

國 立 交 通 大 學

資訊工程系

碩 士 論 文

高度整合非對稱多處理核心工作排程之

設計與分析

Design and Analysis of a Unified Asymmetric
Multiprocessors Scheduler

研 究 生：王志鵬

指導教授：蔡淳仁 博士

中 華 民 國 九 十 四 年 六 月

 II

高度整合非對稱多處理核心工作排程之設計與分析

Design and Analysis of a Unified Asymmetric Multiprocessors Scheduler

研 究 生：王志鵬 Student：Chih Peng, Wang

指導教授：蔡淳仁 Advisor：Chun Jen, Tsai

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 III

國 立 交 通 大 學

博碩士論文全文電子檔著作權授權書

(提供授權人裝訂於紙本論文書名頁之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系所 ＿＿

＿＿＿＿組， 93 學年度第_2_學期取得碩士學位之論文。

論文題目：高度整合非對稱多處理核心工作排程之設計與分析

指導教授：蔡淳仁 博士

■ 同意 □不同意

本人茲將本著作，以非專屬、無償授權國立交通大學與台灣聯合大學系統圖書館：

基於推動讀者間「資源共享、互惠合作」之理念，與回饋社會與學術研究之目的，

國立交通大學及台灣聯合大學系統圖書館得不限地域、時間與次數，以紙本、光

碟或數位化等各種方法收錄、重製與利用；於著作權法合理使用範圍內，讀者得

進行線上檢索、閱覽、下載或列印。

論文全文上載網路公開之範圍及時間：

本校及台灣聯合大學系統區域網路 ■ 中華民國 94 年 8 月 15 日公開

校外網際網路 ■ 中華民國 94 年 8 月 15 日公開

授 權 人：王志鵬

親筆簽名：______________________

中華民國 94 年 8 月 3 日

 IV

國 立 交 通 大 學

博碩士紙本論文著作權授權書

(提供授權人裝訂於全文電子檔授權書之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系所

＿＿＿＿＿＿組， 93 學年度第__2__學期取得碩士學位之論文。

論文題目：高度整合非對稱多處理核心工作排程之設計與分析

指導教授：蔡淳仁 博士

■ 同意

本人茲將本著作，以非專屬、無償授權國立交通大學，基於推動讀者間「資

源共享、互惠合作」之理念，與回饋社會與學術研究之目的，國立交通大學

圖書館得以紙本收錄、重製與利用；於著作權法合理使用範圍內，讀者得進

行閱覽或列印。

本論文為本人向經濟部智慧局申請專利(未申請者本條款請不予理會)的附

件之一，申請文號為：____________________，請將論文延至____年____

月____日再公開。

授 權 人：王志鵬

親筆簽名：______________________

中華民國 94 年 8 月 3 日

 V

國家圖書館博碩士論文電子檔案上網授權書

ID:GT009217605

本授權書所授權之論文為授權人在國立交通大學 電機資訊 學院 資訊工程 系

所 _________ 組 _93_學年度第_2_學期取得碩士學位之論文。

論文題目：高度整合非對稱多處理核心工作排程之設計與分析

指導教授：蔡淳仁 博士

茲同意將授權人擁有著作權之上列論文全文（含摘要），非專屬、無償授權國家

圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數位化方式將上列

論文重製，並得將數位化之上列論文及論文電子檔以上載網路方式，提供讀者

基於個人非營利性質之線上檢索、閱覽、下載或列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文，應依著作權法相關規定辦理。

授權人：王志鵬

親筆簽名：_______________

民國 94 年 8 月 3 日

 VI

國 立 交 通 大 學

論 文 口 試 委 員 會 審 定 書

本校 資訊工程系 碩士班 王志鵬 君

 所提論文:

 Design and Analysis of a Unified Asymmetric

Multiprocessors Scheduler

高度整合非對稱多處理核心工作排程之設計與分析

合於碩士資格水準、業經本委員會評審認可。

口試委員：

指導教授：

系主任：

中 華 民 國 九十四 年 六 月 二十二 日

 i

高度整合非對稱多處理核心工作排程之設計與分析

學生：王志鵬 指導教授：蔡淳仁 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

現今大多數嵌入式多媒體平台使用非對稱多處理核心平台。一個非對稱

多處理核心通常包含一個通用型微處理器以及一個或多個數位訊號處理

器。針對這樣的系統，目前大多數的工作分配是採用在開發時的靜態分配。

然而在新世代多媒體處理系統中的多變性，當運作時的系統狀態與開發時

所假設的系統狀態有所差異時，整體系統效能可能會有所降低。本論文提

出一個在非對稱多處理核心系統上的動態高度整合工作排程，藉由此工作

排程可以獲得較佳的系統效能。新的程式寫作方法類似多執行緒的程式寫

作。初步的結果顯示本架構非常適合複雜的嵌入式系統。

 ii

Design and Analysis of a Unified Asymmetric

Multiprocessors Scheduler

Student: Chih Peng, Wang Advisor: Dr. Chun Jen, Tsai

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract
Most embedded multimedia devices today uses asymmetric multiprocessor (AMP)

platforms. An AMP is usually composed of a General Purpose Processor (GPP) core and one

or more Digital Signal Processor (DSP) cores. For such systems, a common practice is to

perform static task partition during development time. However, due to the dynamic nature of

new generations of multimedia embedded systems, the performance of the system maybe

hindered greatly when the runtime system state is different from the assumed static state at

development time. This thesis proposes a dynamic asymmetric multiprocessor scheduling

framework that can reach better runtime system performance by using a single unified task

scheduler. A new programming practice similar to multi-thread programming is also proposed

in order to facilitate this approach. Initial results show that this framework is very suitable for

complex embedded systems.

