國立交通大學土木工程學系

EES

應用連續柯西小波轉換於結構物之勁度與阻尼矩陣識別
Identification of stiffness and damping matrices of a structure via
Continuous Cauchy Wavelet Transformation

1896

研究生:鍾玉峰

指導教授:黃炯憲 博士

中華民國一百零三年二月

應用連續柯西小波轉換於結構物之勁度與阻尼矩陣識別

Identification of stiffness and damping matrices of a structure via Continuous Cauchy Wavelet Transformation

研究生:鍾玉峰 Student: Yu-Feng Chung

指導教授:黃炯憲 Adviser:Dr. Chiung-Shiann Huang

國立交通大學

土木工程學系

碩士論文

A Thesis

Submitted to Department of Civil Engineering

College of Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Civil Engineering

February 2014

Hsinchu, Taiwan, Republic of China

中華民國一百零三年二月

應用連續柯西小波轉換於結構物之勁度與阻尼矩陣識別

研究生:鍾玉峰 指導教授:黃炯憲 博士

國立交通大學土木工程學系碩士班

摘要

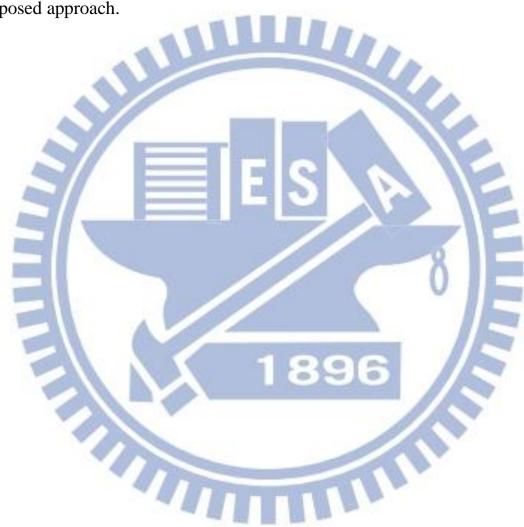
系統識別為一項重要之研究課題,可應用於結構系統的損傷診斷。一般藉由結構系統之振動反應,可推估其動態特性,識別得結構之自然振動頻率、阻尼比及振動模態。識別自然振動頻率有助於判斷結構之損傷程度,但難以準確判斷結構損傷的位置。為準確判斷結構的損傷位置,直接觀察其勁度的變化是最佳的方法。

本研究以連續柯西小波轉換配合最小平方差法,識別結構系統之勁度 與阻尼矩陣,並且計算得結構之模態參數。先利用數值模擬資料進行識別 分析,驗證此方法之正確性與可行性;並考慮在雜訊影響下,調整識別之 參數設定以求最佳的識別結果。同時考慮勁度折減系統,探討此方法應用 於結構損傷判斷的可行性。最後,分析具完整柱及切削柱八層樓鋼構之振 動台試驗反應資料,驗證此方法在真實量測案例之可行性。

Identification of stiffness and damping matrices of a structure via Continuous Cauchy Wavelet Transformation

Student: Yu-Feng Chung Adviser: Dr. Chiung-Shiann Huang

Department of Civil Engineering


National Chiao Tung University

Abstract

System identification, which can be applied to assess damages of structures, has been an important research theme for civil engineering in the last two decades. Dynamic characteristics of a structure, namely natural frequencies, damping ratios and mode shapes, are determined from its vibration responses. The decrease of stiffness in a structure can be possibly judged by comparing the natural frequencies of the structure at the current state with those at the state with no damage. However, it is difficult to locate the damages from the modal parameters. Comparisons of stiffness matrices of a structure at different states can be a good way to accurately locate the damages in the structure.

This study identifies stiffness and damping matrices of a structure via continuous Cauchy wavelet transform (CCWT) with a least-squares technique. The validity of the proposed approach is first confirmed by processing the numerically simulated responses of seven-story shear buildings with different story stiffness under base excitation. This study also investigates the effects of

noise and different Cauchy wavelets on the accuracy of the identified stiffness and damping matrices. The proposed method is also applied to process the dynamic responses of two eight-story steel frames, which are not shear buildings, in shaking table tests. The differences in the story stiffness among these frames are accurately reflected in the stiffness matrices that are obtained by the proposed approach.

誌謝

衷心感謝恩師 黃炯憲教授平日對學生的細心指導與照顧,並在研究 期間給予觀念的指正與啟發,使得學生對研究方法有更加深入的理解,使 本文得以順利完成,學生在此致上由衷的謝意。

感謝口試委員 洪士林老師以及 林子剛老師的用心傾聽,並且給予 學生寶貴的意見與建議,使得本文能夠更趨完善。

感謝學長姐威智、連杰、靖俞、光線、明儒、政甯、裕鈞、旭進、芳琳等平日的照顧,以及在學理與人生之路上的經驗分享;感謝同窗好友育誠、渤喻、人傑、孟翰及其他研究所同學以及學弟華醇、盈吉平日的相處,相互切磋成長,共享苦樂,有你們陪伴的這些日子將會是我難忘的回憶。

最後更要感謝最敬愛的祖父、祖母、父親、母親以及所有的家人,感謝你們多年來對我的付出與關愛,沒有你們的支持與鼓勵就不會有現在的我,深深感謝你們。

文終,將這份成果獻給所有關心我的親友,共同分享這份喜悅。

目錄

摘要	i
Abstract	ii
誌謝	iv
目錄	V
表目錄	viii
圖目錄	XX
	1
1.2 文獻回顧	1 5
第二章 分析方法	
2.1 連續小波轉換簡介	6
2.2 柯西小波(Cauchy Wavelet)	9
2.3 系統模態識別方法	11
第三章 數值分析	29
3.1 前言	29
3.2 數值模擬概述	29
3.2.1 CCWT 之參數設定	29

	3.2.2 CCWT 各階導數關係式之驗證	.31
	3.2.3 七層樓剪力構架	.31
3.3	全結構[K]及[C]之識別	.33
	3.3.1 無雜訊情況	. 34
	3.3.2 雜訊之影響	. 38
3.4	結構損傷識別	.42
3.5	子結構識別分析	.46
Į.	3.5.1 子結構分析之準確性測試	.47
	3.5.2 勁度折減系統之子結構識別	. 50
第四章	實驗數據分析	.53
4.1	前言	.53
4.2	八層樓鋼構架介紹	.53
4.3	全結構識別結果	. 54
	4.3.1 原始鋼構	. 54
	4.3.2 勁度折減鋼構	.56
4.4	子結構識別分析	. 57
第五章	結論與建議	. 59
5.1	結論	. 59
5.2	建議	. 60

表目錄

表 3.1:七層樓剪力架構系統參數理論值	. 65
表 3.2:時間域識別無雜訊反應所得之[C]及[K]	. 66
表 3. 3:時間域識別無雜訊反應所得之模態參數	. 66
表 3.4:時間域識別無雜訊反應所得之[C]及[K]	. 67
表 3.5:時間域識別無雜訊反應所得之模態參數	. 67
表 3.6:以 CCWT 配合迴歸模型(一) 識別無雜訊反應所得之	.[C]
及[K]	. 68
表 3.7:以 CCWT 配合迴歸模型(一)識別無雜訊反應所得之	_模
態 参 數	. 68
表 3.8:以 CCWT 配合迴歸模型 (二) 識別無雜訊反應所得之	
及[K]	. 69
表 3.9:以 CCWT 配合迴歸模型(二)識別無雜訊反應所得之	_模
態參數	. 69
表 3.10:限制矩陣帶寬為 1,時間域識別無雜訊反應所得之[C]及
[K]	.70
表 3.11:限制矩陣帶寬為 1,時間域識別無雜訊反應所得之模	態
參數	. 70
表 3 12:限制[K]帶資為 1,時間域識別無雜訊反應所得之[C]及	[K]

71
表 3.13: 限制[K]帶寬為 1, 時間域識別無雜訊反應所得之模態參
數71
表 3.14:限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別無
雜訊反應所得之[C]及[K]72
表 3. 15: 以表 3.14 之[C]及[K]所得之模態參數72
表 3.16: 限制矩陣帶寬為 5,以 CCWT 識別無雜訊反應所得之[C]
及[K]73
表 3.17:以表 3.16 之[C]及[K]所得之模態參數73
表 3.18:限制矩陣帶寬為 4,以 CCWT 識別無雜訊反應所得之[C]
及[K]74
表 3.19:以表 3.18之[C]及[K]所得之模態參數74
表 3.20:限制矩陣帶寬為 3,以 CCWT 識別無雜訊反應所得之[C]
及[K]75
表 3. 21: 以表 3.20 之[C]及[K]所得之模態參數75
表 3. 22: 限制矩陣帶寬為 2,以 CCWT 識別無雜訊反應所得之[C]
及[K]76
表 3. 23: 以表 3.22 之[C]及[K]所得之模態參數76
表 3. 24:限制矩陣帶寬為 1,以 CCWT 識別無雜訊反應所得之[C]
及[K]77

表 3.25:以表 3.24 之[C]及[K]所得之模態參數77
表 3.26:不同帶寬限制之識別模態參數最大誤差及發生之模態78
表 3.27:時間域識別 5%雜訊反應所得之[C]及[K]79
表 3.28: 限制矩陣帶寬為 1, 時間域識別 5%雜訊反應所得之[C]
及[K]80
表 3. 29: 以表 3.28 之[C]及[K]所得之模態參數80
表 3. 30:以 CCWT 識別 5% 雜訊反應所得之[C]及[K]81
表 3.31: 以表 3.30 之[C]及[K]所得之模態參數81
表 3.32: 限制矩陣帶寬為 1,以 CCWT 識別 5%雜訊反應所得之
[C]及[K]82
表 3.33: 以表 3.32 之[C]及[K]所得之模態參數82
表 3.34:限制矩陣帶寬為 1 且取樣門檻為 50%,以 CCWT 識別
5%雜訊反應所得之[C]及[K]83
表 3.35: 以表 3.34 之[C]及[K]所得之模態參數83
表 3.36:限制矩陣帶寬為 1 且取樣門檻為 70%,以 CCWT 識別 5%
雜訊反應所得之[C]及[K]84
表 3.37: 以表 3.36 之[C]及[K]所得之模態參數84
表 3.38:限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別 5%
雜訊反應所得之[C]及[K]85

表 3.39:以表 3.38 之[C]及[K]所得之模態參數85
表 3.40:不同取樣門檻之 5%雜訊反應識別模態參數最大誤差及發
生之模態86
表 3.41:限制矩陣帶寬為 1,以 CCWT 識別 10%雜訊反應所得之
[C]及[K]87
表 3. 42: 以表 3.41 之[C]及[K]所得之模態參數87
表 3. 43: 限制矩陣帶寬為 1 且取樣門檻為 50%,以 CCWT 識別
10%雜訊反應所得之[C]及[K]88
表 3.44: 以表 3.43 之[C]及[K]所得之模態參數88
表 3.45: 限制矩陣帶寬為 1 且取樣門檻為 70%,以 CCWT 識別
10%雜訊反應所得之[C]及[K]89
表 3.46:以表 3.45 之[C]及[K]所得之模態參數89
表 3. 47: 限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別
10%雜訊反應所得之[C]及[K]90
表 3.48:以表 3.47 之[C]及[K]所得之模態參數90
表 3.49:不同取樣門檻之 10%雜訊反應識別模態參數最大誤差及
發生之模態91
表 3.50: 限制第一模態取樣門檻為 70%,以 CCWT 識別 10%雜
訊反應時設定之取樣門檻 92

表 3.51: 使用表 3.50 之取樣門檻設定,以 CCWT 識別 10%雜訊
反應所得之[C]及[K]92
表 3.52: 以表 3.51 之[C]及[K]所得之模態參數93
表 3.53: 限制第一模態取樣門檻為 90%,以 CCWT 識別 10%雜
訊反應時設定之取樣門檻94
表 3.54:使用表 3.53 之取樣門檻設定,以 CCWT 識別 10%雜訊
反應所得之[C]及[K]94
表 3.55: 以表 3.54 之[C]及[K]所得之模態參數95
表 3.56:以 n=9 之 CCWT 識別 20%雜訊反應時之參數設定96
表 3.57:以 n=37 之 CCWT 識別 20%雜訊反應時之參數設定96
表 3.58:以 n=65 之 CCWT 識別 20%雜訊反應時之參數設定97
表 3.59:以 n=100 之 CCWT 識別 20%雜訊反應時之參數設定 97
表 3.60:以 n=142 之 CCWT 識別 20%雜訊反應時之參數設定 98
表 3. 61:使用表 3.56 之參數設定,以 $n=9$ 之 CCWT 識別 20%雜
訊反應所得之[C]及[K]99
表 3. 62: 以表 3.61 之[C]及[K]所得之模態參數99
表 3.63:使用表 3.57 之參數設定,以 n=37 之 CCWT 識別 20%雜
訊反應所得之[C]及[K]100
表 3.64:以表 3.63 之[C]及[K]所得之模態參數100

表 3.65:使用表 3.58 之參數設定,以 n=65 之 CCWT 識別 20%雜
訊反應所得之[C]及[K]101
表 3.66:以表 3.65之[C]及[K]所得之模態參數101
表 3.67:使用表 3.59 之參數設定,以 n=100 之 CCWT 識別 20%
雜訊反應所得之[C]及[K]102
表 3.68:以表 3.67之[C]及[K]所得之模態參數102
表 3.69:使用表 3.60 之參數設定,以 n=142 之 CCWT 識別 20%
雜訊反應所得之[C]及[K]103
表 3.70:以表 3.69 之[C]及[K]所得之模態參數103
表 3.71: 不同 n 值之 CCWT 識別模態參數最大誤差及發生之模態
表 3.72: 第一樓層柱勁度折減 25%系統之理論[C]與[K]105
表 3.73: 第一樓層柱勁度折減 10%系統之理論[C]與[K]105
表 3.74: 第一、三樓層柱勁度折減 10%系統之理論[C]與[K]106
表 3.75: 不同勁度折減系統之理論模態參數106
表 3.76: 識別勁度無折減系統之參數設定107
表 3.77: 以表 3.76 參數設定之識別結果107
表 3.78:以表 3.77 之[C]及[K]所得之模態參數108
表 3.79: 識別第一樓層柱勁度折減 25%系統之參數設定109
表 3.80:以表 3.79 參數設定之識別結果109

表 3.81:以表 3.80 之[C]及[K]所得之模態參數,及與未折減案例
識別值之相對差異110
表 3.82: 識別第一樓層柱勁度折減 10%系統之參數設定 111
表 3.83:以表 3.82 參數設定之識別結果111
表 3.84:以表 3.83 之[C]及[K]所得之模態參數,及與未折減案例
識別值之相對差異112
表 3.85: 識別第一、三樓層柱勁度折減 10%系統之參數設定.113
表 3.86:以表 3.85 參數設定之識別結果113
表 3.87:以表 3.86之[C]及[K]所得之模態參數,及與未折減識別
值之相對差異114
表 3.88:於時間域以子結構識別勁度無折減系統之識別結果.115
表 3.89:以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結
構識別勁度無折減系統之識別結果117
表 3.90:以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門
檻=90%,以子結構識別勁度無折減系統之識別結果119
表 3.91 :以 $n=65$ 及對應各模態之 a 值進行 $CCWT$,以子結構識
別勁度無折減系統之識別結果121
表 3.92 :以 $n=65$ 及對應各模態之 a 值進行 $CCWT$,以子結構識
别勁度無折減系統之參數設定

表 3.93:以表 3.92 之參數設定,以子結構識別勁度無折減系統之
識別結果124
表 3.94:以 <i>n</i> =142 及對應 0.2Hz~10Hz 之 <i>a</i> 值進行 CCWT,以子
結構識別勁度無折減系統之識別結果126
表 3.95:以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣
門檻=90%,以子結構識別勁度無折減系統之識別結果128
表 3.96:以 $n=142$ 及對應各模態之 a 值進行 $CCWT$,以子結構識
別勁度無折減系統之識別結果130
表 3.97 : 以 $n=142$ 及對應各模態之 a 值進行 $CCWT$,以子結構識
別勁度無折減系統之參數設定132
表 3.98:以表 3.97 之參數設定,以子結構識別勁度無折減系統之
識別結果133
表 3.99: 勁度無折減系統子結構識別整理134
表 3.100:於時間域以子結構識別含 10%雜訊之勁度無折減系統之
識別結果135
表 3. 101:以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子
結構識別含10%雜訊之勁度無折減系統之識別結果137
表 3. 102:以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣
門檻=90%,以子結構識別含 10%雜訊之勁度無折減系統之識

	5	列結果139
表	3.	103:以 $n=65$ 及對應各模態之 a 值進行 $CCWT$,以子結構證
	5	別含 10%雜訊之勁度無折減系統之識別結果141
表	3.	104:以 $n=65$ 及對應各模態之 a 值進行 $CCWT$,以子結構證
	5	別含10%雜訊之勁度無折減系統之參數設定143
表	3.	105:以表 3.104 之參數設定,以子結構識別含 10%雜訊之勁
4	J	度無折減系統之識別結果144
表	3.	106:以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子
1	4	吉構識別含 10%雜訊之勁度無折減系統之識別結果146
表	3.	107:以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣
V	F	児檻=90%,以子結構識別含 10%雜訊之勁度無折減系統之 證
3	5	別結果148
表	3.	108:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構
	1	哉別含 10%雜訊之勁度無折減系統之識別結果150 150
表	3.	109:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構
	吉	哉別含 10%雜訊之勁度無折減系統之參數設定152
表	3.	110:以表 3.109 之參數設定,以子結構識別含 10%雜訊之勁
	J	度無折減系統之識別結果153
夫	3	111: 全 10%雜訊之勁度無折減系統子結構識別整理 154

表 3. 112:以 $n=142$ 及對應各模態之 a 值進行 CCWT,以子結構
識別第一樓層柱勁度折減 25%系統之識別結果155
表 3.113:以 $n=142$ 及對應各模態之 a 值進行 CCWT,以子結構
識別第一樓層柱勁度折減 10%系統之識別結果157
表 3. 114:以 $n=142$ 及對應各模態之 a 值進行 CCWT,以子結構
識別第一、三樓層柱勁度折減 10%系統識別之識別結果159
表 3. 115:以 $n=142$ 及對應各模態之 a 值進行 CCWT,以子結構
識別161
表 3.116:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構
識別163
表 3.117:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構
識別含10%雜訊之第一、三樓層柱勁度折減10%系統之識別
結果165
表 4.1: 識別原始鋼構之參數設定167
表 4.2:以全矩陣識別原始鋼構所得之[M] ⁻¹ [C]及[M] ⁻¹ [K] 168
表 4.3 : 以表 4.2 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數168
表 4.4 :考慮 $[M]^{-1}[K]$ 帶寬= 6 時,識別原始鋼構所得之 $[M]^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4.5 : 以表 4.4 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數 169

表 4.6 : 考慮[M] $^{-1}[K]$ 帶寬=5 時,識別原始鋼構所得之[M] $^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4.7 :以表 4.6 之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數170
表 4.8 : 考慮 $[M]^{-1}[K]$ 帶寬=4 時,識別原始鋼構所得之 $[M]^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4.9:以表 4.8之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數 171
表 4. 10 : 考慮 $[M]^{-1}[K]$ 帶寬=3 時, 識別原始鋼構所得之 $[M]^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4.11 : 以表 4.10 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數172
表 4.12 : 考慮 $[M]^{-1}[K]$ 帶寬= 2 時, 識別原始鋼構所得之 $[M]^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4.13 : 以表 4.12 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數173
表 4. 14: 考慮 $[M]^{-1}[K]$ 帶寬 $=1$ 時, 識別原始鋼構所得之 $[M]^{-1}[C]$ 及
$[M]^{-1}[K]$
表 4. 15:以表 4.14 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數 174
表 4.16: 識別勁度折減鋼構之參數設定175
表 4.17:依表 4.16 之參數設定,識別勁度折減鋼構之識別結果
表 4.18 : 依表 4.17 之[M] $^{-1}$ [C]及[M] $^{-1}$ [K]所得之模態參數 176
表 4.19: 識別原始鋼構子結構之參數設定177
表 4.20:依表 4.19 之參數設定,識別原始鋼構子結構所得之
[M] ⁻¹ [C]及[M] ⁻¹ [K]178

結果			•••••						. 180
表 4.22:	以表。	4.21 之名	參數設定	,識	別勁馬	度折減	鋼構子	結構之	識別
表 4.21:	識別巠	劲度折漏	域鋼構子	結構	之參婁	致設定.	•••••	•••••	. 179

圖目錄

邑	2.1:時間域之 Cauchy 小波函數	182
圖	2.2:頻率域之 Cauchy 小波函數	183
昌	3.1:餘弦函數訊號歷時	184
圖	3.2: 餘弦訊號在不同尺度因子 a 之 CCWT 小波域訊號	186
圖	3.3:反應訊號之 CCWT 小波域訊號	187
圖	3.4:由小波域之加速度訊號轉換為小波域之速度與位移訊	號
		188
圖	3.5:七層樓剪力構架模型	189
圖	3.6:七層樓剪力架構各樓層加速度歷時反應	190
圖	3.7:七層樓剪力架構各樓層頻譜圖	192
圖	3.8:數值模擬反應之識別流程	194
圖	3.9:以對應各模態頻率之 a,對第七層樓加速度反應訊號主	進行
	n=100 之 CCWT 小波域反應	195
圖	3.10:第一樓層柱勁度折減25%案例之各樓層頻譜圖	199
圖	3.11:第一樓層柱勁度折減 10%案例之各樓層頻譜圖	201
昌	3.12:第一、三樓層柱勁度折減 10%案例之各樓層頻譜圖	203
圖	3.13:取樣門檻示意圖	205

置	4.	1	:	八層樓鋼構架振動台試驗	206
昌	4.	2	:	鋼柱切削部位及振動 X 方向示意圖	207
昌	4.	3	:	經切削處理之鋼板支柱	208
昌	4.	4	:	八層樓鋼構加速度歷時	209
邑	4.	5	:	勁度折減鋼構加速度歷時	212
邑	4.	6	Š	實驗數據識別流程	215
圖	4.	7	Ì	八層樓鋼構頻譜圖	216
圖	4.	8		勁度折減鋼構頻譜圖	218
昌	4	9		八局樓網構第八樓局對應久模能 CCWT 小油試反應	220

1896

第一章 緒論

1.1 研究動機與目的

建築結構物隨著時間,由於人為活動、地震危害、風雨侵蝕、或者自然劣化等因素可能造成損壞;即使外觀仍然完整,但其使用功能與安全性可能早已受到影響,導致建物使用者遭遇危害的風險增加。台灣位於菲律賓板塊與歐亞大陸板塊交界處,為地震好發的地震帶;每當規模較大的地震發生時,總是免不了聽聞因結構物損壞導致災情發生。因此,為確保結構物之安全性及降低地震帶來難以挽回的災害之可能性,適時地對結構物進行檢測與傷害評估是有必要性的。

於土木結構全域健康診斷,常利用模態參數或勁度矩陣。前者較為普遍且簡單,主要識別自然振動頻率、模態阻尼及模態振型,由自然振動頻率之變化可判斷結構物之損傷程度;但由於高頻模態常無法順利識別,而導致難以準確辨斷結構損傷之位置。後者直接估算結構之勁度,可由識別的勁度矩陣觀察結構損傷程度與發生位置,但使用上限制較多,必須有一準確之控制方程式。本研究嘗試利用連續柯西小波轉換,探討最合適之識別參數設定,以得到較準確之結構勁度矩陣,以判斷結構之損傷位置。

1.2 文獻回顧

國內外依結構物量測得之動態反應進行系統識別之研究已發展多年,

主要在頻率域與時間域進行分析。

近年來,小波轉換於訊號處理方面引起各領域的探討及應用,其具有良好的時間域及頻率域之解析能力(time-frequency localization)。雖然小波已被廣泛應用在訊號處理,但進一步應用於系統識別之研究正在蓬勃發展中。小波轉換基本上可分為連續小波轉換(continuous wavelet transform,CWT)、離散小波轉換(discrete wavelet transform,DWT)、小波包轉換(wavelet packet transform)、平穩小波轉換(stationay wavelet transform)及平穩小波包轉換(stationary wavelet packet transform)。

利用離散小波轉換於識別模態參數之研究有:(1)Ruzzen et al.(1997),應用離散 Morlet 小波轉換於結構之自由振動衰減訊號,估算結構物之自然振動頻率與阻尼比。(2) Staszewski (1997)應用平移型 Morlet 小波 (shifted Morlet wavelet),識別分析多自由度系統之阻尼,此作法增加了頻率解析度以及解決鄰近模態的問題。(3) Lu and Hsu (2002)則是將離散小波轉換應用至損傷識別之研究,分別在結構物損傷前後進行振動量測,並將得到之訊號進行離散 Mexican hat 小波分析以識別出結構損傷之程度與位置。(4) Ovanesova and Suarez (2004) 認為若量測的訊號含有噪訊或不確定性時,可利用小波轉換進行資料處裡,文中提及多種小波之應用。(5) Huang et al. (2005)為改善以時間序列或神經網路架構 ARX (AutoRegressive with eXogeneous variable)模式時,易產生虛擬模態與求解之數值困難之問

題,利用離散小波轉換將離散化之運動方程式轉換至小波域,使用 sym1 小波、sym4 小波及 sym10 小波,識別結構之自然振動頻率、阻尼比以及模態。

(6) Wei and Billing (2002) 透過多解析度小波展開 TVNARMAX

(Time-Varying Nonlinear AutoRegressive Moving Average with eXogenous inputs) 時變係數,將時變問題歸納為非時變問題,藉此進行時變系統之識別,以估算系統參數。Omenzetter et al.(2003)應用離散小波轉換配合 ARMA

(AutoRegressive Moving Average) 模式監測橋梁結構的異常反應發生狀況與位置。

利用連續小波轉換於識別模態參數之研究有:(1) Gouttebroze and Lardies (2001) 將量測的結構振動反應以連續 Morlet 小波轉換,從自由振動反應下估算結構物之自然振動頻率與阻尼比。(2) Lardies and Gouttebroze (2002) 應用其發展出的小波識別技巧 (Gouttebroze and Lardies, 2001), 處理電視塔之微動量測數據,但須先用傳統的隨機遞減技巧 (random decrement method),從微動反應中淬取自由振動訊號。(3) Huang and Su (2007) 應用連續小波轉換於系統識別,對自由振動反應或地震反應進行小波轉換,識別結構系統之模態參數,考慮使用不同的小波函數時(Shannon小波、Meyer小波、Morlet小波及 Haar小波),以及雜訊對識別結果的影響。 (4) 陳等人(2009) 利用隨機遞減法,將微動隨機散漫反應轉換成結構自由衰退振動反應,應用連續 Meyer小波轉換識別斜張橋之動態特性。(5)

石仲維(2009)應用連續 Meyer 小波轉換,處理脊背橋微動量量測及衝擊載重試驗數據,進行模態參數之識別。(6) Argoul and Le(2003)應用 CCWT (continuous Cauchy wavelet transform) 於非線性梁之衝擊載重試驗,以分析其瞬時指標。(7) Le and Argoul (2004)應用連續小波轉換於結構物之自由衰減反應,識別其動態特性,使用的小波分別為 Morlet 小波、Cauchy 小波與 Harmonic 小波。(8) Erlicher et al. (2007)應用 CCWT 於線性非比例阻尼系統之模態識別。

利用小波包於識別模態參數之研究有:(1) Chakraborty et al. (2006) 利用 Modified Littlewood-Paley 小波包於微動隨機散漫反應之分析識別。(2) Zishou and Kui (2010) 應用小波包與頻率響應函數於結構損傷檢測。(3) 黄旭進(2013) 利用平穩小波包配合 AR (Auto-Regressive) 模式識別結構系統之模態參數。

小波轉換於系統之勁度與阻尼識別應用相對來說較為少見。Ghanem and Romeo (2000,2001)利用離散小波轉換探討線性與非線性時變系統之運動方程式中有關離散反應及力量函數的問題,並進一步識別系統之勁度與阻尼,此種方法對於結構系統所有自由度均有量測的情況下相當準確。

柯西小波(Cauchy wavelet)在眾多小波函數中仍然保有自己的獨特性, 柯西小波之微分函數仍然為一柯西小波,使得函數各階導數之 CCWT 具簡 易之關係式。由上述文獻可見,系統識別多半針對結構系統之模態參數進 行識別,針對勁度與阻尼識別的研究則較為少見。而本研究將應用 CCWT 於結構系統之勁度與阻尼矩陣之識別。

1.3 論文架構

本論文共五章,其內容如下:

- 第一章 前言,主要內容為研究之動機與背景、歷年來之研究方法與成果 之相關文獻介紹,並說明本論文之研究方法與架構。
- 幣二章 主要內容為本研究之分析流程,以及本研究之連續柯西小波轉換 理論。
- 第三章 數據模擬驗證與參數探討,其內容為呈現本研究於數值模擬之分 析結果,探討各種因素對分析結果之影響。
- 第四章 振動台試驗分析,呈現本研究應用於八層樓鋼構架實驗之分析結 果。
- 第五章 結論與建議,總結本研究之分析結果,並提出建議以作為未來研究之方向參考。

第二章 分析方法

2.1 連續小波轉換簡介

令 $L^2(R)$ 表示平方可積函數空間,當函數u(t) 屬於 $L^2(R)$ 空間時, 此函數可進行連續小波轉換

$$W_{\psi}[u](a,b) = \langle u, \psi_{(a,b)} \rangle = \frac{1}{a} \int_{-\infty}^{+\infty} u(t) \overline{\psi}\left(\frac{t-b}{a}\right) dt$$
 (2.1)

其中 $\psi(t)$ 為母小波 (mother wavelet)或分析小波 (analyzing wavelet); (a,b)為時間尺度變量,其中a(a>0)為尺度因子, $b(b\in \mathbb{R})$ 為平移因子,

$$\psi_{(a,b)}(t) = \frac{1}{a} \psi\left(\frac{t-b}{a}\right)$$
為 $\psi(t)$ 經過延展與平移得到之基底函數; $\bar{\psi}(t)$ 為 $\psi(t)$

之複共軛函數。需注意的是,在不同的著作中,基底函數有可能定義為

$$\psi_{(a,b)}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)$$
,定義不同會連帶影響到後述之參數定義。連續小波

轉換之逆轉換為
$$u(t) = \frac{1}{c_{\psi}} \int_{-\infty}^{\infty} \int_{0}^{\infty} W_{\psi}[u](a,b) \psi\left(\frac{t-b}{a}\right) \frac{da}{a} db \tag{2.2}$$

其中

$$c_{\psi} = \int_0^{\infty} \left| \hat{\psi} \left(a \omega \right) \right|^2 \frac{da}{a} \tag{2.3}$$

 $\hat{\psi}(\omega)$ 為 $\psi(t)$ 之傅立葉轉換。由 Parseval 定理,連續小波轉換在頻率域下可

表示為

$$W_{\psi}[u](a,b) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{u}(\omega) \bar{\psi}(a\omega) e^{i\omega b} d\omega$$
 (2.4)

連續小波轉換在時間域與頻率域下的所取的局部訊號範圍由尺度因子a,與母小波之時寬 Δt_{ψ} 和頻寬 $\Delta \omega_{\psi}$ 決定。若將 $\psi(t)$ 視為一窗函數,其中心為 t_{ψ} ,半徑為 Δt_{ψ} ,則經過延展與平移之 $\psi_{(a,b)}(t)$ 中心為 $b+at_{\psi}$ 及半徑為 $a\Delta t_{\psi}$ 。以 $\psi_{(a,b)}(t)$ 為基底之連續小波轉換中,只取時間窗範圍內之局部訊號,其範

$$\left[b + at_{\psi} - a\Delta t_{\psi}, b + at_{\psi} + a\Delta t_{\psi}\right] \tag{2.6}$$

其中母小波之時寬 Δt_{ψ} 與中心時間 t_{ψ} 的定義為

$$\Delta t_{\psi} = \frac{1}{\left\|\psi\right\|_{2}} \sqrt{\int_{-\infty}^{+\infty} \left(t - t_{\psi}\right)^{2} \left|\psi\left(t\right)\right|^{2} dt} ,$$

$$t_{\psi} = \int_{-\infty}^{+\infty} t \frac{\left| \psi(t) \right|^2}{\left\| \psi \right\|_2^2} dt ,$$

其中
$$\|\psi\|_2 = \int_{-\infty}^{+\infty} |\psi(t)|^2 dt$$
。

於頻率域下,由 Parseval 定理可證明,連續小波轉換取頻率窗內之局部訊號, 其範圍為

$$\left[\frac{\omega_{\psi}}{a} - \frac{\Delta\omega_{\psi}}{a}, \frac{\omega_{\psi}}{a} + \frac{\Delta\omega_{\psi}}{a}\right] \tag{2.7}$$

其中母小波之頻寬 $\Delta t_{\prime\prime}$ 與中心頻率 $\omega_{\prime\prime}$ 的定義為

$$\Delta\omega_{\psi} = \frac{1}{\|\hat{\psi}\|_{2}} \sqrt{\int_{-\infty}^{+\infty} (\omega - \omega_{\psi})^{2} |\hat{\psi}(\omega)|^{2} d\omega}$$
 (2.8)

$$\omega_{\psi} = \int_{-\infty}^{+\infty} \omega \frac{\left|\hat{\psi}(\omega)\right|^2}{\left\|\hat{\psi}\right\|_2^2} d\omega \tag{2.9}$$

歸納以上,連續小波轉換所得訊號之局部時間頻率窗為

$$\left[b + at_{\psi} - a\Delta t_{\psi}, b + at_{\psi} + a\Delta t_{\psi}\right] \times \left[\frac{\omega_{\psi}}{a} - \frac{\Delta\omega_{\psi}}{a}, \frac{\omega_{\psi}}{a} + \frac{\Delta\omega_{\psi}}{a}\right]$$
(2.10)

此時間頻率窗會隨尺度因子a改變,在 α_{ψ} 不變的情形下,當a值小時,其對應的頻率較高,且時寬小而頻寬大,適合描述高頻訊號;而當a值大時,其對應的頻率較低,時寬大而頻寬小,適合描述低頻訊號。

依連續小波轉換之定義,可證明其具有下列數學性質

- 1、線性:一多分量訊號之連續小波轉換等同各分量之小波轉換的和。
- 2、平移不變性:若u(t)之連續小波轉換為 $W_{\psi}[u](a,b)$,則 $u(t-\tau)$ 之連續小波轉換為 $W_{\psi}[u](a,b- au)$ 。
- 3、伸縮共變性:若u(t)之連續小波轉換為 $W_{\psi}[u](a,b)$,則 $u(\alpha t)$ 之連續小 波轉換為 $\frac{1}{\alpha}W_{\psi}[u](a,b)$ 。
- 4、自相似性:對應不同的尺度因子 a 與平移因子 b 之連續小波轉換,彼此之間為自相似

當小波ψ與訊號 u 具連續且片段可微性質時,信號 u 之一階導數的連續小波轉換經部分積分可得

$$W_{\psi}\left[\dot{u}\right](a,b) = \frac{1}{a} \left[u(t)\bar{\psi}\left(\frac{t-b}{a}\right) \right]_{-\infty}^{+\infty} - \frac{1}{a} \int_{-\infty}^{+\infty} u(t)\dot{\bar{\psi}}\left(\frac{t-b}{a}\right) dt \right]$$
(2.12)

故當 $t \to \pm \infty$, $\bar{\psi}\left(\frac{t-b}{a}\right) \to 0$,且當 $\dot{\psi}$ 具絕對可積且平方可積性質時, \dot{u} 之連

續小波轉換可表示為

$$W_{\psi}[\dot{u}](a,b) = -\frac{1}{a}W_{\psi}[u](a,b)$$
 (2.13)

同理,當Ü為絕對可積且平方可積時

$$W_{\psi}[\ddot{u}](a,b) = \frac{1}{a^2} W_{\psi}[u](a,b)$$
 (2.14)

2.2 柯西小波 (Cauchy Wavelet)

不同於傅立葉轉換,其基底函數為 $e^{i\omega t}$,而小波轉換之母小波有多種選擇,但該母小波須滿足以下特性

 $1 \cdot \psi(t)$ 與其各階導數皆為平方可積函數。

 $2 \cdot \psi(t)$ 與其各階導數在 $t \to \infty$ 處趨近於零,為有限支撐長度。

一般被選為連續小波轉換之基底函數之母小波有許多種,如 Morlet 小波、Haar 小波、Cauchy 小波等。本研究選用 Cauchy 小波 $\psi_n(t)$ 作為連續小波轉換之基底函數,故稱為連續柯西小波轉換(Continuois Cauchy Wavelet

Transforms, CCWT),本研究以 CCWT 簡稱之。Cauchy 小波在時間域之定 義如下

$$\psi_{\beta,n}(t) = \left(\frac{i}{\beta t + i}\right)^{n+1} \tag{2.15}$$

其中n為無因次助變參數, β 為助變參數,其因次為變量t之倒數,故 Cauchy 小波實含一系列之母小波。標準之 Cauchy 小波函數使用 $\beta=1$,則

$$\psi_n(t) = \left(\frac{i}{t+i}\right)^{n+1} \tag{2.16}$$

依式(2.16), Cauchy 小波 $\psi_n(t)$ 與其各階導數之間有下列相關性

$$\dot{\psi}_{n}(t) = i(n+1)\psi_{n+1}(t) \tag{2.17}$$

$$\ddot{\psi}_n(t) = -(n+1)(n+2)\psi_{n+2}(t) \tag{2.18}$$

Cauchy 小波微分後依舊為一 Cauchy 小波,此為一般母小波所沒有之特性, 也因此特性,本研究選用 Cauchy 小波進行小波轉換。

依(2.13)、(2.14)、(2.17)及(2.18),可得訊號u(t)與其各階導數之小波轉換之間的關係式

$$W_{\psi_n}[\dot{u}](a,b) = -\frac{1}{a}W_{\dot{\psi}_n}[u](a,b) = -\frac{\dot{u}(n+1)}{a}W_{\psi_{n+1}}[u](a,b)$$
(2.19)

$$W_{\psi_n} [\ddot{u}](a,b) = \frac{1}{a^2} W_{\ddot{\psi}_n} [u](a,b) = -\frac{(n+1)(n+2)}{a^2} W_{\psi_{n+2}} [u](a,b)$$
 (2.20)

並且

$$W_{\psi_n}[u](a,b) = \frac{ai}{n} W_{\psi_{n-1}}[\dot{u}](a,b)$$
 (2.21)

$$W_{\psi_n}[u](a,b) = -\frac{a^2}{n(n-1)}W_{\psi_{n-2}}[\ddot{u}](a,b)$$
 (2.22)

此項特性方便於建立運動方程式時之應用,只需加速度、速度或位移中一組訊號數據,即可經由關係式得到其它之訊號數據。

由 Le and Argoul (2004), Cauchy 母小波之時間與頻率中心為

$$t_{\psi} = 0 \quad \phi_{\psi} = n + \frac{1}{2}$$
 (2.23)

實寬及頻寬為

$$\Delta t_{\psi} = \frac{1}{\sqrt{2n-1}} , \Delta \omega_{\psi} = \frac{\sqrt{2n+1}}{2}$$
 (2.24)

而小波之n值與a值所對應的小波中心頻率與頻寬區間分別為(Hz)

$$\frac{n+1/2}{(2\pi)a} , \left[\frac{n+1/2}{2\pi a} - \frac{\sqrt{2n+1}}{4\pi a}, \frac{n+1/2}{2\pi a} + \frac{\sqrt{2n+1}}{4\pi a} \right]$$
 (2.25)

2.3 系統模態識別方法

為了解結構物是否受到損害,可以透過量測結構物各樓板之振動反應, 經由迴歸模型識別其結構系統參數矩陣與動態特性,觀察其是否有改變。 不過由於量測經費、人力、時間等等的限制,在量測現場不太可能一次取 得全結構物之加速度、速度、位移反應數據,所以吾人可應用連續柯西小 波轉換(CCWT)之各階導數關係式於迴歸模型中,節省量測成本,並且可以 達到濾波的效果,使識別結果更加精確。 一具多自由度之線性系統運動方程式表示為

$$[M]\{\ddot{u}\} + [C]\{\dot{u}\} + [K]\{u\} = \{f\}$$
(2.26)

其中[M]、[C]、[K]分別為結構系統之質量、阻尼、勁度矩陣, $\{\ddot{u}\}$ 、 $\{\ddot{u}\}$ 、 $\{\ddot{u}\}$ 则分別為結構系統之加速度、速度、位移反應向量,而 $\{f\}$ 為輸入外力向量。假設[M]為已知,可透過計算結構物各樓板之載重取得,矩陣[C]、[K]為欲識別之未知矩陣。

令 $\{A\}$ 、 $\{V\}$ 、 $\{D\}$ 、 $\{F\}$ 分別表示 $\{\ddot{u}\}$ 、 $\{\ddot{u}\}$ 、 $\{u\}$ 、 $\{f\}$ 之 CCWT。假設只量得加速度反應,依 CCWT 之各階導數間關係式(2.19)、(2.20),可得

$$\{A\} = W_{\psi_n} \lceil \{\ddot{u}\} \rceil (a,b)$$

$$\{V\} = W_{\psi_n} \Big[\{\dot{u}\} \Big] (a,b) = \frac{ai}{n} W_{\psi_{n-1}} \Big[\{\ddot{u}\} \Big] (a,b)$$

$$\{D\} = W_{\psi_n} \Big[\{u\} \Big] (a,b) = -\frac{a^2}{n(n-1)} W_{\psi_{n-2}} \Big[\{\ddot{u}\} \Big] (a,b)$$

對運動方程式(式(2.23))進行以 $\psi_n(t)$ 為母小波函數之 CCWT,可得

$$[M]{A} + [C]{V} + [K]{D} = {F}$$
(2.27)

上式之分量表示為

$$\sum_{i=1}^{N} m_{ij} A_j + c_{ij} V_j + k_{ij} D_j = F_i \qquad \text{for } i = 1, 2..., N$$
 (2.28)

其中 N 為結構之自由度。假設[C]及[K]為對稱矩陣,即 $c_{ij}=c_{ji}$ 、 $k_{ij}=k_{ji}$ 。

為識別 c_{ij} 及 k_{ij} ,定義誤差量函數為

$$e_{i}(a,b) = \left(\sum_{j=1}^{N} m_{ij} A_{i} + c_{ij} V_{i} + k_{ij} D_{i}\right) - F_{i}$$
(2.29)

則總誤差可定義為

$$E = \sum_{i=1}^{N} \sum_{a} \sum_{b} e_{i}(a,b) \overline{e}_{i}(a,b)$$

$$= \sum_{i=1}^{N} \sum_{a} \sum_{b} \left[\left(\sum_{j=1}^{N} m_{ij} A_{i} + c_{ij} V_{i} + k_{ij} D_{i} \right) - F_{i} \right] \cdot \left[\left(\sum_{j=1}^{N} m_{ij} \overline{A}_{i} + c_{ij} \overline{V}_{i} + k_{ij} \overline{D}_{i} \right) - \overline{F}_{i} \right]$$
(2.30)

為求得最佳之 c_{ij} 及 k_{ij} ,使得總誤差 E為最小,故

$$\frac{\partial E}{\partial c_{ij}} = 0 \quad , \quad \frac{\partial E}{\partial k_{ij}} = 0$$

依
$$\frac{\partial E}{\partial c_{ij}} = 0$$
,可得

當 *i=j* 時

$$\begin{split} \sum_{a} \sum_{b} \left\{ V_{i} \left[\left(\sum_{l=1}^{N} m_{il} \overline{A}_{l} + c_{il} \overline{V}_{l} + k_{il} \overline{D}_{l} \right) - \overline{F}_{l} \right] \right. \\ \left. + \overline{V}_{i} \left[\left(\sum_{l=1}^{N} m_{il} A_{l} + c_{il} V_{l} + k_{il} D_{l} \right) - F_{i} \right] \right\} = 0 \end{split}$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(m_{il} V_{i} \overline{A}_{l} + c_{il} V_{i} \overline{V}_{l} + k_{il} V_{i} \overline{D}_{l} + m_{il} \overline{V}_{i} A_{l} + c_{il} \overline{V}_{i} V_{l} + k_{il} \overline{V}_{i} D_{l} \right) - V_{i} \overline{F}_{i} - \overline{V}_{i} F_{i} \right\} = 0$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[V_{i} \overline{V}_{l} \right] + k_{il} \operatorname{Re} \left[V_{i} \overline{D}_{l} \right] + m_{il} \operatorname{Re} \left[V_{i} \overline{A}_{l} \right] \right) - \operatorname{Re} \left[V_{i} \overline{F}_{i} \right] \right\} = 0$$

