.3.3 Load Balance………………………………………………………...45

5 Future Work……………………………………………………………………47

 iv

6 Conclusion………………………………………………………………………48

Reference…………………………………………………………………………….51

 v

List of Figures

Figure 2-1 An example to explain the relation between EIT, EOT, ECOT, LA…8

Figure 2-2 Initial version of conservative algorithm for a logical process………9

Figure 2-3 Deadlock situation……………………………….…………………….9

Figure 2-4 CMB null message algorithm………………………………………10

Figure 2-5 A zero lookahead cycle situation……………………………………11

Figure 2.6 Transient messages problem…………………………………………13

Figure 2.7 The definition of EIT in asynchronous conditional event algorithm...14

Figure 3-1 An overview of parallel simulation architecture………….………….17

Figure 3-2 An example of configuration in the “parallel.cfg” file………………18

Figure 3-3 The hacked system call to set parallel/single mode in kernel………..20

Figure 3-4 The original kernel re-entering simulation methodology…………….21

Figure 3-5 The parallel simulation methodology………………………………..22

Figure 3-6 A pseudo code for parallel mechanism………………………………23

Figure 3-7 Necessary modules for constructing a remote node………….………25
Figure 3-8 The system call to change the state of “parallel_mode” parameter…26

Figure 3-9 An example of “mtable” data structure………………………………27

Figure 3-10 The modification of tun0event structure……………………………..28

Figure 4-1 Example 1 for conservative algorithms comparison…………………30

Figure 4-2 Example 2 for conservative algorithms comparison…………………31

Figure 4-3 A simulation case for conservative algorithms comparison………….33

Figure 4-4 Event-Processing Rate with logging statistics……………34

Figure 4-5 Event-Processing Rate without logging statistics……………………35

Figure 4-6 Speedup – 10 Mbps (1 millisecond x 128 bytes)…………………….36

 vi

Figure 4-7 Speedup – 10 Mbps (8 milliseconds x 1024 bytes)…………………..36

Figure 4-8 Event-Processing Rate on PDNS…………………………………….38

Figure 4-9 Speedup on NCTUns…………………………………………………39

Figure 4-10 Speedup on PDNS…………………………………………………....39

Figure 4-11 A simulation case for impact factors…………………………………41

Figure 4-12 Execution times for different lookahead values……………………...42

Figure 4-13 Event processing rate for different lookahead values………………..42

Figure 4-14 Speedups for different lookahead values……………………………..43

Figure 4-15 Partitioning for connectivity between simulation engines…………44

Figure 4-16 The speedup under the partition of connectivity between simulation

engines………………………………………………………………45

Figure 4-17 Partitioning for load balance…………………………………………46

Figure 4-18 The Speedup under the partition of load balance…………………….46

 vii

List of Tables

Table 4-1 Execution time of conservative algorithms （1）….. …………….…31

Table 4-2 Execution time of conservative algorithms （2）.………...….…...…32
Table 4-3 Functionalities between NCTUns and PDNS………………….…….40

 viii

Supporting Parallel Simulations on
the NCTUns Network Simulator

1. Introduction

The packet-level simulation is a common way to analyze network issues. Such a

simulation is used for protocol design and evaluation. Network simulators, such as

NCTUns [2], ns-2 [3], OPNET [7], are valuable because it can carry out network

experiments without real devices. However, simulation tools running on a single

machine are not able to provide sufficient CPU and memory resources for large-scale

network simulations.

In sequential discrete event simulation [1], the amount of required memory and

the amount of needed computation time are two typically significant factors that limit

the scale of networks to be simulated. Memory requirements increase in proportion to

the number of simulated nodes and the number of generated events during a

simulation. Execution times increase in proportion to the amount of simulated traffic

(i.e. total number of events in a simulation). Parallel discrete event simulation

techniques are useful to improve the scalability of sequential discrete event-driven

simulators.

The advantages of parallel discrete event simulation approach are described as

follows. First, the memory of cooperative machines can be used simultaneously for a

simulation, thus simulating a large-scale network with the parallel simulation

 1

approach is more practical than with the traditional sequential approach. Second, the

parallel simulation approach can reduce required execution times for lager-scale

network simulation. In addition, the parallel simulation approach distributes the

simulation computation among several different machines. For this reason, we can

build a distributed simulation environment with a number of low-cost machines rather

than expensive high-end ones. In this thesis, we select NCTUns network simulator to

implement our parallel discrete event algorithms. The core technology of NCTUns is

based on the simulation methodology invented by S.Y. Wang at Harvard University in

1999 [4, 5, 6]. Because of this novel simulation methodology, this network simulator

makes use of the real-life UNIX TCP/IP protocol stacks to generate more accurate

results than the traditional ones. In NCTUns, all transmitted packets from the user

space pass through the kernel and stay in queues of pseudo network devices as if they

were sent to a real NIC (network interface card). NCTUns simulates the receiving of

packets by sending packets back to the kernel in the reverse direction (the direction

from an NIC to an application). Since NCTUns exploits real-world protocol stacks,

one of its features is that it can use different protocol stacks if it runs on machines

with different operating systems. Thus, the parallel network simulation in a distributed

environment can provide different kernel settings for different network nodes because

those nodes can be simulated on different machines. So, we can configure different

protocol stack behaviors for a simulation.

In this thesis, we first focus on how to apply a variety of parallel discrete event

simulation approaches to the sequential discrete event simulation engine with

minimized modifications. Then we evaluate certain parallel algorithms on the

NCTUns network simulator. Next, we compare the performances between two

popular network simulators, NCTUns and NS2 (The parallel version of NS2 is called

 2

PDNS, parallel/distributed NS2, [8, 15]). Finally, we discuss the effects of some

important factors on the performance of parallel simulation.

The remainder of the paper is organized as follows. In section 2, we introduce the

background of the parallel simulation, including related work and introductions to

some conservative synchronization algorithms. In section 3, we explain clearly how to

apply parallel discrete event simulation to original sequential discrete event

simulation engine. In section 4, we evaluate the performance of parallel simulation

with certain famous conservative synchronization algorithms and compare the

performances of parallel simulations between two popular network simulators,

NCTUns and NS2. We also discuss some important factors that influence the

performance of parallel network simulation. In section 5, we discuss the future work.

In section 6, we give conclusions from the research.

 3

2. Background Overview

The parallel discrete event simulation (PDES) is referred to as the execution of a

discrete event simulation program on parallel/distributed simulators. The challenge in

PDES is to execute logical processes (LPs) concurrently and lead to correct

simulation results. In this chapter, we introduce relative parallel discrete event

simulation studies and general methodologies that can be applied to creating parallel

discrete event simulation versions on network simulators.

The first issue of the parallel/distributed simulation is how to ensure that results

of the parallel discrete event simulation on multiple machines are exactly the same as

those of sequential discrete event simulation on a single machine. In a sequential

execution paradigm, it is crucial that the simulation engine always selects the smallest

time-stamped event from its event list as the one to be processed next. If an event with

larger timestamp were executed before one with a smaller timestamp, this simulation

may result in incorrect results. We call this type of errors “causality errors”. For

instance, if a customer’s departure event is processed before its arrival event, a

causality error occurred. If there is no such an error, we can ensure that the statistics

of parallel discrete event simulation is the same as those generated by a sequential

simulation. One can ensure that no causality errors occur if it adheres to the following

constraint：

Local Causality Constraint

A discrete event simulation, consisting of logical processes (LPs) that

interact exclusively by exchanging timestamp messages, obeys the local

 4

causality constraint if and only if each LP processes events in

non-decreasing timestamp order.