 iii

誌 謝

 在這篇論文的寫作過程中，感謝許多人對我的支持與幫助。首先要感謝的

是我的指導教授蔡淳仁博士，感謝教授在研究過程中提供了完善的設備資源以及

寶貴的經驗與指導，更在教授的身上學到許多研究的方法以及態度。感謝家人在

研究過程中無論是精神上或是經濟上的幫助，讓我可以專心的投入研究工作，努

力學習。感謝同學以及朋友的支持，讓我在研究上遭遇挫折或阻礙時，能夠勇於

面對挑戰。最後感謝交通大學資訊工程系，這裡提供了一個完善的研究環境，讓

我順利完成學業並成長，讓我更有信心面對未來的挑戰。

 iv

Table of Content
摘要 ... i

Abstract... ii

誌謝 ... iii

Table of Content ... iv

List of Figures ..v

List of Tables... vii

1. Introduction ... 1

2. Previous Work ... 2

3. Design of The Proposed AMP Scheduler.. 5

3.1. The Proposed AMP Scheduler .. 5

3.1.1. Power Consumption.. 7

3.1.2. Execution Time... 8

3.1.3. Deadline Fulfillness ...11

3.1.4. Loading Balance..12

4. Implementation Details of The AMP Scheduler...15

4.1. Introduction to OMAP 5912 ..15

4.1.1. OMAP 5912 Application Processor..15

4.1.2. OMAP 5912 Memory Map ..17

4.1.3. Memory Traffic Controller...18

4.2. Introduction to OMAP 5912 Starter Kit ...18

4.3. Introduction to DSP Gateway ..19

4.3.1. DSP Gateway Linux Device Driver ...20

4.3.2. DSP Gateway DSP/BIOS Kernel ...21

4.3.3. Inter-Processor Communication...21

4.4. Implementation ...23

5. Experimental Results and Analysis ...33

5.1. Dynamically Task Dispatching Rate Experiment ...33

5.2. M4V Interpolation Module Experiment ...35

5.3. Dynamic Task Dispatching – No OS Environment...36

5.4. DSP Gateway Data Transfer Experiment ...37

6. Conclusion and Future Work...42

7. References ..43

 v

List of Figures

Figure 1. The Proposed AMP Scheduler ...6

Figure 2. Task Dispatch Example..9

Figure 3. Task Dispatch Example – The Best Ratio...9

Figure 4. Rate Transition Diagram.. 13

Figure 5. OMAP 5912 Functional Block Diagram .. 16

Figure 6. SDRAM Mapping for DSP Space .. 18

Figure 7. OMAP 5912 Starter Kit ... 19

Figure 8. DSP Gateway Driver Block Chart.. 20

Figure 9. DSP Software Block Chart... 21

Figure 10. Mailbox ... 22

Figure 11. IPBUF Structure .. 22

Figure 12. DSP Dynamic Loading Mechanism Block Chart.. 23

Figure 13. The Dsp_dld with Task Registrar ... 24

Figure 14. Pure ARM MPEG 4 Video Codec Interpolation Module 27

Figure 15. Active Sending DSP Task – Read Before Sending.. 28

Figure 16. Active Sending DSP Task – Read After Sending .. 28

Figure 17. Passive Receiving DSP Task .. 28

Figure 18. Task Information Register.. 28

Figure 19. Dual Mode M4V Interpolate with Single-Thread ... 29

Figure 20. Dual Mode M4V Interpolate with Multi-Thread... 29

Figure 21. Multi-Thread M4V Interpolate Module – GPP Thread 30

Figure 22. Multi-Thread M4V Interpolate Module – DSP Thread 30

Figure 23. Multi-Thread M4V Interpolate Module – DSP Data Listener 31

Figure 24. Multi-Thread M4V Interpolate Module – Control Thread 31

Figure 25. Input/Output of Interpolation ... 33

Figure 26. GPP to DSP Transfer Rate.. 37

Figure 27. GPP to DSP to GPP Transfer Rate.. 38

Figure 28. DSP Gateway Invoke Times... 38

Figure 29. DSP Gateway Different Size Transfer .. 39

Figure 30. Linux System Call ... 40

 vi

Figure 31. Read() system call flow ... 41

 vii

List of Tables

Table 1. Unbalance Penalty Example .. 10

Table 2. Tasks Information.. 11

Table 3. OMAP 5912 DSP Internal RAM Memories... 17

Table 4. AMP Control Interface Command – Task Operation.. 25

Table 5. Task_info Data Structure ... 25

Table 6. AMP Control Interface Command – Lambda Operation 26

Table 7. λ Set.. 34

Table 8. Task Information In Experiment .. 34

Table 9. Task Dispatching Result .. 34

Table 10. M4V Interpolation Module Experiment Result .. 35

Table 11. Time per Computing Unit .. 36

Table 12. Time per Computing Unit Ratio .. 36

Table 13. Experiment Group Setting ... 37

 1

1. Introduction

The complexity of embedded system grows rapidly due to new mobile multimedia

applications. Uniprocessor platforms are not suitable for these applications since they

require high core frequency in order to handle massive multimedia data processing tasks.

However, higher core frequency consumes more power and produces more heat, which is

inapt for small form factor embedded systems. Therefore, a common practice for mobile

devices is to adopt multiprocessor solutions to increase system performance.

In particular, asymmetric multiprocessor architecture has been widely used for

embedded systems development (for example, for cell phones). In this architecture, a

general purpose RISC processor (GPP) core and a digital signal processor (DSP) core are

integrated into a system-on-chip (SoC), which can handle embedded system tasks

efficiently, especially for multimedia applications. However, existing real-time operating

systems for such architecture typically adopt a loosely-coupled approach. Task partitions

between the two cores are typically done offline and two separate schedulers are employed

to perform task scheduling for the two cores independently. This paradigm works properly

for traditional mobile applications where the GPP core is typically slow and functionally

limited and the application tasks can be put into a simple foreground/background working

model.

New generations of multimedia applications and devices make this kind of

loosely-coupled system design obsolete. There are at least three reasons that call for a

new approach for real-time scheduler designs. First of all, new GPPs today are much

more powerful than old ones. Many of them even include special instructions for DSP

tasks. Secondly, multimedia applications has become so complicated and dynamic that

run-time load balance between the GPP core and the DSP core are crucial for system

performance and power consumption reduction. Thirdly, many multimedia applications

are more memory-centric than computation-centric. Quite often multimedia data are

encapsulated in transport streams, which are parsed out by the GPP. Depending on the

inter-processor communication cost at runtime, it may not be possible to determine offline

whether the GPP should pass the data over to the DSP for computation.

 2

2. Previous Work

There are many researches on schedulers for multiprocessor architecture in last twenty

years. Until now, most multiprocessors scheduling algorithms concentrated on systems of

symmetric multiprocessors (SMP) and static tasks partition ([1], [4], [5], [6], [7], [8], [9],

[12], [17], [22]). Multiprocessor scheduling techniques in homogeneous multiprocessor

platforms can be classified into two general class, partition and global scheduling. Under

partition scheduling, each processor has its own task queue, including ready and wait queue,

and schedules tasks with local priority space independently from any other processors.

Each task is assigned to a particular processor when arriving, ends at the same processor,

and will not migrate to other processors during its life cycle. Unlike partition scheduling,

global scheduling stores all ready tasks in a single ready queue, and uses a single

system-wide priority space. Whenever the scheduler using global scheduling is invoked, the

highest-priority task is selected from global ready queue and executed regardless of which

processor is being scheduled. These have worked well for existing homogeneous

multiprocessors platforms.

A symmetric multiprocessor system can provide better overall system performance than

a uniprocessor system [18]. With the gaining popularity of multimedia devices in recent

years, the focus has been shifted to asymmetric multiprocessor (AMP) systems. The main

reason why AMP systems are used for embedded devices is because that they provide the

best performance/clock ratio for the execution of a wide variety of tasks.

Wendorf et al. [15] proposed a number of scheduling policies, ranging from asymmetric

master/slave scheduling to symmetric scheduling, for multiprocessor platforms. According

to their experiments, “OS Preempt” policy provides the best performance in almost all

situations for AMP systems. Moreover, an AMP system using the OS Preempt scheduling

policy can perform as good as a fully symmetric system. Their results also indicate that the

overhead of context switching and shared resource contention in asymmetric systems are

relatively minor factors in overall system performance.

A simple model of master/slave architecture is presented by Greenberg and Wright in [2]

along with two scheduling algorithms. In this proposal, a subset of the system calls, which

are referred to as the kernel calls, can only be executed on the master. The remaining system

 3

calls are referred to as the user calls. When a slave process makes a kernel call, the slave

processor returns the process to the master, rather than services the call by itself. The kernel

calls are serialized and may not be independent since these calls may update data that

influence the whole system. In the proposed design, jobs not running on any processors are

waiting in one of the two queues, the master queue or the slave queue. Jobs in the master

queue are all in kernel mode and jobs in the slave queue are all in user mode. A slave

processor can take jobs from the slave queue only and the master processor can take jobs

from either queue. Two scheduling algorithms are proposed to balance between

queue-switching overhead reduction and scheduling flexibility. They also proposed a way to

find P*, the optimal number of slave processors in a single-master processor environment.

In [3], Avritzer et al. developed an analytical performance modeling approach for load

sharing policies in highly asymmetric systems that schedule jobs based on global system

state. In the system described in [3], hosts have many different speeds which are subject to

heterogeneous workloads. They also introduced a threshold type load-sharing algorithm for

distributed asymmetric systems, the algorithm varies the thresholds dynamically, adjusting

them to the load in order to keep an optimal number of tasks in each hosts. In this paper, they

modeled the job routing algorithms by building a global state Markov chain and computing

upper and lower bounds on the total system average delay. They concluded that carefully

tuned algorithms for load sharing in the asymmetric environment provide a significant

improvement in performance over simpler algorithms.

For resource sharing, Saewong and Rajkumar [25] proposed the use of a Cooperative

Scheduling Server (CSS), which is a dedicated server that manages one specific controlled

resource while using a controlling resource, to control multiple resources access from a

single CSS. A CSS is created on a controlling resource (such as a CPU) to handle all local

requests for a controlled resource (such as disk access). The CSS reserves a sufficient amount

of capacity for controlling resources as needed to fulfill the obligations it has for accessing

controlled resources. Because there are scheduling policies for both controlling and

controlled resources, co-scheduling design must be employed. Some important

considerations of the co-scheduling design in [25] are as follows: 1) scheduling mismatch

due to heterogeneity of resource scheduling policies, 2) conjunctive admission control, 3)

resource synchronization, and 4) efficient resource utilization.

For embedded multimedia applications, such as 3G mobile phones, both control

operations and massive data processing operations are very important. There are some

architecture proposals ([16], [23]) efficiently integrate these two different types of computing

 4

units into one AMP SoC. However, most of these systems are designed in a loosely-coupled

manner. For example, Gai et al. [24] discussed the problem of multiprocessors scheduling

for asymmetric architectures composed by a general purpose processor (GPP) and a digital

signal processor (DSP). Two task queues are used in their design, one for regular tasks (for

GPP) and the other for DSP tasks. When the DSP is idle, the scheduler always selects the task

with higher priority between the tasks at the head of the two queues. When the DSP is active,

the scheduler only selects the highest priority task from the regular queue.

In the next section, we will propose a tightly-coupled working model and the associated

scheduler design.

