Design and Analysis of a Unified Asymmetric
Multiprocessors Scheduler

PEREBENLTHEFRNA

BRI LA S T fe 1 R R E L4
Design and Analysis of a Unified Asymmetric Multiprocessors Scheduler

oy o4 i1 de Student : Chih Peng, Wang
R FRC Advisor : Chun Jen, Tsai

A Thesis
Submitted to Department of Computer S€ience.and Information Engineering
College of Electrical Engineering and Computer Science
National Chrao Tung University
in partial Fulfillment of the Requirements
for the'Degree of
Master

in
Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e £

I

e A AR Y T T3 F;

(g2 A i M A 2 L2 F ")

AP oris s B 2o o LA AR Qﬁ%g Soiage At
o 03 HBERY 2EPFEHIEEZH o
’fg rff?—ﬁ}f@f“”fful ﬁ#ﬁii?{;‘.ﬁ/}ﬁ

FREAZALAFERmE 2 F aRld 4
/FJ?_:-;_, ’ﬁ[ﬂ"f&ﬁi—_g bt’gﬁt,—,{ﬂﬂ B E]m’

AAERAF®T UL 2K
At dEr TFRES T RE
ZREAFE CHFBE SR LR

ta

7 LU U B PRl LA S R
B ot B AR 2 s BB IFEGONE (T LR BN 0 W F

(s

’%ﬂ"*ﬁ,? % —ri\')l':F'o

L R I S WY Ea®94E 8 15p2R

ok e B WP = 94E 8 15 p R

¥ L3

s
et
%

I

PHLAAB ¥ rEEEd

(FEFEA AT 2y TIHBERIZZTY)

iﬁ%%%i“i?&%¢’§$A%@iiﬁ%§ T ke
R FERY_2 BHPFEFMLETLH~ -

W ALE LR ARKEE *iﬁ%ﬂf@“’ff'»‘ -SRI

R FEE BL

Wi

AAERAFE AL RHRBEREL G AN RFHET T
BEE NI RLAE | 2 IE By “ﬁigﬁg'ﬁiﬁfiﬂ o Wi xR
gﬁﬁ,ﬁnuﬂ*kfr EREI G F TR EER Y RN FE TR

%ﬁ),||$va

Amv o M A e KAV E RE G5 I("Fﬂ AEFFH S ILE)i
CER AR Al T R 4 T #
PE R

PR RN

i
’Y
24

o
1%

v

RTINS EEA LG TR RS

ID:GT009217605

AR TG SR BRI LA TRTR TR FRaE
e e 93 BERY 2 BEHBFERIERZHT o

Gs AP A RS AR S AT P 1 PR AR R A

*%%@?%*f‘é: i g4

FPRMREA] FER2 7y 2> (FHE2) 22 h 2 HRER
?]3%‘ PO PERF I g A H e 2 7}%@:% v VoA
—:/.\Q‘ i@l ~';f:ljé;_$;:f+'ﬂi_p }|J€/.‘mp‘£I Qﬁ_‘__).)hi;?u p;\, &x—v—k ,ﬁ,__—gﬁ
E_kf"l]}&ﬁ «fr}%ﬁ‘ %ﬂj%ﬁ?\%ﬁ Ti\. ;llﬁr’o

KA HF AN 2R R FSRE T R AP E B o R F TR AR MR TIHL -
S TEER S
mEE ¢

AE 94 # 8§ ¥ 3 P

MXAOEAZEEEEES

PSP fE TS Sl

’:TT%ET%TP :

Design and Analysis of a Unified Asymmetric

Multiprocessors Scheduler

L Ak e s =t A b e N i

PSR AR AE AR L
IS ES

s

Sy 1T .

Ao I
(B IR TS NI S A B (e

VI

R Rz FRC B

Rz @ A FFR1EE 5 (F9) MLFL

Hotr 5 U SRR B S R T 5 e - R
i

B BPANE 3 L
LR S ANE T I - 3*"‘],{%@“’ A - B R H A RIE
oo gr¥tinian i o Bow s §fleaia it A ﬁ°{$}% BB PR LA i o
ﬁa@%ﬁ@%ﬁ@&ﬂ%uﬂmﬁ%ﬁ ¥ A8 TR sk i 2 B A
A (B E’ﬁ/]g ‘.“fbﬁ’l\‘}%«"ﬁ X BOpFES ﬁ' ,gﬁ R g’ﬁ R L B A

*7 i c ko kB RE S 1 ITRAR ;ﬁd 1

*®

R R X RN e

VO EERE ek SLdar o FTeEN B TS R z‘éﬁ WG R TR ENE
N

o An) el % BT A BEAESEA AR £ A SR - 5

Lz
-3
, wbL ©

Design and Analysis of a Unified Asymmetric

Multiprocessors Scheduler

Student: Chih Peng, Wang Advisor: Dr. Chun Jen, Tsai

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Most embedded multimedia devices today uses asymmetric multiprocessor (AMP)
platforms. An AMP is usually compesed of a General Purpose Processor (GPP) core and one
or more Digital Signal Processor,{DSP) cores. For such systems, a common practice is to
perform static task partition during'development time. However, due to the dynamic nature of
new generations of multimedia émbedded systems, the-performance of the system maybe
hindered greatly when the runtime system state is different from the assumed static state at
development time. This thesis proposes ‘@ dynamic asymmetric multiprocessor scheduling
framework that can reach better runtime system performance by using a single unified task
scheduler. A new programming practice similar to multi-thread programming is also proposed
in order to facilitate this approach. Initial results show that this framework is very suitable for

complex embedded systems.

B
¢
L%
¥

hBiEhh e OB TEARY o R S A AL FE e AR R H
EA P ERRFT L BRI ERY BT L Ak H TR
Fheongmedpf (AR P RIEFIE TN F R BR CEHEL B
FLEAY R TR L ALY hflet AT b s iR A Y
3B R F IR P A RN AT B RTA R o dg §
BOEPR R RE ML A F TR, SRR ET - BRLIFLRE R
AFJ R AEEF AL > BALF oG A KPR

il

Table of Content

ADSITACE ...t et ettt eb e sttt e et e st e et ebae e naena i
S B e e ettt iii
Table OF CONENT.......eiiiiiiiiiiiiit ettt ettt ettt e v
5 ol 2 T 1 (T PSSR \
LSt OF TabIES......eeiuiii it ettt vii
Lo INEPOAUCTION ...ttt ettt e ettt e e e e e e 1
2. Previous WOTKooiiiiii e e 2
3. Design of The Proposed AMP Scheduler..........cccooeveiiiiiiiiiiiieiieiecceee e 5
3.1. The Proposed AMP Schedulerc..ooviviiiiiiiiiiiieeee e 5
3.1.1. Power CONSUMPLION.ccieuriiieeriieieeeeiieeeeereeeeserreeeesreeeeesenneesesereeeesssnnes 7

3.1.20 EXecution TIME.....cccueeuiiiiiniiiiiiiiieic ettt 8

3.1.3. Deadline Fulfillness ..t i i v eereeeeeiriiiniiniiiiceiecniie e 11

3.1.4. Loading Balancei.........commussecosabatorereeeeseerereeaesreeeessseesessseessssseesssseeens 12

4. Implementation Details of The AMP Scheduler......ci..........ccovveiiiiiiiniie e, 15
4.1. Introduction to OMAP 5912 iuiiiii it 15
4.1.1. OMAP 5912 Application ProCessor:............ccueerurerieeeniieeieeeeieeeieee e 15

4.1.2. OMAP 5912 MemOryIMap asiis i e e ceeereeeeeeeseeeieieeeeeeessirereeeeessnnnsenneeens 17

4.1.3. Memory Traffic Controller............ccoeiiiiiiiiiiir e 18

4.2. Introduction to OMAP 5912 Starter Kit.......ooooviiieiiiiiii e, 18

4.3. Introduction to DSP Gatewayccoeveeiiiiiiiieee e 19
4.3.1. DSP Gateway Linux Device DIivercccccceeiiiiiiiiiiiieeiee e 20

4.3.2. DSP Gateway DSP/BIOS Kernelccooceiviiiiiiiiiiiiiiiiiieeneeeieene 21

4.3.3. Inter-Processor COmMMmMUNICAtIONccueiteririuiieeriiieeeeiieeeeiieee e eeeee e 21

4.4, IMPIEMENTALION ...eiiiiiiiieiiiii ettt ee e be e e e e e snraeeeeaneas 23

5. Experimental Results and ANalysiscoccceeiiiiiniiiniiiiiiie e 33
5.1. Dynamically Task Dispatching Rate Experimentcccccovveeniiinniinnneenne 33

