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高度整合非對稱多處理核心工作排程之設計與分析 

學生：王志鵬  指導教授：蔡淳仁 博士 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘 要  

 
現今大多數嵌入式多媒體平台使用非對稱多處理核心平台。一個非對稱

多處理核心通常包含一個通用型微處理器以及一個或多個數位訊號處理

器。針對這樣的系統，目前大多數的工作分配是採用在開發時的靜態分配。

然而在新世代多媒體處理系統中的多變性，當運作時的系統狀態與開發時

所假設的系統狀態有所差異時，整體系統效能可能會有所降低。本論文提

出一個在非對稱多處理核心系統上的動態高度整合工作排程，藉由此工作

排程可以獲得較佳的系統效能。新的程式寫作方法類似多執行緒的程式寫

作。初步的結果顯示本架構非常適合複雜的嵌入式系統。 
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Abstract 
Most embedded multimedia devices today uses asymmetric multiprocessor (AMP) 

platforms. An AMP is usually composed of a General Purpose Processor (GPP) core and one 

or more Digital Signal Processor (DSP) cores. For such systems, a common practice is to 

perform static task partition during development time. However, due to the dynamic nature of 

new generations of multimedia embedded systems, the performance of the system maybe 

hindered greatly when the runtime system state is different from the assumed static state at 

development time. This thesis proposes a dynamic asymmetric multiprocessor scheduling 

framework that can reach better runtime system performance by using a single unified task 

scheduler. A new programming practice similar to multi-thread programming is also proposed 

in order to facilitate this approach. Initial results show that this framework is very suitable for 

complex embedded systems. 
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1. Introduction 

The complexity of embedded system grows rapidly due to new mobile multimedia 

applications. Uniprocessor platforms are not suitable for these applications since they 

require high core frequency in order to handle massive multimedia data processing tasks. 

However, higher core frequency consumes more power and produces more heat, which is 

inapt for small form factor embedded systems. Therefore, a common practice for mobile 

devices is to adopt multiprocessor solutions to increase system performance. 

In particular, asymmetric multiprocessor architecture has been widely used for 

embedded systems development (for example, for cell phones). In this architecture, a 

general purpose RISC processor (GPP) core and a digital signal processor (DSP) core are 

integrated into a system-on-chip (SoC), which can handle embedded system tasks 

efficiently, especially for multimedia applications. However, existing real-time operating 

systems for such architecture typically adopt a loosely-coupled approach. Task partitions 

between the two cores are typically done offline and two separate schedulers are employed 

to perform task scheduling for the two cores independently. This paradigm works properly 

for traditional mobile applications where the GPP core is typically slow and functionally 

limited and the application tasks can be put into a simple foreground/background working 

model. 

New generations of multimedia applications and devices make this kind of 

loosely-coupled system design obsolete.  There are at least three reasons that call for a 

new approach for real-time scheduler designs.  First of all, new GPPs today are much 

more powerful than old ones.  Many of them even include special instructions for DSP 

tasks.  Secondly, multimedia applications has become so complicated and dynamic that 

run-time load balance between the GPP core and the DSP core are crucial for system 

performance and power consumption reduction.  Thirdly, many multimedia applications 

are more memory-centric than computation-centric. Quite often multimedia data are 

encapsulated in transport streams, which are parsed out by the GPP. Depending on the 

inter-processor communication cost at runtime, it may not be possible to determine offline 

whether the GPP should pass the data over to the DSP for computation. 
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2. Previous Work 

There are many researches on schedulers for multiprocessor architecture in last twenty 

years. Until now, most multiprocessors scheduling algorithms concentrated on systems of 

symmetric multiprocessors (SMP) and static tasks partition ([1], [4], [5], [6], [7], [8], [9], 

[12], [17], [22]). Multiprocessor scheduling techniques in homogeneous multiprocessor 

platforms can be classified into two general class, partition and global scheduling. Under 

partition scheduling, each processor has its own task queue, including ready and wait queue, 

and schedules tasks with local priority space independently from any other processors. 

Each task is assigned to a particular processor when arriving, ends at the same processor, 

and will not migrate to other processors during its life cycle. Unlike partition scheduling, 

global scheduling stores all ready tasks in a single ready queue, and uses a single 

system-wide priority space. Whenever the scheduler using global scheduling is invoked, the 

highest-priority task is selected from global ready queue and executed regardless of which 

processor is being scheduled. These have worked well for existing homogeneous 

multiprocessors platforms. 

A symmetric multiprocessor system can provide better overall system performance than 

a uniprocessor system [18]. With the gaining popularity of multimedia devices in recent 

years, the focus has been shifted to asymmetric multiprocessor (AMP) systems. The main 

reason why AMP systems are used for embedded devices is because that they provide the 

best performance/clock ratio for the execution of a wide variety of tasks. 

Wendorf et al. [15] proposed a number of scheduling policies, ranging from asymmetric 

master/slave scheduling to symmetric scheduling, for multiprocessor platforms. According 

to their experiments, “OS Preempt” policy provides the best performance in almost all 

situations for AMP systems. Moreover, an AMP system using the OS Preempt scheduling 

policy can perform as good as a fully symmetric system. Their results also indicate that the 

overhead of context switching and shared resource contention in asymmetric systems are 

relatively minor factors in overall system performance. 

A simple model of master/slave architecture is presented by Greenberg and Wright in [2] 

along with two scheduling algorithms. In this proposal, a subset of the system calls, which 

are referred to as the kernel calls, can only be executed on the master. The remaining system 
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calls are referred to as the user calls. When a slave process makes a kernel call, the slave 

processor returns the process to the master, rather than services the call by itself. The kernel 

calls are serialized and may not be independent since these calls may update data that 

influence the whole system. In the proposed design, jobs not running on any processors are 

waiting in one of the two queues, the master queue or the slave queue. Jobs in the master 

queue are all in kernel mode and jobs in the slave queue are all in user mode. A slave 

processor can take jobs from the slave queue only and the master processor can take jobs 

from either queue. Two scheduling algorithms are proposed to balance between 

queue-switching overhead reduction and scheduling flexibility. They also proposed a way to 

find P*, the optimal number of slave processors in a single-master processor environment. 

In [3], Avritzer et al. developed an analytical performance modeling approach for load 

sharing policies in highly asymmetric systems that schedule jobs based on global system 

state. In the system described in [3], hosts have many different speeds which are subject to 

heterogeneous workloads. They also introduced a threshold type load-sharing algorithm for 

distributed asymmetric systems, the algorithm varies the thresholds dynamically, adjusting 

them to the load in order to keep an optimal number of tasks in each hosts. In this paper, they 

modeled the job routing algorithms by building a global state Markov chain and computing 

upper and lower bounds on the total system average delay. They concluded that carefully 

tuned algorithms for load sharing in the asymmetric environment provide a significant 

improvement in performance over simpler algorithms. 