 5

3. Design of The Proposed AMP Scheduler

3.1. The Proposed AMP Scheduler
The key concept of the proposed AMP scheduler is to facilitate a tightly-coupled

working model. Without loss of generality, assume that there is one GPP core and one DSP

core in the target system. In the tightly-coupled model, a task can be assigned to either the

GPP or DSP at runtime. When a new task arrives, the unified scheduler will oversee the

runtime status of both processor cores and decide which core is more suitable for executing

the new task. In our design, the scheduler computes a cost function based on power

consumption, computation complexity, deadline fulfillness, and loading balance in order to

make a decision for task dispatching.

Since different processor cores execute different binaries, to enable the proposed

tightly-coupled model, a new programming practice must be adopted. The new

programming model is somewhat similar to single thread vs. multi-thread programming. In

the OS, new system service calls are provided for the application to register dual-core

versions of executable images into the kernel at runtime. Note that registration of a dual-core

executable image does not create a task and enter it into the task queues. Another API must

be called explicitly to start a (dual-core) task, which will enter the single universal task queue.

This is similar to explicitly calling a system service to start a new thread of a process. The

unified scheduler will then dispatch the task either to the GPP or the DSP based on a cost

function.

Figure 1 shows the proposed AMP scheduler. It is composed of a cost function evaluator,

an AMP scheduler, a version registrar, a resource monitor, and the task interface.

 6

Version
Registrar

Cost Function &
AMP Scheduler

Resource
Monitor

Task Interface Task 1
Node

Task 2
Node

Task 3
Node

Task 1
Node

Task 3
Node

GPP

Executable Image
Registration InterfaceScheduler Interface Task Name

Deadline
Task Name

Version

User Application Boot Init

DSP

RM
Node

RM
Node

DSP Gateway

GPP Version
Table

DSP Version
Table

Application
Interface

Asymmetric
Scheduler

Run-Time
Task Table

Task 1
Task 2
Task 3

Figure 1. The Proposed AMP Scheduler

The AMP scheduler dispatches a task based on the cost function value and manages

running tasks, the version registrar records available executable images (refer to as services

in this paper) in the GPP version table and the DSP version table, and the resource monitor

watches GPP-side and DSP-side status and provides information for the cost function

evaluator. The run-time task table records information and status of tasks running on GPP

and DSP-side.

The task interface is an interface between the proposed AMP scheduler and the

processing cores. In the proposed design, there are three types of task nodes, the GPP task

node, the DSP task node, and the system task node. The GPP task node provides APIs for

managing tasks running on the GPP, the DSP task node provides APIs for managing tasks

running on the DSP, and the system task node provides APIs for retrieving and monitoring

system status.

Equation (1) shows the cost function used by the proposed scheduler to choose the target

processor for a task.

 7

In equation (1), Cpower is the power consumption cost of computation and data accessing

on the GPP or the DSP, Cexecution is the task execution time on the GPP or the DSP, Cdeadline is

deadline fulfillness based on the task execution time and the deadline, and Cld_bal is the load

balance factor based on the task queue lengths on the GPP-side and the DSP-side.

By selecting different values of λ’s in equation (1), the cost function can adapt to

different system requirements. For example, if the remaining power capacity is low, we can

increase λ in order to save more power at the cost of slower response time and poor deadline

fulfillness. In the next subsections, we will describe the design of the cost function in detail.

3.1.1. Power Consumption
Power consumption is a major factor in embedded system design because power is the

most critical resource for mobile applications. Multiprocessor platforms often have the

advantage of being more energy efficient than uniprocessor platforms [31] at same

performance.

Effective power usage is not only an important issue in hardware design but also in

software design. In the proposed design, power consumption of a task can be further divided

into that for setup, computation, and data access. Equation (2) tries to capture these factors:

In equation (2), PCore_INIT is the power consumption required to setup the task on a

processing core (either the GPP or the DSP), PCore is the power consumption for computation

on the core, and PCore_DA is the power consumption for data access from the core. It is

important to note the necessity of PCore_INIT in the design. Before executing a task, the system

must establish the communication channel between the processor cores, register the task and

allocate necessary run-time resources. The power consumption for all these operations may

not be negligible and are summarized by PCore_INIT.

C=λ1 Cpower+λ2 Cexecution+λ3 Cdeadlines+λ4 Cld_bal (1)

Cpower = PCore_INIT + PCore + PCore_DA (2)

 8

3.1.2. Execution Time
Similar to the cost of power consumption, the cost for computation can be divided into

that for initialization, computation, and data access. In addition, on some systems, if a task

is dispatched to DSP, then there is additional time to deal with channel setup and data

communication between GPP and DSP. However, this cost can be rolled into the setup time

for DSP. The general cost function of execution time on a core for a task is summarized in

equation (3).

TCore_INIT is the initial setup time of a task on either the GPP or the DSP core. Besides

allocating runtime resources, including memory and task node, for the task, TCore_INIT also

includes communication channel setup and configuration time. TCore is the computing time of

a task on a core. This is task-specific. Finally, TCore_DA is the data access time. It includes

data transfer time between DSP and GPP if necessary, and memory access time during

processing.

In order to take advantage of multiprocessor platform, “Unbalance Penalty” is

introduced for balancing task dispatching ratio dynamically.

GPP DSP

120

GPP DSP

80

Cexecution = TCore_INIT + TCore + TCore_DA (3)

 9

Figure 2. Task Dispatch Example

GPP DSP

40

Figure 3. Task Dispatch Example – The Best Ratio

Assuming that there are five units of tasks, the DSP version execution time of the task

is 10 per unit and the ARM version is 40 per unit. Figure 2 shows non-optimal dispatching

ratios. Although these two examples can take advantage of multiprocessors and reach total

computation time, they are not the optimal schedules. Figure 3 shows optimal task

dispatching ratio. The task can achieve the lowest response time when the task ratio is

inversely proportional to the ratio of the DSP and the ARM execution time of the task. The

optimal dispatching ratio is 4 in this example. Most problems related to multitasking

scheduling on multiprocessor systems have been proven to be NP-complete ([13], [14], [18],

[19]). Under multitasking environment, the “Unbalance Penalty” method can achieve

optimal dispatching ratio for each task, but overall scheduling decision may not optimal.

The “Unbalance Penalty” method is sub-optimal solution under multitasking environment.

 10

401006-1

4285-2

4050405-1

8184-2

4040304-1

20

10

0

Unbalance
Penalty

40

40

40

GPP Cost

30

20

10

DSP Cost

7

6

5

4 (Optimal Ratio)

Dynamic Ratio

1

1

1

1

GPP Count

7

6

5

4

DSP Count

3-2

1-2

2-2

3-1

2-1

1-1

Init

Stage

401006-1

4285-2

4050405-1

8184-2

4040304-1

20

10

0

Unbalance
Penalty

40

40

40

GPP Cost

30

20

10

DSP Cost

7

6

5

4 (Optimal Ratio)

Dynamic Ratio

1

1

1

1

GPP Count

7

6

5

4

DSP Count

3-2

1-2

2-2

3-1

2-1

1-1

Init

Stage

Table 1. Unbalance Penalty Example

Table 1 shows an example of unbalance penalty works. Note that this example

assumes the cost function only concerns about the task execution time. The task can obtain

the minimum response time if the DSP to ARM dispatching ratio is 4. Using unbalance

penalty mechanism, the cost function can maintain a better dispatching ratio. The second

row in Table 1 is the initial stage. The cost function will record the optimal dispatching

ratio in the task table. The stage 1-1 shows there is a task unit calls the cost function. There

is no unbalance penalty for this task unit since the dynamic dispatching is equals to the

optimal dispatching ratio in this stage. The stage 1-2 to 4-2 show the difference between the

optimal dispatching ratio and the dynamic dispatching ratio is bigger and bigger since the

unbalance penalty value is not big enough to influence the result of the cost function. The

stage 5-1 shows the unbalance penalty value is big enough to change the result and the

stage 5-2 shows the dynamic dispatching ratio returns to the optimal dispatching ratio.

Equation (4) shows how to calculate the unbalance penalty value.

Vubp is the unbalance penalty value, RDynamic is the dynamic dispatching ratio, ROptimal is

the optimal dispatching ratio, and CDSP is the DSP execution cost.

Vubp = (RDynamic-ROptimal) CDSP (4)

 11

3.1.3. Deadline Fulfillness
In a real-time system, we want to process a task before the deadline. In the proposed cost

function, deadline fulfillness function is described by equation (5) if the task is executed on

the DSP.

In equation (5), β is the ratio of the task execution time of running on the DSP core

versus on the GPP core. For example, if a motion estimate task processed on the DSP core is

twice as fast than on the GPP core, then we can β is calculated by equation (6).