5.2. M4V Interpolation Module EXperiment..........ccceevvveriieinneenniennieenneeenieee 35

5.3. Dynamic Task Dispatching — No OS Environment............ccc.coeeevvveeeeeeennnnnnnen. 36

5.4. DSP Gateway Data Transfer EXperimentcoocvevvieenneeinieenieeeneeeniees 37

6. Conclusion and Future WOrk...........coocveriiiiiiiiiiiiiiicccie e 42
T RETEIENCES ..ttt 43

List of Figures

Figure 1. The Proposed AMP Schedulerccooviiiiiiiiiiiiiiie e 6
Figure 2. Task Dispatch EXample........c..ooeeioiiiiiiiiiie ettt 9
Figure 3. Task Dispatch Example — The Best Ratio..........ccccciiiiiiiiiniiiiiicieee e, 9
Figure 4. Rate Transition Diagramccovueeriiiriiieiiiieiie et 13
Figure 5. OMAP 5912 Functional Block Diagramcccveeiiiiiiiiiiiiiieieieeee e, 16
Figure 6. SDRAM Mapping for DSP Space........ccueieieiiiiriiiiiieiee e 18
Figure 7. OMAP 5912 Starter Kitcoooiiiriiimiiiiiiiiiee e 19
Figure 8. DSP Gateway Driver Block Chart..............coooiiiiiiiiiiiiiiiieeccec e 20
Figure 9. DSP Software BIock Chart..........ccooiiiiiiiniiiiiieiiiceccee e 21
F1gure 10. MailboX ..cc.uviiiiiiiiiieiiiiie ettt et et 22
Figure 11. IPBUF SEUCKUIEccouiiiiiiiiiieei ittt ettt e et eesnae e 22
Figure 12. DSP Dynamic Loading Mechanism Bloek'Chart.............cocceevviiiiiiiiiniiniiieene 23
Figure 13. The Dsp_dld with Task RegIStrar o i, it i 24
Figure 14. Pure ARM MPEG 4 Video Codec Interpolation Modulecccceeeviieinncnn. 27
Figure 15. Active Sending DSP Task — Read Before Sending...........c.ccccevveiiniiniiennnnnn. 28
Figure 16. Active Sending DSP Task' = Read After.Sendingccoccveevvevnnieinieenneennnn. 28
Figure 17. Passive Receiving DSP Taskcccccooiiiiiiiiiiiiiiccicccecee e 28
Figure 18. Task Information REGISIET........cccccviiieiiiiieeieiiiee et 28
Figure 19. Dual Mode M4V Interpolate with Single-Threadccccccevviinniiininnnnn. 29
Figure 20. Dual Mode M4V Interpolate with Multi-Thread............ccccocoiiviiiiiiiiee, 29
Figure 21. Multi-Thread M4V Interpolate Module — GPP Threadcccoeoiieniiiinnen. 30
Figure 22. Multi-Thread M4V Interpolate Module — DSP Threadccoocooiiieiiieeennnnee. 30
Figure 23. Multi-Thread M4V Interpolate Module — DSP Data Listenercc.cee....... 31
Figure 24. Multi-Thread M4V Interpolate Module — Control Threadcccoovueeeeennee 31
Figure 25. Input/Output of Interpolationccceeiiiiiiiiiiiiiee e 33
Figure 26. GPP to DSP Transfer Rate...........cccceveeiiiieiiiiieiceiee et 37
Figure 27. GPP to DSP to GPP Transfer Rate............cccccviiiiiiiiiiiiiiie e, 38
Figure 28. DSP Gateway INVOKE TIMES........ueeeeriiiieeiiiiiee et eeeee e 38
Figure 29. DSP Gateway Different Size Transfer.........cccccoeeveiieiiciiieeniiie e 39
Figure 30. Linux System Callccocoiiiiiiiiiiiiie e 40

Figure 31. Read() system call flow

vi

List of Tables

Table 1. Unbalance Penalty EXample.........ccccviiieiiiiiiiiiieeciiee et 10
Table 2. Tasks INfOrmation..........ccccooiiiiiiiiiiiiiiiiiic e e 11
Table 3. OMAP 5912 DSP Internal RAM MeMmOTI€s........ccceeeriiiniiiirnieinieieiice e 17
Table 4. AMP Control Interface Command — Task Operation............cccccveeeeeiveeeerneeeeennnn, 25
Table 5. Task info Data StUCTUTEoeeiiiiiiiiie et 25
Table 6. AMP Control Interface Command — Lambda Operationccceeceveereieveeennee. 26
TADIE 7. A SEL...eiiii e e e et e 34
Table 8. Task Information In Experiment.............ccccooveiiiiiiiiiiiiie e 34
Table 9. Task Dispatching RESUIt...........cooeeoviiiiiiiiiiieiieieeeee et 34
Table 10. M4V Interpolation Module Experiment Resultccooiiiiiiiiiiiiie 35
Table 11. Time per Computing Unit........c.eerieieeeeiiieeeiiiiiescieieeevieeessiieeeeeeireeeeesreeeessneeees 36
Table 12. Time per Computing Unit RAtIOc00ifieiee i 36
Table 13. Experiment Group SEtIE ... roimdiis s e s s imneeevreeeseevreeeesrseeeesssreeessseesesssseees 37

vii

1. Introduction

The complexity of embedded system grows rapidly due to new mobile multimedia
applications. Uniprocessor platforms are not suitable for these applications since they
require high core frequency in order to handle massive multimedia data processing tasks.
However, higher core frequency consumes more power and produces more heat, which is
inapt for small form factor embedded systems. Therefore, a common practice for mobile
devices is to adopt multiprocessor solutions to increase system performance.

In particular, asymmetric multiprocessor architecture has been widely used for
embedded systems development (for example, for cell phones). In this architecture, a
general purpose RISC processor (GPP) core and a digital signal processor (DSP) core are
integrated into a system-on-chip (SoC), which can handle embedded system tasks
efficiently, especially for multimedia applications. However, existing real-time operating
systems for such architecture typically adopt-a loosely-coupled approach. Task partitions
between the two cores are typically done offline and two separate schedulers are employed
to perform task scheduling for theé two coresjindependently. This paradigm works properly
for traditional mobile applications whete the GPP core is typically slow and functionally
limited and the application tasks can be put into a simple foreground/background working
model.

New generations of multimedia applications and devices make this kind of
loosely-coupled system design obsolete. There are at least three reasons that call for a
new approach for real-time scheduler designs. First of all, new GPPs today are much
more powerful than old ones. Many of them even include special instructions for DSP
tasks. Secondly, multimedia applications has become so complicated and dynamic that
run-time load balance between the GPP core and the DSP core are crucial for system
performance and power consumption reduction. Thirdly, many multimedia applications
are more memory-centric than computation-centric. Quite often multimedia data are
encapsulated in transport streams, which are parsed out by the GPP. Depending on the
inter-processor communication cost at runtime, it may not be possible to determine offline

whether the GPP should pass the data over to the DSP for computation.

2. Previous Work

There are many researches on schedulers for multiprocessor architecture in last twenty
years. Until now, most multiprocessors scheduling algorithms concentrated on systems of
symmetric multiprocessors (SMP) and static tasks partition ([1], [4], [5], [6], [7], [8], [9],
[12], [17], [22]). Multiprocessor scheduling techniques in homogeneous multiprocessor
platforms can be classified into two general class, partition and global scheduling. Under
partition scheduling, each processor has its own task queue, including ready and wait queue,
and schedules tasks with local priority space independently from any other processors.
Each task is assigned to a particular processor when arriving, ends at the same processor,
and will not migrate to other processors during its life cycle. Unlike partition scheduling,
global scheduling stores all ready tasksilinias single ready queue, and uses a single
system-wide priority space. Whenever the seheduler using global scheduling is invoked, the
highest-priority task is selected ftom global ready ‘queue and executed regardless of which
processor is being scheduled. “These have worked "well for existing homogeneous
multiprocessors platforms.

A symmetric multiprocessor system can-provide better overall system performance than
a uniprocessor system [18]. With the gaining popularity of multimedia devices in recent
years, the focus has been shifted to asymmetric multiprocessor (AMP) systems. The main
reason why AMP systems are used for embedded devices is because that they provide the
best performance/clock ratio for the execution of a wide variety of tasks.

Wendorf et al. [15] proposed a number of scheduling policies, ranging from asymmetric
master/slave scheduling to symmetric scheduling, for multiprocessor platforms. According
to their experiments, “OS Preempt” policy provides the best performance in almost all
situations for AMP systems. Moreover, an AMP system using the OS Preempt scheduling
policy can perform as good as a fully symmetric system. Their results also indicate that the
overhead of context switching and shared resource contention in asymmetric systems are
relatively minor factors in overall system performance.

