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Abstract

The goal of this paper is to discuss the classical isospectral problem in graph theory
for a particular type of graph \‘ ‘ inite regular simplicial tori arising

di which kinds of simplicial
tori can be unlquely dete ] via graph zeta functions.
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1. INTRODUCTION

The graph zeta function is a geodesic counting function on a finite graph which
was first introduced by Ihara [YI96]. Thara’s original zeta function is defined on a
discrete torsion-free co-compact subgroup I' of PGL2(Q,,) and later Serre [JPS03]
reformulates it as a function on the graph obtained from the building of PGL2(Q))
quotient by I'. The building 51 of PGL2(Q)) is a (p+1)-regular tree whose vertices
are left PGLqy(Zy)-cosets and the adjacency operator is the Hecke operator

0

1
A =PGLy(Z,) (
0 p

) PGL;(Zy).

The group PGL2(Q,) acts on the tree B by left multiplication. For a torsion-free
discrete co-compact subgroup I' of PGL2(Q,), the quotient I'\ 3, is a (p+1)-regular
graph.

For PGL,,(Q,), its building B,,_1 is a (n — 1)-dimensional simplicial complex.
Similar to PGL2(Q),), for a torsion-free discrete co-compact subgroup I' of PGL,,(Q,),
I'\B,,—1 is a finite complex:

One can also consider that the case that when p.=1,.so that the residue field is
the field with one element. In this case, the building of PGL,,(Q;) becomes a single
apartment and the torsion-free discrete co-compact subgroup I' is a free abelian
group of rank n — . Especially, when'n = 3, the building B, of PGL3(Q;) is a
simplicial euclidean plane:

o NINARINGIN X
2 AVAVAVAY/ AN
WAV ESAVANAVA

Figure 1: The building of PGL3(Q;)

The 1-skeleton of By can be described as a Cayley graph on Z? with the generated
set S = {(%1,0), (0,£1),+(1,1)} shown in Figure 1.

The spectrum of a graph is the set of eigenvalues of the adjacency matrix and
two graphs are isospectral if they have the same spectrum. Moreover, two graphs
are isospectral if they have the same zeta function ( see section 3 ), so there are
many non-isomorphic graphs with the same zeta function.

In this thesis, we would like to study if a finite quotient X of By (which is a torus)
can be uniquely determined by its graph zeta function Zx (u) (up to isomorphism).

Let K, be the collection of complete representatives of isomorphic classes of
finite quotients of By with n vertices. Consider the two numbers Ty (n) = |K,| and
Ta(n) = {Zx(u), X € Ku}.



By straightforward computation (using Matheamtica), we have the following re-

sult

n 213 5 8 10111213 (14 |15|16| 17|18 |19 |20
Ti(n) | 1 3 51619 8 | 5|10
To(n) | 1|2 2 9
n 21122123124 (25[26|27(28(29|30(31(32(33|34|35/|36]|237
Tl(n) 15 13 14 15110 | 10| 10 | 20

Ta(n) 14 12 14 14|10 |10 |10 | 19

n 3813940 |41 | 42|43 |44 |45 |46 |47 |48 |49 |50 |51 |52 |53 |54
Tl(n) 11 (12120 18 17 116 |13 28112 (17114 (20|10 ]| 22
To(n) |11 (12 19| 9 [A8 | 9 |16 [ 1613 | 927 |12 |17 |14 |19 |10 |22

From the above, we have the following conjectures on Tj(n) and Ta(n):

(1) Ty(p) = [&611], where p is-an-odd primé:

(2) Ta(n) = T1(n) — d where d-is-equal to 1-if 4jn and equal to zero otherwise.
The rest of the thesis is organized as follows. In the Section two and three, we

review some basicieconcepts in graph theory and introduce graph zeta functions. In

Section four and five, we describe the group PGL3(Q;) and it’s building explicitly.

In the end, we prove (1) and/a part of (2) of the conjecture.

2. IHARA ZETA FUNCTION

A graph X = (V, E) is an ordered pair where 'V-is the set whose elements are
called the vertices of X; E'is a multi-subset of V. x V', which elements are called
the oriented edges of X. Moreover, if (u,v) is an element of F, so is (v, u) and their
multiplicities must be the same.

For a oriented edge e = (v1,v2), v1 is called the starting point of e, denoted by
o(e); vy is called the end point of e, denoted by t(e). A walk C on X is a sequence
of oriented edges

C=(e,e2,...,€n)

satisfying t(e;) = o(e;j4+1) for all i = 1 to n — 1. Here n is called the length of C,
denoted by [(C). C has a backtrack if o(e;) = t(e;+1) for some i. C is closed if
o(e1) = t(e,). When C is closed, we say C has a tail if ¢(e1) = o(e,). Two closed
walks are equivalent if one can be obtained from the other by cyclically permuting
its sequence of edges. Denote the equivalence class of C' by [C]. We denote by C”
the multiple of the closed walk C with j times. A closed walk is called prime if it
is non-backtracking, tailless and is not a multiple of other shorter closed walk.

We denote d(v) by the number of oriented edges e with o(e) = v. Furthermore,
we say X is regular if d(v) are the same for all v € V.

The adjacency matrix A of X is a matrix whose rows and columns are indexing
by vertices. The (v,v’)-entry of A is the number of oriented edges from v to v’.
Note that the trace of A™ is the number of closed walks of X of length n.
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Definition 2.1. The Ihara zeta function for X is defined to be the following function
of complex number u, with |u| sufficiently small:

Zx(u) = JJ@—u)"

(P]
where the product is over all primes [P] in X.
Based on Thara’s work [YI96], Bass [BH92] prove the following theorem .

Theorem 2.1. Let X be a finite (q + 1)-regular graph. The following identities
hold

[ee]

No i 1
Zy(w) = exp( ), ") = G BV der T A T gud)

n=1

where N,, is the number of non-backtracking and tailless cycles of length n; |V| is
the number of vertices of X; |E|/2 is the number of non-oriented edges of X.