Tg is the deadline given by the user application. In our design, we assume that the system

is a soft real time system.

Tc is the estimated task completion time, which is estimated by summation of task

computing time in the task queue that has priority higher than (or equal to) the target task. An

example is given as follows.

Task Priority
Computing Time

(ms)

1 1 10

2 3 20

3 2 30

Table 2. Tasks Information

In Table 1, assume that there are three tasks already in the task queue and task 4 is a new

arriving task. The priority of task 4 equals to 2 and computing time equals to 40. Because the

priorities of task 1 and 3 are higher than or equal to task 4, these two tasks may block

Cdeadline = β |Tg-Tc| (5)

2
_

_ ==
MEGPP

MEDSP

T
T

β (6)

 12

execution of task 4. Tc for task 4 is estimated as in equation (7), and Tarrival is the task arrival

time (t in this case).

Assuming that Tg equals to t’, then the deadline fulfillness cost is calculated in (8).

With this formulation, the cost becomes smaller as the completion time approaches the

deadline (note that we assume a soft real-time system).

3.1.4. Loading Balance
In multiprocessor platforms, we want to balance the processing core’s utilization since

one can get better overall system performance this way. In equation (9), M is the queue length

on the DSP side and N is the queue length on the GPP side.

PrM
DSP and PrN

GPP are probabilities when the DSP queue length is M and the GPP queue

length is N. We want to make the difference in probability between two queues as small as

possible. In this equation, we calculate two possible ways when dispatch a new arrival task

by adopting the method for solving birth-death problem presented in [3].

Tc = Tarrival+Ttask1+Ttask3+Ttask4 = t+80 (7)

Cdeadline = β | t’-(t+80)| (8)

Pr Pr 1
_

Pr Pr1

DSP GPP
M N

Cld bal DSP GPP
NM

− +
=

−+

 (9)

N N+1 N-1

εε

δ δ

 13

Figure 4. Rate Transition Diagram

In Figure 2, ε is the task arrival rate and δ is the task completion rate. If the system is

steady in state N, the total out flow equals to the total in flow and the equation shows is

shown in (9). PrN is the probability of the system in state N.

or

We use the equations show in (10) iteratively and obtain a sequence of state probabilities,

Pr1, Pr2, Pr3, …, each in terms of Pr0,

To get Pr0, probabilities must sum to 1 and it follows that

And we define γ as the ratio ε/δ, and obtain

() 1 10 Pr Pr PrN N Nε δ δ ε+ −= − + + + ()1N ≥ ,

0 10 Pr Prε δ= − +
(10)

1 1Pr Pr PrN N N
ε δ ε
δ δ+ −

+
= − ()1N ≥ ,

1 0Pr Prε
δ

=
(11)

0 0
1

Pr Pr Pr
NN

N
i

ε ε
δ δ=

 = =

∏ ()1N ≥ (12)

0
0

1 Pr
N

N

ε
δ

∞

=

 =

∑ ()1N ≥ (13)

0

0

1Pr
N

N
γ

∞

=

=

∑
 ()1N ≥

(14)

 14

0

N

N

γ
∞

=
∑ is the geometric series 1 + γ + γ2 + γ3 + … and converges if and only if γ < 1. If

ε > δ, the mean arrival rate is greater than the mean completion rate, and the system will grow

up unlimited. And if ε = δ, it means that the system never services all incoming task and turn

off with some tasks still wait for processing. So we assume that ε < δ or γ < 1 in our system

and use well-known expression for the sum of the terms of a geometric progression,

By combining equations (14) and (15), we obtain

and

0

1
1

N

N

γ
γ

∞

=

=
−∑ ()1γ < (15)

0Pr 1 γ= − ()1γ < (16)

()Pr 1 N
N γ γ= − ()1γ < (17)

 15

4. Implementation Details of The AMP Scheduler

The proposed scheduler is implemented on an OMAP 5912 platform running Linux. In

this chapter, we will first give an introduction to the OMAP 5912 application processor and

the OMAP 5912 Starter Kit development board used for the implementation, followed by an

introduction to the DSP gateway package used for communication between the GPP core and

the DSP core. Note that the overhead of the DSP gateway package is quite high and is not

suitable for a tightly-coupled system for practical applications. The reason it is used in the

implementation is merely for fast prototyping of the proposed system. Finally, some details

about the implementation will be given in section 4.3.

4.1. Introduction to OMAP 5912

4.1.1. OMAP 5912 Application Processor
OMAP 5912 Starter Kit (OSK5912) uses an OMAP 5912 processor. OMAP 5912

integrates a TMS320C55x DSP core and an ARM926EJ-S RISC core. The C55x DSP core

provides high performance and low power consumption for digital signal processing tasks.

The ARM9 RISC core is very popular for embedded systems. OMAP 5912 is suitable for

multimedia embedded devices and can achieve better performance through dividing an

application into tasks and dispatch these tasks to two cores appropriately.

Figure 5 shows OMAP 5912 functional block diagram.

 16

Figure 5. OMAP 5912 Functional Block Diagram

The technical features of ARM926EJ-S RISC core and TMS320C55x DSP core are

listed as follows.

 ARM926EJ-S

 Support for 32-Bit and 16-Bit (Thumb® Mode) Instruction Sets

 16K-Byte Instruction Cache

 8K-Byte Data Cache

 Data and Program Memory Management Unit (MMU)

 17-Word Write Buffer

 Two 64-Entry Translation Look-Aside Buffers (TLBs) for MMUs

 TMS320C55x

 One/Two Instructions Executed per Cycle

 Dual Multipliers (Two Multiply-Accumulates per Cycle)

 Two Arithmetic/Logic Units

 Five Internal Data/Operand Buses (3 Read Buses and 2 Write Buses)

 17

 32K x 16-Bit On-Chip Dual-Access RAM (DARAM) (64K Bytes)

 48K x 16-Bit On-Chip Single-Access RAM (SARAM) (96K Bytes)

 Instruction Cache (24K Bytes)

 Video Hardware Accelerators for DCT, iDCT, Pixel Interpolation, and

Motion Estimation for Video Compression

4.1.2. OMAP 5912 Memory Map
Table 3 shows memory mapping of the DSP internal DARAM and SARAM. Note that

PDROM can not be seen in MPU physical address.

Table 3. OMAP 5912 DSP Internal RAM Memories

 18

Figure 6. SDRAM Mapping for DSP Space

Besides on-chip DARAM and SARAM, DSP also can use external SDRAM by

mapping it to the DSP memory space through the DSP MMU. Figure 6 shows how MPU

maps SDRAM to DSP space. When the MPU maps a memory block to the DSP space, it

also maps to the DSP space shadow area in the MPU virtual space so the offsets in the DSP

space and the shadow area become same. With this mapping, address exchanges between

DSP space and MPU virtual space can be done with very simple operations.

4.1.3. Memory Traffic Controller
Memory Traffic Controller (TC) is an important component in OMAP 5912 processor.

It provides and controls two high speed memory interfaces, EMIFS and EMIFF, for DSP

and MPU to access external memory.

 External memory interface slow (EMIFS) connects external device memories,

such as common flash memory. This interface enables 16-bit data accesses and

provides four chip-selects – each chip-select is able to support up to 64M bytes

address space through a 25-bit address bus.

 External memory interface fast (EMIFF) is a memory interface that enables

16-bit data SDRAM memory access. It supports connection a 64 Mbytes

SDRAM at maximum. It also provides two bank selection bits and 16-bit width

address. The OMAP 5912 provides interfacing with a maximum of four banks of

64M x 16-bit SDRAM memory with DDR capability.

4.2. Introduction to OMAP 5912 Starter Kit

OSK5912 is a highly integrated hardware and software platform targeted at application

processing devices, mobile communications, and video and image processing. OSK is

designed to run general embedded operating systems on the ARM side and TI DSP/BIOS

real-time kernel on the DSP-side.

Figure 7 shows OSK5912 front view.

 19

Figure 7. OMAP 5912 Starter Kit

The following paragraph lists some OSK5912 product features.

 Hardware Features

 Texas Instruments TMS320C55xx core operating at 192 MHz.

 ARM9 core operating at 192 MHz.

 TLV320AIC23 codec

 32 Mega Bytes DDR RAM

 32 Mega Bytes on board Flash ROM

 10 MBPS Ethernet port

 On board IEEE 1149.1 JTAG connector for optional emulation

 Software Features

 Compatible with MontaVista’s Linux for OSK5912

 Compatible with OMAP Code Composer Studio from Texas Instruments

4.3. Introduction to DSP Gateway

DSP Gateway ([14]) is an open source project developed by Toshihiro Kobayashi for

inter-processor communication mechanism on Linux for OMAP family. The DSP Gateway

consists of a Linux device driver on the ARM side and a DSP-side kernel library. The Linux

 20

device driver provides a convenient interface so that an application on GPP-side can

communicate with DSP through normal device system calls. The DSP-side kernel library

provides multi-task environment and APIs for user tasks.

