%
=
%

S PN

TEHE3E

2
i
i

B+ W X

— BB IR ARG R w ey Rt
il

An'Incremental Anomaly Detection for Temporal Workflow

Specification

R A ARHE
wEHIR TYR R

PERBEB-F=F

1l
Jn

— B B R T AR IRAZ 4 8 BT R B AF 09 3 P AT

An Incremental Anomaly Detection for Temporal Workflow

Specification
R OAE =AY Student : Ming-Shun Wu
BEHR YR Advisor : Feng-Jian Wang
¥R A KRE
R e S - AL
B+ WX

A Thesis

Submitted to Department of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science
March 2014

Hsinchu, Taiwan, Republic of China

t # RE

— BB TAR R AR 0 8 0 B R B 1 6B M AT

24 RAR
BEHR I YR

IRZAR (BIRAT) #EL3E

=
I
w

3
»
“i‘
-§\-\

— A R E AR AR & B B NEY AR E T AR AR 2 AT A
R AR TAR RN E R SR AT R EE AR — BT
VR IRAZ T VAR 38 3 i, — 18| 5 48 AL T VR A2 © Bl Ry A7 artifact &9 & & o
sEgh o BFR] B R Ak AN B BB A P 0 B4R 518 8] artifact B F ey £
RERE - AR R WX o JRAIE LI E T — A AR AR R —
1B B - AL TAE IR AR 8 Ty ik AR bR R AL TR A2 BAR B R -
BN IAFRBEAEZ A TS T/ERAZ > AR R L —EhtR ey
EERFTERF o ik CASE T By iz TR Ley Moy
WO IFEAEESR - Af > E—ESFFIERAEEEEE XM ER
25 RACERGHE EFEA0HETEABRE - RAHGRELT

RO Es AL TH > BRE — A7 EE X BEEEL
AAE R ek #hegis 8 TS TAE R A2 L B R 547 F AT artifact B % & 4 -

BiseE: artifact &%, BHELIH, FH, TR

An Incremental Anomaly Detection for Temporal Workflow Specification

Student : Ming-Shun Wu Advisors : Dr. Feng-Jian Wang

Institutes of Computer Science and Engineering
National Chiao Tung University

Abstract

A well-structured workflow is composed of a group of well-structured workflow(s)
and process(es), where the control structure is composed of parallel/decision structure.
A general workflow can be transformed into a well-structured workflow for the analysis
of abnormal artifact behavior. Besides, the temporal factors can be added into each
process to help improve the preciseness of anomaly detection. In this thesis, we first
introduce how to transform a general workflow with temporal factors into a
well-structured one with temporal factors for anomaly detection. The workflow is called
a TS workflow, and a batched analysis algorithm is developed. Due to the popularity of
CASE tools, the incremental analysis for the workflow is getting important. However,
the incremental anomaly detections working in a workflow with temporal factor are
difficult, since the loop and related temporal factors introduce complicated problems.
We discuss and categorize the edit activities and develop a series of analysis algorithms
which are organized in to perform the anomaly detections in the corresponding TS

workflow maintained after each edit activity.

Keywords: artifact anomaly, incremental analysis, temporal, workflow

BH

ARBXMEA ERBRMBNE GBI CEW BT RAT AN
5B TR F sk URLRMEG XS MG 3 B2 TR AN RN
KOV ER » 1353 % 9688 - B IMURH O 3RE B R B RAv BB R ERay2E

HFEBT > REFTEOTR R G R L

HER o RAE R SEIROE R S NY I BBR% o AIFLUR

EISpH

2 y N
BioZE 2O

Table of Contents

et e e e e e e et e e e e et e e e et e e e ea i teeeaaaaaeas i
ADSIIACE ...ttt ettt h e sttt b i
L2 & OO P PO P U SOPPROUPTURRIPRUPPIPPRRPI il
Table Of CONENLSeouviiiiiiieiieiieeee ettt sttt v
| A T 1 T e S O PSPPSRI v
List of Algorithms o eeelts om0 s - ennnsshnen e e e eveeeereeieeeeeeieenaees vi
Chapter 1 INtrodUCTION .oiiu. ioeieeeiiieeiieeciee ettt et et e e assas aesnasdeanbaeesereeesnseeensseeens 1
Chapter 2 WOrkflow Definition . mii eaeeereecieesreesieestiesneesbeeeereensiaie aeneessibaenseesseenseens 4
2.1 Definition of a structured Workflow..... ... 4

2.2 A temporal structured WOTKIIOWcceeeviveeeiieeiiiei it 6

2.3 Artifact operations and anOMAlIES.............ciivue e uiieniueeeiiiieiiiiesioeeeineeeeereeennnens 7

2.4 100D TEAUCTION 1.uvveeiiteeeiieeeitieeesuaeeecideeaneeessianeanssaesnsssesnnseessseesssnneanneeeesseessssens 9
Chapter 3 Temporal Computation for TS Workflow.................cccooiiin e iiiisiennen. 11
3.1 Level Computation fOr PrOCESSES.....ccouterieeiiieriieaiieeeiieeiieeiieeiiienberieasnne e 11

3.2 Removing Loop(s)in @ Workflowottt e 16

3.3 Temporal Computation inside a Workflow without Loopscce..cccvieennnen. 21
Chapter 4 Anomaly Detection in a TS Workflowccoovvieii s ittt 25
4.1 Anomaly Detection in a BatChccoooiiiiiiii ittt 25

4.2 Incremental.anomaly deteCtioncemtieeneresiinreenieesannteeeieeeereeeereeenereeens 31
4.2.1 Detection inside @ TS WOrkflow..........cc... oo, 31

4.2.2 Computing concurrent and nonempty etccccecveevcrveercreeenveeennen. 38

4.2.3 Anomaly detection with the algorithms in above two subsections43

4.3 A Summary for our Incremental ANalysiS........ccccvvveeviieecieeniieeeiee e 50
Chapter 5 Conclusion and Future Work...........cccceeeiiieiiieeiiieciec e 52
RETETEICES ...ttt sttt 53

List of Figures

Figure 2.1 The graph notation in @ WOrKfIOWcccoeeiiiieiiiieiiicieeeeeee e 4
Figure 2.2 The blocks in @ WOTrKflOWcoooiiiiiiiiiiiiiieceee e 5
Figure 2.3 The method of computing EAL........cccooooiiiiiiiieeeeeeeee e 6
Figure 2.4 Artifact states transition diag@ram.........cccceeeevuerienienieerienieneeeseeseeeeeee e 8
Figure 2.5 The loop is transformed intd an acyclic structure..........ccceevevveeecreeercveeennnen. 10
Figure 3.1 A sample TS workflow, where each process is associated with EAL.......... 11

Figure 3.2 A sample workflow, where each process is associated with level value12
Figure 3.3 The methods of computing branch stack for each type of process............. 14
Figure 3.4 The branch stacks attached on each process in workflow in Figure 3.2.....14
Figure 3.5 A sample workflow owns a loop (between xj; and xs;) containing another
10OP(DEtWEEN XJ2 AN XS2)-reeeuvreaneriianreeeesiteennaeassaeasssesenesnianeeeesnnesessssssssseeens 20
Figure 3.6 The acyclic structure after transforming the loopbetween xj, and xs; in
T RIS W J——— 20
Figure 3.7 The acyclic structure after transforming the loop between xj; and xs; in
DT (S Ny SRR o . ISR 21
Figure 3.8 The workflow in Figure 3.2 which duration is attached to each process ...24
Figure 3.9 The workflow in Figure 3.8 which EAl is attached to each process.......... 24
Figure 4.1 A sample TS workflow with operation working on an artifact a................ 31
Figure 4.2 A sample workflow which has three artifacts a;, a, and a3(blank indicating
N0 OPCTALION) ..eivtieiiieiieiieeteeette et esteeeteesteeebeeseeenbeenseessseeseeenseenseessseeseens 40

Figure 4.4 The TS workflow in Figure 4.1 is deleted a operation at Ps...................... 50

List of Algorithms

ALZOTTtRM 3.1 MATK ..ot 12
Algorithm 3.2 CompUtELeVelcooiiiiiiiiiiiieie et 15
Algorithm 3.3 REMOVE-LOOP ..cveeiieiieiieiieieteeie ettt 17
Algorithm 3.4 COmMPULEEAL.......ccouiiiiiiiieieeeee et 21
Algorithm 4.1 Batched AnomalyDetect N RO OTRSOROI 25

Algorithm 4.2 Comp mediate SS R 35

Algorithm 4.3 ComputelmmediatePredecessor

/4

Algorithm 4.4 Comp

Algorithm 4 rocessBr: | Wy, W % ot 40
Algorit 6 ComputeConcurren . . LE.. 41
Algorithm i A A o SN | S 46

Algorit (tIONANOMALIES ..ovveii et 47

Algorithr eBranchDeleti QLIS 1 nveennesnnesnnnseeeneeeeensbanbanasnntieneneeens 49

Vi

Chapter 1 Introduction

A workflow is composed of a group of workflow(s) and process(es), where a
process is a simple program unit (task) only and a workflow can be decomposed
recursively. In a structured workflow diagram, each node represents either a
(structured) workflow or a program unit, and each directed arc between two nodes
indicates that its tail node is executed before'its head node [1]. When a node has more
than one output arcs, these target nodes perform cither concurrently or exclusively.
There are a lot of research works on workflow, typically problems including
effectiveness, efficiency, security, reusability, ..., etc. For example, Adam developed a
method to assure the security of a workflow by checking the consistency dependency
among the component tasks [2]. Van der Aalst presented a method to check the
deadlock(s) and livelock(s) inside a workflow based on Petri-Net [3] [4].
Kiepuszewski, et al claimed that most of well-behaved workflow can be transformed
into a structured workflow, although the latter is less expressive explicitly [5]. Sadiq et
al. present seven basic data validation problems, redundant data, lost data, missing data,

mismatched data, inconsistent data, misdirected data, and insufficient data in structured

workflow model $£3R! B2 HE2KIE -].