Corollary 2.1. The following features of the graph X are uniquely determined by
its zeta function:

(1) The number of vertices |V].

(2) The number of.closed walks of length n in X for all n.

Proof. (1) is followed by that the degree of Z5 ' (u) = |B| = (¢+1)|V|. For (2), the
number of the closed walks of X-of length n equals'to the trace of A™, which is the
sum of n-th power'of eigenvalues of A. On theother hand, the spectrum of A can

be determined by the zeta function from the above theorem.
O

3. FIELD WITH ONE ELEMENT AND. 1-ADIC FIELD

In the coming two sections, we call the definition of the field with one element
Fy and the building of PGL,, over 1-padic field from [DK13]. The field with one
element, denoted by Fy = {7}, is a suggestive-mame for an object that should
behave similarly to a finite field with a single-element, if such a field could exist.
The only operator on F} is multiplication so that 7 -7 = 7.

Now we consider the 1-adic field Q; = {rn%,i € Z} so that F} is the residue field
of Q; and the ring of integer for Q; is Z; = {x*,i > 0}. Since there is no addition,
the n-dimension space over Q is defined as

Q=@ JJo]] - J]@={.i=12. . niecz}
The group of automorphisms of QF, denoted by GL,,(Q1), consists of all bijec-
tions f on Q7 so that f(mz) = nf(z), Ve € QF. Moreover, the group PGL,,(Qy) is
the quotient of GL,(Q;) by its center.

Theorem 3.1. GL,,(Q1) = Z" % S,,, where the semi-direct product is given by the
natural permutation of S, on n-coordinates of Z™.
Proof. For f € GL(Q}), write f(n)) = W:Z](;) for some o € Sy, a,(;) € Z and
j = 1,2,...,n. Note that f is uniquely determined by the permutation ¢ and
n-tuple of integers ay ;).

Let ¢ : GL,(Q1) — Z™ x S,, given by f — ((a1,as,...,ay),o) which is bijective.
Now for fi, fo € GL,,(Q1),

b

0 ) by (i 0 Aoy og(5) Tos(s)
fl o fz(’]Tj) = fl (770(;2(],]) ) = az(])fl (7r0_2(j)) — 71-0‘1’(17‘;%;) oo (i ,



SO
¢(f1 o f2) = ((al + bo_l—l(l),ag + 1)0;1(2)7 ey Qp bafl(nyalag) .
On the other hand,
(b(fl) : ¢(f2) = ((ala agz, ..., an)a Ul) : ((b17 b27 ceey bn)702)
= ((a1 + bal_l(l)’ as + bo'l_l(Z)’ BRI 7% + bol_l(n))’ 0'102).

Therefore, ¢ is a group isomorphism. ([l

Immediately, we have
Corollary 3.1. PGL,(Q;) = Z" ! x S,.

Remark: In the theory of the field with one element, PGL,, (F}) is the group
Sy, which is the Weyl group of GL(F},). Here a similar phenomenon is occurred, so
that PGL,,(Q1) is isomorphic to the affine Weyl group of PGL,,(Q,). [KLW10]

4. .THE BUILDING OF PGL3(Q1)

Let Z; be the ring of integer of Q1. A lattice L of rank 3 in Q3 is Z;-invariant
subset so that Q; L = Q. This implies that the lattice [, = {r?,j = 1,2,3,i > a;}
for some unique a1, 'as, a3 € Z.~Denote L by (ay, asyas), then we identify lattices
in Q} with Z3.

The equivalence. classes of L is

(L) ={aL,a € Q1} = {(a1 +k,as + k, a3 + k), k € Z}

and denoted by [a1, as,as3], whichis an element in Z3/7Z(1,1,1).

The building B of PGL3(Q;) s a 2-dimensional simplicial complex as follows.
As an abstract complex, its vertices are equivalence classes of lattices [L]; three
vertices [Lo, [L1], [L2] form a 2-simplex if there is arepresentative

Lo DLy 2 Ly D whly.

( The detail can be seen in [BH92], [KLW10] and [JPS03]. )

Moreover, for L = (a1, az, as), the adjacency vertices of [L] are {[L'] with L' =
(a1 + b1,as + by, a3 + b3) where b; € {0,1} and > b; = 1 or 2. We define the i-th
adjacency operator (which index is labelled by vertices of the building).

1 if [L] = [a1, a2, as] and [L'] = [a1 + by, as + ba, as + bs]
A = for some b; € {0,1},3 b; =i
0 otherwise.

Note that A; + As is the adjacency operator of the underlying graph (1-skeleton)
of By. Observe that the set Z3/Z(1,1,1) has a canonical additive structure, which
is a free abelian group generated by e; = [1,0,0] and es = [0, 1,0]. In this case, the
vertices of By are elements in Z? = Ze; @ Zes and the underlying graph of By is
the Cayley graph on Z? with the generating set S = {(+£1,0), (0,£1),£(1,1)}.
The underlying space of the whole building By is Z? ® R = R? endowed an inner
product characterized by
1 ifi=7
<ei7ej ) = { / ’

% otherwise.
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Moreover, PGL3(Q1) =2 Z? x S5 acts on By as isometries as follows. With respect
to the basis e; and eq, the subgroup Ss is generated by the reflection 7 = [{ }] and
the rotation o = [::1[ (ﬂ . The group Z? consists of translations so that for (a,b) € Z?
and (z,y) € R?, (a,b) maps (z,y) to (x + a,y + b). Especially, the geometric of By

is relatively to Figure 1.

5. SIMPLICIAL TORI AND THEIR ISOMORPHISM CLASSES

Let ' be a finite index subgroup of Z?2, so that the quotient Xt of By by I' is a
simplicial torus which is locally isometric to Bs.

