

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

一個時序工作流程編輯時異常動作的遞增性分

析

An Incremental Anomaly Detection for Temporal Workflow

Specification

研 究 生：吳明勳

指導教授：王豐堅 教授

中中中中 華華華華 民民民民 國國國國 一零三一零三一零三一零三 年年年年 三三三三 月月月月

一個時序工作流程編輯時異常動作的遞增性分析

An Incremental Anomaly Detection for Temporal Workflow

Specification

研 究 生：吳明勳 Student：Ming-Shun Wu

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

March 2014

Hsinchu, Taiwan, Republic of China

中華民國一零三年三月

i

一個時序工作流程編輯時異常動作的遞增性分析

學生：吳明勳

指導教授：王豐堅

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘摘摘摘 要要要要

一個好的結構化工作流程是由更小的結構化工作流程和程序所組

成，結構化工作流程裡的控制結構是由平行與選擇結構組成。一個工

作流程可以被轉換成一個結構化工作流程，用來分析 artifact 的異常。

此外，時間因素也被加入到每個程序中，以提高偵測 artifact 異常的準

確度。在這篇論文中，我們首先引進了將一個時序工作流程轉換成一

個時序結構化工作流程的方法，然後在此時序化工作流程上找出異常。

這樣的工作流程被稱之為 TS 工作流程，以及我們也發展出一個批次的

演算法計算異常。由於 CASE 工具的盛行，在工作流程上的遞增性分

析也變得更為重要。然而，在一個時序工作流程裡作遞增式分析並不

容易，因為迴圈及時間的因素使得分析變得更為複雜。我們對編輯工

作流程的動作分類並加以討論，發展出一系列的演算法，這些演算法

是作用在被編輯後的 TS 工作流程上，用來分析有何 artifact 異常產生。

關鍵字關鍵字關鍵字關鍵字: artifact 異常, 遞增性分析, 時間, 工作流程

ii

An Incremental Anomaly Detection for Temporal Workflow Specification

Student：Ming-Shun Wu Advisors：Dr. Feng-Jian Wang

Institutes of Computer Science and Engineering

National Chiao Tung University

Abstract

A well-structured workflow is composed of a group of well-structured workflow(s)

and process(es), where the control structure is composed of parallel/decision structure.

A general workflow can be transformed into a well-structured workflow for the analysis

of abnormal artifact behavior. Besides, the temporal factors can be added into each

process to help improve the preciseness of anomaly detection. In this thesis, we first

introduce how to transform a general workflow with temporal factors into a

well-structured one with temporal factors for anomaly detection. The workflow is called

a TS workflow, and a batched analysis algorithm is developed. Due to the popularity of

CASE tools, the incremental analysis for the workflow is getting important. However,

the incremental anomaly detections working in a workflow with temporal factor are

difficult, since the loop and related temporal factors introduce complicated problems.

We discuss and categorize the edit activities and develop a series of analysis algorithms

which are organized in to perform the anomaly detections in the corresponding TS

workflow maintained after each edit activity.

Keywords: artifact anomaly, incremental analysis, temporal, workflow

iii

致謝致謝致謝致謝

 本篇論文的完成，首先要感謝我的指導教授王豐堅博士的指導，使我習得許

多軟體工程上的知識，以及學到撰寫論文的方法與結構，並且學習到有關於遞增

式分析的應用，得到許多的經驗。另外也感謝口試委員吳毅成和廖珗洲老師的建

議與指導，提供寶貴的意見讓我補足論文中不足之處。

 其次，感謝實驗室的夥伴們，對我的指導與照顧，使我獲益良多，才得以順

利完成研究。

 最後，我要感謝我的家人，因為有你們的支持，讓我心無旁騖地念書，專心

於自己的研究。由衷地感謝各位陪伴我走過這段歲月。

iv

Table of Contents

摘要 .. i

Abstract ... ii

致謝 .. iii

Table of Contents ... iv

List of Figures .. v

List of Algorithms .. vi

Chapter 1 Introduction ... 1

Chapter 2 Workflow Definition .. 4

2.1 Definition of a structured workflow ... 4

2.2 A temporal structured workflow .. 6

2.3 Artifact operations and anomalies .. 7

2.4 Loop reduction ... 9

Chapter 3 Temporal Computation for TS Workflow .. 11

3.1 Level Computation for Processes... 11

3.2 Removing Loop(s) in a Workflow ... 16

3.3 Temporal Computation inside a Workflow without Loops 21

Chapter 4 Anomaly Detection in a TS Workflow .. 25

4.1 Anomaly Detection in a Batch ... 25

4.2 Incremental anomaly detection .. 31

4.2.1 Detection inside a TS workflow .. 31

4.2.2 Computing concurrent and nonempty set ... 38

4.2.3 Anomaly detection with the algorithms in above two subsections 43

4.3 A Summary for our Incremental Analysis .. 50

Chapter 5 Conclusion and Future Work ... 52

References .. 53

v

List of Figures

Figure 2.1 The graph notation in a workflow .. 4

Figure 2.2 The blocks in a workflow ... 5

Figure 2.3 The method of computing EAI ... 6

Figure 2.4 Artifact states transition diagram .. 8

Figure 2.5 The loop is transformed into an acyclic structure 10

Figure 3.1 A sample TS workflow, where each process is associated with EAI 11

Figure 3.2 A sample workflow, where each process is associated with level value 12

Figure 3.3 The methods of computing branch stack for each type of process 14

Figure 3.4 The branch stacks attached on each process in workflow in Figure 3.2 14

Figure 3.5 A sample workflow owns a loop (between xj1 and xs1) containing another

 loop(between xj2 and xs2)... 20

Figure 3.6 The acyclic structure after transforming the loopbetween xj2 and xs2 in

 Figure 3.5 ... 20

Figure 3.7 The acyclic structure after transforming the loop between xj1 and xs1 in

 Figure 3.6 ... 21

Figure 3.8 The workflow in Figure 3.2 which duration is attached to each process ... 24

Figure 3.9 The workflow in Figure 3.8 which EAI is attached to each process 24

Figure 4.1 A sample TS workflow with operation working on an artifact a 31

Figure 4.2 A sample workflow which has three artifacts a1, a2 and a3(blank indicating

 no operation) .. 40

Figure 4.4 The TS workflow in Figure 4.1 is deleted a operation at P3 50

vi

List of Algorithms

Algorithm 3.1 Mark ... 12

Algorithm 3.2 ComputeLevel .. 15

Algorithm 3.3 Remove-Loop ... 17

Algorithm 3.4 ComputeEAI ... 21

Algorithm 4.1 BatchedAnomalyDetection .. 25

Algorithm 4.2 ComputeImmediateSuccessor .. 35

Algorithm 4.3 ComputeImmediatePredecessor ... 37

Algorithm 4.4 ComputeNonEmpty .. 38

Algorithm 4.5 ComputeProcessBranch .. 40

Algorithm 4.6 ComputeConcurrentProcess ... 41

Algorithm 4.7 ComputeAnomaliesPreSuc ... 46

Algorithm 4.8 ComputeBranchInsertionAnomalies .. 47

Algorithm 4.9 ComputeBranchDeletionAnomalies ... 49

1

Chapter 1 Introduction

A workflow is composed of a group of workflow(s) and process(es), where a

process is a simple program unit (task) only and a workflow can be decomposed

recursively. In a structured workflow diagram, each node represents either a

(structured) workflow or a program unit, and each directed arc between two nodes

indicates that its tail node is executed before its head node [1]. When a node has more

than one output arcs, these target nodes perform either concurrently or exclusively.

There are a lot of research works on workflow, typically problems including

effectiveness, efficiency, security, reusability, …, etc. For example, Adam developed a

method to assure the security of a workflow by checking the consistency dependency

among the component tasks [2]. Van der Aalst presented a method to check the

deadlock(s) and livelock(s) inside a workflow based on Petri-Net [3] [4].

Kiepuszewski, et al claimed that most of well-behaved workflow can be transformed

into a structured workflow, although the latter is less expressive explicitly [5]. Sadiq et

al. present seven basic data validation problems, redundant data, lost data, missing data,

mismatched data, inconsistent data, misdirected data, and insufficient data in structured

workflow model 錯誤錯誤錯誤錯誤! 找不到參照來源找不到參照來源找不到參照來源找不到參照來源。。。。].

A well-structured workflow is a structured workflow in which each para/xor

beginning node has a corresponding (para/xor) ending node and vice versa. Also, the

node between both (beginning/ending) nodes can have no arc to the node not between

them. A well-structured workflow may have an error due to the incorrect handling of

an artifact(s). There are several detection methods and tools for pair of abnormal

artifact operations inside a well-structured workflow. Hsu, et al defined artifact

anomalies and presented several ways to detect these anomalies [8][9]. Wang, et al

2

[10] presented a model describing the data behavior in a workflow and improved the

method in [9], including speeding up the analysis. Hsu, et al [11] described the details

of artifact anomalies in workflow. A workflow, in which each process is given an

execution time interval, is named as a TS workflow. However, there are few

researches of artifact anomalies in a TS workflow.

