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Pursuit of Exact Wave Function of Helium
Using Homogeneity Expansion

Student: Wen-yang Tsai Advisor: Henryk Witek

M. S. Program
in Molecular Science
Department of Applied Chemistry
National Chiao Tung University

Abstract

The exact wave function of helium atom has not been fully determined yet.
Formulating_an efficient way of describing and computing the wave functions of
two-electron systems is important. Solving this fundamental problem can be useful for
accurate treatment of many-electron systems. Using homogeneity expansion of the
wave function to solve the Schrodinger equation is the main topic in this thesis. In

order to solve the Schrédinger equation to helium atom, we assume that the wave

function ¥ can be expanded as W =)W, , where ¥, is the component of the total
h=0

wave function homogeneous of order h. By substituting the expansion into

Schrodinger equation, the working equation of our method, T¥, =-VV¥, +EY,,,

is produced. We attempt to solve this equation to find ¥, with n=0, 1, 2 and 3. The



first equation is TW, =0 and its solution is ¥,=1. For ¥,, we give a short
discussion of homogeneous solutions for the kinetic energy operator ('f ) in
interparticle coordinates (IC). Next, we discuss two methods of finding ‘¥, separately
for terms independent of r, and terms dependent on I,,. By solving the equation
TW¥,=-VW¥,, we can find that ¥, =-Z(r, + r2)+% I, . The equation defining ¥, is
TW,=-VW¥,+EW¥,; its solution is too complicated to quote it here. The solution
Y, found by our method is a particular solution. This solution has singularities at
some special points. In order to make our particular solution ¥, well-behaving, we
need to find homogeneous solutions. to remove the singularities of ¥, when
L=r,+r, and r, =1 +1,. A detailed discussion of ¥, found by Abbott et al. leads
us to find homogeneous solutions we need. We also make a plot of ¥, and prove that
¥, is a well-behaving wave function successfully. Application of ¥, for solving
Y, is another important issue studied in this thesis. An inversion table for monomial
terms of homogeneity one is created for finding a particular solution of ¥,. Enough
terms in monomial tables of every homogeneity have the ability to generate particular
solutions of ¥, with every value of n. This discovery shows that using inversion

table to solve the Schrodinger equation is feasible and valuable.
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Chapter 1

Introduction

The wave functions of atoms and ions have been discussed in detail since the
early days of quantum mechanics. We can completely solve Schrdodinger equation
for hydrogen and hydrogen-like atoms. It means that one-electron systems are
understood exactly. Before we proceed to the discussion of many-electron systems,
we need to know more about two-electron systems. For the systems with more than
two electrons, the correlation between each two electrons is important and should
be understood clearly in-order to find the exact wave function of any system.
Solving this fundamental problem can be useful for studying more complicated
many-electron systems. Moreover, accurate wave functions of two-electron atoms
are needed not only to, understand the properties of three-particle system but also to
describe the behavior of these systems in the presence of external fields.

However, even the wave function of helium has not yet been fully understood.
It is commonly believed that helium, the second simplest of atoms, does not permit
exact solution of its Schrodinger equation because of the difficulties in solving the
Schrodinger equation analytically due to non-separability. This belief led to the fact
that few people were trying to find the exact wave function of helium.

After over 80 years of research, we know that to formulate an efficient way of
describing and computing the wave functions of two-electron systems is important.
If the Schrédinger equation of a two-electron atom can be solved exactly, which

means the two-electron systems are understood completely, multi-electron systems



can be understood more deeply; it will also improve most of the approximation
methods applied to multi-electron systems.
The history of finding the wave function of helium dates back to the beginning

of quantum mechanics. It was Hylleraas who applied Schrédinger equation to the
helium atom and published a series of important results in 1928" and 1929.° He

introduced electron-electron distance (r,) explicitly in the wave function, which

was a very important and useful argument to describe the behavior of the wave
function of helium. A very nearly exact approximation to the ground state wave
function for the helium atom was obtained by Hylleraas. This approximation is
called Hylleraas expansion. Hylleraas expansion applied to evaluate the ground
state energy ‘of helium-atom produced a result correct to 3 digits. Another
development of Hylleraas-was the introduction of interparticle coordinates and
(s,t,u) coordinates to simplify the Schrédinger equation.