The above constraint essentially says if events on any logical processes are

processed in the non-decreasing timestamp order, then we say it obeys the causality

constraint. However, adherence to this constraint is sufficient, though not always

necessary, to guarantee that no causality errors occur. In other words, violating

causality constraint may not always result in simulation errors. This is because two

events within a single logical process may be independent of each other. In such a

case, processing them without the non-decreasing timestamp sequence does not lead

to a causality error.

Synchronization mechanisms for parallel discrete event simulation can be

typically divided into two categories, the conservative approach and the optimistic

approach. Under conservative mechanism, each logical process follows the local

causality constraint and thus is blocked until it can be guaranteed that its (local and

remote) events are safe to process. Events of each logical process are processed

strictly in the non-decreasing timestamp order to avoid any causality errors. On the

other hand, with the optimistic mechanisms, events can be processed out of the

non-decreasing timestamp order by using additional recovering mechanisms, such as

the “rollback”, to restore those out-of-order events. The detailed introductions to

various synchronization mechanisms are out of the scope of this thesis and can be

found in [18]. In this thesis, we focus on the conservative synchronization approach

because it is more feasible on the NCTUns network simulator and most of other

parallel simulators.

 5

2.1. Related Work

The parallelization of network simulations has been studied for years. Parallel

simulation environments are typically developed with two approaches. One is

federated approach. The parallel discrete event simulation with this approach involves

interconnecting existing simulators, such as PDNS （parallel/distributed NS） which

is based on ns-2 network simulator. Federated simulators such as PDNS, usually need

the help of synchronization mechanism to complete the simulation together, such as a

library called libSynk [16, 17] which is a compact, portable library for adding fast

communication and synchronization to distributed applications, to perform a parallel

simulation. Some other parallel discrete event simulators, such as GloMoSim [9],

OPNET [10], SSFNet [11, 12], Qualnet [13], OMNeT++ [14], are designed to have

capabilities of the communication and the synchronization functions for the parallel

discrete event simulation.

2.2. Conservative Synchronization Overview

The key to conservative PDES is that an event cannot be processed unless it is

safe to do so. In other words, no causality error occurs during the parallel simulation.

Several conservative algorithms have been developed to synchronize the execution of

PDES system. In this section, we enumerate a number of conservative

synchronization algorithms and discuss the mechanism of each algorithm. Algorithms

are including the asynchronous null message algorithm [19], the conditional event

algorithm [20], and the accelerated null message algorithm, which combines two

 6

above approaches [21].

Here we cite the definitions and assumptions from the research [22] to simplify

the description of below algorithms：

Lookahead (LA)：

If a logical process at simulation time T can schedule new events with time

stamp of at least T + L, then L is referred as the lookahead for logical

process.

Earliest Input Time (EIT)：

EIT is a lower bound on the timestamp of any future event message that the

logical process may receive.

Earliest Output Time (EOT)：

EOT is a lower bound on the timestamp of any future event message that

the logical process may send.

Earliest Conditional Output Time (ECOT)：

ECOT is a lower bound on the timestamp of any future event message that

the logical process may send if logical process will not receive any other

messages.

 The value of EOT and ECOT for a given logical process depends on its LA, EIT

and unprocessed event. Figure 2-1 illustrates the relationship between LA, EIT, EOT

and ECOT. We assume the lookahead (LA) in the Figure 2-1 is 5 units. From (A)

 7

scenario in the Figure 2-1, since the timestamp of next unprocessed event is 18 which

is smaller the value of EIT 20, the values of both EOT and ECOT are 23, which equal

the timestamp of next unprocessed event plus LA, From (B) scenario in the Figure 2-1,

the timestamp of next unprocessed event is 26 which is bigger the value of EIT 20, in

this condition, the value of EOT is 25 which depends on the value of EIT plus LA, the

value of ECOT is 31 which equals the timestamp of next unprocessed event plus LA.

From (C) scenario in the Figure 2-1, the value of EOT is 35 because the value of EIT

is 30 and there are no unprocessed events, since we expect no known event will

happen, the value of ECOT is infinity.

 EIT：20
 (A)
 Simulation time
 EOT：23 ECOT：23
 (B) EIT：20

 Simulation time
 EOT：25 ECOT：31
 (C) EIT：30

 Simulation time
 EOT：35 ECOT：∞
 Unprocessed event
 Processed event

26 18

26 18

18 12

12

12

26

Figure 2-1 An example to explain the relation between EIT, EOT, ECOT, LA.

Historically the first synchronization algorithms were based on so-called

conservative approaches. The primal conservative synchronization algorithm is

presented as pseudo code in Figure 2-2：

 8

while (simulation is not over)

 wait until each FIFO contains at least one event

 remove smallest time stamped event E from its FIFO

 clock ：= timestamp of event E

 process the event E

Figure 2-2 Initial version of conservative algorithm for a logical process.

As mentioned before, the fundamental problem that conservative mechanisms

must solve is to determine when it is “safe” to process an event. Process containing no

“safe” events must block, this can lead to deadlock situation if appropriate precautions

are not taken. For example, consider the situation of the Figure 2-3, logical process A

is waiting messages from logical process C, logical process C is waiting messages

from logical process B, logical process B is waiting messages from logical process A.

A cycle of empty queues where logical processes in the cycle must block, this cause

the deadlock situation.

Figure 2-3 Deadlock situation.

In order to ensure to events are processed in non-decreasing timestamp order and

 9

avoid deadlock situation, we discuss below algorithms.

2.2.1. Null Message Algorithm

The most representative of these kind algorithms is Chandy-Misra-Bryant null

message algorithm [18]. The basic idea is that each logical process exchanges its local

information to neighbor logical processes periodically in asynchronous manner for

synchronization purpose without requiring global synchronization computation. The

CMB null message algorithm is presented as pseudo code in Figure 2-4：

while (simulation is not over) // for each LP

 wait until each FIFO contains at least one event

 remove smallest time stamped event E from its FIFO

 clock ：= timestamp of event E

 process the event E

 send null messages to neighbor LPs with EOT timestamp

Figure 2-4 CMB null message algorithm.

Null messages can be used for a logical process to indicate to other logical

processes a lower bound on the timestamp of messages it will send in the future.

These messages can update the clock of logical processes to avoid the deadlock

situation.

Notwithstanding the famous algorithm works, it still has some problems. One

problem is that if there is a zero lookahead cycle (i.e. all lookaheads between links in

the cycle are zero). As show in Figure 2-5, although logical process A has processed

the event with timestamp 5, simulation time can’t be advanced no matter how many

 10

rounds of null messages LPs had past through, this is because timestamps of all null

messages are the same, an un-ending cycle of null messages where no logical

processes can advance its simulation time, a livelock happens.

Figure 2-5 A zero lookahead cycle situation.

Another is time creep problem that cause by tiny lookahead value. For instance,

if the value of lookahead is one percent of the original, it will takes 100 times of

synchronization overhead by a large number of null messages to get the same advance

of simulation time, it affects the performance of parallel simulation deeply. The

preceding example illustrates a important point：The performance of the null message

algorithm depends critically on the lookahead value.

The above two problems can be solved by using global synchronization

computation. Global synchronization computation can get the minimum timestamp of

events in entire simulation system to break the deadlock situation or speed up the

advance of simulation time. The algorithm still has an implicit problem, the

synchronization overhead is too heavy because of too many null messages are

 11

transmitted between logical processes. The frequency of null messages sends can have

a large effect on performance. The performance is decreasing with an excessive

number of null messages.

In order to minimize the number of null messages, one can use the variant of the

CMB null message algorithm called lazy CMB null message algorithm. Specifically,

null messages are sent when all events have processed before the value of EIT in the

logical process. This has the advantage that plenty of null messages are saved because

only one null message is sent during each update EIT. The algorithm has implemented

to apply the parallel discrete event simulation on NCTUns.

