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Student: Chih-Chi Tsai
Advisor: Prof. Ming-Hsuan Kang

Department of Applied Mathematics

National Chiao Tung University

Abstract
The goal of this paper is to discuss the classical isospectral problem in graph theory
for a particular type of graphs. We focus on finite regular simplicial tori arising
from the Bruhat-Tits building of PGL3(Q1) and study which kinds of simplicial
tori can be uniquely determined by their spectra via graph zeta functions.
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單形環面上的等譜問題

學生：蔡志奇
指導教授：康明軒教授

國立交通大學應用數學研究所碩士班

摘要
這篇論文主要是討論特定圖型的等譜性這個古老的圖論問題。其中,
我們將目標放在從 PGL(Q1) 的 Bruhat-Tits 結構得到的單形環面，
並從他們的 zeta 函數中所得的譜來討論哪些單形環面可以被他們的
譜所決定。
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1. Introduction

The graph zeta function is a geodesic counting function on a finite graph which
was first introduced by Ihara [YI96]. Ihara’s original zeta function is defined on a
discrete torsion-free co-compact subgroup Γ of PGL2(Qp) and later Serre [JPS03]
reformulates it as a function on the graph obtained from the building of PGL2(Qp)
quotient by Γ. The building B1 of PGL2(Qp) is a (p+1)-regular tree whose vertices
are left PGL2(Zp)-cosets and the adjacency operator is the Hecke operator

A = PGL2(Zp)

(
1 0

0 p

)
PGL2(Zp).

The group PGL2(Qp) acts on the tree B1 by left multiplication. For a torsion-free
discrete co-compact subgroup Γ of PGL2(Qp), the quotient Γ\B1 is a (p+1)-regular
graph.

For PGLn(Qp), its building Bn−1 is a (n − 1)-dimensional simplicial complex.
Similar to PGL2(Qp), for a torsion-free discrete co-compact subgroup Γ of PGLn(Qp),
Γ\Bn−1 is a finite complex.

One can also consider that the case that when p = 1, so that the residue field is
the field with one element. In this case, the building of PGLn(Q1) becomes a single
apartment and the torsion-free discrete co-compact subgroup Γ is a free abelian
group of rank n − 1. Especially, when n = 3, the building B2 of PGL3(Q1) is a
simplicial euclidean plane.

.. (0,0). (1,0).

(0,1)

.

(-1,-1)

Figure 1: The building of PGL3(Q1)

The 1-skeleton of B2 can be described as a Cayley graph on Z2 with the generated
set S = {(±1, 0), (0,±1),±(1, 1)} shown in Figure 1.

The spectrum of a graph is the set of eigenvalues of the adjacency matrix and
two graphs are isospectral if they have the same spectrum. Moreover, two graphs
are isospectral if they have the same zeta function ( see section 3 ), so there are
many non-isomorphic graphs with the same zeta function.

In this thesis, we would like to study if a finite quotient X of B2 (which is a torus)
can be uniquely determined by its graph zeta function ZX(u) (up to isomorphism).

Let Kn be the collection of complete representatives of isomorphic classes of
finite quotients of B2 with n vertices. Consider the two numbers T1(n) = |Kn| and
T2(n) = |{ZX(u), X ∈ Kn}|.
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By straightforward computation (using Matheamtica), we have the following re-
sult

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1(n) 1 2 3 2 3 3 5 4 4 3 8 4 5 6 9 4 8 5 10
T2(n) 1 2 2 2 3 3 4 4 4 3 7 4 5 6 8 4 8 5 9

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
T1(n) 8 7 5 15 7 8 9 13 6 14 7 15 10 10 10 20 8
T2(n) 8 7 5 14 7 8 9 12 6 14 7 14 10 10 10 19 8

n 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
T1(n) 11 12 20 9 18 9 17 16 13 9 28 12 17 14 20 10 22
T2(n) 11 12 19 9 18 9 16 16 13 9 27 12 17 14 19 10 22

From the above, we have the following conjectures on T1(n) and T2(n):
(1) T1(p) = [p+11

6 ], where p is an odd prime.
(2) T2(n) = T1(n)− δ where δ is equal to 1 if 4|n and equal to zero otherwise.

The rest of the thesis is organized as follows. In the Section two and three, we
review some basic concepts in graph theory and introduce graph zeta functions. In
Section four and five, we describe the group PGL3(Q1) and it’s building explicitly.
In the end, we prove (1) and a part of (2) of the conjecture.

2. Ihara zeta function

A graph X = (V,E) is an ordered pair where V is the set whose elements are
called the vertices of X; E is a multi-subset of V × V , which elements are called
the oriented edges of X. Moreover, if (u, v) is an element of E, so is (v, u) and their
multiplicities must be the same.

For a oriented edge e = (v1, v2), v1 is called the starting point of e, denoted by
o(e); v1 is called the end point of e, denoted by t(e). A walk C on X is a sequence
of oriented edges

C = (e1, e2, . . . , en)

satisfying t(ei) = o(ei+1) for all i = 1 to n − 1. Here n is called the length of C,
denoted by l(C). C has a backtrack if o(ei) = t(ei+1) for some i. C is closed if
o(e1) = t(en). When C is closed, we say C has a tail if t(e1) = o(en). Two closed
walks are equivalent if one can be obtained from the other by cyclically permuting
its sequence of edges. Denote the equivalence class of C by [C]. We denote by Cj

the multiple of the closed walk C with j times. A closed walk is called prime if it
is non-backtracking, tailless and is not a multiple of other shorter closed walk.

We denote d(v) by the number of oriented edges e with o(e) = v. Furthermore,
we say X is regular if d(v) are the same for all v ∈ V .

The adjacency matrix A of X is a matrix whose rows and columns are indexing
by vertices. The (v, v′)-entry of A is the number of oriented edges from v to v′.
Note that the trace of An is the number of closed walks of X of length n.
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Definition 2.1. The Ihara zeta function for X is defined to be the following function
of complex number u, with |u| sufficiently small:

ZX(u) =
∏
[P ]

(1− uℓ(P ))−1

where the product is over all primes [P ] in X.
Based on Ihara’s work [YI96], Bass [BH92] prove the following theorem .

Theorem 2.1. Let X be a finite (q + 1)-regular graph. The following identities
hold

ZX(u) = exp(
∞∑

n=1

Nn

n
un) =

1

(1− u2)|E|/2−|V | det(I −Au+ qu2)
,

where Nn is the number of non-backtracking and tailless cycles of length n; |V | is
the number of vertices of X; |E|/2 is the number of non-oriented edges of X.
Corollary 2.1. The following features of the graph X are uniquely determined by
its zeta function:

(1) The number of vertices |V |.
(2) The number of closed walks of length n in X for all n.