當 i<j 時

$$\begin{split} \sum_{a} \sum_{b} & \left\{ V_{j} \left(\sum_{l=1}^{N} m_{il} \overline{A}_{l} + c_{il} \overline{V}_{l} + k_{il} \overline{D}_{l} - \overline{F}_{i} \right) \right. \\ & + \overline{V}_{j} \left(\sum_{l=1}^{N} m_{il} A_{l} + c_{il} V_{l} + k_{il} D_{l} - F_{i} \right) \\ & + V_{i} \left(\sum_{l=1}^{N} m_{jl} \overline{A}_{l} + c_{jl} \overline{V}_{l} + k_{jl} \overline{D}_{l} - \overline{F}_{j} \right) \\ & + \overline{V}_{i} \left(\sum_{l=1}^{N} m_{jl} A_{l} + c_{jl} V_{l} + k_{jl} D_{l} - F_{j} \right) \bigg\} = 0 \end{split}$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[V_{j} \overline{V}_{l} \right] + c_{jl} \operatorname{Re} \left[V_{i} \overline{V}_{l} \right] \right. \right. \\ \left. + k_{il} \operatorname{Re} \left[V_{j} \overline{D}_{l} \right] + k_{jl} \operatorname{Re} \left[V_{i} \overline{D}_{l} \right] \right. \\ \left. + m_{il} \operatorname{Re} \left[V_{j} \overline{A}_{l} \right] + m_{jl} \operatorname{Re} \left[V_{i} \overline{A}_{l} \right] \right) \\ \left. - \operatorname{Re} \left[V_{j} \overline{F}_{i} \right] - \operatorname{Re} \left[V_{i} \overline{F}_{j} \right] \right\} = 0$$

依
$$\frac{\partial E}{\partial k_{ij}} = 0$$
,可得

當 *i=j* 時

$$\begin{split} \sum_{a} \sum_{b} \left\{ D_{i} \left[\left(\sum_{l=1}^{N} m_{il} \overline{A}_{l} + c_{il} \overline{V}_{l} + k_{il} \overline{D}_{l} \right) - \overline{F}_{i} \right] \right. \\ \left. + \overline{D}_{i} \left[\left(\sum_{l=1}^{N} m_{il} A_{l} + c_{il} V_{l} + k_{il} D_{l} \right) - F_{i} \right] \right\} = 0 \end{split}$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(m_{il} D_{i} \overline{A}_{l} + c_{il} D_{i} \overline{V}_{l} + k_{il} D_{i} \overline{D}_{l} + m_{ij} \overline{D}_{i} A_{l} + c_{il} \overline{D}_{i} V_{l} + k_{il} \overline{D}_{i} D_{l} \right) - D_{i} \overline{F}_{i} - \overline{D}_{i} F_{i} \right\} = 0$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[D_{i} \overline{V}_{l} \right] + k_{il} \operatorname{Re} \left[D_{i} \overline{D}_{l} \right] + m_{il} \operatorname{Re} \left[D_{i} \overline{A}_{l} \right] \right) - \operatorname{Re} \left[D_{i} \overline{F}_{l} \right] \right\} = 0$$

當 i<j 時

$$\begin{split} \sum_{a} \sum_{b} \left\{ D_{j} \left(\sum_{l=1}^{N} m_{il} \overline{A}_{l} + c_{il} \overline{V}_{l} + k_{il} \overline{D}_{l} - \overline{F}_{i} \right) \\ + \overline{D}_{j} \left(\sum_{l=1}^{N} m_{il} A_{l} + c_{il} V_{l} + k_{il} D_{l} - F_{i} \right) \\ + D_{i} \left(\sum_{l=1}^{N} m_{jl} \overline{A}_{l} + c_{jl} \overline{V}_{l} + k_{jl} \overline{D}_{l} - \overline{F}_{j} \right) \\ + \overline{D}_{i} \left(\sum_{l=1}^{N} m_{jl} A_{l} + c_{jl} V_{l} + k_{jl} D_{l} - F_{j} \right) \right\} = 0 \end{split}$$

$$\Rightarrow \sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[D_{j} \overline{V}_{l} \right] + c_{jl} \operatorname{Re} \left[D_{i} \overline{V}_{l} \right] \right. \right. \\ + \left. k_{il} \operatorname{Re} \left[D_{j} \overline{D}_{l} \right] + k_{jl} \operatorname{Re} \left[D_{i} \overline{D}_{l} \right] \right. \\ + \left. m_{il} \operatorname{Re} \left[D_{j} \overline{A}_{l} \right] + m_{jl} \operatorname{Re} \left[D_{i} \overline{A}_{l} \right] \right) \\ - \operatorname{Re} \left[D_{j} \overline{F}_{i} \right] - \operatorname{Re} \left[D_{i} \overline{F}_{j} \right] \right\} = 0$$

整理可得

$$\begin{cases}
\sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[V_{i} \overline{V}_{l} \right] + k_{il} \operatorname{Re} \left[V_{i} \overline{D}_{l} \right] + m_{il} \operatorname{Re} \left[V_{i} \overline{U}_{l} \right] \right) \\
- \operatorname{Re} \left[V_{i} \overline{F}_{j} \right] \right\} = 0 & for \ i = j
\end{cases}$$

$$\frac{\partial E}{\partial c_{ij}} = \begin{cases}
\sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[V_{j} \overline{V}_{l} \right] + c_{jl} \operatorname{Re} \left[V_{i} \overline{V}_{l} \right] \right. \\
+ k_{il} \operatorname{Re} \left[V_{j} \overline{D}_{l} \right] + k_{jl} \operatorname{Re} \left[V_{i} \overline{D}_{l} \right] \\
+ m_{il} \operatorname{Re} \left[V_{j} \overline{A}_{l} \right] + m_{jl} \operatorname{Re} \left[V_{i} \overline{A}_{l} \right] \right) \\
- \operatorname{Re} \left[V_{j} \overline{F}_{i} \right] - \operatorname{Re} \left[V_{i} \overline{F}_{j} \right] \right\} = 0 & for \ i < j
\end{cases}$$

$$\begin{cases}
\sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[D_{i} \overline{V}_{l} \right] + k_{jl} \operatorname{Re} \left[D_{i} \overline{D}_{l} \right] + m_{il} \operatorname{Re} \left[D_{i} \overline{A}_{l} \right] \right) \\
- \operatorname{Re} \left[D_{j} \overline{F}_{j} \right] \right\} = 0 & for \ i = j
\end{cases}$$

$$\frac{\partial E}{\partial k_{ij}} = \begin{cases}
\sum_{a} \sum_{b} \left\{ \sum_{l=1}^{N} \left(c_{il} \operatorname{Re} \left[D_{j} \overline{V}_{l} \right] + c_{jl} \operatorname{Re} \left[D_{i} \overline{D}_{l} \right] \\
+ k_{il} \operatorname{Re} \left[D_{j} \overline{D}_{l} \right] + k_{jl} \operatorname{Re} \left[D_{i} \overline{D}_{l} \right] \\
+ m_{il} \operatorname{Re} \left[D_{j} \overline{A}_{l} \right] + m_{jl} \operatorname{Re} \left[D_{i} \overline{A}_{l} \right] \right) \\
- \operatorname{Re} \left[D_{j} \overline{F}_{i} \right] - \operatorname{Re} \left[D_{i} \overline{F}_{j} \right] \right\} = 0 & for \ i < j
\end{cases}$$

$$(2.31)$$

上式可整理成矩陣形式

$$RS + Q = 0 ag{2.32}$$

其中

$$S = \begin{pmatrix} c_{11} & c_{22} & \cdots & c_{NN} & c_{12} & c_{13} & \cdots & c_{(N-1)(N)} \\ k_{11} & k_{22} & \cdots & k_{NN} & k_{12} & k_{13} & \cdots & k_{(N-1)(N)} \end{pmatrix}^{T}$$

$$= \begin{cases} \{\tilde{c}\} \\ \{\tilde{k}\} \end{cases}$$
(2.33)

$$R = \begin{bmatrix} \begin{bmatrix} R_{c1} \end{bmatrix} & \begin{bmatrix} R_{k1} \end{bmatrix} \\ \begin{bmatrix} R_{c2} \end{bmatrix} & \begin{bmatrix} R_{k2} \end{bmatrix} \end{bmatrix}$$

$$Q = \begin{bmatrix} [Q_1] \\ [Q_2] \end{bmatrix}$$

其中

$$R_{c1} = \begin{bmatrix} \begin{bmatrix} R_{c1m1} \end{bmatrix} & \begin{bmatrix} R_{c1m2} \end{bmatrix} \\ \begin{bmatrix} R_{c1m3} \end{bmatrix} & \begin{bmatrix} R_{c1m4} \end{bmatrix} \end{bmatrix}$$

$$R_{c1m1} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re} \left[V_{1} \overline{V_{1}} \right] & 0 & \cdots & 0 \\ 0 & \operatorname{Re} \left[V_{2} \overline{V_{2}} \right] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \operatorname{Re} \left[V_{N} \overline{V_{N}} \right] \end{bmatrix}$$

$$R_{c1m2} = \sum_{a} \sum_{b} \begin{bmatrix} \text{Re} \left[V_{1} \overline{V}_{2} \right] & \text{Re} \left[V_{1} \overline{V}_{3} \right] & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \text{Re} \left[V_{2} \overline{V}_{1} \right] & 0 & \cdots & \text{Re} \left[V_{2} \overline{V}_{3} \right] & \text{Re} \left[V_{2} \overline{V}_{4} \right] & \cdots & \cdots & 0 \\ 0 & \text{Re} \left[V_{3} \overline{V}_{1} \right] & \cdots & \text{Re} \left[V_{3} \overline{V}_{2} \right] & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \text{Re} \left[V_{4} \overline{V}_{2} \right] & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \text{Re} \left[V_{N-2} \overline{V}_{N} \right] & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0 & \text{Re} \left[V_{N-1} \overline{V}_{N} \right] \\ 0 & 0 & 0 & 0 & 0 & \cdots & \text{Re} \left[V_{N} \overline{V}_{N-2} \right] & \text{Re} \left[V_{N} \overline{V}_{N-1} \right] \end{bmatrix}$$

$$R_{N-1} = R^{T}$$

$$R_{c1m3} = R_{c1m2}^T$$

$$R_{c1m4} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re} \left[V_{1} \overline{V}_{1} \right] + \operatorname{Re} \left[V_{2} \overline{V}_{2} \right] & \operatorname{Re} \left[V_{2} \overline{V}_{3} \right] & \cdots & \cdots & 0 \\ \operatorname{Re} \left[V_{3} \overline{V}_{2} \right] & \operatorname{Re} \left[V_{1} \overline{V}_{1} \right] + \operatorname{Re} \left[V_{3} \overline{V}_{3} \right] & \cdots & \cdots & \operatorname{Re} \left[V_{1} \overline{V}_{N} \right] \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \operatorname{Re} \left[V_{N-2} \overline{V}_{N-2} \right] + \operatorname{Re} \left[V_{N} \overline{V}_{N} \right] & \operatorname{Re} \left[V_{N-2} \overline{V}_{N-1} \right] \\ 0 & \operatorname{Re} \left[V_{N} \overline{V}_{1} \right] & \cdots & \operatorname{Re} \left[V_{N-1} \overline{V}_{N-2} \right] & \operatorname{Re} \left[V_{N-1} \overline{V}_{N-1} \right] + \operatorname{Re} \left[V_{N} \overline{V}_{N} \right] \end{bmatrix}$$

$$R_{c2} = \begin{bmatrix} \begin{bmatrix} R_{c2m1} \end{bmatrix} & \begin{bmatrix} R_{c2m2} \end{bmatrix} \\ \begin{bmatrix} R_{c2m3} \end{bmatrix} & \begin{bmatrix} R_{c2m4} \end{bmatrix} \end{bmatrix}$$

$$R_{c2m1} = \sum_{a} \sum_{b} \begin{bmatrix} \text{Re} \begin{bmatrix} D_1 \overline{V_1} \end{bmatrix} & 0 & \cdots & 0 \\ 0 & \text{Re} \begin{bmatrix} D_2 \overline{V_2} \end{bmatrix} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

$$R_{c2m2} = \sum_{a} \sum_{b} \begin{bmatrix} \text{Re} \left[D_{1} \overline{V}_{2} \right] & \text{Re} \left[D_{1} \overline{V}_{3} \right] & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \text{Re} \left[D_{2} \overline{V}_{2} \right] & 0 & \cdots & \text{Re} \left[D_{2} \overline{V}_{3} \right] & \text{Re} \left[D_{2} \overline{V}_{4} \right] & \cdots & \cdots & 0 \\ 0 & \text{Re} \left[D_{3} \overline{V}_{1} \right] & \cdots & \text{Re} \left[D_{3} \overline{V}_{2} \right] & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \text{Re} \left[D_{4} \overline{V}_{2} \right] & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \text{Re} \left[D_{N-2} \overline{V}_{N} \right] & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0 & \text{Re} \left[D_{N-1} \overline{V}_{N} \right] \\ 0 & 0 & 0 & 0 & 0 & \cdots & \text{Re} \left[D_{N} \overline{V}_{N-2} \right] & \text{Re} \left[D_{N} \overline{V}_{N-1} \right] \end{bmatrix}$$

 $\operatorname{Re}\left[D_{\scriptscriptstyle N} \overline{V}_{\scriptscriptstyle N}\right]$

$$R_{c2m3} = R_{c2m2}^T$$

$$R_{c2m4} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re} \left[D_{1} \overline{V}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{V}_{2} \right] & \operatorname{Re} \left[D_{2} \overline{V}_{3} \right] & \cdots & \cdots & 0 \\ \operatorname{Re} \left[D_{3} \overline{V}_{2} \right] & \operatorname{Re} \left[D_{1} \overline{V}_{1} \right] + \operatorname{Re} \left[D_{3} \overline{V}_{3} \right] & \cdots & \cdots & \operatorname{Re} \left[D_{1} \overline{V}_{N} \right] \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \operatorname{Re} \left[D_{N-2} \overline{V}_{N-2} \right] + \operatorname{Re} \left[D_{N} \overline{V}_{N} \right] & \operatorname{Re} \left[D_{N-2} \overline{V}_{N-1} \right] \\ 0 & \operatorname{Re} \left[D_{N} \overline{V}_{1} \right] & \cdots & \operatorname{Re} \left[D_{N-1} \overline{V}_{N-2} \right] & \operatorname{Re} \left[D_{N-1} \overline{V}_{N-1} \right] + \operatorname{Re} \left[D_{N} \overline{V}_{N} \right] \end{bmatrix}$$

$$R_{k1} = \begin{bmatrix} \begin{bmatrix} R_{k1m1} \end{bmatrix} & \begin{bmatrix} R_{k1m2} \end{bmatrix} \\ \begin{bmatrix} R_{k1m3} \end{bmatrix} & \begin{bmatrix} R_{k1m4} \end{bmatrix} \end{bmatrix}$$

$$R_{k1m1} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re} \left[V_{1} \overline{D}_{1} \right] & 0 & \cdots & 0 \\ 0 & \operatorname{Re} \left[V_{2} \overline{D}_{2} \right] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \operatorname{Re} \left[V_{N} \overline{D}_{N} \right] \end{bmatrix}$$

$$Re[V_{1}\bar{D}_{2}] \quad Re[V_{1}\bar{D}_{3}] \quad \cdots \quad 0 \quad 0 \quad \cdots \quad \cdots \quad 0$$

$$Re[V_{2}\bar{D}_{1}] \quad 0 \quad \cdots \quad Re[V_{2}\bar{D}_{3}] \quad Re[V_{2}\bar{D}_{4}] \quad \cdots \quad \cdots \quad 0$$

$$0 \quad Re[V_{3}\bar{D}_{1}] \quad \cdots \quad Re[V_{3}\bar{D}_{2}] \quad 0 \quad \cdots \quad \cdots \quad 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad Re[V_{N-2}\bar{D}_{N}] \quad 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad Re[V_{N}\bar{D}_{N-2}] \quad Re[V_{N}\bar{D}_{N-1}]$$

$$R_{k1m3} = R_{k1m2}^T$$

$$Re\begin{bmatrix} \operatorname{Re} \left[V_1 \overline{D}_1 \right] + \operatorname{Re} \left[V_2 \overline{D}_2 \right] & \operatorname{Re} \left[V_2 \overline{D}_3 \right] & \cdots & \cdots & 0 \\ \operatorname{Re} \left[V_3 \overline{D}_2 \right] & \operatorname{Re} \left[V_1 \overline{D}_1 \right] + \operatorname{Re} \left[V_3 \overline{D}_3 \right] & \cdots & \cdots & \operatorname{Re} \left[V_1 \overline{D}_N \right] \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \operatorname{Re} \left[V_{N-2} \overline{D}_{N-2} \right] + \operatorname{Re} \left[V_N \overline{D}_N \right] & \operatorname{Re} \left[V_{N-2} \overline{D}_{N-1} \right] \\ 0 & \operatorname{Re} \left[V_N \overline{D}_1 \right] & \cdots & \operatorname{Re} \left[V_{N-1} \overline{D}_{N-2} \right] & \operatorname{Re} \left[V_{N-1} \overline{D}_{N-1} \right] + \operatorname{Re} \left[V_N \overline{D}_N \right] \end{bmatrix}$$

$$R_{k2} = \begin{bmatrix} \begin{bmatrix} R_{k2m1} \end{bmatrix} & \begin{bmatrix} R_{k2m2} \end{bmatrix} \\ \begin{bmatrix} R_{k2m3} \end{bmatrix} & \begin{bmatrix} R_{k2m4} \end{bmatrix} \end{bmatrix}$$

$$R_{k2m1} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re} \left[D_{1} \overline{D}_{1} \right] & 0 & \cdots & 0 \\ 0 & \operatorname{Re} \left[D_{2} \overline{D}_{2} \right] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \operatorname{Re} \left[D_{N} \overline{D}_{N} \right] \end{bmatrix}$$

$$Re[D_{1}\bar{D}_{2}] \quad Re[D_{1}\bar{D}_{3}] \quad \cdots \quad 0 \quad 0 \quad \cdots \quad \cdots \quad 0$$

$$Re[D_{2}\bar{D}_{1}] \quad 0 \quad \cdots \quad Re[D_{2}\bar{D}_{3}] \quad Re[D_{2}\bar{D}_{4}] \quad \cdots \quad \cdots \quad 0$$

$$0 \quad Re[D_{3}\bar{D}_{1}] \quad \cdots \quad Re[D_{3}\bar{D}_{2}] \quad 0 \quad \cdots \quad \cdots \quad 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad Re[D_{N-2}\bar{D}_{N}] \quad 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots \quad 0 \quad Re[D_{N-1}\bar{D}_{N}]$$

$$0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad Re[D_{N}\bar{D}_{N-2}] \quad Re[D_{N}\bar{D}_{N-1}]$$

$$R_{k2m3} = R_{k2m2}^T$$

$$R_{k2m4} = \sum_{a} \sum_{b} \begin{bmatrix} \operatorname{Re}\left[D_{1}\bar{D}_{1}\right] + \operatorname{Re}\left[D_{2}\bar{D}_{2}\right] & \operatorname{Re}\left[D_{2}\bar{D}_{3}\right] & \cdots & \cdots & 0 \\ \operatorname{Re}\left[D_{3}\bar{D}_{2}\right] & \operatorname{Re}\left[D_{1}\bar{D}_{1}\right] + \operatorname{Re}\left[D_{3}\bar{D}_{3}\right] & \cdots & \cdots & \operatorname{Re}\left[D_{1}\bar{D}_{N}\right] \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & \operatorname{Re}\left[D_{N-2}\bar{D}_{N-2}\right] + \operatorname{Re}\left[D_{N}\bar{D}_{N}\right] & \operatorname{Re}\left[D_{N-2}\bar{D}_{N-1}\right] \\ 0 & \operatorname{Re}\left[D_{N}\bar{D}_{1}\right] & \cdots & \operatorname{Re}\left[D_{N-1}\bar{D}_{N-2}\right] & \operatorname{Re}\left[D_{N-1}\bar{D}_{N-1}\right] + \operatorname{Re}\left[D_{N}\bar{D}_{N}\right] \end{bmatrix}$$

且

$$Q_{1} = \sum_{a} \sum_{b} \begin{bmatrix} m_{11} \operatorname{Re} \left[V_{1} \overline{A}_{1} \right] \\ m_{22} \operatorname{Re} \left[V_{2} \overline{A}_{2} \right] \\ \vdots \\ m_{NN} \operatorname{Re} \left[V_{N} \overline{A}_{N} \right] \\ m_{11} \operatorname{Re} \left[V_{2} \overline{A}_{1} \right] + m_{22} \operatorname{Re} \left[V_{1} \overline{A}_{2} \right] \\ m_{11} \operatorname{Re} \left[V_{3} \overline{A}_{1} \right] + m_{33} \operatorname{Re} \left[V_{1} \overline{A}_{3} \right] \\ \vdots \\ m_{22} \operatorname{Re} \left[V_{3} \overline{A}_{2} \right] + m_{33} \operatorname{Re} \left[V_{2} \overline{A}_{3} \right] \\ m_{22} \operatorname{Re} \left[V_{4} \overline{A}_{2} \right] + m_{44} \operatorname{Re} \left[V_{2} \overline{A}_{4} \right] \\ \vdots \\ m_{(N-1)(N-1)} \operatorname{Re} \left[V_{N} \overline{A}_{N-1} \right] + m_{NN} \operatorname{Re} \left[V_{N-1} \overline{A}_{N} \right] \end{bmatrix}$$

$$\operatorname{Re} \left[V_{1} \overline{F}_{1} \right] + \operatorname{Re} \left[V_{1} \overline{F}_{2} \right] \\ \operatorname{Re} \left[V_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[V_{1} \overline{F}_{2} \right] \\ \operatorname{Re} \left[V_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[V_{2} \overline{F}_{3} \right] \\ \vdots \\ \operatorname{Re} \left[V_{3} \overline{F}_{2} \right] + \operatorname{Re} \left[V_{2} \overline{F}_{4} \right] \\ \vdots \\ \operatorname{Re} \left[V_{4} \overline{F}_{2} \right] + \operatorname{Re} \left[V_{2} \overline{F}_{4} \right] \\ \vdots \\ \operatorname{Re} \left[V_{N} \overline{F}_{N-1} \right] + \operatorname{Re} \left[V_{N-1} \overline{F}_{N} \right]$$

$$Q_{2} = \sum_{a} \sum_{b} \begin{bmatrix} m_{11} \operatorname{Re} \left[D_{1} \overline{A}_{1} \right] \\ m_{22} \operatorname{Re} \left[D_{2} \overline{A}_{2} \right] \\ \vdots \\ m_{NN} \operatorname{Re} \left[D_{N} \overline{A}_{N} \right] \\ m_{11} \operatorname{Re} \left[D_{2} \overline{A}_{1} \right] + m_{22} \operatorname{Re} \left[D_{1} \overline{A}_{2} \right] \\ \vdots \\ m_{11} \operatorname{Re} \left[D_{2} \overline{A}_{1} \right] + m_{22} \operatorname{Re} \left[D_{1} \overline{A}_{2} \right] \\ \vdots \\ m_{11} \operatorname{Re} \left[D_{3} \overline{A}_{1} \right] + m_{33} \operatorname{Re} \left[D_{1} \overline{A}_{3} \right] \\ \vdots \\ m_{22} \operatorname{Re} \left[D_{3} \overline{A}_{2} \right] + m_{33} \operatorname{Re} \left[D_{2} \overline{A}_{3} \right] \\ \vdots \\ m_{22} \operatorname{Re} \left[D_{4} \overline{A}_{2} \right] + m_{44} \operatorname{Re} \left[D_{2} \overline{A}_{4} \right] \\ \vdots \\ m_{(N-1)(N-1)} \operatorname{Re} \left[D_{N} \overline{A}_{N-1} \right] + m_{NN} \operatorname{Re} \left[D_{N-1} \overline{A}_{N} \right] \end{bmatrix}$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{1} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right]$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{2} \right]$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{2} \right]$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{2} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{4} \right]$$

$$\vdots$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{1} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{1} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}_{3} \right]$$

$$\operatorname{Re} \left[D_{2} \overline{F}_{2} \right] + \operatorname{Re} \left[D_{2} \overline{F}$$

可用最小平方差法求解係數矩陣

$$S = \left(R^T R\right)^{-1} R^T \left(-Q\right) \tag{2.34}$$

所得之S為勁度矩陣[K]與阻尼矩陣[C]的集合,需重新排列組合為一般之勁度、阻尼矩陣形式,即

$$K = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}$$

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1N} \\ c_{21} & c_{22} & \cdots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \cdots & c_{NN} \end{bmatrix}$$

而求勁度矩陣[K]之特徵值與特徵向量可得其動態特性,即自然振動頻率與振態。

由 Bedaoui et al. (2011),吾人將試著使用另一組迴歸模型進行識別。 於式(2.28),將 $\{A\}$ 、 $\{V\}$ 、 $\{D\}$ 之實部與虛部分離,分別構成兩組方程式

$$\sum_{j=1}^{N} m_{ij} \operatorname{Re}[A_j] + c_{ij} \operatorname{Re}[V_j] + k_{ij} \operatorname{Re}[D_j] = \operatorname{Re}[F_i] \qquad \text{for } i = 1, 2..., N \quad (2.35)$$

$$\sum_{j=1}^{N} m_{ij} \operatorname{Im} \left[A_{j} \right] + c_{ij} \operatorname{Im} \left[V_{j} \right] + k_{ij} \operatorname{Im} \left[D_{j} \right] = \operatorname{Im} \left[F_{i} \right] \qquad \text{for } i = 1, 2..., N \quad (2.36)$$

利用與式(2.32)相同的要領,整理成矩陣形式

$$\operatorname{Re}[R']S + \operatorname{Re}[Q'] = 0 \tag{2.37}$$

$$Im[R']S + Im[Q'] = 0 (2.38)$$

其中

$$S = \begin{pmatrix} c_{11} & c_{22} & \cdots & c_{NN} & c_{12} & c_{13} & \cdots & c_{(N-1)(N)} \\ k_{11} & k_{22} & \cdots & k_{NN} & k_{12} & k_{13} & \cdots & k_{(N-1)(N)} \end{pmatrix}^{T} \\ = \begin{cases} \left\{ \tilde{c} \right\} \\ \left\{ \tilde{k} \right\} \end{cases}$$

$$R' = \begin{bmatrix} \begin{bmatrix} R_c \end{bmatrix} & \begin{bmatrix} R_k \end{bmatrix} \end{bmatrix}$$

其中

$$R_c' = \begin{bmatrix} R_{cm1}' \end{bmatrix} \begin{bmatrix} R_{cm2}' \end{bmatrix}$$

$$R_{cm1}' = \begin{bmatrix} V_1 & 0 & \cdots & 0 \\ 0 & V_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & V_N \end{bmatrix}$$

$$\begin{bmatrix} V & V & \cdots & 0 & 0 & \cdots & \cdots & 0 \end{bmatrix}$$

$$R_{cm2}' = \begin{bmatrix} V_2 & V_3 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ V_1 & 0 & \cdots & V_3 & V_4 & \cdots & \cdots & 0 \\ 0 & V_1 & \cdots & V_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & V_2 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & V_N & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0 & V_N \\ 0 & 0 & 0 & 0 & 0 & \cdots & V_{N-2} & V_{N-1} \end{bmatrix}$$

$$R_{k}' = \begin{bmatrix} \begin{bmatrix} R_{km1}' \end{bmatrix} & \begin{bmatrix} R_{km2}' \end{bmatrix} \end{bmatrix}$$

$$R_{km1}' = \begin{bmatrix} D_1 & 0 & \cdots & 0 \\ 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_N \end{bmatrix}$$

$$R_{cm2}' = \begin{bmatrix} D_2 & D_3 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ D_1 & 0 & \cdots & D_3 & D_4 & \cdots & \cdots & 0 \\ 0 & D_1 & \cdots & D_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 0 & D_2 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & D_N & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0 & D_N \\ 0 & 0 & 0 & 0 & 0 & \cdots & D_{N-2} & D_{N-1} \end{bmatrix}$$

且

$$Q' = \begin{bmatrix} m_{11}A_1 - F_1 \\ m_{22}A_2 - F_2 \\ \vdots \\ m_{NN}A_N - F_N \end{bmatrix}$$

由於輸入訊號是離散數據,式(2.37)、(2.38)中R'、Q'由其中一點位之數值構成,於建立迴歸模型矩陣時,將各點位之R'、Q'矩陣先後依實部及虛部排列合併,構成一超定矩陣,如

$$R = egin{bmatrix} \operatorname{Re}[R_1'] \\ \operatorname{Re}[R_2'] \\ \vdots \\ \operatorname{Re}[R_{np}'] \\ \operatorname{Im}[R_1'] \\ \operatorname{Im}[R_2'] \\ \vdots \\ \operatorname{Im}[R_{np}'] \end{bmatrix}$$
 $Q = egin{bmatrix} \operatorname{Re}[Q_1'] \\ \operatorname{Re}[Q_2'] \\ \vdots \\ \operatorname{Im}[Q_1'] \\ \operatorname{Im}[Q_2'] \\ \vdots \\ \operatorname{Im}[Q_{np}'] \end{bmatrix}$

其中 np 表示迴歸時所取的總數據長度,而

$$RS + Q = 0 ag{2.39}$$

以最小平方差法求解係數矩陣

$$S = \left(R^T R\right)^{-1} R^T \left(-Q\right) \tag{2.40}$$

後續將會比較這兩種迴歸模型對識別結果造成的影響如何。

根據經驗,土木結構之勁度矩陣[K]可假設為一具帶寬 B 之帶狀矩陣,其中帶寬 B 的定義為,在上三角形矩陣中,除主對角線以外,平行於主對角線之非零項的行數;如一般被用來簡化分析之剪力架構其假設的帶寬 B=1。為了提升識別之精確度,可以附加勁度矩陣或阻尼矩陣之帶寬限制條件於迴歸模型中,若假設勁度矩陣 K 之帶寬為 B,即當|j-i|>B時, $k_{ij}=0$,則將式(2.30)中矩陣 S 之 k_{ij} 項,與矩陣 R、Q 中對應 之行及對應 $\frac{\partial E}{\partial k_{ij}}=0$ 之列移除,可得到附加帶寬限制條件之迴歸模型。

除了全結構識別,本研究亦會以結構系統進行系統識別分析。第 i 樓層 子結構之運動方程式表示為

$$\sum_{j=1}^{N} m_{ij} A_{j} + c_{ij} V_{j} + k_{ij} D_{j} = F_{i}$$

其總誤差可定義為

$$E = \sum_{a} \sum_{b} e_{i}(a,b)\overline{e}_{i}(a,b)$$

$$= \sum_{a} \sum_{b} \left[\left(\sum_{j=1}^{N} m_{ij}A_{i} + c_{ij}V_{i} + k_{ij}D_{i} \right) - F_{i} \right] \cdot \left[\left(\sum_{j=1}^{N} m_{ij}\overline{A}_{i} + c_{ij}\overline{V}_{i} + k_{ij}\overline{D}_{i} \right) - \overline{F}_{i} \right]$$

其後續之處理程序與全結構識別相同,故在此不多做贅述。

第三章 數值分析

3.1 前言

本章將利用七層樓剪力構架之模擬動態反應來驗證 CCWT 應用於識別 勁度矩陣[K]與阻尼矩陣[C]之可行性,並與直接於時間域識別者比較。3.2 節首先利用單自由度訊號探討 CCWT 中各參數之影響,並介紹七層樓剪力 構架之特性與歷時分析。3.3 節探討雜訊對識別結果的影響及優化識別的方 法。3.4 節則延伸前一節之分析至勁度折減案例,探討判斷結構損傷之可能 性。

3.2 數值模擬概述

本章將利用 CCWT 識別勁度矩陣[K]與阻尼矩陣[C],為了決定所取 Cauchy 小波之中心頻率與頻寬,需針對欲識別之結構物動態反應訊號進行 快速傅立葉轉換 (FFT),大致判斷頻譜圖中峰值所在之頻率,接著根據判斷所得之各模態頻率,選擇不同尺度因子 a 以針對不同頻率範圍進行識別,並且決定 Cauchy 小波參數 n 與欲識別之結構系統參數矩陣帶寬,進行系統 識別。

3.2.1 CCWT 之參數設定

本小節利用單自由度之餘弦函數離散訊號為範例,說明 CCWT 中尺度

因子 a 的選擇方法與頻寬的影響。假設有一 $Cos(7\pi t)$ 離散訊號,其訊號長度為 50 秒,取樣頻率為 200 Hz,訊號之中心頻率為 3.5 Hz,如圖 3.1 所示,並將虛線框線部分擷取放大表示。由式(2.26),小波之中心頻率為 $\frac{n+1/2}{(2\pi)a}$

Hz,頻寬為
$$\left[\frac{n+1/2}{2\pi a} - \frac{\sqrt{2n+1}}{4\pi a}, \frac{n+1/2}{2\pi a} + \frac{\sqrt{2n+1}}{4\pi a}\right]$$
 Hz,吾人選用 $n=100$ 之

Cauchy 小波,利用不同之尺度因子 a 對訊號進行 CCWT,分別表示小波頻 寬有無包含訊號之中心頻率的情形:

- (一)、a=4.57,其代表之中心頻率為 3.5Hz,頻寬為 3.25~3.75Hz;
- (二)、a=4.847,其代表之中心頻率為3.3Hz,頻寬為3.07~3.53Hz;
- (三)、a=6.398,其代表之中心頻率為 2.5Hz,頻寬為 2.32~2.68Hz

圖 3.2 為小波域反應訊號全段及截取其 b=20~25 區間之訊號,當小波之頻寬沒有包含訊號之中心頻率時,所分析之反應趨近於零,代表位於頻寬以外頻率之訊號已被過濾掉,故在進行 CCWT 時需調整 a 使小波之頻寬涵蓋訊號頻率,訊號有多組頻率時則須以對應各自頻率之 a 分別進行 CCWT。另外可以由圖 3.2 觀察到小波域訊號前後兩端的訊號比起中間段落起伏稍大或稍小,這是由於小波轉換之邊界效應(edge effect)的影響,故吾人將小波域訊號前後端各佔訊號總長 10%的部分截去,只取用中間段較平穩的部分進行識別。

在識別多自由度系統時,可根據各模態之頻率,大致決定對應自然振

動頻率之尺度因子 a,對訊號進行 CCWT,可獲得各模態分離出之 CCWT 訊號反應。將各模態之 CCWT 訊號反應運用於識別,應可獲得精確之識別結果。

3.2.2 CCWT 各階導數關係式之驗證

為驗證本研究所用電腦程式於CCWT之準確性及各階導數之CCWT關係式(式(2.21)、(2.22))於數值分析之可靠性,吾人利用 3.2.1 節之餘弦函數訊號作為動力反應中之位移反應,以及其一階導數與二階導數函數作為速度與加速度反應;即

位移: $u(t) = Cos(7\pi t)$

速度: $\dot{u}(t) = -7\pi Sin(7\pi t)$

加速度: $\ddot{u}(t) = -49\pi^2 Cos(7\pi t)$

首先對以上函數之離散訊號進行 CCWT,取 n=100 之 Cauchy 小波,所得實數都隨 b 變化,如圖 3.3 所示;然後分別以 n=99、98 之 Cauchy 小波對加速度訊號進行 CCWT,透過式(2.21)、(2.22)轉換為相對於 n=100 之速度、位移 CCWT,如圖 3.4 所示。分別比較圖 3.3 及圖 3.4 之速度與位移,發現兩組幾乎重合,可證明式(2.21)、(2.22)具可靠性。

3.2.3 七層樓剪力構架

為驗證本研究之可行性,對一七層剪力構架(如圖 3.5 所示)之數值模

擬反應進行分析。假設剪力構架之質量矩陣[M]、勁度矩陣[K]、阻尼矩陣[C]分別為

$$[M] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} ton$$

$$[K] = \begin{bmatrix} 600 & -600 & 0 & 0 & 0 & 0 & 0 \\ -600 & 1200 & -600 & 0 & 0 & 0 & 0 \\ 0 & -600 & 1200 & -600 & 0 & 0 & 0 \\ 0 & 0 & -600 & 1200 & -600 & 0 & 0 \\ 0 & 0 & 0 & -600 & 1200 & -600 & 0 \\ 0 & 0 & 0 & 0 & -600 & 2400 & -1800 \\ 0 & 0 & 0 & 0 & -1800 & 3800 \end{bmatrix}$$

$$[C] = \begin{bmatrix} 1.2 & -1.2 & 0 & 0 & 0 & 0 & 0 \\ -1.2 & 2.4 & -1.2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1.2 & 2.4 & -1.2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1.2 & 2.4 & -1.2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1.2 & 2.4 & -1.2 & 0 \\ 0 & 0 & 0 & 0 & -1.2 & 4.8 & -3.6 \\ 0 & 0 & 0 & 0 & -3.6 & 7.6 \end{bmatrix}$$

其中[C]=0.002[K] (不考慮單位)

此七層樓剪力構架之理論動態特性如表 3.1 所示,共有七個模態,其自然振動頻率理論值分別為 0.71Hz、2.21Hz、3.20Hz、4.11Hz、5.01Hz、5.26Hz、8.01Hz;第 5、6 模態之頻率很接近,有嚴重模態干擾現象。以集集地震作

為基礎震動之加速度輸入訊號,並考慮零初始條件,以 Runge-Kutta 法進行動力分析,設取樣頻率為 250Hz,計算得各樓層之加速度、速度、位移反應,加速度歷時反應及頻譜分別如圖 3.6、圖 3.7 所示。由頻譜圖可以容易觀察出 0.7Hz、2.2Hz、3.2Hz、4.1Hz 處有明顯峰值,為前四個模態之自然振動頻率,而部分樓層之 5Hz、8Hz 處有較不明顯之峰值,且在 5Hz 處附近無法觀察出兩道峰值,表示此結構物之第五及第六模態之間會互相干擾,以致無法輕易判別。本研究亦利用此剪力構架模擬結構損傷前後的識別比較,如在進行動力分析時,將某樓層之勁度折減,即可模擬該樓層柱斷面受損的情形。

3.3 全結構[K]及[C]之識別

數值模擬反應之識別流程如圖 3.8 所示,為界定系統識別之精確度,除可直接分別比較識別所得之[K]及[C]與理論值;但在實際應用上,理論值為未知,因此,可以識別所得之[K]及[C]計算模態參數,在與用其他方法所得之模態相比。為比較識別與理論模態之一致性,可利用 MAC (modal assurance criterion) 值為指標 (Allemang and Brown, 1983),其定義為

$$MAC(\psi_{iI},\psi_{iT}) = \frac{\left| \left\{ \psi_{iI} \right\}^{T} \left\{ \psi_{iT} \right\} \right|^{2}}{\left\{ \psi_{iI} \right\}^{T} \left\{ \psi_{iI} \right\} \left\{ \psi_{iT} \right\}^{T} \left\{ \psi_{iT} \right\}}$$

其中 $\{\psi_{ii}\}$ 與 $\{\psi_{iT}\}$ 分別為識別與理論值之第i模態。當兩者模態完全吻合

時,MAC=1,而當兩者模態差異越大,MAC值愈接近於0。

若自然振動頻率與阻尼比之相對誤差分別小於 2%與 20%,且 MAC 值 大於等於 0.9 時,判定識別結果為準確。

3.3.1 無雜訊情況

在時間域直接識別,假設量得七層樓剪力構架之加速度、速度、位移 反應訊號,依式 2.1 所述方法進行識別,假設[K]與[C]為全矩陣,所得結果 如表 3.2 所示;而表 3.3 所示者則為近一步計算模態參數與理論值比較。可 觀察到在無雜訊的情形下,自然頻率的識別品質非常良好,最大誤差為 -0.16%;但阻尼比識別誤差卻相當大,誤差介於-97%至-117%之間。阻尼之 大誤差應是由於使用 Runge-Kutta 法計算動力反應之數值分析誤差,且其加 速度、速度、位移反應之間並不完全滿足微積分關係。若在模擬動力反應 時用較短時間間隔進行分析,如取樣頻率 1000Hz,阻尼矩陣識別品質可以 得到明顯改善,如表 3.4、表 3.5 所示,最大誤差降至-29.1%。

進行小波域之識別分析,須將時間域反應訊號轉換至小波域。假設只量得結構物之加速度反應。為取離各模態頻率較近之反應進行識別分析,在進行 CCWT前,由反應訊號之頻譜圖得到各模態之頻率,並改變尺度函數 a 以調整小波的中心頻率,使其與模態頻率相近,接著分別使用對應於各模態頻率之 a 值進行 CCWT。 a 值的定義為式(2.23)所示,須注意選擇的是,a 值會隨著 Cauchy 小波的 n 改變。

本研究所使用之七層樓剪力構架,從其頻譜圖(圖 3.10)可大約找出各模態之自然振動頻率。假設得知其自然振動頻率分別為 0.7Hz、2.2Hz、3.2Hz、4.1Hz、5.0Hz、5.2Hz 以及 8.0Hz,依式(2.23)求得各模態頻率對應的 a 值,若進行 CCWT 時使用 n=100 之 Cauchy 小波,則選用的 a 依序為 22.86、7.27、5.00、3.90、3.20、3.08 以及 2.00,其各自代表之頻寬範圍依序為 0.65~0.75 Hz、2.04~2.36Hz、2.97~3.43 Hz、3.81~4.39Hz、4.65~5.35Hz、4.83~5.57Hz及 7.44~8.56Hz。分別對各樓層之加速度反應訊號,依對應各模態頻率之 a 進行 CCWT。選用 n=100、n=99、n=98 之 Cauchy 小波,依上述程序對加速度反應訊號進行 CCWT,並且將 n=99、98 所得之小波域反應透過式(2.21)、(2.22)轉換為相當於 n=100 之速度、位移小波域反應,因此可得結構物各樓層之加速度、速度、位移小波域反應訊號。

圖 3.9 所示者為,取 n=100 之 Cauchy 小波,及對應各模態頻率之 a 值,對第七樓層加速度反應進行 CCWT 所得之訊號;圖中實部與虛部分別表示,使用的 a 值依序對應第一模態頻率至第七模態頻率。由於當使用同一 a 值對不同樓層反應訊號進行 CCWT 之小波域反應振型皆相似,故在此僅以第七樓層反應為代表表示之。

有了小波域反應,將其代入迴歸模型進行識別。為探討不同的迴歸模型對識別結果的影響,分別採用第二章所提的兩種迴歸分析模式進行識別, 使用第一種迴歸分析之識別結果如表 3.6 及表 3.7 所示,使用第二種迴歸模 型之識別結果如表 3.8 及表 3.9 所示; 發現在相同的輸入訊號及帶寬設定下, 兩種迴歸模型所識別的結果完全相同,表示此兩種迴歸分析模式對等。由於第一種迴歸分析模式建立於可靠之數學理論依據,故吾人採用第一種迴歸分析模式進行識別分析。

觀察表 3.6、表 3.7 所示之識別結果,發現第五、第六模態之識別結果並不理想,MAC 值分別為 0.03 與 0.24,阻尼比相對誤差分別為-75.02%與-56.57%,而第六模態之頻率相對誤差達到-4.19%,相較於時間域之識別(表 3.2、表 3.3),頻率相對誤差較大,而阻尼比相對誤差較小。為減少誤差,吾人將分別使用下列方法,以改善識別結果

- (一)、縮減矩陣帶寬
- (二)、設定取樣門檻
- (三)、改變 Cauchy 小波之 n

考慮[K]與[C]之理論帶寬,表 3.10、表 3.11 為時間域識別結果,識別結果頻率相對誤差最大為-1.31%,阻尼比相對誤差介於-92.15%至-116.81%之間,而 MAC 值皆為 1,與表 3.3 比較,阻尼比誤差則無太大差異,但頻率誤差反而增大。吾人認為這同樣是由於以 Runge-Kutta 法計算動力反應時造成的數值分析誤差。若在時間域識別時僅縮減[K]帶寬為 1,可減少誤差產生,識別結果如表 3.12、表 3.13 所示,與表 3.11 相比,頻率最大誤差由-1.31%減少至-0.36%。表 3.14、表 3.15 為在小波域識別時[C]與[K]帶寬同時

縮減為 1,並限制取樣門檻為 90%的識別結果,頻率的最大誤差為-1.24%, 阻尼比的最大誤差為-17.45%,並且 MAC 值皆為 1,與使用全矩陣[K]及[C] 之識別(表 3.7)比較,識別之準確度均有明顯改善;而與同限制條件下的時 間域識別比較(表 3.11),識別之阻尼比與頻率最大相對誤差皆較小。

表 3.14 及 3.15 所示識別結果為利用已知[K]及[C]之帶寬。但實際應用上,帶寬常常為未知,從表 3.6 之結果可發現[K]中遠離對角線之元素值明顯較對角線值小,而[C]則較難以發現此趨勢。因此,以下探討帶寬對識別結果之影響。吾人於識別時將迴歸模型中勁度及阻尼矩陣帶寬縮減,使原本應為零的元素強制為零,以達到減少誤差的目的。本章之識別分析同時調整阻尼矩陣[C]與勁度矩陣[K],不過若是阻尼矩陣[C]不容易觀察到其帶寬時,亦可只調整勁度矩陣[K]之帶寬。試著逐步縮減矩陣帶寬進行識別分析,以判斷結構物之識別最為合理之帶寬為何。