2.2.2. Conditional Event Algorithm

In the conditional event algorithm, all logical processes are repeatedly cycle

through “phases” of （1）synchronization computation for updating EIT value and

（2） at least one logical process processing simulation events. In the phase （1）, the

state of logical process is blocked until the value of EIT is updated. In the phase （2）,

events whose timestamp before the value of EIT are processed by logical process. The

mechanism can work without lookahead.

We first consider the synchronous version of the conditional event algorithm.

The synchronous mechanism is similar to the barrier synchronization [18, 23]. The

value of EIT can treat as the barrier primitive of barrier synchronization. When logical

process reach the EIT, it blocks and returns the state to the phase （1）. The value of

EIT in the phase （1）is updated to the minimum of ECOT over all logical processes,

 12

when all logical processes have reached the EIT, each logical process is then allowed

to resume simulation. In addition to computing a global minimum, this algorithm

must account for messages that have been sent, but have not yet been received, i.e.,

transient messages. A scenario illustrating the transient messages problem is depicted

in Figure 2.6. Logical process LPa and LPb compute their local minimums to be 35

and 40, respectively. If the transit message is not considered, the algorithm will be

incorrectly computed as 40, when it should be 30. One simple solution to the transient

message problem is to use message acknowledgments that is describing in Global

Virtual Time（GVT） computation algorithms [24].

Controller 35 40

LPa

LPb
 30

Figure 2.6 Transient messages problem.

An asynchronous algorithm allows the value of EIT to be computed without the

need to freeze the computation of other logical processes. In order to recover the

transient message problem, the definition of EIT in asynchronous mechanism is

different from the synchronous one. As shown in Figure 2.7, the value of EIT here is

the minimum of all ECOT values of all logical processes and the timestamps of all the

messages in transit from all logical processes. The asynchronous approach is similar

to a variation of Mattern’s GVT algorithm [25].

 13

EIT = min { ECOTmin, Msgmin}

ECOTmin： the minimum ECOT values of all logical processes
Msgmin： the minimum timestamp of messages in transit.

Figure 2.7 The definition of EIT in asynchronous conditional event

algorithm.

As the value of EIT is computed as minimum of all ECOT values around logical

processes, one can improve the performance is that EIT equals to the minimum of

global ECOT added with lookahead. The performance of conditional approach

depends on the density of events in simulation. It gets better performance than the null

message algorithm while in simulation with low density of events and lookahead, vice

versa. This topic will be discussed later. Both synchronous and asynchronous

approaches of conditional event algorithm has implemented on NCTUns network

simulator.

2.2.3. Accelerated Null Message Algorithm

The accelerated null message algorithm combines the asynchronous null message

algorithm with the asynchronous conditional event algorithm. Since events whose

timestamp before the EIT value of asynchronous null message algorithm and the EIT

value of asynchronous conditional event algorithm are safe to process, the value of

EIT in accelerated null message algorithm is computed as the maximum value of two

above algorithms.

The motivation of this algorithm is to speed up the computation of EIT by

 14

asynchronous conditional event algorithm with low lookahead, even without

lookahead. In simulation with poor lookahead, the null message algorithm takes a lot

of round of null messages that cause the time creep problem. In worst case, the

deadlock is arisen by zero lookahead. The advantage of this approach is that it adapt

to all kinds of situation. It takes efficiency of null message algorithm while the value

of lookahead is not bad, and it also has virtue of the asynchronous conditional event

algorithm to execute even without lookahead. While it combines two algorithms, the

synchronization overhead is more than others slightly. The topic will be discussed

later. The algorithm is implemented as the default synchronization approach on

NCTUns network simulator.

 15

3. Design and Implementation

This chapter introduces how we apply the parallel discrete event simulation to the

NCTUns network simulator, and the detail of the modification for the original

sequential simulation engine. In section 3.1, we first introduce the overview of the

system architecture. In section 3.2, we describe our modification for the simulation

engine of NCTUns. In section 3.3, we next show the required modifications of several

protocol modules in NCTUns. In section 3.4, we depict our modification for the Linux

kernel in NCTUns.

3.1. System Architecture Overview

For the parallel discrete event simulation of the NCTUns network simulator, each

logical process is actually a simulation engine of NCTUns. Every simulation engine is

executed without the support of GUI program in the parallel discrete event simulation

mode. Each simulation engine for a parallel simulation is given a simulated

environment just the same as one for a sequential discrete event simulation. As such,

the modifications to the components in NCTUns can be minimized.

As shown in Figure 3-1, each simulation engine is associated with a network

interface to exchange control messages and events that should be simulated by remote

simulation engines. All simulation engines are fed with the same simulation

environment and work cooperatively for the simulation case. In other words, each

simulation engine will initialize necessary data structures for each node in a simulated

 16

network despite that the simulation of the node is assigned to a remote simulation

engine. However, a simulation engine will not fork traffic generators for a node if the

simulation of this node is not assigned to it.

Simulated Environment

 NCTUns S.E. NCTUns S.E. …… NCTUns S.E.

 Interface Interface Interface

Network Environment

Figure 3-1 An overview of parallel simulation architecture.

 For a simulation engine, the given simulated environment can be divided into

two categories: the global knowledge and the local knowledge. The global knowledge

includes the whole simulated network topology, all required routing entries during the

simulation, the moving paths of mobile nodes, and several necessary modules for

constructing a remote simulated node. The local knowledge includes the detailed

information of all modules for nodes that are going to be simulated on the local

machine. Since a simulation engine only needs to keep the detailed information for its

own local simulated nodes, the engine can save memory space by constructing its

local simulated nodes with all required module objects and constructing remote

 17

simulated nodes with minimized numbers of module objects.

The only difference at the initial stage between the parallel simulation and the

original one is that we need to configure the “parallel.cfg” file for each simulation

engine before starting a simulation in the parallel mode. The “parallel.cfg” file

specifies the partition for this simulated network. The format of the “parallel.cfg” file

is shown in the following in sequence.（1） the control port for all participants in the

simulation case, （2）the IP address of the master simulation engine in the simulation

case, （3）the IP address of the local simulation engine and its local simulated nodes,

and （4） the IP address(es) of other remote simulation engine(s) and its (their) own

local simulated nodes. As the example illustrated in Figure 3-2, the control port

number is 12342. The IP address of the master simulation engine is 140.113.214.87,

and the IP address of local simulation engine is 140.113.214.94. The local

simulation engine is in charge of nodes 2, 4, 6 in this simulation. Since its IP address

is different with the master one, this local simulation engine is one of the slave

simulation engines in this simulation. The IP address of the other simulation engine,

which is responsible for nodes 1, 3, 5, is 140.113.214.87. Since this simulation engine

has the same IP address as the master, it is actually the master simulation engine for

this simulation.

Figure 3-2 An example of configuration in the “parallel.cfg” file.

 18

The partition of a simulated network in NCTUns is on the node basis rather than

the geometric basis. As mentioned in paper [2], the NCTUns network simulator uses

the real-life Linux TCP/IP protocol stack. Real-world user-level applications can be

run directly on top of it. As such, suppose we partition the network into several

geometric areas. While a mobile node moves across at least two areas, it is arduous to

switch a user-level process running on the simulated mobile node from one machine

to another because transferring a user-level process includes several difficult tasks.

For example, we need to transfer the contents of the process’s memory pages and

several data structures in the kernel for this process to a remote machine.

Besides applying conservative algorithms to original one, there are some

problems that need to be dealt with. For example, we need a way to make a kernel

know that the simulation will be executed in the parallel mode or the single mode. In

addition, the mapping scheme for virtual and physical ports is important in NCTUns.

How to map virtual and physical ports for different kernels on several distributed

computers is not an easy task. Moreover, configuring the settings for modules of

non-local nodes (i.e. nodes simulated by remote simulation engines) requires an

additional mechanism. We discuss these implementation issues in the following

sections.