Now, the vertices of X1 are I'—cosets in Z? and its 1-skeleton is the Cayley group
on Z? /T with the same generating set S modulo I'. By abuse of notation, we still
denote S modulo I by S.

Two simplicial tori Xr and X/ are called isomorphic, if there is an isometric
simplicial isomorphism p between them. It is clear that the group of automorphisms
of Xt acts transitively on vertices, so we may assume that p maps the vertex I' to
the vertex I'V. On the other hand, since Bs.is simply connected, there is a unique
lifting p so that p(0,0) = (0,0)-andthe following diagram commute.

BQ ------ ke BQ
mod I’ mod I
XI" XF'

Since the two quotient maps.and p are locally isometric simplicial maps so is p. We
conclude that g is a linear isometry on By which maps I' to IV. All linear isometries
on By forms the dihedral group Dg with the center Z(Dg) = {2, —I>}. We can
factor Dg as a product of S5 and.Z(Dgs) where S5 is the symmetric group on 3
letters consisting the following elements

LECT g e 3 P e Y e A )2
Since Z(Dg) fixes any translation subgroup I', we conclude that

Theorem 5.1. Two simplicial tori Xr and Xp+ are isomorphic if and only if
g(T) =T for some g € Ss.

Now we are able to compute the number of isomorphic classes of simplicial tori
of size n. Let A, be set of all index n subgroup of Z2, then the group S3 defined
above acts on A,, canonically. From the above theorem, we have

T1(n) = # of isomorphic classes of finite quotients of By with n vertices.
= # Ss-orbit of A,,.

Let 7 = [9§] be a reflection and o = [Z] ] be a rotation in Ss3. Note that there
are three reflections in 7 conjugate to S3 and two nontrivial rotations conjugate to
0. By Burnside’s lemma

1
(1) # Ssz-orbit of A, = 6(|An| + 2|A7] + 3|AT)).
Here AY is a subset of A, fixed by g.



6. MAIN THEOREM

Recall the conjecture in Section one: let K, be the collection of complete repre-
sentatives of isomorphic classes of finite quotients of Cayley(Z?2, S) with n vertices.
Let Ty(n) = |K,| and T2(n) = |Zx(u), X € K,|, then
(1) T1(p) = [*tH] where p is an odd prime.

(2) Ta(n) = T1(n) — § , where ¢ is equal to 1 if 4|n and equal to zero otherwise.

Note that every group N in A,, contains (nZ)?. Denote by A%Y¢ the set of all
index n subgroups N of Z? with N/(nZ)? being cyclic. Furthermore, S3 maps A¢Y¢
onto A%“. For g € S3, denote by A9 the subset of AfY¢ fixed by g. Then, we
have the following lemma.

(5]
Lemma 6.1. For a prime p, |[Ayi| = Z AR 2.
t=0
Proof. For m|n, let
Apom = {N €y, NJ/(nZY? 2 Z/mZ x 7./ (n/m)Z}.

It is clear that every element in A,, contained in some A,, ,, and such m is unique
provided m < n/m. Therefore,

A= | [~ A
m|n,m?2<n
(5]
Especially, when n = p*, Ay = H Ak pt.-On the other hand, there is a bijective
=0

map ¢ from A e 80 Apr o0 = A;ZC_% by ¢(N) = p~t N, hence

(5]
[Ape] = D A,
t=0

(%]
Corollary 6.1. For a prime p, |Az’“| = Z |A;%§i’§t for any g € Ss.
t=0

To compute |A;7ﬁc,’§t |, we recall the well-known Hesnel’s lemma.

Theorem 6.1 (Hensel’s Lemma). Let f(x) be a polynomial over Z.
(1) If g is a solution of f(x) = 0 mod p* such that f'(x¢) # 0 mod p, then
there is a unique b € {0,1,2,...,p — 1} such that zo + p*b is a solution of
f(z) =0 mod pF+1.
(2) If 21 is a solution of f(x) =0 mod p* and f'(x1) = 0 mod p, then f(xi +

ap®) = 0 mod p**1 for all a € {0,1,...,p— 1} if and only if f(x1) =0 mod
k+1
phtL

The solution in (1) of the above theorem is called a non-singular solution; the
solution in (2) is called a singular solution.
Recall that 7 = [ }] and o = [Z] §] are generators of Ss.

Lemma 6.2. For all positive integer n,
(1) |[AeT| = |{s € Z/nZ,s*> =1 mod n}|.



(2) |Avee| = |{s € Z/nZ,s* +s+1=0 mod n}|.

Proof. Let X¥¢ = { all cyclic subgroups of order n in (Z/nZ)?}, then there is a
bijective map
0 AZE S X by g(N) = N/(Z)?,

Moreover, the action of S3 on Af° induces an action of S3 on X¥¢ given by
g(n(N)) =n(gN) for all g € S3. Let X:¥“9 be the subset of X¥° fixed by g, then
(A9 = | Xred

For G € X¢¥¢, G is cyclic of order n and it is generated by some (z,y) € (Z/nZ)?.

If G is fixed by 7, then

1M

for some s € Z. It implies that y = sy, so s> = 1 mod n.
Since (z,y) = (x, sz) is of order n, x has to be coprime to n. Therefore,

Gi= ((ays2)) = ((13s)).

Conversely, for s satisfy $2=1 mod n, 7 fix ((1,8)): We conclude that for each
solution of s> = 1 mod. n, there is a unique group in X generated by (1, s) fixed
by 7 and all groups in X3¢ fixed by 7 come from this manner.