In 1935, Bartlett proposed his expansion of the wave function of helium
atom.’ This expansion was the first expansion which included logarithmic terms,
which is important and. meaningful nowadays. He also mentioned about the
importance of boundary conditions in finding an exact wave function.” Since then,

many people tried to solve accurately the Schrodinger equation of helium atom.

In 1951, Kato demonstrated that a wave function should be well-behaving,5
which means the wave function should be square-integrable, antisymmetric, finite
and continuous everywhere and its first derivative should be also finite and
continuous everywhere except for the Coulomb singular points (Kato cusp
conditions). We need to use these principles to make sure our solutions are

well-behaving wave functions.

In 1957, Kinoshita improved Hylleraas expansion,6 and used 39 parameters to
2



evaluate the energy of the helium atom, which was correct to 6 digits. Kinoshita
. u t .
also used a new coordinate system (s, p=—,q=—) to set an expansion of the wave
S u

function of helium.

There are also a lot of scientists trying to introducing new coordinates to
simplify Schrédinger equation of helium. After introducing hyperspherical
coordinates, Fock proposed that the exact eigenfunctions have the form of Fock
expansion in 1954."° This expansion plays an important role in the research of
two-electron system. Fock’s research tells us that finding good coordinates is
important to solve Schrédinger equation-of helium.

After the publication of Fock expansion, Hylleraas proposed a new method for

obtaining formal solutions by using.an expansion in Legendre polynomialsg in
1960. This.research mentioned about the importance of finding homogeneous
solutions; it can be considered a very important contribution for finding the exact
wave function of helium.

In 1966, Frankowski and Pekeris try to add logarithmic terms in the wave

function to evaluate the energy-of helium*® The result was correct to 12 digits. At
this moment, we believe that logarithmic terms are really important in the wave
function.

Following Fock expansion to solve the Schrddinger equation of helium
became a main topic in 1980s. There are a lot of outstanding scientists, for example,
Pluvinage, who published important result of Fock expansion in order to evaluate
the exact wave function and energy of helium in 1982 and also defined a new
coordinates which called Pluvinage’s coordinates. In 1986, Morgan proved

pointwise convergence for every (even complex) value of E in the Schroédinger



equation of helium with Fock expansion.12
In 1987, Gottschalk, Abbott and Maslen published papers about an important
. . 13,14,15 .
solution of parts of Fock expansion. They used an expansion of the wave
function by hypersperical harmonics (HHs) corresponding to homogeneity for
solving the two-electron atomic Schrodinger equation. In this paper, they are

successful to find ¥,, in Fock expansion, and this paper is also an important

discussion of solving the following wave functions.

In 2007, Nakashima and Nakatsuji evaluated a very accurately the energy of
helium atom.” In their result, the energy is correct to over 40 digits. The
technology of very accurate approximate calculations is complete. However, the
exact wave function is still.not found_completely. The main topic of this thesis is
continuing selving the Schrédinger equation to helium by new, mathematical, and
logical methods. The main methods we use and the detail we will talk in the

following chapters.



Chapter 2

Theoretical Background

2.1 Schroédinger Equation of Helium Atom
Time-independent Schrddinger equation is given by

HY =T +V)¥=EV¥. (2.1)
Hamiltonian operator has two parts; corresponding to kinetic energy and potential
energy. We can. completely solve Schrodinger -equation of hydrogen and
hydrogen-like ~ atoms. ~However, the solution to Schrodinger equation of
many-electron system is still not known exactly. Before discussing many-electron
system, we need to solve Schrodinger equation of two-electron system first.

The nonrelativistic many-electron Hamiltonian of an N -electron atom is given by

=258, _§)+zrl (2.2)

. B WY .
where Z is the nuclear charge and _EAi Is the operator corresponding to the

Kinetic energy of the electron i. In two-electron systems, Eq. (2.2) can be written

as

H:—EA—1%—5—5+EH (2.3)
272" o

where 1, r, and r, are interparticle coordinates (IC) shown in Figure 2.1.