3.2. Simulation Engine Modification

This section describes the modification of the NCTUns simulation engine for the

parallel discrete event simulation. The operations of the kernel in the parallel

simulation mode are different from those in the single machine mode, so a simulation

 19

engine needs a way to make kernel know in which mode it has to run. We achieve this

by altering two system calls shown in Figure 3-3.

syscall(275, 0x0c, 0, 0, 0); // Let kernel node S.E. are in parallel/distributed mode.

syscall(275, 0x0d, 0, 0, 0); // Reset the parameter “parallel_mode”.

Figure 3-3 The hacked system call to set parallel/single mode in kernel.

 The detail of a simulation executed on a single machine is explained on [27]. The

basic idea is shown in Figure 3-4. The TCP/IP protocol stack used in the simulation is

an existing real-life one in the kernel. Although each node thinks that it has its own

protocol stack, all simulated nodes actually have the same protocol stack because they

are all run on a single machine. The tunnel interfaces shown in the Figure are pseudo

network interfaces that do not have a real physical network attached to it. However,

from the kernel’s point of view a tunnel interface is not different from any real

Ethernet network interfaces.

 In Figure 3-4, the TCP sender sends a packet into the kernel, and the packet goes

through the kernel’s TCP/IP protocol stack just as an Ethernet packet would do.

Because we configure the tunnel interface 1 as the packet’s output device, the packet

will be inserted to tunnel interface 1’s output queue. The simulation engine will

immediately detect such an event and issue a read system call to get this packet

through tunnel interface 1’s special file (Every tunnel interface has a corresponding

device special file in the /dev directory.). After experiencing the simulation of

transmission delay and link’s propagation delay, the simulation engine will issue a

write system call to put the packet into tunnel interface 2’s input queue. The kernel

will then raise a software interrupt and put the packet into the TCP/IP protocol stack.

 20

Then, the packet will be put into the receive queue of the socket that the TCP receiver

creates. Finally, the TCP receiver will use a read system call to get packet out of the

kernel.

Figure 3-4 The original kernel re-entering simulation methodology.

In Figure 3-5, we illustrate how several parallel/distributed simulation engines

cooperate to complete a simulation. The simulation engines A and B have the same

information for the simulated network, but each of both only simulates a portion of

the network. The TCP sender is simulated on the simulation engine A, and the TCP

receiver is simulated on the simulation engine B. As illustrated in Figure 3-4, when a

packet is sent out from the TCP sender, it will be captured by the simulation engine A

before it is inserted into the simulation engine’s event list. The simulation engine A

first checks if the destination node of this packet is simulated is a local simulated node

or a remote simulated node. The simulation engine A regards a simulated node as a

local node if this node is simulated on the simulate engine A itself. Otherwise, the

simulation engine A regards a simulated node as a remote node. Next, the simulation

 21

engine A obtains the node ID of the destination node for this remote packet via the

“get_nid()” NCTUns API call. The “get_nid()” NCTUns API call is a primitive

function call provided by the simulation engine. This function call works well in our

parallel simulation environment because, as mentioned previously, each simulation

engine creates all simulated nodes with at least necessary data structures and thus the

node list of each simulation engine includes the information for all simulated nodes.

As such, even if the “get_nid()” call is for a remote node, it still succeed in returning

the correct node ID for that remote node.

Figure 3-5 The parallel simulation methodology.

Then, the simulation engine looks up the “parallel.cfg” file to know which

remote simulation engine is responsible for the simulation of the destination node.

Afterwards, the simulation engine A encapsulates this simulated packet into a specific

event format defined in the “parallel.h” header file and passes the encapsulated event

to the simulation engine B through the underlying real network. The simulation

engine B inserts this remote event into its own event list upon its receiving this remote

 22

event. Finally, the TCP receiver on the machine of the simulation engine B will

receive this simulated packet sent from the TCP sender on the machine of A.

User-level traffic generators are executed on top of a simulation engine. A

simulation engine is not allowed to execute traffic generators belonging to non-local

nodes to make sure the behaviors of user-level application programs are correct. We

achieve this by modifying the “read_trafficGen()” function in the “event.cc” file.

int scheduler::executeEvent()
{
 do {
 if (need the synchronization computation)
 parallel_->syn(); // Performs the synchronization computation
 if (at least one safe event)
 process the safe event // process the safe event
 } while (simulation is not over)
}

Figure 3-6 A pseudo code for parallel mechanism.

In the parallel simulation, all simulation engines repeatedly cycles of two phases,

“synchronization” and “event processing”. We modified the “scheduler” component,

defined in the “scheduler.cc” file, in the simulation engine based on the pseudo code

shown in Figure 3-6. In the synchronization phase, a simulation engine gets the value

of EIT. In the event processing phase, a simulation engine is allowed to process the

safe events, the timestamps of which are before EIT.

3.3. Modules Modification

 23

In the parallel simulation, each simulation engine only needs to simulate a

portion of a simulated network. Since the NCTUns network simulator uses the kernel

re-entering simulation methodology, each simulated node has to make kernel know

some necessary information such as the MAC addresses, the IP addresses and the the

netmasks of interfaces that will be simulated on tunnel interfaces. For this reason, we

alter the “tclObject.cc” file to modify the node construction process because several

modules in remote nodes (i.e. nodes are simulated on other remote simulation engines)

still need to be constructed. We show those necessary modules for constructing a

remote node as shown in Figure 3-7 and explain why they are necessary for a remote

node.

Interface module：

An interface module is required for keeping the IP address and the netmask

of a remote node for a local kernel.

MAC relative (802.3, 802.11) modules：

A MAC-layer module is required for storing the MAC address of a remote

node for a local kernel.

LINK and PHY relative (phy, ophy, wphy, awphy) modules：

Link and PHY-layer modules are required to describe the connectivity of the

whole network so that a remote packet can be inserted to a correct physical

module when this packet arrives at the proper remote simulation engine.

 24

Figure 3-7 Necessary modules for constructing a remote node.

3.4. Kernel Modification

This section describes the detail of modification in kernel to apply the parallel

discrete event simulation to the NCTUns network simulator.

We add a new global parameter, “parallel_mode”, into the kernel to make the

kernel know that the simulation will be run in the parallel mode or in the single mode.

The simulation engine can use the modified system to alter the value of the

“parallel_mode” parameter as shown in Figure 3-8.

 25

/* system call 275 in 2.6 kernel*/

asmlinkage int sys_NCTUNS_misc(…)

{ …

 case 0x0c:

 parallel_mode = 1; // run into parallel mode

 break;

 case 0x0d:

 parallel_mode = 0;

 break;

}

Figure 3-8 The system call to change the state of “parallel_mode” parameter.

Since NCTUns uses the port-mapping mechanism [26, 27] in kernel with the

real-life TCP/IP protocol stack, those original mechanisms that are related to data

structures of the kernel may introduce several problems for the parallel discrete event

simulation. For instance, suppose that the virtual port number of the TCP sender on

the node A is 6000 and the corresponding real port number is 5001. The virtual port

number of the TCP receiver on node B is 5001 and the corresponding real port

number is 5002. When the TCP receiver on node B receives a packet transmitted by

the TCP sender on the node A, it should send an ACK packet back to the TCP sender.

In the single mode, it can be done simply by looking up the “mtable” data structure in

the kernel to get the virtual port number of the TCP sender. Then it sends the ACK

packet with 6000 as the destination port number, as shown in Figure 3-9. If we want

to use the parallel simulation scheme to simulate the above simulation case, the TCP

sender of the node A will be executed on one machine and the TCP receiver of node B

will be executed on another. Since the kernel of each machine only knows the

information of its own data structures, the information of the port mapping for all

simulated nodes is not easy known by the kernels of all simulation machines.