表 3.16 至表 3.25 為逐步縮減帶寬之識別結果,表 3.26 為使用不同帶寬 識別模態參數時之最大誤差,可以觀察到隨著帶寬縮減,越接近剪力構架 之定義的帶寬,識別結果也隨著改善。當以全矩陣識別時(表 3.7),頻率最大相對誤差為-4.19%,阻尼比最大相對誤差為-75.02%,MAC值最小為 0.03;當帶寬=4 時(表 3.19),頻率最大誤差減少至-1.98%,阻尼比最大誤差為-11.91%,MAC值皆趨近於 1;當帶寬=1 時(表 3.25),頻率最大相對誤差減少至-1.57%,而阻尼比最大相對誤差亦減少至-7.39%,MAC值均為 1,相

較於全矩陣之識別,識別結果改善許多。由此經驗,後續小節對七層樓剪力構架之識別皆設定[C]與[K]帶寬為1進行識別。

3.3.2 雜訊之影響

在實際量測中,所得之量測訊號不可能完全沒有雜訊掺入,尤其在現地量測時,可能由於量測環境、人為干擾、儀器安裝不良等因素,使得量測得之訊號含有雜訊。雜訊之程度可以由噪訊比(noise-signal ratio, NSR)來定義,NSR 定義為雜訊均方根對真實訊號之均方根的比值。一般而言,量測訊號所含的雜訊越多,識別的品質會越不良。為模擬現地量測的情形,以及了解雜訊對識別的影響,本小節在模擬訊號中加入獨立白噪訊號,依序增加為 NSR=5%、10%、20%,代表量測時所含雜訊程度不同的情形,希望找出在雜訊比例高的訊號識別時,仍可以達到高識別品質的識別方法。

觀察在時間域下含有雜訊訊號識別的情形,取NSR=5%訊號進行識別, 其識別所得之阻尼、勁度矩陣如表 3.27,相較於沒有雜訊的情形(表 3.2、表 3.3),可以看出在時間域下雜訊對識別的準確度有非常大的影響,識別所得之[K]與理論值相去甚遠。吾人根據上一小節的經驗,將勁度矩陣[K]與阻尼矩陣[C]帶寬限制為 1,重新識別得表 3.28 與表 3.29,發現識別結果稍微得到改善,但 MAC 值之識別均不佳,尤其第五模態 MAC 值達 0.07,頻率誤差高達-19.90%,而阻尼比最大誤差達-141.45%,均不如未含雜訊時的識別情形。 於小波域識別,利用 n=100 之 Cauchy 小波,對 NSR=5%之訊號進行識別,分別採用全矩陣與矩陣帶寬為 1 之限制條件進行識別。全矩陣識別結果為表 3.30、表 3.31 所示,頻率最大誤差為-22.84%,阻尼比最大誤差為-940.31%,而 MAC 值最小為 0; 限制帶寬為 1 之識別結果為表 3.32、表 3.33 所示,頻率最大誤差為-4.79%,阻尼比最大誤差為-28.88%,而 MAC 值皆為 1,比時間域之識別以及小波域全矩陣之識別該善許多,但自然振動頻率之識別還是不盡理想,仍有改進的必要。

為進一步降低雜訊之影響,吾人在 CCWT 反應訊號中,對各模態反應設取樣門檻值,只截取反應較大者進行識別分析。在本章設門檻值時,皆以第七樓層之反應為準。例如取第一模態頻率之 N%門檻值,即代表在CCWT 中設定對應第一模態頻率之 a 值,使得 CCWT 所涵蓋之頻率範圍只含第一模態者,再記錄下第七樓層之 CCWT 反應(針對該 a 值)中振幅大於其最大振幅 N%者對應之 b 值;b 值為離散反應訊號之點位,假設用來識別分析之反應訊號,其訊號長度共有一萬點,則 b 值為 1~10000;所取之 b 值已知,再取同樣對應此 b 值之各樓層反應一同進行識別分析。

圖 3.13 為取樣門檻截取示意圖,只截取粗線部分所對應之 b 區間進行 識別分析。限制取樣門檻值依序為 0% (實為無限制取樣門檻)、50%、70% 及 90%,所得識別結果如表 3.32 至表 3.39 所示,表 3.40 為不同取樣門檻所 識別之模態參數的最大誤差及所對應之模態,無限制取樣門檻值時,頻率 最大誤差為-4.79%,阻尼最大誤差為-28.88%,MAC值均為1;取樣門檻值為50%時,頻率最大誤差為-2.95%,阻尼最大誤差為-23.78%,MAC值均為1;取樣門檻值為70%時,頻率最大誤差為-1.45%,阻尼最大誤差為-26.03%,MAC值均為1;取樣門檻值為90%時,頻率最大誤差為-1.39%,阻尼最大誤差為-23.66%,MAC值均為1。可以觀察到取樣門檻=70%時,頻率相對誤差之絕對值已收斂於2%以內,而阻尼比相對誤差則是浮動於-23%至-29%之間,經比較發現取樣門檻設在70%以上時有助於改善識別結果。

將訊號之雜訊程度提高到 NSR=10%,再次進行識別,對雜訊較多的訊號進行識別,可以更明顯觀察到取樣門檻提高時,識別結果的變化。當取樣門檻由 0%增加至 90%,其識別結果分別為表 3.41 至表 3.48 所示,表 3.49 為不同取樣門檻所識別之模態參數的最大誤差及所對應之模態,無設定取樣門檻值時,頻率最大誤差為-14.11%,阻尼最大誤差為-62.98%,MAC值均為 1;取樣門檻值為 50%時,頻率最大誤差為-9.43%,阻尼最大誤差為-62.92%,MAC值均為 1;取樣門檻值為 70%時,頻率最大誤差為-3.93%,阻尼最大誤差為-63.51%,MAC值均為 1;取樣門檻值為 90%時,頻率最大誤差為-2.94%,阻尼最大誤差為-59.26%,MAC值均為 1。當取樣門檻值提高,頻率之識別結果有較明顯改善。

由觀察可以發現,當取樣門檻固定時,各模態之 CCWT 高於取樣門檻

的點數分布相當不平均,依誤差量函數之定義,各模態之 CCWT 取樣數相 近時,代表迴歸模型中各模態 CCWT 所佔權重相同,方能達到最佳之識別 效果。故吾人以針對第一模態頻率之 CCWT 為標準並且設定其取樣門檻, 紀錄下第一模態 CCWT 經篩選後的所得的取樣點數,接著調整針對其他模 態 CCWT 之取樣門檻,使其取樣點數為第一模態 CCWT 之取樣數±10%以 內。同樣針對 NSR=10%之訊號進行識別,當第一模態取樣門檻設定為 70%, 其取樣數與其他模態之取樣門檻調整如表 3.50, 識別結果如表 3.51、表 3.52, 最大頻率相對誤差為-2.83%,最大阻尼比相對誤差為-35.54%,MAC值均為 1,與表 3.46 相比,頻率與阻尼比識別誤差皆較小;當第一模態取樣門檻設 定為 90%, 其取樣數與其他模態之取樣門檻調整如表 3.53, 識別結果如表 3.54、3.55, 最大頻率相對誤差為-1.71%, 最大阻尼比相對誤差為-18.59%, MAC 值均為 1, 與表 3.48 相比, 頻率與阻尼比識別誤差皆較小。故可證明 以這種取樣門檻的設定進行識別,可以使識別結果得到各多改善。

Cauchy 小波中,n 值的設定會影響小波的頻寬,為了解小波頻寬對識別品質的影響,吾人使用不同之 n 值進行識別,並且觀察其識別準確度的變化。選用的 n 值為 9、37、65、100、142,其各自代表之頻寬與中心頻率比($\frac{2\Delta\omega}{\omega}$)分別為 45.88%、23.09%、17.47%、14.11%、11.85%。當 n 值不同時,選用之 a 值及其代表之頻率與頻寬依序如表 3.56 至表 3.60 所示。

為了強調以不同 n 值進行識別分析時的差異性,對雜訊較大之

NSR=20% 訊號進行識別,並且以根據前述之取樣門檻設定,將以第一個 a值之 CCWT 的取樣門檻設為 90%, 並調整其他 a 值的取樣門檻使其取樣點 數皆相近,不同n值時取樣門檻設定如表 3.56 至表 3.60 中所示。不同n值 識別結果依序為表 3.61 至表 3.70 所示,其各自模態參數之最大相對誤差整 理至表 3.71。由識別結果可見, n=9 時,頻率最大誤差為-21.12%,阻尼比 最大誤差為-197.82%, MAC 值最小為 0.96; n=37 時, 頻率最大誤差為-7.48%, 阻尼比最大誤差為-101.48%,MAC 值皆為 1;n=65 時,頻率最大誤差為 -5.66%, 阻尼比最大誤差為-61.20%, MAC 值皆為 1; n=100 時, 頻率最大 誤差為-4.71%, 阻尼比最大誤差為-58.98%, MAC 值皆為 1; n=142 時, 頻 率最大誤差為-3.93%,阻尼比最大誤差為-75.13%,MAC值皆為1。可看出 當 n 值越大時,其識別結果準確度也隨著提升,而 NSR=20% 訊號的阻尼比 識別結果均不佳,其最大誤差均在 58%以上,表示雜訊對阻尼比識別有相 當大影響。

3.4 結構損傷識別

欲探討結構損傷之診斷,可觀察結構系統損傷前後之結構參數是否變 化作為判斷依據。假設吾人並不知道結構系統原先的理論[C]、[K]及理論模 態參數,故必須取得未損傷時結構之動力反應訊號,利用此訊號進行系統 識別,所識別得之系統參數作為比對基礎。接著量測得損傷後之結構動力 反應訊號,識別得量測之系統參數,比較損傷前之系統參數及損傷後之量測系統參數之改變即可判斷結構損傷之樓層,主要判斷依據為兩者勁度矩陣[K]對角線上之相對差異,並且以矩陣中第一條帶寬上之相對差異輔助判斷。本節均採用識別精度較佳之 n=142 的 Cauchy 小波進行識別分析,並且限制[C]、[K]之矩陣帶寬為 1,設定第一個 a 值之取樣門檻為 90%,其他 a 值取樣門檻隨之取樣點數作調整。

為模擬結構損傷時的情形,本小節利用 3.2.3 節之七層樓剪力屋架其勁度矩陣表示如下

$$[K] = \begin{bmatrix} k_7 & -k_7 & & & & & & & & & \\ -k_7 & k_7 + k_6 & -k_6 & & & & & & & & \\ & -k_6 & k_6 + k_5 & -k_5 & & & & & \\ & -k_5 & k_5 + k_4 & -k_4 & & & & \\ & & -k_4 & k_4 + k_3 & -k_3 & & \\ & & & & -k_3 & k_3 + k_2 & -k_2 \\ & & & & -k_2 & k_2 + k_1 \end{bmatrix}$$

對以下案例,考慮10%雜訊之反應進行識別:

- (一)、勁度無折減
- (二)、第一樓層柱勁度折減 25% (即k₁減少 25%)
- (三)、第一樓層柱勁度折減 10% (即 k_1 減少 10%)
- (四)、第一、三樓層柱勁度同時折減 10% (即 k_1 與 k_2 減少 10%)

其各自之理論系統參數如表 3.72 至表 3.75 所示。

考慮無折減案例,由上一小節所述之程序進行 CCWT,選用之a 值與

取樣門檻限制如表 3.76 所示,進行識別分析。其識別結果為表 3.77 與表 3.78 所示,與理論值之頻率相對誤差於-1.60%以內,阻尼比之最大相對誤差為-28.18%,MAC值均為 1,且[K]最大相對誤差為-3.9%,[C]最大誤差為-47%。 將此項識別結果作為以下識別的比較對象,結構損傷與否的判斷依據。

考慮第一樓層柱勁度折減 25%案例之訊號,由頻譜圖(圖 3.10)可看出其 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、8.0Hz 處有較明顯峰值,假設已知 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、5.2Hz、8.0Hz 為其各模態之自然 振動頻率,選用之 a 值與取樣門檻限制如表 3.79 所示,進行識別分析。識別結果為表 3.80 與表 3.81 所示,注意表中之相對差異為與勁度無折減系統 識別所得者之比較;對應第一樓板之勁度 K(7,7)差異值最大,為-11.4%;而對應第二樓版之勁度 K(6,6)差異值為 0.4%,K(6,7)差異值為 2.0%,表示第二樓層無勁度折減情形發生。另外,可以觀察到,除了 K(7,7)外,其他部分的相對差異皆小於 3%,故吾人以此為標準,當識別之勁度矩陣[K]與未折減之相對差異大於 3%時,判定 K(7,7)之差異值可能由於第一樓層柱勁度折減所造成,而非識別誤差。

識別第一樓層柱勁度折減 10%案例之訊號時,由頻譜圖(圖 3.11)可看出其 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、8.0Hz 處有較明顯峰值,假設已知 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、5.2Hz、8.0Hz 為其各模態之自然振動頻率,選用之 a 值與取樣門檻限制如表 3.82 所示,進行識別分析。

識別結果為表 3.83 與表 3.84 所示,對應第一樓板之勁度 K(7,7)差異值最大,為-3.8%;對應第二樓版之勁度 K(6,6)差異值僅為 0.3%, K(5,6)之差異值為2.0%;而其他部分差異皆小於 2%。故判定第一樓層可能有勁度折減。

而識別第一、三樓層勁度同時折減 10%案例之訊號時,由頻譜圖(圖 3.12)可看出其 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、8.0Hz 處有較明顯峰值,假設已知 0.7 Hz、2.2 Hz、3.2 Hz、4.1 Hz、5.0Hz、5.2Hz、8.0Hz 為其各模態之自然振動頻率,選用之 a 值與取樣門檻限制如表 3.85 所示,進行識別分析。識別結果為表 3.86 與表 3.87 所示,[K]對角線上,對應第一樓版勁度K(7,7)與第三樓版勁度K(5,5)的差異值都偏大。K(5,5)之差異值為-4.0%,且由於 K(5,6)之差異值達-11.1%,可以容易判斷第三樓層為勁度折減處;而K(7,7)之差異值為-5.2%,造成差異的主要原因可能為第一樓層或者第二樓層勁度折減的影響,但觀察 K(6,6)之差異值為-2.8%,而 K(6,7)之差異值僅為 0.1%,表示第二樓層並無發生勁度折減,K(6,6)差異量偏大的原因可能是由於第三樓層柱勁度折減的影響,代表造成 K(7,7)差異量大的原因可能

事實上當勁度折減時,由表 3.81、表 3.84 及表 3.87 可以觀察到,除了 [K]改變外,各模態之自然振動頻率亦有可能發生改變,如當第一樓層柱勁度折減 25%時,第四、七模態之頻率相對差異達到-2.75%及-2.36%,不過其所代表的意義不如[K]改變直觀,不容易判斷是否受損或受損部位,故本

研究主要仍是以觀察[K]是否發生改變做為受損與否的判斷依據。

3.5 子結構識別分析

進行結構損傷識別,除了進行全結構識別,亦可針對局部特定樓層,進行子結構系統識別分析。在子結構系統識別分析中,假設吾人已知結構系統為N自由度剪力屋架;因此,每一樓層子結構之控制方程分別為 $m_i\ddot{u}_i+c_{i(i-1)}\dot{u}_{i-1}+c_{ii}\dot{u}_{ii}+c_{i(i+1)}\dot{u}_{i(i+1)}+k_{i(i-1)}u_{i-1}+k_{ii}u_{ii}+k_{i(i+1)}u_{i(i+1)}=f_i$ for $i=2\sim N-1$ $m_i\ddot{u}_i+c_{11}\dot{u}_{11}+c_{22}\dot{u}_{22}+k_{11}u_{11}+k_{22}u_{22}=f_1$ for i=1 (3.1) $m_N\ddot{u}_N+c_{N(N-1)}\dot{u}_{N-1}+c_{NN}\dot{u}_{NN}+k_{N(N-1)}u_{N-1}+k_{NN}u_{NN}=f_N$ for i=N 其中 c_{ii} 與 k_{ii} 分別表示[C]與[K]於(i,i)之值。在識別第i樓層控制方程之相關 勁度及阻尼參數時;若在小波域分析,即假設量測得第i-1,i及i+1樓層之 加速度值;若在時間域分析,則假設加速度、速度及位移均已量得。值得一提的是,於子結構識別中,無法如同全結構識別強迫使矩陣對稱,即

本節同 3.4 節對以下四種七層樓剪力屋架結構系統案例進行識別:

(一)、勁度無折減

 $c_{ii} = c_{ii} \oplus k_{ii} = k_{ii} \circ$

- (二)、第一樓層柱勁度折減 25%
- (三)、第一樓層柱勁度折減 10%
- (四)、第一、三樓層勁度同時折減 10%

3.5.1 子結構分析之準確性測試

考慮到子結構識別分析之特性有可能與全系統識別分析者不同,首先 對子結構識別方法進行識別準確性的測試,分別在時間域及 CCWT 小波域 進行識別。在 CCWT 小波域識別測試時,分別針對不同 n 值、不同的 a 值 與不同的取樣門檻進行識別,識別測試的對象分別為勁度無折減系統之無 雜訊影響反應及含 10%雜訊影響之反應。

考慮之 n 值分別為頻寬較寬之 n=65 與頻寬較窄之 n=142。考慮兩種 a 值之取法,第一種取法為使用一組 a 共 50 個,使得其所對應之中心頻率在 0.2k Hz(k=1,2,...50);第二種取法與 3.3 節的做法相同,即取對應於自然振動頻率之中心頻率者,選用 a 為 32.40、10.31、7.09、5.53、4.54、4.36 及 2.83。並且考慮兩種取樣門檻,分別為 0%及 90%;取樣門檻 90%代表使第一個 a 值之取樣門檻為 90%,而其他 a 值之取樣門檻隨之取樣點數做調整,使其取樣點數皆相近,取樣門檻之定義可參考 3.3.2 節。

考慮無雜訊情形,依第二章所述方法,於時間域針對於每一樓層之控制方程進行識別,表 3.88 為每一子結構所得勁度及矩陣以及其相對於理論值之識別誤差,為了方便查看,表中將各個子結構識別所得之[C]與[K]分類並依序排列,如針對第七樓層子結構識別分析時,得到的識別結果為表中所示第七樓層子結構的[C]與[K]。觀察時間域識別結果與理論值的相對誤差可發現,[K]的部分最大誤差為-2.7%,誤差較小,而[C]誤差均介於-90.4%

至-110.5%之間,此情況與全系統識別時的情形類似。

利用 CCWT 進行識別,表 3.89 為取 n=65 配合第一種 a 值之取法及不 設取樣門檻之識別結果,[K]及[C]之最大誤差分別為-14.5%及-41.8%。與時 間域識別精度比較,[K]誤差較大,但[C]誤差較小。如同表 3.89 之參數設 定,但取樣門檻設為 90%,所得識別結果如表 3.90 所示,[K]最大誤差為 11.1%, [C]最大誤差為 168.6%。如同表 3.89 之參數設定,但 a 值取法採用 第二種方式,所得識別結果如表 3.91 所示,[K]最大誤差為-16.5%,[C]最大 誤差為-53.1%。如同表 3.91 之參數設定,但以門檻值 90%取樣,各個 a 值 之取樣門檻及取樣點數如表 3.92 所表示,所得識別結果如表 3.93 所示,[K] 最大誤差為-6.3%, [C]最大誤差為 176.9%。如同表 3.89 之參數設定, 但取 n=142 所得之識別結果如表 3.94 所示,[K]最大誤差為 3.8%,[C]最大誤差 為 33.9%。如表 3.94 之參數設定,但取樣門檻設為 90%,所得之識別結果 如表 3.95 所示, [K]最大誤差為 10.5%, [C]最大誤差為 98.6%。如表 3.94 之參數設定,但 a 值之取法採用第二種方式,所得識別結果如表 3.96 所示, [K]最大誤差為-14.6%,[C]最大誤差為-36.8%。如表 3.96 之參數設定,但以 門檻值 90%取樣,各個 a 值之取樣門檻及取樣點數如表 3.97 所表示,所得 識別結果如表 3.98 所示,[K]最大誤差為-6.6%,[C]最大誤差為 136.4%。表 3.99 為以上識別結果發生的最大誤差量整理比較,一般而言,時間域識別 之[K]誤差較小,但小波域識別之[C]普遍比時間域識別之[C]誤差小。在小 波域識別,取 n=142 所識別結果較取 n=65 者佳;而當提高取樣門檻時,[K] 識別誤差有減少的趨勢,但[C]最大誤差量會增大。

當考慮 10%雜訊之影響,表 3.100 為時間域之識別結果,[K]最大誤差 達-110.3%, 而[C]最大誤差達 151.8%。相較於表 3.88 所示無雜訊之識別結 果,含有雜訊之反應訊號在時間域之識別結果相當不理想。表 3.101 為取 n=65 配合第一種 a 值之取法及不設取樣門檻之識別結果,[K]最大誤差為 -130.4%, [C]最大誤差為 336.9%。如表 3.101 之參數設定,但取樣門檻設為 90%, 識別結果如表 3.102 所示, [K]最大誤差為-111.6%, [C]最大誤差為 489.2%。如表 3.101 之參數設定,但 a 值取法採用第二種方式,所得識別結 果如表 3.103 所示, [K]最大誤差為-108.6%, [C]最大誤差為-98.5%。如表 3.101 之參數設定,但如表 3.103 之參數設定,但以門檻值為 90%取樣,各 個 a 值之取樣門檻與取樣點數如表 3.104 所表示,所得識別結果如表 3.105 所示, [K]最大誤差為-7.8%, [C]最大誤差為 183.7%。如同表 3.89 之參數 設定,但取 n=142 所得之識別結果如表 3.101 所示,表 3.106 為取 n=142 配 合第一種 a 值取法所得之識別結果,[K]最大誤差為-128.8%,[C]最大誤差 為 361.6%。如表 3.106 之參數設定,但取樣門檻設為 90%所得之識別結果 如表 3.107 所示, [K]最大誤差為-117.4%, [C]最大誤差為 502.7%。如表 3.106 之參數設定,但 a 值取法採用第二種方式,所得之識別結果如表 3.108 所示,[K]最大誤差為-100.2%,[C]最大誤差為-133.1%。如表 3.108 之參數 設定,但取樣門檻設為 90%,各個 a 值之取樣門檻與取樣點數如表 3.109 所表示,所得之識別結果如表 3.110 所示, [K]最大誤差為-6.4%,[C]最大誤差為 120.7%。表 3.111 為以上識別結果發生的最大誤差量整理比較。整體看來,若以第一種 a 值取法進行識別分析,均無法得到滿意的識別結果,只有當以第二種 a 值取法,並且取樣門檻限制為 90%時才能得到較理想的 [K]識別結果,其中又以 n=142 進行識別較為出色,不過[C]識別皆不太理想。故對後續之勁度折減案例進行識別時,皆以 n=142 之 CCWT,並且將取樣門檻限制為 90%進行識別分析。

3.5.2 勁度折減系統之子結構識別

分別對三種勁度折減系統案例進行子結構識別分析,並且將各自所得之識別結果與勁度無折減系統者對照,計算兩者的相對差異,以觀察是否能由子結構識別分析判斷出結構損傷位置。判斷損傷位置主要以[K]對角線上元素值是否改變為判斷依據,並且以相鄰對角線之值輔助判斷。本小節識別分析之參數設定如同表 3.98 者,即取 a 值為對應於各模態自然振動頻率之中心頻率者,並且限制第一個 a 值之取樣門檻為 90%,其他 a 值取樣門檻雖其取樣點數調整,進行識別分析。

首先,分析無雜訊反應,相對差異的比較對象為表 3.98 之識別結果; 案例(二):第一樓層柱勁度折減 25%系統之識別,識別所得結果為表 3.112 所示,可以看出對應第一層子結構之 K(7,7)相對差異達-12.2%,而對應第二 層子結構之 K(6,6)相對差異為 2.4%,且非對角線上之 K(6,7)與 K(7,6)相對 差異分別為 2.4%與 1.1%,又對角線上除 K(7,7)外差異最大者為 3.5%,應為 識別誤差範圍,可判斷第一樓層柱勁度折減而造成第一層子結構 K(7,7)之減 少。案例(三):第一樓層柱勁度折減 10%案例識別,識別結果如表 3.113 所示,[K]對角線上最大差異為 3.5%,發生在第七層子結構,而第一及第二 層子結構亦有-3.3%及3.4%之差異,整體差異量相近,不易判斷勁度折減位 置。案例(四):第一、三樓層柱勁度折減 10%案例識別,識別結果如表 3.114 所示,可以看出[K]對角線上差異較大的部分發生在第一層子結構的 K(7,7) 與第三層子結構的 K(5,5),K(5,5)的相對差異為-3.4%,且 K(5,6)與 K(6,5)的相對差異分別為-8.2%與-8.6%,又對角線上除 K(7,7)、K(5,5)外差異最大 者為 2.2%,應為識別誤差範圍,可以判斷第三樓層柱勁度折減;而 K(7,7) 的相對差異為-4.6%,但 K(6,6)之相對差異為-0.9%,K(6,7)與 K(7,6)相對差 異分別為 1.5%與 0.7%,表示第二樓層應無勁度折減的情況發生,故有可能 是第一樓層柱勁度折減而造成 K(7,7)的相對差異。

接著考慮含有 10%雜訊影響之案例識別,相對差異的比較對象為表 3.110 之識別結果。案例 (二) 之識別,識別結果為表 3.115 所示,整體相對差異較無雜訊影響之識別來的大,可以看出[K]對角線上相對差異較大的部分為第一層子結構的 K(7,7)與第二層子結構的 K(6,6),第一層子結構之[K]對角線上相對誤差達-11.2%, K(6,6)之相對差異達-8.9%, K(6,7)與 K(7,6)之

相對差異分別為-15.7%及 2.3%, 而對角線上除 K(7,7)、K(6,6)外差異最大者 為 4.1%,可能為識別誤差範圍,無法排除有因為第二樓層柱勁度折減所造 成的可能性;而 K(7,7)之相對差異達-11.2%,有可能是由於第一樓層柱勁度 折減或者第二樓層柱勁度折減情況所造成。案例(三)之識別,識別結果 如表 3.116 所示,[K]對角線上最大差異為-2.7%,發生在第一層子結構的 K(7,7),不過由於整體相對差異相近,難以判斷此差異量是由於結構勁度折 減所造成或者只是誤差量。案例(四)之識別,識別結果如表 3.117 所示, 可以看出[K]對角線上較大之相對差異發生在第一層子結構 K(7,7)、第二層 子結構 K(6,6)與第三層子結構 K(5,5),K(5,5)相對差異為-2.8%,K(5,6)與 K(6,5)相對差異分別為-8.2%與-13.8%,而 K(4,5)與 K(5,4)相對差異僅為 -0.5%與 3.1%, 又對角線上除 K(7,7)、K(5,5)外差異最大者為 1.6%, 可能為 識別誤差範圍,故可判定 K(5,5)之差異量有可能為第三樓層柱勁度折減的情 況所造成; K(6,6)相對差異為-10.2%, K(6,7)與 K(7,6)相對差異分別為-14.9%與 0.8%, K(6,6)之差異量除了可能為第三樓層柱勁度折減的影響,亦無法 排除同時有第二樓層柱勁度折減情況的可能性; K(7,7)相對差異為-4.6%, 有可能是受第二樓層柱勁度折減的影響,亦有可能是由於第一樓層柱也有 勁度折減的情況所影響。

第四章 實驗數據分析

4.1 前言

此章將應用本研究方法於分析國家地震工程研究中心(NCREE)所進行之八層樓模組化鋼構架振動台試驗,從量測鋼構架之實驗數據,估算其勁度及阻尼矩陣。將分析兩棟鋼構,稱為原始鋼構及勁度折減鋼構,兩者之差異為其中一棟鋼構於第一、三層支柱使用經切削過之鋼板,以模擬結構受損時之情形。

4.2 八層樓鋼構架介紹

於國家地震工程研究中心針對一長 1.5m、寬 1.1m、高 8.48m 之八層樓 鋼構架進行振動台試驗;該構架各樓層之支柱為 1060x150x65 之鋼板支柱; 每一層樓版由 1500x1100x20 之鋼板,及斷面為 C100x50x5 之 C 型鋼組成之 封閉斷面梁所構成,如圖 4.1 所示。於各樓板上加載質量為 250kg 之鉛塊作 為載重,此鋼構稱為原始構架。

為驗證本研究對結構損傷時勁度改變之判別成效,除了原始結構之試驗外,同時進行經過勁度折減處理之結構試驗,稱為勁度折減構架。對欲進行勁度折減的樓層,位於 X 軸上同側的兩根鋼板支柱進行切削作業 (如圖 4.2 及圖 4.3 所示),使得該樓層勁度減低,藉以模擬結構損傷的情形,再次進行試驗。

試驗時,於振動台平台與各樓層之樓板中央放置加速度計,總計九組加速度計。以集集地震之加速度歷時訊號作為振動台之水平 X 向輸入歷時反應(共104秒),分別對兩種鋼構進行相同之試驗。試驗量測之取樣頻率為 200Hz。在取得量測數據後,須進行資料處理;由於所量測各樓層的反應訊號為絕對加速度反應,須將各樓層之量測反應減去地表(振動台)的量測反應,使其成為相對加速度反應,方可進行識別分析。圖 4.4 及圖 4.5 分別為原始鋼構與勁度折減鋼構各樓層量測得之加速度歷時反應。

由於八層樓鋼構,每一樓層皆由以同樣的單元所構成,每層的集中載重也都相同,為了避免假設[M]所致之誤差,在分析八層樓鋼構時將運動方程式乘以[M]⁻¹,如此識別得到的結果為[M]⁻¹[K]與[M]⁻¹[C]。在假設[M]為對角線矩陣(即採集中質量模式),吾人依然可由[M]⁻¹[K]之改變判斷鋼構損傷與否,及可能損傷樓層。

4.3 全結構識別結果

實驗數據之識別流程如圖 4.6 所示。

4.3.1 原始鋼構

對八層樓鋼構之加速度歷時反應訊號進行 FFT,可得其富氏頻譜圖(如圖 4.7 所示)。由頻譜圖可看出,八層樓鋼構原始結構於 1.0 Hz、3.1 Hz、5.2 Hz、7.1 Hz、8.9 Hz、10.5 Hz、11.7 Hz、12.5Hz 處有明顯峰值,大約為自

然振動頻率。

將經過資料處理之加速度反應訊號轉換成小波域反應訊號時,選用 $n=142 \cdot n=141$ 及 n=140 之 Cauchy 小波,並且指定 a 值以對應各模態頻率,分別對每一樓層及地表加速度反應訊號進行 CCWT,指定之 a 值及其所對應的中心頻率及頻寬為表 4.1 所示。將 $n=141 \cdot n=140$ 之 Cauchy 小波分析之小波域加速度反應訊號,透過式(2.21)、式(2.22)轉換為相對於 n=142 之速度、位移小波域反應,進行識別分析。圖 4.9 為以分別對應第一至第八模態頻率之 a 值,對第八樓層加速度反應進行 CCWT 後之訊號。對八層樓鋼構識別時設定之取樣門檻皆如表 4.1 所示。

由於真實結構中並不容易掌握[M]⁻¹[C]之矩陣帶寬,故本研究僅針對 [M]⁻¹[K]進行帶寬限制。為求得八層樓鋼構實際之[M]⁻¹[K]帶寬,將 [M]⁻¹[K]由全矩陣逐步縮減帶寬至帶寬為 1,以不同帶寬限制條件進行識別,並觀察識別結果的變化。通常帶寬縮減前後識別所得之[M]⁻¹[K]僅會有些微的變化,若其變化顯著,明顯不同於帶寬縮減前之識別時,則代表限制的帶寬已小於實際帶寬,可由此實際帶寬為何。表 4.2 至表 4.15 分別表示 [M]⁻¹[K]帶寬限制不同時之識別結果,可以觀察到當限制帶寬為 2 時(表 4.12),其識別之[M]⁻¹[K]主對角線上值為 1398.3、3101.4、3058.3、3070.1、3074.1、3130.2、3276.6、3140.6,而當限制帶寬為 1 時(表 4.14),其識別之[M]⁻¹[K]主對角線上值為 1293.1、2688.4、2662.8、2617.6、2567.3、2529.0、

2406.4、2402.2,後者值明顯小於前者,並且由兩者所得之自然振動頻率(表4.13 及表 4.15),帶寬為 1 者所得之頻率為 1.04 Hz、3.20 Hz、5.16 Hz、6.90 Hz、8.35 Hz、9.57 Hz、10.57 Hz 及 11.26Hz,最大相對誤差達 11%,代表 [M]⁻¹[K]帶寬為 1 與實際帶寬不符,故判斷八層樓鋼構之[M]⁻¹[K]帶寬為 2,並且識別結果以表 4.12 及表 4.13 為準。由表 4.13,識別計算得之模態自然振動頻率為 1.04Hz、3.15 Hz、5.16 Hz、7.07 Hz、8.93 Hz、10.66 Hz、12.00 Hz、12.80 Hz,與頻譜圖所得之頻率相近。

4.3.2 勁度折減鋼構

勁度折減鋼構之頻譜圖如圖 4.8 所示。由頻譜圖可看出,切削鋼構於 1.0 Hz、3.1 Hz、5.1Hz、7.0Hz、8.9 Hz、10.4Hz、11.6 Hz、12.5Hz 處有明 顯峰值,可判斷上述之頻率為預測之模態自然振動頻率,基本上與切削前 鋼構之頻率相似。進行 CCWT 時選用的 n 值與 a 值,以及識別時的取樣門 檻設定如表 4.16 所示,識別時限制[M]⁻¹[K]帶寬為 2。

其識別結果如表 4.17 及表 4.18 所示,自然振動頻率為 1.00 Hz、3.07 Hz、5.08 Hz、7.00 Hz、8.87 Hz、10.46 Hz、11.61 Hz、12.56Hz,皆與預測值相近。表 4.17(b)表示兩種鋼構之間識別所得之[M]⁻¹[C]及[M]⁻¹[K]的相對差異,觀察兩者之間[M]⁻¹[C]的相對差異,發現差異量非常大,對角線上之差異為 65.3%至 146.5%,由於試驗中[M]⁻¹[C]不容易被精確識別,並且對於判斷結構是否損傷較無幫助,吾人選擇將注意力集中在[M]⁻¹[K]的變化上。

觀察 [M]⁻¹[K]的相對差異,主要比較主對角線上元素與其兩側之對角元素,發現大部分元素差異皆在3%以下,唯對角線上差異較大者有第一、二、三樓層子結構之差異分別為7.2%、13.1%及11.5%,而兩側之對角元素差異也達17.6%及14.4%,足以判斷第一、二、三樓層為損傷樓層。另外可注意到平行於對角線最外圍之元素差異量皆偏大,吾人認為是因為平行於對角線最外圍之元素差異量皆偏大,吾人認為是因為平行於對角線最外圍之元素其值相對於整個矩陣的元素值大小相差甚大,使得識別時誤差量相對較大,並且由於對損傷部位之識別較無幫助,故忽略之。

4.4 子結構識別分析

由於 4.2 節已確認八層樓鋼構的矩陣帶寬為 2, 有別於一般剪力屋架之理論帶寬, 故子結構之控制方程亦要隨之修改。第 i 樓層子結構之控制方程

$$\ddot{u}_i + \sum_{j=i-2}^{i+2} \left(c_{ij} \dot{u}_j + k_{ij} u_j \right) / m_{ii} = f_i / m_{ii}$$
 for $i=3 \sim N-2$

$$\ddot{u}_1 + \sum_{j=1}^{3} (c_{1j}\dot{u}_j + k_{1j}u_j) / m_{11} = f_1 / m_{11}$$
 for $i=1$

$$\ddot{u}_2 + \sum_{j=1}^{4} (c_{2j}\dot{u}_j + k_{2j}u_j) / m_{22} = f_2 / m_{22}$$
 for $i=2$

$$\ddot{u}_{N-1} + \sum_{j=N-3}^{N} \left(c_{(N-1)j} \dot{u}_j + k_{(N-1)j} u_j \right) / m_{(N-1)(N-1)} = f_{N-1} / m_{(N-1)(N-1)} \qquad for \quad i=N-1$$

$$\ddot{u}_N + \sum_{j=N-2}^{N} (c_{Nj}\dot{u}_j + k_{Nj}u_j) / m_{NN} = f_N / m_{NN}$$
 for $i=N$

八層樓鋼構架之原始鋼構進行 CCWT 時選用的 n 值與 a 值及識別時各子結構的取樣門檻設定如表 4.19 所示,而表 4.20 為各子結構之識別結果。 勁度折減鋼構進行 CCWT 時選用的 n 值與 a 值及識別時各子結構的取樣門檻設定如表 4.21 所示,而表 4.22 為其子結構識別結果以及與原始鋼構識別者(表 4.20)比對而得之相對差異。觀察表 4.22 (b)發現,於[M] $^{-1}$ [K]對角線上差異較大者有第一層子結構[M] $^{-1}$ [K] (8,8)、第二層子結構[M] $^{-1}$ [K] (7,7)、第三層子結構[M] $^{-1}$ [K] (6,6);其與原始構架者分別相差 $^{-1}$ 4.5%、 $^{-5}$ 2%及 $^{-3}$ 1%。而第四至八樓層子結構之[M] $^{-1}$ [K] (5,5)至[M] $^{-1}$ [K] (1,1)與原始結構者相差分別為 1.1%、 $^{-0}$ 2.8%、 $^{-0}$ 2.2%、 $^{-0}$ 1.8%及 $^{-1}$ 3%。此現象符合在第一、三樓層柱切削所導致者一致,但是此識別結果很難在定量上估算每一樓層柱之勁度折減量。

第五章 結論與建議

5.1 結論

本研究應用 CCWT 於識別結構系統之勁度與阻尼,探討識別過程之參數設定,以得到較準確之識別結果,作為結構損傷之判斷依據。

本研究針對七層樓剪力屋架之數值模擬反應,進行系統識別分析,加入雜訊影響因素,探討最佳識別參數設定。在考慮 n=1~142 之間,採用較大 n 值之 Cauchy 小波進行 CCWT,可以得到較準確的識別結果,尤其在有雜訊的情況。而選擇正確之矩陣帶寬與適當之取樣門檻限制,對識別結果的精確度也有正面的影響。識別分析勁度折減案例時,套用適當的識別參數,可順利的識別出勁度折減的位置。若以子結構進行識別,識別精準度不如全結構者好,尤其在含有雜訊影響的案例。

本研究亦分析於國家地震工程中心進行之兩棟八層樓鋼結構振動台試驗,驗證本研究在實際量測案例應用之可行性。兩棟鋼構之差異在於,其中一棟之第一及三樓層柱被切削以模擬勁度折減情形。依分析數據模擬反應之較佳參數設定,無論是利用全結構或子結構進行識別,比較兩棟鋼構所得之勁度差異,明顯反映勁度折減的所在樓層。

5.2 建議

本研究尚有未盡之處,故提供意見如下,以作為未來進一步研究之參 考。

- 1、要完整識別結構物每樓層之勁度與阻尼,則需要結構物所有樓層之量測 資料,但實際上一般進行量測時,僅會針對部分樓層量測,尤其高層建 築之量測。故如何在部分量測的情形下,精準地識別得每一樓層勁度及 阻尼,成為了日後研究的課題。
- 2、本研究每次針對一組結構反應訊號進行識別分析時,皆只取一個 n 值進行 CCWT。可嘗試進行 CCWT 時,針對不同的中心頻率選用不同的 n 值,低頻時選用小的 n,高頻時選用大的 n,目的是使其擷取的頻寬區間長度一致,也許能夠得到更佳的識別結果。

参考文獻

Argoul, P. and Le, T. P., "Instantaneous indicators of structural behaviour based on the continuous Cauchy wavelet analysis", <u>Mechanical Systems and Signal Processing</u>, 17(1), 243-250, 2003.

Chakraborty, A., Basu, B. and Mitra, M., "Identification of modal parameters of a mdof system by modified L-P wavelet packets", <u>Journal of Sound and</u> Vibration, 295(3-5), 827-837, 2006.

Erlicher, S. and Argoul, P., "Modal identification of linear non-proportionally damped systems by wavelet transform", <u>Mechanical Systems and Signal Processing</u>, 21(3), 1386-1421, 2007.

Gersch, W. and Luo, S., "Discrete time series synthesis of randomly excited structural system response", <u>Acoustical Society of America, Journal</u>, 51(1), 402-408, 1972.

Ghanem, R. and Romeo, F., "A wavelet-based approach for the identification of linear time-varying dynamical systems", <u>Journal of Sound and Vibration</u>, 234(4), 555-567, 2000.

Ghanem, R. and Romeo, F.,"A wavelet-based approach for model and parameter identification of non-linear systems", <u>International Journal of Non-Linear</u> Mechanics, 36(5), 835–859, 2001.

Huang. C. S., Huang, S. L., Lin, C. I. and Su, W. C., "A wavelet-based approach to identifying structural modal parameters from seismic response and free vibration data", <u>Computer-Aided Civil and Infrastructure Engineering</u>, 20(6), 408-423, 2005.

Huang, C.S. and Su, W.C., "Identification of modal parameters of a time invariant linear system by continuous wavelet transformation", <u>Mechanical</u> Systems and Signal Processing, 21(4), 1642–1664, 2007.

Lardies, J. and Gouttebroze, S., "Identification of modal parameters using the wavelet transform", <u>International Journal of Mechanical Sciences</u>, 44(11), 2263-2283, 2002.

Le,T. P. and Argoul, P., "Continuous wavelet transform for modal identification using free decay response", <u>Journal of Sound and Vibration</u>, 277(1-2), 73-100,2004

Lu, C. J. and Hsu, Y. T., "Vibration analysis of an inhomogeneous string for damage detection by wavelet transform", <u>International Journal of Mechanical Sciences</u>, 44(4), 745-754, 2002.

Omenzetter, P., Brownjohn, J. M.W. and Moyo, P., "Identification of unusual events in multi-channel bridge monitoring data using wavelet transform and outlier analysis", <u>Proceedings of SPIE—The International Society for Optical Engineering</u>, 5057(1), 157–168, 2003.

Ovanesova, A. V. and SuareZ, L. E. "Applications of wavelet transforms to

damage detection in frame structures", <u>Engineering Structures</u>, 26(1), 39-49, 2004.

Ruzzen, M., Fasana, A., Garibaldi, L. and Piombo, B., "Natural frequencies and dampings identification using wavelet transform: application to real data." Mechanical Systems and Signal Processing, 11(2), 207-218., 1997.

Staszewski, W.J.,"Identification of damping in mdof system using time-scale decomposition.", Journal of Sound and Vibration, 203(2), 283-305, 1997.

Wei, H. L. and Billings, S. A., "Identification of time-varying systems using multiresolution wavelet models", <u>International Journal of System Science</u>, 33(15), 1217–1228, 2002.

Yule, G. U., "On a method of investigating periodicities in disturbed series, with special reference o Wolfer's sunspot numbers", <u>Philosophical Transactions of the Royal Society of London</u>, Series A, 226-267, 1927.

Zishou, S., Kui, Z. and Husheng, L., "Damage Identification Based On Wavelet Packets & Frequency Response Function", <u>International Conference on Computer Application and System Modeling</u>, 5(1), 458-460, 2010.