A time interval defined in a workflow can be given to represent the minimum

and maximum potential execution time. After given these values, a pair of earlier start

time and latest ending time associated with a process have been studied to calculate

the access conflict of artifacts for acyclic structured workflow. In a workflow contains

loops, each loop can be similarly given the minimum and maximum potential

execution turns. Based on the techniques of loop deletion in [8][9], a TS acyclic

workflow can be derived for a corresponding workflow. Thus, the anomaly detection

technique for a timed workflow can be extended to a TS workflow and to help detect

the artifact anomalies in a general timed workflow.

On the other hand, CASE tools are getting popular. Thus, an editor for workflow

has been developed in many CASE environments, especially for service-based

software. In such an editor, an incremental analysis tool is needed to help user edit

his/her workflow. In the tool, each analysis is called when an edit activity completes.

For incremental analysis on a TS workflow, we maintain a corresponding acyclic TS

workflow (called CTS workflow) to help the analysis. We developed a series of

algorithms to detect abnormal behavior due to the activity inside immediate

predecessors/successors of the artifact whose activity being edited in a CTS workflow.

Then, we analyze and categorize the edit activity to derive the corresponding

modifications in the CTS workflow once an edit in a TS workflow completes. For

each set of modifications, one or more algorithms are organized to do the related

3

anomaly detection.

The analysis works well for each branch, since the execution order of processes

in a branch are clearly. It also works when a loop is deleted because the model [12]

adopted has been proven work too. For parallel process due to AND structure, the

analysis provided with CTS workflow provide a more precise detection, because the

temporal factors help screen out some concurrencies which appear in a conventional

workflow, but never occur due to their execution time intervals.

However, our works are not good enough. For example, the edit activities are

limited, and not flexible enough for user. The time complexity of a general anomaly

detection is exponential. The effectiveness/efficiency improvement of our analysis has

not yet shown optimal, and might be improved further.

 In the rest of the thesis, Chapter 2 describes the existing techniques related to

control/data structure and temporal relationships inside a workflow. Chapter 3

presents the methods to construct the corresponding TS workflow when loops are

deleted. Chapter 4 first presents a batched anomaly detection for artifacts in a TS

workflow. It then concerns the editing behavior for the modification associated with a

general TS workflow editor, and presents the method to detect artifact anomaly(ies)

incrementally. Finally, Chapter 5 gives conclusions and some future work.

4

Chapter 2 Workflow Definition

2.1 Definition of a structured workflow

 A workflow is composed of processes and flows [12], where processes are

connected by flows. Each process is in charge of start, end, control and activity

processes, and each flow entering/leaving a process work to the in-flow/out-flow of

the process.

 An start (ST)/end (END) process represents the starting/ending point of the

workflow. An activity (ACT) process represents a piece of work to be executed in a

workflow. There are four types of control processes: AND-split (AS), AND-join (AJ),

XOR-split (XS) and XOR-join (XJ) processes. An AND-split process splits two or

more output branches to run concurrently. An AND-join process is activated when all

its input branches enters. An XOR-split process selects one of its output branches to

run, while an XOR-join process is activated when one of its input branches arrives.

Figure 2.1 shows the graph notation in workflow based on [12].

Figure 2.1 The graph notation in a workflow

5

Figure 2.2 The blocks in a workflow

In a structured workflow, each AND/XOR split process has a corresponding

AND / XOR join process to form a block [12]. All the processes between the start and

end process in a structured workflow are organized with the blocks shown in Figure

2.2. In figure 2.2(a) indicates there is only an activity process. Figure 2.2(b) indicates

a sequence of blocks W1, W2,..., Wn. Figure 2.2(c) indicates a decision to select one of

the blocks W1, W2, …, Wn to be executed. Figure 2.2(d) indicates a parallel structure

that all the blocks W1, W2, …, Wn are executed simultaneously. Figure 2.2(e) indicates

a loop structure where the entrance is an XOR joint process and output is an XOR

split process, where the inner branch is the branch to execute the loop continually and

6

outer branch is the branch to execute after the loop stops.

 Besides, a process is reachable from the other one if there is a path from the

latter to it. Two processes are parallel if they reside in different branches of a parallel

structure, and are exclusive to each other if they reside in different branches of a

decision structure.

2.2 A temporal structured workflow

As in [12], a timed and structured workflow is called a temporal structured

workflow (TS workflow). For each process p in a temporal workflow, d(p) and D(p)

are added to p where d(p) and D(p) represent the minimum and maximum working

duration of process p. To simplify discussion, we assume that 0 < d(p) ≤D(p) if p is an

activity process, d(p) = D(p) = 0 otherwise.

Figure 2.3 The method of computing EAI

7

The Estimated Active Interval (EAI) of a process is a time interval indicating

when the process can be initialized and when it has to be terminated. For each process

p in a TS workflow, EAI(p) = [EST(p), LET(p)] is a time interval where EST(p)

indicates the earliest time p can be initialized and LET(p) indicates the latest time p

must be terminated. Figure 2.3 shows how to calculate EAI of a process.

On the other hand, the parallel processes in a TS workflow would not be possibly

executed at the same time if their working durations do not overlap. Two processes p

and q in a TS workflow are concurrent if p and q are parallel, and EAI(p) and EAI(q)

are overlapped, p and q are sequential if p is reachable to q or q is reachable to p. Let

processes p, q are both selected to execute during run-time, and q is reachable from p,

q cannot be executed before p. On the other hand, if p and q are parallel, and EAI(p)

is before EAI(q), p is also executed before q. For both circumstances above, p is

before q, and there is no operation working on the same artifact at the estimated time

interval before p’s EAI and after q’s EAI, p is said to be a immediate successor of q, q

is a immediate predecessor of p.

2.3 Artifact operations and anomalies

As in [12], an activity process in a TS workflow may operate an artifact with the

following way(s): define (Def), use (Use) and kill (Kill). Def operation is to assign a

value to the artifact, Use operation is to reference the artifact, and Kill operation is to

delete value of the artifact. A process may also do nothing (Nop) on an artifact.

As in [12], an artifact in a TS workflow is initially stated undefined (UD), and

turns to defined&no-use (DN) after it is defined. When a DN artifact is used, it turns

to defined&reference (DR). Figure 2.4 shows the state changes of an artifact due to

the artifact operations.

8

Figure 2.4 Artifact states transition diagram

On the other hand, when more than one process operates on the same artifact

concurrently, these operations may interleave with each other for accessing the artifact

and anomalies might be generated. These operations are called Interleaving

Operations, and require additional consideration during anomalies analysis.

Interleaving operations can be clarified as following:

1. Interleaving Definition(s)&Kill(s), abbreviated as IDK, definition(s) and

kill(s).

2. Interleaving Definitions, abbreviated as IDS, multiple definitions, but no

kill.

3. Interleaving Kill(s), abbreviated as IKS, multiple kills, but no definition.

4. Interleaving Definition&Usage(s), abbreviated as IDU, one definition, no

kill, and at least one usage.

9

5. Interleaving Usage(s)&Kill, abbreviated as IUK, one kill, no definition, and

at least one usage.

6. Interleaving Usages, abbreviated as IUS, multiple usages only.

 Artifact anomalies can be generated due to structural and temporal relationships

between processes. In [12], there are four types of anomalies: Useless Definition,

Undefined Usage, Null Kill and Ambiguous Usage. Useless Definition occurs when

killing or defining a DN artifact makes the previous definition useless because the

definition is destroyed (or redefined) without any usage. Undefined Usage occurs

when using an UD artifact is an error leading to faulty execution. It is necessary to be

handled by the designers. Null Kill occurs when a null kill represents a process trying

to remove an inexistent definition. For instance, kill a UD artifact. Ambiguous Usage

occurs when an ambiguous usage means that an activity process uses an artifact which

is ambiguous in definitions or in states. For instance, the direct usage of an AB artifact

is an ambiguous usage.

2.4 Loop reduction

For the loop structure, there are several approach [8][9][10]. These approaches

all assume that there is at least zero time of execution. However, they do not consider

the case which has at least k turns, k > 0. In Figure 2.5, X and Y represent the blocks

in a TS workflow and the numbers of potential minimal and maximal iterations are m

and n, where both numbers are larger than zero. The loop graph can be transformed as

the lower graph, where the left sequence structure represents that a sequence of m

blocks, and the right decision structure represents a loop structure at most (n - m)

turns as in [12]. The transforming process is named as transformation of cyclic

workflow to acyclic workflow (TCA).

10

Figure 2.5 The loop is transformed into an acyclic structure

11

Chapter 3 Temporal Computation for TS Workflow

The anomaly detection techniques presented in previous approaches have some

defects because the time interval consideration is not enough. For instance, there is no

temporal issue consideration as in figure 3.1, processes P3 and P4 are both concurrent

to P2 by default. When the timing factor is introduced, the anomaly detection between

P2 and P4 is not necessary once the latest ending time of P2 is less than the earliest

starting time of P4 according to EAI, where the EAI of each process is paired by [] in

figure 3.1. In our approach, the detection is started after each loop in a TS workflow is

deleted with a transformed technique as in Figure 2.5.