 26

Figure 3-9 An example of “mtable” data structure.

To address this problem, we changed the “tun0event” structure in the

“nctuns_t0e.h” file shown in Figure 3-10. First, we observed that all user-level

network application programs invoke the “bind()” system. Since the “bind” system

call will issue the mt_bind() function in the kernel, we add the “tun0_port()” function

into the “mb_bind()” function. The “tun0_port0” function is fed with a node ID N, a

real port number Rp, and a virtual port number Vp. This function sets a tun0-event (a

special control for the communication between the NCTUns simulation engine and

the kernel) with an entry specified by (N, Rp, Vp) in the “mtable” structure (the port

mapping table). Then the “tun0_port()” function puts this tun0-event to the tun0

interface. The simulation engine then catches the tun0-event and sends the event to

other remote simulation engines. When a remote simulation engine receives such an

event, it will issue a hacked system call to invoke the “mt_port_add()” function in the

kernel. The “mt_port_add()” function then adds entries contained in this tun0-event

into the “mtable” data structure of this remote machine. In such a way, the kernels of

 27

all simulation machines are capable of knowing the port-mapping for all simulated

nodes.

struct tun0event {
 int pid;
 int flag;
 u_int32_t value;
 unsigned short rport; // for parallel simulation
 unsigned short vport; // for parallel simulation
};
#define T0E_TIMEOUT 1
#define T0E_CHKTUN 2
#define T0E_PORT_ADD 3 // for parallel simulation
#define T0E_PORT_DEL 4 // for parallel simulation

Figure 3-10 The modification of tun0event structure.

 28

4. Performance Evaluation

In this chapter, we examine the performances of some parallel conservative

algorithms. Next, we compare the performances of parallel simulations between two

popular network simulators, NCTUns and NS2. Finally, we discuss the effects of

several important factors in parallel simulation.

Before we explain the performance results, we fist define our performance

metrics, the “speedup” and “event-processing rate”. The definitions of these metrics

are as follows.

 Sequential Execution Time
Speedup ＝ ——————————————

 Parallel Execution Time

 Total Events in Simulation
 Event-Processing Rate ＝ ——————————————
 Execution Time

4.1. Conservative Algorithms Comparison

In this section, we first observe the influence of lookahead value on different

conservative algorithms. Then, we study the performances in terms of the metrics, the

execution, the speedup and the event-processing rate, respectively.

 29

4.1.1. Conservative Algorithms Comparison By Lookahead

In this section, we illustrate the influence of lookahead values with two examples.

In the first one, we show the effect of a large lookahead value, and in the second one

we show the effect introduced by a small lookahead value.

 The simulation network for the first case is partitioned into two parts, each of

which is assigned a simulation engine. As shown in Figure 4-1, one simulation engine

is in charge of the simulation of nodes 1, 2, 4, 5, 6, 7, 8, 9, 10, and the other is

responsible for the simulation of nodes 3, 11, 12, 13, 14, 15, 6, 17, 18. There are three

TCP connections in this simulation case, each of which is from node 18 to node 5,

from node11 to node 6, from node16 to node10, respectively. The lookahead value (i.e.

the propagation delay) for this case is 10,000 microseconds.

Figure 4-1 Example 1 for conservative algorithms comparison.

The execution times of algorithms are shown in Table 4-1. Since the lookahead

value is large, in all conservative algorithms, the execution time of the null message

 30

algorithm is the best and most close to the sequential one. The accelerated null

message algorithm also makes use of large lookahead value to shorten its execution

time. The execution time of the conditional event algorithm is the worst. This is

because it is not able to take advantage of a large lookahead value.

 Approach

Time (sec)

Sequential

Execution

Null Message

Algorithm

Conditional

Event Algorithm

Accelerated Null

Message Algorithm

Execution time 7.299 7.977 27.105 11.85

Table 4-1 Execution time of conservative algorithms （1）.

We next discuss the second case, in which the used lookahead value is much

smaller than that in the first case. The simulation network for the second case is also

partitioned into two parts, and each part is assigned a distinct simulation engine. As

shown in Figure 4-2, one simulation engine is in charge of the simulation of node 1,

and the other is in charge of the simulation of node2. There is a UDP data steam from

node 1 to node 2 in this 802.11 wireless network. The average of lookahead values (i.e.

signal propagation delay) is about 5 microseconds.

Figure 4-2 Example 2 for conservative algorithms comparison.

 31

The execution times of the algorithms in the second case are shown in Table 4-2.

Such small values of the lookahead cause that the performance of the null message

algorithm becomes extreme low. The performances of both the accelerated null

message algorithm and the conditional event algorithm are much better than those of

the null message algorithm since the global minimum ECOT interval is larger than the

values of lookahead.

 Approach

Time (sec)

Sequential

Execution

Null Message

Algorithm

Conditional

Event Algorithm

Accelerated Null

Message Algorithm

Execution time 3.91 1454.11 37.105 34.98

Table4-2 Execution time of conservative algorithms （2）.

The above execution time results show that the lookahead value is an important

factor that influences the performance of both the null message algorithm and the

accelerated null message algorithm. They also show that if the number of total events

to be simulated is relatively small, the overheads for synchronizing simulation engines

will become a large portion for the total simulation time. For this reason, the

performances of conservative approaches are worse than the sequential one in both

cases.

4.1.2. Conservative Algorithms Comparison By

Event-Processing Rate and Speedup

In this section, we evaluate the performances of conservative algorithms using

 32

event-processing rate and speedup as the metrics of comparison. The simulation

network topology is shown in Figure 4-3. There are two UDP CBR (constant bit rate

traffic pattern) data streams in this case, each of which is from node1 to node 3, from

node 2 to node 4, respectively. We conducted the simulation of this case with two

different traffic patterns for the two UDP CBR data streams. In the first one, these two

streams send a packet of length 128 bytes at a time with 0.1 milliseconds, and thus the

resulting data rate of each UDP stream is 10Mbps. In the second one, the two data

UDP streams send a packet of length 1024 bytes with the period of 0.8 milliseconds.

Thus, the resulting data rates of these UDP streams are also 10 Mbps. Note that

although the two traffic patterns generate the same data rates, they generate different

numbers of events. The given lookahead values for these two cases are 10, 1000, and

100000 microseconds, respectively. In these cases, the bandwidths of all links are

1000 Mbps, and the simulation time of each case is 30 seconds (in terms of virtual

time). The simulation topology is partitioned into two parts, each of which is assigned

a simulation engine. One simulation engine is responsible for the simulation of the

nodes 1, 2, 5. And the other is responsible for the simulation of the nodes 3, 4, 6.

Figure 4-3 A simulation case for conservative algorithms comparison.

 33

 The simulation results are shown in Figure 4-4. As the lookahead value increases,

the event-processing rate of the sequential simulation decreases. This is a heartening

observation because the larger the lookahead value is, the better the parallel discrete

event simulation performs. The event-processing rate of the null message algorithm is

similar to the accelerated null message algorithm since the given lookahead values are

sufficiently large. The event-processing rate is direct proportional to the lookahead

value in the conservative algorithms. That is, if the value of the lookahead decreases,

the event-processing rates of those conservative algorithms will decrease as well. In

addition, if the lookahead value is so small, the null message algorithm will suffer

form the “time creep problem.” The main reason that other conservative algorithms

perform poorly in this series of simulations is that the transmission rates of UDP

streams is too high to make these algorithms due to synchronization overheads.

However, if the lookahead value is sufficiently large, the conditional event algorithm

results in the worst event-processing rate compared with other algorithms. The above

observations show that the lookahead value is the most important factor for the

performances of PDES.

Figure 4-4 Event-Processing Rate with logging statistics.