A simple model of master/slave architecture is presented by Greenberg and Wright in [2]
along with two scheduling algorithms. In this proposal, a subset of the system calls, which

are referred to as the kernel calls, can only be executed on the master. The remaining system

2

calls are referred to as the user calls. When a slave process makes a kernel call, the slave
processor returns the process to the master, rather than services the call by itself. The kernel
calls are serialized and may not be independent since these calls may update data that
influence the whole system. In the proposed design, jobs not running on any processors are
waiting in one of the two queues, the master queue or the slave queue. Jobs in the master
queue are all in kernel mode and jobs in the slave queue are all in user mode. A slave
processor can take jobs from the slave queue only and the master processor can take jobs
from either queue. Two scheduling algorithms are proposed to balance between
queue-switching overhead reduction and scheduling flexibility. They also proposed a way to
find P’ the optimal number of slave processors in a single-master processor environment.

In [3], Avritzer et al. developed an analytical performance modeling approach for load
sharing policies in highly asymmetric systems that schedule jobs based on global system
state. In the system described in [3], hosts have many different speeds which are subject to
heterogeneous workloads. They also introduced a threshold type load-sharing algorithm for
distributed asymmetric systems, the algofithm varies the thresholds dynamically, adjusting
them to the load in order to keep an,optimal number of tasks in each hosts. In this paper, they
modeled the job routing algorithms by building .a:global state Markov chain and computing
upper and lower bounds on the total system average delay. They concluded that carefully
tuned algorithms for load sharing.in the asymmetric environment provide a significant
improvement in performance over simpler algorithms.

For resource sharing, Saewong and Rajkumar [25] proposed the use of a Cooperative
Scheduling Server (CSS), which is a dedicated server that manages one specific controlled
resource while using a controlling resource, to control multiple resources access from a
single CSS. A CSS is created on a controlling resource (such as a CPU) to handle all local
requests for a controlled resource (such as disk access). The CSS reserves a sufficient amount
of capacity for controlling resources as needed to fulfill the obligations it has for accessing
controlled resources. Because there are scheduling policies for both controlling and
controlled resources, co-scheduling design must be employed. Some important
considerations of the co-scheduling design in [25] are as follows: 1) scheduling mismatch
due to heterogeneity of resource scheduling policies, 2) conjunctive admission control, 3)
resource synchronization, and 4) efficient resource utilization.

For embedded multimedia applications, such as 3G mobile phones, both control
operations and massive data processing operations are very important. There are some

architecture proposals ([16], [23]) efficiently integrate these two different types of computing

3

units into one AMP SoC. However, most of these systems are designed in a loosely-coupled
manner. For example, Gai et al. [24] discussed the problem of multiprocessors scheduling
for asymmetric architectures composed by a general purpose processor (GPP) and a digital
signal processor (DSP). Two task queues are used in their design, one for regular tasks (for
GPP) and the other for DSP tasks. When the DSP is idle, the scheduler always selects the task
with higher priority between the tasks at the head of the two queues. When the DSP is active,
the scheduler only selects the highest priority task from the regular queue.

In the next section, we will propose a tightly-coupled working model and the associated

scheduler design.

3. Design of The Proposed AMP Scheduler

3.1. The Proposed AMP Scheduler

The key concept of the proposed AMP scheduler is to facilitate a tightly-coupled
working model. Without loss of generality, assume that there is one GPP core and one DSP
core in the target system. In the tightly-coupled model, a task can be assigned to either the
GPP or DSP at runtime. When a new task arrives, the unified scheduler will oversee the
runtime status of both processor cores and decide which core is more suitable for executing
the new task. In our design, the scheduler computes a cost function based on power
consumption, computation complexity, deadline fulfillness, and loading balance in order to
make a decision for task dispatching.

Since different processor coresfiexecute different binaries, to enable the proposed
tightly-coupled model, a new programiming ptactice must be adopted. The new
programming model is somewhat similar to single thread vs. multi-thread programming. In
the OS, new system service calls are:provided-for the application to register dual-core
versions of executable images into the kernel at runtifme. Note that registration of a dual-core
executable image does not create a task and enter it into the task queues. Another API must
be called explicitly to start a (dual-core) task, which will enter the single universal task queue.
This is similar to explicitly calling a system service to start a new thread of a process. The
unified scheduler will then dispatch the task either to the GPP or the DSP based on a cost
function.

Figure 1 shows the proposed AMP scheduler. It is composed of a cost function evaluator,

an AMP scheduler, a version registrar, a resource monitor, and the task interface.

Application

Interface
: Tabl
Version able
ReQIStrar DSP Version
Table
Asymmetric
Scheduler

Resource
Monitor

Task Interface

Figure 1. Th

The AMP scheduler dispatches a ta ased on the cost function value and manages
running tasks, the version registrar records available executable images (refer to as services
in this paper) in the GPP version table and the DSP version table, and the resource monitor
watches GPP-side and DSP-side status and provides information for the cost function
evaluator. The run-time task table records information and status of tasks running on GPP
and DSP-side.

The task interface is an interface between the proposed AMP scheduler and the
processing cores. In the proposed design, there are three types of task nodes, the GPP task
node, the DSP task node, and the system task node. The GPP task node provides APIs for
managing tasks running on the GPP, the DSP task node provides APIs for managing tasks
running on the DSP, and the system task node provides APIs for retrieving and monitoring
system status.

Equation (1) shows the cost function used by the proposed scheduler to choose the target

processor for a task.

C:/ll : Cpower+ﬂf2 : Cexecution—i_ﬁﬁ : Cdead/ines—i_/b : C/dibal (1)

In equation (1), Cyoweris the power consumption cost of computation and data accessing
on the GPP or the DSP, C,recusion 1S the task execution time on the GPP or the DSP, Cyeudiine 18
deadline fulfillness based on the task execution time and the deadline, and Cjg . 1s the load
balance factor based on the task queue lengths on the GPP-side and the DSP-side.

By selecting different values of A’s in equation (1), the cost function can adapt to
different system requirements. For example, if the remaining power capacity is low, we can
increase A in order to save more power at the cost of slower response time and poor deadline

fulfillness. In the next subsections, we will describe the design of the cost function in detail.

3.1.1. Power Consumption

Power consumption is a major factor in embedded system design because power is the
most critical resource for mobile applications. Multiprocessor platforms often have the
advantage of being more energy: efficient than. uniprocessor platforms [31] at same
performance.

Effective power usage is not only. an -important issue in hardware design but also in
software design. In the proposed design, power consumption of a task can be further divided

into that for setup, computation, and data ‘access. Equation (2) tries to capture these factors:

Cpawer =P Core_INIT +P Core +P Core_DA (2)

In equation (2), Pcore it 1s the power consumption required to setup the task on a
processing core (either the GPP or the DSP), Pc,. is the power consumption for computation
on the core, and Pcyr ps 1s the power consumption for data access from the core. It is
important to note the necessity of Pc,.. i in the design. Before executing a task, the system
must establish the communication channel between the processor cores, register the task and
allocate necessary run-time resources. The power consumption for all these operations may

not be negligible and are summarized by Pcore it

3.1.2. Execution Time

Similar to the cost of power consumption, the cost for computation can be divided into
that for initialization, computation, and data access. In addition, on some systems, if a task
is dispatched to DSP, then there is additional time to deal with channel setup and data
communication between GPP and DSP. However, this cost can be rolled into the setup time
for DSP. The general cost function of execution time on a core for a task is summarized in

equation (3).

Cexecution = TCoreJN[T + TCure + TCoreiDA (3)

Tcore it 1s the initial setup time of a task on either the GPP or the DSP core. Besides
allocating runtime resources, including memory and task node, for the task, T, vir also
includes communication channel setup and configuration time. 7 ¢, is the computing time of
a task on a core. This is task-specific. * Finally, Teoe.p4 1s the data access time. It includes
data transfer time between DSP and GPP if mecessary, and memory access time during
processing.

In order to take advantage. of multiprocessor,/ platform, “Unbalance Penalty” is

introduced for balancing task dispatching ratio dynamically.

GiPPHDSP‘ ’GEPHD?P‘
%

Figure 2. Task Dispatch Example

GPP DSP

Figure 3. Task Dispatch Example — The Best Ratio

Assuming that there are five units of tasks, the:DSP version execution time of the task
is 10 per unit and the ARM version is 40 per‘unit. Figure 2 shows non-optimal dispatching
ratios. Although these two examples can take advantage of multiprocessors and reach total
computation time, they are not the optimal schedules. Figure 3 shows optimal task
dispatching ratio. The task can achieve the lowest response time when the task ratio is
inversely proportional to the ratio of the DSP and the ARM execution time of the task. The
optimal dispatching ratio is 4 in this example. Most problems related to multitasking
scheduling on multiprocessor systems have been proven to be NP-complete ([13], [14], [18],
[19]). Under multitasking environment, the “Unbalance Penalty” method can achieve
optimal dispatching ratio for each task, but overall scheduling decision may not optimal.