For resource sharing, Saewong and Rajkumar [25] proposed the use of a Cooperative 

Scheduling Server (CSS), which is a dedicated server that manages one specific controlled 

resource while using a controlling resource, to control multiple resources access from a 

single CSS. A CSS is created on a controlling resource (such as a CPU) to handle all local 

requests for a controlled resource (such as disk access). The CSS reserves a sufficient amount 

of capacity for controlling resources as needed to fulfill the obligations it has for accessing 

controlled resources. Because there are scheduling policies for both controlling and 

controlled resources, co-scheduling design must be employed. Some important 

considerations of the co-scheduling design in [25] are as follows: 1) scheduling mismatch 

due to heterogeneity of resource scheduling policies, 2) conjunctive admission control, 3) 

resource synchronization, and 4) efficient resource utilization. 

For embedded multimedia applications, such as 3G mobile phones, both control 

operations and massive data processing operations are very important. There are some 

architecture proposals ([16], [23]) efficiently integrate these two different types of computing 
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units into one AMP SoC. However, most of these systems are designed in a loosely-coupled 

manner. For example, Gai et al. [24] discussed the problem of multiprocessors scheduling 

for asymmetric architectures composed by a general purpose processor (GPP) and a digital 

signal processor (DSP). Two task queues are used in their design, one for regular tasks (for 

GPP) and the other for DSP tasks. When the DSP is idle, the scheduler always selects the task 

with higher priority between the tasks at the head of the two queues. When the DSP is active, 

the scheduler only selects the highest priority task from the regular queue. 

In the next section, we will propose a tightly-coupled working model and the associated 

scheduler design. 
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3. Design of The Proposed AMP Scheduler 

3.1. The Proposed AMP Scheduler 
The key concept of the proposed AMP scheduler is to facilitate a tightly-coupled 

working model. Without loss of generality, assume that there is one GPP core and one DSP 

core in the target system. In the tightly-coupled model, a task can be assigned to either the 

GPP or DSP at runtime.  When a new task arrives, the unified scheduler will oversee the 

runtime status of both processor cores and decide which core is more suitable for executing 

the new task. In our design, the scheduler computes a cost function based on power 

consumption, computation complexity, deadline fulfillness, and loading balance in order to 

make a decision for task dispatching. 

Since different processor cores execute different binaries, to enable the proposed 

tightly-coupled model, a new programming practice must be adopted.  The new 

programming model is somewhat similar to single thread vs. multi-thread programming. In 

the OS, new system service calls are provided for the application to register dual-core 

versions of executable images into the kernel at runtime. Note that registration of a dual-core 

executable image does not create a task and enter it into the task queues.  Another API must 

be called explicitly to start a (dual-core) task, which will enter the single universal task queue.  

This is similar to explicitly calling a system service to start a new thread of a process.  The 

unified scheduler will then dispatch the task either to the GPP or the DSP based on a cost 

function. 

Figure 1 shows the proposed AMP scheduler. It is composed of a cost function evaluator, 

an AMP scheduler, a version registrar, a resource monitor, and the task interface. 

 



 6 

Version
Registrar

Cost Function &
AMP Scheduler

Resource
Monitor

Task Interface Task 1
Node

Task 2
Node

Task 3
Node

Task 1
Node

Task 3
Node

GPP

Executable Image 
Registration InterfaceScheduler Interface Task Name

Deadline
Task Name

Version

User Application Boot Init

DSP

RM
Node

RM
Node

DSP Gateway

GPP Version
Table

DSP Version
Table

Application
Interface

Asymmetric
Scheduler

Run-Time
Task Table

Task 1
Task 2
Task 3

 
 

Figure 1. The Proposed AMP Scheduler 

 

The AMP scheduler dispatches a task based on the cost function value and manages 

running tasks, the version registrar records available executable images (refer to as services 

in this paper) in the GPP version table and the DSP version table, and the resource monitor 

watches GPP-side and DSP-side status and provides information for the cost function 

evaluator. The run-time task table records information and status of tasks running on GPP 

and DSP-side. 

The task interface is an interface between the proposed AMP scheduler and the 

processing cores. In the proposed design, there are three types of task nodes, the GPP task 

node, the DSP task node, and the system task node. The GPP task node provides APIs for 

managing tasks running on the GPP, the DSP task node provides APIs for managing tasks 

running on the DSP, and the system task node provides APIs for retrieving and monitoring 

system status. 

Equation (1) shows the cost function used by the proposed scheduler to choose the target 

processor for a task. 
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In equation (1), Cpower is the power consumption cost of computation and data accessing 

on the GPP or the DSP, Cexecution is the task execution time on the GPP or the DSP, Cdeadline is 

deadline fulfillness based on the task execution time and the deadline, and Cld_bal is the load 

balance factor based on the task queue lengths on the GPP-side and the DSP-side. 

By selecting different values of λ’s in equation (1), the cost function can adapt to 

different system requirements. For example, if the remaining power capacity is low, we can 

increase λ in order to save more power at the cost of slower response time and poor deadline 

fulfillness. In the next subsections, we will describe the design of the cost function in detail. 

3.1.1. Power Consumption 
Power consumption is a major factor in embedded system design because power is the 

most critical resource for mobile applications. Multiprocessor platforms often have the 

advantage of being more energy efficient than uniprocessor platforms [31] at same 

performance. 

Effective power usage is not only an important issue in hardware design but also in 

software design. In the proposed design, power consumption of a task can be further divided 

into that for setup, computation, and data access. Equation (2) tries to capture these factors:  

 

 

In equation (2), PCore_INIT is the power consumption required to setup the task on a 

processing core (either the GPP or the DSP), PCore is the power consumption for computation 

on the core, and PCore_DA is the power consumption for data access from the core. It is 

important to note the necessity of PCore_INIT in the design. Before executing a task, the system 

must establish the communication channel between the processor cores, register the task and 

allocate necessary run-time resources. The power consumption for all these operations may 

not be negligible and are summarized by PCore_INIT. 

C=λ1  Cpower+λ2  Cexecution+λ3  Cdeadlines+λ4  Cld_bal (1)  

Cpower = PCore_INIT + PCore + PCore_DA (2)  



 8 

3.1.2. Execution Time 
Similar to the cost of power consumption, the cost for computation can be divided into 

that for initialization, computation, and data access.  In addition, on some systems, if a task 

is dispatched to DSP, then there is additional time to deal with channel setup and data 

communication between GPP and DSP. However, this cost can be rolled into the setup time 

for DSP. The general cost function of execution time on a core for a task is summarized in 

equation (3). 