," \ Figure 2.1

—————— p The interparticle coordinates
2
of helium
In Figure 2.1, r, and r, are the electron-nucleus distances and r, is the
distance between the two electrons.

Therefore, we can use interparticle coordinates to describe the behavior of the

wave function.

¥ =¥"(r,r,,1,). (2.4)
Eqg. (2.1) becomes

(T +V)P1C = EPiC, (2:5)

The operators T' and V'S, in atomic units (a.u.) for simplicity, are given by

o 16 ¢16 10 18 0% 20

2067 20n7 oy r,0r, on, 1, dh,

Pl Ul T

, (2.6)
2 ri.r12 arEl.arlz 2r2 r12 ar-ZarlZ
yeo_2 2,1 (2.7)
r1 r2 r12

Interparticle coordinates give the easiest way to understand the physical

meaning of each term of the wave function of helium.

2.2 Coordinate Systems

For solving the Schrodinger equation of helium, interparticle coordinates

constitute an easy to understand framework. However, the solution can be



complicated in these coordinates. Discovering useful coordinates to describe and
simplify the wave function is important to solve the equation systematically.
Therefore, there are many different sets of coordinates which are used to evaluate
and simplify the equations. These coordinates are introduced and discussed in this

section.

2.2.1 Interparticle Coordinates (r,r,,r,)
1) Definition of Interparticle coordinates (IC) is already mentioned in Figure 2.1

2) Definition of V and T

V= —p = (2.8)

rli + rjI.2 1 r-22 82 r;l.i . r;l.z + r22 62 (2 9)
2nn,  onon, 2L,  0Onor,

3) Volume Element: 87°KK, 15
4) Range

re[0,0)
r,e[0,)

ﬁ2€[|n_r2|’ﬁ+r2]
2.2.2 Ratio Coordinate (r, p,1,)

1) Definition and Inverse Formula (Compared with IC)

I
n=np=—,,=0

r

I
h=rnnL=—1I,=r0,

yo,

2) Definition of V and T



Vi Re =_Z(l+p)+i, (2.10)
n f,

FRe _ 18 10 1p(p*+) & po & 20 p &

20n" ron 2 n’ op* 1’ op B on,’ _E on, ?1 onop

= 5 5 ) (2.11)
2 LTy onor, 2 P on,0p

2.3
8z°1rn,
3

P

3) Volume Element:

4) Range

1
rl_

{ r rl}
I, € — it =
Pl P

2.2.3 (s,t,u) Coordinates

1) Definition and Inverse Formula (Compared with IC)

{S:rl"‘rmt:rl_rz’u:rlz}

S+t s—t
PR €\

2) Definition of V and T

47s 1
2_¢2 +a1 (2.12)

v\(s,t,u) —_
S

f(svt,u)z_a_z_a_z_az 4s 0 4 0 20

s ot ou? sP—t2os tP—sPot udu

2s(t> —u?) &° +2t(sz—u2) o’

. 2.13
u(s®—t?) osou  u(t®*—s?) étou (2.13)

3) Volume Element: 7°u(s® —t?)

4) Range



Se[O,oo)

te(—oo,oo)
uellt),s]
2.2.4 Spherical Polar Coordinates (r,r,,6)

1) Definition and Inverse Formula (Compared with IC)

2 2 2

r°+r°—r
{rl:rl,rz:r‘,_.ezarccos(—l 22 12 )}
172

{rl =1,I,=",I, =\/r12 +1,7-2rr, cose}

2) Definition of V andT

- Z Z 1
VSPC el :
hon \/’ I’ +1,° = 2K, cosé

pec _ 1 o 10> 10 10 lcosOri+r’ @ “1r’+r’ o

3) Volume Element: 87°r,°r,>sin @
4) Range

e [O,oo)
r, e [0,00)
0e[0,7]