Proof. (1) is followed by that the degree of Z−1
X (u) = |E| = (q+1)|V |. For (2), the

number of the closed walks of X of length n equals to the trace of An, which is the
sum of n-th power of eigenvalues of A. On the other hand, the spectrum of A can
be determined by the zeta function from the above theorem.

�

3. Field with one element and 1-adic field

In the coming two sections, we call the definition of the field with one element
F1 and the building of PGLn over 1-padic field from [DK13]. The field with one
element, denoted by F1 = {π̄}, is a suggestive name for an object that should
behave similarly to a finite field with a single element, if such a field could exist.
The only operator on F1 is multiplication so that π̄ · π̄ = π̄.

Now we consider the 1-adic field Q1 = {πi, i ∈ Z} so that F1 is the residue field
of Q1 and the ring of integer for Q1 is Z1 = {πi, i ≥ 0}. Since there is no addition,
the n-dimension space over Q1 is defined as

Qn
1 = Q1

⨿
Q1

⨿
. . .
⨿

Q1 = {πi
j , j = 1, 2, . . . , n, i ∈ Z}.

The group of automorphisms of Qn
1 , denoted by GLn(Q1), consists of all bijec-

tions f on Qn
1 so that f(πx) = πf(x), ∀x ∈ Qn

1 . Moreover, the group PGLn(Q1) is
the quotient of GLn(Q1) by its center.
Theorem 3.1. GLn(Q1) ∼= Zn o Sn, where the semi-direct product is given by the
natural permutation of Sn on n-coordinates of Zn.
Proof. For f ∈ GL(Qn

1 ), write f(π0
j ) = π

aσ(j)

σ(j) for some σ ∈ Sn, aσ(j) ∈ Z and
j = 1, 2, . . . , n. Note that f is uniquely determined by the permutation σ and
n-tuple of integers aσ(j).

Let ϕ : GLn(Q1) → ZnoSn given by f 7→ ((a1, a2, . . . , an), σ) which is bijective.
Now for f1, f2 ∈ GLn(Q1),

f1 ◦ f2(π0
j ) = f1(π

bσ2(j)

σ2(j)
) = πbσ2(j)f1(π

0
σ2(j)

) = π
aσ1σ2(j)+bσ2(j)

σ1σ2(j)
,
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so
ϕ(f1 ◦ f2) =

(
(a1 + bσ−1

1 (1), a2 + bσ−1
1 (2), . . . , an + bσ−1

1 (n), σ1σ2

)
.

On the other hand,
ϕ(f1) · ϕ(f2) = ((a1, a2, . . . , an), σ1) · ((b1, b2, . . . , bn), σ2)

= ((a1 + bσ−1
1 (1), a2 + bσ−1

1 (2), . . . , an + bσ−1
1 (n)), σ1σ2).

Therefore, ϕ is a group isomorphism. �

Immediately, we have

Corollary 3.1. PGLn(Q1) ∼= Zn−1 o Sn.

Remark: In the theory of the field with one element, PGLn(F1) is the group
Sn, which is the Weyl group of GL(Fp). Here a similar phenomenon is occurred, so
that PGLn(Q1) is isomorphic to the affine Weyl group of PGLn(Qp). [KLW10]

4. The building of PGL3(Q1)

Let Z1 be the ring of integer of Q1. A lattice L of rank 3 in Q3
1 is Z1-invariant

subset so that Q1L = Q3
1. This implies that the lattice L = {πi

j , j = 1, 2, 3, i ≥ aj}
for some unique a1, a2, a3 ∈ Z. Denote L by (a1, a2, a3), then we identify lattices
in Q3

1 with Z3.
The equivalence classes of L is

[L] = {αL, α ∈ Q1} = {(a1 + k, a2 + k, a3 + k), k ∈ Z}

and denoted by [a1, a2, a3], which is an element in Z3/Z(1, 1, 1).
The building B2 of PGL3(Q1) is a 2-dimensional simplicial complex as follows.

As an abstract complex, its vertices are equivalence classes of lattices [L]; three
vertices [L0], [L1], [L2] form a 2-simplex if there is a representative

L0 ⊇ L1 ⊇ L2 ⊇ πL0.

( The detail can be seen in [BH92], [KLW10] and [JPS03]. )
Moreover, for L = (a1, a2, a3), the adjacency vertices of [L] are {[L′] with L′ =

(a1 + b1, a2 + b2, a3 + b3) where bi ∈ {0, 1} and
∑
bi = 1 or 2. We define the i-th

adjacency operator (which index is labelled by vertices of the building).

Ai[L][L′] =


1 if [L] = [a1, a2, a3] and [L′] = [a1 + b1, a2 + b2, a3 + b3]

for some bi ∈ {0, 1},
∑
bi = i

0 otherwise.

Note that A1 + A2 is the adjacency operator of the underlying graph (1-skeleton)
of B2. Observe that the set Z3/Z(1, 1, 1) has a canonical additive structure, which
is a free abelian group generated by e1 = [1, 0, 0] and e2 = [0, 1, 0]. In this case, the
vertices of B2 are elements in Z2 = Ze1 ⊕ Ze2 and the underlying graph of B2 is
the Cayley graph on Z2 with the generating set S = {(±1, 0), (0,±1),±(1, 1)}.

The underlying space of the whole building B2 is Z2⊗R = R2 endowed an inner
product characterized by

⟨ei, ej⟩ =

{
1 if i = j

− 1
2 otherwise.
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Moreover, PGL3(Q1) ∼= Z2oS3 acts on B2 as isometries as follows. With respect
to the basis e1 and e2, the subgroup S3 is generated by the reflection τ = [ 0 1

1 0 ] and
the rotation σ =

[−1 1
−1 0

]
. The group Z2 consists of translations so that for (a, b) ∈ Z2

and (x, y) ∈ R2, (a, b) maps (x, y) to (x+ a, y + b). Especially, the geometric of B2

is relatively to Figure 1.

5. Simplicial tori and their isomorphism classes

Let Γ be a finite index subgroup of Z2, so that the quotient XΓ of B2 by Γ is a
simplicial torus which is locally isometric to B2.

Now, the vertices of XΓ are Γ−cosets in Z2 and its 1-skeleton is the Cayley group
on Z2/Γ with the same generating set S modulo Γ. By abuse of notation, we still
denote S modulo Γ by S.

Two simplicial tori XΓ and XΓ′ are called isomorphic, if there is an isometric
simplicial isomorphism ρ between them. It is clear that the group of automorphisms
of XΓ acts transitively on vertices, so we may assume that ρ maps the vertex Γ to
the vertex Γ′. On the other hand, since B2 is simply connected, there is a unique
lifting ρ̃ so that ρ̃(0, 0) = (0, 0) and the following diagram commute.

..B2

. B2

.

XΓ

.

XΓ′

.

mod Γ

. ρ̃.

mod Γ′

.