 

 

TCore_INIT is the initial setup time of a task on either the GPP or the DSP core. Besides 

allocating runtime resources, including memory and task node, for the task, TCore_INIT also 

includes communication channel setup and configuration time. TCore is the computing time of 

a task on a core. This is task-specific. Finally, TCore_DA is the data access time. It includes 

data transfer time between DSP and GPP if necessary, and memory access time during 

processing. 

In order to take advantage of multiprocessor platform, “Unbalance Penalty” is 

introduced for balancing task dispatching ratio dynamically. 

 

GPP DSP

120

GPP DSP

80

 
 

Cexecution = TCore_INIT + TCore + TCore_DA (3)  
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Figure 2. Task Dispatch Example 

 

GPP DSP

40

 
 

Figure 3. Task Dispatch Example – The Best Ratio 

 

Assuming that there are five units of tasks, the DSP version execution time of the task 

is 10 per unit and the ARM version is 40 per unit. Figure 2 shows non-optimal dispatching 

ratios. Although these two examples can take advantage of multiprocessors and reach total 

computation time, they are not the optimal schedules. Figure 3 shows optimal task 

dispatching ratio. The task can achieve the lowest response time when the task ratio is 

inversely proportional to the ratio of the DSP and the ARM execution time of the task. The 

optimal dispatching ratio is 4 in this example. Most problems related to multitasking 

scheduling on multiprocessor systems have been proven to be NP-complete ([13], [14], [18], 

[19]). Under multitasking environment, the “Unbalance Penalty” method can achieve 

optimal dispatching ratio for each task, but overall scheduling decision may not optimal. 

The “Unbalance Penalty” method is sub-optimal solution under multitasking environment. 

 



 10 

401006-1

4285-2

4050405-1

8184-2

4040304-1

20

10

0

Unbalance 
Penalty

40

40

40

GPP Cost

30
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7
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1

1
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1
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7
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5

4

DSP Count
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3-1

2-1

1-1
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4285-2

4050405-1
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0

Unbalance 
Penalty

40

40

40

GPP Cost

30

20

10

DSP Cost

7

6

5

4 (Optimal Ratio)

Dynamic Ratio

1

1

1

1

GPP Count

7

6

5

4

DSP Count

3-2

1-2

2-2

3-1

2-1

1-1

Init

Stage

 
 

Table 1. Unbalance Penalty Example 

 

Table 1 shows an example of unbalance penalty works. Note that this example 

assumes the cost function only concerns about the task execution time. The task can obtain 

the minimum response time if the DSP to ARM dispatching ratio is 4. Using unbalance 

penalty mechanism, the cost function can maintain a better dispatching ratio. The second 

row in Table 1 is the initial stage. The cost function will record the optimal dispatching 

ratio in the task table. The stage 1-1 shows there is a task unit calls the cost function. There 

is no unbalance penalty for this task unit since the dynamic dispatching is equals to the 

optimal dispatching ratio in this stage. The stage 1-2 to 4-2 show the difference between the 

optimal dispatching ratio and the dynamic dispatching ratio is bigger and bigger since the 

unbalance penalty value is not big enough to influence the result of the cost function. The 

stage 5-1 shows the unbalance penalty value is big enough to change the result and the 

stage 5-2 shows the dynamic dispatching ratio returns to the optimal dispatching ratio. 

Equation (4) shows how to calculate the unbalance penalty value. 

 

 

Vubp is the unbalance penalty value, RDynamic is the dynamic dispatching ratio, ROptimal is 

the optimal dispatching ratio, and CDSP is the DSP execution cost. 

Vubp = (RDynamic-ROptimal) CDSP (4)  
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3.1.3. Deadline Fulfillness 
In a real-time system, we want to process a task before the deadline. In the proposed cost 

function, deadline fulfillness function is described by equation (5) if the task is executed on 

the DSP. 

 

 

In equation (5), β is the ratio of the task execution time of running on the DSP core 

versus on the GPP core. For example, if a motion estimate task processed on the DSP core is 

twice as fast than on the GPP core, then we can β is calculated by equation (6). 

 

 

Tg is the deadline given by the user application. In our design, we assume that the system 

is a soft real time system. 

Tc is the estimated task completion time, which is estimated by summation of task 

computing time in the task queue that has priority higher than (or equal to) the target task. An 

example is given as follows. 

 

Task Priority 
Computing Time 

(ms) 

1 1 10 

2 3 20 

3 2 30 

 

Table 2. Tasks Information 

 

In Table 1, assume that there are three tasks already in the task queue and task 4 is a new 

arriving task. The priority of task 4 equals to 2 and computing time equals to 40. Because the 

priorities of task 1 and 3 are higher than or equal to task 4, these two tasks may block 

Cdeadline = β |Tg-Tc| (5)  

2
_

_ ==
MEGPP

MEDSP

T
T

β  (6)  
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execution of task 4. Tc for task 4 is estimated as in equation (7), and Tarrival is the task arrival 

time (t in this case). 

 

 

Assuming that Tg equals to t’, then the deadline fulfillness cost is calculated in (8). 

 

 

With this formulation, the cost becomes smaller as the completion time approaches the 

deadline (note that we assume a soft real-time system). 

3.1.4. Loading Balance 
In multiprocessor platforms, we want to balance the processing core’s utilization since 

one can get better overall system performance this way. In equation (9), M is the queue length 

on the DSP side and N is the queue length on the GPP side. 

 

 

PrM
DSP and PrN

GPP are probabilities when the DSP queue length is M and the GPP queue 

length is N. We want to make the difference in probability between two queues as small as 

possible. In this equation, we calculate two possible ways when dispatch a new arrival task 

by adopting the method for solving birth-death problem presented in [3]. 

 

 
 

Tc = Tarrival+Ttask1+Ttask3+Ttask4 = t+80 (7)  

Cdeadline = β | t’-(t+80)| (8)  

Pr Pr 1
_

Pr Pr1

DSP GPP
M N

Cld bal DSP GPP
NM











− +
=

−+

 (9)  

N N+1 N-1 

εε

δ δ
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Figure 4. Rate Transition Diagram 

 

In Figure 2, ε is the task arrival rate and δ is the task completion rate. If the system is 

steady in state N, the total out flow equals to the total in flow and the equation shows is 

shown in (9). PrN is the probability of the system in state N. 