4.3.1. DSP Gateway Linux Device Driver

Figure 8. DSP Gateway Driver Block Chart

Figure 8 shows GPP-side functionalities provided by DSP Gateway Linux device

driver. The Linux device driver communicates with DSP through two Mailboxes, one for

GPP to DSP and another for DSP to GPP. It also provides five task device interfaces.

 DSP Task Devices

The DSP task devices provide interfaces to the DSP tasks for Linux applications.

Programs communicating with the DSP tasks can achieve sending or receiving

data to/from DSP by reading from or writing to those devices.

 DSP Control Device

The DSP control device provides DSP control API for Linux. Through this device,

Linux applications can control DSP reset, set specified DSP reset vector address,

and performs other DSP control commands.

 DSP Memory Device

The DSP memory device provides the access to the DSP memory space for the

DSP program loader in Linux side. Programs also can extend the usable DSP

memory range by mapping external SDRAM block to the DSP memory space

through this interface.

 21

 DSP Task Watch Device

The DSP task watch device provides functionalities needed for the DSP Dynamic

Loader Daemon.

 DSP Error Detection Device

The DSP error detection device provides the ability of detecting error from DSP

for Linux applications, such as watchdog timer expiration and DSP MMU error

interrupt.

4.3.2. DSP Gateway DSP/BIOS Kernel

Figure 9. DSP Software Block Chart

Figure 9 shows the DSP Software Block Chart. When a Linux user application

accesses the DSP task device, the Linux device driver generates a Mailbox command to

DSP. In DSP side, the system kernel receives the Mailbox command and registers it into the

queue of the corresponding DSP/BIOS TSK.

4.3.3. Inter-Processor Communication
The ARM-DSP inter-processor communication is implemented using the mailbox

mechanism.

 22

Figure 10. Mailbox

Figure 10 shows the mailbox mechanism between the ARM and the DSP. There are

three mailbox register sets. One is for the ARM to send messages and issue an interrupt to

the DSP. The other two are for the DSP to send messages and issue an interrupt to the ARM.

Each mailbox register set consists of two 16-bit registers and a 1-bit flag register. The DSP

Gateway only uses two of mailbox register sets, one for ARM to DSP and another for DSP

to ARM, for inter-processor communication.

Transferring a large amount of data with only mailbox registers between the ARM and

the DSP is not efficient. DSP Gateway introduces Inter-Processor Buffer (IPBUF) for large

block data transfer. The IPBUF can be placed at the DSP internal SARAM and DARAM, or

the external SDRAM block which is mapped to the DSP memory space. Figure 11 shows

IPBUF structure in detail.

Figure 11. IPBUF Structure

 23

DSP Gateway also provides shared memory mechanism for transferring or sharing

data between the DSP and the ARM. This mechanism relies on the DSP MMU and the

ARM MMU. By setting the DSP MMU and the ARM MMU, the DSP and the ARM can

access the same memory space. This mechanism only supports mapping SDRAM as shared

memory. In order to ensure data consistence between the DSP and the ARM, D-cache will

be disabled to mapped memory space and this would have an impact on the performance on

the ARM-side.

4.4. Implementation

The implementation of the proposed system is based on Linux 2.6.11 kernel patched by

[11] and [13]. We use the dsp_dld [12] in DSP Gateway package to load DSP applications to

the DSP core from an application (or system service) running under Linux. The dsp_dld is a

utility program that manages DSP tasks and resources for the DSP Gateway.

Figure 12 shows how DSP dynamic loader daemon (dsp_dld) works.

Figure 12. DSP Dynamic Loading Mechanism Block Chart

At startup time, the dsp_dld create DSP task device file in ARM-side /dev directory as

the DSP task interface to the dynamic tasks, boot the DSP up using the DSP Gateway

kernel, initializes the memory space manager, and creates the symbol table.

When an open access event is passed to the dsp_dld through /dev/dspctl/twch, the

 24

dsp_dld loads the corresponding task module to DSP memory and the task is added to the

system. When a close access event occurs, the dsp_dld removes the corresponding task

from the system. Rely on this mechanism, DSP Gateway can link and load the DSP task

dynamically. The memory space manager in the dsp_dld manages the memory space on

DSP-side. External RAM block for a DSP task is mapped dynamically at loading time and

lasts to the end of a DSP task.

Task Registrar

dynamic link

wake up

load to DSP

TASKADD

dsp_dld

Figure 13. The Dsp_dld with Task Registrar

There are two ways to register task information into the proposed design. Figure 13

shows the dsp_dld with the task register interface. When an access event wakes the dsp_dld,

it not only loads/unload a DSP task to/from DSP but also register/unregister task

information into the proposed design. The second way is to register task information

through AMP control interface. AMP control interface is a control interface implemented as

a Linux driver and provides a device file interface at /dev/amp/ctl. Programs can use the

ioctl system call to register task information or control the AMP scheduler parameters.

Table 4 and Table 6 show AMP control interface commands.

 25

0x19

0x18

0x17

0x16

0x15

CMD Value

Initiate Task Table

Delete Task Information

Get Task Information

Register Task Information

Calculate Task Cost

Short Description

Int

Int

Tsk_info *

Int

Int

Return Value

None

Tsk_info *

Tsk_info *

Tsk_info *

Char *

Parameter

OMAP_AMP_IOCTL_
TSK_INIT

OMAP_AMP_IOCTL_
TSK_DEL

OMAP_AMP_IOCTL_
TSK_GET

OMAP_AMP_IOCTL_
TSK_REG

OMAP_AMP_IOCTL_
CAL_COST

Command Name

0x19

0x18

0x17

0x16

0x15

CMD Value

Initiate Task Table

Delete Task Information

Get Task Information

Register Task Information

Calculate Task Cost

Short Description

Int

Int

Tsk_info *

Int

Int

Return Value

None

Tsk_info *

Tsk_info *

Tsk_info *

Char *

Parameter

OMAP_AMP_IOCTL_
TSK_INIT

OMAP_AMP_IOCTL_
TSK_DEL

OMAP_AMP_IOCTL_
TSK_GET

OMAP_AMP_IOCTL_
TSK_REG

OMAP_AMP_IOCTL_
CAL_COST

Command Name

Table 4. AMP Control Interface Command – Task Operation

 OMAP_AMP_IOCTL_CAL_COST

This command is used for calculating a task cost specified by input char

parameter. When the task registrar receives the command, it calls the cost

calculator and returns a lower cost value between two cores. Note that this

command doesn’t change values in the run-time task table and will not influence

the runtime cost calculator value.

 OMAP_AMP_IOCTL_TSK_REG

This command is used for registering a task into GPP or DSP version table. Table

5 shows Task_info data structure and all field is need for registering a task.

Int

Int

Char *

Int

Type

Task computing time information

Task power consumption information

Task Name – Maximum length is 16

Task version – GPP or DSP

Description

Computing_cost

Power_cost

Name

Version

Variable

Int

Int

Char *

Int

Type

Task computing time information

Task power consumption information

Task Name – Maximum length is 16

Task version – GPP or DSP

Description

Computing_cost

Power_cost

Name

Version

Variable

Table 5. Task_info Data Structure

 OMAP_AMP_IOCTL_TSK_GET

This command is used for getting task information. Version and name fields in

Task_info data structure are need for this command.

 OMAP_AMP_IOCTL_TSK_DEL

 26

This command is used for deleting task from GPP or DSP version table. Version

and name fields in Task_info data structure are need for this command.

 OMAP_AMP_IOCTL_TSK_INIT

Initiate GPP and DSP version table. All information in version tables will be

cleaned away.

0xA

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

CMD Value

Decrease loading balance lambda
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_SUB

Increase loading balance lambda
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_ADD

Decrease deadline fulfillness
lambda value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
DEADL_LMD_SUB

Increase deadline fulfillness lambda
value in Cost Function by 1.

Decrease execution time lambda
value in Cost Function by 1.

Increase execution time lambda
value in Cost Function by 1.

Decrease power lambda values in
Cost Function by 1.

Increase power lambda values in
Cost Function by 1.

Get four lambda values in Cost
Function.

Set four lambda values in Cost
Function.