Figure 3.1 A sample TS workflow, where each process is associated with EAI

3.1 Level Computation for Processes

To identify the split process and corresponding joint process more clearly in a TS

workflow, we associate each process with the attribute level in addition. For a parallel

or exclusive structure, its split/joint process and the activity processes between them

are associated with a common level value. When an exclusive/parallel structure is

nested in another exclusive/parallel, the level of processes between the former is the

12

level of processes between the latter plus one. For example, P1’s level is 0 in figure

3.2, the level of as1, aj1 and P4 are 1, and the level of as2, aj2, P2, P3 are 2.

Figure 3.2 A sample workflow, where each process is associated with level value

Algorithm 3.1 indicates an algorithm to compute the level value of each process

in a workflow recursively.

Algorithm 3.1 Mark

Input: a TS workflow w, a process x in w

Output: each process’s level has been computed

Begin

01. if (x is start process) x.level = 0;

02. if (x is end process) {

03. x.level = 0;

04. return;

05. }

06. for each process y in w, y is successor of x{

07. if (x is a joint process) y.level = x.level -1;

08. else y.level = x.level;

09. If (y is a split process) y.level = y.level + 1;

10. Mark(w, y);

11. }

End

13

In each turn, the algorithm is instantiated with an input process x. In the first turn,

the algorithm starts from the starting process. When x is an end process, there is no

further recursion of Mark. For the rest processes, the recursion is done to each of its

succeeding process(es). In lines 6-7, for each successor of x, named by y, the level of

y is assigned as (x.level – 1) if x is a joint process, x.level otherwise. In lines 10-11,

y.level is defined as (y.level + 1) if x is split process.

For the workflow in Figure 3.2, obviously, s.level is assigned as 0 in line 1.

P1.level is assigned as 0, and Mark(w, P1) is called in the first turn. In Mark(w, P1),

as1.level is assigned as 1, and Mark(w, as1) is called. In Mark(w, as1), i.e., 2
nd

 turn,

as2.level is assigned as 2, and then Mark(w, as2) is called. After Mark(w, as2)

completes, P4.level is associated as 1 and Mark(w, P4) is called. In Mark(w, as2),

P2.level is assigned as 2, and Mark(w, P2) is called. After the level of aj2, aj1 and end

process are computed, the algorithm goes back to Mark(w, as2) to compute P3.level,

and Mark(w, aj2) is called again. Finally, the algorithm calls Mark(w, P4), and then

Mark(w, aj1) is called again.

Although algorithm 3.1 can compute the level of each process, however some

recursive calls may be useless and redundant at line 10. For example, applying

algorithm 3.1 on the workflow w in Figure 3.2, the calls, Mark(w, P2) and Mark(w, P3)

both compute aj2.level but derives the same value. To eliminate the defect in

algorithm 3.1, we introduce the branch stack (bs) into each process. The branch stack

(bs) of a process p is expressed with p.bs. The branch stack of a process p is defined

as followings: (1) when p is an activity process, p’s bs is equal to the bs of its

predecessor. (2) when p is a split process, p’s bs is equal to the bs of p’s predecessor

pushed with the number of p’s split branches. (3) when p is a joint process, p’s bs is

equal to the bs of p’s predecessor popped out one number. Figure 3.3 shows how to

calculate the bs of each process. Figure 3.4 shows the branch stack with each process

14

from the workflow in Figure 3.2. For example, the branch stack associated with s and

P1 are empty. The branch stack associated with as1 and as2 are <2> and <2, 2>

respectively. The branch stack associated with P2, P3 and P4 are <2>, <2> and <2, 2>

respectively. The branch stack associated with aj1 and aj2 are <> and <2> respectively.

Figure 3.3 The methods of computing branch stack for each type of process

Figure 3.4 The branch stacks attached on each process in workflow in Figure 3.2

 Thus, we improve algorithm 3.1 by adding the branch stack to a process.

Algorithm 3.2 shows how to compute the level of each process with branch stack.

15

Algorithm 3.2 ComputeLevel

Input: a TS workflow w, a process x in w

Output: each process’s level has been computed

01. Let each process’ bs and level be empty and zero respectively;

02. Let x be the start process in w;

03. Let q be an empty queue of processes;

04. enqueue(q) with x;

05. While(q is not empty){

06. y = dequeue(q);

07. if (y is not the end process){

08. For each successor z of y in w{

09. if (y is a joint process) z.level = y.level -1;

10. else z.level = y.level;

11. Switch(z){

12. Case 1 “split process”:

13. z.bs = the stack copied from y.bs

14. push the number of split brnaches of z on z.bs;

15. z.level = z.level + 1;

16. enqueue(q) with z;

17. Case 2 “joint process”:

18. if(z.bs is empty) z.bs = y.bs;

19. z.bs.top --;

20. if(z.bs.top == 0) {

21. pop(z.bs);

22. enqueue(q) with z;

23. }

24. Case 3 “other process”:

25. z.bs = y.bs;

26. enqueue(q) with z;

27. }

28. }

29. }

30. }

End

16

 Algorithm 3.2 stops when q is empty. In the while loop (lines 6-30), the

successors of y is enqueued into queue q at line 16, 22, 26. The branch stack in

Algorithm 3.2 is used to guarantee when starting to compute the data of a joint

process, the data of its predecessors are derived. In lines 13-16, if z is a split process,

z.bs is a stack copied from y.bs and then pushed the number of split branches of z. In

lines 17-23, a joint process z in each turn is processed, z.bs.top is decremented by 1 at

line 19. In the first turn, z.bs is initialized by y.bs at line 18. In the last turn z is

processed, i.e., z.bs.top = 0, z.bs is popped and z is enquened into q in lines 20-23. The

enqueue/dequeue operations on q make sure that (1) all the incoming branches of a

joint process completes since its bs is zero then. (2) a process is enqueued once all its

predecessors are passed. (3) the bs of a joint process in generated with the (number of

its input branches – 1), since the first branch is passed. Thus, the guarantee succeeds.

 For example, when applying algorithm 3.2 on the workflow in Figure 3.4, the

algorithm enqueue start process into q at line 4. Considering the computation of while

loop, in the first turn, P1.level is assigned as 1, q = <P1> after the first turn. In the fifth

turn, P4 is dequeued from q, then aj1.bs = <2>, and aj1.bs is assigned as <1>, q = <P2,

P3> after fifth turn. In the eighth turn, aj2 is dequeued from q, then aj1.bs = <0>, aj1 is

enqueued into q. In the next turn, aj1 is dequeued from q, then the end process' level is

computed. Finally, while loop stops because end process has no successor.

3.2 Removing Loop(s) in a Workflow

In section 2.4, we present a method to transform a simple cyclic workflow into

an acyclic structure one by booting the method shown in Figure 2.5. Thus, the acyclic

structure in the lower-level graph, as in Figure 2.5, can be applied to represent loop

structure executing at least m times and at most n times.

17

To identify whether a pair of split/joint processes is a loop structure in a

structured workflow, we introduce the attribute loop to both split and joint processes

of a loop structure to indicate whether they represent a common loop. When the loop

attribute of both XOR processes is true, the XOR structure represents a loop structure,

not, otherwise. To travel each loop structure in a structured workflow, we introduce

two loop stacks in Algorithm 3.3. When the transformation of a loop or its descendent

loop is being handled, the loop stack of split process (lss) represents a stack of XOR

split processes of a loop structure, the loop stack of joint process (lsj) represents a

stack of XOR joint processes of a loop structure. Algorithm 3.3 applying the structure

in Algorithm 3.2, shows how to transform a structured workflow into an acyclic

workflow based on TCA in Figure 2.5.

Algorithm 3.3 Remove-Loop

Input: a TS workflow w

Output: an acyclic TS workflow w’ transformed from w

Begin

01. Let each process’ bs be empty;

02. Let x be the start process in w;

03. Let q be a queue of processes and empty;

04. enqueue(q) with x;

05. Let lss and lsj be empty initially;

06. While(q is not empty){

07. y = dequeue(q);

08. For each successor z of y in w{

09. if (y is an XOR split process with true loop and z is on the outer

10. branch)

11. else{

12. Switch(z){

13. Case 1 “ AND and XOR split process with loop is false”:

14. z.bs = the stack copied from y.bs, then pushed the

18

15. number of split branches of z;

16. enqueue(q) with z;

17. Case 2 “AND and XOR joint process with loop is false”:

18. if (z.bs is empty) z.bs = y.bs;

19. else z.bs.top --;

20. if(z.bs.top == 0) {

21. pop(z.bs);

22. enqueue(q) with z;

23. }

24. Case 3 “XOR split process with loop is true”:

25. push(lss) with z;

26. enqueue(q) with z;

27. Case 4 “XOR joint process with loop is true”:

28. if(lsj.top == z){

29. Pop(lsj);

30. n = pop(lss);

31. Transform cyclic structure between n and z into an

32. acyclic structure by TCA;

33. Link m to n’s successor on outer branch;

34. revise m.bs;

35. enqueue(q) with m;

36. }

37. else{

38. push(lsj) with z;

39. enqueue(q) with z;

40. }

41. Case 5 “other process”:

42. z.bs = y.bs;

43. enqueue(q) with z;

44. }

45. }

46. }

47. }

19

End

 Algorithm 3.3 stops when q is empty at line 6. Cases 1, 2 and 5 in Algorithm 3.3

are similar to Algorithm 3.2. Case 3 and 4 in Algorithm 3.3 works for a pair of

split/joint processes forming a loop structure. To prevent the successor on the outer

branch of a loop from begging computed before loop is transformed, line 9 checks

and detects such a case in switch. To simplify our explanation, let xs and xj represent

input a pair of split/joint processes. In Case 4, xj is pushed into lsj and z is enqueued

into q in lines 38-39 if lsj.top != xj. lsj.top == xj, indicates that xj is now handled at

the second time and all the processes between xj and xs are traveled already, thus a

loop structure between xs and xj is transformed by TCA in lines 31-32. Lines 33-35

enqueues the joint process of the transformed acyclic structure into q, and revise the

bs of the joint process as to its successor. Case 3 pushes xs into lss and enqueues z

into q in lines 25-26. Moreover, if there is a loop contained, son loop do TCA later

than the other loop because of the operation of lss and lsj. The split/joint processes of

a loop in lss/lsj are pushed earlier than those of the other loop. Thus, TCA is applied

on the inner loop earlier (due to pop order).