If G is fixed by o, then

= [sx] mod n
Y

IS8T

for some s € Z. It implies that 5%y = —(s + 1)y and s? + 5 -1 = 0 mod n.
Since (z,y) = (=8y,y) is of order n, y has to-be.coprime to n. Therefore,

G = ((=sy, ) = {(=s,1)).
Conversely, for s satisfy s+ s+ 1 = 0 mod n, o fix {(=s,1)). We conclude that

for each solution of s? + s-+1 = 0mod n, thereis a unique group in X¥¢ generated
by (—s,1) fixed by o and all groupsin X:¥< fixed by o come from this manner. O

—z+y

—Z

Lemma 6.3. For a prime p,
(1) [AY] = p* +p"

1 ifk=1
(2) AL =32 ifk=2 and |AUT|=2ifp#2.
4 ifk>3
cyc,o 1 ifk=1 cyc.o 2 ZpElmOd?)
3) e =4t 7 and |acter = )2 TP= |
0 ifk=>2 0 ifp=2mod3

Proof. First, for G € A;Zc, since G is cyclic, G = ((z,y)). Suppose x is coprime
to p¥, then G = ((1, 2)) with z = 27 'y. In this case, G is uniquely determined by
z and z runs through all elements in Z/p*Z. Therefore, we have p* groups of this
type in A;ﬁc. If  is not coprime to p”, since G is cyclic, y has to be coprime to n
and G = ((z,1)) with 2 = y~1z. In this case, G is uniquely determined by z and
z runs through all elements in Z/p*Z not coprime to p*. Therefore, we have p*~!
groups of this type in A;ZC. Hence \A;Zc\ =pF 4 pF-1.
Second, let us compute the cardinality of A,» = {s € Zpk,82 =1 mod p*}.



By direct computation, we have
Ay = {1 mod 2}, s> = {#£1 mod 22} and Ay = {#1,4+1+2? mod 2°}.

Claim Age = {1,414+ 2571 mod 2*} for k > 3 which means |Ayx| = 4 for k > 3.
Assume A1 = {+1,4+1 + 2872 mod 2¢~1}. Note that all solutions in Aqx—1
are singular solution of s> —1 =0 mod 2¥~! and

s2—1=0 mod 2* Jif s = 41
s2—1=2F"12£0 mod2F ,ifs=+1+2F2

By Theorem 6.1, we have Agx = {£1,£1+2*"!1 mod 2*} and the claim is followed
by induction.

For p # 2, it is clear that A, = {£1 mod p}. Since %1 are non-singular solu-
tions, by Theorem 6.1, |A,x| = |A,| =2, Vk € N.

Next, let us compute the cardinality of Byx = {s € Zx, s24+s5+1=0 mod p*l.

For p = 2, Bs is empty and so isiBgx for all k.

For p =3, B3 = {1 mod 3}, Bss is empty and so is Bsx for all k > 2.

For p # 2 or 3,

By={s€7,,45> + 45 +4 =0 mod p}

= {5 €% (25 % 1)%= =3 'mod p}

which cardinality is given by the Legendre symbol (ip?l) + lovRecall that (’73) =
(=1)(2) and
(;1)7 1 if p=1,mod 4 h 3 1 ifp=+1 mod 12
p’ |-1 ip=3mod14 ~1 ifp=+45mod 12’

which implies

-3 27 if p=1mod 3

|Bp| =1+ (_) o ) _ .

p 0 if p=2mod3

Note that when s? + s + 1 = 0 has two solutions, these two solutions are non-

singular. By Theorem 6.1, we have |B,:| = | B,/ for all p # 2,3 and all k.
Together with Lemma 6.2, we complete the proof.

Combining Corollary 6.1 and Lemma 6.3, we have

Theorem 6.2. For a prime p,

k
(1) [Ape| = > '
t=0
- 2k—1 ifp=2
(2) A7, | = :
k+1 ifp#2
1 if p=3
(3) |Agk|: k+1 if p=1mod3.
0 if p=2mod3



From Theorem 6.2, we can compute Tq(p), where p is an odd prime. Since

1 o T
Ti(p) = 5 (1Apl + 2]A7] +3[AL))

(3+0+3) if p=2

) id+2+06) if p=23

T\ i(p+1)+4+6) ifp=1 mod3
L(p+1)4+0+6) ifp=2 mod3andp+2

and
p=1 mod6 ifp=1 mod3
p=5 mod6 ifp=2 mod3andp#2.
It is equivalent to the formula T (p) = [p-%ll]7 where p is an odd prime. More-
over, to compute Ty (n) for general n, we need the following lemma

Lemma 6.4. For g € Ss, |AY] is'a multiplicative function in n.

Proof. Suppose two positive integers n and m are coprime. Claim
|Amn| = |Am| X |An|

Let X,, = { the subgroups of order 1 in (%/nZ)*}, then there is a bijective map-

ping
VYn : Ay — X, by N N/(nZ)?.

Since the map ¢.: X, — Xon X Xy by H/(mnZ)? v H/(mZ)? x H/(nZ)?* is
bijective ( by Chinese Remainder Theorem ) and the fact 1,4y, , ¥y are bijective,
we have |Apn| = [An] X |Ay]. Moreover, we can restrict 4, to A9 and hence |AY|
is a multiplicative.

(I

From Lemma 6.4, we can'compute. T (n) for-general n. For the second conjecture,
we have some partial results given in next section.

7. GEOMETRIC INFORMATION ENCODED IN THE GRAPH ZETA FUNCTION

Given a subgroup I' of Z?, let X1 be the quotient of By by I' which number of
vertices is Vo = Vo(I') = [Z% : T]. Let Yr be the 1-skeleton of X, which is the
Cayley graph on Zo/I" with the generator set S = {(£1,0), (0,£1),£(1,1)}.

From Corollary 2.1, knowing the graph zeta function of Yr is equivalent to know-
ing the spectrum of the adjacent matrix A of Yr.

On the other hand, knowing the spectrum of A is equivalent to knowing the
trace of A™ for all n, which is the number of closed walks of length n in Yr.