 

 

or 

 

 

We use the equations show in (10) iteratively and obtain a sequence of state probabilities, 

Pr1, Pr2, Pr3, …, each in terms of Pr0, 

 

 

To get Pr0, probabilities must sum to 1 and it follows that 

 

 

And we define γ as the ratio ε/δ, and obtain 

 

 

( ) 1 10 Pr Pr PrN N Nε δ δ ε+ −= − + + +  ( )1N ≥ , 

0 10 Pr Prε δ= − +  
(10)  

1 1Pr Pr PrN N N
ε δ ε
δ δ+ −

+
= −  ( )1N ≥ , 

1 0Pr Prε
δ

=  
(11)  

0 0
1

Pr Pr Pr
NN

N
i

ε ε
δ δ=

   = =   
   

∏  ( )1N ≥  (12)  

0
0

1 Pr
N

N

ε
δ

∞

=

 =  
 

∑  ( )1N ≥  (13)  

0

0

1Pr
N

N
γ

∞

=

=

∑
 ( )1N ≥  

(14)  
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0

N

N

γ
∞

=
∑  is the geometric series 1 + γ + γ2 + γ3 + … and converges if and only if γ < 1. If 

ε > δ, the mean arrival rate is greater than the mean completion rate, and the system will grow 

up unlimited. And if ε = δ, it means that the system never services all incoming task and turn 

off with some tasks still wait for processing. So we assume that ε < δ or γ < 1 in our system 

and use well-known expression for the sum of the terms of a geometric progression, 

 

 

By combining equations (14) and (15), we obtain 

 

 

and 

 

 

 

0

1
1

N

N

γ
γ

∞

=

=
−∑  ( )1γ <  (15)  

0Pr 1 γ= −  ( )1γ <  (16)  

( )Pr 1 N
N γ γ= −  ( )1γ <  (17)  
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4. Implementation Details of The AMP Scheduler 

The proposed scheduler is implemented on an OMAP 5912 platform running Linux.  In 

this chapter, we will first give an introduction to the OMAP 5912 application processor and 

the OMAP 5912 Starter Kit development board used for the implementation, followed by an 

introduction to the DSP gateway package used for communication between the GPP core and 

the DSP core. Note that the overhead of the DSP gateway package is quite high and is not 

suitable for a tightly-coupled system for practical applications.  The reason it is used in the 

implementation is merely for fast prototyping of the proposed system.  Finally, some details 

about the implementation will be given in section 4.3. 

4.1. Introduction to OMAP 5912 

4.1.1. OMAP 5912 Application Processor 
OMAP 5912 Starter Kit (OSK5912) uses an OMAP 5912 processor. OMAP 5912 

integrates a TMS320C55x DSP core and an ARM926EJ-S RISC core. The C55x DSP core 

provides high performance and low power consumption for digital signal processing tasks. 

The ARM9 RISC core is very popular for embedded systems. OMAP 5912 is suitable for 

multimedia embedded devices and can achieve better performance through dividing an 

application into tasks and dispatch these tasks to two cores appropriately. 

Figure 5 shows OMAP 5912 functional block diagram. 
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Figure 5. OMAP 5912 Functional Block Diagram 

 

The technical features of ARM926EJ-S RISC core and TMS320C55x DSP core are 

listed as follows. 

 

 ARM926EJ-S 

 Support for 32-Bit and 16-Bit (Thumb® Mode) Instruction Sets 

 16K-Byte Instruction Cache 

 8K-Byte Data Cache 

 Data and Program Memory Management Unit (MMU) 

 17-Word Write Buffer 

 Two 64-Entry Translation Look-Aside Buffers (TLBs) for MMUs 

 

 TMS320C55x 

 One/Two Instructions Executed per Cycle 

 Dual Multipliers (Two Multiply-Accumulates per Cycle) 

 Two Arithmetic/Logic Units 

 Five Internal Data/Operand Buses (3 Read Buses and 2 Write Buses) 
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 32K x 16-Bit On-Chip Dual-Access RAM (DARAM) (64K Bytes) 

 48K x 16-Bit On-Chip Single-Access RAM (SARAM) (96K Bytes) 

 Instruction Cache (24K Bytes) 

 Video Hardware Accelerators for DCT, iDCT, Pixel Interpolation, and 

Motion Estimation for Video Compression 

4.1.2. OMAP 5912 Memory Map 
Table 3 shows memory mapping of the DSP internal DARAM and SARAM. Note that 

PDROM can not be seen in MPU physical address. 

 

 
 

Table 3. OMAP 5912 DSP Internal RAM Memories 
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Figure 6. SDRAM Mapping for DSP Space 

Besides on-chip DARAM and SARAM, DSP also can use external SDRAM by 

mapping it to the DSP memory space through the DSP MMU. Figure 6 shows how MPU 

maps SDRAM to DSP space. When the MPU maps a memory block to the DSP space, it 

also maps to the DSP space shadow area in the MPU virtual space so the offsets in the DSP 

space and the shadow area become same. With this mapping, address exchanges between 

DSP space and MPU virtual space can be done with very simple operations. 

4.1.3. Memory Traffic Controller 
Memory Traffic Controller (TC) is an important component in OMAP 5912 processor. 

It provides and controls two high speed memory interfaces, EMIFS and EMIFF, for DSP 

and MPU to access external memory. 

 External memory interface slow (EMIFS) connects external device memories, 

such as common flash memory. This interface enables 16-bit data accesses and 

provides four chip-selects – each chip-select is able to support up to 64M bytes 

address space through a 25-bit address bus. 

 External memory interface fast (EMIFF) is a memory interface that enables 

16-bit data SDRAM memory access. It supports connection a 64 Mbytes 

SDRAM at maximum. It also provides two bank selection bits and 16-bit width 

address. The OMAP 5912 provides interfacing with a maximum of four banks of 

64M x 16-bit SDRAM memory with DDR capability. 

4.2. Introduction to OMAP 5912 Starter Kit 

OSK5912 is a highly integrated hardware and software platform targeted at application 

processing devices, mobile communications, and video and image processing. OSK is 

designed to run general embedded operating systems on the ARM side and TI DSP/BIOS 

real-time kernel on the DSP-side. 

Figure 7 shows OSK5912 front view. 
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Figure 7. OMAP 5912 Starter Kit 

 

The following paragraph lists some OSK5912 product features. 

 

 Hardware Features 

 Texas Instruments TMS320C55xx core operating at 192 MHz. 

 ARM9 core operating at 192 MHz. 

 TLV320AIC23 codec 

 32 Mega Bytes DDR RAM 

 32 Mega Bytes on board Flash ROM 

 10 MBPS Ethernet port 

 On board IEEE 1149.1 JTAG connector for optional emulation 

 

 Software Features 

 Compatible with MontaVista’s Linux for OSK5912 

 Compatible with OMAP Code Composer Studio from Texas Instruments 

 

4.3. Introduction to DSP Gateway 

DSP Gateway ([14]) is an open source project developed by Toshihiro Kobayashi for 

inter-processor communication mechanism on Linux for OMAP family. The DSP Gateway 

consists of a Linux device driver on the ARM side and a DSP-side kernel library. The Linux 
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device driver provides a convenient interface so that an application on GPP-side can 

communicate with DSP through normal device system calls. The DSP-side kernel library 

provides multi-task environment and APIs for user tasks. 