ρ

Since the two quotient maps and ρ are locally isometric simplicial maps so is ρ̃. We
conclude that ρ̃ is a linear isometry on B2 which maps Γ to Γ′. All linear isometries
on B2 forms the dihedral group D6 with the center Z(D6) = {I2,−I2}. We can
factor D6 as a product of S3 and Z(D6) where S3 is the symmetric group on 3
letters consisting the following elements

{I2,
[
0 −1
1 −1

]
,
[−1 1
−1 0

]
,
[
1 −1
0 −1

]
,
[−1 0
−1 1

]
, [ 0 1

1 0 ]}.
Since Z(D6) fixes any translation subgroup Γ, we conclude that

Theorem 5.1. Two simplicial tori XΓ and XΓ′ are isomorphic if and only if
g(Γ) = Γ′ for some g ∈ S3.

Now we are able to compute the number of isomorphic classes of simplicial tori
of size n. Let Λn be set of all index n subgroup of Z2, then the group S3 defined
above acts on Λn canonically. From the above theorem, we have

T1(n) = # of isomorphic classes of finite quotients of B2 with n vertices.
= # S3-orbit of Λn.

Let τ = [ 0 1
1 0 ] be a reflection and σ =

[−1 1
−1 0

]
be a rotation in S3. Note that there

are three reflections in τ conjugate to S3 and two nontrivial rotations conjugate to
σ. By Burnside’s lemma

(1) # S3-orbit of Λn =
1

6
(|Λn|+ 2|Λσ

n|+ 3|Λτ
n|).

Here Λg
n is a subset of Λn fixed by g.
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6. Main Theorem

Recall the conjecture in Section one: let Kn be the collection of complete repre-
sentatives of isomorphic classes of finite quotients of Cayley(Z2, S) with n vertices.
Let T1(n) = |Kn| and T2(n) = |ZX(u), X ∈ Kn|, then
(1) T1(p) = [n+11

6 ] where p is an odd prime.
(2) T2(n) = T1(n)− δ , where δ is equal to 1 if 4|n and equal to zero otherwise.

Note that every group N in Λn contains (nZ)2. Denote by Λcyc
n the set of all

index n subgroups N of Z2 with N/(nZ)2 being cyclic. Furthermore, S3 maps Λcyc
n

onto Λcyc
n . For g ∈ S3, denote by Λcyc,g

n the subset of Λcyc
n fixed by g. Then, we

have the following lemma.

Lemma 6.1. For a prime p, |Λpk | =
[ k2 ]∑
t=0

|Λcyc
pk−2t |.

Proof. For m|n, let
Λn,m = {N ∈ Λn, N/(nZ)2 ∼= Z/mZ× Z/(n/m)Z}.

It is clear that every element in Λn contained in some Λn,m and such m is unique
provided m < n/m. Therefore,

Λn =
⨿

m|n,m2≤n

Λn,m.

Especially, when n = pk, Λpk =

[ k2 ]⨿
t=0

Λpk,pt . On the other hand, there is a bijective

map ϕ from Λpk,pt to Λpk−2t,0 = Λcyc
pk−2t

by ϕ(N) = p−tN , hence

|Λpk | =
[ k2 ]∑
t=0

|Λcyc
pk−2t |.

�

Corollary 6.1. For a prime p, |Λg
pk | =

[ k2 ]∑
t=0

|Λcyc,g
pk−2t | for any g ∈ S3.

To compute |Λcyc,g
pk−2t |, we recall the well-known Hesnel’s lemma.

Theorem 6.1 (Hensel’s Lemma). Let f(x) be a polynomial over Z.
(1) If x0 is a solution of f(x) ≡ 0 mod pk such that f ′(x0) ̸≡ 0 mod p, then

there is a unique b ∈ {0, 1, 2, . . . , p − 1} such that x0 + pkb is a solution of
f(x) ≡ 0 mod pk+1.

(2) If x1 is a solution of f(x) ≡ 0 mod pk and f ′(x1) ≡ 0 mod p, then f(x1 +
apk) ≡ 0 mod pk+1 for all a ∈ {0, 1, . . . , p− 1} if and only if f(x1) ≡ 0 mod
pk+1.

The solution in (1) of the above theorem is called a non-singular solution; the
solution in (2) is called a singular solution.

Recall that τ = [ 0 1
1 0 ] and σ =

[−1 1
−1 0

]
are generators of S3.

Lemma 6.2. For all positive integer n,
(1) |Λcyc,τ

n | = |{s ∈ Z/nZ, s2 ≡ 1 mod n}|.
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(2) |Λcyc,σ
n | = |{s ∈ Z/nZ, s2 + s+ 1 ≡ 0 mod n}|.

Proof. Let Xcyc
n = { all cyclic subgroups of order n in (Z/nZ)2}, then there is a

bijective map
η : Λcyc

n → Xcyc
n by η(N) = N/(nZ)2.

Moreover, the action of S3 on Λcyc
n induces an action of S3 on Xcyc

n given by
g(η(N)) = η(gN) for all g ∈ S3. Let Xcyc,g

n be the subset of Xcyc
n fixed by g, then

|Λcyc,g
n | = |Xcyc,g

n |.
For G ∈ Xcyc

n , G is cyclic of order n and it is generated by some (x, y) ∈ (Z/nZ)2.
If G is fixed by τ , then[

0 1

1 0

][
x

y

]
=

[
y

x

]
=

[
sx

sy

]
mod n

for some s ∈ Z. It implies that y = s2y, so s2 ≡ 1 mod n.
Since (x, y) = (x, sx) is of order n, x has to be coprime to n. Therefore,

G = ⟨(x, sx)⟩ = ⟨(1, s)⟩.
Conversely, for s satisfy s2 ≡ 1 mod n, τ fix ⟨(1, s)⟩. We conclude that for each

solution of s2 ≡ 1 mod n, there is a unique group in Xcyc
n generated by (1, s) fixed

by τ and all groups in Xcyc
n fixed by τ come from this manner.

If G is fixed by σ, then[
−1 1

−1 0

][
x

y

]
=

[
−x+ y

−x

]
=

[
sx

sy

]
mod n

for some s ∈ Z. It implies that s2y = −(s+ 1)y and s2 + s+ 1 ≡ 0 mod n.
Since (x, y) = (−sy, y) is of order n, y has to be coprime to n. Therefore,

G = ⟨(−sy, y)⟩ = ⟨(−s, 1)⟩.
Conversely, for s satisfy s2 + s+1 ≡ 0 mod n, σ fix ⟨(−s, 1)⟩. We conclude that

for each solution of s2+s+1 ≡ 0 mod n, there is a unique group in Xcyc
n generated

by (−s, 1) fixed by σ and all groups in Xcyc
n fixed by σ come from this manner. �

Lemma 6.3. For a prime p,
(1) |Λcyc

pk | = pk + pk−1.