 34

Since the logging action requires many I/O operations, it influences the

event-processing rate a lot. The event-processing rate without logging statistics is

approximately double than that with logging statistics. The result of the

event-processing rate without logging statistics is shown in Figure 4-5. The

observations derived from Figure 4-5 are similar to those derived from Figure 4-4.

Figure 4-5 Event-Processing Rate without logging statistics.

 The speedups of conservative algorithms with the 10Mbps (0.1 ms x 128 bytes)

traffic pattern are shown in Figure 4-6. The speedups of all conservative algorithms

are disappointing while the value of lookahead is 10 microseconds. The speedup of

the null message algorithm is similar to the speedup of the accelerated null message

algorithm. Furthermore, both algorithms get better performances while the lookahead

value increases. It is evident that the speedup of conditional event algorithm is worse

than those of others.

The speedups of conservative algorithms with the 10Mbps (0.8ms x 1024 bytes)

traffic pattern are shown in Figure 4-7. The speedup result shows that the speedups of

 35

10 Mbps (1 ms x 128 Bytes)

0

0.5

1

1.5

10 1000 100000

Lookahead (microsecond)

S
pe

ed
up

Condional event
with LOG

Accelerated null
msg with LOG

Null msg with LOG

Condional event
without LOG

Accelerated null
msg without LOG

Null msg without
LOG

Figure 4-6 Speedup – 10 Mbps (0.1 millisecond x 128 bytes).

conservative algorithms increase as the value of lookahead increases. When the

lookahead value is 10000 microseconds, both the null message algorithm (with

logging statistics) and the accelerated null message algorithm (with logging statistics)

have more speedup values by one than the speedup values using 10 microseconds as

the lookahead value.

10 Mbps (8 ms x 1024 bytes)

0

0.5

1

1.5

10 1000 100000

Lookahead (microsecond)

Sp
ee

du
p

Conditional event
with LOG

Accelerated null msg
with LOG

Null msg with LOG

Conditional event
without LOG

Accelerated null msg
without LOG

Null msg without
LOG

Figure 4-7 Speedup – 10 Mbps (0.8 milliseconds x 1024 bytes).

 36

Comparing Figure 4-6 with Figure 4-7, we can find that increasing ratios of the

speedups are different with different traffic patterns. For the segments in terms of the

lookahead values from 10 to 1000 microseconds, the speedup with the traffic pattern

(0.1 ms x 128 bytes) increases more than the speedup with the traffic pattern (0.8 ms x

1024 bytes). This is because the traffic pattern in Figure 4-6 generates more events

than the traffic pattern in Figure 4-7 does. The simulation engines in Figure 4-6 can

process more events to achieve better speedup within the same lookahead interval.

For the segments in terms of the lookahead values from 1000 to 100000 microseconds,

the speedup with the high event-number traffic pattern is smoother than that with low

event-number traffic pattern. This is because the number of events that can be

processed is gradually saturated as the value of the lookahead increasingly increases.

4.2. Simulator Comparison

In this section, we compare the performances of parallel simulations for two

popular network simulators, NCTUns and NS2. PDNS (parallel/distributed NS2) [28,

29, 30] is developed by the PADS research group at Georgia Tech. The simulation

case used in this section is the same as the one used in Figure 4-3.

The event-processing rate of the original sequential execution on NS2 is shown

in Figure 4-8. It shows that the event-processing rate increases as the number of

events increases. The event-processing rate without additional logging I/O overheads

is much faster than one with logging statistics. In other words, the bottleneck of the

event-processing rate on NS2 is the logging mechanism.

 37

0

200000

400000

600000

800000

1000000

10 1000 100000

lookahead (microsecond)

ev
en

t
pr

oc
es

si
ng

 r
at

e

(e
ve

nt
s/

ex
ec

ut
io

n
ti

m
e)

10 Mbps (1 ms x 128
bytes) with LOG

10 Mbps (1 ms x 128
bytes) without LOG

10 Mbps (8 ms x
1024 bytes) with
LOG

10 Mbps (8 ms x
1024 bytes) without
LOG

Figure 4-8 Event-Processing Rate on PDNS.

From Figures 4-4, 4-5, and 4-8, the event-processing rate with additional logging

I/O overheads on NCTUns nearly equals to the event-processing rate with logging

overheads on NS2, since both of them are limited by disk I/O operations. On the

contrary, the event-processing rate without logging statistics on NCTUns is much less

than that without logging statistics on NS2.

 We compare the speedups on NCTUns with the speedups in PDNS. As shown in

Figure 4-9 and Figure 4-10, the overall behaviors of the speedups on NCTUns are

similar to those on PDNS. The event-processing rate without logging I/O overheads

on PDNS is much faster than that with logging I/O overheads. In contrast to NS2, the

event-processing rate without logging statistics on NCTUns is only two times faster

than the one with logging overheads. The maximum speedup on PDNS is close to 1.4,

and that on NCTUns is close to 1.2. The reason is that packets in PDNS are

transmitted in a pseudo way. In other words, packets in transit are simulated by

transmitting a small descriptor that contains the information such as the packet length

rather than transmitting a real packet. Contrarily, packets transmitted on NCTUns are

 38

real ones because NCTUns uses the real-life TCP/IP protocol stack, which may

produce the additional transmission delay in the parallel/distributed simulation

environment.

0

0.2

0.4

0.6

0.8

1

1.2

10 1000 100000

lookahead (microsecond)

sp
ee

du
p

(S
eq

ue
nt

ia
l/

A
cc

el
er

at
ed

nu
ll

 m
es

sa
ge

)

10 Mbps (1 ms x
128 bytes) with
LOG

10 Mbps (1 ms x
128 bytes) without
LOG

10 Mbps (8 ms x
1024 bytes) with
LOG

10 Mbps (8 ms x
1024 bytes)
without LOG

Figure 4-9 Speedup on NCTUns.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 1000 100000

lookahead (microsecond)

S
pe

ed
up

(s
eq

ue
nt

ia
l/

ac
ce

le
ra

te
d

nu
ll

 m
es

sa
ge

)

10 Mbps (1ms x
128 bytes) with
LOG

10 Mbps (1 ms x
128 bytes) without
LOG

10 Mbps (8 ms x
1024 bytes) with
LOG

10 Mbps (8 ms x
1024 bytes)
without LOG

Figure 4-10 Speedup on PDNS.

The differences of functionality between NCTUns and PDNS are shown in Table

4-3.

 39

 NCTUns PDNS

Approach Custom Design Federated Approach

Partitioning Partitioning can occur
between any type of nodes

Partitioning can only occur
between routers

Routing Automatically done Need to set up in TCL

Setup Use “parallel.cfg” to

partition network

Need to use new TCL

syntax

Wireless Simulation Support No Support

Table 4-3 Functionalities between NCTUns and PDNS.

4.3. The Impact Factors for Parallel Simulation

In this section, we discuss the effects of several factors in parallel simulation

including lookahead, connectivity between simulation engines and load balance.

The simulation network topology is shown in Figure 4-11. There are four UDP

CBR (constant bit rate traffic pattern) data streams in the simulation case, two-way on

from node 1(3) to node 3(1), from node 2(4) to node 4(2), respectively. These four

streams send a packet of length 128 bytes at a time with 0.1 milliseconds, and thus the

resulting data rates of the UDP streams are 10Mbps. The bandwidths of all links are

1000 Mbps, and the simulation time in the case is 10 seconds (in terms of virtual

time). The simulation topology is partitioned into two parts, each of which is assigned

a simulation engine. One simulation engine is responsible for the simulation of the

nodes 1, 2, 5. And the other is responsible for the simulation of the nodes 3, 4, 6.

 40

Figure 4-11 A simulation case for impact factors.

4.3.1. Lookahead

In this section, we discuss the lookahead, which is the most important factor for

parallel simulation.