4.3.1. DSP Gateway Linux Device Driver 
 

 
 

Figure 8. DSP Gateway Driver Block Chart 

Figure 8 shows GPP-side functionalities provided by DSP Gateway Linux device 

driver. The Linux device driver communicates with DSP through two Mailboxes, one for 

GPP to DSP and another for DSP to GPP. It also provides five task device interfaces. 

 DSP Task Devices 

The DSP task devices provide interfaces to the DSP tasks for Linux applications. 

Programs communicating with the DSP tasks can achieve sending or receiving 

data to/from DSP by reading from or writing to those devices. 

 DSP Control Device 

The DSP control device provides DSP control API for Linux. Through this device, 

Linux applications can control DSP reset, set specified DSP reset vector address, 

and performs other DSP control commands. 

 DSP Memory Device 

The DSP memory device provides the access to the DSP memory space for the 

DSP program loader in Linux side. Programs also can extend the usable DSP 

memory range by mapping external SDRAM block to the DSP memory space 

through this interface. 
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 DSP Task Watch Device 

The DSP task watch device provides functionalities needed for the DSP Dynamic 

Loader Daemon. 

 DSP Error Detection Device 

The DSP error detection device provides the ability of detecting error from DSP 

for Linux applications, such as watchdog timer expiration and DSP MMU error 

interrupt. 

4.3.2. DSP Gateway DSP/BIOS Kernel 
 

 
 

Figure 9. DSP Software Block Chart 

 
Figure 9 shows the DSP Software Block Chart. When a Linux user application 

accesses the DSP task device, the Linux device driver generates a Mailbox command to 

DSP. In DSP side, the system kernel receives the Mailbox command and registers it into the 

queue of the corresponding DSP/BIOS TSK. 

4.3.3. Inter-Processor Communication 
The ARM-DSP inter-processor communication is implemented using the mailbox 

mechanism.  
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Figure 10. Mailbox 

 

Figure 10 shows the mailbox mechanism between the ARM and the DSP. There are 

three mailbox register sets. One is for the ARM to send messages and issue an interrupt to 

the DSP. The other two are for the DSP to send messages and issue an interrupt to the ARM. 

Each mailbox register set consists of two 16-bit registers and a 1-bit flag register. The DSP 

Gateway only uses two of mailbox register sets, one for ARM to DSP and another for DSP 

to ARM, for inter-processor communication. 

Transferring a large amount of data with only mailbox registers between the ARM and 

the DSP is not efficient. DSP Gateway introduces Inter-Processor Buffer (IPBUF) for large 

block data transfer. The IPBUF can be placed at the DSP internal SARAM and DARAM, or 

the external SDRAM block which is mapped to the DSP memory space. Figure 11 shows 

IPBUF structure in detail. 

 

 
 

Figure 11. IPBUF Structure 
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DSP Gateway also provides shared memory mechanism for transferring or sharing 

data between the DSP and the ARM. This mechanism relies on the DSP MMU and the 

ARM MMU. By setting the DSP MMU and the ARM MMU, the DSP and the ARM can 

access the same memory space. This mechanism only supports mapping SDRAM as shared 

memory. In order to ensure data consistence between the DSP and the ARM, D-cache will 

be disabled to mapped memory space and this would have an impact on the performance on 

the ARM-side. 

4.4. Implementation 

The implementation of the proposed system is based on Linux 2.6.11 kernel patched by 

[11] and [13]. We use the dsp_dld [12] in DSP Gateway package to load DSP applications to 

the DSP core from an application (or system service) running under Linux. The dsp_dld is a 

utility program that manages DSP tasks and resources for the DSP Gateway. 

Figure 12 shows how DSP dynamic loader daemon (dsp_dld) works. 

 

 
 

Figure 12. DSP Dynamic Loading Mechanism Block Chart 

 

At startup time, the dsp_dld create DSP task device file in ARM-side /dev directory as 

the DSP task interface to the dynamic tasks, boot the DSP up using the DSP Gateway 

kernel, initializes the memory space manager, and creates the symbol table. 

When an open access event is passed to the dsp_dld through /dev/dspctl/twch, the 
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dsp_dld loads the corresponding task module to DSP memory and the task is added to the 

system. When a close access event occurs, the dsp_dld removes the corresponding task 

from the system. Rely on this mechanism, DSP Gateway can link and load the DSP task 

dynamically. The memory space manager in the dsp_dld manages the memory space on 

DSP-side. External RAM block for a DSP task is mapped dynamically at loading time and 

lasts to the end of a DSP task. 

 

Task Registrar

dynamic link

wake up

load to DSP

TASKADD

dsp_dld

 
 

Figure 13. The Dsp_dld with Task Registrar 

 

There are two ways to register task information into the proposed design. Figure 13 

shows the dsp_dld with the task register interface. When an access event wakes the dsp_dld, 

it not only loads/unload a DSP task to/from DSP but also register/unregister task 

information into the proposed design. The second way is to register task information 

through AMP control interface. AMP control interface is a control interface implemented as 

a Linux driver and provides a device file interface at /dev/amp/ctl. Programs can use the 

ioctl system call to register task information or control the AMP scheduler parameters. 

Table 4 and Table 6 show AMP control interface commands. 
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0x19

0x18

0x17

0x16

0x15

CMD Value

Initiate Task Table

Delete Task Information

Get Task Information

Register Task Information

Calculate Task Cost

Short Description

Int

Int

Tsk_info *

Int

Int

Return Value

None

Tsk_info *

Tsk_info *

Tsk_info *

Char *

Parameter

OMAP_AMP_IOCTL_
TSK_INIT

OMAP_AMP_IOCTL_
TSK_DEL

OMAP_AMP_IOCTL_
TSK_GET

OMAP_AMP_IOCTL_
TSK_REG

OMAP_AMP_IOCTL_
CAL_COST

Command Name

0x19

0x18

0x17

0x16

0x15

CMD Value

Initiate Task Table

Delete Task Information

Get Task Information

Register Task Information

Calculate Task Cost

Short Description

Int

Int

Tsk_info *

Int

Int

Return Value

None

Tsk_info *

Tsk_info *

Tsk_info *

Char *

Parameter

OMAP_AMP_IOCTL_
TSK_INIT

OMAP_AMP_IOCTL_
TSK_DEL

OMAP_AMP_IOCTL_
TSK_GET

OMAP_AMP_IOCTL_
TSK_REG

OMAP_AMP_IOCTL_
CAL_COST

Command Name

 
 

Table 4. AMP Control Interface Command – Task Operation 

 OMAP_AMP_IOCTL_CAL_COST  

This command is used for calculating a task cost specified by input char 

parameter. When the task registrar receives the command, it calls the cost 

calculator and returns a lower cost value between two cores. Note that this 

command doesn’t change values in the run-time task table and will not influence 

the runtime cost calculator value. 