The “Unbalance Penalty” method is sub-optimal solution under multitasking environment.

Stage | DSP Count | GPP Count | Dynamic Ratio Unbalance | DSP Cost | GPP Cost
Penalty

Init 4 1 4 (Optimal Ratio)

1-1 0 10 40

1-2 5 1 5

2-1 10 20 40

2-2 6 1 6

3-1 20 30 40

3-2 7 1 7

4-1 30 40 40

4-2 8 1 8

5-1 40 50 40

5-2 8 2 4

6-1 0 10 40

Table 1. Unbalance Penalty Example

Table 1 shows an example of unbalance penalty works. Note that this example
assumes the cost function only coficerns about the task execution time. The task can obtain
the minimum response time if the DSP to ARM dispatching ratio is 4. Using unbalance
penalty mechanism, the cost function can'maintain a better dispatching ratio. The second
row in Table 1 is the initial stage. The.cost function will record the optimal dispatching
ratio in the task table. The stage 1-1 shows there is a task unit calls the cost function. There
is no unbalance penalty for this task unit since the dynamic dispatching is equals to the
optimal dispatching ratio in this stage. The stage 1-2 to 4-2 show the difference between the
optimal dispatching ratio and the dynamic dispatching ratio is bigger and bigger since the
unbalance penalty value is not big enough to influence the result of the cost function. The
stage 5-1 shows the unbalance penalty value is big enough to change the result and the
stage 5-2 shows the dynamic dispatching ratio returns to the optimal dispatching ratio.

Equation (4) shows how to calculate the unbalance penalty value.

Vubp = (RDynamic'ROptimal) 'CDSP (4)

Vup 1s the unbalance penalty value, Rpynamic 1s the dynamic dispatching ratio, Ropsimar 1S

the optimal dispatching ratio, and Cpgp is the DSP execution cost.

10

3.1.3. Deadline Fulfillness

In a real-time system, we want to process a task before the deadline. In the proposed cost

function, deadline fulfillness function is described by equation (5) if the task is executed on
the DSP.

Cdeadline = ,B '| Tg_TL'| (5)

In equation (5), f is the ratio of the task execution time of running on the DSP core
versus on the GPP core. For example, if a motion estimate task processed on the DSP core is

twice as fast than on the GPP core, then we can f is calculated by equation (6).

T = (6)

T, is the deadline given by the user application. In our design, we assume that the system
is a soft real time system.
T, is the estimated task completion:time,“which.1s estimated by summation of task

computing time in the task queue that has priority higher than (or equal to) the target task. An
example is given as follows.

Computing Time
Task Priority
(ms)
1 1 10
2 3 20
3 2 30

Table 2. Tasks Information

In Table 1, assume that there are three tasks already in the task queue and task 4 is a new
arriving task. The priority of task 4 equals to 2 and computing time equals to 40. Because the

priorities of task 1 and 3 are higher than or equal to task 4, these two tasks may block

11

execution of task 4. T, for task 4 is estimated as in equation (7), and 7}, is the task arrival

time (¢ in this case).

TL' = Tarr‘ival+]—'task1 +Ttask3+Ttask4 =t+80 (7)

Assuming that 7, equals to ¢, then the deadline fulfillness cost is calculated in (8).

Cdeadline = ,B .| t'(t+80)| (8)

With this formulation, the cost becomes smaller as the completion time approaches the

deadline (note that we assume a soft real-time system).

3.1.4. Loading Balance
In multiprocessor platforms, we want to balance the processing core’s utilization since
one can get better overall system performance this way. In-equation (9), M is the queue length

on the DSP side and N is the queug length-ontheiGPP side.

DSP _p.GPP
Py Py

()]

Cld_bal =

DSP _p . GPP
P Py ‘

P rMDSP

and Pry?” are probabilities when the DSP queue length is M and the GPP queue
length is N. We want to make the difference in probability between two queues as small as
possible. In this equation, we calculate two possible ways when dispatch a new arrival task

by adopting the method for solving birth-death problem presented in [3].

12

Figure 4. Rate Transition Diagram

In Figure 2, ¢ is the task arrival rate and § is the task completion rate. If the system is
steady in state N, the total out flow equals to the total in flow and the equation shows is

shown in (9). PrN is the probability of the system in state N.

0=—(e+08)Pry+6Pr,, +¢6Pr,, (N21),

(10)
0=-&Pr+0Pr
or
Pro, =5 %pr,—Epr,, (N21),
o o
) (an
Py, :gPrO

We use the equations show in(10) iteratively.and obtain a sequence of state probabilities,

Prl, Pr2, Pr3, ..., each in terms of Pr0,

Pr, =Pr, ﬁ (gj = Pr, (%) (N=1) (12)
i=1

To get Pr0, probabilities must sum to 1 and it follows that

(gj Pr, (N21) (13)

N=

0

And we define v as the ratio €/9, and obtain

Pr,=—1— (N21)

>t

N=0

(14)

13

z 7" is the geometric series 1 +v +v* + v + ... and converges if and only ify < 1. If
N=0

€ > 9, the mean arrival rate is greater than the mean completion rate, and the system will grow
up unlimited. And if € = 9, it means that the system never services all incoming task and turn
off with some tasks still wait for processing. So we assume that € < § or y < 1 in our system

and use well-known expression for the sum of the terms of a geometric progression,

o 1
N — 1
NZZOJ’ i (r<1) (15)

By combining equations (14) and (15), we obtain

Pr,=1-y (y<1) (16)

and

Pr, = (T=p)rl (7<) (17)

14

4. Implementation Details of The AMP Scheduler

The proposed scheduler is implemented on an OMAP 5912 platform running Linux. In
this chapter, we will first give an introduction to the OMAP 5912 application processor and
the OMAP 5912 Starter Kit development board used for the implementation, followed by an
introduction to the DSP gateway package used for communication between the GPP core and
the DSP core. Note that the overhead of the DSP gateway package is quite high and is not
suitable for a tightly-coupled system for practical applications. The reason it is used in the
implementation is merely for fast prototyping of the proposed system. Finally, some details

about the implementation will be given in section 4.3.

4.1. Introduction to OMAP 5912

4.1.1. OMAP 5912 Application Processor

OMAP 5912 Starter Kit (OSK5912) uses an OMAP 5912 processor. OMAP 5912
integrates a TMS320C55x DSP core and an. ARM926EJ=S RISC core. The C55x DSP core
provides high performance and low power consumption for digital signal processing tasks.
The ARM9 RISC core is very popular for embedded systems. OMAP 5912 is suitable for
multimedia embedded devices and can achieve better performance through dividing an
application into tasks and dispatch these tasks to two cores appropriately.

Figure 5 shows OMAP 5912 functional block diagram.

15

| omaPss12 = = ‘
TMS320C55% DSP DSP Public DSF Private Peripherals DSP Public Peripherals |
| 32| (Instruction Cac Peripheral Timers (3) _J.F.M BSP1
| pemr— SARAM, DARAM, DMA, Bus Watchdog Timer [momsp1 | I
\ Conversion Hw hocelerstors) = i MeBsPS i
‘ - MCSH |
Endianism
| S
| MU P DSP Public (Shared) == |
| 1€ Peripheral Bus |
| az)] I 32 MFU MPUDSP Shared Peripherals
| Interface Mailbox |
" MPUIDSP Static Shared |
WPU MPU Public
} Bus } a2 I 32 Peripheral Bus B x GRTMERS |
— .
| E 1 32 uARTL23 [
Flash bl A MMCISDIO2 |
McBSPZ
SRAM || | memory o MPU/DSF Dynamic Shared ‘
Interface. i GPIO1,234 |
| Traffic g 32-kHz Synchro Counter | |
| Controller
16 (Tc)
2 System |22 ——————!
| o omA - MPU Public Peripherals | |
Controller |
USB Controllers I

dioono|[mnm—zm

|

| e ! (= ool

| clle |

| Pl[P —l |

| T2 |1 | ‘
MPU Private | MICROWIRE IF |

| 3 + ; MPU Private Peripherals | Car;:rg I3 | |

| T I 1 Peripheral Bus Timers (3} | PWT | |

Lo ' ? il [|

| WPU Core I Interrupt K»f&?ﬁﬁ'rf

| ARMS26EJ S Handlers | MMC/SDIO1 |

| {Instruction 22 uLFD COR":gEi:::;D"] MPUIO | |

Cache, Data LPG1,2

| Cache, MAL) Cﬁ:’:‘:‘;‘:mzfﬁe' System DMA | ! I |

| = A2-kHz | @S Timer |

| - F | Il

| H— g |

g | ——
e A - —_ — e —
Tl Wl |
12 MHz 32 kHz

Clack
Reset

External Clock
Requests

Figure 5. OMAP 5912 Functional Block Diagram

The technical features of ARM926EJ-S RISC.core and TMS320C55x DSP core are

listed as follows.