 For instance, the loop starting at xs1 and ending at xj1contains the loop starting

at xs2 and ending at xj2 in Figure 3.5. Algorithm 3.3 transforms the latter by TCA as

shown in Figure 3.6. Next, Algorithm 3.3 transforms the former in Figure 3.6 by TCA

as shown in Figure 3.7, where the block G in the lower graph shows the transformed

acyclic structure.

20

Figure 3.5 A sample workflow owns a loop (between xj1 and xs1) containing another

loop(between xj2 and xs2)

Figure 3.6 The acyclic structure after transforming the loop between xj2 and xs2 in

Figure 3.5

21

Figure 3.7 The acyclic structure after transforming the loop between xj1 and xs1 in

Figure 3.6

3.3 Temporal Computation inside a Workflow without Loops

In this section, we present the method to calculate EAI of each process according

to the model in Figure 2.5. Algorithm 3.4 shows how to compute EAI of each process

p modified from Algorithm 3.2, named by p.EAI.

Algorithm 3.4 ComputeEAI

Input: a acyclic workflow w

Output: each process’ EAI has been computed

Begin

01. Let each process’ bs and EAI be empty and [0, 0] respectively;

02. Let x be the start process in w;

03. Let q be a queue of processes and empty;

04. enqueue(q) with x;

05. While(q is not empty){

06. y = dequeue(q);

22

07. if (y is not end process){

08. For each successor z of y in w{

09. Switch(z){

10. Case 1 “split process”:

11. z.bs = the stack copied from y.bs, then pushed the

12. number of split branches of z;

13. EST(z) = EST(y) + d(y);

14. LET(z) = LET(y) + D(z);

15. enqueue(q) with z;

16. Case 2 “joint process”:

17. if(z.bs is empty) z.bs = y.bs;

18. else z.bs.top --;

19. if(z.bs.top == 0) {

20. pop(z.bs);

21. If(z is an AND joint process){

22. EST(z) = MAX{ EST(m) + d(m) | m is a

23. predecessor of z };

24. LET(z) = MAX{LET(m) | m is a

25. predecessor of z } + D(z);

26. }

27. else{

28. EST(z) = MIN{ EST(m) + d(m) | m is a

29. predecessor of z };

30. LET(z) = MAX{LET(m) | m is a

31. predecessor of z } + D(z);

32. }

33. enqueue(q) with z;

34. }

35. Case 3 “other process”:

36. z.bs = y.bs;

37. EST(z) = EST(y) + d(y);

38. LET(z) = LET(y) + D(z);

39. enqueue(q) with z;

23

40. }

41. }

42. }

43. }

End

Algorithm 3.4 stops when q is empty; its main body is similar to Algorithm 3.2.

In Algorithm 3.4, Case 1 and 3 compute the EAI of processes by TCA. Case 2 (joint

process) is clarified into two sub cases, AND and XOR joint processes, to compute z’s

EAI according to its predecessors in lines 21-32 when EAI of its all predecessors is

computed once z.bs.top = 0 at line 19.

After a working duration of a process p, (D(p), d(p)), is added to p in the

workflow in Figure 3.2, the workflow is shown in Figure 3.8. After a EAI of a process

p, (EST(p), LET(p)), is added to p in the workflow in Figure 3.8, the workflow is

shown in Figure 3.9.

When applying Algorithm 3.4 on the workflow in Figure 3.8, the algorithm

pushes the start process into q at line 5. The computations for the rest are done in

while loop (lines 5-43). After the first turn of the while loop, P1.EAI = [0, 2] and q =

<P1>. After the sixth turn of the while loop, aj2.bs.top = 1, q = <P3>. At the seventh

turn, aj2.bs.top = 0 is executed at line 18, then aj2.EAI is computed in lines 21-22:

EST(aj2) = MAX{EST(p2), EST(p3)} = MAX{1, 3} = 3, and LET(aj2) =

MAX{EST(p2), EST(p3)} + D(aj2)= MAX{3, 6} + 0 = 6, thus aj2.EAI = [3, 6]. After

the next turn, aj1.EAI = [4, 7] according to P4 and aj2. At the final trun, EAI of end

process is computed.

24

Figure 3.8 The workflow in Figure 3.2 which duration is attached to each process

Figure 3.9 The workflow in Figure 3.8 which EAI is attached to each process

25

Chapter 4 Anomaly Detection in a TS Workflow

In this chapter, we present several algorithms to detect anomalies based on our

model of workflow. Section 4.1 presents a batched approach of anomaly detection.

The modifications of a TS workflow can be classified into four categories to simplify

the discussion: (1) Insertion/deletion of a pattern (2) Insertion/deletion of an artifact

operation (3)Modification of (min, max) time for a process (4) Modification of (min,

max) turns for a loop。Section 4.2 presents the incremental analysis correspondingly.

4.1 Anomaly Detection in a Batch

 A static anomaly detection can be defined to find out the anomal(ies) in a TS

workflow. Previous work [12] presents an algorithm of a batched detection of artifact

anomaly in a workflow, but the algorithm is too rough to indicate the timing

correctness. For example, the loop-reduction analysis is incomplete. In the algorithm,

it does not count the minimum turns in a loop, while the specification of such a

number is done on a TS workflow. Algorithm 4.1 is applied to improve these

deficiencies.

In algorithm 4.1, we define and analyze a corresponding workflow (discussed in

Section 3.3) to the one constructed by designer. Such an analysis is called a batched

analysis. Since an XOR or AND structure might contain a branch of no operation, let

such a branch be called an XBB/ABB in an XOR/AND structure. To simplify the

discussion, an XBB is also introduced for the loop in the corresponding workflow.

Algorithm 4.1 BatchedAnomalyDetection

Input: a TS workflow w

Output: anomalies

26

Begin

01. Removing-Loop(w); //algorithm 3.3

02. ComputeEAI(w); //algorithm 3.1

03. ComputeLevel(w); //algorithm 3.2

04. Let x be the start process in w;

05. Let q be a queue of processes and empty;

06. enqueue(q) with x;

07. While (q is not empty){

08. y = dequeue(q);

09. For each successor z of y in w{

10. Switch(z){

11. Case 1: “split process”:{

12. z.bs = y.bs, and pushing the number of split branches of z

13. into y.bs;

14. enqueue(q) with z};

15. Case 2: “joint process”:{

16. if(z.bs is empty) z.bs = y.bs;

17. else z.bs.top --;

18. if(z.bs.top == 0) {

19. pop(z.bs);

20. enqueue(q) with z;

21. }};

22. Case 3: “other process”:{

23. z.bs = y.bs;

24. A = {a| a is an artifact in w, z has operation on a};

25. S = {(p,a, o) | p is a process in w, p is before z , a is operated

26. with o in p, where a � A, o � {Def, Kill, Use} }

27. where (p, a, o)’s are derived using traveling the

28. Mechanism as in Algorithm 3.2;

29. Do{

30. S’ = {pa | pa�S, pa.p is a immediate predecessor of z};

31. G = the set of elements derived in Section 4 in [7]

32. For each (g, a), where g�G and α �A) {

27

33. Switch(g, a){

34. Case 1:”the operations in g are IDS/IDK “:

35. Useless Definition occurs;

36. if (the operation on a in z is Use)

37. Ambiguous Usage occurs;

38. Case 2:” the operations in g are IKU/IKS “:

39. Null Kill occurs;

40. if (the operation on a in z is Use)

41. Undefined Usage occurs;

42. else if (the operation on a in z is Kill)

43. Null Kill occurs;

44. Case 3:” the operations in g are IDU “:

45. if (the operation on a in z is Def)

46. Useless Definition occurs;

47. Case 4:” the operations in g are Def “:

48. if (the operation on a in z is Def)

49. Useless Definition occurs;

50. if (the operation on a in z is Kill)

51. Useless Definition occurs;

52. Case 5:” the operations in g are Kill “:

53. if (the operation on a in z is Kill) Null Kill occurs;

54. }};

55. S’’ = S;

56. S = S \ {pa| pa � S’, pa.p is contained in an XOR

57. structure X, X has an XBB,

58. and X’s level == pa.p.level };

59. }while (S� S’’);

60. enqueue(q) with z}

61. }

62. }

63. }

End

28

In Algorithm 4.1, the loops in the workflow w are replaced with acyclic structure

by using Algorithm 3.3 at line 1. Algorithms 3.1 and 3.2 are applied to compute the

level and EAI of each process in lines 2-3. Algorithm 4.1 adopts a similar traveling

method as in Algorithm 3.3, so that we do not explain in details for the structure of

both “while” and “for” loops in lines 4-63. However, the computation at each turn of

the “for” loop is based on the type of process z. The cases for split and joint processes

are handled in lines 11-21 and not discussed in details since it is similar to the

Algorithm 3.3 containing the anomaly detection steps working on the process z being

handled.