(2) |Λcyc,τ
2k

| =


1 if k = 1

2 if k = 2

4 if k ≥ 3

and |Λcyc,τ
pk | = 2 if p ̸= 2.

(3) |Λcyc,σ
3k

| =

{
1 if k = 1

0 if k ≥ 2
and |Λcyc,σ

pk | =

{
2 if p ≡ 1 mod 3

0 if p ≡ 2 mod 3
.

Proof. First, for G ∈ Λcyc
pk , since G is cyclic, G = ⟨(x, y)⟩. Suppose x is coprime

to pk, then G = ⟨(1, z)⟩ with z = x−1y. In this case, G is uniquely determined by
z and z runs through all elements in Z/pkZ. Therefore, we have pk groups of this
type in Λcyc

pk . If x is not coprime to pk, since G is cyclic, y has to be coprime to n
and G = ⟨(z, 1)⟩ with z = y−1x. In this case, G is uniquely determined by z and
z runs through all elements in Z/pkZ not coprime to pk. Therefore, we have pk−1

groups of this type in Λcyc
pk . Hence |Λcyc

pk | = pk + pk−1.
Second, let us compute the cardinality of Apk = {s ∈ Zpk , s2 ≡ 1 mod pk}.
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By direct computation, we have

A2 = {1 mod 2}, A22 = {±1 mod 22} and A23 = {±1,±1 + 22 mod 23}.

Claim A2k = {±1,±1 + 2k−1 mod 2k} for k ≥ 3 which means |A2k | = 4 for k ≥ 3.
Assume A2k−1 = {±1,±1 + 2k−2 mod 2k−1}. Note that all solutions in A2k−1

are singular solution of s2 − 1 ≡ 0 mod 2k−1 and{
s2 − 1 ≡ 0 mod 2k , if s = ±1

s2 − 1 ≡ 2k−1 ̸≡ 0 mod 2k , ifs = ±1 + 2k−2.

By Theorem 6.1, we have A2k = {±1,±1+2k−1 mod 2k} and the claim is followed
by induction.

For p ̸= 2, it is clear that Ap = {±1 mod p}. Since ±1 are non-singular solu-
tions, by Theorem 6.1, |Apk | = |Ap| = 2, ∀k ∈ N.

Next, let us compute the cardinality of Bpk = {s ∈ Zpk , s2+ s+1 ≡ 0 mod pk}.
For p = 2, B2 is empty and so is B2k for all k.
For p = 3, B3 = {1 mod 3}, B32 is empty and so is B3k for all k ≥ 2.
For p ̸= 2 or 3,

Bp = {s ∈ Zp, 4s
2 + 4s+ 4 ≡ 0 mod p}

= {s ∈ Zp, (2s+ 1)2 ≡ −3 mod p}

which cardinality is given by the Legendre symbol (−3
p ) + 1. Recall that (−3

p ) =

(−1
p )( 3p ) and

(
−1

p
) =

{
1 if p ≡ 1 mod 4
−1 if p ≡ 3 mod 4

and (
3
p ) =

{
1 if p ≡ ±1 mod 12
−1 if p ≡ ±5 mod 12

,

which implies

|Bp| = 1 + (
−3

p
) =

{
2 if p ≡ 1 mod 3

0 if p ≡ 2 mod 3
.

Note that when s2 + s + 1 ≡ 0 has two solutions, these two solutions are non-
singular. By Theorem 6.1, we have |Bpk | = |Bp| for all p ̸= 2, 3 and all k.

Together with Lemma 6.2, we complete the proof.
�

Combining Corollary 6.1 and Lemma 6.3, we have

Theorem 6.2. For a prime p,

(1) |Λpk | =
k∑

t=0

pt

(2) |Λτ
pk | =

{
2k − 1 if p = 2

k + 1 if p ̸= 2

(3) |Λσ
pk | =


1 if p = 3

k + 1 if p ≡ 1 mod 3

0 if p ≡ 2 mod 3

.
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From Theorem 6.2, we can compute T1(p), where p is an odd prime. Since

T1(p) =
1

6
(|Λp|+ 2|Λσ

p |+ 3|Λτ
p |)

=


1
6 (3 + 0 + 3) if p = 2
1
6 (4 + 2 + 6) if p = 3
1
6 ((p+ 1) + 4 + 6) if p ≡ 1 mod 3
1
6 ((p+ 1) + 0 + 6) if p ≡ 2 mod 3 and p ̸= 2

.

and {
p ≡ 1 mod 6 if p ≡ 1 mod 3

p ≡ 5 mod 6 if p ≡ 2 mod 3 and p ̸= 2.

It is equivalent to the formula T1(p) =
[
p+11

6

]
, where p is an odd prime. More-

over, to compute T1(n) for general n, we need the following lemma

Lemma 6.4. For g ∈ S3, |Λg
n| is a multiplicative function in n.

Proof. Suppose two positive integers n and m are coprime. Claim

|Λmn| = |Λm| × |Λn|

Let Xn = { the subgroups of order n in (Z/nZ)2}, then there is a bijective map-
ping

ψn : Λn → Xn by N 7→ N/(nZ)2.
Since the map ϕ : Xmn → Xm ×Xn by H/(mnZ)2 7→ H/(mZ)2 ×H/(nZ)2 is

bijective ( by Chinese Remainder Theorem ) and the fact ψm, ψn, ψmn are bijective,
we have |Λmn| = |Λm| × |Λn|. Moreover, we can restrict ψn to Λg

n and hence |Λg
n|

is a multiplicative.
�

From Lemma 6.4, we can compute T1(n) for general n. For the second conjecture,
we have some partial results given in next section.

7. Geometric information encoded in the graph zeta function

Given a subgroup Γ of Z2, let XΓ be the quotient of B2 by Γ which number of
vertices is V0 = V0(Γ) = [Z2 : Γ]. Let YΓ be the 1-skeleton of XΓ, which is the
Cayley graph on Z2/Γ with the generator set S = {(±1, 0), (0,±1),±(1, 1)}.

From Corollary 2.1, knowing the graph zeta function of YΓ is equivalent to know-
ing the spectrum of the adjacent matrix A of YΓ.

On the other hand, knowing the spectrum of A is equivalent to knowing the
trace of An for all n, which is the number of closed walks of length n in YΓ.

Therefore, we would like to study if one can determine the structure of XΓ

through these numbers tr(An).
Let Pn be the collection of closed walks in YΓ of length n starting from the vertices

Γ. Observe that Z2 acts transitively on vertices of YΓ. Therefore, tr(An) = V0|Pn|.
Now for each closed walks c in Pn, it can be uniquely lifted to a walks in YΓ starting
from (0, 0) to some element in Γ, denoted by γc. Then we can decompose Pn as

Pn =
⨿
γ∈Γ

Pn(γ), where Pn(γ) = {c ∈ Pn, γc = γ}.
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On the other hand, one can compute Nn(γ) = |Pn(γ)| by
Nn(γ) = |(s1, · · · , sn) ∈ Sn, s1 + · · ·+ sn = γ}|.