» ARM926EJ-S
® Support for 32-Bit and 16-Bit (Thumb® Mode) Instruction Sets
® [6K-Byte Instruction Cache
® §K-Byte Data Cache
® Data and Program Memory Management Unit (MMU)
® [7-Word Write Buffer
® Two 64-Entry Translation Look-Aside Buffers (TLBs) for MMUs

» TMS320C55x
® One/Two Instructions Executed per Cycle
® Dual Multipliers (Two Multiply-Accumulates per Cycle)
® Two Arithmetic/Logic Units
® Five Internal Data/Operand Buses (3 Read Buses and 2 Write Buses)

16

32K x 16-Bit On-Chip Dual-Access RAM (DARAM) (64K Bytes)
48K x 16-Bit On-Chip Single-Access RAM (SARAM) (96K Bytes)
Instruction Cache (24K Bytes)

Video Hardware Accelerators for DCT, iDCT, Pixel Interpolation, and

Motion Estimation for Video Compression

4.1.2. OMAP 5912 Memory Map
Table 3 shows memory mapping of the DSP internal DARAM and SARAM. Note that
PDROM can not be seen in MPU physical address.

DSP MPU Linux size
Byte Address Physical Address Virtual Address
0x000000 0xe0000000 0xe0000000
DARAM | | | 64kB
Ox00ffff OxeOO00fEf£f OxeQO00ffff
0x010000 0xe0010000 0xe0010000
SARAM | | | 96kB
Ox027fff 0xe0027Eff 0xeQ027fff
0xf£8000 (not seen in
PDROM | MPU space) 32kB
Oxffffff

= i)

Table 3. OMAIV’5912 DSi’ Internal RAM Memories

inux straight
apping arezs

DARAM DARAM teaa_u DARAM
SARAM SARAM \\ SARAM
- N
s DSP space
o ma
“ map khadow area
by DSP MMU) (by MPU MMY)
ee_versl__POROM 7] 1
DSP Memory Space by GITE %0

rrrrrrrrrrrrrrr

"MPU Physical Space "MPU Virtual Spacea

17

Figure 6. SDRAM Mapping for DSP Space

Besides on-chip DARAM and SARAM, DSP also can use external SDRAM by
mapping it to the DSP memory space through the DSP MMU. Figure 6 shows how MPU
maps SDRAM to DSP space. When the MPU maps a memory block to the DSP space, it
also maps to the DSP space shadow area in the MPU virtual space so the offsets in the DSP
space and the shadow area become same. With this mapping, address exchanges between

DSP space and MPU virtual space can be done with very simple operations.

4.1.3. Memory Traffic Controller
Memory Traffic Controller (TC) is an important component in OMAP 5912 processor.
It provides and controls two high speed memory interfaces, EMIFS and EMIFF, for DSP
and MPU to access external memory.
® External memory interface slow (EMIFS) connects external device memories,
such as common flash memory. This interface enables 16-bit data accesses and
provides four chip-selects — eachlchip=select is able to support up to 64M bytes
address space through a 25-bit address bus:.
® External memory interface fast (EMIFF). is-a memory interface that enables
16-bit data SDRAM ‘memory -access. It supports connection a 64 Mbytes
SDRAM at maximum. It also"provides-two bank selection bits and 16-bit width
address. The OMAP 5912 provides-interfacing with a maximum of four banks of
64M x 16-bit SDRAM memory with DDR capability.

4.2. Introduction to OMAP 5912 Starter Kit

OSK5912 is a highly integrated hardware and software platform targeted at application
processing devices, mobile communications, and video and image processing. OSK is
designed to run general embedded operating systems on the ARM side and TI DSP/BIOS
real-time kernel on the DSP-side.

Figure 7 shows OSK5912 front view.

18

Figure 7. OMAP 5912 Starter Kit

The following paragraph lists some OSK5912 product features.

» Hardware Features Ay - s
® Texas Instruments 'i‘ MS320’(55 X core gﬁprating at 192 MHz.

ARMO core opera&li’g atHQZMPst ::r ;

TLV320AIC23 codée @ A

32 Mega Bytes DDR RAMTTTTIL

32 Mega Bytes on board Flash ROM

10 MBPS Ethernet port

On board IEEE 1149.1 JTAG connector for optional emulation

» Software Features
® Compatible with MontaVista’s Linux for OSK5912
® Compatible with OMAP Code Composer Studio from Texas Instruments

4.3. Introduction to DSP Gateway

DSP Gateway ([14]) is an open source project developed by Toshihiro Kobayashi for
inter-processor communication mechanism on Linux for OMAP family. The DSP Gateway

consists of a Linux device driver on the ARM side and a DSP-side kernel library. The Linux

19

device driver provides a convenient interface so that an application on GPP-side can

communicate with DSP through normal device system calls. The DSP-side kernel library

provides multi-task environment and APIs for user tasks.

4.3.1. DSP Gateway Linux Device Driver

ARM{Linux)

DSF memory
device UF

open(}
lssek{ |
read()
write{)
wctl)

DSP error
detection
device IF
read| }
poll)

DSP control
device UF

open)
release|)
inetl])

DSP task
watch device

readi)

poll(}
inctl()

DSP task
device IFs

open)

' redeasel)

read()
write{)
poll()
inct()

DSP MMU interrupt
handler

T

DsSP

DEPCFG
REGEW

Mailbox interrupt handler

TADD
TDEL

WOEND

WOREQ

BRSND
BKREQ

BKENDP
HKREQP

TCFG

e

| DSP
» MMU

Figure 8. DSP Gateway Driver Block Chart

Figure 8 shows GPP-side functionalities-provided by DSP Gateway Linux device

driver. The Linux device driver communicates with.'DSP through two Mailboxes, one for

GPP to DSP and another for DSP to GPP. It also provides five task device interfaces.

DSP Task Devices

The DSP task devices provide interfaces to the DSP tasks for Linux applications.
Programs communicating with the DSP tasks can achieve sending or receiving
data to/from DSP by reading from or writing to those devices.

DSP Control Device

The DSP control device provides DSP control API for Linux. Through this device,
Linux applications can control DSP reset, set specified DSP reset vector address,
and performs other DSP control commands.

DSP Memory Device

The DSP memory device provides the access to the DSP memory space for the
DSP program loader in Linux side. Programs also can extend the usable DSP
memory range by mapping external SDRAM block to the DSP memory space

through this interface.

20

® DSP Task Watch Device
The DSP task watch device provides functionalities needed for the DSP Dynamic
Loader Daemon.

® DSP Error Detection Device
The DSP error detection device provides the ability of detecting error from DSP
for Linux applications, such as watchdog timer expiration and DSP MMU error

interrupt.

4.3.2. DSP Gateway DSP/BIOS Kernel

DSP

task2” “task3”

ARM(Linux)

user
application

BIOS TSK !
user task)

fdev/dsptask
Itask1

DSP Gateway |t

[T e I)
priver » INT handler

DSP system kemel (tokliBIOS)

Figure 9. DSP Software Block Chart

Figure 9 shows the DSP Software Block Chart. When a Linux user application
accesses the DSP task device, the Linux device driver generates a Mailbox command to
DSP. In DSP side, the system kernel receives the Mailbox command and registers it into the

queue of the corresponding DSP/BIOS TSK.

4.3.3. Inter-Processor Communication
The ARM-DSP inter-processor communication is implemented using the mailbox

mechanism.

21

ARM DsSP

ARM2DSP1 mailbox
(command/data/flag) HINTS
DSP2ARM1 mailbox

. (command/data/flag)
DSP2ARM2 mailbox

Lol (command/data/flag) ’

(not used) |

Figure 10. Mailbox

Figure 10 shows the mailbox mechanism between the ARM and the DSP. There are
three mailbox register sets. One is for the ARM to send messages and issue an interrupt to
the DSP. The other two are for the DSP to send messages and issue an interrupt to the ARM.
Each mailbox register set consists of"f:vvilé) 16-bit {ééist_ers and a 1-bit flag register. The DSP
Gateway only uses two of mailboig fegistef igiets, ‘(_)he fo}"ARM to DSP and another for DSP
to ARM, for inter-processor comr_iiﬁnicatrion.f 2~ ﬁ!

Transferring a large amount Qf dataLWiﬁITmailbbx registers between the ARM and
the DSP is not efficient. DSP Gatev;iay iﬁtroduces Intéf-Processor Buffer (IPBUF) for large
block data transfer. The IPBUF can be plz{ced at the DSP internal SARAM and DARAM, or
the external SDRAM block which is mapped to the DSP memory space. Figure 11 shows

IPBUF structure in detail.

valid count
next BID in IPBLINK
ARM side lock info
ARM side sync word
DSP side lock info
DSP side sync word

data body
(128 words)

Figure 11. IPBUF Structure

22

DSP Gateway also provides shared memory mechanism for transferring or sharing
data between the DSP and the ARM. This mechanism relies on the DSP MMU and the
ARM MMU. By setting the DSP MMU and the ARM MMU, the DSP and the ARM can
access the same memory space. This mechanism only supports mapping SDRAM as shared
memory. In order to ensure data consistence between the DSP and the ARM, D-cache will
be disabled to mapped memory space and this would have an impact on the performance on

the ARM-side.