2.2.5 Hyperspherical Coordinates (r,«,6)

1) Definition and Inverse Formula (Compared with IC)

2 2 2
r K+, —r,
r:4/r12+r22,a=2-arctan -2 |,0=arccos| L—2—12
I 2rr,

1
(04 . a "
{rl =r-cos—,I,=r-sin—,r, = n/l—sm acose}
2 2

2) Definition of V and T

(2.14)

(2.15)



e L2 Z_, ! (2.16)

—),
COSg sing \/]m
2 2

. 16° 1,5 0. 2 82 cosa O 2 1 ,0° cosé o
-~ _22.5-2 e W 2.17
20r r (2 6r) ( sina aa) rsin’a (6492 sin@ 649) (2.17)

3) Volume Element: 7°r®sin® asiné
4) Range

re[O,oo)
ae[0,7]
6’6[0,7[]

2.2.6 Pluvinage Coordinates (R,r,,,®)

1) Definition and. Inverse Formula (Compared with IC)

Figure 2.2
The Pluvinage’s coordinates

and interparticle coordinates

©1 of helium

2

2

o —r,

\/Zr +2r° —r,% 1, =1,,0=arccos —
J2r? +2r? —r.’
12\/ 1 2 12

1 1
{rl :E\/R2 +1,,> —2Rr, cos @, T, :E\/R2+r122 +2Rr, cosO®,r,, = rlz}

2) Definition of V and T

v Pe 2Z 2Z +i, (2.18)

- \/R2+r122—2erzcos® \/R2+r122+2Rr12cos® ®

# 20 & 2 0 R4+r 8 R+r,°cos® o (2.19)
r,or, Rr? 0©° R} sSin® o0 '
10



3) Volume Element: z°R%r,,*sin®
4) Range

Re [0,00)
r, €[0,)
®c [0,72']

2.2.7 Kinoshita Coordinates (S, p,qQ)

1) Definition and Inverse Formula (Compared with IC)

r, (A
szrl+r2,p:—12 ,q:_l 2
r1—'_r2 r12

s-(1+ S-(1-
{E: (L+pa) . 25 pq)le:Sp}

2 2

2) Definition of V and T

fe _ 4z bt (2.20)
s-(I+pg)-(1—pa) sp
e 0w 4 00 @=p)depq)d 2(0-2p°-p'g’) 0
os’ "s(l—p’g?)es  s*(l-p°qd’)  ep® . stp@-p*d’) op
_(@-g)@*pfg).@° |, 2q(+p’) o
s?p’(1— p°d®). 09’ s*p*(@=p°q°) g
2 2 2 2 2

s(l- p’g®) dsdp  s(l- p*g?) dsdq
3) Volume Element: z°s®p*(1— p*q?)
4) Range

Se [0,00)
pe [0,1]
ge [—1,1]

2.2.8 Perimetric Coordinates (p,, p,, Ps)

1) Definition and Inverse Formula (Compared with IC)
11



(P =—h+n 40, P =06 +0,, Py =6+, —1,}

P, + P Pt P P+ P
{rl: 22 31, = 12 31, = 12 2}

2) Definition of V and T

V‘Perc:_zz(p1+p2+2p3)+ 2
(P +P)(P,+P;) Pt P,

(2.22)

-I'-‘PerC :_2(_p12+ p22+2p32+2p1p2+2p2p3+2p1p3)i
(Py+ P)(P, + P)(Py + ) op,

_2(p12_ p22+2p32+2p1p2+2p2p3+2p1p3)i
(P, +0,)(P; + P;)(P, +Ps) P,

2p,(peP, # P +2p, Py +2P,P3+2p5°) &
(P + Po)(P, + P3)(P+ Ps) op,

2

2P, (PuPs + P 2P, P +2P, P +2Pp,°)
(P, +P)(P; + P3)(P, -+ Ps) op,

2

T2+ pS-2pf) @ 2ps(p”+ P, £ B+ P,R,) O
(P+P,)(P, + PP+ Py) AP (P + P)(P,+Pa)(P+ Ps) Py’