Recall that
S3 = {I2,

[
0 −1
1 −1

]
,
[−1 1
−1 0

]
,
[
1 −1
0 −1

]
,
[−1 0
−1 1

]
, [ 0 1

1 0 ]}

which acts on the set of vertices Z2 of B2. We can decompose Z2 as S3-orbits as

Z2 =
⨿

a,b∈Z≥0

S3(a+ b, b)

and we say γ in Z2 is of type (a, b) if γ ∈ S3(a+ b, b).

Theorem 7.1. If γ ̸= (0, 0) is of type (a, b), then
(1) Nn(γ) = 0 if n < a+ b.
(2) Na+b(γ) =

(
a+b
a

)
.

(3) Na+b+1(γ) =

{
(a+ b+ 1)

((
a+b
b−1

)
+
(
a+b
b+1

))
if ab ̸= 0

(a+ b+ 1)(a+ b) if one of a, b = 0

Proof. Note that if γ and γ′ lie in the same S3-orbit, then Nn(γ) = Nn(γ
′). There-

fore, we may assume γ = (a+b, b). Let c be a closed walk from (0, 0) to γ of length n
which uses r1, · · · , r6 times of generators (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)
respectively. Then we have the equations

r1 + r2 − r4 − r5 = a+ b

r2 + r3 − r5 − r6 = b

r1 + r2 + . . .+ r6 = n

and the number of such c is given by n!
r1!r2!...r6!

.
Observing that its length n must be greater than or equal to a + b, and if

n = a+ b, then r1 = a and r2 = b. Therefore, we have Nn(γ) = 0 if n < a+ b and
Nn(γ) =

(
a+b
a

)
if n = a+ b.

Next we consider the case of n = a+ b+ 1, then we have
r1 + r2 − r4 − r5 = a+ b

r2 + r3 − r5 − r6 = b

r1 + r2 + . . .+ r6 = a+ b+ 1

.

Subtracting the third equation by the first equation above, we obtain r3 + 2r4 +
2r5 + r6 = 1. Thus 

r4 = r5 = 0

r1 + r2 = a+ b

r3 + r6 = 1

.

If a, b ̸= 0, then we have (r1, r2, . . . , r6) = (a + 1, b − 1, 1, 0, 0, 0) or (a − 1, b +

1, 0, 0, 0, 1). Thus Na+b+1(γ) = (a+ b+ 1)
((

a+b
b−1

)
+
(
a+b
b+1

))
.

If a = 0 and b ̸= 0, then r2 + r3 − r6 = r1 + r2 = b. It implies that r3 = r1 + r6
and r1 + 2r6 = 1. Therefore, we have (r1, r2, . . . , r6) = (1, b − 1, 1, 0, 0, 0) and
Nb+1(γ) = b(b+ 1).

If b = 0 and a ̸= 0, then r2+r3 = r6 and r2+2r3 = 1. It implies (r1, r2, . . . , r6) =
(a− 1, 1, 0, 0, 0, 1) and Na+1(γ) = a(a+ 1). �
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For an element γ of type (a, b), the graph distance of γ and the origin is a + b
and we say γ is of length a + b. Observe that for a positive integer n, the set of
elements of length n in Z2 is

R(n) = {±(n,m),±(n−m,n),±(−m,n−m), where 0 ≤ m ≤ n}
which forms a regular hexagon with perimeter 6n. Let n be the shortest length
among all nonzero elements of Γ and N0 be the number of elements in Γ of length
n. N0 is an even integer since if γ is of length n so is −γ. Since Γ is a subgroup
of Z2, the graph distance of any two distinct vertices in Γ is greater than or equal
to n. Therefore, on the regular hexagon R(n) with perimeter 6n, there are at most
six vertices contained in Γ. We conclude that N0 is equal to 2, 4 or 6 and when
N0 = 6, the six vertices in Γ ∩R(n) are

±(n,m),±(n−m,n) and ± (m,n−m)

for some 0 ≤ m < n.
We define the number N0/2 to be the type of Γ so that Γ is of type 1, 2 or 3.

In the rest of the section, we study that whether the lattices of type 3 could be
uniquely determined by its graph zeta function.

First, we list all Γ satisfying V0 ≤ 4 upto the action of S3 and their corresponding
zeta functions.

Note that for any finite index subgroup Γ of Z2, there exist a unique basis of
the form {(a, 0), (c, d)} with a > c ≥ 0. Therefore, we obtain the following table of
S3-orbit of Γ (denoted by [Γ]S3):

V0 2
[Γ]S3 {⟨(2, 0), (0, 1)⟩ , ⟨(2, 0), (1, 1)⟩}

Type of Γ type 1
(ZXΓ(u))

−1
(1− u)(1− 5u)(1 + 2u+ 5u2)

V0 3
[Γ]S3 {⟨(3, 0), (0, 1)⟩ , ⟨(3, 0), (1, 1)⟩} ⟨(3, 0), (2, 1)⟩

Type of Γ type 1 type 3
(ZXΓ(u))

−1
(1− u)(1− 5u)(1 + 5u2)2 (1− u)(1− 5u)(1 + 3u+ 5u2)2

V0 4
[Γ]S3 ⟨(2, 0), (0, 2)⟩ {⟨(2, 0), (1, 2)⟩ , ⟨(4, 0), (2, 1)⟩ , ⟨(4, 0), (3, 1)⟩}

Type of Γ type 3 type 2
(ZXΓ(u))

−1
(−1 + u)(−1 + 5u)(1 + 2u+ 5u2)3

V0 4
[Γ]S3 {⟨(4, 0), (0, 1)⟩ , ⟨(4, 0), (1, 1)⟩}

Type of Γ type 1
(ZXΓ(u))

−1
(−1 + u)(−1 + 5u)(1− 2u+ 5u2)2(1 + 2u+ 5u2)
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Note that when V0 = 2 or 3, the zeta functions can uniquely determine Γ. But
when V0 = 4, there are three type 2 lattice whose zeta function and the zeta function
of the type 3 lattice ⟨(2, 0), (0, 2)⟩ are the same. In this rest of the section, we study
the case that V0 ≥ 5.