Description

Int

Int

Int

Int

Int

Int value[4]

Int

Return Value

None

None

None

None

None

Int value[4]

Int value[4]

Parameter

OMAP_AMP_IOCTL_
DEADL_LMD_ADD

OMAP_AMP_IOCTL_
COMPU_LMD_SUB

OMAP_AMP_IOCTL_
COMPU_LMD_ADD

OMAP_AMP_IOCTL_
POWER_LMD_SUB

OMAP_AMP_IOCTL_
POWER_LMD_ADD

OMAP_AMP_IOCTL_
GET_LMD

OMAP_AMP_IOCTL_
SET_LMD

Command Name

0xA

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

CMD Value

Decrease loading balance lambda
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_SUB

Increase loading balance lambda
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_ADD

Decrease deadline fulfillness
lambda value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
DEADL_LMD_SUB

Increase deadline fulfillness lambda
value in Cost Function by 1.

Decrease execution time lambda
value in Cost Function by 1.

Increase execution time lambda
value in Cost Function by 1.

Decrease power lambda values in
Cost Function by 1.

Increase power lambda values in
Cost Function by 1.

Get four lambda values in Cost
Function.

Set four lambda values in Cost
Function.

Description

Int

Int

Int

Int

Int

Int value[4]

Int

Return Value

None

None

None

None

None

Int value[4]

Int value[4]

Parameter

OMAP_AMP_IOCTL_
DEADL_LMD_ADD

OMAP_AMP_IOCTL_
COMPU_LMD_SUB

OMAP_AMP_IOCTL_
COMPU_LMD_ADD

OMAP_AMP_IOCTL_
POWER_LMD_SUB

OMAP_AMP_IOCTL_
POWER_LMD_ADD

OMAP_AMP_IOCTL_
GET_LMD

OMAP_AMP_IOCTL_
SET_LMD

Command Name

Table 6. AMP Control Interface Command – Lambda Operation

All commands in Table 6 are used for adjusting lambda values in the cost function.

The first two commands can set or get four lambda values at once. The remaining

commands are used for increasing or decreasing the specified lambda value by 1.

In order to use the proposed AMP scheduler, programmers only need to port the

program to DSP and pack data into one transfer unit, write it to DSP task device, and read the

returned data from DSP task device on the GPP side. The proposed design tries to reduce the

impact of porting existing programs as much as possible. The following paragraph shows an

example of how to modify the existing program.

 27

while (Interpolate_Dis_y < (EDGE_SIZE+144))
{

while (Interpolate_Dis_x < (EDGE_SIZE+176))
{
idx = Interpolate_Dix_x+Interpolate_ARM_y*edged_width;
Interpolate_Dix_x += 16;
halfpel16x16_h16(&h_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_v16(&v_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_hv16(&hv_ptr[idx], &n_ptr[idx], edged_width, rounding);

}
Interpolate_Dis_y += 16;
Interpolate_Dis_x = EDGE_SIZE;

}

Figure 14. Pure ARM MPEG 4 Video Codec Interpolation Module

Figure 14 shows GPP MPEG 4 video codec (m4v) interpolation module. Its input data

is one macro block (MB) and output data are three MBs in every iteration of the

while-loop.

In the DSP Gateway, there are two DSP task data receiving type and sending type,

active and passive. Only passive receiving and active sending type task suits the proposed

design. Figure 15 and Figure 16 show how an active sending DSP task works. Figure 15

shows GPP calls read system call before DSP issues WDSND/BKSND interrupt. Read

system call will be blocked until DSP issues sending interrupt and return as soon as

receiving sending interrupt. Figure 16 shows GPP class read system call after DSP issues

WDSND/BKSND interrupt. Read system call will return immediately. Figure 17 shows

how a passive receiving DSP task works. Write system call will return immediately and no

need to wait for DSP issues any interrupt.

GPP DSP

call read()

read() return

blocking

WDSND/
BKSND

 28

Figure 15. Active Sending DSP Task – Read Before Sending

GPP DSP

call read()
read() return

WDSND/
BKSND

Figure 16. Active Sending DSP Task – Read After Sending

GPP DSP

call write()
write() return

WDSND/
BKSND

Figure 17. Passive Receiving DSP Task

struct tsk_info *tsk;
tsk->version = AMP_DSP;
tsk->name = “m4v_interpolate”;
tsk->power_cost = 10;
tsk->execution_time = 10;
ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_TSK_REG, tsk);
tsk->version = AMP_GPP;
tsk->power_cost = 5;
tsk->exection_time = 20;
ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_TSK_REG, tsk);

Figure 18. Task Information Register

 29

Figure 18 shows how to register tasks into the proposed design at runtime. It should be

done before using the proposed design. Besides registering at runtime, the task also can be

registered at system boot time.

If the program only uses one thread to computing data on GPP-side and communicate

with DSP. Due to GPP may not receive data sent by DSP immediately, DSP will idle before

GPP receives data and transfers next data.

GPP DSP

DSP Idle

Figure 19. Dual Mode M4V Interpolate with Single-Thread

GPP DSP

DSP Idle

Figure 20. Dual Mode M4V Interpolate with Multi-Thread

Figure 19 and Figure 20 show how a single-thread and a multi-thread program run. A

multi-thread program uses two threads on GPP-side, one for process data on GPP-side and

 30

another for transferring or receiving data from DSP. By using multi-thread, the DSP idle

time can minimize to data communicating time.

Thread GPP:

Void *cal(void *)
{

Interpolate_ARM_x = Interpolate_Dis_x;
Interpolate_ARM_y = Interpolate_Dis_y;
idx = Interpolate_ARM_x+Interpolate_ARM_y*edged_width;
halfpel16x16_h16(&h_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_v16(&v_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_hv16(&hv_ptr[idx], &n_ptr[idx], edged_width, rounding);
pthread_exit(NULL);

}

Figure 21. Multi-Thread M4V Interpolate Module – GPP Thread

Thread DSP:

Static Uns cal(struct dsptask *task, Uns bid, Uns cnt)
{
src_data = udata;
out_h = out_data;
out_v = out_data+256;
out_hv = out_data+512;

halfpel16x16_h16(out_h, src_data, 0, rounding);
halfpel16x16_v16(out_v, src_data, 0, rounding);
halfpel16x16_hv16(out_hv, src_data, 0, rounding);

bksnd(task, bid, 768);
}

Figure 22. Multi-Thread M4V Interpolate Module – DSP Thread

 31

Thread Listener:

Void *dsp_listener(void *)
{

Interpolate_DSP_x = Interpolate_Dis_x;
Interpolate_DSP_y = Interpolate_Dis_y;
read(dsp_int_fd, read_buf, 768);
idx = Interpolate_DSP_x+Interpolate_DSP_y*edged_width;
memcpy(&h_ptr[idx], read_buf, 256);
memcpy(&v_ptr[idx], &read_buf[256], 256);
memcpy(&hv_ptr[idx], &read_buf[256], 256);
pthread_exit(NULL);

}

Figure 23. Multi-Thread M4V Interpolate Module – DSP Data Listener

Thread Control:

Pthread_t dsp_pt, arm_pt;
data_size = 17*17; // One 16x16 macro block with one extra row on bottom

// and one extra column on right
while (Interpolate_Dis_y < (EDGE_SIZE+144))
{
while (Interpolate_Dis_x < (EDGE_SIZE+176))
{

idx = Interpolate_Dis_x+Interpolate_Dis_y*edged_width;
ret = ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_DSC, f_ptr);
if (ret) pthread_create(&arm_pt, NULL, f_ptr, NULL);
else pthread_create(&dsp_pt, NULL, f_ptr, NULL);
Interpolate_Dis_x += 16;

}
Interpolate_Dis_y += 16;
Interpolate_Dis_x = EDGE_SIZE;

}

Figure 24. Multi-Thread M4V Interpolate Module – Control Thread

Figure 21 and Figure 22 show an example to implement a multi-thread program. The

DSP and GPP version modules can be implemented with minimal differences. Besides

indexes operations before function calls (halfpel16x16_h16, halfpel16x16_v16, and

halfpel16x16_hv16), the main difference between these two modules is termination

 32

function call. In GPP version module, the program exits by invoking the pthread_exit

function call and the DSP version module exits by invoking the bksnd function call. In the

future, we will implement a wrapped routine to eliminate this difference. Figure 23 shows a

GPP-side thread to communication with DSP-side thread. The thread will be blocked on

read system call until DSP-side thread completed the task process and returns data to GPP.

After receiving data from DSP, the thread writes data to corresponding index and call

pthread_exit to terminate itself. Figure 24 shows a main program flow controller. The

program uses ioctl system call to invoke the proposed design and creates corresponding

thread using pthread depends on the returned function pointer and value of the ioctl system

call.