4.4. Implementation

The implementation of the proposed system is based on Linux 2.6.11 kernel patched by
[11] and [13]. We use the dsp_dld [12] in DSP Gateway package to load DSP applications to
the DSP core from an application (or system service) running under Linux. The dsp dld is a
utility program that manages DSP tasks and resources for the DSP Gateway.

Figure 12 shows how DSP dynamictleader daemon (dsp dld) works.

DSP ARM
dsp_did -
config
ta‘?’k DSP mem space . file
manager e
—1
linker
___ command
" task — file (*.cmd)
S I DSP task
module
load * ("0
—
p| New task [®=--__ i | dynamic link
application
it wake u
—| ask add request ’ P access
[LA | | l v |
register AP functions task watch I/F task I/F
“ Al TASKADD 1 =
i teway 1 aec\?:?f
ppinters ga
sk (finkernel) i

Figure 12. DSP Dynamic Loading Mechanism Block Chart

At startup time, the dsp_dld create DSP task device file in ARM-side /dev directory as
the DSP task interface to the dynamic tasks, boot the DSP up using the DSP Gateway
kernel, initializes the memory space manager, and creates the symbol table.

When an open access event is passed to the dsp dld through /dev/dspctl/twch, the

23

dsp_dld loads the corresponding task module to DSP memory and the task is added to the
system. When a close access event occurs, the dsp dld removes the corresponding task
from the system. Rely on this mechanism, DSP Gateway can link and load the DSP task
dynamically. The memory space manager in the dsp dld manages the memory space on
DSP-side. External RAM block for a DSP task is mapped dynamically at loading time and
lasts to the end of a DSP task.

dsp_dlid

dynamic link

load to DSP

s ,
TASKADD wake up

Figure 13. The Dsp.dld with Task Registrar

There are two ways to register task information into the proposed design. Figure 13
shows the dsp dld with the task register interface. When an access event wakes the dsp dld,
it not only loads/unload a DSP task to/from DSP but also register/unregister task
information into the proposed design. The second way is to register task information
through AMP control interface. AMP control interface is a control interface implemented as
a Linux driver and provides a device file interface at /dev/amp/ctl. Programs can use the
ioctl system call to register task information or control the AMP scheduler parameters.

Table 4 and Table 6 show AMP control interface commands.

24

Command Name | CMD Value | Parameter | Return Value | Short Description
OMAP_AMP_IOCTL_ | Ox15 Char * Int Calculate Task Cost
CAL_COST

OMAP_AMP_IOCTL_ | Ox16 Tsk_info * Int Register Task Information
TSK_REG

OMAP_AMP_IOCTL_ | Ox17 Tsk_info * Tsk_info * Get Task Information
TSK_GET

OMAP_AMP_IOCTL_ | 0x18 Tsk_info * Int Delete Task Information
TSK_DEL

OMAP_AMP_IOCTL_ | 0x19 None Int Initiate Task Table
TSK_INIT

Table 4. AMP Control Interface Command — Task Operation

® OMAP AMP IOCTL CAL COST
This command is used for calculating a task cost specified by input char
parameter. When the task registrar receives the command, it calls the cost
calculator and returns a lower cost value between two cores. Note that this
command doesn’t change values in the run-time task table and will not influence

the runtime cost calculator value.

® OMAP AMP IOCTL TSK REG
This command is used for registering-atask into GPP or DSP version table. Table

5 shows Task info data structure and all‘field is need for registering a task.

Variable Type | Description

Version Int Task version — GPP or DSP

Name Char * Task Name — Maximum length is 16
Power_cost Int Task power consumption information
Computing_cost Int Task computing time information

Table 5. Task_info Data Structure

® OMAP AMP IOCTL TSK GET
This command is used for getting task information. Version and name fields in

Task info data structure are need for this command.

® OMAP AMP IOCTL TSK DEL

25

This command is used for deleting task from GPP or DSP version table. Version

and name fields in Task info data structure are need for this command.

® OMAP AMP IOCTL TSK INIT

Initiate GPP and DSP version table. All information

cleaned away.

in version tables will be

LDBAL_LMD_SUB

Command Name | CMD Value | Parameter | Return Value | Description
OMAP_AMP_IOCTL_ | Ox1 Int value[4] Int Set four lambda values in Cost
SET_LMD Function.

OMAP_AMP_IOCTL_ | Ox2 Int value[4] Int value[4] Get four lambda values in Cost
GET_LMD Function.

OMAP_AMP_IOCTL_ | 0x3 None Int Increase power lambda values in
POWER_LMD_ADD Cost Function by 1.
OMAP_AMP_IOCTL_ | Ox4 None Int Decrease power lambda values in
POWER_LMD_SUB Cost Function by 1.
OMAP_AMP_IOCTL_ | O0x5 None Int Increase execution time lambda
COMPU_LMD_ADD value in Cost Function by 1.
OMAP_AMP_IOCTL_ | Ox6 None Int Decrease execution time lambda
COMPU_LMD_SUB value in Cost Function by 1.
OMAP_AMP_IOCTL_ | Ox7 None Int Increase deadline fulfillness lambda
DEADL_LMD_ADD value in Cost Function by 1.
OMAP_AMP_IOCTL_ | Ox8 None Int Decrease deadline fulfillness
DEADL_LMD_SUB lambda value in Cost Function by 1.
OMAP_AMP_IOCTL_ | 0x9 None Int Increase loading balance lambda
LDBAL_LMD_ADD value in Cost Function by 1.
OMAP_AMP_IOCTL_ | OxA None Int Decrease loading balance lambda

value in Cost Function by 1.

Table 6. AMP Control Interface Command — Lambda Operation

All commands in Table 6 are used for adjusting lambda values in the cost function.

The first two commands can set or get four lambda values at once. The remaining

commands are used for increasing or decreasing the specified lambda value by 1.

In order to use the proposed AMP scheduler, programmers only need to port the

example of how to modify the existing program.

26

program to DSP and pack data into one transfer unit, write it to DSP task device, and read the
returned data from DSP task device on the GPP side. The proposed design tries to reduce the

impact of porting existing programs as much as possible. The following paragraph shows an

while (Interpolate_Dis_y < (EDGE_SIZE+144))

{
while (Interpolate_Dis_x < (EDGE_SIZE+176))

{
idx = Interpolate_Dix_x+Interpolate_ ARM_y*edged_width;
Interpolate_Dix_x += 16;
halfpel16x16_h16(&h_ptridx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_v16(&v_ptr{idx], &n_ptr[idx], edged_width, rounding);
halfpel16x16_hv16(&hv_ptridx], &n_ptridx], edged_width, rounding);

}

Interpolate_Dis_y += 16;

Interpolate_Dis_x = EDGE_SIZE;

}

Figure 14. Pure ARM MPEG 4 Video Codec Interpolation Module

Figure 14 shows GPP MPEG 4 video codec (m4v) interpolation module. Its input data
is one macro block (MB) and output data .are three MBs in every iteration of the
while-loop.

In the DSP Gateway, there are two DSP task.data receiving type and sending type,
active and passive. Only passiveireceiving and active sending type task suits the proposed
design. Figure 15 and Figure 16 show:how an-active sending DSP task works. Figure 15
shows GPP calls read system call before DSP-issues WDSND/BKSND interrupt. Read
system call will be blocked until DSP issues sending interrupt and return as soon as
receiving sending interrupt. Figure 16 shows GPP class read system call after DSP issues
WDSND/BKSND interrupt. Read system call will return immediately. Figure 17 shows
how a passive receiving DSP task works. Write system call will return immediately and no

need to wait for DSP issues any interrupt.

GPP DSP

call read()

H WDSND/
read() return BKSND

27

Figure 15. Active Sending DSP Task — Read Before Sending

BKSND
call read()
read() retum

Figure 16. Active Sending DSP Task — Read After Sending

call write

‘ BKSND

Figure 17. Passive Receiving DSP Task

Figure 18. Task Information Register

28

Figure 18 shows how to register tasks into the proposed design at runtime. It should be
done before using the proposed design. Besides registering at runtime, the task also can be
registered at system boot time.

If the program only uses one thread to computing data on GPP-side and communicate
with DSP. Due to GPP may not receive data sent by DSP immediately, DSP will idle before

GPP receives data and transfers next data.