Recall that two elements v1 and v2 in Γ form a reduced basis if v1 is a shortest
nonzero element in Γ and v2 is a shortest element in Γ − {Zv1}. When N0 > 2,
Γ ∩ R(n) contains a reduced basis {v1, v2}. Furthermore, we can replace Γ by
gΓ for some g ∈ S3 if necessary, so that we can always assume v1 = (n,m) with
0 ≤ m ≤ n

2 .
Suppose Γ is of type 3 with the shortest nonzero elements ±(n,m),±(n −

m,n) and ± (m,n−m), where 0 ≤ m ≤ n
2 . In this case, the number of vertices of

YΓ is
V0 = n2 − nm+m2.

Let
Tk(Γ) =

1

2

(
tr(An)

V0
−Nk(e)

)
=

1

2
(|Pk| −Nk(e)) .

which can be determined by the zeta function of YΓ. We shall prove that {Tk} can
be used to distinguish Γ from other subgroups.

By the above theorem, we have Tk = 0 for all k < n and

Tn(Γ) = 3

(
n

m

)
;

if m > 0,

Tn+1 = 3(n+ 1)

[(
n

m− 1

)
+

(
n

m+ 1

)]
;

if m = 0,
Tn+1 = 3n(n+ 1).

Let Γ′ be another lattice which has the same zeta function as Γ. Therefore, we
have V0(Γ) = V0(Γ

′) and Tk(Γ) = Tk(Γ
′) for all k. Especially, the shortest nonzero

elements of Γ′ are of length n. Suppose the reduced basis of Γ′ is v′1 = (n,m1) with
0 ≤ m1 ≤ n

2 and v′2 with the first coordinate of v′2 is non-negative.

Case I: Γ′ is of type 3.
As we mentioned earlier, we may assume that the shortest nonzero elements of

Γ′ are ±(n,m′),±(n−m′, n) and ± (m′, n−m′), where 0 ≤ m′ ≤ n
2 . Then we have

3

(
n

m

)
= Tn(Γ) = Tn(Γ

′) = 3

(
n

m′

)
.

Since the binomial coefficient f(m) =
(
n
m

)
is increasing when 0 ≤ m ≤ n

2 , we have
m = m′. On the other hand, Γ and Γ′ are both generated by their shortest nonzero
elements. We conclude that Γ = Γ′.

Case II: Γ′ is of type 2.
In this case, v′2 = (n,m2), (m2, n) or (n − m2,−m2) for some 0 ≤ m2 ≤ n.

Observe that if v′2 = (n,m2) then v′1 − v′2 = (0,m1 − m2) which is a non-zero
vector of length less than or equal to n. On the other hand, (0,m1 −m2) ̸= ±v′1
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or ±v′2 which is a contraction. Therefore, it is sufficient to consider two sub-cases
v′2 = (m2, n) or v′2 = (n−m2,−m2).

Case II-A: v′2 = (m2, n). In this case, we have
(2) n2 − nm+m2 = V0(Γ) = V0(Γ

′) = n2 −m1m2 ⇒ m(n−m) = m1m2

and

(3) 3

(
n

m

)
= Tn(Γ) = Tn(Γ

′) =

(
n

m1

)
+

(
n

m2

)
.

If m = 0, then m1 = 0 or m2 = 0. Suppose m1 = 0, then Eq. (3) becomes(
n

m2

)
= 2.

We conclude that n = 2 and m2 = 1 so that V0(Γ) = V0(Γ
′) = 4.

Assume m2 = 0, then similar to the case m1 = 0, we have n = 2 and m1 = 1 so
that V0(Γ) = V0(Γ

′) = 4. The two cases contradict to our assumption.
Now suppose m > 0. If one of m1 and m2 is less than or equal to m, then by

Eq.(2), the other one is greater than or equal to n−m. Since m < n
2 , in this case,

we have (
n

m1

)
+

(
n

m2

)
≤
(
n

m

)
+

(
n

n−m

)
< 3

(
n

m

)
which contradicts to Eq.(3). Therefore, we have m < m1,m2 < n −m. Next we
consider the following two sub-cases.

Case II-A-(1): Suppose there is no element of length n+ 1 in Γ′. Then

(4) 3(n+ 1)

[(
n

m− 1

)
+

(
n

m+ 1

)]
= Tn+1(Γ) = Tn+1(Γ

′) = (n+ 1) [A+B] .

where A =
(

n
m1−1

)
+
(

n
m1+1

)
, B =

(
n

m2−1

)
+
(

n
m2+1

)
.

Applying Pascard identity to 2 Eq.(3) + 1
n+1 Eq.(4), we obtain

3

(
n+ 2

m+ 1

)
=

(
n+ 2

m1 + 1

)
+

(
n+ 2

m2 + 1

)
.(5)

On the other hand, (
n+ 2

m+ 1

)
=

(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n

m

)
.

Therefore, together with Eq.(3) and Eq.(5), we have
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

[(
n

m1

)
+

(
n

m2

)]
(6)

=
(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
+

(n+ 2)(n+ 1)

(m2 + 1)(n−m2 + 1)

(
n

m2

)
.

Observe that the denominator in the above is of the form

h(x) = (x+ 1)(n− x+ 1) = −
(
x− n

2

)2
+
n2

2
+ n+ 1.

Thus,

(7) h(x) < f(y) if
∣∣∣x− n

2

∣∣∣ > ∣∣∣y − n

2

∣∣∣ .
Therefore, h(m) < h(m1), h(m2) and the left hand side of the above equation is
greater than the right hand side, which is a contradiction.
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Case II-A-(2): Suppose there is some element of Γ′ of length n+1. We need the
following lemma.

Lemma 7.1. The shortest non-zero elements in Γ′ − {±(n,m1),±(m2, n)} are
±(n−m2,m1 − n).

Proof. Observe that the length of (n − m2,m1 − n) is 2n − m1 − m2. Suppose
x = a(n,m1) + b(n,m2) is the desired element in Γ′ −{±(n,m1),±(m2, n)}, where
a, b ∈ Z. If one of a and b is equal to zero or both a and b are positive, then the
length of x ≥ 2n > 2n−m1 −m2.

Now suppose ab < 0. Without loss of generality, we may assume that a > 0 > b
and |a| ≥ |b|, then x = (a+ b)(n,m1)− b(n−m2,m1 − n) which length is bounded
by (a+ b)n− b(n−m2).

If a+ b > 0, then (a+ b)n− b(n−m2) ≥ n+ (n−m2) ≥ 2n−m1 −m2.
Assume a+b = 0, then x = a(n−m2,m1−n) is length a(2n−m1−m2). Hence the

shortest non-zero elements in Γ′−{±(n,m1),±(m2, n)} are ±(n−m2,m1−n). �

In this case, the above lemma implies 2n − m1 − m2 = n + 1 or equivalently
m2 = n−m1−1. Especially, we have

(
n
m1

)
+
(

n
m2

)
=
(

n+1
m1+1

)
. The same computation

in Eq.(4) as the previous case provides
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n+ 1

m1 + 1

)
=

(n+ 2)(n+ 1)

(n−m1)(m1 + 2)

(
n

m1 + 1

)
+

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
+

1

n+ 1

(
n+ 1

m1 + 1

)
.