Therefore, we would like to study if one can determine the structure of Xp
through these numbers tr(A™).

Let P, be the collection of closed walks in Yr of length n starting from the vertices
I'. Observe that Z? acts transitively on vertices of Yr. Therefore, tr(A") = V4| P,|.
Now for each closed walks ¢ in P,, it can be uniquely lifted to a walks in YT starting
from (0,0) to some element in I", denoted by v.. Then we can decompose P, as

Py =] Pu(v),  where Py(y) = {c € Pu,ve =7}
yell
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On the other hand, one can compute N, (v) = |P,(7)| by
No(y) = (81, ,8) €S™, 81+ + 55, =7}
Recall that
Ss={I [121], [Z10] [0 21, [Z10] 0 [ 612
which acts on the set of vertices Z2 of By. We can decompose Z? as Ss-orbits as

2= ] Ssla+0b,0)

a,bEZZg
and we say «y in Z? is of type (a,b) if v € S3(a + b, b).

Theorem 7.1. If v # (0,0) is of type (a,b), then
(1) Npy(v)=0idfn<a+bd.
(2) Nats(v) = (“27).
a+b+1 ( ‘R ) if ab# 0
(3) Na+b+1(7) _ ( ) (b~1) (b+1) 7&
(a +b+1)(a+Db) if one of a,b=0
Proof. Note that if v and 4/ lie in the same S3-orbit, then 4V, (y) = N, (7'). There-
fore, we may assume 4.= (a+b;,b).-Let ¢ be a closed walk from (0, 0) to  of length n
which uses 71, - - - , 7 times of generators (1,0), (1, 1), (0, 1),(=1,0), (-1, -1),(0,—1)
respectively. Then,we have the-equations
rm+re—ra—rs=a+b
ro+1r3g—Ts =16 =0>0
r+ro+...+16 ="n
and the number of such ¢ is given by TT;I_T?

Observing that its‘length n must be greater than or equal to a + b, and if
n = a+ b, then r; = a and 7y = b. Therefore, we-have N, (y) =0if n < a + b and
N,(v) = (“;rb) iftn=a+b.

Next we consider the case of n = a+ b+ 1, then we have

ritre—ra—7r5=a+b
7"2+7“37?"577"6:b
ri+re+...+rs=a+b+1
Subtracting the third equation by the first equation above, we obtain r3 + 2ry +
2r5 + rg = 1. Thus
Ty =75 = 0
rn+ro=a+b
r3+reg =1
If a,b # 0, then we have (ri,rq,...,76) = (a + 1,0 —1,1,0,0,0) or (a — 1,b +
1,0,0,0,1). Thus Nogps1 (1) = (a+b+1) () + (571)).

If a=0and b # 0, then ro + 13 — 16 =11 + 79 = b. It implies that r3 = r1 + rg
and 7 + 2rg = 1. Therefore, we have (ry,rs,...,76) = (1,b — 1,1,0,0,0) and
Npj1(v) = b(b+1).

Ifb=0and a # 0, then ro+1r3 = rg and ro+2rs = 1. It implies (r1,7r2,...,76) =
(a—1,1,0,0,0,1) and Ngy1(y) = ala+ 1). O
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For an element ~ of type (a,b), the graph distance of v and the origin is a + b
and we say < is of length a + b. Observe that for a positive integer n, the set of
elements of length n in Z? is

R(n) ={x(n,m),£(n —m,n), £(—m,n —m), where 0 < m < n}

which forms a regular hexagon with perimeter 6n. Let n be the shortest length
among all nonzero elements of I' and Ny be the number of elements in I' of length
n. Ny is an even integer since if «y is of length n so is —v. Since I' is a subgroup
of Z2, the graph distance of any two distinct vertices in I is greater than or equal
to n. Therefore, on the regular hexagon R(n) with perimeter 6n, there are at most
six vertices contained in I'. We conclude that N is equal to 2, 4 or 6 and when
Ny = 6, the six vertices in I' N R(n) are
+(n,m),£(n —m,n) and £ (m,n —m)

for some 0 < m < n.

We define the number Ny/2 to bethe type of I' so that I" is of type 1, 2 or 3.
In the rest of the section, we study that whether the lattices of type 3 could be
uniquely determined by its graph zeta function.

First, we list all I satisfying Vy < 4 upto the action of S5 and their corresponding
zeta functions.

Note that for any-finite index subgroup-I' of Z2, there exist a unique basis of
the form {(a,0), (¢, d)} with a=>¢> 0. Therefore, we obtain the following table of
Ss-orbit of I' (denoted by [I']ss ):

Vo 2
[F]S3 {<(250)7(071)>’<(270)v(171)>}
Type of T type 1
(Zxe))' | (1= u)(1 = 5u)(1 +20 + 5u?)

Vo 3
[[]ss {((3,0),(0,1)),((3,0), (1,1))} ((3,0),(2,1))
Type of T’ type 1 type 3
(Zx. ()| (1=w) (1 =5u)(1+5u?)? | (1—u)(l—>5u)(l+3u+ 5u?)?

Vo 4
[T, ((2,0),(0,2)) | {((2,0),(1,2)),((4,0),(2,1)),((4,0),(3,1))}
Type of T’ type 3 type 2
(Zx, (u) ™ (=14 u) (=14 5u)(1 + 2u + 5u?)3
Vo 4
[F]Sa {<(470)7(0’1)>’<(470)7(171)>}
Type of ' type 1
(Zxp (W)™ | (=1 +u) (=1 + 5u) (1 — 2u + 5u?)%(1 + 2u + 5u?)
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Note that when Vj = 2 or 3, the zeta functions can uniquely determine I". But
when Vjy = 4, there are three type 2 lattice whose zeta function and the zeta function
of the type 3 lattice ((2,0), (0,2)) are the same. In this rest of the section, we study
the case that Vg > 5.