GPP DSP

/
| DSP Idle
BT T e —

Figure 19. Dual Mode M4V Interpolate with Single-Thread

GPP DSP

/I os de

J

b b

Figure 20. Dual Mode M4V Interpolate with Multi-Thread

Figure 19 and Figure 20 show how a single-thread and a multi-thread program run. A

multi-thread program uses two threads on GPP-side, one for process data on GPP-side and

29

another for transferring or receiving data from DSP. By using multi-thread, the DSP idle

time can minimize to data communicating time.

Figure 21. Multi-Thread M4V Interpolate Module — GPP Thread

Figure 22. Multi-Thread M4V Interpolate Module — DSP Thread

30

Figure 23. Multi-Thread M4V Interpolate Module — DSP Data Listener

Figure 24. Multi-Thread M4V Interpolate Module — Control Thread

Figure 21 and Figure 22 show an example to implement a multi-thread program. The
DSP and GPP version modules can be implemented with minimal differences. Besides
indexes operations before function calls (halfpell6x16 h16, halfpell6x16 v16, and
halfpel16x16_hv16), the main difference between these two modules is termination

31

function call. In GPP version module, the program exits by invoking the pthread exit
function call and the DSP version module exits by invoking the bksnd function call. In the
future, we will implement a wrapped routine to eliminate this difference. Figure 23 shows a
GPP-side thread to communication with DSP-side thread. The thread will be blocked on
read system call until DSP-side thread completed the task process and returns data to GPP.
After receiving data from DSP, the thread writes data to corresponding index and call
pthread exit to terminate itself. Figure 24 shows a main program flow controller. The
program uses ioctl system call to invoke the proposed design and creates corresponding
thread using pthread depends on the returned function pointer and value of the ioctl system

call.

32

5. Experimental Results and Analysis

In this chapter, the computation components from an MPEG-4 Simple Profile encoder
are used to test the proposed tightly-coupled AMP system. The interpolation module in
MPEG-4 video codec is used in the following experiment. In MPEG-4 Simple Profile,
motion compensation (MC) and motion estimation (ME) are done with half-pixel accuracy.
Therefore, sub-pixel interpolation of the original reference frame pixels for both MC and

ME is necessary. Figure 25 shows the input and output to the interpolation module.

Q00O
OO0 | 3x3 source block
ojele
OaOlaO l
Ooofo
O OlsO Interpolation
Ooo o ;e poa.lo
© © @) rocessing
Interpolation relation figure l l
OB A % O o 0
A A 0 o o O

2x2 'interpolated blocks

Figure 25. Input/Output of Interpolation

5.1. Dynamically Task Dispatching Rate Experiment

In this experiment, the goal of the experiment is to test the task dispatching result

under different task information settings and A values. The experiment settings are

showed in following two tables and explained in following paragraphs.

Power | Execution | Deadline | Load Balance
A set1 1 1 1 1
Aset2 |0 1 0 0

33

Table 7. A Set

Table 7 shows the two A set used in the following experiment. These A values are
introduced in the chapter 3. By setting different A values, factors in the cost function can
be calculated with different weight. The A set 1 in the second row of Table 7 means the
cost function concerns about all factors, power consumption, execution time, deadline
fulfillness and load balance, as equal. The A set 2 in third row means the cost function

only concerns about execution time.

Test 1 Power | Execution Test 2 Power | Execution
GPP 50 40 GPP 50 20
DSP 30 10 DSP 30 10

Table 8. Task Information Inr Experiment

Table 8 shows the task information in the experiment. In the proposed design, the
program is requested to provide the power consumption and the execution time information
of the task. In the test 1, the power consumption value of the GPP task is 50 and the
execution time value is 40, and the power consumption value of the DSP task is 30 and the
execution time value is 10. The test 2 is similar to the test 1. Note that all values in Table 8

are presumed values for experiment only and not measured data.

Test 1 GPP DSP Test 2 GPP DSP
L set1 |25 241 A set1 38 226
L set2 |30 236 L set2 |53 211

Table 9. Task Dispatching Result

Table 9 shows the results of task dispatching based on settings showed in Table 7 and

34

Table 8. In the second row of the test 1 and the test 2, although the power consumption and
execution time value of DSP task are smaller than GPP task, there are still some task will be
assigned to GPP because the value of the other two factors are weighted as large as the
power consumption and the execution time. Besides that, the intervention of the unbalance
penalty mechanism also influences the result of the cost function. In the third row of the

test 1 and the test 2, the DSP to GPP dispatching ratio is smaller than A set 1 because A

set 2 only concerns about execution time factor and the influence of the unbalance penalty

mechanism is larger than A set 1 relatively.

5.2. M4V Interpolation Module Experiment

Table 10 shows the computing time of the interpolator (for motion compensation and
motion estimation) under different operating modes. The test sequence used is the QCIF
version of the FOREMAN sequence and its length is 30 frames. The encoding configuration
in the experiment is the first frame is encoded as I-frame and all following are encoded as
P-frame. The interpolation module in:the experiment is invoked 2871 times in the entire

encoding flow.

m4v encode | Pure ARM | Interpolate | Interpolate_row | Interpolate 5:6 | Interpolate_row 4:5
FPS WIO Cost | 0.26279 | 3.84186 | 2.5672856 | 2.706051 | 1.4231122
FPSWICost 1026279 | 6.36634 | 2.6314728 | 3.288569 | 1.4447886
Gost Caleulator | \/A | 65% 2.5% 21.5% 1.5%
DSP Gateway 0 2871 261 1566 145

Table 10. M4V Interpolation Module Experiment Result

The interpolate_row in fourth row stands for the program transfer one row data to DSP
at once. The interpolate 5:6 in fifth row stands for the task distribution ratio between GPP and
DSP is 5:6. The experiment result shows that less DSP Gateway invoke times results in
lower interpolation time. In Table 10, it is obvious that the results using DSP interpolation
module is much slower than pure ARM module. In the following sections, we will explain

how this happens.

35

5.3. Dynamic Task Dispatching — No OS Environment

The experiment is based on the work of [10]. Table 2 shows computing time for

different computing units, including motion estimation (ME), interpolation, and discrete

cosine transform (DCT), under ARM/DSP/Dual mode. The test sequence used is the QCIF

version of the STEFAN sequence and its length is 150 frames. These tests were conducted on

a TT OMAP 1510 platform (the PSI Innovator).

Under ARM mode, the computing units in Table 2 are processed on ARM core and

didn’t use any DSP hardware extension. Under DSP mode, the computing units are processed

on DSP core using C55x hardware extension. Under dual mode, the computing units are

processed on both cores. Table 3 shows time per computing unit ratio under all modes.

Table 12 shows time per computing unit ratio under all modes.

Unit: us
ARM DSP Dual
ME 3883 357 349
Interpolation 441 282 227
DCT. 764 342 276

Table 11. Time per-Computing Unit

ARM DSP Dual
ME 11.12 1.02 1
Interpolation 1.94 1.24 1
DCT 277 1.24 1

Table 12. Time per Computing Unit Ratio

This experiment shows that the dual version can reach faster execution time than pure

ARM and pure DSP version. In the next section we will try to find out where is overhead

come from in our implementation system.

36

5.4. DSP Gateway Data Transfer Experiment

The next experiment tests the data transfer time between two cores. Table 4 shows the
data size and iterations of transfer of our experiment. In group 1, for example, a Linux
application transfers 12672 bytes of data three times to the DSP core through
SDRAM/SARAM/DARAM. All groups in our experiment transferred same amount of data
(38016 bytes) at different number of iterations. In this experiment, ARM and DSP run at 192
MHz, and Traffic Controller (TC) runs at 96 MHz.

Group 112|345 |6 |78

Transfer Size (bytes) 12672 6336 3168 1584 792 396 198 176

Transfer Time 3 6 12 24 48 96 192 216

Table 13. Experiment.Group Setting

Due to the limitation of SARAM-and DARAM capacity, there are no group 1 result for
SARAM and group 1, 2, and 3 results for DARAM experiments.
Figure 26 and Figure 27 show.transfer rates from GPP to DSP and from GPP to DSP to

GPP. All results show transfer time influences transfer rate.

GPP to DSP Transfer Rate

3500 \ : :
A —+— SDRAM

« SARAM
3000 + DARAM
@ 2500|
m
=3
< 2000}
5
o
5 1500
‘Q
C
S
= 1000}
500
0 L L L L L -
1 2 3 4 5 6 7 8

Figure 26. GPP to DSP Transfer Rate

37

GPP to DSP to GPP Transfer Rate

2500 : : .
—+— SDRAM
7 —— SARAM
2000 F —+ DARAM i
w
M
X 1500+
)
T
o
5}
¥ 1000+
C
<
l_
500 +
0

Figure 27. GPP to DSP to GPP Transfer Rate

GPP writes data to SDRAM through EMIEF ‘Interface in Memory Interface Traffic
Controller, and to SARAM and DARAM through MPU Interface (MPUI). It is obvious that
transfers data through SDRAM is-faster than through SARAM and DARAM.