 33

5. Experimental Results and Analysis

In this chapter, the computation components from an MPEG-4 Simple Profile encoder

are used to test the proposed tightly-coupled AMP system. The interpolation module in

MPEG-4 video codec is used in the following experiment. In MPEG-4 Simple Profile,

motion compensation (MC) and motion estimation (ME) are done with half-pixel accuracy.

Therefore, sub-pixel interpolation of the original reference frame pixels for both MC and

ME is necessary. Figure 25 shows the input and output to the interpolation module.

Interpolation
Processing

3x3 source block

2x2 interpolated blocks

Interpolation relation figure

Figure 25. Input/Output of Interpolation

5.1. Dynamically Task Dispatching Rate Experiment

In this experiment, the goal of the experiment is to test the task dispatching result

under different task information settings and λ values. The experiment settings are

showed in following two tables and explained in following paragraphs.

0

1
Load Balance

0

1
Deadline

1

1
Execution

0

1
Power

λ set 2

λ set 1

0

1
Load Balance

0

1
Deadline

1

1
Execution

0

1
Power

λ set 2

λ set 1

 34

Table 7. λ Set

Table 7 shows the two λ set used in the following experiment. These λ values are

introduced in the chapter 3. By setting different λ values, factors in the cost function can

be calculated with different weight. The λ set 1 in the second row of Table 7 means the

cost function concerns about all factors, power consumption, execution time, deadline

fulfillness and load balance, as equal. The λ set 2 in third row means the cost function

only concerns about execution time.

10

40

Execution

30

50

Power

DSP

GPP

Test 1

10

40

Execution

30

50

Power

DSP

GPP

Test 1

10

20

Execution

30

50

Power

DSP

GPP

Test 2

10

20

Execution

30

50

Power

DSP

GPP

Test 2

Table 8. Task Information In Experiment

Table 8 shows the task information in the experiment. In the proposed design, the

program is requested to provide the power consumption and the execution time information

of the task. In the test 1, the power consumption value of the GPP task is 50 and the

execution time value is 40, and the power consumption value of the DSP task is 30 and the

execution time value is 10. The test 2 is similar to the test 1. Note that all values in Table 8

are presumed values for experiment only and not measured data.

236

241

DSP

30

25

GPP

λ set 2

λ set 1

Test 1

236

241

DSP

30

25

GPP

λ set 2

λ set 1

Test 1

211

226

DSP

53

38

GPP

λ set 2

λ set 1

Test 2

211

226

DSP

53

38

GPP

λ set 2

λ set 1

Test 2

Table 9. Task Dispatching Result

Table 9 shows the results of task dispatching based on settings showed in Table 7 and

 35

Table 8. In the second row of the test 1 and the test 2, although the power consumption and

execution time value of DSP task are smaller than GPP task, there are still some task will be

assigned to GPP because the value of the other two factors are weighted as large as the

power consumption and the execution time. Besides that, the intervention of the unbalance

penalty mechanism also influences the result of the cost function. In the third row of the

test 1 and the test 2, the DSP to GPP dispatching ratio is smaller than λ set 1 because λ

set 2 only concerns about execution time factor and the influence of the unbalance penalty

mechanism is larger than λ set 1 relatively.

5.2. M4V Interpolation Module Experiment

Table 10 shows the computing time of the interpolator (for motion compensation and

motion estimation) under different operating modes. The test sequence used is the QCIF

version of the FOREMAN sequence and its length is 30 frames. The encoding configuration

in the experiment is the first frame is encoded as I-frame and all following are encoded as

P-frame. The interpolation module in the experiment is invoked 2871 times in the entire

encoding flow.

145156626128710DSP Gateway
Invoke Times

1.5%

1.4447886

1.4231122

Interpolate_row 4:5

21.5%

3.288569

2.706051

Interpolate 5:6

2.5%65%N/ACost Calculator
Overhead

2.56728563.841860.26279FPS W/O Cost
Calculator

2.6314728

Interpolate_row

6.36634

Interpolate

0.26279

Pure ARM

FPS W/ Cost
Calculator

m4v encode

145156626128710DSP Gateway
Invoke Times

1.5%

1.4447886

1.4231122

Interpolate_row 4:5

21.5%

3.288569

2.706051

Interpolate 5:6

2.5%65%N/ACost Calculator
Overhead

2.56728563.841860.26279FPS W/O Cost
Calculator

2.6314728

Interpolate_row

6.36634

Interpolate

0.26279

Pure ARM

FPS W/ Cost
Calculator

m4v encode

Table 10. M4V Interpolation Module Experiment Result

The interpolate_row in fourth row stands for the program transfer one row data to DSP

at once. The interpolate 5:6 in fifth row stands for the task distribution ratio between GPP and

DSP is 5:6. The experiment result shows that less DSP Gateway invoke times results in

lower interpolation time. In Table 10, it is obvious that the results using DSP interpolation

module is much slower than pure ARM module. In the following sections, we will explain

how this happens.

 36

5.3. Dynamic Task Dispatching – No OS Environment
The experiment is based on the work of [10]. Table 2 shows computing time for

different computing units, including motion estimation (ME), interpolation, and discrete

cosine transform (DCT), under ARM/DSP/Dual mode. The test sequence used is the QCIF

version of the STEFAN sequence and its length is 150 frames. These tests were conducted on

a TI OMAP 1510 platform (the PSI Innovator).

Under ARM mode, the computing units in Table 2 are processed on ARM core and

didn’t use any DSP hardware extension. Under DSP mode, the computing units are processed

on DSP core using C55x hardware extension. Under dual mode, the computing units are

processed on both cores. Table 3 shows time per computing unit ratio under all modes.

Table 12 shows time per computing unit ratio under all modes.

276

227

349

Dual

342

282

357

DSP

764

441

3883

ARM

DCT

Interpolation

ME

276

227

349

Dual

342

282

357

DSP

764

441

3883

ARM

DCT

Interpolation

ME

Unit: us

Table 11. Time per Computing Unit

1

1

1

Dual

1.24

1.24

1.02

DSP

2.77

1.94

11.12

ARM

DCT

Interpolation

ME

1

1

1

Dual

1.24

1.24

1.02

DSP

2.77

1.94

11.12

ARM

DCT

Interpolation

ME

Table 12. Time per Computing Unit Ratio

This experiment shows that the dual version can reach faster execution time than pure

ARM and pure DSP version. In the next section we will try to find out where is overhead

come from in our implementation system.

 37

5.4. DSP Gateway Data Transfer Experiment
The next experiment tests the data transfer time between two cores. Table 4 shows the

data size and iterations of transfer of our experiment. In group 1, for example, a Linux

application transfers 12672 bytes of data three times to the DSP core through

SDRAM/SARAM/DARAM. All groups in our experiment transferred same amount of data

(38016 bytes) at different number of iterations. In this experiment, ARM and DSP run at 192

MHz, and Traffic Controller (TC) runs at 96 MHz.

2161929648241263Transfer Time

17619839679215843168633612672Transfer Size (bytes)

1 8765432Group

2161929648241263Transfer Time

17619839679215843168633612672Transfer Size (bytes)

1 8765432Group

Table 13. Experiment Group Setting

Due to the limitation of SARAM and DARAM capacity, there are no group 1 result for

SARAM and group 1, 2, and 3 results for DARAM experiments.

Figure 26 and Figure 27 show transfer rates from GPP to DSP and from GPP to DSP to

GPP. All results show transfer time influences transfer rate.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

Group

Tr
an

sf
er

 R
at

e
(K

B
/s

)

GPP to DSP Transfer Rate

SDRAM
SARAM
DARAM

Figure 26. GPP to DSP Transfer Rate

 38

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Group

Tr
an

sf
er

 R
at

e
(K

B
/s

)

GPP to DSP to GPP Transfer Rate

SDRAM
SARAM
DARAM

Figure 27. GPP to DSP to GPP Transfer Rate

GPP writes data to SDRAM through EMIFF Interface in Memory Interface Traffic

Controller, and to SARAM and DARAM through MPU Interface (MPUI). It is obvious that

transfers data through SDRAM is faster than through SARAM and DARAM.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

DSP Gateway Invoke Times

Tr
an

sf
er

 T
im

e
(s

ec
)

16K
8K
1.75M

Figure 28. DSP Gateway Invoke Times

 39

0 0.5 1 1.5 2 2.5

x 104

2

4

6

8

10

12

14

16

18

Size (bytes)

Tr
an

sf
er

 T
im

e
(m

s)

Figure 29. DSP Gateway Different Size Transfer

Figure 28 shows the relationship between the DSP Gateway invoke time and the total

transferred time under different total transferred data size. Three different data size, 8KB,

16KB and 1.75MB, are tested in the experiment and the invoke time range of DSP Gateway

is from 1 to 8192. The result of the experiment shows that the total transfer time most

depended on DSP Gateway invoke time and the different transferred size is a less important

factor. Figure 29 shows the relationship between the total transferred size and transfer time.