Recall that two elements v; and vy in I' form a reduced basis if v; is a shortest
nonzero element in I' and v, is a shortest element in I' — {Zv;}. When Ny > 2,
I' N R(n) contains a reduced basis {v1,v2}. Furthermore, we can replace I' by
gT" for some g € S5 if necessary, so that we can always assume vy = (n,m) with
0<m< %

Suppose I' is of type 3 with the shortest nonzero elements 4(n,m),+(n —
m,n) and =+ (m,n —m), where 0 < m < Z. In this case, the number of vertices of
Y[‘ is

Vo =n? — nm + m?.
Let )
1 1
10 = (20 - (0)) =gl M),
which can be determined by the zeta function of Y. We shall prove that {T}} can
be used to distinguish- I' from other subgroups.
By the above theorem, we have Tj, = 0 for all k < n and

T, (T 3<;>;

o\ AR, )

Tht1 = 3n(n +1).
Let I be another lattice which has the same zeta function as I'. Therefore, we
have V(T') = Vo(I”) and Ty (T') = Ty (T”) for all k. Especially, the shortest nonzero
elements of I are of length n. Suppose the reduced basis of I is v} = (n,m;) with

0 <m; < % and vy with the first coordinate of v is non-negative.

if m >0,

if m=0,

Case I: T" is of type 3.
As we mentioned earlier, we may assume that the shortest nonzero elements of
I are &(n,m’),£(n—m/,n) and £(m',n—m’), where 0 <m’ < . Then we have

3(:) =T, (I) = T,(I") = 3 (2/)

Since the binomial coefficient f(m) = () is increasing when 0 < m < %, we have
m

m = m/. On the other hand, I" and IV are both generated by their shortest nonzero
elements. We conclude that T' = I".

Case II: TV is of type 2.

In this case, v, = (n,msa), (m2,n) or (n — mg, —ms) for some 0 < my < n.
Observe that if v5, = (n,mg) then vj — vy = (0,m1 — mz) which is a non-zero
vector of length less than or equal to n. On the other hand, (0,m; —ms2) # £v]
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or +v} which is a contraction. Therefore, it is sufficient to consider two sub-cases
vy = (mg,n) or vh = (n —ma, —ms).

Case II-A: v, = (mg,n). In this case, we have
2) n?—nm+m?=Vo()=WT)=n>—mimy = m(n—m)=mims

and

(3) 3(7:2) = T,(I) = T,(I") = (777;‘1) + (;;‘2)

If m = 0, then my; = 0 or my = 0. Suppose m; = 0, then Eq. (3) becomes

()=

We conclude that n = 2 and ms = 1 so that Vo(I") = Vp(IV) = 4.

Assume mo = 0, then similar to the case m; = 0, we have n = 2 and m; = 1 so
that Vp(T') = Vo(I") = 4. The two cases contradict to our assumption.

Now suppose m > 0. If one of m; and ms is less than or equal to m, then by
Eq.(2), the other one is greater than or-equal to n.—m. Since m < §, in this case,

T s )

which contradicts to Eq.(3). Therefore, we have m < my,ms < n — m. Next we
consider the following two.sub-cases.
Case II-A-(1): Suppose there is no element of length n + 1'in I'. Then

(4) 3(n+1)[<m’11)+( 3 )]:Tn+1(1“):TnH(F’):(n—i—l)[A—i-B].

m+1

where A = (mln_l) + (m1"+1),B 3 (m:—1) + (mzn+1)'

Applying Pascard identity to 2 Eq.(3) +nJ1r1 Eq.(4), we obtain

8 ()

On the other hand,
n+2\  (n+2)(n+1) n
m+1) (m+Dn-m+1)\m/)

Therefore, together with Eq.(3) and Eq.(5), we have

O G ) * ()]
(ml(i Jlr)(27)1(ﬁ :rnll)Jr 1) (77:1) " (m2(i Jlr)i)l(? :%21)+ 1) (“7;2)
Observe that the denominator in the above is of the form

2

n\2 n
Ma)=(@+Dm-z+1)=—(e-52) + 2 4n+1

Thus,
(7) h(z) < f(y) if ’x—g’>‘y—g‘

Therefore, h(m) < h(my), h(msg) and the left hand side of the above equation is
greater than the right hand side, which is a contradiction.
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Case II-A-(2): Suppose there is some element of I of length n 4+ 1. We need the
following lemma.

Lemma 7.1. The shortest non-zero elements in I — {£(n,m1),x(maq,n)} are
+(n — mg,mp — n).

Proof. Observe that the length of (n — mg,m; — n) is 2n — my — my. Suppose
x = a(n,my) + b(n, msy) is the desired element in IV — {+(n, m1), =(ma,n)}, where
a,b € Z. If one of a and b is equal to zero or both a and b are positive, then the
length of > 2n > 2n — my — mo.

Now suppose ab < 0. Without loss of generality, we may assume that a >0 >0
and |a| > |b], then = (a + b)(n, m1) — b(n — ma, m; —n) which length is bounded
by (a + b)n — b(n — ma).

If a+b >0, then (a 4+ b)n —b(n —msg) > n+ (n—ms) > 2n —my — ma.