A well-structured workflow 1s a structured workflow in which each para/xor
beginning node has a corresponding (para/xor) ending node and vice versa. Also, the
node between both (beginning/ending) nodes can have no arc to the node not between
them. A well-structured workflow may have an error due to the incorrect handling of
an artifact(s). There are several detection methods and tools for pair of abnormal
artifact operations inside a well-structured workflow. Hsu, et al defined artifact

anomalies and presented several ways to detect these anomalies [8][9]. Wang, et al

[10] presented a model describing the data behavior in a workflow and improved the
method in [9], including speeding up the analysis. Hsu, et al [11] described the details
of artifact anomalies in workflow. A workflow, in which each process is given an
execution time interval, is named as a TS workflow. However, there are few

researches of artifact anomalies in a TS workflow.

A time interval defined in a workflow can be given to represent the minimum
and maximum potential execution time. After given these values, a pair of earlier start
time and latest ending time associated with a process have been studied to calculate
the access conflict of artifacts for acyclic structured workflow. In a workflow contains
loops, each loop can be similarly given the minimum and maximum potential
execution turns. Based on the techniques of loop deletion in [8][9], a TS acyclic
workflow can be derived for a corresponding workflow. Thus, the anomaly detection
technique for a timed workflow can be extended to a TS workflow and to help detect

the artifact anomalies in a general timed workflow.

On the other hand, CASE tools are getting popular. Thus, an editor for workflow
has been developed in many CASE environments, especially for. service-based
software. In such an editor; an incremental analysis tool is needed to help user edit
his/her workflow. In the tool, each analysis. is called when an edit activity completes.
For incremental analysis on a TS workflow, we maintain a corresponding acyclic TS
workflow (called CTS workflow) to help the analysis. We developed a series of
algorithms to detect abnormal behavior due to the activity inside immediate
predecessors/successors of the artifact whose activity being edited in a CTS workflow.
Then, we analyze and categorize the edit activity to derive the corresponding
modifications in the CTS workflow once an edit in a TS workflow completes. For

each set of modifications, one or more algorithms are organized to do the related

2

anomaly detection.

The analysis works well for each branch, since the execution order of processes
in a branch are clearly. It also works when a loop is deleted because the model [12]
adopted has been proven work too. For parallel process due to AND structure, the
analysis provided with CTS workflow provide a more precise detection, because the
temporal factors help screen out some concurrencies which appear in a conventional

workflow, but never occur.due to their execution time intervals.

However, our works are not good enough. For example, the edit activities are
limited, and not flexible enough for user. The time complexity of a general anomaly
detection is exponential. The effectiveness/efficiency improvement of our analysis has

not yet shown optimal, and might be improved further.

In the rest of the thesis, Chapter 2 describes the existing techniques related to
control/data structure and temporal relationships inside a workflow. Chapter 3
presents the methods to construct the corresponding TS workflow when loops are
deleted. Chapter 4 first presents a batched anomaly detection for artifacts in a TS
workflow. It then concerns the editing behavior for the modification associated with a
general TS workflow editor, and presents the method to-detect artifact anomaly(ies)

incrementally. Finally, Chapter 5 gives conclusions and some future work.

Chapter 2 Workflow Definition

2.1 Definition of a structured workflow

A workflow is composed of processes and flows [12], where processes are
connected by flows. Each process is in charge of start, end, control and activity
processes, and each flow entering/leaving a process work to the in-flow/out-flow of
the process.

An start (ST)/end (END) process represents the starting/ending point of the
workflow. An activity (ACT) process represents a piece of work to be executed in a
workflow. There are four types-of control processes: AND-split (4S), AND-join (4J),
XOR-split (XS) and XOR-join (XJ) processes. An AND-split process splits two or
more output branches to run concurrently. An AND-join process is activated when all
its input branches enters. An XOR-split process selects one of its output branches to
run, while an XOR-join process is activated when one of its input branches arrives.

Figure 2.1 shows the graph notation in workflow based on [12].

00 ® ® & & []

A ~iridr Flow
Start End XOR-split XOR-join AND-split AND-join Activity
process process process process process process process

Figure 2.1 The graph notation in a workflow

—>{ i—> L L i P
’: W :’: W :_b _.: Wn

(a) Smgle Activity (b) Sequence

. x>r~‘f~n - ,<F>~*i__jia_n

LIRS

(e) Loop Structure

Figure 2.2 The blocks in a workflow

In a structured workflow, each AND/XOR split process has a corresponding
AND / XOR join process to form a block [12]. All the processes between the start and
end process in a structured workflow are organized with the blocks shown in Figure
2.2. In figure 2.2(a) indicates there is only an activity process. Figure 2.2(b) indicates
a sequence of blocks Wy, W»,..., W,. Figure 2.2(¢) indicates a decision to select one of
the blocks Wi, W», ..., W, to be executed. Figure 2.2(d) indicates a parallel structure
that all the blocks Wi, W», ..., W, are executed simultaneously. Figure 2.2(e) indicates
a loop structure where the entrance is an XOR joint process and output is an XOR

split process, where the inner branch is the branch to execute the loop continually and

outer branch is the branch to execute after the loop stops.

Besides, a process is reachable from the other one if there is a path from the
latter to it. Two processes are parallel if they reside in different branches of a parallel
structure, and are exclusive to each other if they reside in different branches of a

decision structure.

2.2 A temporal structured workflow

As in [12], a timed and structured workflow is called a temporal structured
workflow (TS workflow). For each process p in a temporal workflow, d(p) and D(p)
are added to p where d(p)-and-D(p) represent the minimum and maximum working
duration of process p. To simplify discussion, we assume that 0 < d(p)<D(p) if p is an

activity process, d(p) = D(p) = 0 otherwise.

(a) py is an activity/AND-split/ XOR-split/end process
EST(p,) = EST(p;) + d(p1)
LET(p,) =LET(p:) + D(p2)

H

P

'

aj

'
=]

&,
H

(b) a7 is XOR-~join process (c) aj is AND-join process
EST(xj) = MIN({EST(p;) +d(p) |i=1..1}) EST(aj) = MAX({EST(py) + d(p)) | i=1..n})
LET(xj) = MAX({LET(p)) | i=1..n}) + D(x)) LET(aj) = MAX({LET(p,) | i= 1..n}) + D(aj)

Figure 2.3 The method of computing EAI

The Estimated Active Interval (EAI) of a process is a time interval indicating
when the process can be initialized and when it has to be terminated. For each process
p in a TS workflow, EAl(p) = [EST(p), LET(p)] is a time interval where EST(p)
indicates the earliest time p can be initialized and LET(p) indicates the latest time p
must be terminated. Figure 2.3 shows how to calculate EAI of a process.

On the other hand, the parallel processes in a TS workflow would not be possibly
executed at the same time if theirworking durations do not overlap. Two processes p
and ¢ in a TS workflow are concurrent if p and g are parallel, and EAI(p) and EAI(q)
are overlapped, p and g are sequential if p is reachable to g or g is reachable to p. Let
processes p, g are both selected to execute during run-time, and ¢ is reachable from p,
q cannot be executed before p. On the other hand, if p and q are parallel, and EAI(p)
is before EAl(g), p is also executed before ¢g. For both circumstances above, p is
before ¢, and there is no operation working on the same artifact at the estimated time
interval before p’s EAI and after ¢’s EAI p is said to be a immediate successor of q, q

is a immediate predecessor of p.

2.3 Artifact operations and anomalies

As in [12], an activity process ina TS workflow may operate an artifact with the
following way(s): define (Def), use (Use) and kill (Ki//). Def operation is to assign a
value to the artifact, Use operation is to reference the artifact, and Kill operation is to
delete value of the artifact. A process may also do nothing (Nop) on an artifact.

As in [12], an artifact in a TS workflow is initially stated undefined (UD), and
turns to defined&no-use (DN) after it is defined. When a DN artifact is used, it turns
to defined&reference (DR). Figure 2.4 shows the state changes of an artifact due to

the artifact operations.

U/MDS/IDK

Ambiguous
I (AB)

K/IKS/IUK IDS]

l

Detfined&No-use
(UD)

Figure 2.4 Artifact states transition diagram

On the other hand, when more than one process operates on the same artifact
concurrently, these operations may interleave with each other for accessing the artifact
and anomalies might be generated. These operations are called Interleaving
Operations, and ' require additional consideration ~during anomalies analysis.
Interleaving operations can be clarified as following:

1. Interleaving Definition(s)&Kill(s), abbreviated as IDK, definition(s) and

kill(s).

2. Interleaving Definitions, abbreviated as IDS, multiple definitions, but no

kill.

3. Interleaving Kill(s), abbreviated as IKS, multiple kills, but no definition.

4. Interleaving Definition&Usage(s), abbreviated as IDU, one definition, no

kill, and at least one usage.