 OMAP_AMP_IOCTL_TSK_REG 

This command is used for registering a task into GPP or DSP version table. Table 

5 shows Task_info data structure and all field is need for registering a task. 

 

Int

Int

Char *

Int

Type

Task computing time information

Task power consumption information

Task Name – Maximum length is 16

Task version – GPP or DSP

Description

Computing_cost

Power_cost

Name

Version

Variable

Int

Int

Char *

Int

Type

Task computing time information

Task power consumption information

Task Name – Maximum length is 16

Task version – GPP or DSP

Description

Computing_cost

Power_cost

Name

Version

Variable

 
 

Table 5. Task_info Data Structure 

 

 OMAP_AMP_IOCTL_TSK_GET 

This command is used for getting task information. Version and name fields in 

Task_info data structure are need for this command. 

 OMAP_AMP_IOCTL_TSK_DEL 
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This command is used for deleting task from GPP or DSP version table. Version 

and name fields in Task_info data structure are need for this command. 

 OMAP_AMP_IOCTL_TSK_INIT 

Initiate GPP and DSP version table. All information in version tables will be 

cleaned away. 

 

0xA

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

CMD Value

Decrease loading balance lambda 
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_SUB

Increase loading balance lambda 
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_ADD

Decrease deadline fulfillness 
lambda value in Cost Function by 1. 

IntNoneOMAP_AMP_IOCTL_
DEADL_LMD_SUB

Increase deadline fulfillness lambda 
value in Cost Function by 1. 

Decrease execution time lambda 
value in Cost Function by 1.

Increase execution time lambda 
value in Cost Function by 1.

Decrease power lambda values in 
Cost Function by 1.

Increase power lambda values in 
Cost Function by 1.

Get four lambda values in Cost 
Function.

Set four lambda values in Cost 
Function.

Description

Int

Int

Int

Int

Int

Int value[4]

Int

Return Value

None

None

None

None

None

Int value[4]

Int value[4]

Parameter

OMAP_AMP_IOCTL_
DEADL_LMD_ADD

OMAP_AMP_IOCTL_
COMPU_LMD_SUB

OMAP_AMP_IOCTL_
COMPU_LMD_ADD

OMAP_AMP_IOCTL_
POWER_LMD_SUB

OMAP_AMP_IOCTL_
POWER_LMD_ADD

OMAP_AMP_IOCTL_
GET_LMD

OMAP_AMP_IOCTL_
SET_LMD

Command Name

0xA

0x9

0x8

0x7

0x6

0x5

0x4

0x3

0x2

0x1

CMD Value

Decrease loading balance lambda 
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_SUB

Increase loading balance lambda 
value in Cost Function by 1.

IntNoneOMAP_AMP_IOCTL_
LDBAL_LMD_ADD

Decrease deadline fulfillness 
lambda value in Cost Function by 1. 

IntNoneOMAP_AMP_IOCTL_
DEADL_LMD_SUB

Increase deadline fulfillness lambda 
value in Cost Function by 1. 

Decrease execution time lambda 
value in Cost Function by 1.

Increase execution time lambda 
value in Cost Function by 1.

Decrease power lambda values in 
Cost Function by 1.

Increase power lambda values in 
Cost Function by 1.

Get four lambda values in Cost 
Function.

Set four lambda values in Cost 
Function.

Description

Int

Int

Int

Int

Int

Int value[4]

Int

Return Value

None

None

None

None

None

Int value[4]

Int value[4]

Parameter

OMAP_AMP_IOCTL_
DEADL_LMD_ADD

OMAP_AMP_IOCTL_
COMPU_LMD_SUB

OMAP_AMP_IOCTL_
COMPU_LMD_ADD

OMAP_AMP_IOCTL_
POWER_LMD_SUB

OMAP_AMP_IOCTL_
POWER_LMD_ADD

OMAP_AMP_IOCTL_
GET_LMD

OMAP_AMP_IOCTL_
SET_LMD

Command Name

 
 

Table 6. AMP Control Interface Command – Lambda Operation 

 

All commands in Table 6 are used for adjusting lambda values in the cost function. 

The first two commands can set or get four lambda values at once. The remaining 

commands are used for increasing or decreasing the specified lambda value by 1. 

In order to use the proposed AMP scheduler, programmers only need to port the 

program to DSP and pack data into one transfer unit, write it to DSP task device, and read the 

returned data from DSP task device on the GPP side. The proposed design tries to reduce the 

impact of porting existing programs as much as possible. The following paragraph shows an 

example of how to modify the existing program. 
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while (Interpolate_Dis_y < (EDGE_SIZE+144))
{

while (Interpolate_Dis_x < (EDGE_SIZE+176))
{
idx = Interpolate_Dix_x+Interpolate_ARM_y*edged_width;
Interpolate_Dix_x += 16;
halfpel16x16_h16(&h_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_v16(&v_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_hv16(&hv_ptr[idx], &n_ptr[idx], edged_width, rounding);

}
Interpolate_Dis_y += 16;
Interpolate_Dis_x = EDGE_SIZE;

}  
 

Figure 14. Pure ARM MPEG 4 Video Codec Interpolation Module 

 

Figure 14 shows GPP MPEG 4 video codec (m4v) interpolation module. Its input data 

is one macro block (MB) and output data are three MBs in every iteration of the 

while-loop. 

In the DSP Gateway, there are two DSP task data receiving type and sending type, 

active and passive. Only passive receiving and active sending type task suits the proposed 

design. Figure 15 and Figure 16 show how an active sending DSP task works. Figure 15 

shows GPP calls read system call before DSP issues WDSND/BKSND interrupt. Read 

system call will be blocked until DSP issues sending interrupt and return as soon as 

receiving sending interrupt. Figure 16 shows GPP class read system call after DSP issues 

WDSND/BKSND interrupt. Read system call will return immediately. Figure 17 shows 

how a passive receiving DSP task works. Write system call will return immediately and no 

need to wait for DSP issues any interrupt. 