Assume a+b = 0, then z = a(n—ma, m1—n) is length a(2n—m; —ms). Hence the
shortest non-zero elements in IV — {£(n,mg);4(m2,n)} are £(n—mg,m; —n). O

In this case, the above lemma implies 2n— my —ms = n + 1 or equivalently
mo = n—my — 1. Especially, we have (JLLI) + (nf;) = (n?j'_‘_ll) The same computation
in Eq.(4) as the previous case provides

(n+2)m+1) 1Y v (nt2)(n+1) n
(m+1)(n—m+1) (ml + 1) To(n —my)(my +2) (ml + 1)
(n+2)(n+1) n
(i + 1)(n Sy 1) (m)
1 n+1
T n+1 (m1 + 1)
Here the extra term ¢omes from the contribution of length 7+ 1 elements. Dividing

the above equation by (Tsl':_ll), we obtain

(n+2)(n+1)" £ [ T (m+2) (n+2) 1
(m+n—-—m+1) (m-—mi+1) (mi+2) (n+1)
On the other hand, we have m(n —m) = myms = my(n —my — 1) and
n+2)n+1)  (+2)n+1) (n+2)(n+1)
(m+1(n—m+1) mn-m)+n+1 myn—mi—1)+n+1
Consider that
(n+2)(n+1) (n+2)  (n+2) 1

min—mi—1)+n+1 (n—mi+1) (mi+2) (n+1)

Ey + Eoyn + Esn? + Eqn® +n?
2+m)(1+n)(1—ms+n)(1—mig—m}+n+mn)

where
Fi1=—-44+Tm; + 6m? — 2m:{’ — m‘ll; FEy=—-T4+2m; + 11m§ + 2m‘;’;
By =—1—Tm;+m?; FE;=3-2m;.
Let
(8) f(z) = By + Eyx + E3n® + Eya® + 2.
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then
9) f'(x) = =7+ 2my +11m3 +2m?3 — 2z — 1dmyz + 2m3z + 92 — 6myz? 4 42°.

(10) f(x) = =2 — 14mq + 2m? + 18z — 12myx + 1222

(11) F(x) = 18 — 12my + 24

Recall that 1 < my < 4. Since f”(x) > 0,Yz > 2my, f”(z) is increasing when

x > 2m;. Together with
f"(2m1) = —2 + 22m; + 26m? > 0,
we have f’(z) is increasing when x > 2m,. Moreover,
f(2my) = =7 —2my 4+ 19m? 4 14m? > 0.

Therefore, f(x) is increasing when x > 2m;. On the other hand,

f@2my) = —4 —Tmy + 6mi4=16m3 + Tmi > 0,
we have f(z) > 0,Vx > 2my and. it contradicts-to

n+2)m+l) (a+2) (n42) 1

(m+D(m=m+D—m—=my+1) (mi+2) (n+1)

Case II-B: v}, =«(n — ma, —ms). Similar to Case II-A, we have

(12) 3(2‘1) N (721) + (WD

In this case, we have the same conclusion as the-case II-A=(1) if we assume that
there is no element of length n +1. Therefore, it remains to consider the case that
there are some elementsof I of length (n + 1).

Lemma 7.2. The shortest non-zero elements in T — {£(n, m1), £(n — ma, —ma)}
are £(mg, m1 + mo).

Proof. When there is some element (z,y) in IV with length n+1, (z,y) = a(n,m1)+
b(n — ma, —mgy) for some non-zero integers a and b. It implies that 0 < (a + b)n —
bmo <n+1and 0 < amj; —bms < n—+ 1. Therefore, (x,y) may be (ms, m; + mo)
or (mg — n,my + 2my).

Since the length of (mq, m1+ms) is mi+mq and the length of (me—mn, mi+2ms,)
is n 4+ my 4+ ma, we hence the shortest non-zero elements in I'V — {£(n, my), +(n —
ma, —ma)} are +(ma, my + ma).

Now we return to show that there does not exist m; and ms such that Eq.(12)
can be hold.

From above lemma and Eq(3), the equation T}, 1(I") = T,,+-1(I") can be written
as

a1 ) = s o) * ()
(n+2)(n+1) <n>+( (n+2)(n+1) (n>+ 1 (m1+m2

(m1+1)(n—my +1) \my n—ms+1)(ma+ 1) \ma n+1 mo

)
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where my + mo = n + 1. Therefore, we have

(n+2)(n+1) (n+1):( (n+2)(n+1) (n)

(m+1(n—m+1)\ m my + 1)(n—mq + 1) \my
(n+2)(n+1) n 1 (n+1
po— +
my(n—mg+2) \my — 1 n+1\ my
and it implies that

(n+2)(n+1)  (n+2) (n+2) 1
min—mi+1)+n+1 (mi+1) (n—ma+2) n+1

It is equivalent to

F1 + an + F3n2 + F4n3
(13) —0,
I+m)(1+n)(2—mp+n)(mi(n—m3+1)+n+1)

where
Fy =44 Tmy — 6m? —2m +mi; - Fy =8+ 15m; — 6m? — 2m3;
F3=5+10m; —m3; Fy=142m;.
Let
(14) g(x) =Fr + Fox " Fsr? + Fyz3)
Therefore,

(15)  ¢'(z) = 8 +15m; — 6m3 — 2mS + 10+ 20m,z ~ 2m3% + 32° + 6mz°.

(16) g"(x) = 10 +20m; — 2m7 4+ (6 + 12m,)a.
Recall that 1 <my; < %

Since ¢”’(x) is increasing and
g"(2m;) = 10 + 32my + 22m? >0,
we have that ¢’(z) is increasing when-a->-2m;.-Moreover, since
g (2my) = 84+ 35my +46m7 + 18m3 > 0,
it implies that g(z) is increasing when x > 2m;. Together with
g(2my) = 4+ 23my + 44m? + 34m? + 9Im] > 0,

it contradicts to Eq.(13). Hence the underlying graphs corresponding to the lattice
of type 3 and type 2 can be distinguished if V5 > 4.

Case III: I is of type 1.

In this case, the length of v} is greater than n. From Theorem 7.1, we have

(17) 3(;) =T,() = T,,(I") = (er)

which implies my > 1 and m1 > m.
Case III-A: Suppose there is no element of length n + 1 in T".
If m = 0, from Theorem 7.1, we have

(ﬂ?) =3  and  3n(n+1)=(n+1) Kmln_ 1) + <m1"+ 1)} .