石仲維,「脊背橋動態反應之量測與分析」,<u>國立交通大學土木工程學系碩</u> 士班,碩士論文,2007。 黄旭進,「應用平穩小波包於結構物之微動反應以識別其動態特性」,<u>國立</u> 交通大學土木工程學系碩士班,碩士論文,2013。

陳振華、黃炯憲、蘇威智、歐嘉宜,「連續小波轉換於斜張橋之模態分析」, <u>結構工程</u>,24(1),109-124,2009。

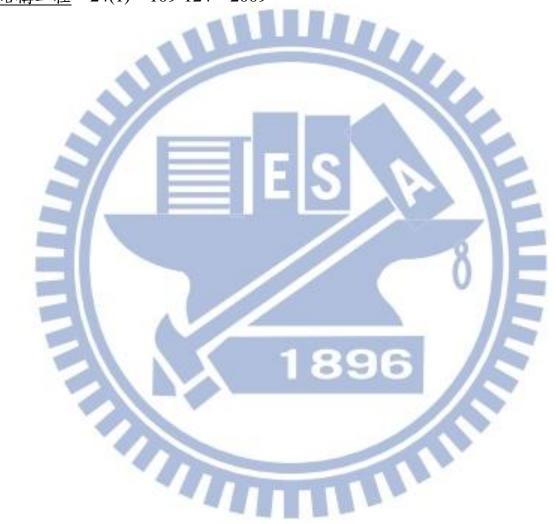


表 3.1:七層樓剪力架構系統參數理論值

模態	1	2	3	4	5	6	7
振動頻率(Hz)	0.72	2.21	3.20	4.11	5.01	5.26	8.01
阻尼比(%)	0.45	1.39	2.01	2.58	3.15	3.31	5.03
	1.0000	1.0000	1.0000	-0.6386	-0.7797	1.0000	0.0001
	0.9659	0.6792	0.3262	0.0722	0.5073	-0.8223	-0.0003
	0.8658	-0.0773	-0.7872	0.6223	0.1197	0.3525	0.0017
振形	0.6772	-0.7594	-0.3092	-0.9056	-0.8605	-0.3999	-0.0176
	0.4423	-0.9544	0.5855	-0.4175	1.0000	0.3051	0.1117
	0.1773	-0.5370	0.6912	1.0000	-0.4407	-0.1020	-0.7013
	0.0849	-0.2830	0.4159	0.7304	-0.4360	-0.1138	1.0000

表 3.2:時間域識別無雜訊反應所得之[C]及[K] (取樣頻率 250Hz)

矩陣	識別結果									
		T-0.01	0.00	0.00		0.03	0.00	0.01	7	
		0.00 -	-0.01	0.00		-0.02	0.03	0.00		
		0.00	0.00	0.01	-0.02	-0.01	-0.02	0.01		
[C]		0.00	0.01	-0.02	-0.01	0.00	-0.01	-0.01		
		0.03 -	-0.02	-0.01	0.00	-0.03	-0.01	-0.03		
		0.00	0.03	-0.02	-0.01	-0.01	0.01	-0.14		
		0.01	0.00	0.01	-0.01	-0.03	-0.14	0.21		
	599.76	-599.52		0.58	0.45	-0.1	8	-1.28	3.37	
	-599.52	1199.21	-59	9.44	-0.58	0.3	1	2.77	-5.14	
3	-0.58	-599.44	120	0.17	-600.01	0.4	7	-3.18	3.04	
[K]	0.45	-0.58	-60	00.01	1200.49	-601.4	5	3.75	-2.83	
-	-0.18	0.31		0.47 -	-601.45	1201.2	3 –6	02.03	3.11	
	-1.28	2.77	-8	3.18	3.75	-602.0	3 23	96.05	-1795.09	
	3.37	-5.14	Desire.	3.04	-2.83	3.1	1 –17	95.09	3783.91	

表 3.3:時間域識別無雜訊反應所得之模態參數 (取樣頻率 250Hz)

模態	頻	率(Hz)	阻尼	阻尼比(%)			
	識別值	相對誤差	識別值	相對誤差	MAC		
1	0.72	0.00%	-0.08	-116.71%	1.00		
2	2.21	-0.04%	-0.12	-108.32%	1.00		
3	3.20	0.01%	-0.01	-100.35%	1.00		
4	4.11	-0.13%	0.00	-99.86%	1.00		
5	5.01	0.05%	-0.04	-101.17%	1.00		
6	5.26	-0.05%	0.01	-99.59%	1.00		
7	7.99	-0.16%	0.13	-97.36%	1.00		

表 3.4:時間域識別無雜訊反應所得之[C]及[K] (取樣頻率 1000Hz)

矩陣				識別結果	ŧ				
		0.90 -0.9	0.00	0.00	0.01	0.00	0.00		
		-0.90 1.8	0 -0.90	0.00	-0.01	0.01	0.00		
		0.00 -0.9	0 1.80	-0.91	0.00	0.00	0.00		
[C]		0.00 0.0	0 -0.91	1.80	-0.90	-0.01	0.00		
		0.01 -0.0	1 0.00	-0.90	1.79	-0.90	-0.01		
		0.00 0.0	1 0.00	-0.01	-0.90	3.60	-2.74		
		0.00 0.0	0.00	0.00	-0.01	-2.74	5.76_		
	599.79	-599.67	-0.20	0.10	-0.03	1 //>-	-0.36	0.88]
	-599.67	1199.46 -	599.69	-0.16	0.05		0.74	-1.33	
	-0.20	-599.69 1	199.83 -	599.86	0.08		-0.80	0.75	
[K]	0.10	-0.16 -	599.86 1	199.87	-600.18		0.85	-0.64	
	-0.03	0.05	0.08 -	600.18	1200.03	-6 0	00.20	0.58	
	-0.36	0.74	-0.80	0.85	-600.20	239	97.97	-1797.62	
	0.88	-1.33	0.75	-0.64	0.58	3 –179	97.62	3794.33	

表 3.5:時間域識別無雜訊反應所得之模態參數 (取樣頻率 1000Hz)

模態	頻	率(Hz)	阻尼	阻尼比(%)			
快悠	識別值	相對誤差	識別值	相對誤差	MAC		
1	0.72	0.00%	0.32	-29.08%	1.00		
2	2.21	-0.01%	1.01	-27.06%	1.00		
3	3.20	0.00%	1.51	-25.07%	1.00		
4	4.11	-0.04%	1.94	-24.91%	1.00		
5	5.01	0.00%	2.35	-25.23%	1.00		
6	5.26	-0.03%	2.49	-24.67%	1.00		
7	8.00	-0.06%	3.81	-24.21%	1.00		

表 3.6:以 CCWT 配合迴歸模型 (一) 識別無雜訊反應所得之[C]及[K]

矩陣	識別結果									
		0.02	0.68 -0.99	0.39	-0.01 -	-0.36 0.38	3]			
		0.68 - 0	0.59 0.33	-0.59	0.04	0.63 - 0.54	1			
		-0.99	0.33 1.70	-0.98	0.02 -	-0.34 0.23	3			
[C]		0.39 - 0	0.59 -0.98	2.43	-1.34	0.16 0.04	1			
		-0.01 0	0.04 0.02	-1.34	2.58 -	-1.33 -0.23	3			
		-0.36	0.63 -0.34	0.16	-1.33	4.78 -3.77	7			
	40	0.38 -0	0.54 0.23	0.04	-0.23 -	-3.77 8.10)			
	565.24	-549.75	-34.46	38.10	-27.40	4.96	20.72			
	-549.75	1106.86	-532.36	-52.63	48.97	-8.16	-34.57			
	-34.46	-532.36	1148.24	-567.05	-24.35	6.97	21.44			
[K]	38.10	-52.63	-567.05	1170.03	-585.05	-3.96	-12.37			
	-27.40	48.97	-24.35 -	-585.05	1177.88	-593.43	-0.38			
	4.96	-8.16	6.97	-3.96	-593.43	2351.35	-1735.03			
	20.72	-34.57	21.44	-12.37	-0.38	-1735.03	3697.93			

表 3.7:以 CCWT 配合迴歸模型 (一) 識別無雜訊反應所得之模態參數

模態	頻	率(Hz)	阻斥	阻尼比(%)			
供您	識別值	相對誤差	識別值	相對誤差	MAC		
1	0.72	0.65%	0.43	-4.69%	1.00		
2	2.16	-1.98%	1.25	-9.90%	1.00		
3	3.18	-0.76%	2.03	1.12%	1.00		
4	4.11	-0.07%	2.59	0.33%	1.00		
5	4.95	-1.19%	0.79	-75.02%	0.03		
6	5.04	-4.19%	1.44	-56.57%	0.24		
7	7.89	-1.44%	5.35	6.35%	1.00		

表 3.8:以 CCWT 配合迴歸模型 (二) 識別無雜訊反應所得之[C]及[K]

矩陣	識別結果	識別結果								
	[0.02 0.68 -0.99 0.39 -0.01 -0.36 0.38]									
	0.68 -0.59 0.33 -0.59 0.04 0.63 -0.54									
	-0.99 0.33 1.70 -0.98 0.02 -0.34 0.23									
[C]	0.39 -0.59 -0.98 2.43 -1.34 0.16 0.04									
	-0.01 0.04 0.02 -1.34 2.58 -1.33 -0.23									
	$\begin{bmatrix} -0.36 & 0.63 & -0.34 & 0.16 & -1.33 & 4.78 & -3.77 \end{bmatrix}$									
	0.38 -0.54 0.23 0.04 -0.23 -3.77 8.10									
	565.24 -549.75 -34.46 38.10 -27.40 4.96	20.72								
	-549.75 1106.86 -532.36 -52.63 48.97 -8.16 -	-34.57								
- 2	-34.46 -532.36 1148.24 -567.05 -24.35 6.97	21.44								
[K]	38.10 -52.63 -567.05 1170.03 -585.05 -3.96	-12.37								
_	-27.40 48.97 -24.35 -585.05 1177.88 - 593.43	-0.38								
	4.96 -8.16 6.97 -3.96 -593.43 2351.35 -1	735.03								
	20.72 -34.57 21.44 -12.37 -0.38 -1735.03 3	697.93								

表 3.9:以 CCWT 配合迴歸模型 (二) 識別無雜訊反應所得之模態參數

模態	頻	率(Hz)	阻尼	是比(%)	MAC	
快悠	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.72	0.65%	0.43	-4.69%	1.00	
2	2.16	-1.98%	1.25	-9.90%	1.00	
3	3.18	-0.76%	2.03	1.12%	1.00	
4	4.11	-0.07%	2.59	0.33%	1.00	
5	4.95	-1.19%	0.79	-75.02%	0.03	
6	5.04	-4.19%	1.44	-56.57%	0.24	
7	7.89	-1.44%	5.35	6.35%	1.00	

表 3.10: 限制矩陣帶寬為 1, 時間域識別無雜訊反應所得之[C]及[K]

矩陣					識別結界	Ę				
		-0.12	0.13	0.00	0.00	0.00	0.00	0.00]	
		0.13 -	-0.19	0.06	0.00	0.00	0.00	0.00		
		0.00	0.06	-0.10	0.02	0.00	0.00	0.00		
[C]		0.00	0.00	0.02	-0.07	0.03	0.00	0.00		
		0.00	0.00	0.00	0.03	-0.08	-0.01	0.00		
		0.00	0.00	0.00	0.00	-0.01	0.12	-0.35		
		0.00	0.00	0.00	0.00	0.00	-0.35	0.63]	
	604.82	-604.98		0.00	0.00	0.00	10	0.00	0.00	
	-604.98	1206.17	-60	1.12	0.00	0.00		0.00	0.00	
	0.00	-601.12	120	0.26	-598.73	0.00		0.00	0.00	
[K]	0.00	0.00	-59	8.73	1195.73	-595.95		0.00	0.00	
-	0.00	0.00		0.00 -	-595.95	1189.28	-5 3	88.78	0.00	
	0.00	0.00	- 6	0.00	0.00	-588.78	234	48.56	-1751.12	
	0.00	0.00	0.000	0.00	0.00	0.00	-17:	51.12	3697.97	

表 3.11: 限制矩陣帶寬為 1, 時間域識別無雜訊反應所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.00%	-0.08	-116.81%	1.00
2	2.21	-0.09%	-0.09	-106.76%	1.00
3	3.19	-0.17%	-0.11	-105.35%	1.00
4	4.09	-0.51%	-0.06	-102.24%	1.00
5	4.99	-0.32%	-0.10	-103.24%	1.00
6	5.27	0.20%	-0.25	-107.71%	1.00
7	7.90	-1.31%	0.39	-92.15%	1.00

表 3.12: 限制[K]帶寬為 1, 時間域識別無雜訊反應所得之[C]及[K]

矩陣	識別結果									
		-0.01 0.00	0 -0.01	0.01	0.02	0.02 -0.01				
		0.00 -0.02	2 0.01	-0.01	0.00 - 0.0	0.02 0.03				
		-0.01 0.0	1 0.00	0.00	-0.04	0.00				
[C]		0.01 -0.0	1 0.00	-0.04	0.04 - 0	0.02 -0.03				
		0.02 0.00	0.04	0.04	-0.06 -0	0.02 -0.01				
		0.02 - 0.02	2 0.00	-0.02	-0.02	0.04 -0.18				
		_0.01 0.03	3 0.00	-0.03	-0.01 -0	0.18 0.25				
	599.11	-599.07	0.00	0.00	0.00	0.00	0.00			
	-599.07	1198.69 -	599.61	0.00	0.00	0.00	0.00			
	0.00	-599.61 1	199.39 -	-599.78	0.00	0.00	0.00			
[K]	0.00	0.00 -	599.78 1	199.23	-599.26	0.00	0.00			
-	0.00	0.00	0.00 -	-599.26	1197.82	-597.43	0.00			
	0.00	0.00	0.00	0.00	-597.43	2387.06	-1786.48			
	0.00	0.00	0.00	0.00	0.00	-1786.48	3771.72			

表 3.13: 限制[K]帶寬為 1, 時間域識別無雜訊反應所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
ľ	0.72	0.00%	-0.08	-116.71%	1.00
2	2.21	-0.04%	-0.12	-108.30%	1.00
3	3.20	-0.08%	0.00	-100.21%	1.00
4	4.11	-0.13%	0.01	-99.67%	1.00
5	5.00	-0.10%	-0.06	-101.92%	1.00
6	5.26	-0.06%	-0.03	-100.94%	1.00
7	7.98	-0.36%	0.17	-96.59%	1.00

表 3.14:限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別無雜訊反應 所得之[C]及[K]

矩陣				識別結身	果				
		1.23 -1	.23 0.	00.00	0.00	0.00	0.00		
		-1.23 2	2.45 -1.	21 0.00	0.00	0.00	0.00		
		0.00 -1	.21 2.	42 -1.20	0.00	0.00	0.00		
[C]		0.00	0.00 -1.	20 2.38	-1.18	0.00	0.00		
		0.00	0.00 0.	00 -1.18	2.40	-1.27	0.00		
		0.00	.00 0.	0.00	-1.27	5.27	-4.39		
		0.00	0.00 0.	0.00	0.00	-4.39	8.96		
	585.21	-584.37	0.00	0.00	0.00	1/2	0.00	0.00]
	-584.37	1168.72	-582.46	0.00	0.00		0.00	0.00	
3	0.00	-582.46	1170.02	-585.39	0.00		0.00	0.00	
[K]	0.00	0.00	-585.39	1173.54	-587.00		0.00	0.00	
-	0.00	0.00	0.00	-587.00	1180.68	_59 <u>9</u>	9.37	0.00	
	0.00	0.00	0.00	0.00	-599.37	2404	4.36	-1809.68	
	0.00	0.00	0.00	0.00	0.00	-1809	9.68	3823.20	

表 3.15:以表 3.14 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.73	0.83%	0.47	4.22%	1.00
2	2.19	-1.00%	1.38	-0.59%	1.00
3	3.17	-0.98%	2.02	0.40%	1.00
4	4.09	-0.54%	2.63	1.81%	1.00
5	4.97	-0.85%	3.21	1.95%	1.00
6	5.20	-1.24%	3.40	2.87%	1.00
7	8.03	0.25%	5.91	17.45%	1.00

表 3.16: 限制矩陣帶寬為 5,以 CCWT 識別無雜訊反應所得之[C]及[K]

矩陣			j.	識別結界	Ę			
		0.05 0.64	4 -0.99	0.41	-0.08	-0.06	0.00	
		0.64 - 0.5	3 0.32	-0.63	0.16	0.16	0.04	
		-0.99 0.3	2 1.69	-0.94	-0.05	-0.13	0.00	
[C]		0.41 -0.6	3 -0.94	2.38	-1.29	0.12	0.04	
		-0.08 0.1	6 -0.05	-1.29	2.56	-1.38	-0.13	
		-0.06 0.1	5 -0.13	0.12	-1.38	4.90	-3.87	
		0.00 0.04	4 0.00	0.04	-0.13	-3.87	8.08	
	568.04	-554.39	-31.36	35.88	-27.53	3 1	8.01	0.00
	-554.39	1114.50 -	537.42	-49.06	49.28	3 –2	9.42	-1.03
3	-31.36	-537.42 1	151.39 –	569.00	-24.87	1	9.92	1.62
[K]	35.88	-49.06 -	569.00 1	170.81	-584.09) –1	2.70	0.18
	-27.53	49.28	-24.87 -	584.09	1176.07	⁷ −58	7.20	-8.30
E	18.01	-29.42	19.92	-12.70	-587.20	234	8.20 -	-1735.14
	0.00	-1.03	1.62	0.18	-8.30) –173	5.14	3703.94

表 3.17:以表 3.16之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.65%	0.43	-4.69%	1.00
2	2.16	-1.98%	1.25	-9.86%	1.00
3	3.18	-0.76%	2.03	0.98%	1.00
4	4.11	-0.07%	2.60	0.48%	1.00
5	4.97	-0.80%	1.29	-59.00%	0.10
6	5.04	-4.17%	0.95	-71.27%	0.35
7	7.89	-1.43%	5.41	7.54%	1.00

表 3.18: 限制矩陣帶寬為 4,以 CCWT 識別無雜訊反應所得之[C]及[K]

矩陣			識別結果									
		1.05 -	-0.95	-0.13	0.00	0.07	0.00	0.00				
		-0.95	2.00	-1.03	0.00	-0.06	0.06	0.00				
		-0.13 -	-1.03	2.37	-1.20	-0.03	-0.03	0.06				
[C]		0.00	0.00	-1.20	2.36	-1.16	-0.01	0.00				
		0.07 -	-0.06	-0.03	-1.16	2.37	-1.25	-0.11				
		0.00	0.06	-0.03	-0.01	-1.25	4.85	-3.93				
		0.00	0.00	0.06	0.00	-0.11	-3.93	8.11				
	586.07	-585.29		6.73	9.99	-2.1	8	0.00	0.00			
	-585.29	1167.16	-57	8.49	-6.84	8.7	6 -	-2.04	0.00			
1	-6.73	-578.49	118	0.28	-594.74	-2.7	2	7.76	-0.71			
[K]	9.99	-6.84	-59	4.74	1187.92	-595.6	4 -	-8.75	2.61			
	-2.18	8.76	38 +	2.72 -	-595.64	1182.3	1 -5	88.10	-10.30			
	0.00	-2.04	-8	7.76	-8.75	-588.1	0 23	46.40	-1733.56			
	0.00	0.00	o and	0.71	2.61	-10.3	0 –17	33.56	3703.77			

表 3.19:以表 3.18 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
ľ	0.72	0.65%	0.43	-4.74%	1.00
2	2.16	-1.98%	1.25	-9.63%	1.00
3	3.17	-0.79%	2.02	0.41%	1.00
4	4.11	-0.02%	2.61	0.81%	1.00
5	4.99	-0.36%	2.98	-5.21%	1.00
6	5.18	-1.50%	2.91	-11.91%	1.00
7	7.89	-1.46%	5.43	7.99%	1.00

表 3.20: 限制矩陣帶寬為 3,以 CCWT 識別無雜訊反應所得之[C]及[K]

矩陣			J.	識別結果	Ę			
		1.05 -0.96	-0.15	0.07	0.00	0.00	0.00	
		-0.96 2.02	-0.99	-0.10	0.05	0.00	0.00	
		-0.15 -0.99	2.32	-1.15	-0.09	0.09	0.00	
[C]		0.07 -0.10	-1.15	2.32	-1.11 -	-0.12	0.13	
		0.00 0.05	-0.09	-1.11	2.33 -	-1.16 –	0.22	
		0.00 0.00	0.09	-0.12	-1.16	4.76 -	3.89	
		0.00 0.00	0.00	0.13	-0.22 -	-3.89	8.18	
	591.69	-594.35	-1.19	6.12	0.00	0.	00.00	
	-594.35	1181.97 -5	87.63	-0.68	4.53	0.	0.00	
- 2	-1.19	-587.63 11	85.85 -	-598.48	0.98	3.	86 0.00	
[K]	6.12	-0.68 -5	98.48 1	190.94	-598.41	-6.	0.96	
	0.00	4.53	0.98 -	-598.41	1183.95	-5 89.	31 –9.49	
	0.00	0.00	3.86	-6.05	-589.31	2345.	40 -1730.13	
	0.00	0.00	0.00	0.96	-9.49	-1730.	13 3698.31	

表 3.21:以表 3.20 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	人比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.65%	0.43	-5.07%	1.00
2	2.16	-1.99%	1.27	-8.25%	1.00
3	3.18	-0.71%	1.95	-3.04%	1.00
4	4.11	-0.08%	2.64	2.13%	1.00
5	4.99	-0.31%	3.08	-2.22%	1.00
6	5.22	-0.72%	2.75	-16.76%	1.00
7	7.88	-1.53%	5.41	7.57%	1.00

表 3.22: 限制矩陣帶寬為 2,以 CCWT 識別無雜訊反應所得之[C]及[K]

矩陣				識別結果	Ł		
		1.33 –	1.42 0.0	0.00	0.00	0.00 0.00	Γ
		-1.42	2.75 –1.3	37 0.05	0.00	0.00 0.00	0
		0.09 –	1.37 2.5	54 -1.28	0.01	0.00 0.00	0
[C]		0.00	0.05 - 1.2	28 2.41	-1.21	0.05 0.00	0
		0.00	0.00	01 -1.21	2.39 -	-1.27 -0.02	2
		0.00	0.00	0.05	-1.27	4.81 -3.92	2
		0.00	0.00 0.0	00.00	-0.02 -	-3.92 8.08	8
	609.03	-623.38	15.95	0.00	0.00	0.00	0.00
	-623.38	1229.29	-614.35	11.82	0.00	0.00	0.00
3	15.95	-614.35	1201.43	-611.45	11.48	0.00	0.00
[K]	0.00	11.82	-611.45	1203.99	-610.16	3.70	0.00
-	0.00	0.00	11.48	-610.16	1194.56	-598.92	-6.67
	0.00	0.00	0.00	3.70	-598.92	2352.90	-1734.27
	0.00	0.00	0.00	0.00	-6.67	-1734.27	3699.86

表 3.23: 以表 3.22 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	人比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.64%	0.42	-6.28%	1.00
2	2.17	-1.88%	1.32	-5.05%	1.00
3	3.17	-1.00%	1.95	-3.15%	1.00
4	4.11	-0.18%	2.56	-1.05%	1.00
5	5.03	0.37%	3.23	2.78%	1.00
6	5.34	1.45%	3.72	12.39%	1.00
7	7.89	-1.44%	5.42	7.74%	1.00

表 3.24: 限制矩陣帶寬為 1,以 CCWT 識別無雜訊反應所得之[C]及[K]

矩陣			識別結果								
		1.14 –1.1	4 0.00	0.00	0.00	0.00 0.0	[00				
		-1.14 2.3	0 -1.16	0.00	0.00	0.00 0.0	00				
		0.00 -1.1	6 2.36	-1.20	0.00	0.00 0.0	00				
[C]		0.00 0.0	0 -1.20	2.41	-1.23	0.00 0.0	00				
		0.00 0.0	0.00	-1.23	2.44 -	-1.27 0.0	00				
		0.00 0.0	0.00	0.00	-1.27	4.96 -3.9	00				
		0.00 0.0	0.00	0.00	0.00 -	-3.90 7.9	04				
	581.49	-580.60	0.00	0.00	0.00	0.00	0.00				
	-580.60	1160.78 -	578.11	0.00	0.00	0.00	0.00				
	0.00	-578.11 1	161.31 -	-580.77	0.00	0.00	0.00				
[K]	0.00	0.00 -:	580.77 1	165.76	-584.47	0.00	0.00				
	0.00	0.00	0.00 -	584.47	1174.42	-5 94.26	0.00				
	0.00	0.00	0.00	0.00	-594.26	2378.54	-1783.00				
	0.00	0.00	0.00	0.00	0.00	-1783.00	3767.19				

表 3.25: 以表 3.24 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
ľ	0.72	0.62%	0.42	-7.39%	1.00
2	2.18	-1.34%	1.34	-3.70%	1.00
3	3.16	-1.31%	1.97	-1.96%	1.00
4	4.07	-0.96%	2.59	0.11%	1.00
5	4.95	-1.17%	3.19	1.43%	1.00
6	5.18	-1.57%	3.26	-1.54%	1.00
7	7.97	-0.45%	5.34	6.08%	1.00

表 3. 26: 不同帶寬限制之識別模態參數最大誤差及發生之模態

帶寬	頻率	發生模態	阻尼比	路上档能	最小 MAC	孫 片 档 能	
中見	最大誤差	發生快 您	最大誤差	發生疾 忿	取小 MAC	致王侠 忿	
6	-4.19%	6	-75.02%	5	0.03	5	
5	-4.17%	6	-71.27%	6	0.10	5	
4	-1.98%	2	-11.91%	6	1.00	-	
3	-1.99%	2	-16.76%	6	1.00	-	
2	-1.88%	2	12.39%	6	1.00	-	
1	-1.57%	6	-7.39%		1.00	-	

表 3.27:時間域識別 5%雜訊反應所得之[C]及[K]

矩陣	識別結果
	[-2.76 3.77 -1.20 0.37 -0.30 0.00 0.38]
	3.77 -6.26 3.03 -0.67 0.54 -0.48 -0.67
	-1.20 3.03 -2.54 0.73 -0.61 1.43 -0.41
[C]	0.37 -0.67 0.73 -0.61 0.28 -1.84 2.84
	-0.30 0.54 -0.61 0.28 0.93 0.63 -5.10
	0.00 -0.48 1.43 -1.84 0.63 0.98 0.13
	0.38 -0.67 -0.41 2.84 -5.10 0.13 11.19
	90.75 73.76 -123.16 -57.51 6.51 4.38 5.85
	73.76 72.66 -19.65 -93.77 -59.08 7.63 10.77
- 3	-123.16 -19.65 280.15 24.17 -140.95 -13.45 9.76
[K]	-57.51 -93.77 24.17 219.64 91.18 -143.16 -103.70
	6.51 -59.08 -140.95 91.18 324.68 -31.34 -105.66
	4.38 7.63 -13.45 -143.16 -31.34 565.37 209.95
	5.85 10.77 9.76 -103.70 -105.66 209.95 691.62

表 3.28: 限制矩陣帶寬為 1, 時間域識別 5%雜訊反應所得之[C]及[K]

矩陣					識別結界	Ł				
		-0.52	0.53	0.00	0.00	0.00	0.00	0.00]	
		0.53 -	-0.75	0.09	0.00	0.00	0.00	0.00		
		0.00	0.09	-0.05	0.06	0.00	0.00	0.00		
[C]		0.00	0.00	0.06	-0.28	0.22	0.00	0.00		
		0.00	0.00	0.00	0.22	-0.03	-0.59	0.00		
		0.00	0.00	0.00	0.00	-0.59	1.14	-0.16		
		0.00	0.00	0.00	0.00	0.00	-0.16	0.53		
	227.97	-215.07		0.00	0.00	0.00	0	0.00	0.00	
	-215.07	667.36	-44	9.68	0.00	0.00)	0.00	0.00	
	0.00	-449.68	94	9.64	-494.84	0.00		0.00	0.00	
[K]	0.00	0.00	-49	4.84	1028.69	-542.72	2	0.00	0.00	
-	0.00	0.00		0.00	-542.72	1105.33	3 –5	82.70	0.00	
	0.00	0.00	-8	0.00	0.00	-582.70) 22	84.58	-1647.29	
	0.00	0.00	1000	0.00	0.00	0.00) –16	47.29	3480.78	

表 3.29:以表 3.28 之[C]及[K]所得之模態參數

妆能	頻	率(Hz)	阻尼	上比(%)	MAC
模態	識別值	相對誤差	識別值	相對誤差	MAC
ľ	0.72	0.12%	-0.11	-124.25%	1.00
2	1.93	-12.58%	-0.42	-130.48%	0.92
3	2.68	-16.41%	-0.83	-141.45%	0.76
4	3.52	-14.33%	-0.90	-134.94%	0.34
5	4.01	-19.90%	0.07	-97.63%	0.07
6	4.82	-8.36%	0.09	-97.18%	0.19
7	7.69	-3.97%	0.49	-90.26%	1.00

表 3.30:以 CCWT 識別 5%雜訊反應所得之[C]及[K]

矩陣	識別結果
	\[\begin{array}{cccccccccccccccccccccccccccccccccccc
	5.53 -8.18 4.01 -1.41 -0.25 0.45 1.06
	-3.31 4.01 0.18 -0.88 0.52 -0.35 -0.87
[C]	0.85 -1.41 -0.88 2.73 -1.96 0.21 1.09
	0.18 -0.25 0.52 -1.96 3.28 -1.41 -1.13
	-0.25 0.45 -0.35 0.21 -1.41 4.77 -4.23
	$\begin{bmatrix} -0.57 & 1.06 & -0.87 & 1.09 & -1.13 & -4.23 & 10.89 \end{bmatrix}$
	379.77 -247.19 -218.74 162.61 -124.60 114.48 -72.61
	-247.19 612.66 -228.55 -260.53 212.19 -190.82 118.37
	-218.74 -228.55 951.59 -421.14 -141.58 127.70 -69.07
[K]	162.61 -260.53 -421.14 1043.87 -475.88 -110.50 58.90
_	-124.60 212.19 -141.58 -475.88 1068.60 -426.17 -164.63
	114.48 -190.82 127.70 -110.50 -426.17 1734.09 -915.50
	-72.61 118.37 -69.07 58.90 -164.63 -915.50 2555.54

表 3.31: 以表 3.30 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	是比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.66%	0.43	-5.75%	1.00
2	2.16 -1.99%		1.24	-10.43%	1.00
3	3.10	-3.11%	-16.90	-940.31%	0.05
4	3.17	-22.84%	1.98	-23.50%	0.00
5	4.11	-18.01%	2.59	-17.79%	0.01
6	4.93	-6.40%	2.45	-26.06%	0.02
7	6.36	-20.55%	7.84	55.86%	0.97

表 3.32: 限制矩陣帶寬為 1,以 CCWT 識別 5%雜訊反應所得之[C]及[K]

矩陣			1	識別結果	Ę		
		1.20 –1	30 0.00	0.00	0.00	0.00 0.	[00
		-1.30 2	58 –1.14	0.00	0.00	0.00 0.	00
		0.00 -1.	14 2.53	-1.29	0.00	0.00 0.	00
[C]		0.00 0.0	00 -1.29	2.01	-0.93	0.00 0.	00
		0.00 0.0	00.0	-0.93	2.31 -	-1.35 0.	00
		0.00 0.0	00.0	0.00	-1.35	3.54 -1.	92
		0.00 0.0	00.00	0.00	0.00 -	-1.92 5.	64
	575.64	-574.58	0.00	0.00	0.00	0.00	0.00
	-574.58	1152.50	-575.29	0.00	0.00	0.00	0.00
3	0.00	-575.29	1153.75 -	-575.88	0.00	0.00	0.00
[K]	0.00	0.00	-575.88 1	155.37	-577.83	0.00	0.00
	0.00	0.00	0.00 -	-577.83	1159.51	-581.19	0.00
	0.00	0.00	0.00	0.00	-581.19	2263.55	5 –1614.38
	0.00	0.00	0.00	0.00	0.00	-1614.38	3417.69

表 3.33: 以表 3.32 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值 相對誤差		MAC	
1	0.72	0.65%	0.42	-6.98%	1.00	
2	2.17 -1.69%		1.31	-5.40%	1.00	
3	3.14	-1.86%	1.91	-5.26%	1.00	
4	4.03	-1.92%	2.73	5.66%	1.00	
5	4.91	-1.95%	3.05	-2.97%	1.00	
6	5.16	-2.04%	3.45	4.41%	1.00	
7	7.62	-4.79%	3.58	-28.88%	1.00	

表 3.34:限制矩陣帶寬為 1 且取樣門檻為 50%,以 CCWT 識別 5%雜訊反應所得之[C]及[K]

矩陣				識別結果	Ę		
		1.31 -1.	43 0.00	0.00	0.00	0.00	[00.
		-1.43 2.	80 -1.18	0.00	0.00	0.00	.00
		0.00 -1.	18 2.46	-1.28	0.00	0.00	.00
[C]		0.00 0.	00 -1.28	2.08	-0.97	0.00	.00
		0.00 0.	00.00	-0.97	2.32 -	-1.29 0	.00
		0.00 0.	0.00	0.00	-1.29	3.70 -2	.23
		0.00 0.	00.00	0.00	0.00 -	-2.23 6.	.09
	580.38	-579.02	0.00	0.00	0.00	0.0	0.00
	-579.02	1161.11	-579.06	0.00	0.00	0.0	0.00
3	0.00	-579.06	1163.73 -	-581.00	0.00	0.0	0.00
[K]	0.00	0.00	-581.00 1	164.72	-582.06	0.0	0.00
	0.00	0.00	0.00 -	-582.06	1172.54	-593.5	6 0.00
	0.00	0.00	0.00	0.00	-593.56	2326.5	3 -1682.82
	0.00	0.00	0.00	0.00	0.00	-1682.8	2 3558.80

表 3.35:以表 3.34 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值	相對誤差	MAC	
ľ	0.73	1.65%	0.42	-7.88%	1.00	
2	2.18	-1.24%	1.35	-2.46%	1.00	
3	3.16	-1.37%	1.93	-3.79%	1.00	
4	4.07	-1.15%	2.69	4.00%	1.00	
5	4.94	-1.37%	3.14	-0.20%	1.00	
6	5.18	-1.64%	3.66	10.66%	1.00	
7	7.77	-2.95%	3.83	-23.78%	1.00	

表 3. 36:限制矩陣帶寬為 1 且取樣門檻為 70%,以 CCWT 識別 5%雜訊反應所得之[C]及[K]

矩陣				<u>د</u> د	哉別結果	<u>-</u>				
		1.26 –	1.36	0.00	0.00	0.00	0.00	0.00		
		-1.36	2.69	-1.15	0.00	0.00	0.00	0.00		
		0.00 -	1.15	2.37	-1.23	0.00	0.00	0.00		
[C]		0.00	0.00	-1.23	2.15	-1.03	0.00	0.00		
		0.00	0.00	0.00	-1.03	2.32 -	-1.12	0.00		
		0.00	0.00	0.00	0.00	-1.12	3.58	-2.18		
		0.00	0.00	0.00	0.00	0.00 -	-2.18	6.08		
	583.42	-582.48	0	0.00	0.00	0.00	1	0.00	0.00	
	-582.48	1165.06	-580	0.35	0.00	0.00		0.00	0.00	
	0.00	-580.35	1164	-1.54	581.14	0.00	11	0.00	0.00	
[K]	0.00	0.00	-581	.14 1	163.71	-581.95	-	0.00	0.00	
	0.00	0.00	0	0.00 –	581.95	1175.30	-60	0.26	0.00	
	0.00	0.00	0	0.00	0.00	-600.26	236	7.37	-1742.68	
	0.00	0.00	0	0.00	0.00	0.00	-174	2.68	3689.66	

表 3.37:以表 3.36 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	MAC	
	識別值	相對誤差	識別值	相對誤差	MAC
1	0.73	0.84%	0.48	5.52%	1.00
2	2.18	-1.27%	1.42	2.55%	1.00
3	3.16	-1.25%	1.96	-2.40%	1.00
4	4.08	-0.80%	2.59	0.16%	1.00
5	4.95	-1.14%	3.09	-1.89%	1.00
6	5.19	-1.45%	3.54	7.07%	1.00
7	7.90	-1.37%	3.72	-26.03%	1.00

表 3. 38: 限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別 5%雜訊反應所得之[C]及[K]

矩陣	識別結果								
		1.18 -	-1.28	0.00	0.00	0.00	0.00	0.00	
		-1.28	2.64	-1.16	0.00	0.00	0.00	0.00	
[C]		0.00 -	1.16	2.25	-1.12	0.00	0.00	0.00	
		0.00	0.00	-1.12	2.10	-1.02	0.00	0.00	
		0.00	0.00	0.00	-1.02	2.07	-0.82	0.00	
		0.00	0.00	0.00	0.00	-0.82	3.35	-2.41	
		0.00	0.00	0.00	0.00	0.00	-2.41	6.33	
	583.98	-583.14	-	0.00	0.00	0.00	1	0.00	0.00
	-583.14	1165.93	-58	1.22	0.00	0.00		0.00	0.00
	0.00	-581.22	116	5.51 -	-581.60	0.00		0.00	0.00
[K]	0.00	0.00	-58	1.60 1	163.76	-582.09		0.00	0.00
	0.00	0.00		0.00 -	-582.09	1176.76	-60	02.67	0.00
	0.00	0.00	8	0.00	0.00	-602.67	23	77.18	-1755.36
	0.00	0.00	No.	0.00	0.00	0.00	-17:	55.36	3720.47

表 3.39: 以表 3.38 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	MAC	
	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.41%	0.52	13.83%	1.00
2	2.18	-1.25%	1.40	1.17%	1.00
3	3.16	-1.19%	1.92	-4.69%	1.00
4	4.08	-0.68%	2.32	-10.41%	1.00
5	4.96	-1.06%	2.84	-9.63%	1.00
6	5.19	-1.39%	3.37	1.93%	1.00
7	7.93	-1.01%	3.84	-23.66%	1.00

表 3.40:不同取樣門檻之 5%雜訊反應識別模態參數最大誤差及發生之模態

取樣門檻	頻率 最大誤差	發生模態	阻尼比 最大誤差	發生模態	最小 MAC	發生模態
0%	-4.79%	7	-28.88%	7	1.00	-
50%	-2.95%	7	-23.78%	7	1.00	-
70%	-1.45%	6	-26.03%	7	1.00	-
90%	-1.39%	6	-23.66%	7	1.00	-

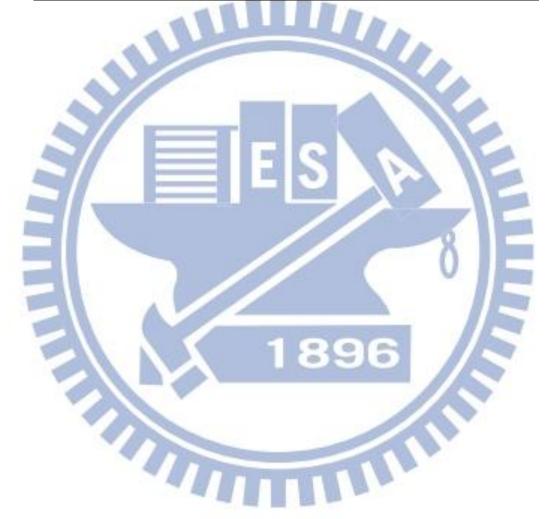


表 3.41: 限制矩陣帶寬為 1,以 CCWT 識別 10%雜訊反應所得之[C]及[K]

矩陣				識別結界	Ę		
		1.21 -1.	42 0.00	0.00	0.00	0.00	
		-1.42 2.	77 -1.10	0.00	0.00	0.00	
		0.00 -1.	10 2.64	-1.34	0.00	0.00	
[C]		0.00 0.	00 -1.34	1.52	-0.56	0.00	
		0.00 0.	00.00	-0.56	2.00 - 1	1.28 0.00	
		0.00 0.	0.00	0.00	-1.28 2	2.00 -0.04	
		0.00 0.	00.00	0.00	0.00 -0	0.04 3.61	IJ
	559.86	-558.25	0.00	0.00	0.00	0.00	0.00
	-558.25	1127.81	-566.12	0.00	0.00	0.00	0.00
3	0.00	-566.12	1133.84	-564.23	0.00	0.00	0.00
[K]	0.00	0.00	-564.23	1130.13	-561.69	0.00	0.00
-	0.00	0.00	0.00	-561.69	1121.25	-545.96	0.00
	0.00	0.00	0.00	0.00	-545.96	2012.66	-1276.23
	0.00	0.00	0.00	0.00	0.00	-1276.23	2718.37

表 3.42:以表 3.41 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.73	0.73%	0.43	-4.98%	1.00	
2	2.15	-2.65%	1.30	-6.65%	1.00	
3	3.09	-3.34%	1.83	-8.96%	1.00	
4	3.93	-4.51%	2.88	11.47%	0.99	
5	4.81	-3.96%	2.67	-15.14%	0.99	
6	5.09	-3.31%	3.58	8.38%	1.00	
7	6.88	-14.11%	1.86	-62.98%	0.99	

表 3.43: 限制矩陣帶寬為 1 且取樣門檻為 50%,以 CCWT 識別 10%雜訊 反應所得之[C]及[K]

矩陣			<u> </u>	識別結果	R		
	Γ	1.40 -1	1.65 0.0	00.0	0.00	0.00 0	[00.
		-1.65 3	3.17 –1.	16 0.00	0.00	0.00 0	.00
		0.00 - 1	1.16 2	51 -1.32	0.00	0.00 0	.00
[C]		0.00	0.00 -1.3	32 1.71	-0.69	0.00 0	.00
		0.00	0.00	00 -0.69	2.08 -	-1.20 0	.00
		0.00	0.00	0.00	-1.20	2.08 -0	.22
		0.00	0.00	0.00	0.00	-0.22 3	.59
	576.46	-574.95	0.00	0.00	0.00	0.0	0.00
	-574.95	1155.89	-577.61	0.00	0.00	0.0	0.00
3	0.00	-577.61	1159.49	-577.74	0.00	0.0	0.00
[K]	0.00	0.00	-577.74	1155.61	-575.45	0.0	0.00
	0.00	0.00	0.00	-575.45	1156.40	-575.7	9 0.00
	0.00	0.00	0.00	0.00	-575.79	2162.0	0 -1437.88
	0.00	0.00	0.00	0.00	0.00	-1437.8	8 3050.94

表 3.44:以表 3.43 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.73	1.68%	0.41	-8.33%	1.00	
2	2.17	-1.55%	1.35	-2.43%	1.00	
3	3.14	-1.96%	1.86	-7.68%	1.00	
4	4.01	-2.45%	2.73	5.62%	1.00	
5	4.89	-2.32%	2.88	-8.47%	1.00	
6	5.16	-2.00%	3.97	19.92%	1.00	
7	7.25	-9.43%	1.87	-62.92%	1.00	

表 3.45: 限制矩陣帶寬為 1 且取樣門檻為 70%,以 CCWT 識別 10%雜訊 反應所得之[C]及[K]

矩陣			ָרָ ייָרָ	識別結果	Ę		
		1.31 -1.5	0.00	0.00	0.00	0.00]
		-1.51 2.9	7 -1.12	0.00	0.00	0.00	
		0.00 -1.1	2 2.38	-1.31	0.00	0.00	
[C]		0.00 0.0	0 -1.31	1.98	-0.91	0.00	
		0.00 0.0	0.00	-0.91	2.29 -1	0.00	
		0.00 0.0	0.00	0.00	-1.03 2	2.17 -0.29	
		0.00 0.0	0.00	0.00	0.00 -0	0.29 3.68	
	582.19	-581.16	0.00	0.00	0.00	0.00	0.00
	-581.16	1163.18 -	579.59	0.00	0.00	0.00	0.00
3	0.00	-579.59 1	163.24 -	580.32	0.00	0.00	0.00
[K]	0.00	0.00 -	580.32	159.46	-578.77	0.00	0.00
	0.00	0.00	0.00 -	578.77	1171.69	-598.53	0.00
	0.00	0.00	0.00	0.00	-598.53	2307.07	-1640.37
	0.00	0.00	0.00	0.00	0.00	-1640.37	3482.16

表 3.46:以表 3.45 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.73	0.86%	0.47	2.97%	1.00
2	2.18	-1.38%	1.48	6.66%	1.00
3	3.15	-1.45%	1.94	-3.70%	1.00
4	4.07	-1.12%	2.63	1.58%	1.00
5	4.94	-1.42%	3.03	-3.85%	1.00
6	5.18	-1.57%	3.74	13.24%	1.00
7	7.69	-3.93%	1.84	-63.51%	1.00

表 3.47: 限制矩陣帶寬為 1 且取樣門檻為 90%,以 CCWT 識別 10%雜訊 反應所得之[C]及[K]

矩陣				•	識別結果	Ę			
		1.16 –	1.38	0.00	0.00	0.00	0.00	0.00]
		-1.38	2.88	-1.13	0.00	0.00	0.00	0.00	
		0.00 -	1.13	2.23	-1.21	0.00	0.00	0.00	
[C]		0.00	0.00	-1.21	2.08	-0.96	0.00	0.00	
		0.00	0.00	0.00	-0.96	1.95	-0.59	0.00	
		0.00	0.00	0.00	0.00	-0.59	1.99	-0.69	
		0.00	0.00	0.00	0.00	0.00	-0.69	3.98	
	584.03	-583.05		0.00	0.00	0.00	1	0.00	0.00
	-583.05	1165.21	-58	0.56	0.00	0.00		0.00	0.00
2	0.00	-580.56	116	5.25	-581.69	0.00		0.00	0.00
[K]	0.00	0.00	-58	1.69	1161.01	-579.82		0.00	0.00
	0.00	0.00		0.00 -	-579.82	1176.67	-60)4.77	0.00
	0.00	0.00		0.00	0.00	-604.77	233	35.07	-1675.83
	0.00	0.00	A CONTRACTOR	0.00	0.00	0.00	-167	75.83	3564.07

表 3.48:以表 3.47 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.72	0.43%	0.50	11.10%	1.00	
2	2.18	-1.31%	1.47	5.74%	1.00	
3	3.16	-1.30%	1.88	-6.39%	1.00	
4	4.08	-0.78%	2.27	-12.01%	1.00	
5	4.95	-1.18%	2.73	-13.10%	1.00	
6	5.19	-1.43%	3.49	5.61%	1.00	
7	7.77	-2.94%	2.05	-59.26%	1.00	

表 3.49:不同取樣門檻之 10%雜訊反應識別模態參數最大誤差及發生之模態

取樣門檻	頻率 最大誤差	發生模態	阻尼比 最大誤差	發生模態	最小 MAC	發生模態
0%	-14.11%	7	-62.98%	5	1.00	-
50%	-9.43%	7	-62.92%	7	1.00	-
70%	-3.93%	7	-63.51%	7	1.00	-
90%	-2.94%	7	-59.26%	7	1.00	-

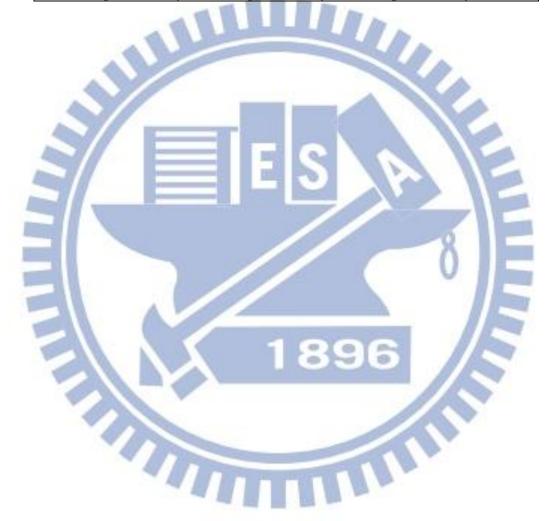


表 3.50:限制第一模態取樣門檻為 70%,以 CCWT 識別 10%雜訊反應時設定之取樣門檻

模態	1	2	3	4	5	6	7
取樣門檻	70.0%	66.5%	65.0%	57.5%	52.5%	55.0%	45.0%
取樣點數	2045	2004	2000	2015	2029	2041	2094

表 3.51:使用表 3.50 之取樣門檻設定,以 CCWT 識別 10%雜訊反應所得之[C]及[K]

矩陣	1			識別結果		.	
- 1		1.35 –1.	.56 0.00	0.00	0.00	0.00 0.00	1
		-1.56 3.	07 -1.1	7 0.00	0.00	0.00	
		0.00 -1	17 2.40	6 - 1.33	0.00	0.00	
[C]		0.00	.00 –1.3	3 2.01	-0.93	0.00	
		0.00	0.00	0 -0.93	2.36 -	1.20 0.00	
		0.00	0.00	0.00	-1.20	3.08 - 1.48	
		0.00	0.00	0.00	0.00	1.48 5.75	
	583.33	-582.34	0.00	0.00	0.00	0.00	0.00
-	-582.34	1166.88	-582.35	0.00	0.00	0.00	0.00
150	0.00	-582.35	1168.84	-583.54	0.00	0.00	0.00
[K]	0.00	0.00	-583.54	1165.68	-582.03	0.00	0.00
1	0.00	0.00	0.00	-582.03	1178.35	-602.69	0.00
	0.00	0.00	0.00	0.00	-602.69	2337.45	-1682.32
	0.00	0.00	0.00	0.00	0.00	-1682.32	3569.78
					Lin		

表 3.52: 以表 3.51 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供怨	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.73	0.85%	0.44	-1.76%	1.00	
2	2.18	-1.16%	1.47	5.78%	1.00	
3	3.16	-1.20%	1.98	-1.45%	1.00	
4	4.08	-0.78%	2.76	6.88%	1.00	
5	4.95	-1.13%	3.18	1.06%	1.00	
6	5.19	-1.40%	3.85	16.45%	1.00	
7	7.78	-2.83%	3.24	-35.54%	1.00	

表 3.53:限制第一模態取樣門檻為 90%,以 CCWT 識別 10%雜訊反應時 設定之取樣門檻

模態	1	2	3	4	5	6	7		
取樣門檻	90.0%	69.0%	85.0%	65.0%	70.0%	75.0%	57.5%		
取樣點數	1032	1156	1017	1091	1071	995	1066		

表 3.54:使用表 3.53 之取樣門檻設定,以 CCWT 識別 10%雜訊反應所得之[C]及[K]

矩陣	1		71. 3	識別結果		CO.	
- 4		1.36 –1.	59 0.00	0.00	0.00	0.00 0.00	1
		-1.59 3.	13 –1.17	0.00	0.00	0.00	
3		0.00 -1.	17 2.35	-1.30	0.00	0.00	
[C]		0.00 0.	00 -1.30	2.29	-1.11	0.00	
		0.00 0.	00 0.00) -1.11	2.30 -0	0.96 0.00	
		0.00 0.	00 0.00	0.00	-0.96	3.45 – 2.38	
		0.00 0.	00.00	0.00	0.00 - 2	2.38 6.99	
	581.19	-580.12	0.00	0.00	0.00	0.00	0.00
	-580.12	1161.40	-579.69	0.00	0.00	0.00	0.00
	0.00	-579.69	1164.57	-582.06	0.00	0.00	0.00
[K]	0.00	0.00	-582.06	1162.33	-581.22	0.00	0.00
Ĭ	0.00	0.00	0.00	-581.22	1180.08	-608.24	0.00
	0.00	0.00	0.00	0.00	-608.24	2366.45	-1723.56
	0.00	0.00	0.00	0.00	0.00	-1723.56	3663.87
					II .		