 

GPP DSP

call read()

read() return

blocking

WDSND/
BKSND
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Figure 15. Active Sending DSP Task – Read Before Sending 

 
GPP DSP

call read()
read() return

WDSND/
BKSND

 
 

Figure 16. Active Sending DSP Task – Read After Sending 

 
GPP DSP

call write()
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Figure 17. Passive Receiving DSP Task 

 

struct tsk_info *tsk;
tsk->version = AMP_DSP;
tsk->name = “m4v_interpolate”;
tsk->power_cost = 10;
tsk->execution_time = 10;
ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_TSK_REG, tsk);
tsk->version = AMP_GPP;
tsk->power_cost = 5;
tsk->exection_time = 20;
ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_TSK_REG, tsk);  

 

Figure 18. Task Information Register 
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Figure 18 shows how to register tasks into the proposed design at runtime. It should be 

done before using the proposed design. Besides registering at runtime, the task also can be 

registered at system boot time. 

If the program only uses one thread to computing data on GPP-side and communicate 

with DSP. Due to GPP may not receive data sent by DSP immediately, DSP will idle before 

GPP receives data and transfers next data. 

 

GPP DSP

DSP Idle

 
 

Figure 19. Dual Mode M4V Interpolate with Single-Thread 
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DSP Idle

 
 

Figure 20. Dual Mode M4V Interpolate with Multi-Thread 

Figure 19 and Figure 20 show how a single-thread and a multi-thread program run. A 

multi-thread program uses two threads on GPP-side, one for process data on GPP-side and 
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another for transferring or receiving data from DSP. By using multi-thread, the DSP idle 

time can minimize to data communicating time. 

 

Thread GPP:

Void *cal(void *)
{

Interpolate_ARM_x = Interpolate_Dis_x;
Interpolate_ARM_y = Interpolate_Dis_y;
idx = Interpolate_ARM_x+Interpolate_ARM_y*edged_width;
halfpel16x16_h16(&h_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_v16(&v_ptr[idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_hv16(&hv_ptr[idx], &n_ptr[idx], edged_width, rounding);
pthread_exit(NULL);

}
 

 

Figure 21. Multi-Thread M4V Interpolate Module – GPP Thread 

 

Thread DSP:

Static Uns cal(struct dsptask *task, Uns bid, Uns cnt)
{
src_data = udata;
out_h = out_data;
out_v = out_data+256;
out_hv = out_data+512;

halfpel16x16_h16(out_h, src_data, 0, rounding);
halfpel16x16_v16(out_v, src_data, 0, rounding);
halfpel16x16_hv16(out_hv, src_data, 0, rounding);

bksnd(task, bid, 768);
}

 
 

Figure 22. Multi-Thread M4V Interpolate Module – DSP Thread 
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Thread Listener:

Void *dsp_listener(void *)
{

Interpolate_DSP_x = Interpolate_Dis_x;
Interpolate_DSP_y = Interpolate_Dis_y;
read(dsp_int_fd, read_buf, 768);
idx = Interpolate_DSP_x+Interpolate_DSP_y*edged_width;
memcpy(&h_ptr[idx], read_buf, 256);
memcpy(&v_ptr[idx], &read_buf[256], 256);
memcpy(&hv_ptr[idx], &read_buf[256], 256);
pthread_exit(NULL);

}
 

 

Figure 23. Multi-Thread M4V Interpolate Module – DSP Data Listener 

 

Thread Control:

Pthread_t dsp_pt, arm_pt;
data_size = 17*17;  // One 16x16 macro block with one extra row on bottom 

//  and one extra column on right
while (Interpolate_Dis_y < (EDGE_SIZE+144))
{
while (Interpolate_Dis_x < (EDGE_SIZE+176))
{

idx = Interpolate_Dis_x+Interpolate_Dis_y*edged_width;
ret = ioctl(amp_ctl_fd, OMAP_AMP_IOCTL_DSC, f_ptr);
if (ret) pthread_create(&arm_pt, NULL, f_ptr, NULL);
else pthread_create(&dsp_pt, NULL, f_ptr, NULL);
Interpolate_Dis_x += 16;

}
Interpolate_Dis_y += 16;
Interpolate_Dis_x = EDGE_SIZE;

}
 

 

Figure 24. Multi-Thread M4V Interpolate Module – Control Thread 

 

Figure 21 and Figure 22 show an example to implement a multi-thread program. The 

DSP and GPP version modules can be implemented with minimal differences. Besides 

indexes operations before function calls (halfpel16x16_h16, halfpel16x16_v16, and 

halfpel16x16_hv16), the main difference between these two modules is termination 
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function call. In GPP version module, the program exits by invoking the pthread_exit 

function call and the DSP version module exits by invoking the bksnd function call. In the 

future, we will implement a wrapped routine to eliminate this difference. Figure 23 shows a 

GPP-side thread to communication with DSP-side thread. The thread will be blocked on 

read system call until DSP-side thread completed the task process and returns data to GPP. 

After receiving data from DSP, the thread writes data to corresponding index and call 

pthread_exit to terminate itself. Figure 24 shows a main program flow controller. The 

program uses ioctl system call to invoke the proposed design and creates corresponding 

thread using pthread depends on the returned function pointer and value of the ioctl system 

call. 
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5. Experimental Results and Analysis 

In this chapter, the computation components from an MPEG-4 Simple Profile encoder 

are used to test the proposed tightly-coupled AMP system. The interpolation module in 

MPEG-4 video codec is used in the following experiment. In MPEG-4 Simple Profile, 

motion compensation (MC) and motion estimation (ME) are done with half-pixel accuracy. 

Therefore, sub-pixel interpolation of the original reference frame pixels for both MC and 

ME is necessary. Figure 25 shows the input and output to the interpolation module. 

 

Interpolation
Processing
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2x2 interpolated blocks

Interpolation relation figure

 
 

Figure 25. Input/Output of Interpolation 

 

5.1. Dynamically Task Dispatching Rate Experiment 

In this experiment, the goal of the experiment is to test the task dispatching result 

under different task information settings and λ values. The experiment settings are 

showed in following two tables and explained in following paragraphs. 
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Table 7. λ Set 

 

Table 7 shows the two λ set used in the following experiment. These λ values are 

introduced in the chapter 3. By setting different λ values, factors in the cost function can 

be calculated with different weight. The λ set 1 in the second row of Table 7 means the 

cost function concerns about all factors, power consumption, execution time, deadline 

fulfillness and load balance, as equal. The λ set 2 in third row means the cost function 

only concerns about execution time. 
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Table 8. Task Information In Experiment 

 

Table 8 shows the task information in the experiment. In the proposed design, the 

program is requested to provide the power consumption and the execution time information 

of the task. In the test 1, the power consumption value of the GPP task is 50 and the 

execution time value is 40, and the power consumption value of the DSP task is 30 and the 

execution time value is 10. The test 2 is similar to the test 1. Note that all values in Table 8 

are presumed values for experiment only and not measured data. 
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Table 9. Task Dispatching Result 

 

Table 9 shows the results of task dispatching based on settings showed in Table 7 and 
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Table 8. In the second row of the test 1 and the test 2, although the power consumption and 

execution time value of DSP task are smaller than GPP task, there are still some task will be 

assigned to GPP because the value of the other two factors are weighted as large as the 

power consumption and the execution time. Besides that, the intervention of the unbalance 

penalty mechanism also influences the result of the cost function. In the third row of the 

test 1 and the test 2, the DSP to GPP dispatching ratio is smaller than λ set 1 because λ

set 2 only concerns about execution time factor and the influence of the unbalance penalty 

mechanism is larger than λ set 1 relatively. 