2 2
PR {1 AP | 1. e (2.23)
(Py+ P2)(Pa+ Pa) 0iAP; (Pu+P5)(P1 + Ps) OP,0D;

3) Volume Element: %72’2([314- P,) (P, + P3)(P, + ;)

4) Range

p, [O,oo)
p, e [O,oo)
p; € [0,00)

2.2.9 (r,a,p) Coordinates
1) Definition and Inverse Formula (Compared with HC)

{r=r,a=a,=arcsin(cosgsina)}

12



{r =r,a=a,0= arccos(s!n—’gj}
Sina

2) Definition of V and T

- Z| 1 1 1
Vesd — & n + : , (2.24)
M cos? sin% rJl—sm,B
2 2
feam_ 10 50 28 20 Acsad 4Asinp o
20r 2ror r’oa’ r*of° r’sina da  r®cosfop
H 2
4 cosasinfg 0 (2.25)

r? sinacos B 6adp
3) Volume Element: z°r®sin o cos S
4) Range

re[Qaﬁ
ae[0,r7]

T T
/ e[‘z’ﬂ

2.2.10 (r,&,0) Coordinates
1) Definition and Inverse Formula (Compared with (r,«, ) coordinates)

{r=re=a+p,6=a-p}

{r=r,a=g+5,ﬁ=8_5}

2 2

2) Definition of V and T

A 27 /1+sin(g;5) .
\ (red) — _ + (2.26)

r .sin(g+25) r\/l—sin(g_zg) |

13



cose 0 O . Coso 0O 0
- - iNg-(——+—=—=)+siN0 - (——=—=+—=
r<(sine+sin o) sine 0g¢ O¢ sind 66 00

M. @27

3) Volume Element: %ﬂer(sin £+sin o)

4) Range
T 3_71
2' 2
T 31}
2' 2
2.3 Concepts of Homogeneity

The homogeneity is a property of a mathematical function, which describes
the response of a function to scaling of the argument. Homogeneity analysis is also

known as dimensional scaling analysis. The dimensional scaling analysis is defined

X A%
by scaling "Cartesian coordinates. For example, X2 can be scaled to X2

X, AX,
The formal definition of the homogeneity h.is given by the equation
f(AX)=A"-f(X) ,xeR". (2.28)

. . . . rer
For example, if we want to find the homogeneity of a function X%, we can

e

h AR
—_ : N A
follow the definition to scale | r, |—2—| Ar, |. We find that the function -—= has
o A, ’

the homogeneity 1 because

h-h . (}”E)'(ﬂrz):il_q'rz_

r12 (ﬂ“ r12 ) r12

(2.29)

Note that the interparticle coordinates are all metric coordinates.
14



In hyperspherical coordinates, only r is a metric coordinate and «, 6 are

angular coordinates. Therefore, the definition of the homogeneity in hyperspherical

r Ar
coordinates becomes | o |——| «a |, which is simpler and easier to use.
% 7

By the definition of hyperspherical coordinates, we can discuss, for an

2

example, the homogeneity of the function o =
(h+r)
r,’ _ r’-(l-sina-cosd) 0 1-sina-cos¢ , (Ar)°- (1—sina-cosd)
(r,+r,)° 14sina ’ (L+sina)’

(r-cos % +r.sin%?
2 2
(2.30)

It also means the function:is-with the homogeneity zero.

If we already know that the function ¢, has homogeneity a and the function
¢, has homogeneity b, the homogeneity of ¢, -¢, is a+b because
0,(A%) 3, (AR =27 - 0, (K): A2 2, (X) = A", (9)- 3, (X). (2.31)
To facilitate solving Schrodinger equation, one needs to discuss the

homogeneity of operators. Hamiltonian (H )'Is a partial differential operator, so we

need to define the homogeneity of a differential operator. We have

ﬁ_i>i=i or =2. 1 =1.§=g—1.2_ (2.32)
or d(Ar) or 8(Ar) or (6(/1r)) A or or
or

Thus, the homogeneity of the operator ag iIs —1. The homogeneity of the
r

o° . .
operator —; is —2 because of the equation

or?
2 2
O 4, 9 0 1000 42O (2.33)
or o(Ar) o(Ar) or or or
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r Ar
With the scaling | o |——| a |, the homogeneity of ai and % are clearly 0
(04