14)
— 16K
12} — &
— 1.75M
—~ 10+
[
Q
L
[} L
g ®
'_
3 6l
2
©
= 40
e
/
2t/
S/
0 1 | 1 |
0 2000 4000 6000 8000 10000

DSP Gateway Inwoke Times

Figure 28. DSP Gateway Invoke Times

38

-
[oe]

- N -
N L (o]
T T T

Transfer Time (ms)
® O

2 L L L
0 0.5 1 1.5 2 2.5

Size (bytes) v ant

Figure 29. DSP Gateway Different Size Transfer

Figure 28 shows the relationship between the, DSP Gateway invoke time and the total
transferred time under different total transferred-data size. Three different data size, 8KB,
16KB and 1.75MB, are tested in the experiment and the mnvoke time range of DSP Gateway
is from 1 to 8192. The result of the experiment shows that the total transfer time most
depended on DSP Gateway invoke'time and the different transferred size is a less important
factor. Figure 29 shows the relationship between the total transferred size and transfer time.
The experiment transfers different data sizes with the same DSP Gateway invoke time.
Compared with Figure 28, the slope of Figure 29 is smaller than Figure 28. It is obvious
that the DSP Gateway invoke time is a more important influence factor to transfer time than
the transferred data size.

In the experiment, more transferring times using DSP Gateway result in lower transfer
rate. Linux kernel system calls and device driver subsystem using by DSP Gateway are

significant overhead in this experiment. Figure 30 shows a system call flow.

39

User mode Kernel mode

Figure 30. Linux System Call

When a user application invokes a system call xyz(), the wrapper routine in libc
standard library is called and issues a 0x80 interrupt. After interrupt, the program enters
kernel mode, jumps to system_call table, finds the corresponding system call routine, and

the system call routine services the call thi furns to user mode.

40

Figure 31. Read() system call flow

Figure 31 shows how a read() system call works. There are more than 10 functions
need by a single read() system call. Most of them are for checking or protecting the kernel.
The Linux system call flow showed above can be simplified in the embedded system
because the embedded system environment is much simply than existing microcomputer
environment.

Besides Linux kernel system calls overhead, every GPP to DSP and GPP to DSP to GPP
transfer bring 2 and 5 mailbox interrupts. This mechanism results in considerable impact on

transfer rate and overall system performance.

41

6. Conclusion and Future Work

In this paper, we propose a unified scheduler for tightly-coupled AMP systems. The
scheduler performs dynamic task partitioning between the GPP core and the DSP core at
runtime based on the system state. A sophisticated cost function is proposed to take into
account runtime power consumption, execution time, deadline fulfillness, and load balance
simultaneously. Even though the system requires a new programming practice for efficient
implementation, the impact on the programmers is minimal. This approach is more
promising for next generation’s multimedia embedded systems than the common
loosely-coupled dual-core systems used today. Current scheduler is implemented as an
add-on component to the Linux kernel for proof of concept. In the future, a native OS kernel
will be implemented base on this design fotfmore efficient communication between two

cores.

42

7. References

[1] Abdelzaher T., Andersson B., Jonsson J., Sharma V., and Nguyen M. The Aperiodic
Multiprocessor Utilization Bound for Liquid Tasks. In Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Applications Symposium, September 2002.

[2] Albert G. Greenberg and Paul E. Wright. Design and Analysis of Master/Slave Multiprocessors.
IEEE Transactions on Computers, VOL.40, NO.8, August 1991.

[3] Alberto Avritzer, Mario Gerla, Berthier A. N. Ribeiro, Jack W. Carlyle and Walter J. Karplus.
The Advantage of Dynamic Tuning in Distributed Asymmetric Systems. In Proceedings of
INFOCOM, 1990.

[4] Anderson J., and Srinivasan A. Early Release Fair Scheduling. In Proceedings of the
EuroMicro Conference on Real-Time Systems, June 2000.

[5] Anderson J., and Srinivasan A. Mixed Pfair/ERfair Scheduling of Asynchronous Periodic
Tasks. In Proceedings of the EuroMicro Conference on Real-Time Systems, June 2001.

[6] Andersson B., Baruah S., and Jansson J. Static-Priority Scheduling on Multiprocessors. In
Proceedings of the IEEE Read-Time Systems-Symposiumy December 2001.

[7]1 Andersson B., and Jonsson J. Fixed-Priority Preemptive Multiprocessor Scheduling: To
Partition or Not to Partition. In Proceedings of theInternational Conference on Real-Time
Computing Systems and Applications, December 2000.

[8] Baruah S., Cohen N., Plaxton G., and Varvel D. Proportionate Progress: A Notion of Fairness
in Resource Allocation. Algorithmica 15, 6, 600-625. June 1996.

[9] Burchard A., Liebeherr J., Oh Y., and Son S. H. Assigning Real-Time Tasks to Homogeneous
Multiprocessor Systems. /[EEE Transactions on Computers, 44, 12, 1429-1442. December
1995.

[10] Chien-Tang Tseng, Chih-Peng Wang, and Chun-Jen Tsai. Dynamic MPEG-4 Video Encoder
Partitioning on Asymmetric Dual-Core Platforms. In Proceedings of the 15" VLSI
Design/CAD Symposium, 2004.

[11] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory 3" Edition. February 6,
1998.

[12] HaR., and Liu J. W. S. Validating Timing Constraints in Multiprocessors and Distributed
Real-Time Systems. In Proceedings of the 14" IEEE International Conference on Distributed
Computing Systems, June 1994,

[13] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Butazzo. Implications of Classical

43

[14]

[15]

[16]

[17]

[18]

[19]
[20]

(21]

[22]

[25]

[26]

(27]

(28]

[29]

Scheduling Results for Real-Time Systems. Technical Report UM-CS-94-089, Computer
Science Department, University of Massachusetts, 1994.

J. D. Ullman. NP-Complete Scheduling Problems. Journal of Computer and System Sciences,
10(3):384-393, June 1975.

James W. Wendorf, Roli G. Wendorf and Hideyuki Tokuda. Scheduling Operating System
Processing on Small-Scale Multiprocessors. In Proceedings of the Twenty-Second Annual
Hawaii International Conference, 1989.

K. K. P. Research. Increasing functionality in set-top boxes. In Proceedings of [IC-Korea, Seoul,
2001.

Lopez J. M., Garcia M., Diaz J. L., and Garcia D. F. Worst-Case Utilization Bound for EDF
Scheduling in Real-Time Multiprocessor Systems. In Proceedings of the EuroMicro
Conference on Real-Time Systems, June 2000.

M. R. Garey and D. S. Johnson. Complexity Results for Multiprocessor Scheduling Under
Resource Constraints. SIAM Journal on Computing, 4(4):397-411, 1975.

M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

Maurice J. Bach and S. J. Buroff. Multiprocessors UNIX Operating Systems. AT&T Bell
Laboratories Technical Journal, 63(8):1733-1749, Qctober 1984.

Momtchil Momtchev and Philippe Marquet. An Asymmetric Real-Time Scheduling for Linux.
In Proceedings of the InternationalParallel.and Distributed Processing Symposium, 2002.
Oh D. L., and Baker T. P. Utilization Bounds;for:N-Processor Rate Monotone Scheduling with
Static Processor Assignment. Real=Time Systems: The International Journal of Time-Critical
Computing, 15, 183-192. 1998.

OMAP5912 Applications Processor Data Manual. Texas Instruments. Dallas, Texas. [Online].

Available: http//www.ti.com.

Paolo Gai, Luca Abeni and Giorgio Buttazzo. Multiprocessor DSP Scheduling in
System-on-a-chip Architectures. In Proceedings of the 14" Euromicro Conference on Real-Time
Systems, 2002.

Saowanee Saewong and Ragunathan Rajkumar. Cooperative Scheduling of Multiple Resources.
In Proceedings of 20" IEEE Real-Time Systems Symposium, 1999.

S. Sriram, and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. New York: Marcel Dekker, 2000.

The OMAP Linux Kernel Team. Linux 2.6.11 omap1 patch file. [Online]. Available:

http://www.muru.com/linux/omap/.

Toshihiro Kobayashi. DSP Gateway Dynamic Loader Daemon (dsp_dld) Specification. May 7,
2005.
Toshihiro Kobayashi. DSP Gateway Linux 2.6.11 omapl patch file. [Online]. Available:

http://dspgateway.sourceforge.net.

44

[30] Toshihiro Kobayashi. Linux DSP Gateway Specification Rev 3.2. May 4, 2005.
[31] Wayne Wolf. Computers as Components: Principles of Embedded Computing Systems Design.
Morgan Kaufmann Publishers, 2000.

45