5. Interleaving Usage(s)&Kill, abbreviated as IUK, one kill, no definition, and
at least one usage.

6. Interleaving Usages, abbreviated as IUS, multiple usages only.

Artifact anomalies can be generated due to structural and temporal relationships
between processes. In [12], there are four types of anomalies: Useless Definition,
Undefined Usage, Null Kill and Ambiguous Usage. Useless Definition occurs when
killing or defining a DN artifact makes the previous definition useless because the
definition is destroyed (or redefined) without any usage. Undefined Usage occurs
when using an UD artifact is an error leading to faulty execution. It is necessary to be
handled by the designers. Null Kill occurs when a null kill represents a process trying
to remove an inexistent definition. For instance, kill a UD artifact. Ambiguous Usage
occurs'-when an ambiguous usage means that an activity process uses an artifact which
is ambiguous in definitions or in states. For instance, the direct usage of an AB artifact

is an ambiguous usage.

2.4 Loop reduction

For the loop structure, there are several approach [8][9][10]. These approaches
all assume that there is at least zero time of execution. However, they do not consider
the case which has at least k turns, k > 0. In Figure 2.5, X and Y represent the blocks
in a TS workflow and the numbers of potential minimal and maximal iterations are m
and n, where both numbers are larger than zero. The loop graph can be transformed as
the lower graph, where the left sequence structure represents that a sequence of m
blocks, and the right decision structure represents a loop structure at most (n - m)
turns as in [12]. The transforming process is named as transformation of cyclic

workflow to acyclic workflow (TCA).

minimal iterations m i maximal iterations n

[i

no iteration

m iterations one iterations

10

Chapter 3 Temporal Computation for TS Workflow

The anomaly detection techniques presented in previous approaches have some
defects because the time interval consideration is not enough. For instance, there is no
temporal issue consideration as in figure 3.1, processes P3 and P, are both concurrent
to P, by default. When the timing factor is introduced, the anomaly detection between
P, and P4 is not necessary once the latest ending time of P, is less than the earliest
starting time of P4 according to EAI, where the EAI of each process is paired by [] in
figure 3.1. In our approach, the detection is started after each loop in a TS workflow is

deleted with a transformed technique as in Figure 2:5.

[3.6]

[2.4] [8.10]

Figure 3.1 A'sample TS workflow, where each process is associated with EAI

3.1 Level Computation for Processes

To identify the split process and corresponding joint process more clearly in a TS
workflow, we associate each process with the attribute /eve/ in addition. For a parallel
or exclusive structure, its split/joint process and the activity processes between them
are associated with a common level value. When an exclusive/parallel structure is

nested in another exclusive/parallel, the level of processes between the former is the

11

level of processes between the latter plus one. For example, P;’s level is 0 in figure

3.2, the level of asy, aj; and P4 are 1, and the level of as;, aj,, P>, P3 are 2.

as; level =2

e as

@—al—¢
Slevel=0 Py level =0 as) level =1 ajrlevel=1
> P,

Pylevel=1

Elevel=0

Figure 3.2 A sample workflow, where each process is associated with level value

Algorithm 3.1 indicates an algorithm to compute the level value of each process

in a workflow recursively.

Algorithm 3.1 Mark

Input: .a TS workflow w, a process x in w
Output: each process’s level has been computed
Begin

01. if (x 1s start process) x.level = 0;

02. if (x is end process) {

03. x.level =0;

04. return;

05. }

06. for each process y in w, y is successor of x{

07. if (x is a joint process) y.level = x.level -1;
08. else y.level = x.level;

09. If (v 1s a split process) y.level = y.level + 1;
10. Mark(w, y);

11. }

End

12

In each turn, the algorithm is instantiated with an input process x. In the first turn,
the algorithm starts from the starting process. When x is an end process, there is no
further recursion of Mark. For the rest processes, the recursion is done to each of its
succeeding process(es). In lines 6-7, for each successor of x, named by y, the level of
v is assigned as (x.level — 1) if x is a joint process, x.level otherwise. In lines 10-11,
y.level is defined as (y.level + 1) if x is split process.

For the workflow in Figure 3.2, obviously; s.level is assigned as O in line 1.
P.level is assigned as 0, and Mark(w, Py) is called in the first turn. In Mark(w, P)),
asj.level is assigned as 1, and Mark(w, as;) is called. In Mark(w, as,), i.e., ond turn,
asy.level is assigned as-2,-and then Mark(w, as;) is called. After Mark(w, as;)
completes, Pa.devel is associated as 1 and Mark(w, Py4)is called. In Mark(w, as,),
P,.level is assigned as 2, and Mark(w, P») is called. After the level of ajy, aj; and end
process are computed, the algorithm goes back to Mark(w, as,) to compute P;.level,
and Mark(w, aj,) is called again. Finally, the algorithm calls Mark(w, Ps), and then
Mark(wjy @j;) is called again.

Although algorithm 3.1 can compute the level of each process, however some
recursive calls may be useless and redundant at line 10. For example, applying
algorithm 3.1 on the workflow w.in Figure 3.2, the calls, Mark(w, P,) and Mark(w, P3)
both compute aj,.level but derives the same value. To eliminate the defect in
algorithm 3.1, we introduce the branch stack (bs) into each process. The branch stack
(bs) of a process p is expressed with p.bs. The branch stack of a process p is defined
as followings: (1) when p is an activity process, p’s bs is equal to the bs of its
predecessor. (2) when p is a split process, p’s bs is equal to the bs of p’s predecessor
pushed with the number of p’s split branches. (3) when p is a joint process, p’s bs is
equal to the bs of p’s predecessor popped out one number. Figure 3.3 shows how to

calculate the bs of each process. Figure 3.4 shows the branch stack with each process
13

from the workflow in Figure 3.2. For example, the branch stack associated with s and
P, are empty. The branch stack associated with as; and as, are <2> and <2, 2>
respectively. The branch stack associated with P,, P3 and P4 are <2>, <2> and <2, 2>

respectively. The branch stack associated with aj; and aj, are <> and <2> respectively.

(a) activity process: Py.bs = Py.bs (b) split process: sp.bs = push(n. Ppy.bs) (c) joint process: jp.bs = pop(Py,.bs)

Figure 3.3 The methods of computing branch stack for-each type of process

()

asy.level =2 aja.level =2

0. 0) L > B) 0.0
N2 Pslevel =2
Py + 2.4
S.level=0 Pplevel =0 asy.level =1 ajilevel =1 E.level =0

(0, 0) (1,2) 0.0) (©.9) (0, 0)

Pylevel=1
(3.5

Figure 3.4 The branch stacks attached on each process in workflow in Figure 3.2

Thus, we improve algorithm 3.1 by adding the branch stack to a process.

Algorithm 3.2 shows how to compute the level of each process with branch stack.

14

Algorithm 3.2 ComputeLevel

Input: a TS workflow w, a process x in w

Output: each process’s level has been computed

01. Let each process’ bs and level be empty and zero respectively;
02. Letx be the start process in w;

03. Let g be an empty queue of processes;

04. enqueue(q) with x;

05. While(g is not empty){

06. y = dequeue(q);

07. if (y is not the end process){

08. For each successor z of y in w{

09. if (y 1s a joint process) z.level = y.level -1;
10. else z.level = y.level;

11. Switch(z){

12. Case-1-“split process™:

13. z.bs = the stack copied from y.bs
14. push the number of split brnaches of z on z.bs
15. z.level =z.level + 1;

16. enqueue(q) with z;

17. Case 2 “joint process™:

18. if(z.bs is empty) z.bs = y.bs;

19. z.bs.top --;

20. if(z.bs.top==20) {

21. pop(z.bs);

22. enqueue(q) with z;

23. }

24. Case 3 “other process”:

25. z.bs = y.bs;

26. enqueue(q) with z;

27. }

28. }

29. }

30. }

End

15

Algorithm 3.2 stops when ¢ is empty. In the while loop (lines 6-30), the
successors of y is enqueued into queue g at line 16, 22, 26. The branch stack in
Algorithm 3.2 is used to guarantee when starting to compute the data of a joint
process, the data of its predecessors are derived. In lines 13-16, if z is a split process,
z.bs is a stack copied from y.bs and then pushed the number of split branches of z. In
lines 17-23, a joint process z in each turn is processed, z.bs.top is decremented by 1 at
line 19. In the first turn, z.bs.isinitialized by y.bs at line 18. In the last turn z is
processed, i.e., z.bs.top = 0, z.bs is popped and z is enquened into ¢ in lines 20-23. The
enqueue/dequeue operations on ¢ make sure that (1) all the incoming branches of a
joint process completes since-its-bs-is zero then. (2) a process is enqueued once all its
predecessors are passed. (3) the bs of a joint process in generated with the (number of
its input branches — 1), since the first branch is passed. Thus, the guarantee succeeds.

For example, when applying algorithm 3.2 on the workflow in Figure 3.4, the
algorithm enqueue start process into ¢ at line 4. Considering the computation of while
loop, in-the first turn, P;.level is assigned as 1, ¢ = <P;> after the first turn. In the fifth
turn, P4 1s dequeued from g, then aj;.bs = <2>, and aj;.bs is assigned as <1>, g = <P»,
Ps> after fifth turn. In the eighth turn, aj; is dequeued from g, then aj;.bs = <0>, aj; is
enqueued into ¢. In the next turn, aj; is dequeued from g, then the end process' level is

computed. Finally, while loop stops because end process has no successor.

3.2 Removing Loop(s) in a Workflow

In section 2.4, we present a method to transform a simple cyclic workflow into
an acyclic structure one by booting the method shown in Figure 2.5. Thus, the acyclic
structure in the lower-level graph, as in Figure 2.5, can be applied to represent loop

structure executing at least m times and at most n times.