0 0
because
i%ﬁzz(’-i, (2.34)
oa oa oa

N Ay Ay (2.35)

Now we are sufficiently equipped to evaluate the homogeneity of T, which is

written as

10 1,5 6, 2 82 COSaa 2 1 ,0° cosb o

THe ==& — )= 2.36
20r* « (2 ar) ( sina 6a) r® sin’ o (6492 sing 649) (2.:36)
_ [ A - . . o> 1,0 1
The parts of T which decide about its homogeneity are 7 _(8_) and —. We
r< r or r

find that each component of T has the homogeneity of —2. V expressed in
hyperspherical coordinates reads

e PN ) (2.37)
cos% sin% JL—cos@sina

Thus, the homogeneity of Vis =1. Finally, the energy (E) is just a number,
which has the homogeneity of 0.

Homogeneities of some special functions, e.g., exponential, sine, and
logarithm, cannot be determined easily by the original definition. Homogeneity of
this type of special functions can be computed by Taylor series. Taylor series of

exponential and sine are

n 2 3

:zf_-1+r+r_+r_+ (2.38)
~=nl! 2! 3!
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o (_1\n 3 .5 .7
sinr=>" (=) R LA R S (2.39)
< (2n+1)! 31 51 71

By these equations, we find these functions have mixed homogeneities. However,
logarithm cannot be expanded to Taylor series at zero. The homogeneity of this
type of function can be determined by acting with the operator. The right hand side
of the equation

0
—Inr=

=, 2.40
or r ( )

is homogeneous of degree —1. To ensure the same homogeneity on the both sides

of Eq. (2.40), the homogeneity of logarithm should be equal to zero since ag is
r

homogeneous of degree —1.

If we discuss the differential of exponential, we will find out the equation
—e'. (2.41)

This equation will have the same homogeneity on the both sides only when
exponential has the homogeneity of infinity, or exponential cannot be considered as
a single value of" homogeneity,which. means that exponential has mixed

homogeneities.

2.4 Expansion of Wave Function Based on the Concept of

Homogeneity

In order to solve the Schrddinger equation, we can use the concept of
homogeneity of the wave function of helium. Let us assume for a moment that the

wave function of helium has the homogeneity of h. Then the Schrodinger equation
TY, +VY, =EY, . (2.42)

The homogeneity of operators T,V and E is -2, -1 and 0, respectively. Eq.
17



(2.42) will only hold when h is equal to infinity, or the wave function is a mixed
homogeneities function.
Therefore, we can expand the wave function in terms with various

homogeneities, which can be expressed as
W=D =W +¥ +V,+ ¥+ .. (2.43)
h=0

Clearly, the homogeneity can change from 0 to infinity. Homogeneity of the wave
functions should not be negative because the function with negative homogeneity
tends to infinity when r is equal ‘to;zero. Atomic and molecular wave functions

should be finite everywhere as demonstrated by Kato.

As mentioned above,. the. homogeneity of T,V and E are —2, —1 and 0,

respectively. After expanding the wave function in the homogeneity series

according to Eq. (2.43) and substituting this expansion into Eqg. (2.1), the equation

will become
T w,)+V (W) ~E(3¥,) =0. (2.44)

The homogeneity of the“term T, is h-2; similarly, the terms V¥, and
EW, have homogeneities of h—1 and h, respectively. The homogeneity

expansion of our Schrédinger equation becomes that

T, + (T, +V W, )+ > (TP, +VW,, ~E¥,) =0, (2.45)
IEI 'T' n=0' h=n I

which produces the main working equation of our method
TY, =VV¥ ,+E¥Y,_,, (2.46)
where n varies from 0 to infinity, and ¥, is equal to zero when h<0. The

following equations are produced by Eq. (2.46) with n equal to 0, 1, 2 and 3:
18



Ty, -0, (2.47)

TY, =VV¥,, (2.48)
TY,=VY¥, +EY,, (2.49)
TY,=VV¥,+EY,. (2.50)

We will discuss these equations and solutions to them in detail in the following
chapters.
The homogeneity is a useful concept applicable to solve the equation in a

well-defined and ordered manner. In the next chapter we show how to solve Eq.