 The execution times of different lookahead values are shown in Figure 4-12. It is

observed that if the value of lookahead is 10 microseconds, it will be the bottleneck

let all execution times of conservative algorithms become extremely long. The

execution time is following the lookahead value to increase on original sequential

simulation. The curves of both the null message algorithm and the accelerated null

message algorithm looks alike and have less execution time than sequential one while

the lookahead value is larger than 100 microseconds. The execution times of the

conditional event algorithm are longer than sequential one whichever the lookahead

value is.

 41

0

50

100

150

200

10 100 1000 10000 100000

Lookahead (microsecond)

E
xe

cu
ti

on
 t
im

e
(s

ec
)

Null message Accelerated null message

Conditional event Sequential

Figure 4-12 Execution times for different lookahead values.

0

10000

20000

30000

40000

50000

10 100 1000 10000 100000

Lookahead (microsecond)

E
ve

nt
 p

ro
ce

ss
in

g
ra

te

(e
ve

nt
s/

ex
ec

ut
io

n
ti

m
e)

Null message Accelerated null message

Conditional event Sequential

Figure 4-13 Event processing rate for different lookahead values.

The event-processing rates of different lookahead values are shown in Figure

4-13. As the lookahead values increase, the event-processing rates of sequential

execution follow to decrease progressively. The event-processing rate of the

conditional event algorithm is not well no matter what lookahead value is. The curves

of both the null message algorithm and the accelerated null message algorithm look

alike and have higher event-processing rate than the sequential execution one while

 42

the lookahead value is 100000 microseconds.

Speedup

0

0.5

1
1.5

2

2.5

10 100 1000 10000 100000

Lookahead (microsecond)

S
pe

ed
up

(S
eq

ue
nt

ia
l/

P
ar

al
l

el
)

Null message
Accelerated null message
Conditional event

Figure 4-14 Speedups for different lookahead values.

The speedups of different lookahead values are shown in Figure 4-14. The

speedups of conservative algorithms are following the lookahead values to increase.

We take notice of both the speedups of the null message algorithm and the accelerated

null message algorithm that larger than 2, while the lookahead value is 100000

microseconds. Figure 4-14 shows that the execution times of both algorithms are

almost the same while the lookahead values are in range from 100 to 100000

microseconds in Figure 4-12. Since the execution times are almost the same, the

reason that cause the speedup larger than 2 is that the execution time of the sequential

execution is in increasing. This is because as the lookahead value increases, the

event-processing rate of the original sequential execution decreases progressively, as

shown in Figure 4-13.

 43

4.3.2. Connectivity between Simulation Engines

In this section, we discuss the connectivity between simulation engines, a factor

influence the performance of parallel simulation. We change the partition in Figure

4-11 as shown in Figure 4-15. We split up the simulation into two simulation engines.

One is in charge of the nodes 1, 3, 5, and the other is in charge of the nodes 2, 4, 6.

We test the simulation case with the null message algorithm

Figure 4-15 Partitioning for connectivity between simulation engines.

The partition of simulated network in the case will cause additional 200,002

remote send packet events and 200,002 remote receive packet events on different

simulation engines. The large number of additional packet transmission overhead of

these remote packet events transmitted on real network, will cause about half speedup

as shown in Figure 4-16.

 44

0

0.2

0.4

0.6

10 100 1000 10000

Lookahead (microsecond)

S
pe

ed
up

Speedup (execution time of null message algorithm / execution time of
remote packet partition)

Figure 4-16 The speedup under the partition of connectivity between

simulation engines.

4.3.3. Load Balance

In this section, we discuss the load balance, a factor influence the performance of

parallel simulation. We change the partition in Figure 4-15 as shown in Figure 4-17.

We split up the simulation into two simulation engines. One is in charge of the nodes

1, 2, 3, 5; the other is in charge of the nodes 4, 6. We test the case with null message

algorithm.

The partition of network causes additional 100,001 remote send packet events

and 100,001 remote receive packet events. Compared with the partition in Figure 4-15,

although this partition in Figure 4-17 has only half number of remote packet events,

but its performance is worse than the other. This is because the workload of

assignment is not uniform for each simulation engine. In this case, the simulation

engine in charge of the nodes 1, 2, 3, 5, is busy with heavy workload and the

 45

simulation engine in charge of the nodes 4, 5 is idle in most time to wait

synchronization with the other simulation engine. The speedup is getting worse with

smaller lookahead value since tiny lookahead value cause large synchronization

overhead as shown in Figure 4-18.

Figure 4-17 Partitioning for load balance.

Speedup (execution time of remote packet partition /

execution of load balance partition)

0.038398159
0.255943618

0.95713841

0

0.5

1

1.5

10 100 1000

Lookahead (microsecond)

S
pe

ed
up

Figure 4-18 The Speedup under the partition of load balance.

 46

5. Future Work

In the future, we intend to implement several algorithms of optimistic approach

[18] on NCTUns network simulator to evaluate the performance of optimistic

algorithms and compare the performances of optimistic approach with the

performances of conservative approach.

 The performances of parallel discrete event simulation for wireless network

simulation are disappointed. The propagation delays of signal transmission in wireless

network are tiny. These so small look-ahead values make the parallel discrete event

simulation perform inefficiently. However, one can increase the lookahead values

from the logical processes by the nature of the CSMA/CA protocol in IEEE 802.11

wireless networks. The CSMA/CA protocol requests each node in the network to

postpone the sending of frames with various periods called “inter-frame space” (IFS),

such as SIFS, PIFS, DIFS and EIFS. As such, those idle times due to IFSs are useful

for the lookahead of logical processes.

The parallel discrete event simulation still has many challenges. First,

partitioning a network topology automatically in a best way is still difficult. So far we

leave this task with users. An inappropriate network partition could severely decrease

the performances of the parallel discrete event simulation. In the future, we will

investigate how to partition a network more wisely.

 Second, NCTUns works with the real-life TCP/IP protocol stack

collaboratively. This methodology produces more accurate simulation results.

 47

However, it also increases the difficulty for the parallel discrete event simulation.

Protocols that involve operating data structures in the kernel may not function

correctly in a distributed simulation environment. For example, routing protocols,

such as OSPF, RIP, etc, need to operate the kernel’s routing table to build routes

correctly. In a distributed simulation environment, these routing daemons are running

on different machines. In such a situation, the kernel’s routing table of each machine

may not be consistent with each other because each routing daemon is only able to

update the routing table on its local machine. To address this problem, we need to

propose a new mechanism for the parallel simulation to exchange the contents of

kernel data structures when needed. This is a huge task that remains to be completed

in the future.

 48

6. Conclusion

This thesis presented how conservative synchronization algorithms are applied to

NCTUns network simulator with minimum modifications, and therefore most of

network protocol modules, existing tools and traffic generators that have been

developed can be reused. We study the performance of some conservative

synchronization algorithms that have been implemented on NCTUns network

simulator, including the asynchronous lazy null message algorithm, the conditional

event algorithm and the accelerated null message algorithm. The thesis expands on

the limits of packet level simulation using a variety of parallel computation techniques

and discusses the impact factors that influence the performance of the parallel discrete

event simulation.

 This thesis concludes some guidelines to achieve good performances for the

parallel simulation. First, the lookahead values should be sufficiently large. This is

also the most significant factor for the parallel simulation. Second, making a good

partition for a network can reduce the communication overheads between logical

processes. Such communication overheads for a logical process include the exchanges

of control messages, simulated data packets, and the delays for waiting messages from

other logical processes. Third, the density of events (the number of events that should

be processed in every second) of a simulation case should be high for the parallel

simulation to get better performances than a sequential one. Next, the load balance is

important for logical processes, the performance of parallel simulation is decreased by

additional waiting time for light-workload logical processes in idle. Finally, it is very

important to use a high-throughput and low-delay inter-connection network as the

 49

underlying network system for the parallel simulation. For example, if the used

underlying inter-connection network has high-delays for exchanging packets among

nodes, logical processes running on these nodes may experience unacceptable

message-passing delays, and thus the total execution time for a simulation is increased

inevitably.