表 3.55: 以表 3.54 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
人	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.41%	0.46	0.86%	1.00
2	2.18 -1.31%		1.48	6.55%	1.00
3	3.16	-1.27%	2.02	0.46%	1.00
4	4.09	-0.59%	2.64	2.02%	1.00
5	4.96	-1.07%	3.26	3.61%	1.00
6	5.18	-1.55%	3.91	18.10%	1.00
7	7.87	-1.71%	4.10	-18.59%	1.00

表 3.56:以 n=9 之 CCWT 識別 20%雜訊反應時之參數設定

n 值		9										
a 值	2.16	0.69	0.47	0.37	0.30	0.29	0.19					
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0					
對應頻寬	0.54~	1.70~	2.47~	3.16~	3.85~	4.01~	6.16~					
(Hz)	0.86	2.70	3.93	5.04	6.15	6.39	9.84					
取樣門檻	90%	60%	58%	65%	68%	64%	50%					
取樣點數	981	1048	958	988	925	952	961					

表 3.57:以 n=37 之 CCWT 識別 20% 雜訊反應時之參數設定

n 值	1			37	1000		
a 值	8.53	2.71	1.87	1.46	1.19	1.15	0.75
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0
對應頻寬	0.62~	1.95~	2.83~	3.63~	4.42~	4.60~	7.08~
(Hz)	0.78	2.45	3.57	4.57	5.58	5.80	8.92
取樣門檻	90%	73%	75%	75%	78%	75%	54%
取樣點數	895	849	963	912	889	818	864
					111		

表 3.58:以 n=65 之 CCWT 識別 20% 雜訊反應時之參數設定

n 值				65			
a 值	14.89	4.74	3.26	2.54	2.08	2.00	1.30
對應頻率	0.7	2.2	3.2	4.1	5.0	5.2	8.0
(Hz)	0.7				5.0		0.0
對應頻寬	0.64~	2.01~	2.92~	3.74~	4.56~	4.75~	7.30~
(Hz)	0.76	2.39	3.48	4.46	5.44	5.65	8.70
取樣門檻	90%	71%	84%	70%	73%	75%	55%
取樣點數	946	867	967	947	935	953	912

表 3.59: 以 n=100 之 CCWT 識別 20% 雜訊反應時之參數設定

				175								
n 值		100										
a 值	22.86	7.27	5.00	3.90	3.20	3.08	2.00					
對應頻率	0.7	2.2	3.2	4.1	5.0	5.2	8.0					
(Hz)		A				- //						
對應頻寬	0.65~	2.04~	2.97~	3.81~	4.65~	4.83~	7.44~					
(Hz)	0.75	2.36	3.43	4.39	5.35	5.57	8.56					
取樣門檻	90%	69%	85%	68%	70%	75%	58%					
取樣點數	1034	1113	1002	941	1050	1053	944					

表 3.60:以 n=142 之 CCWT 識別 20%雜訊反應時之參數設定

n 值		142										
a 值	32.40	10.31	7.09	5.53	4.54	4.36	2.83					
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0					
對應頻寬	0.66~	2.07~	3.01~	3.86~	4.70~	4.89~	7.53~					
(Hz)	0.74	2.33	3.39	4.34	5.30	5.51	8.47					
取樣門檻	90%	71%	83%	66%	73%	76%	55%					
取樣點數	1119	1105	1144	1120	1098	1158	1085					

表 3.61:使用表 3.56 之參數設定,以 n=9 之 CCWT 識別 20%雜訊反應所 得之[C]及[K]

矩陣			<u> </u>	識別結果	·····································		
		1.71 –2	2.25 0.0	0.00	0.00	0.00 0.0	[0
		-2.25	4.10 -1.2	3 0.00	0.00	0.00 0.0	0
		0.00 - 1	1.23 2.0	0 -0.74	0.00	0.00 0.0	0
[C]		0.00	0.00 -0.7	4 0.87	0.30	0.00 0.0	0
		0.00	0.0 0.0	0.30	-1.58	2.03 0.0	0
		0.00	0.0	0.00	2.03 -	-6.17 3.8	2
		0.00	0.00 0.0	0.00	0.00	3.82 -2.56	4
	507.00	-501.79	0.00	0.00	0.00	0.00	0.00
	-501.79	1030.50	-526.26	0.00	0.00	0.00	0.00
- 2	0.00	-526.26	1082.04	-550.15	0.00	0.00	0.00
[K]	0.00	0.00	-550.15	1074.75	-517.38	0.00	0.00
	0.00	0.00	0.00	-517.38	1030.04	-456.18	0.00
	0.00	0.00	0.00	0.00	-456.18	1662.18	-1069.49
	0.00	0.00	0.00	0.00	0.00	-1069.49	2322.47

表 3.62:以表 3.61 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.53%	0.44	-2.58%	1.00
2	2.09	-5.29%	0.92	-33.33%	1.00
3	2.95	-7.94%	0.84	-58.27%	0.99
4	3.71	-9.77%	-0.38	-114.59%	0.96
5	4.60	-8.16%	1.02	-67.53%	0.98
6	4.87	-7.39%	4.27	29.18%	0.99
7	6.32	-21.12%	-4.92	-197.82%	1.00

表 3. 63:使用表 3.57 之參數設定,以 n=37 之 CCWT 識別 20%雜訊反應所 得之[C]及[K]

矩陣					哉別結果					
		1.60 -	2.14	0.00	0.00	0.00	0.00	0.00]	
		-2.14	4.05	-1.18	0.00	0.00	0.00	0.00		
		0.00 -	1.18	2.15	-1.14	0.00	0.00	0.00		
[C]		0.00	0.00	-1.14	2.30	-1.04	0.00	0.00		
		0.00	0.00	0.00	-1.04	1.27	0.23	0.00		
		0.00	0.00	0.00	0.00	0.23	-1.22	1.35		
		0.00	0.00	0.00	0.00	0.00	1.35	2.49]	
	T 579.24	-577.03	(0.00	0.00	0.00	1	0.00	0.00	
	-577.03	1156.04	-579	0.22	0.00	0.00		0.00	0.00	
- 3	0.00	-579.22	1165	5.29 -	581.91	0.00	11	0.00	0.00	
[K]	0.00	0.00	-581	1.91 1	150.91	-571.70	-	0.00	0.00	
	0.00	0.00	C	0.00 –	571.70	1170.97	-60	0.70	0.00	
	0.00	0.00	C	0.00	0.00	-600.70	221	2.77	-1494.38	
	0.00	0.00	C	0.00	0.00	0.00	-149	4.38	3217.91	

表 3.64:以表 3.63 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.10%	0.47	4.20%	1.00
2	2.17	-1.50%	1.31	-5.48%	1.00
3	3.14	-1.76%	1.87	-6.98%	1.00
4	4.06	-1.39%	1.90	-26.44%	1.00
5	4.92	-1.81%	2.75	-12.71%	1.00
6	5.17	-1.83%	4.66	40.88%	1.00
7	7.41	-7.48%	-0.07	-101.48%	1.00

表 3.65:使用表 3.58 之參數設定,以 n=65 之 CCWT 識別 20%雜訊反應所 得之[C]及[K]

矩陣				識別結	:果				
		1.44 -	1.93 (0.00	0.00	0.00	0.00		
		-1.93	3.78 -1	.10 0.00	0.00	0.00	0.00		
		0.00 - 1	1.10 2	2.13 -1.23	3 0.00	0.00	0.00		
[C]		0.00	0.00 -1	.28 2.33	3 -1.10	0.00	0.00		
		0.00	0.00	0.00 -1.10	1.89	-0.39	0.00		
		0.00	0.00	0.00	0.39	1.22	-0.14		
		0.00	0.00	0.00	0.00	-0.14	4.80		
	579.61	-577.84	0.0	0.0	0.0	00	0.00	0.00]
	-577.84	1157.40	-578.8	6 0.0	0.0	00	0.00	0.00	
3	0.00	-578.86	1165.0	0 -582.4	5 0.0	00	0.00	0.00	
[K]	0.00	0.00	-582.4	5 1155.3	1 -575.5	52	0.00	0.00	
	0.00	0.00	0.0	0 -575.52	2 1179.0	01 –6	10.63	0.00	
	0.00	0.00	0.0	0.0) –610.6	53 22	72.62	-1562.14	
	0.00	0.00	0.0	0.0	0.0	00 -15	62.14	3353.37	

表 3.66:以表 3.65 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.25%	0.46	1.22%	1.00
2	2.18	-1.43%	1.49	7.26%	1.00
3	3.15	-1.55%	2.00	-0.75%	1.00
4	4.08	-0.89%	2.49	-3.48%	1.00
5	4.94	-1.41%	3.16	0.51%	1.00
6	5.17	-1.73%	4.35	31.56%	1.00
7	7.55	-5.66%	1.95	-61.20%	1.00

表 3. 67:使用表 3.59 之參數設定,以 n=100 之 CCWT 識別 20%雜訊反應 所得之[C]及[K]

矩陣			Į.	識別結果	Ę			
		1.46 –1.9	0.00	0.00	0.00	0.00	$\lceil 00.0$	
		-1.90 3.7	6 –1.13	0.00	0.00	0.00	0.00	
		0.00 -1.1	3 2.27	-1.40	0.00	0.00	0.00	
[C]		0.00 0.0	0 -1.40	2.19	-1.03	0.00	0.00	
		0.00 0.0	0.00	-1.03	2.16 -	-0.60	0.00	
		0.00 0.0	0.00	0.00	-0.60	1.60 -	-0.27	
		0.00 0.0	0.00	0.00	0.00 -	-0.27	4.73	
	578.02	-576.53	0.00	0.00	0.00	0.	.00 0.0	00
	-576.53	1156.50 -	578.44	0.00	0.00	0.	.00 0.0	00
3	0.00	-578.44 1	162.37 -	-580.03	0.00	0.	0.0	00
[K]	0.00	0.00 -	580.03 1	153.53	-575.94	0.	.00 0.0	00
	0.00	0.00	0.00 -	575.94	1178.79	-612	.55 0.0	00
	0.00	0.00	0.00	0.00	-612.55	2300	.30 –1600.2	22
	0.00	0.00	0.00	0.00	0.00	-1600	.22 3424.1	17]

表 3.68:以表 3.67 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC	
供您	識別值	相對誤差	識別值	相對誤差	MAC	
1	0.72	0.44%	0.43	-5.04%	1.00	
2	2.17	-1.51%	1.58	14.17%	1.00	
3	3.15	-1.54%	2.02	0.23%	1.00	
4	4.08	-0.83%	2.63	1.65%	1.00	
5	4.94	-1.37%	3.25	3.25%	1.00	
6	5.17	-1.81%	4.35	31.56%	1.00	
7	7.63	-4.71%	2.06	-58.98%	1.00	

表 3.69:使用表 3.60 之參數設定,以 n=142 之 CCWT 識別 20%雜訊反應 所得之[C]及[K]

矩陣				1	 哉別結果	:				
		1.41 -	-1.83	0.00	0.00	0.00	0.00	0.00		
		-1.83	3.66	-1.13	0.00	0.00	0.00	0.00		
		0.00 -	-1.13	2.41	-1.48	0.00	0.00	0.00		
[C]		0.00	0.00	-1.48	1.96	-0.86	0.00	0.00		
		0.00	0.00	0.00	-0.86	2.30	-0.91	0.00		
		0.00	0.00	0.00	0.00	-0.91	1.38	0.52		
		0.00	0.00	0.00	0.00	0.00	0.52	3.55		
	S80.00	-578.77	(0.00	0.00	0.00	10	0.00	0.00	
	-578.77	1160.29	-579	9.34	0.00	0.00		0.00	0.00	
1	0.00	-579.34	1163	3.86 -	580.89	0.00		0.00	0.00	
[K]	0.00	0.00	-580	0.89 1	156.15	-576.94	1	0.00	0.00	
	0.00	0.00	(0.00 –	576.94	1178.40	– 61	10.84	0.00	
	0.00	0.00	(0.00	0.00	-610.84	231	16.15	-1633.18	
	0.00	0.00	(0.00	0.00	0.00	-163	33.18	3485.03	

表 3.70:以表 3.69 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	上比(%)	MAC
供您	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.63%	0.41	-8.51%	1.00
2	2.18	-1.43%	1.59	14.49%	1.00
3	3.15	-1.47%	1.96	-2.40%	1.00
4	4.08	-0.79%	2.78	7.72%	1.00
5	4.94	-1.29%	3.20	1.80%	1.00
6	5.18	-1.67%	4.25	28.49%	1.00
7	7.69	-3.93%	1.25	-75.13%	1.00

表 3.71:不同n 值之 CCWT 識別模態參數最大誤差及發生之模態

n	頻率	發生模態	阻尼比	發生模態	最小 MAC	發生模態	
	最大誤差	4	最大誤差	X 2 X &	νρε (1.2.10	7273	
9	-21.12%	7	-197.82%	7	0.96	4	
37	-7.48%	7	-101.48%	7	1.00	1	
65	-5.66%	7	-61.20%	7	1.00	1	
100	-4.71%	7	-58.98%	7	1.00	1	
142	-3.93%	7	-75.13%	7 7	1.00	-	

表 3.72:第一樓層柱勁度折減 25%系統之理論[C]與[K]

	A MANAGEMENT AND A ME INTERIOR
矩陣	理論值
	$\begin{bmatrix} 1.2 & -1.2 & 0 & 0 & 0 & 0 \\ 1.2 & 2.4 & 1.2 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} -1.2 & 2.4 & -1.2 & 0 & 0 & 0 \end{bmatrix}$
	0 -1.2 2.4 -1.2 0 0 0
[C]	0 0 -1.2 2.4 -1.2 0 0
	0 0 0 -1.2 2.4 -1.2 0
	0 0 0 -1.2 4.8 -3.6
	0 0 0 0 -3.6 6.6
	\[\begin{pmatrix} 600 & -600 & 0 & 0 & 0 & 0 \end{pmatrix} \]
	-600 1200 -600 0 0 0
	0 -600 1200 -600 0 0 0
[K]	0 0 -600 1200 -600 0 0
4	0 0 0 -600 1200 -600 0
	0 0 0 0 -600 2400 -1800

表 3.73:第一樓層柱勁度折減 10%系統之理論[C]與[K]

	(1) · 73 · 74	76 1-2	77241	774 207	0 711 120			
矩陣				理論值	i			
	-20 W A W	.2 –1. .2 2.		0	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
		0 -1.	2 2.4	-1.2	0	0	0	
[C]			$ \begin{array}{ccc} 0 & -1.2 \\ 0 & 0 \end{array} $		-1.2 2.4	0 -1.2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
			0 C	7/4 //	-1.2	4.8 -3.6	-3.6 7.2	
		U L	o o	U	0	3.0	7.2	
		-600	0	0	0	0	0	
	-600	1200	-600	0	0	0	0	
	0	-600	1200	-600	0	0	0	
[K]	0	0	-600	1200	-600	0	0	
	0	0	0	-600	1200	-600	0	
	0	0	0	0	-600	2400	-1800	
	_ 0	0	0	0	0	-1800	3600	

表 3.74:第一、三樓層柱勁度折減 10%系統之理論[C]與[K]

矩 陣			1	識別結	果		
	[1.2	-1.2	0	0	0	0	0
	-1.2	2.4 -	-1.2	0	0	0	0
	0	-1.2	2.4	-1.2	0	0	0
[C]	0	0 -	-1.2	2.4	-1.2	0	0
	0	0	0	-1.2	2.28	-1.08	0
	0	0	0	0	-1.08	4.68	-3.6
		0	0	0	0	-3.6	7.2
		-600	0	0	0	0	[0
	-600 1	200 -	600	0	0	0	0
	0 -	-600 12	200	-600	0	0	0
[K]	0	0 -	600	1200	-600	0	0
4	0	0	0	-600	1140	-540	0
	0	0	0	0	-540	2340	-1800
		0	0	0	0	-1800	3600

表 3.75: 不同勁度折減系統之理論模態參數

		一樓	一樓	一、三樓
	無折減	折減 25%	折減 10%	折減 10%
	0.72	0.71	0.72	0.70
	2.21	2.15	2.19	2.18
	3.20	3.12	3.17	3.17
頻率(Hz)	4.11	3.98	4.06	4.00
4	5.01	4.97	4.99	4.94
	5.26	5.26	5.26	5.26
	8.01	7.75	7.90	7.88
	0.45	0.44	0.45	0.44
	1.39	1.35	1.38	1.37
	2.01	1.96	1.99	1.99
阻尼比(%)	2.58	2.50	2.55	2.51
	3.15	3.12	3.14	3.10
	3.31	3.30	3.31	3.30
	5.03	4.87	4.97	4.95

表 3.76: 識別勁度無折減系統之參數設定

n 值		142							
a 值	32.40	10.31	7.09	5.53	4.54	4.36	2.83		
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0		
對應頻寬	0.66~	2.07~	3.01~	3.86~	4.70~	4.89~	7.53~		
(Hz)	0.74	2.33	3.39	4.34	5.30	5.51	8.47		
取樣門檻	90%	71%	83%	65%	73%	75%	55%		
取樣點數	1118	1114	1161	1176	1069	1087	1167		

表 3.77:以表 3.76 參數設定之識別結果 (a) [C]及[K] (b) 與理論值之相對誤差

矩陣	識別結果
72.17	
	$\begin{bmatrix} 1.34 & -1.55 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$
	$\begin{bmatrix} -1.55 & 3.06 & -1.16 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$
	0.00 -1.16 2.40 -1.34 0.00 0.00 0.00
[C]	0.00 0.00 -1.34 2.19 -1.04 0.00 0.00
100	0.00 0.00 0.00 -1.04 2.39 -1.11 0.00
4	0.00 0.00 0.00 0.00 -1.11 3.29 -1.91
	0.00 0.00 0.00 0.00 -1.91 6.27
	581.79 -580.79 0.00 0.00 0.00 0.00
	-580.79 1162.42 -579.58 0.00 0.00 0.00
	0.00 -579.58 1163.94 -581.38 0.00 0.00 0.00
[K]	0.00 0.00 -581.38 1161.65 -580.73 0.00 0.00
	0.00 0.00 0.00 -580.73 1177.84 -605.94 0.00
	0.00 0.00 0.00 0.00 -605.94 2366.08 -1729.88
	0.00 0.00 0.00 0.00 -1729.88 3672.41

表 3.77 (續): 以表 3.76 參數設定之識別結果 (a) [C]及[K] (b) 與理論值之相對誤差 (b)

相對誤差

「11.5%	20.10/	
11.3%	<i>49.1%</i>	_

矩陣

	11.570 2	17.1 /0					
	29.1% 2	7.6% -	-3.7%	_	_	_	-
		-3.7%	0.1%	11.8%	_	_	-
[C]	_	- 1	11.8%	-8.8%	-13.1%	_	-
	-	THE RE	-	-13.1%	-0.2%	-7.6%	-
	-4		LILL		-7.6%	-31.4%	-47.0%
	A	-	_	-		-47.0%	-17.5%
	[−3.0%	-3.2%	-, -	_	-	1]
	-3.2%	-3.1%	-3.4%				_
4		-3.4%	-3.0%	-3.1%	-	-	
[K]		-	-3.1%	-3.2%	-3.2%	- 1	
			ALC: N	-3.2%	-1.8%	1.0%	1000
		_100	ali _ la	7	1.0%	-1.4%	-3.9%
	10			100	1	2.00/	2 40/

表 3.78:以表 3.77 之[C]及[K]所得之模態參數

模態	頻	率(Hz)	阻尼	MAC	
快怒	識別值	相對誤差	識別值	相對誤差	MAC
1	0.72	0.60%	0.44	-2.71%	1.00
2	2.18	-1.33%	1.48	6.52%	1.00
3	3.16	-1.30%	1.99	-0.80%	1.00
4	4.09	-0.68%	2.71	5.06%	1.00
5	4.95	-1.12%	3.26	3.47%	1.00
6	5.18	-1.54%	3.85	16.52%	1.00
7	7.88	-1.60%	3.61	-28.18%	1.00

表 3.79: 識別第一樓層柱勁度折減 25%系統之參數設定

n 值		142							
a 值	32.40	10.31	7.09	5.53	4.54	4.36	2.83		
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0		
` ′	0.11	• • •	2.01	• • • •	4.70	4.00	-		
對應頻寬	0.66~	2.07~	3.01~	3.86~	4.70~	4.89~	7.53~		
(Hz)	0.74	2.33	3.39	4.34	5.30	5.51	8.47		
取樣門檻	90%	80%	68%	73%	65%	68%	48%		
取樣點數	1435	1452	1431	1472	1454	1436	1497		

表 3.80:以表 3.79 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異

矩陣	識別結果
	[0.72 -0.21 0.00 0.00 0.00 0.00 0.00]
	-0.21 0.57 -1.30 0.00 0.00 0.00 0.00
	0.00 -1.30 3.52 -1.45 0.00 0.00 0.00
[C]	0.00 0.00 -1.45 1.69 -0.90 0.00 0.00
100	0.00 0.00 0.00 -0.90 2.42 -1.25 0.00
4	0.00 0.00 0.00 0.00 -1.25 5.28 -4.35
	0.00 0.00 0.00 0.00 -4.35 8.02
	\[\begin{array}{cccccccccccccccccccccccccccccccccccc
	-588.54 1184.54 -595.47 0.00 0.00 0.00 0.00
	0.00 -595.47 1191.61 -594.27 0.00 0.00 0.00
[K]	0.00 0.00 -594.27 1191.52 -596.10 0.00 0.00
	0.00 0.00 0.00 -596.10 1196.60 -600.16 0.00
	0.00 0.00 0.00 0.00 -600.16 2375.98 -1764.41
	0.00 0.00 0.00 0.00 0.00 -1764.41 3251.97

表 3.80 (續):以表 3.79 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異 (b)

矩陣	相對差異
	\[\begin{array}{cccccccccccccccccccccccccccccccccccc
	-86.5% -81.4% 12.2%
	- 12.2% 46.3% 8.1%
[C]	8.1% -22.9% -13.3%
	12.5% 60.2% 128.3%
	128.3% 27.8%
	[1.5% 1.3%]
	1.3% 1.9% 2.7%
	- 2.7% 2.4% 2.2%
[K]	2.2% 2.6%
	2.6% 1.6% -1.0% -
	1.0% 0.4% 2.0%
	$\begin{bmatrix} - & - & - & - & 2.0\% & -11.4\% \end{bmatrix}$

表 3.81:以表 3.80 之[C]及[K]所得之模態參數,及與未折減案例識別值之 相對差異

模態	頻3	率(Hz)	阻尼比(%)		
快您	識別值				
1	0.72	-0.94%	0.36	-17.90%	
2	2.15	-1.30%	1.38	-6.37%	
3	3.11	-1.56%	2.11	5.98%	
4	3.97	-2.75%	2.68	-1.37%	
5	4.95	-0.10%	2.40	-26.19%	
6	5.22	0.80%	1.81	-53.05%	
7	7.69	-2.36%	5.82	61.13%	

表 3.82: 識別第一樓層柱勁度折減 10%系統之參數設定

n 值		142							
a 值	32.40	10.31	7.09	5.53	4.54	4.36	2.83		
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0		
(Hz)									
對應頻寬	0.66~	2.07~	3.01~	3.86~	4.70~	4.89~	7.53~		
(Hz)	0.74	2.33	3.39	4.34	5.30	5.51	8.47		
取樣門檻	90%	85%	80%	70%	73%	75%	55%		
取樣點數	1186	1149	1236	1201	1160	1186	1187		

表 3.83:以表 3.82 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異

矩陣	識別結果
	[1.63 -1.87 0.00 0.00 0.00 0.00 0.00]
500	$\begin{bmatrix} -1.87 & 3.57 & -1.21 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$
	0.00 -1.21 1.82 -1.07 0.00 0.00 0.00
[C]	0.00 0.00 -1.07 2.77 -1.52 0.00 0.00
100	0.00 0.00 0.00 -1.52 2.58 -1.10 0.00
4	0.00 0.00 0.00 0.00 -1.10 4.81 -3.86
	0.00 0.00 0.00 0.00 -3.86 7.73
	572.34 -570.64 0.00 0.00 0.00 0.00
	-570.64 1153.28 -581.16 0.00 0.00 0.00 0.00
	0.00 -581.16 1170.23 -583.25 0.00 0.00 0.00
[K]	0.00 0.00 -583.25 1167.54 -584.17 0.00 0.00
	0.00 0.00 0.00 -584.17 1179.07 -597.74 0.00
	0.00 0.00 0.00 0.00 -597.74 2372.39 -1763.88
	$\begin{bmatrix} 0.00 & 0.00 & 0.00 & 0.00 & -1763.88 & 3534.52 \end{bmatrix}$

表 3.83 (續):以表 3.82 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異 (b)

矩陣	相對差異									
	22.2%	20.5%	_	_	_	_	-]			
	20.5%	16.6%	4.5%	_	_	_	-			
	_	4.5%	-24.2%	-20.3%	_	_	-			
[C]	_	_	-20.3%	26.7%	45.5%	_	-			
	_	- TA V		45.5%	7.7%	-0.6%	-			
	-4		Lill Con		-0.6%	46.2%	102.5%			
		The state of the s	_		34	102.5%	23.3%			
	[−1.6	5% -1.7	% –	_	-		_]			
4	-1.7	√% −0.8°	% 0.3%			1	_			
		0.3	% 0.5%	0.3%		- 1				
[K]			0.3%	0.5%	0.6%	4- 1				
	-		100	0.6%	0.1%	-1.4%	A TEL			
	V Die	- 2	ted to	7/4	-1.4%	0.3%	2.0%			
	-	- –	-/	-	-	2.0% -	-3.8%			

表 3.84:以表 3.83 之[C]及[K]所得之模態參數,及與未折減案例識別值之相對差異

ACCUPATION AND ADDRESS OF THE PARTY OF THE P			400 400 500			
模態	頻	率(Hz)	阻尼比(%)			
侠怨	識別值	相對差異	識別值	相對差異		
1	0.72	-0.33%	0.49	11.69%		
2	2.17	-0.17%	1.48	0.42%		
3	3.15	-0.16%	2.14	7.22%		
4	4.05	-0.81%	2.66	-2.17%		
5	4.96	0.17%	3.54	8.85%		
6	5.21	0.48%	4.11	6.72%		
7	7.89	0.13%	4.95	37.05%		

表 3.85: 識別第一、三樓層柱勁度折減 10%系統之參數設定

n 值		142									
a 值	32.40	10.31	7.09	5.53	4.54	4.36	2.83				
對應頻率 (Hz)	0.7	2.2	3.2	4.1	5.0	5.2	8.0				
 對應頻寬	0.66~	2.07~	3.01~	3.86~	4.70~	4.89~	7.53~				
(Hz)	0.74	2.33	3.39	4.34	5.30	5.51	8.47				
取樣門檻	90%	88%	70%	70%	65%	63%	48%				
取樣點數	1636	1549	1603	1594	1656	1648	1660				

表 3.86:以表 3.85 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異

矩陣	識別結果
	[0.84 -0.29 0.00 0.00 0.00 0.00 0.00]
	-0.29 0.56 -1.23 0.00 0.00 0.00 0.00
	0.00 -1.23 3.25 -1.26 0.00 0.00 0.00
[C]	0.00 0.00 -1.26 1.56 -0.99 0.00 0.00
188	0.00 0.00 0.00 -0.99 2.41 -1.15 0.00
4	0.00 0.00 0.00 0.00 -1.15 4.70 -3.61
	0.00 0.00 0.00 0.00 -3.61 7.70
	587.65 -586.36 0.00 0.00 0.00 0.00 0.00
	-586.36 1178.35 -590.33 0.00 0.00 0.00 0.00
	0.00 -590.33 1183.98 -593.27 0.00 0.00 0.00
[K]	0.00 0.00 -593.27 1188.97 -592.95 0.00 0.00
	0.00 0.00 0.00 -592.95 1130.61 -538.74 0.00
	0.00 0.00 0.00 -538.74 2299.24 -1732.46
	0.00 0.00 0.00 0.00 -1732.46 3479.97

表 3.86 (續):以表 3.85 參數設定之識別結果 (a)[C]及[K] (b)與未折減案例識別之相對差異 (b)

矩陣	相對差異
	[-36.9% -81.5%]
	-81.5% -81.8% 6.6%
	- 6.6% 35.4% -6.4%
[C]	6.4% -28.8% -5.2%
	3.9% 42.7% 89.5%
	89.5% 22.8%
	[1.0% 1.0%]
	1.0% 1.4% 1.9%
- 3	- 1.9% 1.7% 2.0%
[K]	2.0% 2.4% 2.1%
	2.1% -4.0% -11.1% -
	11.1% -2.8% 0.1%
	0.1% -5.2%]

表 3.87:以表 3.86 之[C]及[K]所得之模態參數,及與未折減識別值之相對 差異

模態	頻3	率(Hz)	阻尼比(%)		
快您	識別值	相對差異	識別值	相對差異	
1	0.71	-1.62%	0.38	-12.98%	
2	2.17	-0.34%	1.35	-8.64%	
3	3.15	-0.21%	2.22	11.34%	
4	3.98	-2.51%	2.60	-4.08%	
5	4.91	-0.87%	2.48	-23.84%	
6	5.21	0.50%	1.83	-52.54%	
7	7.75	-1.58%	5.21	44.26%	

表 3.88:於時間域以子結構識別勁度無折減系統之識別結果 (a) 子結構[C]及[K] (b) 與理論值之相對誤差

				()					
子結構	矩陣			識別結	果:勁度,	無折減系統	統		
後個									
7		[-0.12	0.13	0.00	0.00	0.00	0.00	0.00]
6		[0.13	-0.19	0.06	0.00	0.00	0.00	0.00]
5		[0.00	0.06	-0.10	0.02	0.00	0.00	0.00]
4	[C]	[0.00	0.00	0.02	-0.07	0.03	0.00	0.00]
3		[0.00	0.00	0.00	0.03	-0.08	-0.01	0.00]
2		[0.00	0.00	0.00	0.00	-0.01	0.12	-0.35]
1	1	[0.00	0.00	0.00	0.00	0.00	-0.35	0.63]
7		[604.8	-605.0	0.0	0.0	0.0	0.0	0.0]
6		[-605.0	1206.2	-601.1	0.0	0.0	0.0	0.0]
5	4/	[0.0	-601.1	1200.3	-598.7	0.0	0.0	0.0]
4	[K]	0.0	0.0	-598.7	1195.7	-596.0	0.0	0.0]
3		0.0	0.0	0.0	-596.0	1189.3	-588.8	0.0]
2		0.0	0.0	0.0	0.0	-588.8	2348.6	-1751.1]
1		0.0	0.0	0.0	0.0	0.0	-1751.1	3698.0]

表 3.88 (續):於時間域以子結構識別勁度無折減系統之識別結果 (a)子結構[C]及[K] (b)與理論值之相對誤差

(b)

				(-)					
子結構	矩陣			*	目對誤差				
7		[-110.1%	-110.5%	-	-	-	-	-]
6		[-110.5%	-108.0%	-105.0%	-	-	-	-]
5		[-	-105.0%	-104.3%	-101.6%	-	-	-]
4	[C]	[-]	M-IL	-101.6%	-102.8%	-102.3%	_	-]
3		[4-	No. of Concession, Name of Street, or other Persons, Name of Street, Name of S		-102.3%	-103.3%	-99.0%	-]
2			_	-		-99.0%	- <mark>97.4</mark> %	-90.4%]
1		1///-	- 1				-90.4%	-91.7%]
7		[0.8%	0.8%	-		- 1	1	\]
6		[0.8%	0.5%	0.2%	4 - 10		1	-]
5		[-	0.2%	0.0%	-0.2%	62	H	-]
4	[K]	[No. of Control	-0.2%	-0.4%	-0.7%]
3	31	-	-		-0.7%	-0.9%	- 1.9%	_]
2		[-	نر - ١		- 9	-1.9%	-2.1%	-2.7%]
1		[-]	16	1/2	-	-	-2.7%	-2.7%]

表 3. 89:以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構識別勁 度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	_			(**)					
樓層	矩陣			識別結	果:勁度,	無折減系	統		
7		[1.15	-1.15	0.00	0.00	0.00	0.00	0.00]
6		[-1.24	2.46	-1.24	0.00	0.00	0.00	0.00]
5		[00.0]	-1.24	2.52	-1.32	0.00	0.00	0.00]
4	[C]	0.00	0.00	-1.25	2.71	-1.57	0.00	0.00]
3		0.00	0.00	0.00	-0.93	2.13	-1.56	0.00]
2		00.0	0.00	0.00	0.00	-0.99	3.39	-2.09]
1		[0.00	0.00	0.00	0.00	0.00	-4.28	8.59]
7	31	[561.4	-556.6	0.0	0.0	0.0	0.0	0.0]
6		[-548.0	1107.5	-549.4	0.0	0.0	0.0	0.0]
5	9//	[0.0	-572.8	1163.3	-579.2	0.0	0.0	0.0]
4	[K]	0.0	0.0	-558.3	1133.8	-570.4	0.0	0.0]
3		0.0	0.0	0.0	-553.2	1107.4	-532.3	0.0]
2		0.0	0.0	0.0	0.0	-561.1	2184.7	-1539.4]
1	11	0.0	0.0	0.0	0.0	0.0	-1731.4	3664.8]

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

子結構	矩陣			(-	相對誤	差			
樓層	1				100401				
7		[-4.0%	-4.0%	-	-	-	-	-]
6		[3.0%	2.5%	3.0%		-	-	-]
5		[-]	3.7%	5.1%	9.8%	7 10	-	-]
4	[C]	[4-1	N. P.	4.4%	12.7%	31.1%	-	-]
3			-	-	-22.7%	-11.2%	30.3%	-]
2		[-	-		-17.8%	-29.3%	-41.8%]
1			- 7		- 5		19.0%	13.1%]
7	7	[-6.4%	-7.2%	153	0	10.10	11	-]
6	4/	[-8.7%	-7.7%	-8.4%	0		7 - 11	100]
5	9/1	-	-4.5%	-3.1%	-3.5%		7]
4	[K]	1	-	-6.9%	-5.5%	-4.9%	-0-	1]
3		[-	v - i	1/1	-7.8%	-7.7%	-11.3%	2]
2		[-	-	9/1	-	-6.5%	-9.0%	-14.5%]
1		[-	1	4_	_	<u> </u>	-3.8%	-3.6%]

表 3. 90: 以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻=90%,以子結構識別勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	矩陣			識別結		無折減系統		
樓層	·							
7		[1.21	-1.22	0.00	0.00	0.00	0.00	0.00]
6		[-1.17	2.27	-1.11	0.00	0.00	0.00	0.00]
5		[0.00	-1.06	2.18	-1.14	0.00	0.00	0.00]
4	[C]	0.00	0.00	-1.17	2.39	-1.23	0.00	0.00]
3		0.00	0.00	0.00	-1.79	4.01	-3.22	0.00]
2		0.00	0.00	0.00	0.00	-1.27	5.73	-4.98]
1		[0.00	0.00	0.00	0.00	0.00	-3.22	6.94]
7	41	[590.3	-590.8	0.0	0.0	0.0	0.0	0.0]
6	4/	[-606.4	1209.1	-604.4	0.0	0.0	0.0	0.0]
5	9//	0.0	-588.4	1190.4	-606.8	0.0	0.0	0.0
4	[K]	0.0	0.0	-590.7	1202.1	-623.5	0.0	0.0]
3		0.0	0.0	0.0	-581.4	1189.9	-649.9	0.0]
2		0.0	0.0	0.0	0.0	-595.1	2479.8	-1999.1]
1		[0.0	0.0	0.0	0.0	0.0	-1698.3	3584.4]

表 3.90(續):以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻=90%,以子結構識別勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

				(-)					
子結構	矩陣				相對誤差	É			
7		[0.8%	1.6%		_			_	1
				7.00/			<u> </u>		J
6		[-2.4%	-5.4%	-7.8%	-	-	-	-	J
5		[-11.7%	-9.3%	-4.8%	In .	-	-]
4	[C]	[_4-1	N. Barrier	-2.4%	-0.4%	2.5%	-	-]
3				-	48.9%	67.1%	168.6%	-]
2			-		_	6.1%	19.3%	38.4%]
1				_			-10.5%	-8.7%]
7	41	[-1.6%	-1.5%	3	6-1	18:30	11	-]
6	4/	[1.1%	0.8%	0.7%	0	11.5	1 - 11]
5	9//	[-1.9%	-0.8%	1.1%]
4	[K]	-	-	-1.6%	0.2%	3.9%	-0-	-]
3		[-	W - D		-3.1%	-0.8%	8.3%	¥]
2		[- ,]		7 A	-	-0.8%	3.3%	11.1%]
1		[🔼		_	_		-5.7%	-5.7%]

表 3.91:以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別勁度無 折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

				(4)					
子結構	矩陣			識別結	果:勁度	無折減系	統		
樓層	,			• • •					
7		[1.20	-1.20	0.00	0.00	0.00	0.00	0.00]
6		[-1.24	2.50	-1.27	0.00	0.00	0.00	0.00]
5		[00.00	-1.21	2.51	-1.33	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.26	2.74	-1.60	0.00	0.00]
3		[0.00]	0.00	0.00	-0.97	2.23	-1.66	0.00]
2		0.00	0.00	0.00	0.00	-0.89	2.97	-1.69]
1		[0.00	0.00	0.00	0.00	0.00	-4.14	8.33]
7	7	[568.5	-567.5	0.0	0.0	0.0	0.0	0.0]
6	4/	[-564.7	1130.6	-563.5	0.0	0.0	0.0	0.0]
5	9//	0.0	-581.0	1167.9	-586.3	0.0	0.0	0.0]
4	[K]	0.0	0.0	-573.5	1155.1	-583.4	0.0	0.0]
3		0.0	0.0	0.0	-566.0	1127.8	-549.7	0.0]
2		0.0	0.0	0.0	0.0	-570.8	2185.6	-1503.4]
1		[0.0	0.0	0.0	0.0	0.0	-1775.8	3751.7]

表 3.91 (續):以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別勁 度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(,	,				
子結構	矩陣				相對誤	差			
樓層									
7		[-0.1%	0.0%	-	-	-	-	-]
6		[3.2%	4.1%	5.7%		-	-	-]
5		[]	0.9%	4.5%	10.6%	7 10	-	-]
4	[C]	1-6]		5.3%	14.1%	33.3%	-	-]
3			No.	-	-19.0%	-7.0%	38.1%	-]
2			-			-26.1%	-38.2%	-53.1%]
1			- 1		- 5		14.9%	9.6%]
7	4	[-5.2%	-5.4%	150	6		18]
6	4/	[-5.9%	-5.8%	-6.1%	0	1	- 11	1 THE]
5		_112	-3.2%	-2.7%	-2.3%		-]
4	[K]	- 1	-	-4.4%	-3.7%	-2.8%	-0-	1]
3		[-	V - 1	7/1	-5.7%	-6.0%	-8.4%	= -]
2		[-	-	4	-	-4.9%	-8.9%	-16.5%]
1		[-	19		<u>-</u>	_ A	-1.3%	-1.3%]