(2.47) to find ¥, .and-how to use this result to solve the other equations in the

following chapters.
2.5 Differential Equations

A differential equation is a mathematical equation in-one or several variables
that relates the function and its derivatives of different orders. The differential
equations in only one variable are called an ordinary differential equations (ODES);
partial differential equations (PDESs) are their equivalents several variables. Both
ODEs and PDEs have two different types: linear and nonlinear. Solutions of linear
differential equations can be added together to form another solution. For example,
if Do, f,=a,9, and Da,f,=a,9, , then D(af +a,f,)=a,0, +a,0, . If this

equation holds for any functions f, and f,, and any numbers o, and «,, it means

that D is a linear operator.

In this thesis, we focus on the Hamiltonian operator, which is a linear
differential operator. Therefore, the main equations we will deal with in the

following chapters are linear differential equations.
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2.6 Particular and General Solutions to Differential Equations

Before solving Eq. (2.47), we explain the difference between particular
solutions and general solutions. When we solve a partial differential equation, e.g.,

0 0
(&WL@)”X, y)=X. (2.51)

It is easy to verify that a possible solution to this equation is f(X,Y) :%xz. Such a

solution is called a particular solution. A general solution to this differential
equation should include a particular solution and a summation over all conceivable

homogeneous solutions, i.e., the solutions of the equation

0 0

—+—)f,(x,¥)=0. 2.52
(ax 8y) H (X, Y) (2.52)

For a partial differential equation; there usually exist infinitely many homogeneous

solutions. In this case, we can find out that

fa(xy)=FEX1y), (2.53)
where F(—x+Y) is a function which is with-an argument —x+vy, e.g., (—x+Y)?,
e and In(—x+Y) are all solutions of Eq. (2.52). So the general solution can be

written as
f e
general (X’ y) = E X" +C- F(_X + y) . (254)

In this case, the general solution is always a solution of Eq. (2.51) for arbitrary
numbers c. Therefore, we know that finding a general form of homogeneous
solutions is important to get the general solution of an equation.

2.7 Elementary and Special Functions

Elementary function is a function which is built from a finite number of

constants, polynomials, roots of polynomials, trigonometric functions, inverse
20



trigonometric functions, exponentials and logarithms. Using four elementary
operations (addition, subtraction, multiplication and division) on two elementary

functions, we obtain another elementary function. For example,

i NX2+Xx+1

X-€ +t——i-ln(ix) is an elementary function.
an x

The functions which are not elementary functions are called special functions
here. There are two special functions we use in this thesis; their definition is given
in this section. The first special function is the Lobachevsky function, which is

defined as
L(x) = —onln(cost)dt. (2.55)

The other special function is the Heun function HeunG(a,q; a, f,7,0;2), which is

defined as a solution to the-general Heun differential equation given by

2
d_+[z+ o +a+ﬂ_7_5+1ji+ﬂ HeunG(a,q;a, 8,7,0;2) =0.
g \ ] Z—a dz z(z-1(z-a)

(2.56)
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Chapter 3

Wave Function of Homogeneity Zero

As mentioned previously, to solve the Schrédinger equation of helium atom,
we can make an expansion of wave function based on the concept of homogeneity,
and solve the resulting set of equations. The first equation corresponding to the

component of the wave function'with homogeneity zero is given by
Tf, =0 (3.1)