With respect to conservative synchronization algorithms, the null message

algorithm usually has the best performances for the parallel discrete event simulation

if the used lookahead values are large sufficiently. The conditional event algorithm

has inverse proportion relationship between the efficiency and the density of events. It

gets better performances than the null message algorithm while simulation with small

lookahead values. The accelerated null message algorithm combines the advantages of

the above two algorithms. It often has good performances for all kinds of simulation

cases in the parallel discrete event simulation.

 50

 Reference

[1] S.Y. Wang, C.L. Chou, C.C. Hwang, A.J. Su, C.C. Lin, K.C. Liao, H.Y. Chen,
and M.C. Yu, “Applying Discrete Event Simulation to the NCTUns 1.0 Network
Simulator”.

[2] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and

C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network
Simulator”, Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197.

[3] S. McCanne, S. Floyd, ns-LBNL Network Simulator,

http://www.isi.edu/nsnam/ns/

[4] Harvard TCP/IP network simulator 1.0, available at
 http://www.eecs.harvard.edu/networking/simulator.html

[5] S.Y. Wang, and H.T. Kung, “A Simple Methodology for Constructing Extensible

and High-Fidelity TCP/IP Network Simulators”, Proc. IEEE INFOCOM'99 (The
Conference on Computer Communications), New York, USA, March 1999, pp.
1134-1143.

[6] S.Y. Wang, and H.T. Kung, “A New Methodology for Easily Constructing

Extensible and High-Fidelity TCP/IP Network Simulator”, accepted and to
appear in “Computer Networks” Journal.

[7] OPNET Inc., http://www.opnet.com

[8] Riley, G., R.M. Fujimoto, and M. Ammar, A Generic Framework for

Parallelization of Network Simulations, in Proceedings of the Seventh
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. 1999. p. 128-135.

[9] Zeng, X., R. Bagrodia, and M. Gerla, GloMoSim: A Library for Parallel

Simulation of Large-Scale Wireless Networks, in Proceedings of the 1998
Workshop on Parallel and Distributed Simulation. 1998. p. 154-161.

 51

http://www.isi.edu/nsnam/ns/
http://www.eecs.harvard.edu/networking/simulator.html
http://www.opnet.com/

[10] Wu, H., R. Fujimoto, G. Riley. Experiences Parallelizing a Commercial Network
Simulator. In Proceedings of Winter Simulation Conference (WSC). 2001

[11] James Cowie, David M. Nicol and Andy T. Ogielski. Modeling the Global

Internet. Computing in Science & Engineering, Vol. 1, No. 1, pp. 42-50,
January/February 1999.

[12] James Cowie, Hongbo Liu, Jason Liu, David Nicol and Andy Ogielski. Towards

Realistic Million-Node Internet Simulations. Proceedings of the 1999
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'99), June 28 - July 1, 1999, Las Vegas, Nevada.

[13] Scalable Network Technologies, Inc. http://www.qualnet.com/

[14] Y. Ahmet Sekercioglu, Andras Varga and Gregory K. Egan, "Parallel Simulation

Made Easy with OMNeT++". In Proceedings of the European Simulation
Symposium (ESS 2003), 26-29 Oct, 2003, Delft, The Netherlands.

[15] PDNS, http://www.cc.gatech.edu/computing/compass/pdns/

[16] Perumalla, K.S., et al., Scalable RTI-Based Parallel Simulation of Networks, in

Proceedings of the 17th Workshop on Parallel and Distributed Simulation. 2003.
P. 97-104.

[17] Fujimoto, R.M., T. McLean, and K.S. Perumalla. Design of High Performance

RTI Software. in the 4th Workshop on Distributed Simulation and Real-Time
Applications. 2000. San Francisco, CA.

[18] Fujimoto, R.M., Parallel and Distributed Simulation Systems. Wiley Series on

Parallel and Distributed Computing, ed. A.Y. Zomaya. 2000, New York:
Wiley-Interscience. 320.

[19] K.M. Chandy and J. Misra, “Asynchronous Distributed Simulation via a

Sequence of Parallel Computations,” Comm. ACM, vol. 24, no. 11, pp. 198－

206, Aug. 1981.

[20] K.M. Chandy and R. Sherman, “The Conditional Event Approach to Distributed

Simulation,” Proc. 1989 Simulation Multiconf.： Distributed Simulation, vol. 21,

 52

http://www.qualnet.com/
http://www.cc.gatech.edu/computing/compass/pdns/

no. 2, pp. 93－99, Mar. 1989.

[21] V. Jha and R. Bagrodia, “Transparent Implementation of Conservative

Algorithms in Parallel Simulation Languages,” Proc. 1993 Winter Simulation
Conf., pp. 677－686, Dec. 1993.

[22] R. Bagrodia, V. Jha, and M. Takai, "Performance Evaluation of Conservative

Algorithms in Parallel Simulation Languages," Technical Report, UCLA CS
Department- 980026.

[23] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier

synchronization. International Journal of Parallel Programming, v. 17, n. 1, pp.
1-17, 1988.

[24] S. Bellenot, “Global Virtual Time Algorithms,” Proc. Multiconf. Distributed

Simulation, vol. 22, no. 1, pp. 122-127, Jan. 1990.

[25] F. Mattern, H. Mehl, A. A. Schoone, and G. Tel, Global virtual time

approximation with distributed termination detection algorithms. Tech. Rep.
RUU-CS-91-32, Dept. of Computer Science, University of Utrecht, The
Netherlands, 1991.

[26] Chih-Hua Hwang, “The Design and Implementation of the NCTUns 1.0

Network Simulation Engine”, Master thesis, National Chiao Tung University,
Hsinchu, Taiwan, 2002.

[27] Liao Kauo-Chiang, “Porting the NCTUns network simulator to Linux and

Supporting Emulation.”, Master thesis, National Chiao Tung University, Hsinchu,
Taiwan, 2004.

[28] Riley, G., R.M. Fujimoto, and M. Ammar, A Generic Framework for

Parallelization of Network Simulations, in Proceedings of the Seventh
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. 1999. p. 128-135.

[29] Richard M. Fujimoto, Kalyan Perumalla, Alfred Park, Hao Wu, Mostafa H.

Ammar, George F. Riley. "Large-Scale Network Simulation: How Big? How
Fast?," mascots, vol. 00, no. , p. 116, 11th 2003.

 53

[30] Alfred Park, Richard Fujimoto and Kalyan Perumalla. “Conservative

Synchronization of Large-scale Network Simulations”, ACM/IEEE/SCS
Workshop on Parallel and Distributed Simulation (PADS), June 2004.

 54

	List of Figures
	List of Tables
	Table 4-2 Execution time of conservative algorithms （2）.………...….…...…32
	
	Supporting Parallel Simulations on the NCTUns Network Simulator
	1. Introduction
	2. Background Overview
	 Simulation time
	Figure 2-1 An example to explain the relation between EIT, EOT, ECOT, LA.
	Figure 2-2 Initial version of conservative algorithm for a logical process.
	
	Figure 3-1 An overview of parallel simulation architecture.
	Figure 3-3 The hacked system call to set parallel/single mode in kernel.
	Figure 3-6 A pseudo code for parallel mechanism.
	Figure 3-8 The system call to change the state of “parallel_mode” parameter.
	Figure 4-3 A simulation case for conservative algorithms comparison.
	Approach
	Figure 4-17 Partitioning for load balance.

	 Reference