表 3.92:以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別勁度無 折減系統之參數設定

子結構								
樓層	模態	1	2	3	4	5	6	7
	取樣門檻	90%	72%	85%	70%	73%	75%	61%
7	取樣數	938	836	880	863	920	906	910
(取樣門檻	90%	72%	80%	52%	67%	61%	61%
6	取樣數	938	932	921	925	924	927	902
5	取樣門檻	90%	80%	70%	67%	59%	57%	61%
5	取樣數	941	926	915	914	938	896	916
4	取樣門檻	90%	90%	6 <mark>7%</mark>	65%	64%	64%	60%
4	取樣數	943	902	932	925	910	918	938
2	取樣門檻	90%	79%	71%	66%	62%	61%	61%
3	取樣數	949	926	948	864	909	859	943
2	取樣門檻	90%	69%	77%	70%	58%	61%	58%
2	取樣數	959	831	801	954	932	853	910
1	取樣門檻	90%	66%	73%	72%	59%	63%	64%
1	取樣數	965	888	844	956	912	961	949

表 3.93:以表 3.92 之參數設定,以子結構識別勁度無折減系統之識別結果 (a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	矩陣			識別結	果:勁度,	無折減系統	統		
樓層									
7		[1.23	-1.22	0.00	0.00	0.00	0.00	0.00]
6		[-0.98	2.09	-1.10	0.00	0.00	0.00	0.00]
5		[0.00	-1.15	2.44	-1.28	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.16	2.54	-1.42	0.00	0.00]
3		[0.00	0.00	0.00	-1.46	3.69	-3.32	0.00]
2		[0.00	0.00	0.00	0.00	-1.25	5.48	-4.61]
1		0.00	0.00	0.00	0.00	0.00	-3.33	7.12]
7	7	[575.8	-575.2	0.0	0.0	0.0	0.0	0.0]
6	41	[-584.9	1167.0	-581.1	0.0	0.0	0.0	0.0]
5	4/	0.0	-589.2	1200.1	-616.3	0.0	0.0	0.0]
4	[K]	0.0	0.0	-574.7	1176.7	-614.3	0.0	0.0]
3	91	0.0	0.0	0.0	-562.2	1146.9	-612.1	0.0]
2		0.0	0.0	0.0	0.0	-587.8	2392.8	-1847.4]
1		0.0	0.0	0.0	0.0	0.0	-1754.5	3708.1]

表 3.93 (續): 以表 3.92 之參數設定,以子結構識別勁度無折減系統之識別 結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

1				(0)									
子結構	矩陣		相對誤差										
7		[2.6%	1.8%	-	-	-	-	-]				
6		[-18.7%	-12.7%	-8.6%	_	-	-	-]				
5		[-]	-4.6%	1.5%	6.4%	In .	-	-]				
4	[C]	[4]		-3.2%	5.7%	18.0%	-	-]				
3			_	-	21.7%	53.9%	176.9%	-]				
2		· ·				4.4%	14.1%	27.9%]				
1		1 -	_	_			-7.5%	-6.3%]				
7	7/	[-4.0%	-4.1%	-	8	1	11	-]				
6	4/	[-2.5%	-2.8%	-3.1%	2	1.00	-11	100]				
5	9//	[]	-1.8%	0.0%	2.7%	-	-11]				
4	[K]	- 1	-	-4.2%	-1.9%	2.4%	0 -]				
3		[-]	- 1		-6.3%	-4.4%	2.0%]				
2		[[1/3		-	-2.0%	-0.3%	2.6%]				
1			1	<u>-</u>	<u>-</u>	- A	-2.5%	-2.4%]				

表 3. 94:以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構識別 勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	矩陣			端 別 針	果:勁度,	無折減多	ká		
樓層	<u> </u>			朝代(ハ) (4日)	个· 功及?	## 1 1 MX 75 5	% U		
7		[1.24	-1.27	0.00	0.00	0.00	0.00	0.00]
6		[-1.50	2.87	-1.45	0.00	0.00	0.00	0.00]
5		[00.0	-1.23	2.50	-1.43	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.25	2.55	-1.47	0.00	0.00]
3		0.00	0.00	0.00	-1.28	2.55	-1.61	0.00]
2		0.00	0.00	0.00	0.00	-1.21	4.59	-3.50]
1		[0.00	0.00	0.00	0.00	0.00	-3.78	7.63]
7	4/	[588.7	-587.8	0.0	0.0	0.0	0.0	0.0]
6	4/	[-583.7	1171.5	-585.8	0.0	0.0	0.0	0.0]
5	9//	0.0	-587.5	1178.6	-588.4	0.0	0.0	0.0]
4	[K]	0.0	0.0	-588.7	1181.0	-591.6	0.0	0.0]
3		0.0	0.0	0.0	-588.0	1180.8	-596.0	0.0]
2		0.0	0.0	0.0	0.0	-594.5	2418.8	-1868.6]
1		[0.0	0.0	0.0	0.0	0.0	-1740.9	3676.4]

表 3.94 (續): 以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構 識別勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(1	b)
١.	~ ,

				\ /					
子結構	矩陣				相對誤差				
樓層									
7		[3.1%	5.5%	-	_	-	_	-]
6		[24.6%	19.5%	21.2%	U15-5	-	-	-]
5		[2.9%	4.2%	19.0%	la -	-	-]
4	[C]	[]		4.2%	6.4%	22.7%	-	-]
3			_	_	7.1%	6.4%	33.9%	-]
2			-			0.7%	-4.3%	-2.7%]
1		1 -		_	1	-	4.9%	0.4%]
7	7	[-1.9%	-2.0%		9-1	6	16]
6		[-2.7%	-2.4%	-2.4%	9	1100	. 1	30]
5	9//		-2.1%	-1.8%	-1.9%]
4	[K]	-	-	-1.9%	-1.6%	-1.4%	Q -	_]
3		[-	v - v		-2.0%	-1.6%	-0.7%	-]
2		[-]	16	1	- \	-0.9%	0.8%	3.8%]
1		1			<u>-</u>	- A	-3.3%	-3.3%]

表 3.95:以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻=90%,以子結構識別勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構				()					
	矩陣			識別結	果:勁度	無折減系	統		
樓層	,				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
7		[1.24	-1.27	0.00	0.00	0.00	0.00	0.00]
6		[-1.34	2.59	-1.31	0.00	0.00	0.00	0.00]
5		[00.0	-1.14	2.34	-1.34	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.24	2.47	-1.34	0.00	0.00]
3		0.00	0.00	0.00	-1.70	3.43	-2.38	0.00]
2		0.00	0.00	0.00	0.00	-1.24	5.18	-4.32]
1		[0.00	0.00	0.00	0.00	0.00	-3.50	7.20]
7	41	[596.3	-596.1	0.0	0.0	0.0	0.0	0.0]
6	4/	[-606.9	1212.0	-605.0	0.0	0.0	0.0	0.0]
5	9//	0.0	-592.5	1192.6	-600.4	0.0	0.0	0.0]
4	[K]	0.0	0.0	-596.2	1206.5	-616.9	0.0	0.0]
3		0.0	0.0	0.0	-589.4	1198.7	-637.0	0.0]
2		0.0	0.0	0.0	0.0	-600.6	2490.7	-1989.1]
1		[0.0	0.0	0.0	0.0	0.0	-1727.0	3647.3]

表 3.95 (續): 以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻 =90%,以子結構識別勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

子結構	矩陣				相對誤差				
樓層	, . ,				14-1512	-			
7		[3.4%	6.1%	-	-	-	-	-]
6		[12.0%	8.0%	9.3%		-	-	-]
5		[]	-5.3%	-2.6%	11.7%	In .	-	-]
4	[C]	[4-1	N. Harris	3.3%	3.0%	11.4%	-	-]
3				-	41.9%	43.1%	98.6%	-]
2			-			3.3%	7.9%	20.0%]
1				ii -	- 1		-2.9%	-5.3%]
7	41	[-0.6%	-0.6%		6-1	1	11]
6	4/	[1.1%	1.0%	0.8%	0	11.00	-	100]
5	9// 7	[-1.2%	-0.6%	0.1%	-		_]
4	[K]	-	-	-0.6%	0.5%	2.8%	Q -	-]
3		[-	y - 0		-1.8%	-0.1%	6.2%	-]
2		[-]	16		-	0.1%	3.8%	10.5%]
1		[f	<u>-</u>	- A	-4.1%	-4.0%]

表 3.96:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別勁度無 折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	矩陣			端别 4.	果:勁度,	新	经	
樓層	7E/T			明(八)《日》	个·功及?	然 少[/成 /於 3	% G	
7		[1.19	-1.19	0.00	0.00	0.00	0.00	0.00]
6		[-1.36	2.66	-1.32	0.00	0.00	0.00	0.00]
5		[0.00	-1.21	2.49	-1.30	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.24	2.63	-1.47	0.00	0.00]
3		0.00	0.00	0.00	-1.11	2.42	-1. <mark>6</mark> 1	0.00]
2		0.00	0.00	0.00	0.00	-0.93	3.41	-2.28]
1		[0.00	0.00	0.00	0.00	0.00	-3.99	8.10]
7	41	[575.6	-574.6	0.0	0.0	0.0	0.0	0.0]
6	4//	[-576.0	1151.5	-573.2	0.0	0.0	0.0	0.0
5	9// 7	0.0	-585.6	1176.7	-590.2	0.0	0.0	0.0]
4	[K]	0.0	0.0	-579.9	1167.2	-588.6	0.0	0.0]
3		0.0	0.0	0.0	-575.5	1152.2	-573.5	0.0]
2		0.0	0.0	0.0	0.0	-573.5	2208.8	-1537.6]
1		0.0	0.0	0.0	0.0	0.0	-1783.3	3766.7]

表 3.96 (續):以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別勁 度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(-					
子結構 樓層	矩陣				相對誤	差			
7		[-0.8%	-0.8%	-	-	-	-	-]
6		[13.0%	11.0%	9.7%	2000	-	-	-]
5		[]	0.6%	3.6%	8.4%	7 10	-	-]
4	[C]	[4-1	N. Harris	3.5%	9.6%	22.8%	-	-]
3				-	-7.8%	0.7%	33.9%	-]
2			-	_		-22.3%	-29.0%	-36.8%]
1		1 ==	- 10	j		-	10.8%	6.5%]
7	41	[-4.1%	-4.2%	100	6	10-3	18	-]
6	4/	[-4.0%	-4.0%	-4.5%	0		7 - 11	THE PARTY NAMED IN]
5	9//	[-2.4%	-1.9%	-1.6%		1]
4	[K]	- 1	-	-3.4%	-2.7%	-1.9%	-0-]
3		[-	V - D		-4.1%	-4.0%	-4.4%]
2		[-]		7-6	-	-4.4%	-8.0%	-14.6%]
1			1	<u> </u>	_	- A	-0.9%	-0.9%]

表 3.97: 以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別勁度無 折減系統之參數設定

子結構								
樓層	模態	1	2	3	4	5	6	7
1安/百								
7	取樣門檻	90%	73%	87%	71%	81%	80%	65%
1	取樣數	769	712	756	723	758	763	719
(取樣門檻	90%	78%	87%	60%	76%	69%	65%
6	取樣數	769	703	730	699	712	732	720
	取樣門檻	90%	77%	73%	76%	66%	69%	65%
5	取樣數	770	723	763	733	729	729	718
4	取樣門檻	90%	87%	8 <mark>7%</mark>	68%	72%	81%	65%
4	取樣數	771	766	761	724	740	748	734
2	取樣門檻	90%	77%	84%	79%	73%	78%	64%
3	取樣數	773	769	744	709	737	765	745
	取樣門檻	90%	73%	86%	77%	67%	79%	65%
2	取樣數	779	687	650	706	764	726	714
	取樣門檻	90%	72%	82%	79%	66%	79%	72%
1	取樣數	782	649	757	722	764	782	750

表 3.98:以表 3.97 之參數設定,以子結構識別勁度無折減系統之識別結果 (a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	矩陣			識別結	果:勁度無	無折減系	矫.		
樓層	,				1- 3/2/	W 4 1 0 2 2 1 1			
7		[1.22	-1.24	0.00	0.00	0.00	0.00	0.00]
6		[-0.57	1.50	-0.98	0.00	0.00	0.00	0.00]
5		[0.00	-1.25	2.48	-1.32	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.32	2.86	-1.69	0.00	0.00]
3		[0.00	0.00	0.00	-1.65	3.64	-2.84	0.00]
2		[0.00	0.00	0.00	0.00	-1.44	5.56	-4.28]
1		[0.00	0.00	0.00	0.00	0.00	-4.23	8.49]
7	1	[569.4	-565.4	0.0	0.0	0.0	0.0	0.0]
6		[-575.1	1151.2	-568.1	0.0	0.0	0.0	0.0]
5	4/	[0.0	-583.1	1190.1	-600.8	0.0	0.0	0.0]
4	[K]	0.0	0.0	-565.4	1158.6	-596.1	0.0	0.0]
3		0.0	0.0	0.0	-560.7	1150.9	-615.7	0.0]
2		0.0	0.0	0.0	0.0	-583.1	2417.6	-1916.0]
1		0.0	0.0	0.0	0.0	0.0	-1727.4	3655.1]

表 3.98 (續): 以表 3.97 之參數設定,以子結構識別勁度無折減系統之識別 結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(0)					
子結構	矩陣			<i>†</i>	目對誤差				
7		[2.0%	3.1%	-	-	-	-	-]
6		[-52.9%	-37.3%	-18.7%	_	-	-	-]
5		[-]	3.9%	3.1%	9.7%	lo -	-	-]
4	[C]	[4	A Property of	9.9%	19.3%	40.8%	-	-]
3				-	37.2%	51.7%	136.4%	-]
2			-		-1	20.2%	15.7%	18.8%]
1				_		-	17.6%	11.7%]
7	41	[-5.1%	-5.8%		4-1	1	16	-]
6		[-4.2%	-4.1%	-5.3%	2 -		1	-]
5		[12-	-2.8%	-0.8%	0.1%	100]
4	[K]	-	-	-5.8%	-3.5%	-0.7%	Q -	_]
3		[-			-6.6%	-4.1%	2.6%]
2	11	[-]			-)	-2.8%	0.7%	6.4%]
1			1	-	<u>-</u>		-4.0%	-3.8%]

表 3.99: 勁度無折減系統子結構識別整理

n 值		4/n=	65	D. 1017	THE REAL PROPERTY.	n:	=142	
a 對應頻率	0.2Hz~10Hz		模態	頻率	0.2Hz	~10Hz	模態	頻率
取樣門檻	0%	90%	0%	90%	0%	90%	0%	90%
[C] 最大誤差	-41.8%	168.6%	-53.1%	176.9%	33.9%	98.6%	-36.8%	136.4%
[K] 最大誤差	-14.5%	11.1%	-16.5%	-6.3%	3.8%	10.5%	-14.6%	-6.6%

表 3.100:於時間域以子結構識別含 10%雜訊之勁度無折減系統之識別結果 (a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

				(α,	<u>'</u>				
子結構	矩陣		※ 51	经里: 耐	度無折減	玄紘今1 (10%強却		
樓層	延 件		祖人小	に 不・以	1/文無別成	不多(3)1(ノノリ 不住 司し		
7		[0.03	-0.10	0.00	0.00	0.00	0.00	0.00]
6		[-0.10	0.15	-0.10	0.00	0.00	0.00	0.00]
5		[0.00	-0.10	0.46	-0.58	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-0.58	1.65	-1.19	0.00	0.00]
3		0.00	0.00	0.00	-1.19	2.71	-1.97	0.00]
2		0.00	0.00	0.00	0.00	-1.97	9.57	-8.70]
1		[0.00	0.00	0.00	0.00	0.00	-8.70	19.14]
7		[-39.8	61.9	0.0	0.0	0.0	0.0	0.0]
6	4/	[61.9	82.8	-118.4	0.0	0.0	0.0	0.0]
5	4//	[0.0	-118.4	319.5	-160.6	0.0	0.0	0.0]
4	[K]	0.0	0.0	-160.6	361.4	-176.4	0.0	0.0]
3	31	0.0	0.0	0.0	-176.4	429.3	-294.7	0.0]
2		0.0	0.0	0.0	0.0	-294.7	1120.6	-714.1]
1		0.0	0.0	0.0	0.0	0.0	-714.1	1535.4]

表 3.100 (續):於時間域以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(-)					
子結構	矩陣			<i>†</i>	旧對誤差				
7		[-97.3%	-91.8%	-	-	-	-	-]
6		[-91.8%	-93.6%	-91.8%	_	-	-	-]
5		[-	-91.8%	-80.8%	-51.6%		-	-]
4	[C]		No.	-51.6%	-31.3%	-1.0%	-	-]
3				-	-1.0%	13.0%	64.1%	-]
2		<u>-</u>	-			64.1%	99.3%	141.6%]
1		-	_			1	141.6%	151.8%]
7	M	[-106.6%	-110.3%		4 - 1	1	IL]
6	4/	[-110.3%	-93.1%	-80.3%	2 -	100	-	_]
5			-80.3%	-73.4%	-73.2%	40.5]
4	[K]	-	-	-73.2%	-69.9%	-70.6%	Q -	-]
3		[-	-		-70.6%	-64.2%	-50.9%	-]
2		[-]	10	1	- \	-50.9%	-53.3%	-60.3%]
1			A A	_	<u>-</u>	M	-60.3%	-59.6%]

表 3. 101: 以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構識別 含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

				(u)					
子結構	矩陣		端 別 4	计里: 赋	度無折減	幺紘今 1 0	%強却		
樓層	7L 17		5EX, 771 &	ロ不・助	火無刈 成	不多心台 10	/ U 水色 司 U		
7		[1.54	-1.85	0.00	0.00	0.00	0.00	0.00]
6		[-0.73	2.21	-1.70	0.00	0.00	0.00	0.00]
5		[0.00	-0.90	2.42	-1.64	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-0.28	2.12	-3.00	0.00	0.00]
3		[0.00	0.00	0.00	1.12	1.13	-5.24	0.00]
2		0.00	0.00	0.00	0.00	0.25	4.42	-9.31]
1		[0.00	0.00	0.00	0.00	0.00	3.04	2.15]
7	7	[336.4	-325.8	0.0	0.0	0.0	0.0	0.0]
6		[72.5	184.3	-244.5	0.0	0.0	0.0	0.0]
5	9//	[0.0	-487.7	976.5	-477.8	0.0	0.0	0.0]
4	[K]	0.0	0.0	-347.4	576.1	-139.5	0.0	0.0]
3		[0.0	0.0	0.0	-331.0	615.7	-154.0	0.0]
2		[0.0	0.0	0.0	0.0	-345.1	649.5	546.4]
1		0.0	0.0	0.0	0.0	0.0	-461.3	1099.2]

表 3.101 (續): 以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構 識別含 10%雜訊之勁度無折減系統之識別結果 (a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

				<u> </u>	,				
子結構	矩陣				相對誤	差			
7		[28.1%	54.3%	-	-	-	-	-]
6		[-39.1%	-7.7%	41.7%	_	-	-	-]
5		[]	-25.1%	0.9%	36.7%	In .	-	-]
4	[C]	[]		-76.9%	-11.6%	150.2%	-	-]
3			-	-	-193.2%	-52.8%	336.9%	-]
2		L A	-	-		-121.2%	-8.0%	158.5%]
1		Ш	-	j	-5		-184.5%	-71.7%]
7	41	[-43.9%	-45.7%	100	6	6.3	1]
6	4/	[-112.1%	-84.6%	-59.2%	0	11.00	- 11	-]
5	9// 7	[-18.7%	-18.6%	-20.4%		-]
4	[K]	-	-	-42.1%	-52.0%	-76.7%	-0-	1]
3		[-]	· - E.		-44.8%	-48.7%	-74.3%]
2		[-]	11	7	-	-42.5%	-72.9%	-130.4%]
1		[<u>-</u>	_ A	-74.4%	-71.1%]

表 3. 102: 以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻=90%,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	仁陆		光 口	14m・回	- 中 与 七 计	2 H A 10	10/ 故 - 加		
樓層	矩陣		瓿力.	結本・労	度無折減	系统否 11	J 70 米柱 計L		
7		[1.65	-2.18	0.00	0.00	0.00	0.00	0.00]
6		[-1.24	3.04	-1.81	0.00	0.00	0.00	0.00]
5		[0.00	-1.09	2.00	-1.15	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-0.83	2.56	-1.56	0.00	0.00]
3		[0.00	0.00	0.00	-0.52	3.66	-7.07	0.00]
2		0.00	0.00	0.00	0.00	0.62	5.25	-11.76]
1		[0.00	0.00	0.00	0.00	0.00	0.33	3.84]
7	41	[533.0	-531.3	0.0	0.0	0.0	0.0	0.0]
6	4/	[-58.8	394.0	-326.8	0.0	0.0	0.0	0.0]
5	9//	[0.0	-577.1	1181.6	-610.2	0.0	0.0	0.0]
4	[K]	0.0	0.0	-567.4	1149.3	-590.6	0.0	0.0]
3		0.0	0.0	0.0	-451.7	898.0	-407.7	0.0]
2		0.0	0.0	0.0	0.0	-414.8	971.4	208.4]
1		[0.0	0.0	0.0	0.0	0.0	-1181.4	2535.6]

表 3.102 (續): 以 n=65 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻 =90%,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

				(-	/				
子結構	矩陣				相對誤	差			
7		[37.8%	81.5%	-	-	-	-	-]
6		[3.6%	26.6%	50.7%	200-	-	-	-]
5		[]	-9.2%	-16.8%	-4.0%	10	_	-]
4	[C]	[4-1		-30.5%	6.5%	30.3%	-	-]
3			-	_	-56.9%	52.5%	489.2%	-]
2		l -	-	-		-151.4%	9.4%	226.6%]
1			- 7	-			-109.2%	-49.5%]
7	4/	[-11.2%	-11.4%	250	6	100	118	-]
6	4/	[-90.2%	-67.2%	-45.5%	0		7 - 11]
5	3// 7	[-	-3.8%	-1.5%	1.7%		-]
4	[K]	- 1	-	-5.4%	-4.2%	-1.6%	-0-	-]
3	31	[-	V - E		-24.7%	-25.2%	-32.0%]
2		[-]	1	TA.	-	-30.9%	-59.5%	-111.6%]
1		[🔼		A	<u>-</u>		-34.4%	-33.3%]

表 3.103:以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別含 10% 雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

		ı		(4)					
子結構	矩陣		識別:	丝果: 呦	度無折減	系統令 10	1%雑訊		
樓層	NE IT		ABOUT 1	·····································	火 灬 型 減	N WU B 10	OWE BIG		
7		[1.45	-1.68	0.00	0.00	0.00	0.00	0.00]
6		[-1.45	3.01	-1.41	0.00	0.00	0.00	0.00]
5		[0.00	-0.99	2.48	-1.32	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.65	2.90	-1.94	0.00	0.00]
3		0.00	0.00	0.00	-0.04	1.32	-1.60	0.00]
2		0.00	0.00	0.00	0.00	-0.20	1.82	-3.57]
1		[0.00	0.00	0.00	0.00	0.00	-0.05	3.21]
7	41	[559.1	-557.8	0.0	0.0	0.0	0.0	0.0]
6	4/	[-397.5	886.4	-483.3	0.0	0.0	0.0	0.0]
5	9//	[0.0	-562.0	1125.6	-560.5	0.0	0.0	0.0]
4	[K]	0.0	0.0	-541.6	1076.7	-525.3	0.0	0.0]
3		0.0	0.0	0.0	-542.7	1066.6	-483.4	0.0]
2		0.0	0.0	0.0	0.0	-438.4	1059.0	155.3]
1		0.0	0.0	0.0	0.0	0.0	-1367.3	2907.4]

表 3.103 (續):以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(0)					
子結構 樓層	矩陣				相對誤差	É			
7		[20.5%	40.1%	-	-	-	-	-]
6		[20.6%	25.3%	17.3%	uon-s-	-	-	-]
5		[-]	-17.1%	3.4%	9.9%	In .	-	-]
4	[C]	[N. Park	37.8%	20.7%	61.9%	-	-]
3				-	-97.0%	-45.1%	33.5%	-]
2		I -	-			-83.2%	-62.2%	-0.7%]
1			- 10	-	-		-98.5%	-57.7%]
7	41	[-6.8%	-7.0%	120	6-1	1	11	-]
6	4/	[-33.7%	-26.1%	-19.4%	0	11-5-	- 1	THE REAL PROPERTY.]
5	9//	[124	-6.3%	-6.2%	-6.6%	-	1]
4	[K]	- 1	-	-9.7%	-10.3%	-12.4%	-0-	-]
3		[-	r - 0	/-/	-9.5%	-11.1%	-19.4%	¥ -]
2		[-]	16	7 A	-	-26.9%	-55.9%	-108.6%]
1		[-		-24.0%	-23.5%]

表 3.104:以 n=65 及對應各模態之 a 值進行 CCWT,以子結構識別含 10% 雜訊之勁度無折減系統之參數設定

子結構 樓層	模態	1	2	3	4	5	6	7
7	取樣門檻	90%	71%	85%	70%	72%	76%	57%
7	取樣數	942	898	878	909	929	891	936
	取樣門檻	90%	72%	81%	51%	68%	62%	59%
6	取樣數	938	923	889	936	877	913	904
_	取樣門檻	90%	81%	70%	67%	59%	57%	58%
5	取樣數	941	882	851	900	936	895	925
4	取樣門檻	90%	91%	6 <mark>7</mark> %	66%	62%	63%	60%
4	取樣數	940	826	893	898	938	915	905
2	取樣門檻	90%	78%	72%	65%	61%	60%	60%
3	取樣數	955	955	926	905	949	902	902
	取樣門檻	90%	68%	77%	71%	58%	60%	57%
2	取樣數	954	932	814	930	910	918	919
	取樣門檻	90%	67%	73%	72%	59%	63%	63%
1	取樣數	973	710	861	943	894	896	971

表 3.105:以表 3.104 之參數設定,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

子結構	左陆		사는 다.I	4.田・元		2 tt A 1	00/ th ÷n		
樓層	矩陣		識別、	結末・勁	度無折減	系統含 1	U 70 雜 訊。		
7		[1.45	-1.70	0.00	0.00	0.00	0.00	0.00]
6		[-0.51	1.43	-0.50	0.00	0.00	0.00	0.00]
5		[00.0]	-1.21	2.31	-1.19	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.25	2.64	-1.51	0.00	0.00]
3		[0.00]	0.00	0.00	-1.49	3.76	-3.40	0.00]
2		0.00	0.00	0.00	0.00	-1.03	5.04	-4.85]
1		[0.00	0.00	0.00	0.00	0.00	-0.78	4.37]
7	7	[574.9	-573.8	0.0	0.0	0.0	0.0	0.0]
6	4/	[-595.7	1182.6	-586.6	0.0	0.0	0.0	0.0]
5	9//	0.0	-588.5	1201.2	-617.3	0.0	0.0	0.0]
4	[K]	0.0	0.0	-578.4	1179.6	-616.7	0.0	0.0]
3		0.0	0.0	0.0	-553.2	1138.4	-611.3	0.0]
2		0.0	0.0	0.0	0.0	-590.6	2309.5	-1701.1]
1		[0.0	0.0	0.0	0.0	0.0	-1660.9	3535.6]

表 3.105 (續): 以表 3.104 之參數設定,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

				(-)					
子結構	矩陣				相對誤差	É			
7		[21.2%	41.5%	_	_			_	1
6		[-57.7%	-40.2%	-58.6%	-	-	-	-	1
5		[0.8%	-3.9%	-1.2%	A-	-	_]
4	[C]	[4.4%	9.8%	25.4%	, -	-]
3				-	24.1%	56.6%	183.7%	-]
2			- 1			-14.1%	4.9%	34.7%]
1		-		-			-78.2%	-42.5%]
7	31	[-4.2%	-4.4%	100	6 1		11	-]
6	4/	[-0.7%	-1.4%	-2.2%		11.00	-11]
5	9//	[-1.9%	0.1%	2.9%]
4	[K]	- 1	-	-3.6%	-1.7%	2.8%	70 -	-]
3		[-	r - :		-7.8%	-5.1%	1.9%]
2		[-]	1	1	-	-1.6%	-3.8%	-5.5%]
1	11			_	<u>-</u>		-7.7%	-7.0%]

表 3. 106: 以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構識別 含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

	1	ı		(4)					
子結構	矩陣		端 别:	針里: 呦	度無折減	幺丝今 10 9	0/6雄却		
樓層	ÆF		BEK VIII	やイ・功	又無 少 成	求 ØU ☆ IV	/ 0 本产 部以		
7		[1.61	-2.00	0.00	0.00	0.00	0.00	0.00]
6		[-1.22	2.92	-1.98	0.00	0.00	0.00	0.00]
5		[0.00	-1.03	2.40	-1.58	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-0.09	1.94	-3.00	0.00	0.00]
3		[0.00	0.00	0.00	1.08	1.36	-5.54	0.00]
2		0.00	0.00	0.00	0.00	0.17	4.52	-9.30]
1		[0.00	0.00	0.00	0.00	0.00	2.50	3.14]
7	7	[372.7	-361.5	0.0	0.0	0.0	0.0	0.0]
6		[66.3	199.6	-251.6	0.0	0.0	0.0	0.0]
5	4//	0.0	-511.4	1026.8	-502.6	0.0	0.0	0.0]
4	[K]	0.0	0.0	-334.7	539.7	-103.1	0.0	0.0]
3		0.0	0.0	0.0	-317.4	601.7	-150.9	0.0]
2		[0.0	0.0	0.0	0.0	-358.1	701.3	519.0]
1		[0.0	0.0	0.0	0.0	0.0	-514.8	1249.2]
	the late of	110							

表 3.106 (續):以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

					(D)					
子結構 樓層	矩陣					相對誤差	É			
7		[33	3.8%	66.6%	-	-	-	-	-]
6		[1	.6%	21.9%	65.4%	<u></u>	-	-	-]
5		[-	-14.4%	-0.2%	31.8%	Also .	-	-]
4	[C]	[🔥	-		-92.3%	-19.0%	149.7%	-	-]
3			-	-	-	-190.3%	-43.5%	361.6%	-]
2			-	-			-114.3%	-5.7%	158.3%]
1		[-	j -			-169.6%	-58.6%]
7	7	[-3'	7.9%	-39.7%	150	6	6	IF	-]
6	4/	[-11	1.1%	-83.4%	-58.1%	0	11-0-3	- 1	-]
5	3/17	[<u>l</u> les	-14.8%	-14.4%	-16.2%]
4	[K]		-	-	-44.2%	-55.0%	-82.8%	Q-	1]
3		[-	- 1		-47.1%	-49.9%	-74.8%	-]
2		[- 1	16	1	-	-40.3%	-70.8%	-128.8%]
1	11] [A. '	15	/ <u>-</u>	_	-	-71.4%	-67.1%]

表 3. 107: 以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門檻=90%,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(a)

子結構	仁陆		光 口	14m・四	- 中 与 七 计	2 H A 10)0/ å4 ÷n		
樓層	矩陣		識力、	結木・ツ	度無折減	系統各 11	リプロ 衆注 計し		
7		[1.62	-2.15	0.00	0.00	0.00	0.00	0.00]
6		[-1.99	4.31	-2.68	0.00	0.00	0.00	0.00]
5		[0.00	-1.15	2.11	-1.39	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-0.67	2.41	-1.56	0.00	0.00]
3		[0.00	0.00	0.00	-0.93	4.41	-7.23	0.00]
2		0.00	0.00	0.00	0.00	0.41	4.35	-9.68]
1		[0.00	0.00	0.00	0.00	0.00	-2.16	6.25]
7	41	[585.1	-585.3	0.0	0.0	0.0	0.0	0.0]
6	4/	[104.4	154.7	-246.6	0.0	0.0	0.0	0.0]
5	9// 7	0.0	-586.0	1189.4	-603.7	0.0	0.0	0.0]
4	[K]	0.0	0.0	-563.0	1124.4	-558.0	0.0	0.0]
3		0.0	0.0	0.0	-431.2	886.7	-445.4	0.0]
2		0.0	0.0	0.0	0.0	-431.9	1073.1	90.3]
1		[0.0	0.0	0.0	0.0	0.0	-1529.7	3263.9]

表 3. 107 (續):以 n=142 及對應 0.2Hz~10Hz 之 a 值進行 CCWT,取樣門 檻=90%,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

				(-)					
子結構	矩陣				相對誤差	Ę			
7		[34.9%	79.1%	-	_	-	-	-]
6		[66.0%	79.5%	123.5%	_	-	-	-]
5		[-]	-4.0%	-12.0%	16.0%	An -	-	-]
4	[C]			-44.1%	0.4%	29.6%		-]
3				_	-22.6%	83.8%	502.7%	-]
2		t -	-		-	-134.1%	-9.4%	169.0%]
1			-	-			-40.0%	-17.7%]
7	41	[-2.5%	-2.5%	152	8 1	6.3	11	-]
6		[-117.4%	-87.1%	-58.9%	<u> </u>	7	-	-]
5		[-2.3%	-0.9%	0.6%]
4	[K]	-	-	-6.2%	-6.3%	-7.0%	-0-	-]
3		[-	ر - ا		-28.1%	-26.1%	-25.8%	1 -]
2		[-]	1		-	-28.0%	-55.3%	-105.0%]
1					_	_ A	-15.0%	-14.1%]

表 3.108:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別含 10% 雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

		1		(4)					
子結構	矩陣		禁妇	社里: 呦	度無折減	幺丝今10	10/6 独		
樓層	足件		部以八八、	石木・功	及無別人	不多0.4 10	/ / 0 水产 司以		
7		[1.42	-1.64	0.00	0.00	0.00	0.00	0.00]
6		[-1.54	3.12	-1.43	0.00	0.00	0.00	0.00]
5		[0.00	-0.98	2.48	-1.28	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.79	2.88	-1.80	0.00	0.00]
3		0.00	0.00	0.00	0.01	1.33	-1.40	0.00]
2		0.00	0.00	0.00	0.00	-0.52	2.43	-3.85]
1		[0.00	0.00	0.00	0.00	0.00	1.19	1.33]
7	7	[567.7	-566.6	0.0	0.0	0.0	0.0	0.0]
6		[-433.5	944.3	-505.7	0.0	0.0	0.0	0.0]
5	9// 7	[0.0	-568.4	1137.3	-566.0	0.0	0.0	0.0]
4	[K]	0.0	0.0	-557.3	1113.6	-550.1	0.0	0.0]
3		0.0	0.0	0.0	-554.8	1096.6	-511.8	0.0]
2		0.0	0.0	0.0	0.0	-452.8	1168.4	3.2]
1		0.0	0.0	0.0	0.0	0.0	-1437.1	3047.4]

表 3.108 (續):以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (b)

子結構	矩陣				相對誤差	É			
樓層									
7		[18.5%	36.8%	-	-	-	-	-]
6		[28.4%	30.1%	19.0%		-	-	-]
5		[]	-18.1%	3.5%	6.7%	In .	-	-]
4	[C]	[4-1		49.1%	19.8%	50.0%	-	-]
3			-	-	-100.4%	-44.7%	16.4%	-]
2			-	-		-56.3%	-49.3%	7.1%]
1		Н	- 10	į			-133.1%	-82.4%]
7	41	[-5.4%	-5.6%	25	6 1	1	11	-]
6	4/	[-27.7%	-21.3%	-15.7%	0	11.5	- 11	THE .]
5	9/1	-	-5.3%	-5.2%	-5.7%		7]
4	[K]	-	-	-7.1%	-7.2%	-8.3%	-0-]
3		[-	V - 5		-7.5%	-8.6%	-14.7%	#]
2		[-]	1	TA	-	-24.5%	-51.3%	-100.2%]
1		1			_	_ M	-20.2%	-19.8%]

表 3.109:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別含 10% 雜訊之勁度無折減系統之參數設定

子結構								
樓層	模態	1	2	3	4	5	6	7
7	取樣門檻	90%	71%	84%	66%	72%	75%	57%
7	取樣數	1118	817	1089	1036	1090	1087	1064
	取樣門檻	90%	76%	84%	54%	70%	58%	58%
6	取樣數	1115	997	1102	1078	1112	1089	1096
-	取樣門檻	90%	75%	71%	70%	60%	66%	60%
5	取樣數	1120	1116	1040	1103	1081	1043	1102
4	取樣門檻	90%	75%	7 <mark>6%</mark>	68%	64%	74%	56%
4	取樣數	1121	1080	1100	1077	1096	1089	1080
2	取樣門檻	90%	73%	75%	66%	69%	70%	56%
3	取樣數	1131	883	1096	1124	1130	1080	1085
2	取樣門檻	90%	71%	82%	73%	61%	73%	55%
2	取樣數	1131	1102	1074	1075	1093	1052	1106
,	取樣門檻	90%	71%	78%	73%	60%	77%	64%
1	取樣數	1157	1112	1150	1122	1106	1091	1119

表 3.110:以表 3.109 之參數設定,以子結構識別含 10%雜訊之勁度無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差 (a)

		ı		(u)					
子結構	矩陣		禁切。	針里: 呦	度無折減	名经今10	0%被卸		
樓層	7E (7		5EX 771 V	やイ・カ	[泛無 》] 减	不多0.4	0 / 0 本产 司以		
7		[1.39	-1.60	0.00	0.00	0.00	0.00	0.00]
6		[-0.93	2.17	-0.86	0.00	0.00	0.00	0.00]
5		[0.00	-1.19	2.37	-1.23	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.59	3.08	-1.89	0.00	0.00]
3		[0.00	0.00	0.00	-1.16	3.24	-2.65	0.00]
2		0.00	0.00	0.00	0.00	-1.28	4.95	-4.36]
1		[0.00	0.00	0.00	0.00	0.00	-0.68	4.00]
7	7	[576.5	-575.4	0.0	0.0	0.0	0.0	0.0]
6		[-603.8	1195.2	-589.8	0.0	0.0	0.0	0.0]
5	9//	0.0	-586.1	1189.0	-604.5	0.0	0.0	0.0]
4	[K]	0.0	0.0	-576.1	1170.5	-604.9	0.0	0.0]
3		0.0	0.0	0.0	-561.8	1153.5	-617.8	0.0]
2		0.0	0.0	0.0	0.0	-594.6	2362.7	-1781.3]
1		0.0	0.0	0.0	0.0	0.0	-1685.4	3578.1]

表 3.110 (續):以表 3.109 之參數設定,以子結構識別含 10%雜訊之勁度 無折減系統之識別結果

(a) 子結構[C]及[K] (b) 與理論值之相對誤差

(b)

				(-)					
子結構	矩陣				相對誤差	<u>.</u>			
7		[15.8%	33.5%	-	-	-	-	-]
6		[-22.4%	-9.7%	-28.6%	1015-5-5	-	-	-]
5		[-	-0.5%	-1.4%	2.4%	In .	-	-]
4	[C]	[4-1	N. Belle	32.8%	28.2%	57.5%	-	-]
3				-	-3.1%	35.1%	120.7%	-]
2		i -	- 1		_	6.4%	3.2%	21.2%]
1			- 10	-	-		-81.2%	-47.3%]
7	41	[-3.9%	-4.1%	10	9	1	11	-]
6	4/	[0.6%	-0.4%	-1.7%	0	1	7 - 11	-]
5	9//	[-2.3%	-0.9%	0.8%]
4	[K]	-	-	-4.0%	-2.5%	0.8%	-0-	-]
3		[-]	r - D		-6.4%	-3.9%	3.0%	1]
2		[-]	16	1	-	-0.9%	-1.6%	-1.0%]
1					-		-6.4%	-5.8%]

表 3.111: 含 10%雜訊之勁度無折減系統子結構識別整理

n 值		n=	65	P. 1915	n=142					
a 對應頻率	0.2Hz	~10Hz	模態:	頻率	0.2Hz	~10Hz	模態:	頻率		
取樣門檻	0%	90%	0%	90%	0%	90%	0%	90%		
[C] 最大誤差	336.9%	489.2%	-98.5%	183.7%	361.6%	502.7%	-133.1%	120.7%		
[K] 最大誤差	-130.4%	-111.6%	-108.6%	-7.8%	-128.8%	-117.4%	-100.2%	-6.4%		

表 3.112:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別第一樓層柱勁度折減 25%系統之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

子結構	矩陣	識別結果:第一樓層柱勁度折減 25% 系統								
樓層	起件		部人刀丁不	・ネ・ポー	後信任务	刃及机成。	20/0 尔 80			
7		[1.21	-1.21	0.00	0.00	0.00	0.00	0.00]	
6	[C]	[-1.49	2.87	-1.40	0.00	0.00	0.00	0.00]	
5		[00.0]	-1.29	2.55	-1.29	0.00	0.00	0.00]	
4		[0.00	0.00	-1.48	3.15	-1.80	0.00	0.00]	
3		0.00	0.00	0.00	-1.68	3.43	-1.99	0.00]	
2		0.00	0.00	0.00	0.00	-1.12	4.41	-3.33]	
1		[0.00	0.00	0.00	0.00	0.00	-3.35	5.96]	
7	4/	[594.3	-593.7	0.0	0.0	0.0	0.0	0.0]	
6	4/	[-596.6	1194.4	-596.6	0.0	0.0	0.0	0.0]	
5	9// 7	0.0	-586.2	1187.2	-601.4	0.0	0.0	0.0]	
4	[K]	0.0	0.0	-590.6	1199.4	-615.4	0.0	0.0]	
3		0.0	0.0	0.0	-591.6	1204.0	-635.1	0.0]	
2		[0.0	0.0	0.0	0.0	-598.4	2437.8	-1872.2]	
1		0.0	0.0	0.0	0.0	0.0	-1776.5	3259.8]	

表 3.112 (續):以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 第一樓層柱勁度折減 25%系統之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (b)

				(0)					
子結構	矩陣	相對差異							
7		[-0.2%	0.8%	_	-	_	_	-]
6		[66.8%	45.4%	31.3%	-	-	-	-]
5		[]	6.2%	0.3%	-3.6%	In	-	-]
4	[C]	[]	N. Paris	15.9%	8.2%	1.4%	-	-]
3			-	-	12.9%	-1.2%	-26.7%	-]
2			-			-4.2%	-10.5%	-15.5%]
1		Ш		j., .			-3.9%	-18.2%]
7	7	[3.0%	3.0%	150	6 /		11	-]
6		[0.0%	0.8%	1.7%	0	1	7 - 1	100]
5		[]	-0.1%	-0.1%	-0.4%]
4	[K]	- 1	-	2.9%	2.5%	1.7%	-0]
3		[-	V - D		3.9%	3.5%	1.9%	_]
2		[-]		7	-	2.1%	2.4%	2.4%]
1		1	-		-		1.1%	-12.2%]

表 3.113:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別第一樓層柱勁度折減 10%系統之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

		1		(u)						
子結構	矩陣	識別結果:第一樓層柱勁度折減 10%系統								
樓層	足干									
7		[1.17	-1.16	0.00	0.00	0.00	0.00	0.00]	
6	[C]	[-0.92	2.01	-1.05	0.00	0.00	0.00	0.00]	
5		[00.0]	-1.34	2.75	-1.40	0.00	0.00	0.00]	
4		[0.00	0.00	-1.37	3.18	-2.00	0.00	0.00]	
3		0.00	0.00	0.00	-1.52	3.54	-2.65	0.00]	
2		0.00	0.00	0.00	0.00	-1.10	4.74	-3.70]	
1		[0.00	0.00	0.00	0.00	0.00	-3.15	6.41]	
7	7	[597.1	-596.6	0.0	0.0	0.0	0.0	0.0]	
6	4/	[-610.6	1215.7	-604.2	0.0	0.0	0.0	0.0]	
5	9/1	[0.0	-595.4	1206.2	-612.7	0.0	0.0	0.0]	
4	[K]	0.0	0.0	-586.3	1196.9	-620.3	0.0	0.0]	
3	31	0.0	0.0	0.0	-584.9	1196.3	-643.5	0.0]	
2		0.0	0.0	0.0	0.0	-602.9	2461.4	-1904.0]	
1		0.0	0.0	0.0	0.0	0.0	-1793.6	3590.6]	

表 3.113 (續):以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 第一樓層柱勁度折減 10%系統之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (b)

				(-)					
子結構	矩陣				相對差	P			
7		[-3.1%	-3.6%	-	-	-	-	-]
6		[3.4%	1.7%	-1.1%	_	-	-	-]
5		[10.6%	8.2%	4.2%	In	-	-]
4	[C]	[_4-1]		6.8%	9.4%	12.4%	-	-]
3			-	-	2.6%	2.2%	-2.4%	-]
2			-			-6.0%	-3.8%	-6.2%]
1		1 ==		_	-		-9.5%	-12.0%]
7	7/	[3.5%	3.5%	100	6-1	1	11	-]
6	4/	[2.3%	2.6%	3.0%	0	1	- 1	THE REAL PROPERTY.]
5	9//	[-	1.4%	1.5%	1.4%		-]
4	[K]	-	-	2.2%	2.3%	2.5%	-0	-]
3		[-	Y - J		2.7%	2.8%	3.3%]
2		[-]	1	1	-	2.9%	3.4%	4.1%]
1	IL			<u>-</u>	_	- VA.	2.1%	-3.3%]