16

To identify whether a pair of split/joint processes is a loop structure in a
structured workflow, we introduce the attribute loop to both split and joint processes
of a loop structure to indicate whether they represent a common loop. When the loop
attribute of both XOR processes is true, the XOR structure represents a loop structure,
not, otherwise. To travel each loop structure in a structured workflow, we introduce
two loop stacks in Algorithm 3.3. When the transformation of a loop or its descendent
loop is being handled, the loop stack of split process (Iss) represents a stack of XOR
split processes of a.loop structure, the loop stack of joint process (Isj) represents a
stack of XOR joint processes of a loop structure. Algorithm 3.3 applying the structure
in Algorithm 3.2, shows-how - to transform a structured workflow into an acyclic

workflow based on TCA'in Figure 2.5.

Algorithm 3.3 Remove-Loop

Input: a TS workflow w

Output: an acyclic TS workflow w’ transformed from w
Begin

01. Let each process’ bs be empty;

02. Let x be the start process in w;

03. Let g be a queue of processes and empty;

04. enqueue(q) with x;

05. Let Iss and Isj be empty initially;

06. While(¢ is not empty){

07. y = dequeue(q);

08. For each successor z of y in w{

09. if (y is an XOR split process with true loop and z is on the outer
10. branch)

11. else{

12. Switch(z){

13. Case 1 “ AND and XOR split process with loop is false”:
14. z.bs = the stack copied from y.bs, then pushed the

17

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

number of split branches of z;

enqueue(q) with z;

Case 2 “AND and XOR joint process with loop is false”:

if (z.bs is empty) z.bs = y.bs;
else z.bs.top --;

if(z.bs.top==0) {

pop(z.bs);

enqueue(q) with z;

Case 5 “other process™:

z.bs = y.bs;

enqueue(q) with z;

18

into an

End

Algorithm 3.3 stops when ¢ is empty at line 6. Cases 1, 2 and 5 in Algorithm 3.3
are similar to Algorithm 3.2. Case 3 and 4 in Algorithm 3.3 works for a pair of
split/joint processes forming a loop structure. To prevent the successor on the outer
branch of a loop from begging computed before loop is transformed, line 9 checks
and detects such a case in switch. To simplify our explanation, let xs and xj represent
input a pair of split/joint processes. In Case 4, Xj is pushed into Isj and z is enqueued
into ¢ in lines 38-39 if Isj.top = xj. Isj.top == xj, indicates that xj is now handled at
the second time and all the processes between xj and xs are traveled already, thus a
loop structure between xs.and.xj is transformed by TCA in lines 31-32. Lines 33-35
enqueues the joint process of the transformed acyclic structure into ¢, and revise the
bs of the joint process as to its successor. Case 3 pushes xs into Iss and enqueues z
into ¢ in lines 25-26. Moreover, if there is a loop contained, son loop do TCA later
than the other loop because of the operation of Iss and Isj. The split/joint processes of
a loop in Iss/lsj are pushed earlier than those of the other loop. Thus, TCA is applied
on the inner loop carlier (due to pop order).

For instance, the loop starting at xs1 and ending at xjlcontains the loop starting
at xs2 and ending at xj2 in Figure 3.5. Algorithm 3.3 transforms the latter by TCA as
shown in Figure 3.6. Next, Algorithm 3.3 transforms the former in Figure 3.6 by TCA
as shown in Figure 3.7, where the block G in the lower graph shows the transformed

acyclic structure.

19

Figure 3.6 The acyclic structure after transforming the loop between xj, and xs; in

Figure 3.5

20

d

1

Figure 3.7 The acyclic structure after transforming the loop between xj; and xs; in

Figure 3.6

3.3 Temporal Computation inside a Workflow without Loops

In. this section, we present the method to calculate EAI of each process according
to the model in Figure 2.5. Algorithm 3.4 shows how to compute EAI of each process

p modified from Algorithm 3.2, named by p.EAL

Algorithm 3.4 ComputeEAI

Input: a acyclic workflow w

Output: each process’ EAI has been computed

Begin

01. Let each process’ bs and EAI be empty and [0, 0] respectively;
02. Letx be the start process in w;

03. Let g be a queue of processes and empty;

04. enqueue(q) with x;

05. While(g is not empty){

06. y = dequeue(q);
21

07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

if (v is not end process){
For each successor z of y in w{
Switch(z){
Case 1 “split process™:
z.bs = the stack copied from y.bs, then pushed the
number of split branches of z;
EST(z) = EST(y) + d(»);
LET(z) = LET(y) + D(z);

enqueud(y) with 2

01Nt Process

(z.bs is empty) z.bs =y

"'4" misa

decessor of z };

m)|misa

enqueue(q) with z;

}

Case 3 “other process”:
z.bs = y.bs;
EST(z) = EST(y) + d(»);
LET(z) = LET(y) + D(2);

enqueue(q) with z;

22

predecessor of z } + D(z);

40. }
41. }

42. }

43. }

End

Algorithm 3.4 stops when ¢ is empty; its main body is similar to Algorithm 3.2.
In Algorithm 3.4, Case 1 and 3 compute the EAI of processes by TCA. Case 2 (joint
process) is clarified into two sub cases, AND and XOR joint processes, to compute z’s
EAI according to its predecessors in lines 21-32 when EAI of its all predecessors is
computed once z.bs.top = 0 at line 19.

After a working duration-of a process . p, (D(p), d(p)), is added to p in the
workflow in Figure 3.2, the workflow is shown in Figure 3.8. After a EAI of a process
p, (EST(p), LET(p)), is added to p in the workflow in Figure 3.8, the workflow is
shown in Figure 3.9.

When applying Algorithm 3.4 .on the workflow in Figure 3.8, the algorithm
pushes the start process into ¢ at line 5. The-computations for the rest are done in
while loop (lines 5-43). After the first turn of the while loop, P;.EAL = [0, 2] and g =
<P;>. After the sixth turn of the while loop, aj,.bs.top =1, ¢ = <Ps;>. At the seventh
turn, aj,.bs.top = 0 is executed at line 18, then aj;.EAI is computed in lines 21-22:
EST(aj;) = MAX{EST(p:), EST(p3)}' = MAX{l, 3} = 3, and LET(aj;) =
MAX{EST(p2), EST(p3)} + D(aj)= MAX{3, 6} + 0 = 6, thus aj,.EAI = [3, 6]. After
the next turn, aj;.EAI = [4, 7] according to P4 and aj,. At the final trun, EAI of end

process is computed.

23

S.level=0
(0. 0)

Pilevel=10
(1.2)

(0. 0)

asy.level =1
(0, 0)

asa.level =2

aja.level =2
(0.0)

E.level=0

ajr.level =1
(0.0) (0. 0)

Pylevel =1

(3.5)

Figure 3.8 The workflow in Figure 3.2 which duration is attached to each process

S.level =0
[0. 0]

Plevel=0
[1.2]

ass.level =2

[1.2]

asplevel=1

[1.2]

aja.level = 2

[3. 6]

SN

i.3]
’

Pialevel=2
[1.6]

aj;

E.level=0
[4. 7]

ajplevel =1
[4. ;']

.

Pylevel=1
[1.7]

Figure 3.9 The workflow in Figure 3.8 which EAI is attached to each process

24

Chapter 4 Anomaly Detection in a TS Workflow

In this chapter, we present several algorithms to detect anomalies based on our
model of workflow. Section 4.1 presents a batched approach of anomaly detection.
The modifications of a TS workflow can be classified into four categories to simplify
the discussion: (1) Insertion/deletion of a pattern (2) Insertion/deletion of an artifact
operation (3)Modification of (min, max) time for a process (4) Modification of (min,

max) turns for a loop ° .Section 4.2 presents the incremental analysis correspondingly.

4.1 Anomaly Detection in a Batch

A static anomaly detection can be defined to find out the anomal(ies) in a TS
workflow. Previous work [12] presents an algorithm of a batched detection of artifact
anomaly in a workflow, but the algorithm is too rough to indicate the timing
correctness. For example, the loop-reduction analysis is incomplete. In the algorithm,
it does;not count the minimum turns in a loop, while the specification of such a
number 1s.done on a TS workflow. Algorithm 4.1 is applied to improve these
deficiencies.

In algorithm 4.1, we define and analyze a corresponding workflow (discussed in
Section 3.3) to the one constructed by designer. Such an analysis is called a batched
analysis. Since an XOR or AND structure might contain a branch of no operation, let
such a branch be called an XBB/ABB in an XOR/AND structure. To simplify the

discussion, an XBB is also introduced for the loop in the corresponding workflow.