Therefore, n = 3,m; = 1 and it contradicts to 9 = (g) + (g)
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If m # 0, from Theorem 7.1, we have
(18)

3(n-+1) [(mi 1) + (mi 1)} = T 1 (D) = Tt (TV) = (n+1) Kmln_ 1) + (m1”+ 1)} .

Applying Pascard identity to 2 Eq.(17) + %H Eq.(18), we have

1) (oit) = (0 50)

Together with Eq.(17) and Eq.(19), we have

(n+2)(n+1) ny (n+2)(n+1) n
(m+1)(n—m+1) <m1>  (mp+1)(n—my +1) <m1>

and we get a contradiction from Eq.(7) and Eq.(17).

Case III-B: Suppose there is an element of length n + 1 in I".

In this case, v5 may be equalto (n+1,mg), (ma,n+1) or (n+1—mg, —mg) for
some 0 < ma < n+ 1. Observe thatif v5 ="(n+1,my), then v —v| = (1, mg —my)
which is a nonzero vector of length less than n'< 1 and not equal to +vj. It
contradicts to that ["is of type 1 and +u{ are the two shortest elements in I”.
Therefore, we just need to consider the case vl = (mg, n+1).or (n+1—mg, —ms).

Suppose my = 0ulfvh = (0,n+1), then n?+n = Vo(I'") =V (T') = n? —nm+m?
and it implies n = m(m =mn); which contradicts to the assumption that 0 <m < 3.

If vj, = (n + 1,0), then similar to the case wh = (n + 1,msz) above, we have a
contradiction.

Assume mg = w4 '1. If v = (n+1,n+ 1), then v, —vp = (1,n + 1 — my),
whose length is less than or equal to n since my >1: It contradicts to that +v are
the only two shortest elements in I'" whose lengths are n. If v = (0, —n — 1), then
n? +n = Vo(I") = Vo(T') = n?> — nm + m? and it contradicts to our assumption
that 0 <m < 3. Therefore, we.conclude 1 < my < n.

Lemma 7.3. There is no element of lengthm + 1 in TV — {£+v}}.

Proof. Suppose there is an element v} of length n 4+ 1 in I'. We may assume
that the first coordinate of v} is non-negative. Then v4 is equal to (ms3,n + 1) or
(n+ 1 — ms,—mg) for some 1 < m3 < n. Note that both v} and v} are of length
n + 1 so we can we assume mo < mg and switch v5 and vj if necessary.

Recall that v5 = (ma,n+1) or (n+ 1 —mz, —ms2) and we shall prove the lemma
holds for both cases. First, we assume v = (mg,n+1), then v —v5 = (mg—ma,0)
or (n+1—mg—ms, mg—mz). For the case v§ —v) = (m3—maq, 0), its length is less
or equal to n, which contradicts to that +v] are the only two shortest elements in
I of length n. Now we consider v§ — v} = (n+1—mg—ms,mg—ms). Observe that
if ma +mg < n+ 1, then the length of v§ — v4 is max{n + 1 —mg —ms, ms — ma}.
If we assume mg + ms > n + 1, then the length of vj — v} is 2ms — n — 1. The
length of v, — v4 in the two cases are of less than n. It contradicts to that +v} are
the shortest elements in IV of length n. Hence there is no element of length n + 1
in IV — {£v}}. O

Case III-B-(1): v4 = (m2,n + 1). In this case, we have
(20) n? —nm +m? = Vo(T) = Vo (I') = n® + n — mymy
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and
length of v] —vh=2n—m; —ma+1>n+1
ie.
(21) n > my + ma.
From Eq.(20) and Eq.(21), we have
m? —nm =n—myms >n—mi(n—my) :n—mln—i—m%

and it implies
(22) m? —m? = (m+mi)(m —my) > n(l —my +m).
It contradicts to that m,mq < %

Case III-B-(2): v5 = (n+ 1 — mg, —ms). In this case, we have

n+2 , n+2 1 n+1
3 = Ty 1 (D) = Tyt (IV) = .
(2%3) = Ton®) = Toa) = (242 )+ g (M4 1)

It is equivalent to
(23)

(m(j- Y)?)ﬁ :11+) 0 (51) & (m1(i T)(zi(i :111 )+ 0 (ﬁl) * #24—1 (122) '

Since there is no element of length less.-than or equal to n and

(24) length of vj— vh='mq +ms >n +1,

we have

n+1 n \oo n+1 | n—+1 < n+ 1 - n+1 n
n—mo+1\ms 70 \ mo T \n—mag+1 mq T n—mi+1\m

and implies

(25) 1 n < 1 n
n-m2+1 mo n—m1+1 mi

On the other hand, together with thefact-0 < m <m; < 7, we have
(n+2)(n+1) (n+2)(n+1)

(m+1)(n-—m+1) (m+1)(n—m;+1)

_ (n42)(n+ Dmi(n —mi) —m(n —m)]

(m+1)n—m+1)(mi+1)(n—m;+1)
(n+2)(n+1)[mi(n —m1) — m(n —mq)]
(m+1)(n-—m+1)(mi+1)(n—mi+1)

(n+2)(n+1)(my —m)(n —mq)
(m+1D(n—m+1)(mi+1)(n—mq +1)
1
~ (n—my+1)

Here, the last inequality is followed by the fact that (n+2)(n+1) > (m1 +1)(n —
m+1),n—m; >m+1and m; —m > 1.

It contradicts to the inequality

(n+2)(n+1) (n+2)(n+1) 1
(m+D(n—-—m+1)  (m+)n-—m+1) n—mp+1

We summarize the above discussions as
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Theorem 7.2. IfT is of type 3 and Vo(T') > 4, then Yr can be uniquely determined
by it’s zeta function.

To prove the conjecture (2), we have to compare the zeta functions of I' of type
1 and type 2, which is more complicated. We will finish it in the future works.
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