For each process, neither split nor joint, the computations are done in lines 22-61.

At line 24, set A is calculated to contain the artifacts operated in the process z. For

each artifact, such as a, in A, we define a three tuple (p, a, o) named as pao to

simplify our discussion, where p is a process before z, and o is the activity (operation)

working on a at p, i.e., o is one of activities, Def, Kill and Use. The pao of each

artifact in A is calculated and all the pao’s derived are form as a set S in lines 25-28,

where the details of how to get the processes are skipped because we adopt a traveling

method in Algorithm 3.2 which has been shown correct.

The do-while loop detects the potential anomaly(ies) due to blank branches in

lines 29-59. At line 30, All pao’s in S whose p is a immediate predecessor of z are

collected as a set S’. At the end (lines 55-59) of each turn of the loop, if S is changed,

S’ contains at least one XOR element that has a blank branch and the next turn starts.

Otherwise, the loop terminates.

In each turn, line 31 is responsible for identifying concurrency for the processes

of pao in S’. G is a set of elements which are the set containing pao’s. After G is

constructed at line 31, G has the following properties:

29

1. For each element g in G, if pa1 and pa2 belong to g, pa1.p and pa2.p are

concurrent.

2. For any two elements g1 and g2 in G, g1�g2 and g1�g2

3. For any two elements pa1 and pa2 in S’,

a. If pa1.p and pa2.p are concurrent, G has an element containing both

pao1 and pao2.

b. If pa1.p and pa2.p belong to two distinct elements in G and pa1.p�pa2.p,

pa1.p and pa2.p are not concurrent.

However, the calculation of G is a NP problem: maximum clique problem, and

the lemma 2 in Section 4 in [7] is adopted at line 31.

 Lines 32-53 analyze each pair (g, a) where g�G and a �A. According to the

discussion in Chapter 2, all possible pairs for (g, a) can be classified into five cases,

including single operation and the corresponding operations are described

correspondingly as below:

1. The component elements in g are IDS/IDK for a, g itself contains Useless

Definition anomaly. Besides, if artifact a has Use operation in g, there is an

anomaly of ambiguous use. The handling operations are done in lines

35-37.

2. The operations in g are IKU/IKS. g itself contains an anomaly of Null Kill.

If there is a Use operation on a in z, it causes anomaly of Undefined Usage.

Otherwise, if there is a Kill operation on a in z, it causes anomaly of Null

Kill. The handling operations are done in lines 39-43.

3. The operations in g are IDU. If artifact a has Def operation in z, there is

anomaly of Useless Definition. The handling operations are done in lines

44-45.

30

4. The operations in g is Def. If artifact a has Def operation in z, it causes

anomaly of Useless Definition. Otherwise, if artifact a has Kill operation in

z, it causes anomaly of Null Kill. The handling operations are done in lines

47-51.

5. The operation in g is Kill. If artifact a has Kill operation in z, it causes

anomaly of Null Kill. The handling operation is done line 53.

Finally, the content of S is copied to S’’ at line 55. For each process of pao in S’,

if there exists an XOR structure X containing the process of pao, X is associated with

the same level of the process, and X has XBB, the pao’s in S’ whose process is

contained in X are removed from S in lines 56-58. Now, at line 59, that S equals to S’’

indicates there is no blank branch found in XOR structures in lines 55-58. Thus, the

do-while loop terminates when the content of S and S’’ are equal, continues otherwise.

After the loop, enqueuing z into q at line 60 is the last step of the handling a successor

z of process y.

In algorithm 4.1, lines 23-60 are responsible to find out all the artifact anomalies

associated with the operation in the concerned process. The loop defined at line 7

shall pass all processes. In other word, all the processes except split/joint process are

examined. Thus, all the anomalies in workflow are detected by algorithm 4.1.

For instance, a sample of TS workflow associated with operation working on an

artifact a in Figure 4.1, Algorithm 4.1 would detects Useless Definition at P3 because

both P2 and P3 have Def working on a.

31

Figure 4.1 A sample TS workflow associated with operation working on an artifact a

4.2 Incremental anomaly detection

 Each loop in a workflow is transformed into an acyclic structure based on the

definition of Section 2.4. Thus, each TS workflow diagram being edited has a

corresponding acyclic workflow diagram, named as CTS workflow. Section 4.2

presents a set of algorithms for incremental anomaly analysis of the CTS, which is

done once the operation edition on artifacts inside a single process or a structure

modification such as insertion/deletion completes in the original workflow.

4.2.1 Detection inside a TS workflow

 Our incremental analysis works based on divide and conquer mechanism; it

contains three steps, step by step:

1. analyzing the block containing edited process.

2. analyzing the rest of workflow.

3. Computing the anomalies according to the results of 1 and 2.

To simplify the analysis work and discussion, we define five attributes to be

32

associated with each process p in a workflow w, besides level, working duration, and

EAI which are described in Chapters 2 and 3. The definitions of these attributes are

defined below:

1. There are five process types: asp, ajp, xsp, xjp and ap; asp/ajp and xsp/xjp

indicate split/joint process of AND and XOR respectively, and ap indicates

activity process.

2. AOSetp = {(a, o) | a is an artifact in w, operation o works on a in p, and o �

{Def, Kill, Use}}.

3. ImmeSuc	
p

represents the set of process(es) of which each has an operation

on a, and there is an empty path on a from p to the process. Moreover we

define ImmeSuc	
p

(Def) = {q | q � ImmeSuc	
p

 , the operation of a in q is

Def}, ImmeSuc	
p

(Kill) = {q | q � ImmeSuc	
p

 , the operation of a in q is

Kill}, ImmeSuc	
p

(Use) = {q | q � ImmeSuc	
p

 , the operation of a in q is

Use}.

4. ImmePre	
p

 represents the set of process(es) of which each has an operation

on a, and there is an empty path on a from the process to p. we define the

following sets: ImmePre	
p

 (Def) = {q | q� ImmeSuc	
p

, the operation of a in

q is Def}, ImmePre	
p

(Kill) = {q | q� ImmeSuc	
p

 , the operation of a in q

is Kill}, and ImmePre	
p

(Use) = {q |q� ImmeSuc	
p

 , the operation of a in q

is Use}.

An incremental analysis in general is to analyze abnormal operation behavior

due to an operation in a workflow editor [12]. Because such an analysis has been

shown to be an NP problem when a workflow contains a loop(s), we define a new

incremental approach to simplify the work. In our work, when a TS workflow is

modified (addition/deletion/modification a process) by user, our approach has a

33

corresponding modification in its CTS workflow to reduce the analysis work and thus

waiting time for designer.

To simplify the discussion, the incremental analysis algorithms presented are

based on each of the following four types of edit activities:

1. Insertion/deletion of a workflow template indicates to insert/delete a

Loop/AND/XOR structure or an activity process.

2. Insertion/deletion of an operation on some artifact.

3. modification of (min, max) turns of a loop.

4. modification of (mix, max) time interval of a process.

Because each loop in a TS workflow has a corresponding complicated acyclic

structure in its CTS workflow, when an insertion/deletion/modification of a loop in a

TS workflow occurs, the target CTS workflow has to be modified first in order to

follow the reduction principle in Section 2.4 correspondingly. Insertion/deletion of an

operation on an artifact a is to add/delete an operation on a in an activity process p. To

simplify the analysis, it is assumed that an artifact has at most one operation in an

activity process. After an operation on a is inserted/delete in p, there is one

operation/no operation for a in p and corresponding process(es) in the CTS workflow.

The modification of (min, max) turns for a loop is to increase/decrease the

minimum/maximum turns of a loop. As mentioned before, a loop can be transformed

into an acyclic structure when a designer adds the loop into a TS workflow (Section

2.4). It has to modify the corresponding CTS workflow for a modification of (min,

max) turns of a loop. The modifications of a loop is done by increasing/deleting for

one of both of (min, max), and one increases and the other decreases. The

modification of a CTS workflow can be discussed according to the followings:

1. The resulting value of subtracting min from max is larger. This case occurs

34

due to:

a. max is of no change or incremented, but min is incremented lower, of

no change, or decremented.

b. max is decremented, but min is decremented larger.