Algorithm 4.1 BatchedAnomalyDetection

Input: a TS workflow w

Output: anomalies

25

Begin

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Removing-Loop(w); //algorithm 3.3
ComputeEAI(w); //algorithm 3.1
ComputeLevel(w); //algorithm 3.2
Let x be the start process in w;
Let g be a queue of processes and empty;
enqueue(q) with x;
While (g is not empty){

y = dequeue(g);

For each successor z of y in w{

Switch(z){
Case 1: “split process™: {

z.bs=y.bs, and pushing the number of split branches of z

into ».bs;

enqueue(q) with z};

Case 2: “joint process”: {

if(z.bs is empty) z.bs = y.bs;

else z.bs.top --;

if(zbs.top=—=0) {
pop(z.bs);
enqueue(q) with z;

i)

Case 3: “other process”: {

z.bs = .bs;

A = {a| ais an artifact in w, z has operation on a};

S = {(p,a, 0) | p is a process in w, p is before z , a is operated
with o in p, wherea € A, o € {Def, Kill, Use} }
where (p, a, 0)’s are derived using traveling the
Mechanism as in Algorithm 3.2;

Do¢{

S’ = {pa | pa€S, pa.p is a immediate predecessor of z};
G = the set of elements derived in Section 4 in [7]
For each (g, a), where g€G and o €A) {

26

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
End

Switch(g, a){
Case 1:”the operations in g are IDS/IDK *:
Useless Definition occurs;
if (the operation on a in z is Use)
Ambiguous Usage occurs;
Case 2:” the operations in g are IKU/IKS
Null Kill occurs;
if (the operation on a in z is Use)
Undefined Usage occurs;
else if (the operation on @ in z is Kill)
Null Kill occurs;
Case 3:” the operations in g are IDU
if (the operation on a in z is Def)
Useless Definition occurs;
Case 4:” the operations in g are Def
if (the operation on a in z is Def")
Useless Definition occurs;
if (the operation on « in z is Kill)
Useless Definition occurs;
Case 5:” the operations in g are Kill *;

if (the operation on @ in z is Kill) Null Kill occurs;

b

S=S\{pa|pa €S’, pap is contained in an XOR
structure X, X has an XBB,
and X’s level == pa.p.level };
ywhile (S# S”);

enqueue(q) with z}

27

In Algorithm 4.1, the loops in the workflow w are replaced with acyclic structure
by using Algorithm 3.3 at line 1. Algorithms 3.1 and 3.2 are applied to compute the
level and EAI of each process in lines 2-3. Algorithm 4.1 adopts a similar traveling
method as in Algorithm 3.3, so that we do not explain in details for the structure of
both “while” and “for” loops in lines 4-63. However, the computation at each turn of
the “for” loop is based on the type of process z. The cases for split and joint processes
are handled in lines 11-21 and mot discussed in details since it is similar to the
Algorithm 3.3 containing the anomaly detection steps working on the process z being
handled.

For each process, neither split nor joint, the computations are done in lines 22-61.
At line 24, set A is calculated to contain the artifacts operated in the process z. For
each artifact, such as a, in A, we define a three tuple (p, a, o) named as pao to
simplify our discussion, where p is a process before z, and o 1s the activity (operation)
working on a at p, i.e., o is one of activities, Def, Kill and Use. The pao of each
artifact.in A is calculated and all the pao’s derived are form as a set'S in lines 25-28,
where the details of how to get the processes are skipped because we adopt a traveling

method in Algorithm 3.2 which has been shown correct.

The do-while loop detects the potential anomaly(ies) due to blank branches in
lines 29-59. At line 30, All pao’s in S whose p is a immediate predecessor of z are
collected as a set S’. At the end (lines 55-59) of each turn of the loop, if S is changed,
S’ contains at least one XOR element that has a blank branch and the next turn starts.
Otherwise, the loop terminates.

In each turn, line 31 is responsible for identifying concurrency for the processes
of pao in S°. G is a set of elements which are the set containing pao’s. After G is

constructed at line 31, G has the following properties:
28

1. For each element g in G, if pa; and pa, belong to g, pa;.p and pa,.p are
concurrent.
2. For any two elements gy and g,in G, g,%g, and g,22>
3. For any two elements pa; and pa; in S’,
a. If pa;.p and pa,.p are concurrent, G has an element containing both
pao; and pao,.
b. If pa;.p and pa,.p belong to two distinct elements in G and pa;.p#pas.p,

pa;.p.and pa,.p arc not concurrent.

However, the calculation-of G is a NP problem: maximum clique problem, and
the lemma 2 in Section 4 in [7] is adopted at line 31.

Lines 32-53 analyze each pair (g, @) where g€EG and a €EA. According to the
discussion in Chapter 2, all possible pairs_for (g, @) can be classified into five cases,
including single operation and - the corresponding operations 'are described
correspondingly as below:

1. The component elements in g are IDS/IDK for a, g itself contains Useless
Definition anomaly. Besides, if artifact @ has Use operation in g, there is an
anomaly of ambiguous use. The handling operations are done in lines
35-37.

2. The operations in g are IKU/IKS. g itself contains an anomaly of Null Kill.
If there is a Use operation on a in z, it causes anomaly of Undefined Usage.
Otherwise, if there is a Kill operation on « in z, it causes anomaly of Null
Kill. The handling operations are done in lines 39-43.

3. The operations in g are IDU. If artifact a has Def operation in z, there is
anomaly of Useless Definition. The handling operations are done in lines

44-45.
29

4. The operations in g is Def. If artifact a has Def operation in z, it causes
anomaly of Useless Definition. Otherwise, if artifact a has Kill operation in
z, it causes anomaly of Null Kill. The handling operations are done in lines
47-51.

5. The operation in g is Kill. If artifact a has Kill operation in z, it causes

anomaly of Null Kill. The handling operation is done line 53.

Finally, the content of S is copied to S” at lin¢ 55. For each process of pao in S’,
if there exists an XOR structure X containing the process of pao, X is associated with
the same level of the process,-and X has XBB, the pao’s in S* whese process is
contained i X are removed from S in lines 56-58. Now, at line 59, that S equals to S”’
indicates there is-no-blank branch found in XOR structures in lines 55-58. Thus, the
do-while loop terminates when the content of S and S’ are equal, continues otherwise.
After the loop, enqueuing z into q at line 60 is the last step of the handling a successor
z of process .

In algorithm 4.1, lines 23-60 are responsible to find out all the artifact anomalies
associated with the operation in the concerned process. The loop defined at line 7
shall pass all processes. In other word, all the processes except split/joint process are
examined. Thus, all the anomalies in workflow are detected by algorithm 4.1.

For instance, a sample of TS workflow associated with operation working on an
artifact a in Figure 4.1, Algorithm 4.1 would detects Useless Definition at P; because

both P, and P; have Def working on a.

30

asy.level =2 aja.level = 2

[1.3]

Def
1.2 3.6

e
- as Pilevel =2

. + [1.6]

Slevel=0 P level =0 asy.level =1 ﬂ‘il‘li\'e_‘1= 1
[0.0] [.2] [1.2] Use [+.7]

E.level=0
[4. 7]

Pylevel=1
[1.7]

Figure 4.1 A sample TS workflow associated with operation working on an artifact a

4.2 Incremental anomaly detection

Each loop in a workflow. is transformed into an acyclic structure based on the
definition of Section 2.4. Thus, each TS workflow diagram being edited has a
corresponding acyclic workflow diagram, named as CTS workflow. Section 4.2
presents a set of algorithms for incremental anomaly analysis of the CTS, which is
done once the operation edition on artifacts inside a ‘single process or a structure

modification such as insertion/deletion completes in the original workflow.

4.2.1 Detection inside a TS workflow

Our incremental analysis works based on divide and conquer mechanism; it
contains three steps, step by step:

1. analyzing the block containing edited process.

2. analyzing the rest of workflow.

3. Computing the anomalies according to the results of 1 and 2.

To simplify the analysis work and discussion, we define five attributes to be
31

associated with each process p in a workflow w, besides level, working duration, and

EAI which are described in Chapters 2 and 3. The definitions of these attributes are

defined below:

1.

There are five process types: asp, ajp, xsp, xjp and ap; asp/ajp and xsp/Xjp
indicate split/joint process of AND and XOR respectively, and ap indicates
activity process.

AOSet, = {(a, o) | ais an artifact in w, operation o works on a in p, and o €
{Def, Kill, Use} }.

ImmeSuch represents the set of process(es) of which each has an operation
on a, and there-is-an-empty path on a from p to the process. Moreover we
define ImmeSuc? (Def) = {g | ¢ € ImmeSuc), the operation of a in g is
Def}, ImmeSuc (Kill) = {g | ¢ € ImmeSuc) , the operation of ¢ in ¢ is
Kill}, ImmeSucf(Use) = {¢g | ¢ € TmmeSuc’, , the operation of @ in g is
Use}.

ImmePre,, represents the set of process(es) of which each has an operation
on a, and there i1s an empty path on a from the process to p. we define the
following sets: ImmePre,, (Def) = {g | g€ ImmeSuch;, the operation of a in
g is Def!, ImmePre,(Kill) = {g | g€ ImmeSuc? , the operation of a in ¢
is Kill}, and ImmePre, (Use) = {q |g€ ImmeSuc, , the operation of a in g

is Use}.

An incremental analysis in general is to analyze abnormal operation behavior

due to an operation in a workflow editor [12]. Because such an analysis has been

shown to be an NP problem when a workflow contains a loop(s), we define a new

incremental approach to simplify the work. In our work, when a TS workflow is

modified (addition/deletion/modification a process) by user, our approach has a

32

corresponding modification in its CTS workflow to reduce the analysis work and thus
waiting time for designer.

To simplify the discussion, the incremental analysis algorithms presented are
based on each of the following four types of edit activities:

1. Insertion/deletion of a workflow template indicates to insert/delete a

Loop/AND/XOR structure or an activity process.
2. Insertion/deletion of an operation on some artifact.
3. modification of (min, max) turns of a loop.

4. modification of (mix, max) time interval of a process.

Because each loop in a TS workflow has a corresponding complicated acyclic
structure in its CTS workflow, when an insertion/deletion/modification of a loop in a
TS workflow occurs, the target CTS workflow has to be modified first in order to
follow the reduction principle in Section 2.4 correspondingly. Insertion/deletion of an
operation on an artifact @ is to add/delete an operation on a in an activity process p. To
simplify the analysis, it is assumed that an artifact has at most one operation in an
activity process. After an operation on a is inserted/delete in p, there is one
operation/no operation fora in p and corresponding process(es) in the CTS workflow.