Here the extra term comes from the contribution of length n+1 elements. Dividing
the above equation by

(
n+1
m1+1

)
, we obtain

(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)
=

(n+ 2)

(n−m1 + 1)
+

(n+ 2)

(m1 + 2)
+

1

(n+ 1)
.

On the other hand, we have m(n−m) = m1m2 = m1(n−m1 − 1) and
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)
=

(n+ 2)(n+ 1)

m(n−m) + n+ 1
=

(n+ 2)(n+ 1)

m1(n−m1 − 1) + n+ 1
.

Consider that
(n+ 2)(n+ 1)

m1(n−m1 − 1) + n+ 1
− (n+ 2)

(n−m1 + 1)
− (n+ 2)

(m1 + 2)
− 1

(n+ 1)

=
E1 + E2n+ E3n

2 + E4n
3 + n4

(2 +m1)(1 + n)(1−m1 + n)(1−m1 −m2
1 + n+m1n)

,

where
E1 = −4 + 7m1 + 6m2

1 − 2m3
1 −m4

1; E2 = −7 + 2m1 + 11m2
1 + 2m3

1;

E3 = −1− 7m1 +m2
1; E4 = 3− 2m1.

Let
(8) f(x) = E1 + E2x+ E3n

2 + E4x
3 + x4.
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then
(9) f ′(x) = −7+ 2m1 +11m2

1 +2m3
1 − 2x− 14m1x+2m2

1x+9x2 − 6m1x
2 +4x3.

(10) f ′′(x) = −2− 14m1 + 2m2
1 + 18x− 12m1x+ 12x2

(11) f ′′′(x) = 18− 12m1 + 24x

Recall that 1 ≤ m1 ≤ n
2 . Since f ′′′(x) > 0, ∀x ≥ 2m1, f ′′(x) is increasing when

x ≥ 2m1. Together with
f ′′(2m1) = −2 + 22m1 + 26m2

1 > 0,

we have f ′(x) is increasing when x ≥ 2m1. Moreover,
f ′(2m1) = −7− 2m1 + 19m2

1 + 14m3
1 > 0.

Therefore, f(x) is increasing when x ≥ 2m1. On the other hand,
f(2m1) = −4− 7m1 + 6m2

1 + 16m3
1 + 7m4

1 > 0,

we have f(x) > 0, ∀x ≥ 2m1 and it contradicts to
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)
=

(n+ 2)

(n−m1 + 1)
+

(n+ 2)

(m1 + 2)
+

1

(n+ 1)
.

Case II-B: v′2 = (n−m2,−m2). Similar to Case II-A, we have

(12) 3

(
n

m

)
= Tn(Γ) = Tn(Γ

′) =

(
n

m1

)
+

(
n

m2

)
.

In this case, we have the same conclusion as the case II-A-(1) if we assume that
there is no element of length n+ 1. Therefore, it remains to consider the case that
there are some elements of Γ′ of length (n+ 1).

Lemma 7.2. The shortest non-zero elements in Γ′ −{±(n,m1),±(n−m2,−m2)}
are ±(m2,m1 +m2).

Proof. When there is some element (x, y) in Γ′ with length n+1, (x, y) = a(n,m1)+
b(n−m2,−m2) for some non-zero integers a and b. It implies that 0 ≤ (a+ b)n−
bm2 ≤ n+ 1 and 0 ≤ am1 − bm2 ≤ n+ 1. Therefore, (x, y) may be (m2,m1 +m2)
or (m2 − n,m1 + 2m2).

Since the length of (m2,m1+m2) is m1+m2 and the length of (m2−n,m1+2m2)
is n+m1 +m2, we hence the shortest non-zero elements in Γ′ − {±(n,m1),±(n−
m2,−m2)} are ±(m2,m1 +m2). �

Now we return to show that there does not exist m1 and m2 such that Eq.(12)
can be hold.

From above lemma and Eq(3), the equation Tn+1(Γ) = Tn+1(Γ
′) can be written

as
3(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n

m

)
=

(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

((
n

m1

)
+

(
n

m2

))
=

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
+

(n+ 2)(n+ 1)

(n−m2 + 1)(m2 + 1)

(
n

m2

)
+

1

n+ 1

(
m1 +m2

m2

)
,
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where m1 +m2 = n+ 1. Therefore, we have
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n+ 1

m1

)
=

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
+

(n+ 2)(n+ 1)

m1(n−m2 + 2)

(
n

m1 − 1

)
+

1

n+ 1

(
n+ 1

m1

)
and it implies that

(n+ 2)(n+ 1)

m1(n−m1 + 1) + n+ 1
=

(n+ 2)

(m1 + 1)
+

(n+ 2)

(n−m2 + 2)
+

1

n+ 1
.

It is equivalent to

(13) F1 + F2n+ F3n
2 + F4n

3

(1 +m1)(1 + n)(2−m1 + n)(m1(n−m1 + 1) + n+ 1)
= 0,

where
F1 = 4 + 7m1 − 6m2

1 − 2m3
1 +m4

1; F2 = 8 + 15m1 − 6m2
1 − 2m3

1;

F3 = 5 + 10m1 −m2
1; F4 = 1 + 2m1.

Let
(14) g(x) = F1 + F2x+ F3x

2 + F4x
3.

Therefore,
(15) g′(x) = 8 + 15m1 − 6m2

1 − 2m3
1 + 10n+ 20m1x− 2m2

1x+ 3x2 + 6m1x
2.

(16) g′′(x) = 10 + 20m1 − 2m2
1 + (6 + 12m1)x.

Recall that 1 ≤ m1 ≤ n
2 . Since g′′(x) is increasing and

g′′(2m1) = 10 + 32m1 + 22m2
1 > 0,

we have that g′(x) is increasing when x ≥ 2m1. Moreover, since
g′(2m1) = 8 + 35m1 + 46m2

1 + 18m3
1 > 0,

it implies that g(x) is increasing when x ≥ 2m1. Together with
g(2m1) = 4 + 23m1 + 44m2

1 + 34m3
1 + 9m4

1 > 0,

it contradicts to Eq.(13). Hence the underlying graphs corresponding to the lattice
of type 3 and type 2 can be distinguished if V0 > 4.

Case III: Γ′ is of type 1.
In this case, the length of v′2 is greater than n. From Theorem 7.1, we have

(17) 3

(
n

m

)
= Tn(Γ) = Tn(Γ

′) =

(
n

m1

)
,

which implies m1 ≥ 1 and m1 > m.
Case III-A: Suppose there is no element of length n+ 1 in Γ′.
If m = 0, from Theorem 7.1, we have(

n

m1

)
= 3 and 3n(n+ 1) = (n+ 1)

[(
n

m1 − 1

)
+

(
n

m1 + 1

)]
.