5.2. M4V Interpolation Module Experiment 

Table 10 shows the computing time of the interpolator (for motion compensation and 

motion estimation) under different operating modes. The test sequence used is the QCIF 

version of the FOREMAN sequence and its length is 30 frames. The encoding configuration 

in the experiment is the first frame is encoded as I-frame and all following are encoded as 

P-frame. The interpolation module in the experiment is invoked 2871 times in the entire 

encoding flow. 
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Table 10. M4V Interpolation Module Experiment Result 

 
The interpolate_row in fourth row stands for the program transfer one row data to DSP 

at once. The interpolate 5:6 in fifth row stands for the task distribution ratio between GPP and 

DSP is 5:6. The experiment result shows that less DSP Gateway invoke times results in 

lower interpolation time. In Table 10, it is obvious that the results using DSP interpolation 

module is much slower than pure ARM module. In the following sections, we will explain 

how this happens. 
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5.3. Dynamic Task Dispatching – No OS Environment 
The experiment is based on the work of [10]. Table 2 shows computing time for 

different computing units, including motion estimation (ME), interpolation, and discrete 

cosine transform (DCT), under ARM/DSP/Dual mode. The test sequence used is the QCIF 

version of the STEFAN sequence and its length is 150 frames. These tests were conducted on 

a TI OMAP 1510 platform (the PSI Innovator). 

Under ARM mode, the computing units in Table 2 are processed on ARM core and 

didn’t use any DSP hardware extension. Under DSP mode, the computing units are processed 

on DSP core using C55x hardware extension. Under dual mode, the computing units are 

processed on both cores. Table 3 shows time per computing unit ratio under all modes. 

Table 12 shows time per computing unit ratio under all modes. 
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Table 11. Time per Computing Unit 
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Table 12. Time per Computing Unit Ratio 

 
This experiment shows that the dual version can reach faster execution time than pure 

ARM and pure DSP version. In the next section we will try to find out where is overhead 

come from in our implementation system. 
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5.4. DSP Gateway Data Transfer Experiment 
The next experiment tests the data transfer time between two cores.  Table 4 shows the 

data size and iterations of transfer of our experiment. In group 1, for example, a Linux 

application transfers 12672 bytes of data three times to the DSP core through 

SDRAM/SARAM/DARAM. All groups in our experiment transferred same amount of data 

(38016 bytes) at different number of iterations. In this experiment, ARM and DSP run at 192 

MHz, and Traffic Controller (TC) runs at 96 MHz. 
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Table 13. Experiment Group Setting 

 

Due to the limitation of SARAM and DARAM capacity, there are no group 1 result for 

SARAM and group 1, 2, and 3 results for DARAM experiments. 

Figure 26 and Figure 27 show transfer rates from GPP to DSP and from GPP to DSP to 

GPP. All results show transfer time influences transfer rate. 
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Figure 26. GPP to DSP Transfer Rate 
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Figure 27. GPP to DSP to GPP Transfer Rate 

 

GPP writes data to SDRAM through EMIFF Interface in Memory Interface Traffic 

Controller, and to SARAM and DARAM through MPU Interface (MPUI). It is obvious that 

transfers data through SDRAM is faster than through SARAM and DARAM. 
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Figure 28. DSP Gateway Invoke Times 
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Figure 29. DSP Gateway Different Size Transfer 

 

Figure 28 shows the relationship between the DSP Gateway invoke time and the total 

transferred time under different total transferred data size. Three different data size, 8KB, 

16KB and 1.75MB, are tested in the experiment and the invoke time range of DSP Gateway 

is from 1 to 8192. The result of the experiment shows that the total transfer time most 

depended on DSP Gateway invoke time and the different transferred size is a less important 

factor. Figure 29 shows the relationship between the total transferred size and transfer time. 

The experiment transfers different data sizes with the same DSP Gateway invoke time. 

Compared with Figure 28, the slope of Figure 29 is smaller than Figure 28. It is obvious 

that the DSP Gateway invoke time is a more important influence factor to transfer time than 

the transferred data size. 

In the experiment, more transferring times using DSP Gateway result in lower transfer 

rate. Linux kernel system calls and device driver subsystem using by DSP Gateway are 

significant overhead in this experiment. Figure 30 shows a system call flow. 
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…
xyz()
…

xyz() {
…
int 0x80
…
}

system_call:
…
sys_xyz()
…
ret_from_sys_call:
…
iret

Sys_xyz() {
…
…
}

User mode Kernel mode

 
 

Figure 30. Linux System Call 

 

When a user application invokes a system call xyz(), the wrapper routine in libc 

standard library is called and issues a 0x80 interrupt. After interrupt, the program enters 

kernel mode, jumps to system_call table, finds the corresponding system call routine, and 

the system call routine services the call then returns to user mode. 
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Figure 31. Read() system call flow 

Figure 31 shows how a read() system call works. There are more than 10 functions 

need by a single read() system call. Most of them are for checking or protecting the kernel. 

The Linux system call flow showed above can be simplified in the embedded system 

because the embedded system environment is much simply than existing microcomputer 

environment. 

Besides Linux kernel system calls overhead, every GPP to DSP and GPP to DSP to GPP 

transfer bring 2 and 5 mailbox interrupts. This mechanism results in considerable impact on 

transfer rate and overall system performance. 
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6. Conclusion and Future Work 

In this paper, we propose a unified scheduler for tightly-coupled AMP systems.  The 

scheduler performs dynamic task partitioning between the GPP core and the DSP core at 

runtime based on the system state. A sophisticated cost function is proposed to take into 

account runtime power consumption, execution time, deadline fulfillness, and load balance 

simultaneously. Even though the system requires a new programming practice for efficient 

implementation, the impact on the programmers is minimal. This approach is more 

promising for next generation’s multimedia embedded systems than the common 

loosely-coupled dual-core systems used today.  Current scheduler is implemented as an 

add-on component to the Linux kernel for proof of concept.  In the future, a native OS kernel 

will be implemented base on this design for more efficient communication between two 

cores. 
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