The modification of (min, max) turns for a loop is to increase/decrease the
minimum/maximum turns of a loop. As mentioned before, a loop can be transformed
into an acyclic structure when a designer adds the loop into a TS workflow (Section
2.4). It has to modify the corresponding CTS workflow for a modification of (min,
max) turns of a loop. The modifications of a loop is done by increasing/deleting for
one of both of (min, max), and one increases and the other decreases. The
modification of a CTS workflow can be discussed according to the followings:

1. The resulting value of subtracting min from max is larger. This case occurs
33

due to:
a. max is of no change or incremented, but min is incremented lower, of
no change, or decremented.
b. max is decremented, but min is decremented larger.
2. The resulting value become smaller. This occurs due to:
a. max is of no change or incremented, but min is incremented larger.
b. max is decremented, but min is .incremented, of no change, or

decremented lower.

Modification of (min, -max) time for a process is to change minimum/maximum
working duration of an activity process. If a designer modifies the working duration
of an activity process in a loop, it has to adjust the timing of the corresponding acyclic
which contain this data in the CTS workflow.

It might update ImmeSuc;, and ImmePref of a process p when an edit activity
to artifact a occur somewhere else.In our approach, the analysis is focused on a
workflow block, containing the process p being edited, and starts by computing
ImmeSuc/, and ImmePre/ according to the level of the block. Algorithm 4.2
computes ImmeSuc}, and Algorithm 4.3 computes ImmePrel. Because we analyze a
workflow at a predefined level, obviously, some information need be modified due to
an edit activity. The information modification related to the blank branches between p
and p’ is done with Algorithm 4.4. which outputs a set of artifacts containing at least
one operation in each branch between two input processes p and p’.

Both Algorithm 4.2 and Algorithm 4.3 work with input (w, a, p, p’), where w is
a workflow, a is an artifact, and p and p’ are processes. Algorithm 4.2 starts the
computation from p, decides whether to make a recursive based on p’, and terminates

with output ImmeSuc. Input p’ in Algorithm 4.3 is a split process and the output is
34

ImmePre?.

Algorithm 4.2 ComputeImmediateSuccessor

Input: an acyclic TS workflow w, an artifact a, a process p, a joint process p’
Output: ImmeSuc)

0l. S= @;

02. if (p is a split process){

03. p’° = the joint process corresponding to p;

04. if(p i1s an AND process){

05. IfContinue = true;

06. For each successor of p, x{

07. T = Algorithm 4.2(w, a, x, p™°);

08. S=SUT;

09. }

10. IfContinue = IfContinue && (T# 0);

11. }

12. else if (p is an XOR process){

13. IfContinue = false;

14. For each successor of p, x{

15. T = Algorithm 4.2(w, a, x, p”’);

16. IfContinue = IfContinue || (T== Q) ;
17. SE=SpU T;

18. }

19. }

20. if (p”# p’ && IfContinue 1s true) S =S U Algorithm 4.2(w, a, the
21. successor of p”’, p’);
22. }

23. else if (p is an activity process){

24. if (p has operationsona) S=S U {p};

25. else{

26. p’° = the successor of p;

27. S=S U Algorithm 4.2(w, a, p”, p’);

28. }

35

29. }

30. return S;

End

Algorithm 4.2 terminates and returns an empty set at line 30 when p is a joint
process. In the algorithm, the handlings of a process are divided into 3 categories:
split, joint and activity. The decisions are made at lines 2 and 23. In the very
beginning, a set S initialized as empty at line 1 and its value is used to be returned at
line 30. If p is a split process, the related computations are done in Lines 3-21 where
Line 3 assigns the corresponding joint of p to p”’, Lines 5-9 works for AND split,
Lines 13-17works for XOR.split, and Lines 20-21 make a recursive call to get the
artifacts from current joint p” to p’ if p’’.is not p’.

For an AND split process, Line 5 makes a recursive call for each P’s successor.
IfContinue is made true in case no branch contains operation on ¢ as in Line 8. Lines
13-17 are in charge of the work for XOR split, where the recursion works for each of
p’s branches, [fContinue is true if there is a branch containing no work on a, and S is
the union of these returned value. Lines 24-27 works 1f p is an activity process.
Finally, line 30 returns result. For instance, Algorithm 4.2 (w, a, as,, aj,) being called
in Figure 4.1 would output {P>, P3}.

In Algorithm 4.2, each process is touched at most once, thus the time complexity
is O(n), n is the number of the processes in the workflow.

Algorithm 4.3 accepts (w, a, p, p’) input in the very beginning, where w is a
workflow, a is an artifact, p is an input process for starting the execution and p’ is the
split process used to decide the termination of the algorithm, and outputs ImmePre.
The algorithm works inside a workflow block of some level, or whose split process is

p’. The joint process is assigned as p and algorithm 4.3 is called recursively based on

36

workflow w, input artifact a, p and p’.

Algorithm 4.3 ComputelmmediatePredecessor
Input: an acyclic TS workflow w, an artifact a, a process p, a split process p’

Output: ImmePre/,

0l. S= @;

02. if (p is a joint process){

03. if (p is an AND joint process){

04. IfContinue = true;

05. For each predecessor of p, x{

06. T =Algorithm 4.3(w, a, x, p’);

07. S=S U T;

08. }

09. [fContinue = IfContinue * && (T+# 0);
10. }

11. else if (p 1s an XOR joint process) {

12. IfContinue = false;

13. For each predecessor of p, x{

14. T = Algorithm 4.3(w, a, x, p’);

15. IfContinue = IfContinue || (T== 0);
16. S=SUT;

17. }

18. }

19. p” = the split process corresponding to p;

20. if (p”#p’ && [fContinue is true) S =S U Algorithm 4.3(w, a,
21. predecessor of p”°, p’);
22. %}

23. else if (p is an activity process){

24. if (ais operatedinp) S=S U {p};

25. else{

26. p’° = the predecessor of p;

217. S=S u Algorithm 4.3(w, a, p”, p’);

28. }

37

29. }
30. return S;

End

Algorithm 4.3 has a similar but reverse control structure, compared with
Algorithm 4.2. Both algorithms analyze the flow structure, however, Algorithm 4.3
replaces predecessor/successor with successor/predecessor in Algorithm 4.2. In other
words, Algorithm 4.3 uses backward analysis, and does not analyze split process but
returns empty set directly. Furthermore, the complexity of Algorithm 4.3 is O(n) too.

For example, Algorithm 4.3 (w, a, as,, aj,) being called i Figure 4.1 would output

{P2, P3}.

4.2.2 Computing concurrent and nonempty set

Our incremental analysis works on a block of some level value. During the
analysis, constructing/deleting -a blank branch of the block might modify the
anomalies due to predecessor/successor of current block. Algorithm 4.4 inputs a
workflow w, and two processes p and p’, and returns a set of artifacts, which have no

operations between p and p’. p’ in Algorithm 4.4 plays the same role in Algorithm 4.2.

Algorithm 4.4 ComputeNonEmpty
Input: an acyclic TS workflow w, a process p, a joint process p’

Output: The set of artifacts in w with no blank branches
Begin
01. if (p is a split process){

02. S= 0;

03. if (p 1s an AND process){

04. For each the successor of p, x,

05. S=S u Algorithm 4.4(w, x, p’);

38

06.)

07. else if (p is an XOR process){

08. S = {a | a is an artifact in w};

09. For each the successor of p, x,

10. S=S n Algorithm 4.4(w, x, p’);

11. }

12. p”’ = the joint process corresponding to p;

13. if(p”+ p’) S=S U Algorithm 4.4(w, the successor of p”’, p’);
14. }

15. else if(p is an activity process){

16. p”’ = the successor of p;

17. S = {a | p has operation ona} U Algorithm4.4(w, p°, p*);
18. }

19. elseS= @;

20. return S;

End

In the beginning, Algorithm 4.4 is given a workflow between (p, p’) where p/p’
is the split/joint process. If p 1s a split process, the algorithm decides whether to make
a recursion according to the value of p’’. The algorithm terminates and returns the
retsults calculated at line 20. Lines 2-18 adopts an if structure and dispatch the works
when p is a split process. Lines 4-5 indicate-the work for an AND process, the work
unites the value of each subbranch of p by applying the Algorithm 4.4 and assigns the
united results to S. Lines 8-10 do the work for an XOR process. Lines 9-10 intersect
the value of each subbranch of p by applying the Algorithm 4.4 and assigns the united
results to S. Let p”* be a joint process corresponding to p at line 12. If p”’ is not p’, the
self recursion is applied on the successor of p” at line 13. At line 15, if p is an activity
process, line 16-17 unites S and artifacts with operations on p, and the self recursion

is applied on p. Line 17 is correct even if p” is a joint process. Line 19 assigns empty

39

set to S if p is a joint process. Finally, line 20 returns the result.

In Algorithm 4.4, input n processes and each process is touched once, thus the
time complexity is O(n) for input n processes.

For example, Figure 4.2 shows a workflow which has three artifact a;, a, and
a3(blank indicating no operation). Algorithm 4.4(w, as;, aj;) being called in Figure

4.2 would output { ai, as}.

ap:Kill

o
"

az:Def

.

P

asy ay:Kill

a5
&
L
p
a8
E
)
@
&

n_ Def

B

Figure 4.2 A sample workflow which has three artifacts a;, @ and a3(blank indicating

no operation)

Algorithm 4.5 is to find all processes in a branch. Algorithm 4.5 inputs a

workflow w, two processes p and p’; it returns the set of activity processes between p

and p’.