表 3.114:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別第一、 三樓層柱勁度折減 10%系統識別之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

		1		(u)					
子結構	矩陣		識別社里	4:笙一	、二樓區士	主勁度折泊	咸 10%系統	体	
樓層	たけ		見ること	े ऋ	一个人	工3/1人4/1	W 10/0 W 2	yu	
7		[1.18	-1.19	0.00	0.00	0.00	0.00	0.00]
6		[-1.36	2.61	-1.25	0.00	0.00	0.00	0.00]
5		[0.00	-1.22	2.50	-1.31	0.00	0.00	0.00]
4	[C]	0.00	0.00	-1.43	3.21	-1.98	0.00	0.00]
3		[0.00	0.00	0.00	-1.58	3.26	-2.18	0.00]
2		0.00	0.00	0.00	0.00	-1.03	4.54	-3.66]
1		[0.00	0.00	0.00	0.00	0.00	-3.37	6.62]
7	7	[589.6	-588.9	0.0	0.0	0.0	0.0	0.0]
6	4/	[-604.0	1201.8	-596.5	0.0	0.0	0.0	0.0]
5	9/1	[0.0	-583.2	1182.2	-599.6	0.0	0.0	0.0]
4	[K]	0.0	0.0	-580.6	1181.7	-608.1	0.0	0.0]
3	31	0.0	0.0	0.0	-580.0	1123.6	-571.6	0.0]
2		[0.0	0.0	0.0	0.0	-535.6	2358.2	-1855.9]
1		0.0	0.0	0.0	0.0	0.0	-1769.8	3542.3]

表 3.114 (續): 以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別第一、三樓層柱勁度折減 10%系統識別之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異

(b)

子結構	矩陣				相對差昇	ŧ			
7		[-2.3%	-1.6%	-	-	-	-	-]
6		[51.9%	32.1%	17.7%		-	-	-]
5		[]	0.2%	-1.9%	-2.3%	Alta .	-	-]
4	[C]	[4-1	N. Barre	11.4%	10.3%	11.6%	-	-]
3				-	6.5%	-6.0%	-19.7%	-]
2		Į.	-			-12.3%	-7.7%	-7.2%]
1		Ш		ė <u>-</u>			-3.3%	-9.2%]
7	41	[2.2%	2.2%	125	6		16	-]
6	4/	[1.2%	1.4%	1.7%	0	11.00		100]
5	9// 7	[-0.6%	-0.6%	-0.7%	-]
4	[K]	1	-	1.2%	1.0%	0.5%	Q -]
3		[-	W - 5		1.8%	-3.4%	-8.2%]
2		[-		7 A	-	-8.6%	-0.9%	1.5%]
1		1		/-		A	0.7%	-4.6%]

表 3.115:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 含 10%雜訊之第一樓層柱勁度折減 25%系統識別之識別結果 (a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

		,		(α)					
子結構	矩陣	<u> </u>	31	单一排届	杜勋府托	述 25% s	統含 10%	、強到	
樓層	足件	可以人	内に木・ケ	10 1安/官	任别及训	/fix, 43 /0 乔	(例:3-10/0) 术臣 武 (
7		[0.59	-0.07	0.00	0.00	0.00	0.00	0.00]
6		[-3.61	6.01	-3.42	0.00	0.00	0.00	0.00]
5		[0.00	-0.82	2.60	-0.96	0.00	0.00	0.00]
4	[C]	0.00	0.00	-1.99	3.17	-2.12	0.00	0.00]
3		0.00	0.00	0.00	-1.19	3.00	-1.58	0.00]
2		0.00	0.00	0.00	0.00	-0.92	4.47	-4.13]
1		[0.00	0.00	0.00	0.00	0.00	-2.94	5.46]
7	7	[589.5	-587.9	0.0	0.0	0.0	0.0	0.0]
6	4//	[-562.6	1146.7	-583.4	0.0	0.0	0.0	0.0]
5	9//	0.0	-586.8	1191.9	-607.3	0.0	0.0	0.0]
4	[K]	0.0	0.0	-589.0	1193.9	-609.9	0.0	0.0]
3		0.0	0.0	0.0	-590.5	1200.2	-627.9	0.0]
2		0.0	0.0	0.0	0.0	-565.2	2151.8	-1501.8]
1	IL	0.0	0.0	0.0	0.0	0.0	-1723.9	3177.9]

表 3.115 (續): 以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別含 10%雜訊之第一樓層柱勁度折減 25%系統識別之識別結果 (a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (b)

				(0)					
子結構樓層	矩陣			;	相對差異				
7		[-57.5%	-95.4%	-	-	-	-	-]
6		[287.5%	177.2%	299.5%	The San Table	-	-	-]
5		[-	-31.3%	9.9%	-21.9%	la -	-	-]
4	[C]	[4	A Property of	24.7%	3.1%	12.0%	-	-]
3			-	_	2.4%	-7.5%	-40.2%	-]
2		t//-	- 1		- 4	-28.3%	-9.8%	-5.2%]
1		-	-10	_		1	333.9%	36.4%]
7	7/	[2.3%	2.2%		9-1	1	11	-]
6	4/	[-6.8%	-4.1%	-1.1%	<u> </u>	10.00	1	300]
5	9//	[-	0.1%	0.2%	0.5%]
4	[K]	-]	-	2.3%	2.0%	0.8%	0 -]
3		[-]	7 - 1		5.1%	4.1%	1.6%]
2	15	[-]	16	-	- ^	-4.9%	-8.9%	-15.7%]
1			1	-	-	-	2.3%	-11.2%]

表 3.116:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 含 10%雜訊之第一樓層柱勁度折減 10%系統識別之識別結果 (a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

				(a)					
子結構	矩陣	<u>}</u> ₩; 5	川仕里・台	空一樓區	计测电讯	法 10% 多	統含 10%	、強到	
樓層	足件	面以人	内に木・シ	ヤ	任别及训	/成 10 /0 东	(例(古·107)	大臣 可し	
7		[1.27	-1.36	0.00	0.00	0.00	0.00	0.00]
6		[-1.76	3.38	-1.35	0.00	0.00	0.00	0.00]
5		[0.00	-1.42	2.57	-1.40	0.00	0.00	0.00]
4	[C]	[0.00	0.00	-1.27	3.26	-2.08	0.00	0.00]
3		[0.00	0.00	0.00	-1.73	3.78	-2.76	0.00]
2		0.00	0.00	0.00	0.00	-0.99	4.16	-3.27]
1		[0.00	0.00	0.00	0.00	0.00	-2.32	5.58]
7	7	[586.3	-584.9	0.0	0.0	0.0	0.0	0.0]
6	4/	[-587.0	1177.0	-591.2	0.0	0.0	0.0	0.0]
5	9/1	0.0	-580.7	1182.0	-600.3	0.0	0.0	0.0]
4	[K]	0.0	0.0	-574.9	1171.7	-607.3	0.0	0.0]
3		[0.0	0.0	0.0	-574.1	1175.3	-631.2	0.0]
2		0.0	0.0	0.0	0.0	-591.7	2392.4	-1830.3]
1	IL	[0.0]	0.0	0.0	0.0	0.0	-1737.0	3482.9]

表 3.116 (續): 以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別含 10%雜訊之第一樓層柱勁度折減 10%系統識別之識別結果 (a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (b)

				(0)					
子結構	矩陣				相對差異	Į.			
7		[-8.3%	-15.2%	-	-	-	-	-]
6		[88.6%	55.7%	57.3%		-	-	-]
5		[]	18.6%	8.5%	13.9%	In .	-	-]
4	[C]	[4-1		-20.1%	5.9%	9.9%	-	-]
3				-	48.9%	16.7%	4.1%	-]
2			-			-22.6%	-16.0%	-25.1%]
1			-	-			242.2%	39.4%]
7	7/	[1.7%	1.7%	120	C-V	1850	11	-]
6	4/	[-2.8%	-1.5%	0.2%	0	11.00	-11	100]
5	9//	[-	-0.9%	-0.6%	-0.7%		-	-]
4	[K]	- 1	-	-0.2%	0.1%	0.4%	-0-	-]
3		[-	V - 0	1-7	2.2%	1.9%	2.2%	-]
2		[-]	1/6	1	-	-0.5%	1.3%	2.8%]
1		[-	<u> </u>	<u>-</u>	- A	3.1%	-2.7%]

表 3.117:以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別含 10% 雜訊之第一、三樓層柱勁度折減 10%系統之識別結果

(a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (a)

				(4)					
子結構	矩陣	識別系	古果: 第-	一、三樓	層柱勁度	折減 10%	系統含10)%雜訊	
樓層	ļ	and \$1 4.	67C - 34	一夜	旧化功及	1 100 10 7 0	W # C B =) / O APE BIG	
7		[0.73	-0.17	0.00	0.00	0.00	0.00	0.00]
6		[-2.06	3.37	-2.32	0.00	0.00	0.00	0.00]
5		[0.00	-0.83	2.55	-0.93	0.00	0.00	0.00]
4	[C]	0.00	0.00	-1.85	3.16	-2.25	0.00	0.00]
3		0.00	0.00	0.00	-1.25	3.10	-1.91	0.00]
2		0.00	0.00	0.00	0.00	-0.96	4.63	-4.34]
1		[0.00	0.00	0.00	0.00	0.00	-2.32	5.24]
7	41	[585.5	-584.3	0.0	0.0	0.0	0.0	0.0]
6	4/	[-587.9	1180.0	-590.6	0.0	0.0	0.0	0.0]
5	9// 7	0.0	-582.5	1182.6	-603.0	0.0	0.0	0.0]
4	[K]	0.0	0.0	-578.5	1176.2	-602.1	0.0	0.0]
3		0.0	0.0	0.0	-579.0	1120.6	-566.8	0.0]
2		0.0	0.0	0.0	0.0	-512.6	2122.4	-1515.6]
1		0.0	0.0	0.0	0.0	0.0	-1699.5	3413.7]

表 3.117 (續): 以 n=142 及對應各模態之 a 值進行 CCWT,以子結構識別 含 10%雜訊之第一、三樓層柱勁度折減 10%系統之識別結果 (a) 子結構[C]及[K] (b) 與勁度無折減系統識別之相對差異 (b)

				(0)					
子結構	矩陣				相對差異				
7		[-47.8%	-89.7%	-	-	-	-	-]
6		[121.7%	55.3%	171.3%	-	-	-	-]
5		[-]	-30.7%	7.7%	-24.3%	lin .	-	-]
4	[C]	[4-	A Marie	15.8%	2.8%	19.2%	<u> </u>	-]
3				_	7.8%	-4.3%	-28.0%	-]
2		i -	- 1			-25.1%	-6.6%	-0.6%]
1			-	_		-	242.8%	30.9%]
7	4/	[1.6%	1.6%		9-1	C.	11	-]
6	4/	[-2.6%	-1.3%	0.1%	9		1	-]
5		[-0.6%	-0.5%	-0.3%	-]
4	[K]	-	-	0.4%	0.5%	-0.5%	0 -]
3		[-	ن - ا		3.1%	-2.8%	-8.2%]
2		[-]	16	1	- "	-13.8%	-10.2%	-14.9%]
1				_	-	- A	0.8%	-4.6%]

表 4.1:識別原始鋼構之參數設定

n 值	142										
a 值	22.68	7.32	4.36	3.19	2.55	2.16	1.94	1.81			
對應頻率 (Hz)	1.0	3.1	5.2	7.1	8.9	10.5	11.7	12.5			
對應頻寬	0.9~	2.9~	4.9~	6.7~	8.4~	9.9~	11.0~	11.8~			
區間(Hz)	1.1	3.3	5.5	7.5	9.4	11.1	12.4	13.2			
取樣門檻	90%	93%	90%	65%	63%	61%	58%	45%			
取樣數	662	645	662	657	643	618	612	655			

表 4.2:以全矩陣識別原始鋼構所得之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$

矩陣					識別	結果					
		-0.35	0.04	-0.57	-0.16	-0.08	-0.04	-0.06	-0.17		
		0.04	2.20	-0.20	0.44	0.14	0.09	0.19	0.26		
		-0.57 -	-0.20	-0.10	-0.33	-0.04	-0.10	-0.08	-0.12		
гмл-1г <i>с</i> л		-0.16	0.44	-0.33	0.16	-0.19	0.03	0.03	0.00		
$[M]^{-1}[\mathcal{C}]$		-0.08	0.14	-0.04	-0.19	0.42	-0.18	0.12	-0.18		
		-0.04	0.09	-0.10	0.03	-0.18	0.51	-0.37	0.20		
		-0.06	0.19	-0.08	0.03	0.12	-0.37	0.66	-0.32		
		_0.17	0.26	-0.12	0.00	-0.18	0.20	-0.32	0.51		
	T 1377.8	-1468.2	5	9.3	10.3	-11.	6 2	22.7	-7.3	5.5	
	-1468.2	3008.4	-157	5.8	43.1	41.	3 –4	17.0	25.4	-3.5	
2	59.3	-1575.8	298	3.0 -	-1535.5	22.	6	59.1	-52.8	47.3	
[N/]-1[//]	10.3	43.1	-153	5.5	2954.3	-1521.	0	9.4	70.8	-38.0	
$[M]^{-1}[K]$	-11.6	41.3	2	2.6 -	-1521.0	2918.	8 -149	98.4	24.5	38.9	
	22.7	-47.0	5	9.1	9.4	-1498.	4 29:	38.1 –	-1557.2	73.9	
	-7.3	25.4	_5	2.8	70.8	24.	5 –155	57.2	2974.0	-1568.8	
	5.5	-3.5	4	7.3	-38.0	38.	9 ′	73.9 –	-1568.8	3005.2	j

表 4.3:以表 4.2 之[M]⁻¹[C]及[M]⁻¹[K]所得之模態參數

模態	頻率(Hz)	阻尼比(%)
1	1.04	0.64
2	3.13	0.40
3	5.17	0.26
4	7.16	0.47
5	8.89	0.21
6	10.50	0.57
7	11.72	0.76
8	12.07	0.71

表 4. 4:考慮 $[M]^{-1}[K]$ 帶寬=6 時,識別原始鋼構所得之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$

矩陣				識別	結果				
		-0.35	0.04 -0.	.56 –0.17	-0.07	-0.05	-0.06	-0.16	
		0.04	2.22 -0.	22 0.46	0.12	0.11	0.18	0.26	
		-0.56 -	-0.22 -0.	07 -0.36	-0.02	-0.11	-0.09	-0.11	
гмл-1г <i>с</i> л		-0.17	0.46 -0.	.36 0.18	-0.20	0.03	0.05	-0.01	
$[M]^{-1}[\mathcal{C}]$		-0.07	0.12 -0.	.02 -0.20	0.41	-0.16	0.09	-0.16	
		-0.05	0.11 -0	.11 0.03	-0.16	0.47	-0.33	0.18	
		-0.06	0.18 -0.	.09 0.05	0.09	-0.33	0.63	-0.31	
		_0.16	0.26 -0.	.11 -0.01	-0.16	0.18	-0.31	0.50	
	T 1377.8	-1468.5	60.1	9.2	-10.	2 1	9.4	-1.4	0.0
	-1468.5	3009.7	-1578.4	46.6	36	5 –3	7.9	11.7	8.1
2	60.1	-1578.4	2987.4	-1541.5	30.	9 4	7.3	-39.7	38.2
[N/]-1[//]	9.2	46.6	-1541.5	2963.0	-1531.	7 2	0.6	61.8	-33.1
$[M]^{-1}[K]$	-10.2	36.5	30.9	-1531.7	2929.	4 -150	7.3	30.6	35.8
	19.4	-37.9	47.3	20.6	-1507.	3 294	4.5 –	1561.5	76.1
	-1.4	11.7	-39.7	61.8	30.	6 –156	1.5	2976.6	-1569.9
	0.0	8.1	38.2	-33.1	35.	8 7	6.1 –	1569.9	3005.5

表 4.5:以表 4.4 之[M]⁻¹[C]及[M]⁻¹[K]所得之模態參數

模態	頻率(Hz)	阻尼比(%)
1	1.04	0.64
2	3.13	0.40
3	5.17	0.26
4	7.16	0.47
5	8.89	0.21
6	10.51	0.57
7	11.69	0.74
8	12.12	0.71

表 4.6: 考慮[M] $^{-1}[K]$ 帶寬=5 時,識別原始鋼構所得之[M] $^{-1}[C]$ 及[M] $^{-1}[K]$

矩陣		識別結果									
		-0.35	0.05	-0.58	-0.15	-0.10	-0.02	-0.08	-0.15		
		0.05	2.19	-0.17	0.40	0.19	0.04	0.24	0.23		
		-0.58 -	-0.17	-0.15	-0.26	-0.13	-0.01	-0.16	-0.08		
[NA] = 1 [C]		-0.15	0.40	-0.26	0.06	-0.07	-0.08	0.10	-0.03		
$[M]^{-1}[C]$		-0.10	0.19	-0.13	-0.07	0.30	-0.09	0.07	-0.16		
		-0.02	0.04	-0.01	-0.08	-0.09	0.44	-0.33	0.19		
		-0.08	0.24	-0.16	0.10	0.07	-0.33	0.65	-0.32		
		_0.15	0.23	-0.08	-0.03	-0.16	0.19	-0.32	0.51		
	T 1377.8	-1468.3	1000	59.8	9.2	-8.	9	17.2	0.0	0.0	
	-1468.3	3008.8	-15	76.6	45.7	34.	8 –	37.2	17.2	0.0	
	59.8	-1576.6	29	84.2 -	-1538.8	28.	.3	57.3	-60.8	58.4	
CN 43 - 1 C 723	9.2	45.7	-15	38.8	2957.5	-1520.	4 -	-0.4	88.8	-53.4	
$[M]^{-1}[K]$	-8.9	34.8		28.3 -	-1520.4	2909.	3 –14	83.0	9.8	47.5	
	17.2	-37.2		57.3	-0.4	-1483.	0 292	23.5 –	1546.6	68.3	
	0.0	17.2		60.8	88.8	9.	8 -15	46.6	2964.2	-1561.9	
	0.0	0.0		58.4	-53.4	47.	5	68.3 –	1561.9	2999.9	

表 4.7: 以表 4.6 之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)			
1	1.04	0.64			
2	3.13	0.40			
3	5.17	0.26			
4	7.16	0.47			
5	8.88	0.22			
6	10.51	0.56			
7	11.70	0.83			
8	12.05	0.40			

表 4.8: 考慮[M] $^{-1}[K]$ 帶寬=4 時,識別原始鋼構所得之[M] $^{-1}[C]$ 及[M] $^{-1}[K]$

矩陣				識別	結果			
		-0.32	-0.05 -0.43	-0.31	0.05 -0	0.16 0.03	-0.23	
		-0.05	2.51 -0.65	0.95	-0.34	0.49 -0.11	0.44	
		-0.43 -	-0.65 0.51	-1.00	0.58 - 0	0.62 0.30	-0.33	
[M]-1[C]		-0.31	0.95 -1.00	0.90	-0.87	0.58 -0.28	0.11	
$[M]^{-1}[\mathcal{C}]$		0.05 -	-0.34 0.58	-0.87	1.02 -0	0.56 0.19	-0.09	
		-0.16	0.49 -0.62	0.58	-0.56	0.57 -0.14	-0.04	
		0.03 -	-0.11 0.30	-0.28	0.19 -0	0.31	-0.08	
		_0.23	0.44 -0.33	0.11	-0.09 -0	0.04 -0.08	0.39	
	1381.1	-1474.3	71.7	-18.8	25.4	0.0	0.0	0.0
	-1474.3	3029.0	-1622.8	127.0	-55.6	20.4	0.0	0.0
2	71.7	-1622.8	3071.1	-1651.8	143.1	-50.0	32.1	0.0
[N/]-1[//]	-18.8	127.0	-1651.8	3080.7	-1652.2	169.7	-119.5	110.3
$[M]^{-1}[K]$	25.4	-55.6	143.1	-1652.2	3076.0	-1709.6	267.1	-138.3
	0.0	20.4	-50.0	169.7	-1709.6	3165.9 -	1741.5	173.4
	0.0	0.0	32.1	-119.5	267.1	-1741.5	3054.5	-1585.1
	0.0	0.0	0.0	110.3	-138.3	173.4 -	1585.1	3000.1

表 4.9:以表 4.8之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)		
1	1.04	0.64		
2	3.13	0.40		
3	5.17	0.26		
4	7.19	0.46		
5	8.92	0.24		
6	10.24	0.64		
7	11.75	0.54		
8	12.94	1.94		

表 4. 10: 考慮[M] $^{-1}[K]$ 帶寬=3 時, 識別原始鋼構所得之[M] $^{-1}[C]$ 及[M] $^{-1}[K]$

矩陣					識別	結果					
		-0.36	0.08	-0.62	-0.10	-0.16	0.04	-0.10	-0.17		
		0.08	2.04	0.02	0.17	0.43	-0.16	0.32	0.24		
		-0.62	0.02	-0.40	0.14	-0.62	0.46	-0.45	0.05		
[M]-1[C]		-0.10	0.17	0.14	-0.56	0.67	-0.83	0.72	-0.40		
$[M]^{-1}[C]$		-0.16	0.43	-0.62	0.67	-0.66	0.94	-0.78	0.29		
		0.04 -	-0.16	0.46	-0.83	0.94	-0.59	0.35	-0.04		
		-0.10	0.32	-0.45	0.72	-0.78	0.35	0.41	-0.41		
		_0.17	0.24	0.05	-0.40	0.29	-0.04	-0.41	0.71		
	T 1381.4	-1458.6	1	26.6	34.0	0.	0	0.0	0.0	0.0	
	-1458.6	2964.1	-15	02.9	-1.1	21.	4	0.0	0.0	0.0	
9	26.6	-1502.9	29	21.3 -	-1509.2	24.	7	30.4	0.0	0.0	
CN 43 - 1 C 723	34.0	-1.1	-15	09.2	2938.6	-1492.	8 –	13.9	55.9	0.0	
$[M]^{-1}[K]$	0.0	21.4		24.7	-1492.8	2858.	9 –13	93.0	-124.3	166.0	
	0.0	0.0		30.4	-13.9	-1393.	0 27	01.4 -	-1224.2	-188.7	
	0.0	0.0		0.0	55.9	-124.	3 –12	24.2	2606.1	-1338.5	
	0.0	0.0	- 100	0.0	0.0	166.	0 –1	88.7 -	-1338.5	2910.2	

表 4.11: 以表 4.10 之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)		
1	1.04	0.64		
2	3.14	0.40		
3	5.16	0.26		
4	7.18	0.46		
5	9.08	0.17		
6	10.38	1.08		
7	10.92	-0.13		
8	11.85	-1.11		

表 4. 12: 考慮[M] $^{-1}[K]$ 帶寬=2 時, 識別原始鋼構所得之[M] $^{-1}[C]$ 及[M] $^{-1}[K]$

矩陣				識別	結果				
		-0.34 -	-0.05 -0.45	-0.33	0.10	-0.26	0.21	-0.40	
		-0.05	2.57 -0.65	1.00	-0.46	0.79	-0.56	0.84	
		-0.45 -	-0.65 0.58	-1.19	0.88	-1.07	0.83	-0.73	
[N/]-1[C]		-0.33	1.00 -1.19	1.23	-1.32	1.12	-0.85	0.51	
$[M]^{-1}[\mathcal{C}]$		0.10 -	-0.46 0.88	-1.32	1.58	-1.24	0.93	-0.64	
		-0.26	0.79 - 1.07	1.12	-1.24	1.42	-1.02	0.51	
		0.21 -	-0.56 0.83	-0.85	0.93	-1.02	0.97	-0.34	
		_0.40	0.84 -0.73	0.51	-0.64	0.51	-0.34	0.39	
	1398.3	-1511.5	94.2	0.0	0.0		0.0	0.0	0.0
	-1511.5	3101.4	-1650.1	84.1	0.0	-	0.0	0.0	0.0
2	94.2	-1650.1	3058.3	-1618.1	103.5		0.0	0.0	0.0
[N/1-1[1/2]	0.0	84.1	-1618.1	3070.1	-1645.5	11	5.5	0.0	0.0
$[M]^{-1}[K]$	0.0	0.0	103.5	-1645.5	3074.1	-165	5.2	133.5	0.0
	0.0	0.0	0.0	115.5	-1655.2	313	0.2 -	1781.5	261.2
	0.0	0.0	0.0	0.0	133.5	-178	1.5	3276.6	-1794.8
	0.0	0.0	0.0	0.0	0.0	26	1.2 –	1794.8	3140.6

表 4.13:以表 4.12之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)		
1	1.04	0.64		
2	3.15	0.39		
3	5.16	0.27		
4	7.07	0.50		
5	8.93	0.10		
6	10.66	0.72		
7	12.00	0.33		
8	12.80	3.71		

表 4. 14: 考慮 $[M]^{-1}[K]$ 帶寬=1 時, 識別原始鋼構所得之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$

矩陣		識別結果									
		-0.30	0.04	-0.49	-0.16	-0.08	-0.07	0.08	-0.32		
		0.04	1.96	-0.15	0.37	0.13	0.18	-0.11	0.54		
		-0.49	-0.15	-0.13	-0.21	-0.10	-0.12	0.06	-0.24		
[NA]-1[C]		-0.16	0.37	-0.21	-0.02	-0.01	-0.09	0.10	-0.05		
$[M]^{-1}[C]$		-0.08	0.13	-0.10	-0.01	0.09	0.18	-0.21	0.02		
		-0.07	0.18	-0.12	-0.09	0.18	-0.04	0.16	-0.13		
		0.08	-0.11	0.06	0.10	-0.21	0.16	0.15	-0.09		
		_0.32	0.54	-0.24	-0.05	0.02	-0.13	-0.09	0.60		
	1293.1	-1313.1	Service of the last of the las	0.0	0.0	0.	0	0.0	0.0	0.0	
	-1313.1	2688.4	-13	56.5	0.0	0.	0	0.0	0.0	0.0	
	0.0	-1356.5	5 26	62.8 -	-1320.3	0.	0	0.0	0.0	0.0	
[N/1-1 [7/7]	0.0	0.0) – 13	20.3	2617.6	-1296.	3	0.0	0.0	0.0	
$[M]^{-1}[K]$	0.0	0.0)	0.0	-1296.3	2567.	3 –120	58.0	0.0	0.0	
	0.0	0.0		0.0	0.0	-1268.	0 252	29.0 –	1248.0	0.0	
	0.0	0.0		0.0	0.0	0.	0 -124	48.0	2406.4	-1068.7	
	0.0	0.0)	0.0	0.0	0.	0	0.0 -	1068.7	2402.2	

表 4.15: 以表 4.14 之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)
1	1.04	0.64
2	3.20	0.37
3	5.16	0.27
4	6.90	0.55
5	8.35	0.17
6	9.57	0.78
7	10.57	-0.09
8	11.26	0.29

表 4.16: 識別勁度折減鋼構之參數設定

n 值		142										
a 值	22.68	7.32	4.36	3.19	2.55	2.16	1.94	1.81				
對應頻率 (Hz)	1.0	3.1	5.2	7.1	8.9	10.5	11.7	12.5				
對應頻寬	0.9~	2.9~	4.9~	6.7~	8.4~	9.9~	11.0~	11.8~				
區間(Hz)	1.1	3.3	5.5	7.5	9.4	11.1	12.4	13.2				
取樣門檻	90%	90%	89%	52%	48%	49%	69%	59%				
取樣數	620	607	606	614	590	597	592	607				

表 4.17: 依表 4.16 之參數設定,識別勁度折減鋼構之識別結果 (a) $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ (b) 與原始鋼構識別之相對差異 (a)

矩陣				識別	結果			
		0.16 -0	0.06 -0.1	8 0.03	-0.06	0.10 0.1	1 - 0.27	
		-0.06	0.89 -0.1	4 -0.04	0.24	-0.18 -0.0	0.06	
		-0.18 -0	0.0	0.16	-0.29	0.30 -0.0	9 -0.20	
[N/]-1[C]	AN.	0.03 -0	0.04 0.1	6 -0.32	0.25	-0.31 0.2	4 -0.24	
$[M]^{-1}[C]$		-0.06	0.24 -0.29	9 0.25	-0.06	0.17 - 0.3	0.14	
	All	0.10 -0	0.18 0.30	0 -0.31	0.17 -	-0.02 0.1	6 -0.22	
		0.11 -(0.06 -0.09	9 0.24	-0.30	0.16 0.1	8 -0.15	
		-0.27	0.06 -0.2	0 -0.24	0.14	-0.22 -0.1	5 0.12	
	[1391.2	-1516.6	110.4	0.0	0.0	0.0	0.0	[0.0
	-1516.6	3120.3	-1689.0	102.2	0.0	0.0	0.0	0.0
	110.4	-1689.0	3119.4	-1659.3	108.2	0.0	0.0	0.0
гм1-1ги1	0.0	102.2	-1659.3	3109.3	-1653.3	103.8	0.0	0.0
$[M]^{-1}[K]$	0.0	0.0	108.2	-1653.3	3067.4	-1611.0	87.1	0.0
	0.0	0.0	0.0	103.8	-1611.0	2905.7	-1467.7	63.8
	0.0	0.0	0.0	0.0	87.1	-1467.7	2848.3	-1535.7
	0.0	0.0	0.0	0.0	0.0	63.8	-1535.7	2781.0

表 4.17 (續): 依表 4.16 之參數設定,,識別勁度折減鋼構之識別結果 (a) $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ (b) 與原始鋼構識別之相對差異 (b)

矩陣	相對差異(%)	
	$\begin{bmatrix} -146.5 & 20.1 & -60.2 & -108.9 & -160.5 & -138.6 & -49.0 & -34. \end{bmatrix}$	0]
	20.1 -65.3 -77.9 -103.6 -151.2 -122.3 -89.4 -92.	.3
	-60.2 -77.9 -100.2 -113.4 -132.9 -128.5 -110.7 -72.	.1
[DA] = 1 [G]	-108.9 -103.6 -113.4 -126.1 -119.2 -127.6 -128.8 -147.	6
$[M]^{-1}[C]$	-160.5 -151.2 -132.9 -119.2 -103.6 -113.5 -132.6 -122.	.1
	-138.6 -122.3 -128.5 -127.6 -113.5 -101.1 -115.3 -142.	9
	-49.0 -89.4 -110.7 -128.8 -132.6 -115.3 -81.7 $-56.$	6
	$\begin{bmatrix} -34.0 & -92.3 & -72.1 & -147.6 & -122.1 & -142.9 & -56.6 & -69. \end{bmatrix}$	9
	[-0.5 0.3 17.1	
34	0.3 0.6 2.4 21.5	
4	17.1 2.4 2.0 2.5 4.6	
CN 43 - 1 C 723	- 21.5 2.5 1.3 0.5 -10.1	
$[M]^{-1}[K]$	4.6 0.5 -0.2 -2.7 -34.8 -	
	10.1 -2.7 -7.2 -17.6 -75.6	
	34.8 -17.6 -13.1 -14.4	
	75.6 -14.4 -11.5	

表 4.18: 依表 4.17 之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ 所得之模態參數

模態	頻率(Hz)	阻尼比(%)
1	1.04	0.64
2	3.15	0.39
3	5.16	0.27
4	7.07	0.50
5	8.93	0.10
6	10.66	0.72
7	12.00	0.33
8	12.80	3.71

表 4.19: 識別原始鋼構子結構之參數設定

	n 值				1	42			
	a 值	22.68	7.32	4.36	3.19	2.55	2.16	1.94	1.81
	對應頻率 (Hz)	1.0	3.1	5.2	7.1	8.9	10.5	11.7	12.5
子結構	對應頻寬	0.9~	2.9~	4.9~	6.7~	8.4~	9.9~	11.0~	11.8~
樓層	(Hz)	1.1	3.3	5.5	7.5	9.4	11.1	12.4	13.2
0	取樣門檻	90%	93%	90%	65%	63%	61%	58%	45%
8	取樣數	662	645	662	657	643	618	612	655
7	取樣門檻	90%	91%	63%	78%	69%	67%	73%	60%
,	取樣數	662	643	652	619	658	636	631	598
	取樣門檻	90%	89%	91%	73%	54%	67%	59%	57%
6	取樣數	662	615	589	626	636	657	662	643
_	取樣門檻	90%	78%	91%	80%	63%	59%	57%	50%
5	取樣數	662	649	603	603	652	641	635	619
4	取樣門檻	90%	87%	90%	67%	53%	73%	60%	57%
	取樣數	663	632	643	639	646	647	641	655
3	取樣門檻	90%	91%	67%	65%	67%	59%	62%	56%
3	取樣數	663	590	603	622	639	637	632	612
2	取樣門檻	90%	93%	93%	81%	39%	67%	65%	61%
	取樣數	662	574	581	586	640	653	651	615
1	取樣門檻	90%	95%	90%	76%	59%	64%	51%	42%
1	取樣數	661	575	613	617	631	656	616	648
		11				B	-		

表 4. 20: 依表 4.19 之參數設定,識別原始鋼構子結構所得之 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$

子結構	矩陣					識別	結果				
8		[-0.3	-0.3	-0.7	0.0	0.0	0.0	0.0	0.0]
7		[0.6	1.5	-0.7	1.4	0.0	0.0	0.0	0.0]
6		[-0.2	-0.7	-0.4	0.7	-0.8	0.0	0.0	0.0]
5	[NA]-1[C]		0.0	0.1	-0.1	0.2	-0.3	0.1	0.0	0.0]
4	$[M]^{-1}[C]$	20	0.0	0.0	-0.1	0.1	0.2	-0.1	-0.1	0.0]
3	_	ш	0.0	0.0	0.0	0.1	-0.2	0.3	0.0	-0.2]
2		Ε	0.0	0.0	0.0	0.0	0.3	-0.5	0.5	-0.1]
1		[0.0	0.0	0.0	0.0	0.0	-0.4	0.5	-0.2]
8	7/	[1456.9	-1616.9	141.0	0.0	0.0	0.0	0.0	0.0]
7		[-1436.2	2944.3	-1532.6	45.4	0.0	0.0	0.0	0.0]
6	3/ V	[80.3	-1616.1	3031.3	-1603.9	94.5	0.0	0.0	0.0]
5	$[M]^{-1}[K]$	[0.0	90.7	-1612.2	3043.4	-1610.1	88.0	0.0	0.0]
4		[0.0	0.0	103.9	-1613.7	3005.4	-1585.5	87.1	0.0]
3		[0.0	0.0	0.0	122.7	-1648.4	3049.6	-1601.0	63.1]
2		[0.0	0.0	0.0	0.0	93.2	-1612.7	3021.6	-1618.2	2]
1		[0.0	0.0	0.0	0.0	0.0	289.1	-1860.5	3193.6]

表 4.21: 識別勁度折減鋼構子結構之參數設定

	n 值				1	42			
	a值	22.68	7.32	4.36	3.19	2.55	2.16	1.94	1.81
	對應頻率 (Hz)	1.0	3.1	5.2	7.1	8.9	10.5	11.7	12.5
子結構樓	對應頻寬	0.9~	2.9~	4.9~	6.7~	8.4~	9.9~	11.0~	11.8~
層	(Hz)	1.1	3.3	5.5	7.5	9.4	11.1	12.4	13.2
0	取樣門檻	90%	90%	89%	52%	48%	49%	69%	59%
8	取樣數	620	607	606	614	590	597	592	607
7	取樣門檻	90%	88%	85%	60%	48%	62%	59%	65%
,	取樣數	620	612	584	618	618	611	611	600
6	取樣門檻	90%	85%	85%	60%	39%	63%	69%	71%
0	取樣數	620	616	596	604	609	619	611	594
-	取樣門檻	90%	79%	85%	67%	52%	46%	65%	61%
5	取樣數	621	603	610	604	582	592	619	595
4	取樣門檻	90%	87%	85%	53%	52%	67%	72%	58%
	取樣數	622	593	618	615	612	562	612	592
3	取樣門檻	90%	90%	85%	51%	53%	67%	69%	55%
3 150	取樣數	623	568	569	622	611	621	593	606
2	取樣門檻	90%	93%	90%	57%	39%	55%	63%	63%
	取樣數	625	586	605	613	609	598	611	618
1	取樣門檻	90%	95%	89%	64%	59%	63%	67%	54%
1	取樣數	629	605	618	617	617	602	617	582
		11				IB	-		

表 4.22:以表 4.21之參數設定,識別勁度折減鋼構子結構之識別結果 (a)子結構 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ (b) 與原始鋼構子結構識別之相對差異 (a)

子結構	Lor Italia					ا.ت الدر	从田				
樓層	矩陣					識別	結果				
8		[0.5	-0.7	0.2	0.0	0.0	0.0	0.0	0.0]
7		[0.2	0.3	0.3	0.0	0.0	0.0	0.0	0.0]
6		[-0.2	-0.3	0.2	0.0	0.0	0.0	0.0	0.0]
5	[NA] = 1 [C]	[0.0	0.0	-0.2	0.4	-0.4	0.1	0.0	0.0]
4	$[M]^{-1}[C]$	[0.0	0.0	-0.2	0.3	0.1	-0.1	-0.1	0.0]
3	~]	0.0	0.0	0.0	0.1	-0.1	0.1	0.1	-0.1]
2		[0.0	0.0	0.0	0.0	0.2	-0.2	0.2	0.2]
1		[0.0	0.0	0.0	0.0	0.0	-1.6	1.3	-0.6]
8	4//	[1437.6	-1604.3	152.0	0.0	0.0	0.0	0.0	0.0]
7	4//]	-1458.6	2997.2	-1600.0	77.0	0.0	0.0	0.0	0.0]
6		[63.2	-1581.1	3026.5	-1612.1	92.4	0.0	0.0	0.0]
5	[[]]]	0.0	81.1	-1587.7	3019.4	-1596.3	83.3	0.0	0.0]
4	$[M]^{-1}[K]$	[0.0	0.0	115.9	-1646.0	3039.2	-1590.3	73.7	0.0]
3]	0.0	0.0	0.0	142.0	-1683.6	2954.4	-1489.5	66.0]
2		[0.0	0.0	0.0	0.0	114.0	-1513.2	2864.3	-1534.8	3]
1	41	[0.0	0.0	0.0	0.0	0.0	49.3	-1487.4	2729.9]

表 4.22 (續):以表 4.21 之參數設定,識別勁度折減鋼構子結構之識別結果

(a) 子結構 $[M]^{-1}[C]$ 及 $[M]^{-1}[K]$ (b) 與原始鋼構子結構識別之相對差異 (b)

					(0)						
子結構	矩陣					相對差	異(%)				
1 3 7 8		[-244.7	160.1	-123.8	-	_	_	-	_]
7		 [-74.4	-79.8	-141.2	-102.6	-	-	-	-]
6		[-27.5	-62.8	-146.1	-98.9	-102.3	_	-	_]
5	5. 5. 15.63	1	1	-140.4	36.7	88.7	42.5	39.5	-	-]
4	$[M]^{-1}[\mathcal{C}]$	1	1	-	31.7	180.8	-41.7	10.8	-41.8	-]
3	5/	[-	- 1		-35.2	-56.7	-47.7	105.4	-49.7]
2]	5.	-	_		-43.6	-51.3	-69.1	-271.1]
1 🕌	3//]	-	=-	3	6 1	-	284.5	153.0	223.2]
8		[-1.3	-0.8	7.8	2		A	VE	B .]
7		[1.6	1.8	4.4	69.4		- 59	1	-]
6		[-21.3	-2.2	-0.2	0.5	-2.2	-0	1-10	-]
5	$[M]^{-1}[K]$	[-	-10.5	-1.5	-0.8	-0.9	-5.3	HE	-]
4	[1,1]	[13	11.5	2.0	1.1	0.3	-15.3	-]
3	41]		7	_	15.8	2.1	-3.1	-7.0	4.7]
2		[1-1	(-	5-1	0	22.4	-6.2	-5.2	-5.2]
1		[/-	-		0	-83.0	-20.1	-14.5]
		P	-				1		1		
	1							6	W/_		
		1	17				TB	-			
			4			I W A	1 -				
				-							

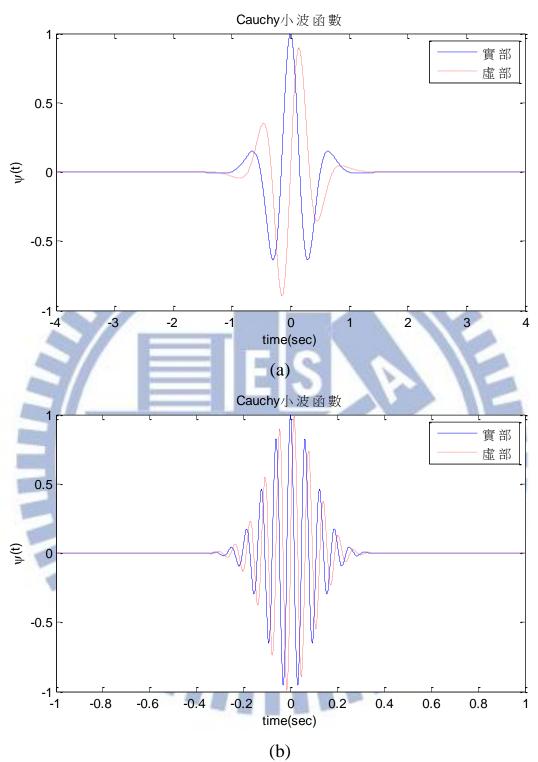


圖 2.1:時間域之 Cauchy 小波函數 (a) n=9 (b) n=100

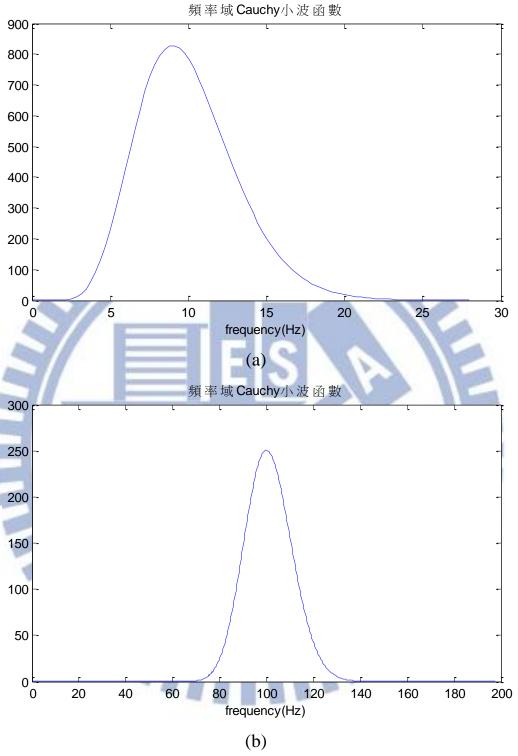


圖 2.2: 頻率域之 Cauchy 小波函數 (a) n=9 (b) n=100

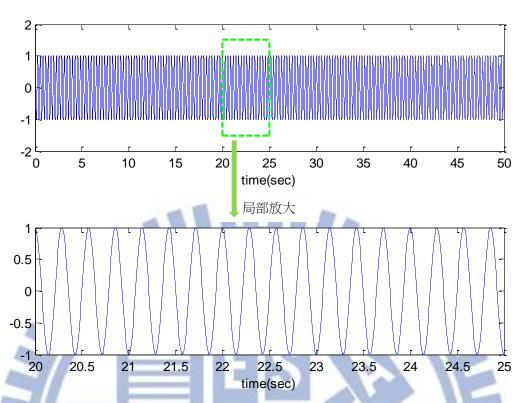
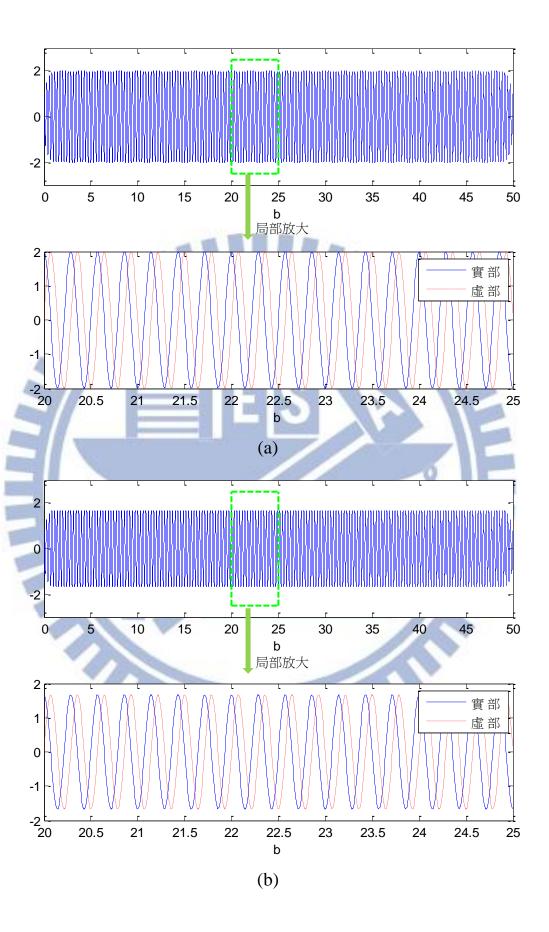