2. The resulting value become smaller. This occurs due to:

a. max is of no change or incremented, but min is incremented larger.

b. max is decremented, but min is incremented, of no change, or

decremented lower.

Modification of (min, max) time for a process is to change minimum/maximum

working duration of an activity process. If a designer modifies the working duration

of an activity process in a loop, it has to adjust the timing of the corresponding acyclic

which contain this data in the CTS workflow.

It might update ImmeSuca
p
 and ImmePrea

p of a process p when an edit activity

to artifact a occur somewhere else. In our approach, the analysis is focused on a

workflow block, containing the process p being edited, and starts by computing

ImmeSuca
p

 and ImmePrea
p according to the level of the block. Algorithm 4.2

computes ImmeSuca
p
 and Algorithm 4.3 computes ImmePrea

p. Because we analyze a

workflow at a predefined level, obviously, some information need be modified due to

an edit activity. The information modification related to the blank branches between p

and p’ is done with Algorithm 4.4. which outputs a set of artifacts containing at least

one operation in each branch between two input processes p and p’.

 Both Algorithm 4.2 and Algorithm 4.3 work with input (w, a, p, p’), where w is

a workflow, a is an artifact, and p and p’ are processes. Algorithm 4.2 starts the

computation from p, decides whether to make a recursive based on p’, and terminates

with output ImmeSuca
p
. Input p’ in Algorithm 4.3 is a split process and the output is

35

ImmePrea
p.

Algorithm 4.2 ComputeImmediateSuccessor

Input: an acyclic TS workflow w, an artifact a, a process p, a joint process p’

Output: ImmeSuca
p

01. S = �;

02. if (p is a split process){

03. p’’ = the joint process corresponding to p;

04. if(p is an AND process){

05. IfContinue = true;

06. For each successor of p, x{

07. T = Algorithm 4.2(w, a, x, p’’);

08. S = S � T;

09. }

10. IfContinue = IfContinue && (T� �);

11. }

12. else if (p is an XOR process){

13. IfContinue = false;

14. For each successor of p, x{

15. T = Algorithm 4.2(w, a, x, p’’);

16. IfContinue = IfContinue || (T

 �) ;

17. S = S � T;

18. }

19. }

20. if (p’’� p’ && IfContinue is true) S = S � Algorithm 4.2(w, a, the

21. successor of p’’, p’);

22. }

23. else if (p is an activity process){

24. if (p has operations on a) S = S � { p};

25. else{

26. p’’ = the successor of p;

27. S = S � Algorithm 4.2(w, a, p’’, p’);

28. }

36

29. }

30. return S;

End

Algorithm 4.2 terminates and returns an empty set at line 30 when p is a joint

process. In the algorithm, the handlings of a process are divided into 3 categories:

split, joint and activity. The decisions are made at lines 2 and 23. In the very

beginning, a set S initialized as empty at line 1 and its value is used to be returned at

line 30. If p is a split process, the related computations are done in Lines 3-21 where

Line 3 assigns the corresponding joint of p to p’’, Lines 5-9 works for AND split,

Lines 13-17works for XOR split, and Lines 20-21 make a recursive call to get the

artifacts from current joint p” to p’ if p’’ is not p’.

For an AND split process, Line 5 makes a recursive call for each P’s successor.

IfContinue is made true in case no branch contains operation on a as in Line 8. Lines

13-17 are in charge of the work for XOR split, where the recursion works for each of

p’s branches, IfContinue is true if there is a branch containing no work on a, and S is

the union of these returned value. Lines 24-27 works if p is an activity process.

Finally, line 30 returns result. For instance, Algorithm 4.2 (w, a, as2, aj2) being called

in Figure 4.1 would output {P2, P3}.

In Algorithm 4.2, each process is touched at most once, thus the time complexity

is O(n), n is the number of the processes in the workflow.

 Algorithm 4.3 accepts (w, a, p, p’) input in the very beginning, where w is a

workflow, a is an artifact, p is an input process for starting the execution and p’ is the

split process used to decide the termination of the algorithm, and outputs ImmePrea
p.

The algorithm works inside a workflow block of some level, or whose split process is

p’. The joint process is assigned as p and algorithm 4.3 is called recursively based on

37

workflow w, input artifact a, p and p’.

Algorithm 4.3 ComputeImmediatePredecessor

Input: an acyclic TS workflow w, an artifact a, a process p, a split process p’

Output: ImmePrea
p

01. S = �;

02. if (p is a joint process){

03. if (p is an AND joint process){

04. IfContinue = true;

05. For each predecessor of p, x{

06. T = Algorithm 4.3(w, a, x, p’);

07. S = S � T;

08. }

09. IfContinue = IfContinue && (T� �);

10. }

11. else if (p is an XOR joint process){

12. IfContinue = false;

13. For each predecessor of p, x{

14. T = Algorithm 4.3(w, a, x, p’);

15. IfContinue = IfContinue || (T

 �);

16. S = S � T;

17. }

18. }

19. p’’ = the split process corresponding to p;

20. if (p’’�p’ && IfContinue is true) S = S � Algorithm 4.3(w, a,

21. predecessor of p’’, p’);

22. }

23. else if (p is an activity process){

24. if (a is operated in p) S = S � { p};

25. else{

26. p’’ = the predecessor of p;

27. S = S � Algorithm 4.3(w, a, p’’, p’);

28. }

38

29. }

30. return S;

End

 Algorithm 4.3 has a similar but reverse control structure, compared with

Algorithm 4.2. Both algorithms analyze the flow structure, however, Algorithm 4.3

replaces predecessor/successor with successor/predecessor in Algorithm 4.2. In other

words, Algorithm 4.3 uses backward analysis, and does not analyze split process but

returns empty set directly. Furthermore, the complexity of Algorithm 4.3 is O(n) too.

For example, Algorithm 4.3 (w, a, as2, aj2) being called in Figure 4.1 would output

{P2, P3}.

4.2.2 Computing concurrent and nonempty set

 Our incremental analysis works on a block of some level value. During the

analysis, constructing/deleting a blank branch of the block might modify the

anomalies due to predecessor/successor of current block. Algorithm 4.4 inputs a

workflow w, and two processes p and p’, and returns a set of artifacts, which have no

operations between p and p’. p’ in Algorithm 4.4 plays the same role in Algorithm 4.2.

Algorithm 4.4 ComputeNonEmpty

Input: an acyclic TS workflow w, a process p, a joint process p’

Output: The set of artifacts in w with no blank branches

Begin

01. if (p is a split process){

02. S = �;

03. if (p is an AND process){

04. For each the successor of p, x,

05. S = S � Algorithm 4.4(w, x, p’);

39

06. }

07. else if (p is an XOR process){

08. S = {a | a is an artifact in w};

09. For each the successor of p, x,

10. S = S � Algorithm 4.4(w, x, p’);

11. }

12. p’’ = the joint process corresponding to p;

13. if(p’’� p’) S = S � Algorithm 4.4(w, the successor of p’’, p’);

14. }

15. else if(p is an activity process){

16. p’’ = the successor of p;

17. S = {a | p has operation on a} � Algorithm 4.4(w, p’’, p’);

18. }

19. else S = �;

20. return S;

End

In the beginning, Algorithm 4.4 is given a workflow between (p, p’) where p/p’

is the split/joint process. If p is a split process, the algorithm decides whether to make

a recursion according to the value of p’’. The algorithm terminates and returns the

retsults calculated at line 20. Lines 2-18 adopts an if structure and dispatch the works

when p is a split process. Lines 4-5 indicate the work for an AND process, the work

unites the value of each subbranch of p by applying the Algorithm 4.4 and assigns the

united results to S. Lines 8-10 do the work for an XOR process. Lines 9-10 intersect

the value of each subbranch of p by applying the Algorithm 4.4 and assigns the united

results to S. Let p’’ be a joint process corresponding to p at line 12. If p’’ is not p’, the

self recursion is applied on the successor of p’’ at line 13. At line 15, if p is an activity

process, line 16-17 unites S and artifacts with operations on p, and the self recursion

is applied on p. Line 17 is correct even if p’’ is a joint process. Line 19 assigns empty

40

set to S if p is a joint process. Finally, line 20 returns the result.

In Algorithm 4.4, input n processes and each process is touched once, thus the

time complexity is O(n) for input n processes.

For example, Figure 4.2 shows a workflow which has three artifact a1, a2 and

a3(blank indicating no operation). Algorithm 4.4(w, as1, aj1) being called in Figure

4.2 would output { a1, a3}.

Figure 4.2 A sample workflow which has three artifacts a1, a2 and a3(blank indicating

no operation)

Algorithm 4.5 is to find all processes in a branch. Algorithm 4.5 inputs a

workflow w, two processes p and p’; it returns the set of activity processes between p

and p’.