Algorithm 4.5 ComputeProcessBranch
Input: an acyclic TS workflow w, a process p, a joint process p’

Output: the set of activity processes between p and p’
Begin
01. if (p is ajoint process) S = @;

40

02. else{

03. if (p is a split process){

04. S= 0,

05. For each the successor of p, x, S=S U Algorithm 4.5(w, x, p’);
06. p’° = the successor of the joint process corresponding to p;
07. }

08. else if(p is an activity process) {

09. S={p};

10. p’° = the successor of p;

11. }

12. if(p”# p’) S=S U Algorithm 4.5(w, p™, p’);

13. }

14. return S;

End

Algorithm 4.5 adopts-the-same structure as in Algorithm 4.4. If p is a joint
process, S is assigned as empty set at line 1. If p is a split process, the results of each
successor of p are putted into S at line 5. If p is an activity process, S is assigned as {p}
at line' 9. Algorithm 4.5 recurs itself'when the successor p” is not p’ at line 12, p” is
assigned at line 6 and line 10. Line 14 returns the results.

In Algorithm 4.5, input n processes and each process is touched once, thus the
time complexity is O(n) for input n processes.

Algorithm 4.6 inputs a workflow w and a process p, it returns the set of processes

which are concurrent to p.

Algorithm 4.6 ComputeConcurrentProcess
Input: an acyclic TS workflow w, a process p

Output: The set of processes which are concurrent to p in w
Begin

0l. S= ¢;

02. p’ = the predecessor of p;

41

03. while(p’.level > 0)f

04. if(p’ 1s an AND split process) {

05. foreach successor of p’, x, if (x is not reachable to p){

06. S =S UAlgorithm 4.5(w, x, the joint process corresponding to p’);
07. }

08. }

09. p’ = the predecessor of p’;

10. }

11. S={x|x €S, EST(x) < LET(p) ot EST(p) <LET(x)}

12. return S;

End

Algorithm 4.6 starts from current process and recurs itself till the level of p’s
predecessor equals to zero. In Algorithm 4.6, s is initialized as an empty set (line 1). If
p is an AND split process, Algorithm 4.5 is called for the each successor of p, but the
predecessor of p, where another parameter is p’s corresponding joint process. The
works ‘are done as a while loop which stops when p’.level equals to zero. After getting
all the process which might be parallel with p, line 11 filtering out those which cannot
concurrent with p according to temporal information.

S is initially empty set at line 1. p’ is assigned as predecessor of p. Line 3 -10 is a
while loop, if p’.level is greater than zero, it executes line 4-9. At line 4, if p’ is an
AND split process, it inputs successors of p’ to Algorithm 4.5 at line 6 to get the
processes in each branch, and the results is putted into S, but the branch containing p
is not executed because we only need the processes which are parallel with p at line 5.
At line 9, p’ is assigned as its predecessor. If p’.level equals to zero, it indicates no
control block need to be inspected. Line 11 collects the processes which their EAI are
overlaid with the EAI of p. Line 12 returns the set of processes which are concurrent

to p. For instance, Algorithm 4.6(w, P4) being called in Figure 4.1 would output {P»,

42

Ps}.

Algorithm 4.5 and Algorithm 4.6 can be improved. For instance, since the
checking at line 11, Algorithm 4.6 is done for each process in the parallel branch of p.
The checking can be done at each parallel process found to check whether its
following process is parallel with p temporally. If the answer is not, it’s not necessary
to continue the work for its successor. Thus, it saves the execution time.

Our incremental analysis of a TS workflow is classified into two steps:

1. For the edited process, we observe its immediate predecessor and

immediate successor,

a.. The loops-in-this workflow are removed and replaced by XOR
structures in our discussion in Section 2.4.

b. It compares ImmeSuc and ImmePre of edited process to check what
anomalies occur.

2. For the edited process, we find out the processes which are concurrent to the

process by Algorithm 4.6. For each artifact a,

a.. the operation in the edited process on a is Def, if there exists Def/Kill
in these processes, Useless Definition occurs.

b. the operation in. the edited process on a is Kill, if there exists
Def/Kill/Use ' in these processes, Useless Definition/Null
Kill/Undefined Usage occur.

c. the operation in the edited process on a is Use, if there exists Kill in

these processes to cause Undefined Usage.

4.2.3 Anomaly detection with the algorithms in above two subsections

Consider the edit activities in a well-formed workflow editing environment, there

are at least 5 types of editing activities, besides moving the cursor,

43

1. Add/delete a flow structure of AND/XOR/LOOP,

2. Transfer a flow structure intro another structure, for example, transfer an AND
structure into an XOR structure,

3. Add/delete a branch

4. Modify the content of an activity process, and

5. Move one process (a simple activity process or a process which can be

decomposed into a workflow diagram) from one.location to another.

An incremental analysis is done right after each edit activity. To simplify the

analysis work, we can redefine these works type by type as follows:

1. As type one, “add” can be treated as adding an empty structure of
AND/XOR/LOOP, but “delete” can be treated as deleting a workflow structure
directly, i.e., deleting a process which can be decomposed into a workflow of
one of AND/XOR/LOQP structure:

2. A transfer can be done 1) between AND and XOR, 2) between LOOP and
XOR.

3. An activity process can be deemed as containing a sequence of activities,
where each artifact is given one of the following actions: Define, Reference,
Kill

4. When completing a move activity, it can be treated as 2 steps: a) delete a
process at one location and b) add this process into another location., and

inserting/deleting a branch.

Because a process of some structure can be treated as a complex process to be
decomposed recursively, types 1 and 4 and merged together. Inserting/Deleting a

branch can be treated as the activities: a sequence of process insertions/deletions and
44

then handling an empty branch. Therefore, an incremental analysis can be done right

after

1.

Adding/Deleting a complicated process,
Adding/Deleting an empty branch,
Adding/Deleting an simple activity process, and

Transferring an AND/LOOP to an XOR Structure and vice versa.

In our model, each TS workflow being edited can be transformed into a CTS

workflow used for analysis. In the thesis, we are studying the anomaly analysis after

each of the following activities.on a CTS workflow to simply the analysis work

further:

1.

2.

Adding an empty AND/XOR/activity process,
Deleting an activity AND/XOR/activity process,
Moditying the activity(ies) in an activity process and

Inserting/Deleting an empty branch without changing the structure.

Before the discussion of calculations with above algorithms, during incremental

analysis, each node in a CTW._ workflow is defined to be associated with the

information described in'Section 4.2.1 to maintain the information to reduce the

computation. In other word, each node contains level, working duration, EAI, process

type, ImmeSuc’, ImmePre? and AOSet,.

For case 1, there is no analysis only, because no activity change occurs. After an

edit for a simple process at case 2 and 3, Algorithms 4.2 and 4.3 can be applied to find

the immediate previous/next activities for the artifact whose activities are inserted,

deleted or modified (after being deleted and then inserted). Therefore, the operation

anomalies for the artifact can be detected/corrected. For case 4, i.e., after an

45

insertion/deletion of a branch occurs, Algorithm 4.4 is applied to find all the artifacts
which have an activity before the branch. An empty branch added/deleted in a AND
structure do not affect the information and thus anomalies. Thus, there is no analysis.
However, for the insertion/deletion of an empty branch in an XOR structure, it is
introduced/deleted a valid path which contains this branch. An anomaly detection can
be done for each artifact which has an immediate predecessor of the split node of this
branch. The corresponding computation are described in Algorithms 4.8 and 4.9, by
applying Algorithms 4.2, 4.3, 4.4, and 4.7.

Algorithm 4.7 detects anomalies between two set of processes. Algorithm 4.7
accepts (a, Pre, Suc), where-a-is-an artifact, and for each process p in Pre, each
process_g in Suc, there eXist a path from p to ¢. Finally Algorithm 4.7 output

anomalies.

Algorithm 4.7 ComputeAnomaliesPreSuc
Input: an artifact a, a set of processes Pre, a set of processes Suc.

Output: anomalies between Pre‘and Suc.

Begin

01. if (Pre ==@ || Suc ==@) No anomalies;

02. else{

03. switch((x, y) where x € Pre,y € Suc){

04. case 1 “a has Defin x:

05. if (a has Def/Kill in y) Useless Definition occurs;
06. case 2 “a has Kill in x”:

07. if (a has Kill in y) Null Kill occurs;

08. else if (a has Use in y) Undefined Usage occurs;
09. }

10. }

End

In Algorithm 4.7, at line 1, if one of Pre or Suc is empty, it indicates that no

46

target processes can be compared, and output no anomalies. Lines 3-8 is a switch
structure, we make pair (x, y), where x € Pre, y € Suc at line 3. Algorithm 4.7
detects anomalies according to cases(lines 4-8). For case 1 at line 4, a has Def in x, if
a has Def/Kill in y, Useless Definition anomaly occurs. For case 2 at line 6, a has Kill
in x, if @ has Kill in y, Null Kill occurs; if @ has Use in y, Undefined Usage occurs.
Here we do not discuss the case, a has Use in x, because it do not generate artifact
anomalies when Use is executed before Def/Kill is executed.

Algorithm 4.8 computes the anomalies when inserting a blank branch into a
XOR/AND block. Algorithm 4.8 accepts (w, a, p, p’), where w is.a workflow, a is an
artifact, p/p’ 1s a split process/joint process of a control block which will be inserted a

blank branch.