圖 3.1: 餘弦函數訊號歷時

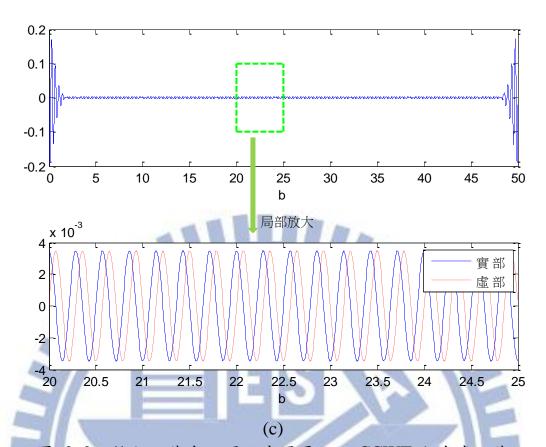


圖 3.2: 餘弦訊號在不同尺度因子 a 之 CCWT 小波域訊號 (a)a=4.57(小波頻寬包含頻率 3.5Hz) (b)a=4.847(小波頻寬包含頻率 3.5Hz) (c)a=6.398(小波頻寬不包含頻率 3.5Hz)

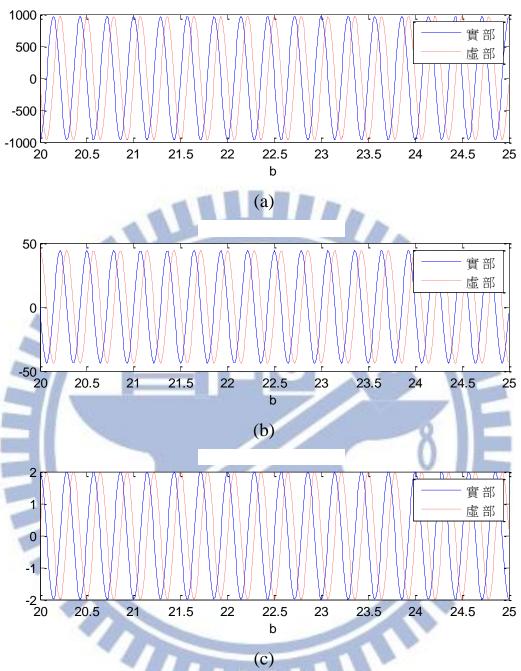


圖 3.3: 反應訊號之 CCWT 小波域訊號 (a)加速度反應 (b)速度反應 (c)位移反應

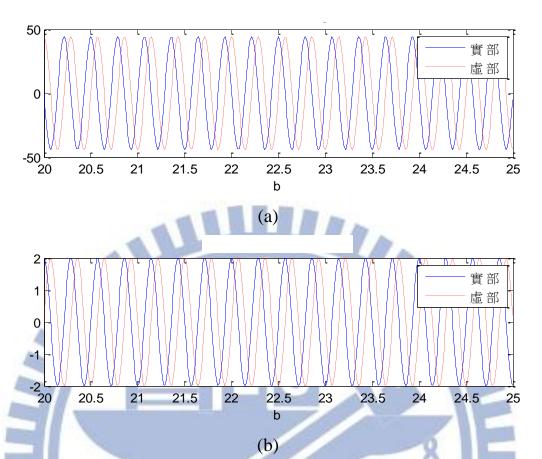


圖 3.4:由小波域之加速度訊號轉換為小波域之速度與位移訊號 (a)速度 (b)位移

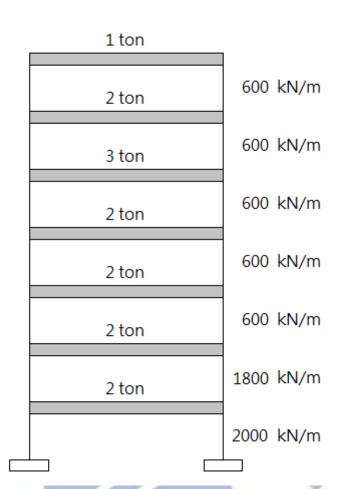


圖 3.5:七層樓剪力構架模型

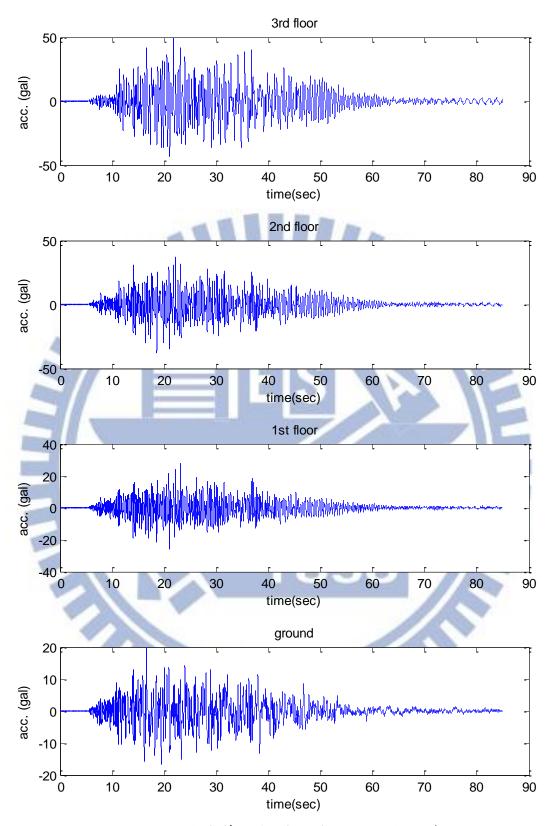


圖 3.6:七層樓剪力架構各樓層加速度歷時反應

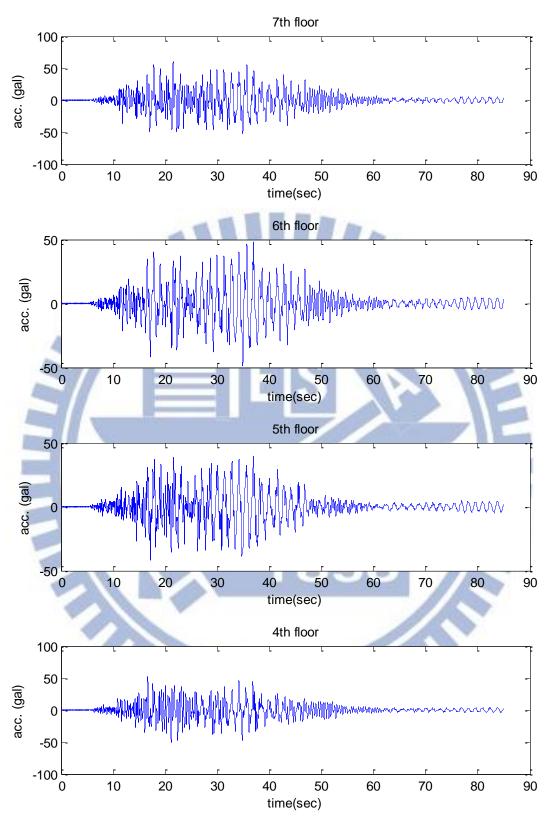


圖 3.6(續):七層樓剪力架構各樓層加速度歷時反應

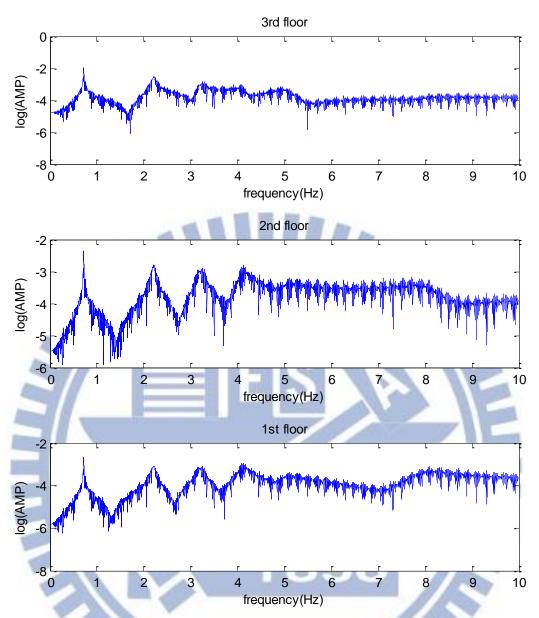


圖 3.7:七層樓剪力架構各樓層頻譜圖

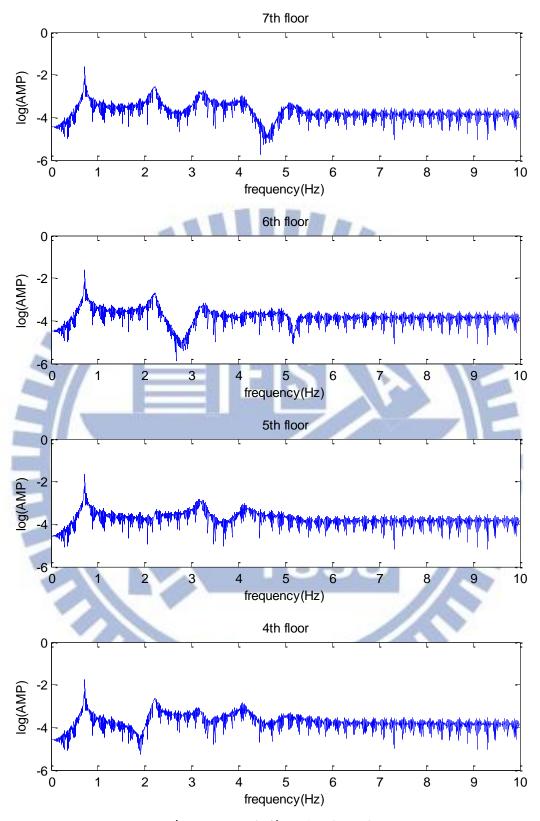


圖 3.7(續):七層樓剪力架構各樓層頻譜圖

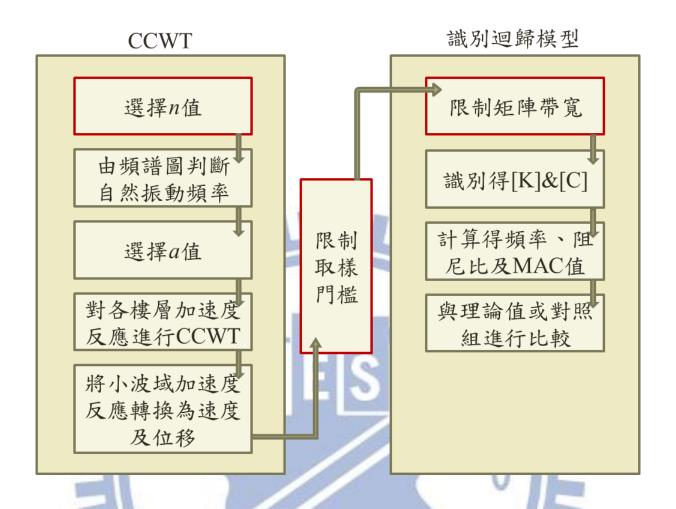


圖 3.8: 數值模擬反應之識別流程

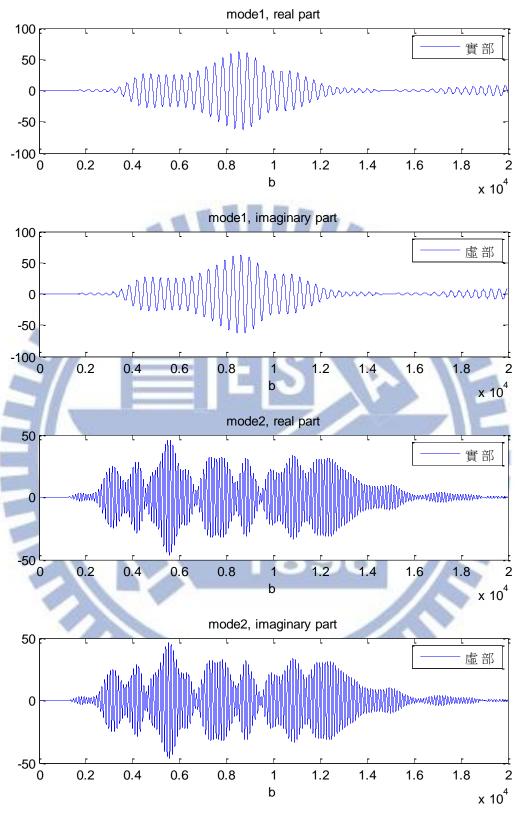


圖 3.9:以對應各模態頻率之 a,對第七層樓加速度反應訊號進行 n=100 之 CCWT 小波域反應

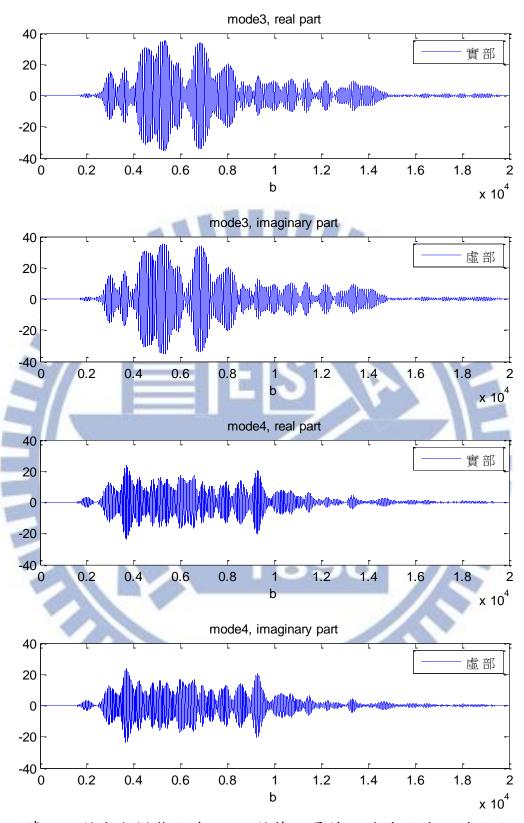


圖 3.9(續):以對應各模態頻率之 a,對第七層樓加速度反應訊號進行 n=100 之 CCWT 小波域反應

圖 3.9(續):以對應各模態頻率之 a,對第七層樓加速度反應訊號進行 n=100 之 CCWT 小波域反應

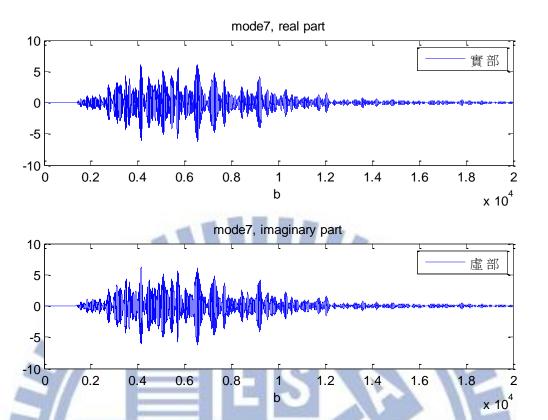


圖 3.9(續):以對應各模態頻率之 a,對第七層樓加速度反應訊號進行 n=100 之 CCWT 小波域反應

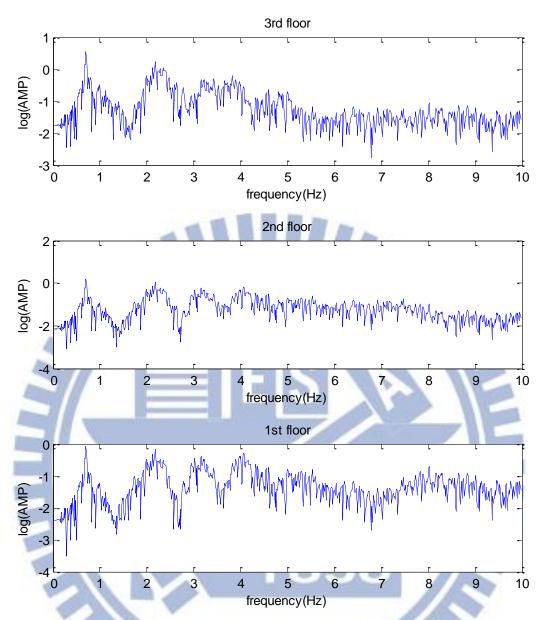


圖 3.10:第一樓層柱勁度折減 25%案例之各樓層頻譜圖

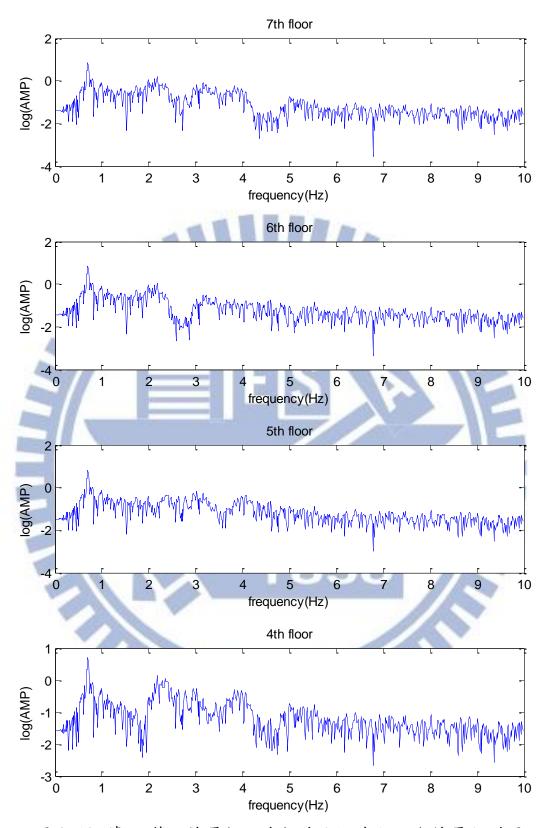


圖 3.10(續):第一樓層柱勁度折減 25%案例之各樓層頻譜圖

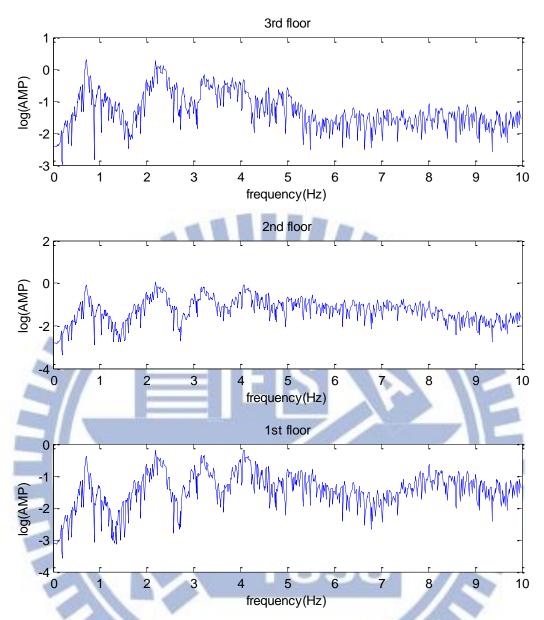


圖 3.11: 第一樓層柱勁度折減 10%案例之各樓層頻譜圖

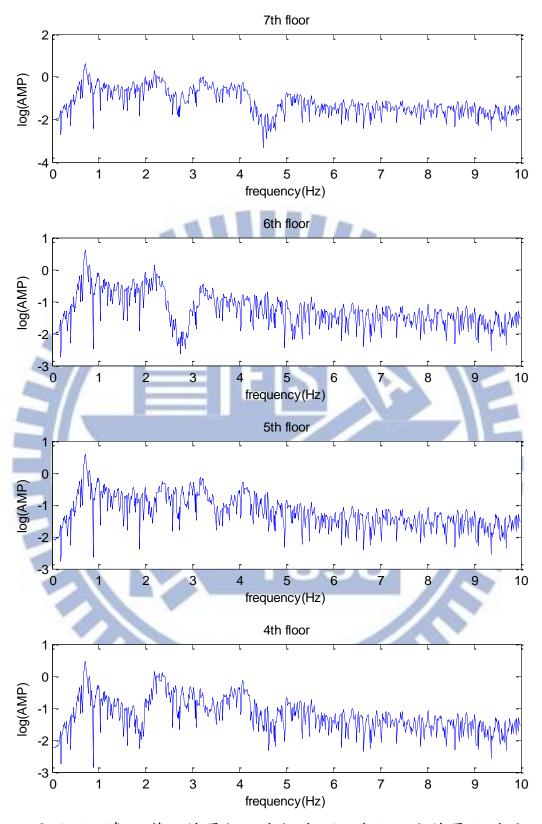


圖 3.11(續):第一樓層柱勁度折減 10%案例之各樓層頻譜圖

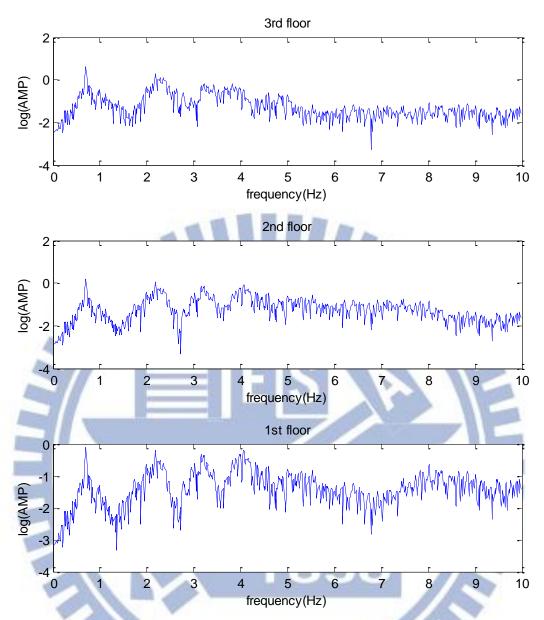


圖 3.12:第一、三樓層柱勁度折減 10%案例之各樓層頻譜圖

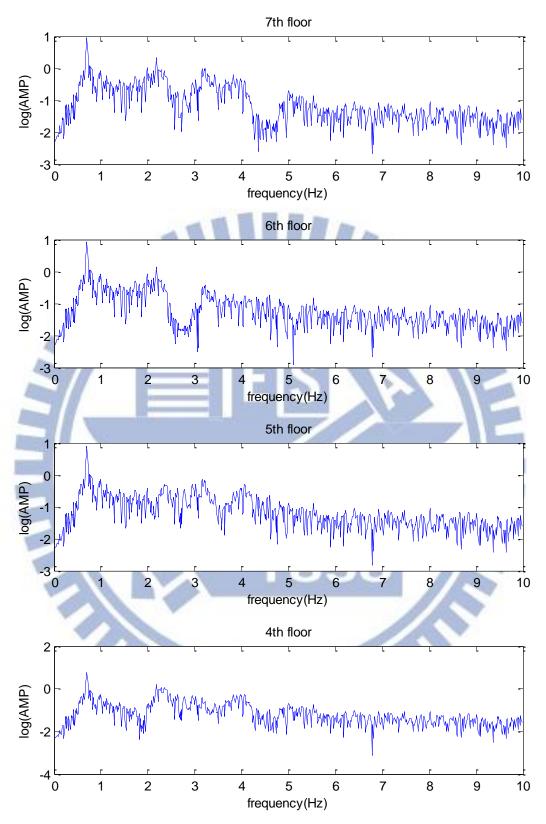


圖 3.12(續):第一、三樓層柱勁度折減 10%案例之各樓層頻譜圖

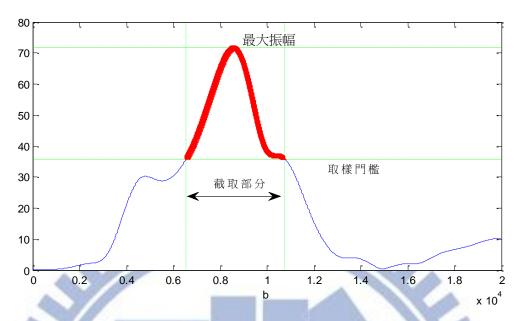


圖 3.13:取樣門檻示意圖

圖 4.1:八層樓鋼構架振動台試驗

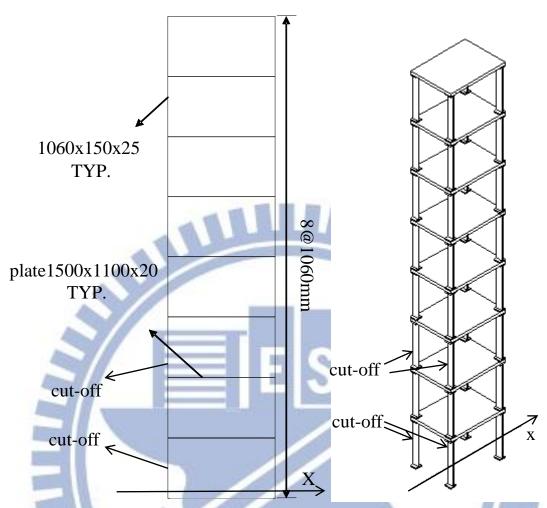


圖 4.2:鋼柱切削部位及振動 X 方向示意圖

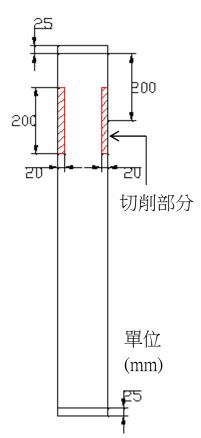


圖 4.3:經切削處理之鋼板支柱

圖 4.4:八層樓鋼構加速度歷時

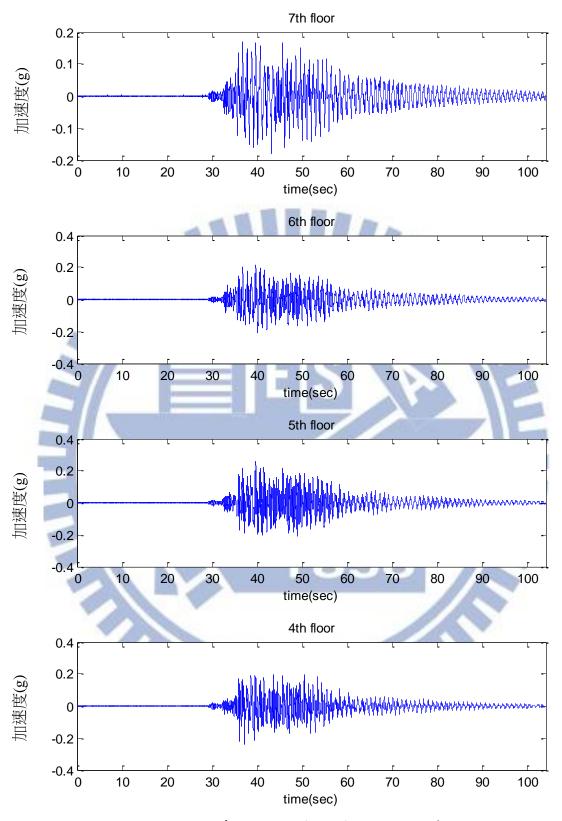


圖 4.4(續):八層樓鋼構加速度歷時

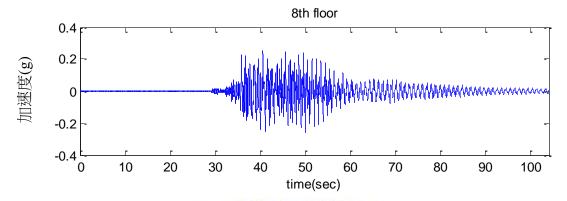


圖 4.4(續):八層樓鋼構加速度歷時

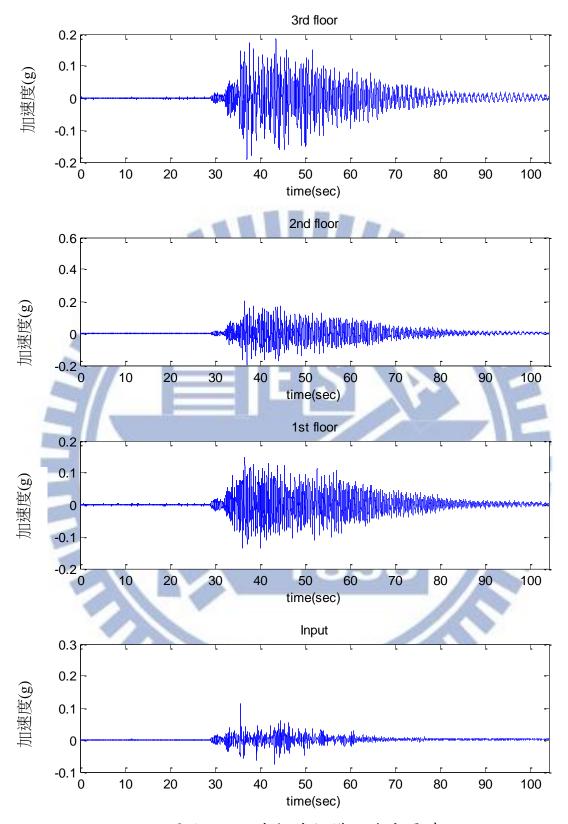


圖 4.5: 勁度折減鋼構加速度歷時

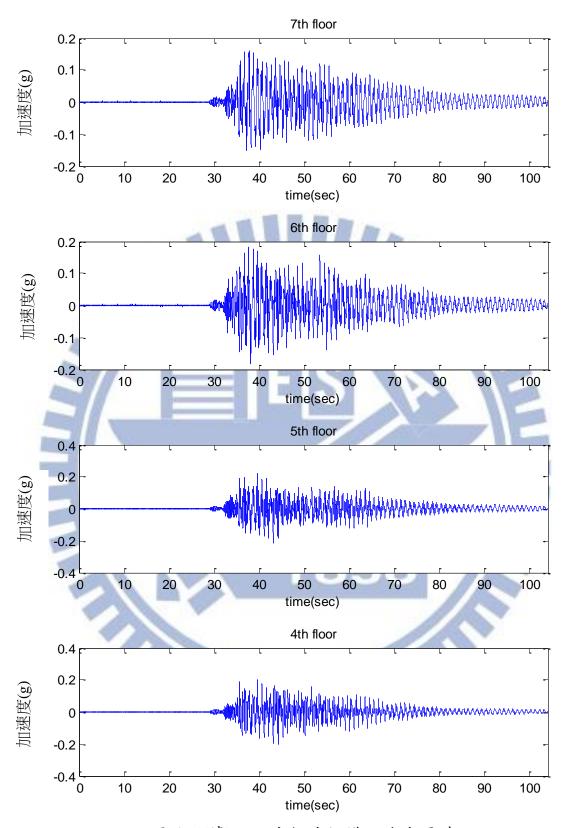


圖 4.5(續):勁度折減鋼構加速度歷時

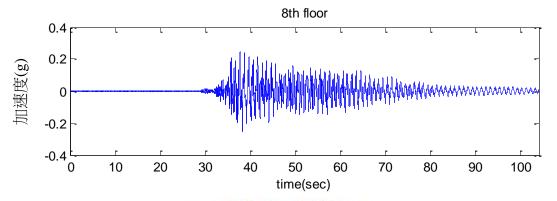
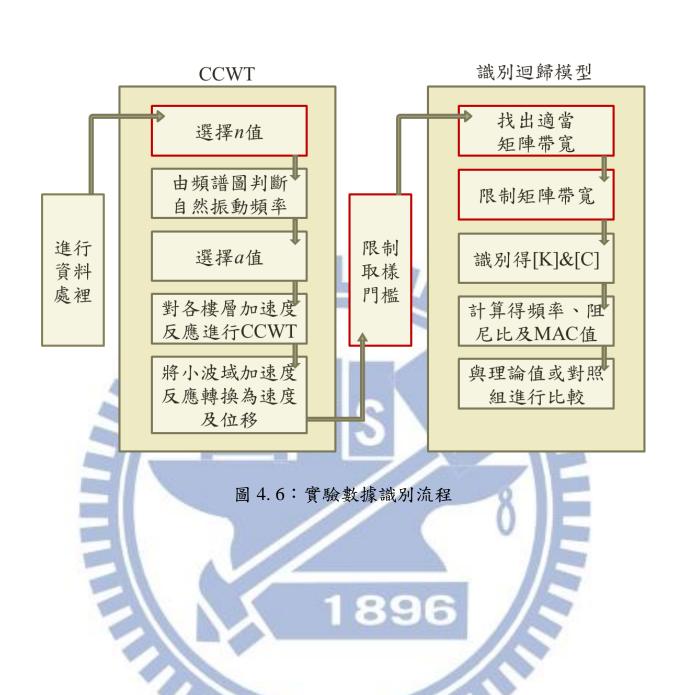



圖 4.5(續): 勁度折減鋼構加速度歷時

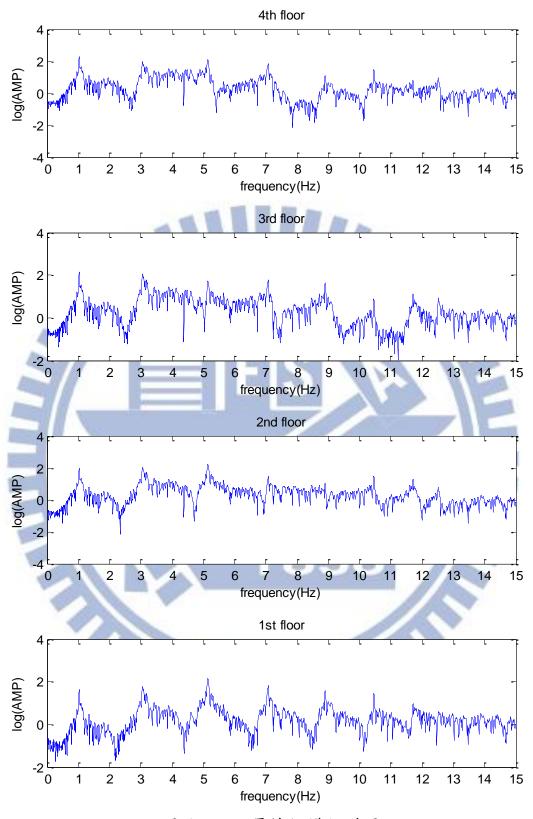


圖 4.7:八層樓鋼構頻譜圖

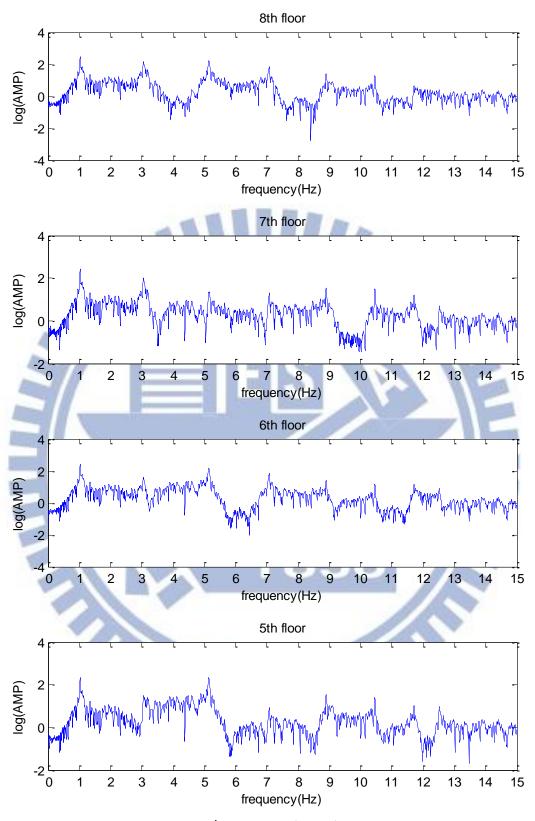


圖 4.7(續):八層樓鋼構頻譜圖

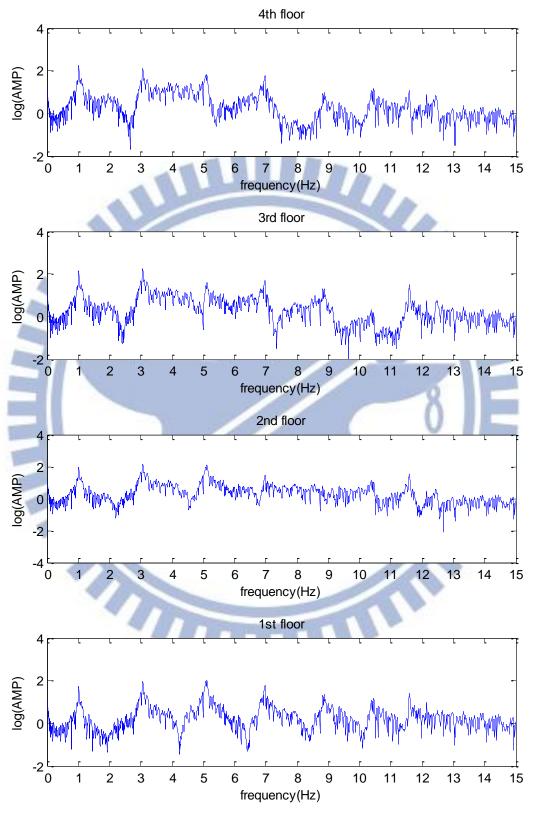


圖 4.8: 勁度折減鋼構頻譜圖

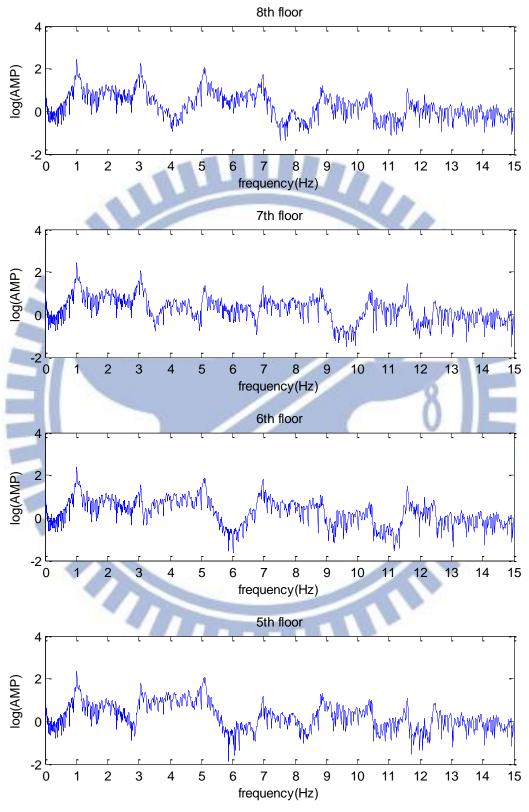


圖 4.8(續):勁度折減鋼構頻譜圖

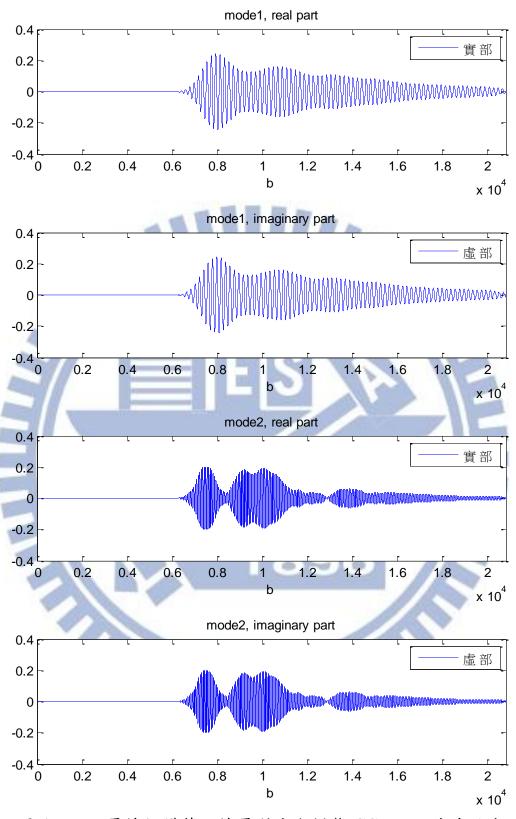


圖 4.9:八層樓鋼構第八樓層對應各模態 CCWT 小波域反應

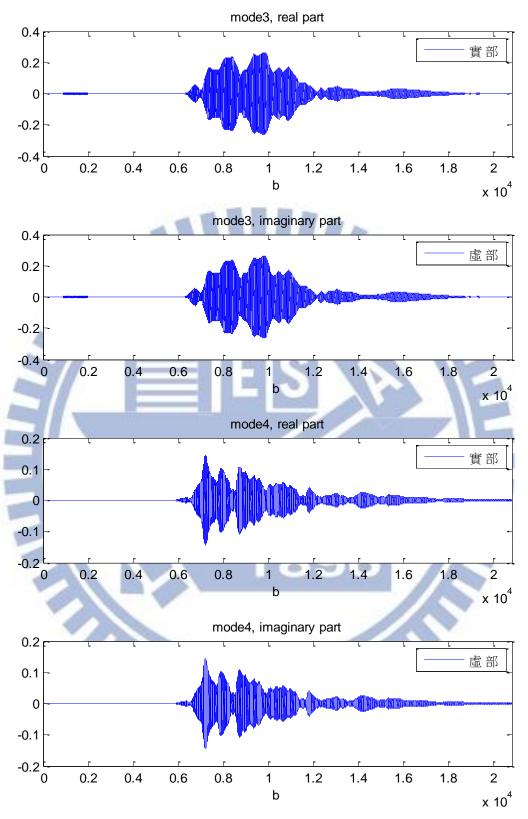


圖 4.9(續):八層樓鋼構第八樓層對應各模態 CCWT 小波域反應

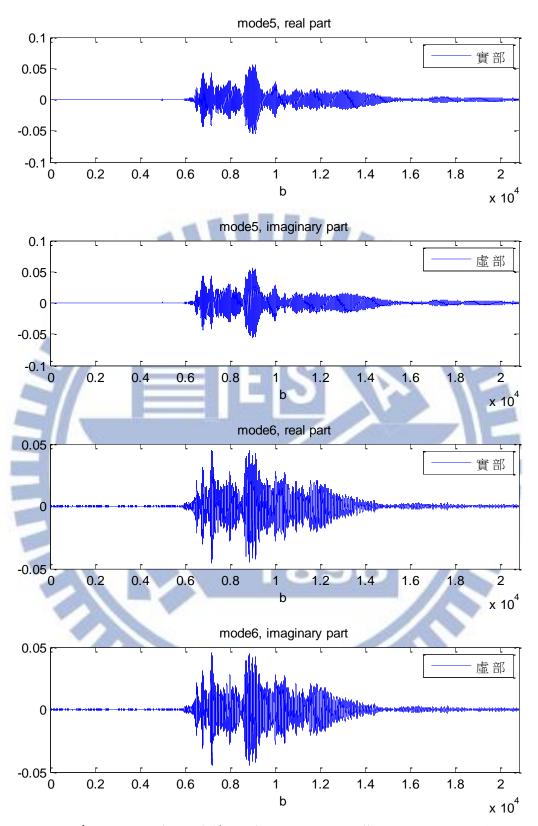


圖 4.9(續):八層樓鋼構第八樓層對應各模態 CCWT 小波域反應

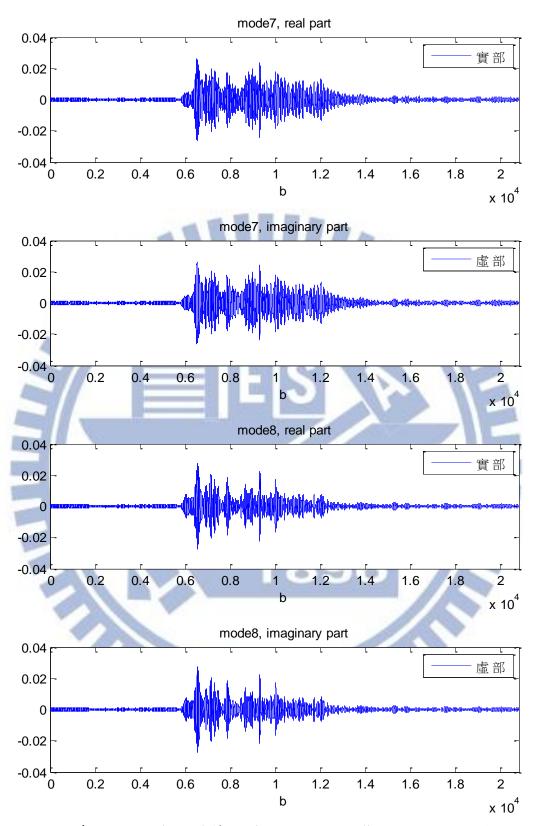


圖 4.9(續): 八層樓鋼構第八樓層對應各模態 CCWT 小波域反應