Algorithm 4.5 ComputeProcessBranch

Input: an acyclic TS workflow w, a process p, a joint process p’

Output: the set of activity processes between p and p’

Begin

01. if (p is a joint process) S = �;

41

02. else{

03. if (p is a split process){

04. S = �;

05. For each the successor of p, x, S = S � Algorithm 4.5(w, x, p’);

06. p’’ = the successor of the joint process corresponding to p;

07. }

08. else if(p is an activity process) {

09. S = {p};

10. p’’ = the successor of p;

11. }

12. if(p’’� p’) S = S � Algorithm 4.5(w, p’’, p’);

13. }

14. return S;

End

Algorithm 4.5 adopts the same structure as in Algorithm 4.4. If p is a joint

process, S is assigned as empty set at line 1. If p is a split process, the results of each

successor of p are putted into S at line 5. If p is an activity process, S is assigned as {p}

at line 9. Algorithm 4.5 recurs itself when the successor p’’ is not p’ at line 12, p’’ is

assigned at line 6 and line 10. Line 14 returns the results.

In Algorithm 4.5, input n processes and each process is touched once, thus the

time complexity is O(n) for input n processes.

Algorithm 4.6 inputs a workflow w and a process p, it returns the set of processes

which are concurrent to p.

Algorithm 4.6 ComputeConcurrentProcess

Input: an acyclic TS workflow w, a process p

Output: The set of processes which are concurrent to p in w

Begin

01. S = �;

02. p’ = the predecessor of p;

42

03. while(p’.level > 0){

04. if(p’ is an AND split process) {

05. foreach successor of p’, x, if (x is not reachable to p){

06. S = S �Algorithm 4.5(w, x, the joint process corresponding to p’);

07. }

08. }

09. p’ = the predecessor of p’;

10. }

11. S ={x| x �S, EST(x) < LET(p) or EST(p) < LET(x)}

12. return S;

End

Algorithm 4.6 starts from current process and recurs itself till the level of p’s

predecessor equals to zero. In Algorithm 4.6, s is initialized as an empty set (line 1). If

p is an AND split process, Algorithm 4.5 is called for the each successor of p, but the

predecessor of p, where another parameter is p’s corresponding joint process. The

works are done as a while loop which stops when p’.level equals to zero. After getting

all the process which might be parallel with p, line 11 filtering out those which cannot

concurrent with p according to temporal information.

S is initially empty set at line 1. p’ is assigned as predecessor of p. Line 3 -10 is a

while loop, if p’.level is greater than zero, it executes line 4-9. At line 4, if p’ is an

AND split process, it inputs successors of p’ to Algorithm 4.5 at line 6 to get the

processes in each branch, and the results is putted into S, but the branch containing p

is not executed because we only need the processes which are parallel with p at line 5.

At line 9, p’ is assigned as its predecessor. If p’.level equals to zero, it indicates no

control block need to be inspected. Line 11 collects the processes which their EAI are

overlaid with the EAI of p. Line 12 returns the set of processes which are concurrent

to p. For instance, Algorithm 4.6(w, P4) being called in Figure 4.1 would output {P2,

43

P3}.

Algorithm 4.5 and Algorithm 4.6 can be improved. For instance, since the

checking at line 11, Algorithm 4.6 is done for each process in the parallel branch of p.

The checking can be done at each parallel process found to check whether its

following process is parallel with p temporally. If the answer is not, it’s not necessary

to continue the work for its successor. Thus, it saves the execution time.

Our incremental analysis of a TS workflow is classified into two steps:

1. For the edited process, we observe its immediate predecessor and

immediate successor,

a. The loops in this workflow are removed and replaced by XOR

structures in our discussion in Section 2.4.

b. It compares ImmeSuc and ImmePre of edited process to check what

anomalies occur.

2. For the edited process, we find out the processes which are concurrent to the

 process by Algorithm 4.6. For each artifact a,

a. the operation in the edited process on a is Def, if there exists Def/Kill

in these processes, Useless Definition occurs.

b. the operation in the edited process on a is Kill, if there exists

Def/Kill/Use in these processes, Useless Definition/Null

Kill/Undefined Usage occur.

c. the operation in the edited process on a is Use, if there exists Kill in

these processes to cause Undefined Usage.

4.2.3 Anomaly detection with the algorithms in above two subsections

Consider the edit activities in a well-formed workflow editing environment, there

are at least 5 types of editing activities, besides moving the cursor,

44

1. Add/delete a flow structure of AND/XOR/LOOP,

2. Transfer a flow structure intro another structure, for example, transfer an AND

structure into an XOR structure,

3. Add/delete a branch

4. Modify the content of an activity process, and

5. Move one process (a simple activity process or a process which can be

decomposed into a workflow diagram) from one location to another.

An incremental analysis is done right after each edit activity. To simplify the

analysis work, we can redefine these works type by type as follows:

1. As type one, “add” can be treated as adding an empty structure of

AND/XOR/LOOP, but “delete” can be treated as deleting a workflow structure

directly, i.e., deleting a process which can be decomposed into a workflow of

one of AND/XOR/LOOP structure.

2. A transfer can be done 1) between AND and XOR, 2) between LOOP and

XOR.

3. An activity process can be deemed as containing a sequence of activities,

where each artifact is given one of the following actions: Define, Reference,

Kill

4. When completing a move activity, it can be treated as 2 steps: a) delete a

process at one location and b) add this process into another location., and

inserting/deleting a branch.

Because a process of some structure can be treated as a complex process to be

decomposed recursively, types 1 and 4 and merged together. Inserting/Deleting a

branch can be treated as the activities: a sequence of process insertions/deletions and

45

then handling an empty branch. Therefore, an incremental analysis can be done right

after

1. Adding/Deleting a complicated process,

2. Adding/Deleting an empty branch,

3. Adding/Deleting an simple activity process, and

4. Transferring an AND/LOOP to an XOR Structure and vice versa.

In our model, each TS workflow being edited can be transformed into a CTS

workflow used for analysis. In the thesis, we are studying the anomaly analysis after

each of the following activities on a CTS workflow to simply the analysis work

further:

1. Adding an empty AND/XOR/activity process,

2. Deleting an activity AND/XOR/activity process,

3. Modifying the activity(ies) in an activity process and

4. Inserting/Deleting an empty branch without changing the structure.

 Before the discussion of calculations with above algorithms, during incremental

analysis, each node in a CTW workflow is defined to be associated with the

information described in Section 4.2.1 to maintain the information to reduce the

computation. In other word, each node contains level, working duration, EAI, process

type, ImmeSuca
p
, ImmePrea

p and AOSetp.

 For case 1, there is no analysis only, because no activity change occurs. After an

edit for a simple process at case 2 and 3, Algorithms 4.2 and 4.3 can be applied to find

the immediate previous/next activities for the artifact whose activities are inserted,

deleted or modified (after being deleted and then inserted). Therefore, the operation

anomalies for the artifact can be detected/corrected. For case 4, i.e., after an

46

insertion/deletion of a branch occurs, Algorithm 4.4 is applied to find all the artifacts

which have an activity before the branch. An empty branch added/deleted in a AND

structure do not affect the information and thus anomalies. Thus, there is no analysis.

However, for the insertion/deletion of an empty branch in an XOR structure, it is

introduced/deleted a valid path which contains this branch. An anomaly detection can

be done for each artifact which has an immediate predecessor of the split node of this

branch. The corresponding computation are described in Algorithms 4.8 and 4.9, by

applying Algorithms 4.2, 4.3, 4.4, and 4.7.

 Algorithm 4.7 detects anomalies between two set of processes. Algorithm 4.7

accepts (a, Pre, Suc), where a is an artifact, and for each process p in Pre, each

process q in Suc, there exist a path from p to q. Finally Algorithm 4.7 output

anomalies.

Algorithm 4.7 ComputeAnomaliesPreSuc

Input: an artifact a, a set of processes Pre, a set of processes Suc.

Output: anomalies between Pre and Suc.

Begin

01. if (Pre ==� || Suc ==�) No anomalies;

02. else{

03. switch((x, y) where x � Pre, y � Suc){

04. case 1 “a has Def in x”:

05. if (a has Def/Kill in y) Useless Definition occurs;

06. case 2 “a has Kill in x”:

07. if (a has Kill in y) Null Kill occurs;

08. else if (a has Use in y) Undefined Usage occurs;

09. }

10. }

End

 In Algorithm 4.7, at line 1, if one of Pre or Suc is empty, it indicates that no

47

target processes can be compared, and output no anomalies. Lines 3-8 is a switch

structure, we make pair (x, y), where x � Pre, y � Suc at line 3. Algorithm 4.7

detects anomalies according to cases(lines 4-8). For case 1 at line 4, a has Def in x, if

a has Def/Kill in y, Useless Definition anomaly occurs. For case 2 at line 6, a has Kill

in x, if a has Kill in y, Null Kill occurs; if a has Use in y, Undefined Usage occurs.

Here we do not discuss the case, a has Use in x, because it do not generate artifact

anomalies when Use is executed before Def/Kill is executed.

 Algorithm 4.8 computes the anomalies when inserting a blank branch into a

XOR/AND block. Algorithm 4.8 accepts (w, a, p, p’), where w is a workflow, a is an

artifact, p/ p’ is a split process/joint process of a control block which will be inserted a

blank branch.