Algorithm 4.8 ComputeBranchInsertionAnomalies
Input: a TS workflow w, split node p, joint node p’
Output: anomalies

Begin

01. NonEmptyArtifact = Algorithm4.4(w, p, p*);

02. Ifpis an XOR split process{

03. For each artifact ¢ in NonEmptyArtifact {

04. ImmeSuc? =Algoirthm 4.2(w; @, p, p’) U ImmeSuc’ ;
05. ImmePre? ‘= Algoirthm 4.3(w, a, p, p’) U ImmePre?;
06. Algorithm4.7 (@, ImmePre?, ImmeSuc?);

07. Algorithm4.7(a, ImmePre?’, ImmeSuc?);

08. !

09. }

10. Inserting empty branch into the block between p and p’;
End

In Algorithm 4.8, line 1 computes the set of artifacts which have no blank branch
between p and p’. After inserting a blank branch, these artifact might generate new

47

anomalies, these artifacts are putted into NonEmptyArtifact(line 1) by output of
Algorithm 4.4. Only XOR structure should be analyzed because XOR structure might
select blank branch in run time. Thus, we only analyze XOR structure at line 2. Line 3
analyzes all artifacts in NonEmptyArtifact. Line 4 updates ImmeSuc?. Line 5 updates
ImmePre? . Finally, lines 6-7 compute the artifact anomalies. Line 6 computes the
artifact anomalies between ImmePre? and ImmeSuc’. Line 7 computes the artifact
anomalies between ImmePreg’ and ImmeSucg . After Algorithm 4.8 completes
analysis, line 10 inserting a blank branch into the block between p and p’.

As in Figure 4.3, there exists a path from P; to end process, it might cause
Useless Definition after inserting a blank branch to the block between as; and ajs.

Kill

P, Jevel = 2

[1.3]

as,, aj,

ass.level =2

of ajy.level =2
1,2
(.2] P;

-
Def
) s Pilevel =2
O—l—< =
S.level =0 Py level = 0 asp.level=1 a‘h‘l[i\il]: 1
[0, 0] [1.2] [1.2] Use t

E.level=0
[4, 7]

]

» P

:

Pylevel=1

[1.7]
Figure 4.3 The TS workflow in Figure 4.1 is inserted a blank branch between

as; and aj

Algorithm 4.9 computes the anomalies when deleting a blank branch from a
XOR/AND block. Algorithm 4.9 accepts (w, a, p, p’), where w is a workflow, a is an
artifact, p/ p’ is a split process/joint process of a control block which will be removed

a blank branch.

48

Algorithm 4.9 ComputeBranchDeletionAnomalies

Input: a TS workflow w, split node p, joint node p’

Output: anomalies

Begin

01. EmptyArtifact = {a | a is an artifact in w} \ Algorithm4.4(w, p, p’);
02. Ifpisan XOR split process{

03. Deleting empty branch from the block between p and p’;
04. For each artifact @ in EmptyArtifact {

05. if (there is no blank branch between p and p’ for a){
06. ImmeSucy = Algoirthm 4.2(w, a, p, p’);

07. ImmePre? = Algoirthm 4.3(w, a, p,p’);

08. Algorithm4.7 (a, ImmePre?, ImmeSuc?);

09. Algorithm4.7(a, ImmePre?, ImmeSuc’);

10. }

11. 1

12. }

End

In Algorithm 4.9, line 1 computes the set of artifacts which have blank branch
between p and p’. After removing a blank branch, these artifact might generate new
anomalies, these artifacts are putted into EmptyArtifact(line 1) by output of Algorithm
4.4. Only XOR structure should be analyzed because XOR structure might select
blank branch in run time. Thus, we only analyze XOR structure at line 2. Line 3
removes a blank branch from the block between p and p’. Line 4 analyzes all artifacts
in EmptyArtifact. At line 5, if the block has no blank branch for artifac a after
completing line 3, lines 6-9 further analyze what anomalies occur. Line 6 updates
ImmeSuc?. Line 7 updates ImmePre{f’. Finally, lines 8-9 compute the artifact
anomalies. Line 8 computes the artifact anomalies between ImmePref and
ImmeSuc? . Line 9 computes the artifact anomalies between ImmePref,” and

ImmeSuc? .
49

For instance, the TS workflow in Figure 4.1 is deleted a operation at P as shown
in Figure 4.4. In Figure 4.4, it might cause Useless Definition because there exists a

path from P, to end process.

asy.level =2 aja.level =2
[1.2]

[1.3]
. 3.6
) ’ []
Def

S.level=0 Py level = 0 asp.level=1 a_il.l[i\'eTl}: 1
[0.0] [1.2] [1.2] Use :

ajy

E.level=0
[4.7]

Pylevel=1
[1.7]

Figure 4.4 The TS workflow in Figure 4.1 deletes.a operation at P

4.3 A Summary for our Incremental Analysis

The algorithms developed in this Chapter can be divided into four types:

1. Abatch anomaly analysis method, as in Algorithm 4.1 on a TS workflow.

2. A setof incremental methods, Algorithms 4.2 and 4.3, to find out immediate
predecessor and. successor processor for the artifact being edited, in a CTS
workflow, although they do not work with temporal factors.

3. A set of incremental methods, Algorithms 4.4, 4.5., and 4.6 to find out the
processes which are concurrent with the process being edited after screening
out those not able to be concurrent with the later with temporal factor.

4. The incremental anomalies detection methods, Algorithms 4.7 and 4.8, are

done based on the processes found in the methods in types 3 and 4.

The anomaly detection methods [12] can be done on well-structured workflow

50

containing loop(s). Algorithm 4.1 adopts this approach [12] and work further with a
factor, temporal, where the workflow is named a TS workflow. The discussion in
section 4.1 indicates that Algorithm 4.1 itself works.

Similarly, the incremental analysis is done based on a CTS workflow, which is
updated corresponding to a TS workflow edited by user. The details of the
corresponding methods and their use are described in Section 4.2. However, the

methods are not good enough, for ple, the time complexity problem. It is

ity of ‘anomaly. detection is-exponential. A better

obvious that the tin / ane ‘\
algorithm is to improve the time complexity, but reduce the preciseness in an

acceptable e

51

Chapter S Conclusion and Future Work

There exist a series of research works and papers for workflow anomaly
detection presented in the past. However, their results do not work on TS workflow,
neither in batch nor incremental manner. Based on our previous results, we present a
series of anomaly detection algorithms, each in batch or incremental manner, in the

thesis. Our results include

1. Refine each loop in a structured workflow diagram as a three branches of XOR
(exclusive or) structure based on [12].

2. Construct an algorithm which transforms a structured workflow diagram into a
corresponding acyclic workflow diagram based on 1.

3. Construct anomaly analysis algorithms for artifacts in the corresponding
workflow diagrams.

4. Construct an algorithm to- modify the corresponding structured workflow
diagram based on'2) when editing a workflow.

5. Construct incremental analysis of artifact anomalies.

However, the techniques discussed in Section 4.2.1 do not work with temporal
factors, neither on artifact anomaly detection. The incremental anomaly detections for
artifact operations need to be studied more precisely to help the edition of a TS

workflow.

52

[1]

[3]

[5]

[6]

[7]

[8]

[11]

References

Workflow Management Coalition, “Workflow Management Coalition: Terminology &
Glossary,” Document Number WFMC-TC-1011, 1999.

N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and Analysis of Worfklows Using
Petri Nets,” in Journal of Intelligent Information Systems, Vol. 10, Issue 2, pp. 131-158,
1998.

W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Verification of Workflow Task
Structures: A Petri-net Approach,” in Information System Vol. 25, Issue 1, pp. 43-69,
2000.

W. M. P. van der Aalst, K.M. van Hee, and R.A. van der Toorn; "Adaptive Workflow: An
Approach Based onInheritance," in the Proceedings of the Workshop on Intelligent
Workflow and Process Management: The New Frontier for Al in Business, pp. 36-45,
1999.

B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler, “On" Structured Workflow
Modelling,” in Lecture Notes in Computer Science, Vol. 1789, pp. 431-445, 2000.

S. Sadiq, M. E. Orlowska,~W. Sadiq, and C. Foulger, “Data flow and validation in
workflow modeling,” in the Proceedings of the 15" Conference on Australasian
Database, Vol. 27, pp. 207-214, 2004.

K. Makino, and T. Uno, “New Algorithms for Enumerating All Maximal Cliques,” in the
Proceedings of 9" Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Computer Science, Vol. 3111, pp. 260-272, 2004

F.-J; Wang, C.-L. Hsu, and H.-J. Hsu, “Analyzing Inaccurate Artifact Usages in a
Workflow Schema,” in the Proceedings of the 30" Annual International Computer
Software ‘and Application Conference, Vol. 2, pp. 109-114, 2006.

C.-L. Hsu, H.-J. Hsu, and F.-J. Wang, “Analysing Inaccurate Artifact Usages in
Workflow Specifications,” in IET Software, Vol. 1, Issue 4, pp. 188-205, 2007.

C.-H. Wang, and F.-J. Wang, “Detecting Artifact Anomalies in Business Process
Specification with a Formal Model,” in Journal of Systems and Software, Vol. 82, Issue
10, pp. 1064-1212, 2009.

H.-J. Hsu, and F.-J. Wang, "Using Artifact Flow Diagrams to Model Artifact Usage
Anomalies," in the Proceedings of 33™ Annual IEEE International Computer Software
and Applications Conference, Vol. 2, pp.275-280, 2009.

Hwai-Jung Hsu, and Feng-Jian Wang, "Detecting Artifact Anomalies in Temporal
Structured Workflow as Reusable Assets" to appear in the Proceedings of 35th Annual
IEEE Computer Software and Applications Conference Workshops (COMPSACW '11),
July 2011

53