Therefore, n = 3,m1 = 1 and it contradicts to 9 =
(
3
0

)
+
(
3
2

)
.
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If m ̸= 0, from Theorem 7.1, we have
(18)

3(n+1)

[(
n

m− 1

)
+

(
n

m+ 1

)]
= Tn+1(Γ) = Tn+1(Γ

′) = (n+1)

[(
n

m1 − 1

)
+

(
n

m1 + 1

)]
.

Applying Pascard identity to 2 Eq.(17) + 1
n+1 Eq.(18), we have

(19) 3

(
n+ 2

m+ 1

)
=

(
n+ 2

m1 + 1

)
.

Together with Eq.(17) and Eq.(19), we have

(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n

m1

)
=

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
and we get a contradiction from Eq.(7) and Eq.(17).

Case III-B: Suppose there is an element of length n+ 1 in Γ′.
In this case, v′2 may be equal to (n+1,m2), (m2, n+1) or (n+1−m2,−m2) for

some 0 ≤ m2 ≤ n+1. Observe that if v′2 = (n+1,m2), then v′2−v′1 = (1,m2−m1)
which is a nonzero vector of length less than n + 1 and not equal to ±v′1. It
contradicts to that Γ′ is of type 1 and ±v′1 are the two shortest elements in Γ′.
Therefore, we just need to consider the case v′2 = (m2, n+1) or (n+1−m2,−m2).

Suppose m2 = 0. If v′2 = (0, n+1), then n2+n = V0(Γ
′) = V0(Γ) = n2−nm+m2

and it implies n = m(m−n), which contradicts to the assumption that 0 ≤ m ≤ n
2 .

If v′2 = (n + 1, 0), then similar to the case v′2 = (n + 1,m2) above, we have a
contradiction.

Assume m2 = n + 1. If v′2 = (n + 1, n + 1), then v′2 − v′1 = (1, n + 1 − m1),
whose length is less than or equal to n since m1 ≥ 1. It contradicts to that ±v′1 are
the only two shortest elements in Γ′ whose lengths are n. If v′2 = (0,−n− 1), then
n2 + n = V0(Γ

′) = V0(Γ) = n2 − nm + m2 and it contradicts to our assumption
that 0 ≤ m ≤ n

2 . Therefore, we conclude 1 ≤ m2 ≤ n.

Lemma 7.3. There is no element of length n+ 1 in Γ′ − {±v′2}.

Proof. Suppose there is an element v′3 of length n + 1 in Γ′. We may assume
that the first coordinate of v′3 is non-negative. Then v′3 is equal to (m3, n + 1) or
(n + 1 −m3,−m3) for some 1 ≤ m3 ≤ n. Note that both v′2 and v′3 are of length
n+ 1 so we can we assume m2 ≤ m3 and switch v′2 and v′3 if necessary.

Recall that v′2 = (m2, n+1) or (n+1−m2,−m2) and we shall prove the lemma
holds for both cases. First, we assume v′2 = (m2, n+1), then v′3−v′2 = (m3−m2, 0)
or (n+1−m2−m3,m3−m2). For the case v′3−v′2 = (m3−m2, 0), its length is less
or equal to n, which contradicts to that ±v′1 are the only two shortest elements in
Γ′ of length n. Now we consider v′3−v′2 = (n+1−m2−m3,m3−m2). Observe that
if m2 +m3 ≤ n+1, then the length of v′3 − v′2 is max{n+1−m2 −m3,m3 −m2}.
If we assume m2 + m3 > n + 1, then the length of v′2 − v′3 is 2m3 − n − 1. The
length of v′2 − v′3 in the two cases are of less than n. It contradicts to that ±v′1 are
the shortest elements in Γ′ of length n. Hence there is no element of length n + 1
in Γ′ − {±v′2}. �

Case III-B-(1): v′2 = (m2, n+ 1). In this case, we have

(20) n2 − nm+m2 = V0(Γ) = V0(Γ
′) = n2 + n−m1m2
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and
length of v′1 − v′2 = 2n−m1 −m2 + 1 > n+ 1

i.e.
(21) n > m1 +m2.

From Eq.(20) and Eq.(21), we have
m2 − nm = n−m1m2 > n−m1(n−m1) = n−m1n+m2

1

and it implies
(22) m2 −m2

1 = (m+m1)(m−m1) > n(1−m1 +m).

It contradicts to that m,m1 ≤ n
2 .

Case III-B-(2): v′2 = (n+ 1−m2,−m2). In this case, we have

3

(
n+ 2

m+ 1

)
= Tn+1(Γ) = Tn+1(Γ

′) =

(
n+ 2

m1 + 1

)
+

1

n+ 1

(
n+ 1

m2

)
.

It is equivalent to
(23)

(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)

(
n

m1

)
=

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

(
n

m1

)
+

1

n−m2 + 1

(
n

m2

)
.

Since there is no element of length less than or equal to n and
(24) length of v′1 − v′2 = m1 +m2 > n+ 1,

we have
n+ 1

n−m2 + 1

(
n

m2

)
=

(
n+ 1

m2

)
=

(
n+ 1

n−m2 + 1

)
<

(
n+ 1

m1

)
=

n+ 1

n−m1 + 1

(
n

m1

)
and implies

(25) 1

n−m2 + 1

(
n

m2

)
<

1

n−m1 + 1

(
n

m1

)
On the other hand, together with the fact 0 ≤ m < m1 ≤ n

2 , we have
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)
− (n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)

=
(n+ 2)(n+ 1)[m1(n−m1)−m(n−m)]

(m+ 1)(n−m+ 1)(m1 + 1)(n−m1 + 1)

>
(n+ 2)(n+ 1)[m1(n−m1)−m(n−m1)]

(m+ 1)(n−m+ 1)(m1 + 1)(n−m1 + 1)

=
(n+ 2)(n+ 1)(m1 −m)(n−m1)

(m+ 1)(n−m+ 1)(m1 + 1)(n−m1 + 1)

>
1

(n−m1 + 1)
.

Here, the last inequality is followed by the fact that (n+2)(n+1) > (m1 +1)(n−
m+ 1), n−m1 ≥ m+ 1 and m1 −m ≥ 1.

It contradicts to the inequality
(n+ 2)(n+ 1)

(m+ 1)(n−m+ 1)
<

(n+ 2)(n+ 1)

(m1 + 1)(n−m1 + 1)
+

1

n−m1 + 1
.

We summarize the above discussions as
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Theorem 7.2. If Γ is of type 3 and V0(Γ) > 4, then YΓ can be uniquely determined
by it’s zeta function.

To prove the conjecture (2), we have to compare the zeta functions of Γ of type
1 and type 2, which is more complicated. We will finish it in the future works.
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