Algorithm 4.8 ComputeBranchInsertionAnomalies

Input: a TS workflow w, split node p, joint node p’

Output: anomalies

Begin

01. NonEmptyArtifact = Algorithm4.4(w, p, p’);

02. If p is an XOR split process{

03. For each artifact a in NonEmptyArtifact {

04. ImmeSuca
p
 = Algoirthm 4.2(w, a, p, p’) � ImmeSuca

p’
;

05. ImmePrea
p’ = Algoirthm 4.3(w, a, p, p’) � ImmePrea

p;

06. Algorithm4.7 (a, ImmePrea
p, ImmeSuca

p
);

07. Algorithm4.7(a, ImmePrea
p’, ImmeSuca

p’
);

08. }

09. }

10. Inserting empty branch into the block between p and p’;

End

 In Algorithm 4.8, line 1 computes the set of artifacts which have no blank branch

between p and p’. After inserting a blank branch, these artifact might generate new

48

anomalies, these artifacts are putted into NonEmptyArtifact(line 1) by output of

Algorithm 4.4. Only XOR structure should be analyzed because XOR structure might

select blank branch in run time. Thus, we only analyze XOR structure at line 2. Line 3

analyzes all artifacts in NonEmptyArtifact. Line 4 updates ImmeSuca
p
. Line 5 updates

ImmePrea
p’. Finally, lines 6-7 compute the artifact anomalies. Line 6 computes the

artifact anomalies between ImmePrea
p and ImmeSuca

p
. Line 7 computes the artifact

anomalies between ImmePrea
p’ and ImmeSuca

p’
. After Algorithm 4.8 completes

analysis, line 10 inserting a blank branch into the block between p and p’.

 As in Figure 4.3, there exists a path from P1 to end process, it might cause

Useless Definition after inserting a blank branch to the block between as2 and aj2.

Figure 4.3 The TS workflow in Figure 4.1 is inserted a blank branch between

as2 and aj2

 Algorithm 4.9 computes the anomalies when deleting a blank branch from a

XOR/AND block. Algorithm 4.9 accepts (w, a, p, p’), where w is a workflow, a is an

artifact, p/ p’ is a split process/joint process of a control block which will be removed

a blank branch.

49

Algorithm 4.9 ComputeBranchDeletionAnomalies

Input: a TS workflow w, split node p, joint node p’

Output: anomalies

Begin

01. EmptyArtifact = {a | a is an artifact in w} \ Algorithm4.4(w, p, p’);

02. If p is an XOR split process{

03. Deleting empty branch from the block between p and p’;

04. For each artifact a in EmptyArtifact {

05. if (there is no blank branch between p and p’ for a){

06. ImmeSuca
p
 = Algoirthm 4.2(w, a, p, p’);

07. ImmePrea
p’ = Algoirthm 4.3(w, a, p, p’);

08. Algorithm4.7 (a, ImmePrea
p, ImmeSuca

p
);

09. Algorithm4.7(a, ImmePrea
p’, ImmeSuca

p’
);

10. }

11. }

12. }

End

 In Algorithm 4.9, line 1 computes the set of artifacts which have blank branch

between p and p’. After removing a blank branch, these artifact might generate new

anomalies, these artifacts are putted into EmptyArtifact(line 1) by output of Algorithm

4.4. Only XOR structure should be analyzed because XOR structure might select

blank branch in run time. Thus, we only analyze XOR structure at line 2. Line 3

removes a blank branch from the block between p and p’. Line 4 analyzes all artifacts

in EmptyArtifact. At line 5, if the block has no blank branch for artifac a after

completing line 3, lines 6-9 further analyze what anomalies occur. Line 6 updates

ImmeSuca
p

. Line 7 updates ImmePrea
p’ . Finally, lines 8-9 compute the artifact

anomalies. Line 8 computes the artifact anomalies between ImmePrea
p and

ImmeSuca
p

. Line 9 computes the artifact anomalies between ImmePrea
p’ and

ImmeSuca
p’

.

50

 For instance, the TS workflow in Figure 4.1 is deleted a operation at P3 as shown

in Figure 4.4. In Figure 4.4, it might cause Useless Definition because there exists a

path from P1 to end process.

Figure 4.4 The TS workflow in Figure 4.1 deletes a operation at P3

4.3 A Summary for our Incremental Analysis

 The algorithms developed in this Chapter can be divided into four types:

1. A batch anomaly analysis method, as in Algorithm 4.1 on a TS workflow.

2. A set of incremental methods, Algorithms 4.2 and 4.3, to find out immediate

predecessor and successor processor for the artifact being edited, in a CTS

workflow, although they do not work with temporal factors.

3. A set of incremental methods, Algorithms 4.4, 4.5., and 4.6 to find out the

processes which are concurrent with the process being edited after screening

out those not able to be concurrent with the later with temporal factor.

4. The incremental anomalies detection methods, Algorithms 4.7 and 4.8, are

done based on the processes found in the methods in types 3 and 4.

 The anomaly detection methods [12] can be done on well-structured workflow

51

containing loop(s). Algorithm 4.1 adopts this approach [12] and work further with a

factor, temporal, where the workflow is named a TS workflow. The discussion in

section 4.1 indicates that Algorithm 4.1 itself works.

 Similarly, the incremental analysis is done based on a CTS workflow, which is

updated corresponding to a TS workflow edited by user. The details of the

corresponding methods and their use are described in Section 4.2. However, the

methods are not good enough, for example, the time complexity problem. It is

obvious that the time complexity of anomaly detection is exponential. A better

algorithm is to improve the time complexity, but reduce the preciseness in an

acceptable extent. Our thesis do not consider this factor yet.

52

Chapter 5 Conclusion and Future Work

 There exist a series of research works and papers for workflow anomaly

detection presented in the past. However, their results do not work on TS workflow,

neither in batch nor incremental manner. Based on our previous results, we present a

series of anomaly detection algorithms, each in batch or incremental manner, in the

thesis. Our results include

1. Refine each loop in a structured workflow diagram as a three branches of XOR

(exclusive or) structure based on [12].

2. Construct an algorithm which transforms a structured workflow diagram into a

corresponding acyclic workflow diagram based on 1.

3. Construct anomaly analysis algorithms for artifacts in the corresponding

workflow diagrams.

4. Construct an algorithm to modify the corresponding structured workflow

diagram based on 2) when editing a workflow.

5. Construct incremental analysis of artifact anomalies.

However, the techniques discussed in Section 4.2.1 do not work with temporal

factors, neither on artifact anomaly detection. The incremental anomaly detections for

artifact operations need to be studied more precisely to help the edition of a TS

workflow.

53

References

[1] Workflow Management Coalition, “Workflow Management Coalition: Terminology &

Glossary,” Document Number WFMC-TC-1011, 1999.

[2] N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and Analysis of Worfklows Using

Petri Nets,” in Journal of Intelligent Information Systems, Vol. 10, Issue 2, pp. 131-158,

1998.

[3] W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Verification of Workflow Task

Structures: A Petri-net Approach,” in Information System Vol. 25, Issue 1, pp. 43-69,

2000.

[4] W. M. P. van der Aalst, K.M. van Hee, and R.A. van der Toorn, "Adaptive Workflow: An

Approach Based on Inheritance," in the Proceedings of the Workshop on Intelligent

Workflow and Process Management: The New Frontier for AI in Business, pp. 36-45,

1999.

[5] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler, “On Structured Workflow

Modelling,” in Lecture Notes in Computer Science, Vol. 1789, pp. 431-445, 2000.

[6] S. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, “Data flow and validation in

workflow modeling,” in the Proceedings of the 15
th
 Conference on Australasian

Database, Vol. 27, pp. 207-214, 2004.

[7] K. Makino, and T. Uno, “New Algorithms for Enumerating All Maximal Cliques,” in the

Proceedings of 9
th
 Scandinavian Workshop on Algorithm Theory, Lecture Notes in

Computer Science, Vol. 3111, pp. 260-272, 2004

[8] F.-J. Wang, C.-L. Hsu, and H.-J. Hsu, “Analyzing Inaccurate Artifact Usages in a

Workflow Schema,” in the Proceedings of the 30
th
 Annual International Computer

Software and Application Conference, Vol. 2, pp. 109-114, 2006.

[9] C.-L. Hsu, H.-J. Hsu, and F.-J. Wang, “Analysing Inaccurate Artifact Usages in

Workflow Specifications,” in IET Software, Vol. 1, Issue 4, pp. 188-205, 2007.

[10] C.-H. Wang, and F.-J. Wang, “Detecting Artifact Anomalies in Business Process

Specification with a Formal Model,” in Journal of Systems and Software, Vol. 82, Issue

10, pp. 1064-1212, 2009.

[11] H.-J. Hsu, and F.-J. Wang, "Using Artifact Flow Diagrams to Model Artifact Usage

Anomalies," in the Proceedings of 33
rd

 Annual IEEE International Computer Software

and Applications Conference, Vol. 2, pp.275-280, 2009.

[12] Hwai-Jung Hsu, and Feng-Jian Wang, "Detecting Artifact Anomalies in Temporal

Structured Workflow as Reusable Assets" to appear in the Proceedings of 35th Annual

IEEE Computer Software and Applications Conference Workshops (COMPSACW '11),

July 2011