The experiment transfers different data sizes with the same DSP Gateway invoke time.

Compared with Figure 28, the slope of Figure 29 is smaller than Figure 28. It is obvious

that the DSP Gateway invoke time is a more important influence factor to transfer time than

the transferred data size.

In the experiment, more transferring times using DSP Gateway result in lower transfer

rate. Linux kernel system calls and device driver subsystem using by DSP Gateway are

significant overhead in this experiment. Figure 30 shows a system call flow.

 40

…
xyz()
…

xyz() {
…
int 0x80
…
}

system_call:
…
sys_xyz()
…
ret_from_sys_call:
…
iret

Sys_xyz() {
…
…
}

User mode Kernel mode

Figure 30. Linux System Call

When a user application invokes a system call xyz(), the wrapper routine in libc

standard library is called and issues a 0x80 interrupt. After interrupt, the program enters

kernel mode, jumps to system_call table, finds the corresponding system call routine, and

the system call routine services the call then returns to user mode.

sys_read()
fet_light()

file_pos_read()

vfs_read()

file_pos_write()

fput_light()

likely()

fcheck_files()

get_file()

rw_verify_area()

security_file_permission()

do_read()

likely()

fput()

spin_lock()

spin_unlock()

atomic_read()

likely() access_ok()

donotify_parent()

 41

Figure 31. Read() system call flow

Figure 31 shows how a read() system call works. There are more than 10 functions

need by a single read() system call. Most of them are for checking or protecting the kernel.

The Linux system call flow showed above can be simplified in the embedded system

because the embedded system environment is much simply than existing microcomputer

environment.

Besides Linux kernel system calls overhead, every GPP to DSP and GPP to DSP to GPP

transfer bring 2 and 5 mailbox interrupts. This mechanism results in considerable impact on

transfer rate and overall system performance.

 42

6. Conclusion and Future Work

In this paper, we propose a unified scheduler for tightly-coupled AMP systems. The

scheduler performs dynamic task partitioning between the GPP core and the DSP core at

runtime based on the system state. A sophisticated cost function is proposed to take into

account runtime power consumption, execution time, deadline fulfillness, and load balance

simultaneously. Even though the system requires a new programming practice for efficient

implementation, the impact on the programmers is minimal. This approach is more

promising for next generation’s multimedia embedded systems than the common

loosely-coupled dual-core systems used today. Current scheduler is implemented as an

add-on component to the Linux kernel for proof of concept. In the future, a native OS kernel

will be implemented base on this design for more efficient communication between two

cores.

 43

7. References

[1] Abdelzaher T., Andersson B., Jonsson J., Sharma V., and Nguyen M. The Aperiodic

Multiprocessor Utilization Bound for Liquid Tasks. In Proceedings of the Eighth IEEE

Real-Time and Embedded Technology and Applications Symposium, September 2002.

[2] Albert G. Greenberg and Paul E. Wright. Design and Analysis of Master/Slave Multiprocessors.

IEEE Transactions on Computers, VOL.40, NO.8, August 1991.

[3] Alberto Avritzer, Mario Gerla, Berthier A. N. Ribeiro, Jack W. Carlyle and Walter J. Karplus.

The Advantage of Dynamic Tuning in Distributed Asymmetric Systems. In Proceedings of

INFOCOM, 1990.

[4] Anderson J., and Srinivasan A. Early Release Fair Scheduling. In Proceedings of the

EuroMicro Conference on Real-Time Systems, June 2000.

[5] Anderson J., and Srinivasan A. Mixed Pfair/ERfair Scheduling of Asynchronous Periodic

Tasks. In Proceedings of the EuroMicro Conference on Real-Time Systems, June 2001.

[6] Andersson B., Baruah S., and Jansson J. Static-Priority Scheduling on Multiprocessors. In

Proceedings of the IEEE Read-Time Systems Symposium, December 2001.

[7] Andersson B., and Jonsson J. Fixed-Priority Preemptive Multiprocessor Scheduling: To

Partition or Not to Partition. In Proceedings of the International Conference on Real-Time

Computing Systems and Applications, December 2000.

[8] Baruah S., Cohen N., Plaxton G., and Varvel D. Proportionate Progress: A Notion of Fairness

in Resource Allocation. Algorithmica 15, 6, 600-625. June 1996.

[9] Burchard A., Liebeherr J., Oh Y., and Son S. H. Assigning Real-Time Tasks to Homogeneous

Multiprocessor Systems. IEEE Transactions on Computers, 44, 12, 1429-1442. December

1995.

[10] Chien-Tang Tseng, Chih-Peng Wang, and Chun-Jen Tsai. Dynamic MPEG-4 Video Encoder

Partitioning on Asymmetric Dual-Core Platforms. In Proceedings of the 15th VLSI

Design/CAD Symposium, 2004.

[11] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory 3rd Edition. February 6,

1998.

[12] Ha R., and Liu J. W. S. Validating Timing Constraints in Multiprocessors and Distributed

Real-Time Systems. In Proceedings of the 14th IEEE International Conference on Distributed

Computing Systems, June 1994.

[13] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Butazzo. Implications of Classical

 44

Scheduling Results for Real-Time Systems. Technical Report UM-CS-94-089, Computer

Science Department, University of Massachusetts, 1994.

[14] J. D. Ullman. NP-Complete Scheduling Problems. Journal of Computer and System Sciences,

10(3):384-393, June 1975.

[15] James W. Wendorf, Roli G. Wendorf and Hideyuki Tokuda. Scheduling Operating System

Processing on Small-Scale Multiprocessors. In Proceedings of the Twenty-Second Annual

Hawaii International Conference, 1989.

[16] K. K. P. Research. Increasing functionality in set-top boxes. In Proceedings of IIC-Korea, Seoul,

2001.

[17] Lopez J. M., Garcia M., Diaz J. L., and Garcia D. F. Worst-Case Utilization Bound for EDF

Scheduling in Real-Time Multiprocessor Systems. In Proceedings of the EuroMicro

Conference on Real-Time Systems, June 2000.

[18] M. R. Garey and D. S. Johnson. Complexity Results for Multiprocessor Scheduling Under

Resource Constraints. SIAM Journal on Computing, 4(4):397-411, 1975.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[20] Maurice J. Bach and S. J. Buroff. Multiprocessors UNIX Operating Systems. AT&T Bell

Laboratories Technical Journal, 63(8):1733-1749, October 1984.

[21] Momtchil Momtchev and Philippe Marquet. An Asymmetric Real-Time Scheduling for Linux.

In Proceedings of the International Parallel and Distributed Processing Symposium, 2002.

[22] Oh D. I., and Baker T. P. Utilization Bounds for N-Processor Rate Monotone Scheduling with

Static Processor Assignment. Real-Time Systems: The International Journal of Time-Critical

Computing, 15, 183-192. 1998.

[23] OMAP5912 Applications Processor Data Manual. Texas Instruments. Dallas, Texas. [Online].

Available: http//www.ti.com.

[24] Paolo Gai, Luca Abeni and Giorgio Buttazzo. Multiprocessor DSP Scheduling in

System-on-a-chip Architectures. In Proceedings of the 14th Euromicro Conference on Real-Time

Systems, 2002.

[25] Saowanee Saewong and Ragunathan Rajkumar. Cooperative Scheduling of Multiple Resources.

In Proceedings of 20th IEEE Real-Time Systems Symposium, 1999.

[26] S. Sriram, and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and

Synchronization. New York: Marcel Dekker, 2000.

[27] The OMAP Linux Kernel Team. Linux 2.6.11 omap1 patch file. [Online]. Available:

http://www.muru.com/linux/omap/.

[28] Toshihiro Kobayashi. DSP Gateway Dynamic Loader Daemon (dsp_dld) Specification. May 7,

2005.

[29] Toshihiro Kobayashi. DSP Gateway Linux 2.6.11 omap1 patch file. [Online]. Available:

http://dspgateway.sourceforge.net.

 45

[30] Toshihiro Kobayashi. Linux DSP Gateway Specification Rev 3.2. May 4, 2005.

[31] Wayne Wolf. Computers as Components: Principles of Embedded Computing Systems Design.

Morgan Kaufmann Publishers, 2000.