This is a homogeneous partial differential equation. To solve it, we assume the

following ansatz for f

=3 26 () () (3.2)

j=—00 i=—0
There are infinitely many homogeneous solutions for a partial differential equation.
Therefore, this'formula represents not only a single solution to Eq. (3.1) but rather

a whole class of solutions. Some of -homogeneous solutions represented by Eq. (3.2)

are given by

f,=0, (3.3)

f, =1, (3.4)
2 2

A (3.5)
hr

(R (g )

3,3
L

f, (3.6)
We can get infinitely many solutions if we want, but most of them are not
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acceptable from physical point of view. As we know, an atomic wave function
should be finite and continuous everywhere, the first derivative should be finite

and continuous everywhere except the coalescence points and moreover it should
be symmetric with respect to the interchange of r, and r,. Among our solutions,
f,=0and f,=1 are the solutions which fulfill these conditions. The remaining
solutions violate at least one of the aforementioned requirements.
The general physical solution ‘¥, can be thus written as
Y,=c-f,=c (3.7)
where ¢ is an arbitrary constant.

In this thesis, we are focus on solving the wave function of helium in the

ground state. In the following part, we will evaluate other equations assuming that
Y, =1. If we set ¥, =0, the wave function represents an-excited state. The details

of the differences between the wave functions of the ground and excited states are

given on the next page (Table 3.1).
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Chapter 4

Wave Function of Homogeneity One

After solving the equation with homogeneity zero, the next equation can be

determined by setting ¥, =1. The equation we discuss becomes

~

'I:‘Pl:—V‘PO:Z-(lJr—)——. (4.1)
A PR

To solve this equation, we can expand it into two parts. One part does not contain

r,,, and the other part contains I, . Eq. (4.1) is then represented as

f( fl,O + f1,—1) = 91,0 + gl|—17 (4-2)

where f ., f |, 9,, and g, , are defined via

A 1 1

Ty =010 =2:(=+—), (4.3)
10

A 1

Tfl,—l =0 =" (4.4)

12

The general solution of ¥, can be written as
Wo=fo+ i+ ¢ Hy,, (4.5)

where H,_  means the n-th homogeneous solution of homogeneity m.

n

4.1 Solving Terms Independent of r,

For the terms independent of r,,, we can change Eq. (4.3) to ratio coordinates

(RC) in order to simplify the problem. After changing to ratio coordinates, Eq. (4.3)

becomes
25



TS (6.0) =055 = (L4 ). (4.6)

1

As we know, flfjf has homogeneity one, which means that it can be simplified as

fio () =115 (p), (4.7)

and Eq. (4.6) becomes

(- £ (p))———[f “(p)+2p- ddprC(p)+ p(1+p)d széc(p)]

=%(1+p). (4.8)

1

Eq. (4.8) can be treated as a simple ordinary differential equation

[12(p) +2p- d"prC(p)+ p(1+p>d (o4 2+ p) =0, (4.9)

_ 2 — 2
It is easy to find that flff)c(p):( 1+23p )-C1+( 3+p )-CZ—Z-(p+l),and
yo)

P P
~1+3p? ~3+ p? +1
fRC( p):rlfl%C(p):q(p—zp)C1+ri(Tp)C2_zri(pp ), (410)

so the final form.in the (r;,r,) coordinates reads

2 2

£k, 1) =—Z(f,+1,)+3C, £, =3C,-r,+ C, -2 —C, . 2 (4.11)
I h
r2 r2
The two terms rL and i— have singularities when r, =0 or 1, =0, respectively.
2 1

Therefore, C, and C, should be set to zero to remove the singularities. The
nonsingular solution f,; reads

flo=-2(r+r,). (4.12)
4.2 Expanding Functions in the Power Series of r,

The solution to Eq. (4.4) can be obtained easily, if one notices a special and
26



useful property of the operator T

f(f ('11r2)"12m) = If1' f(r11r2)'r12m + 'fz' f(rl’ rz)_rlszz, (4-13)
where
2 2
Alz_l 62+(m+2)i+82+(m+2)i | (4.14)
2| o L or or, r, or,

22

2.2 2,2
B=-Mi= 0 %"k 01 nimyg. (4.15)
L on r, or,

If m is an odd number, both sides of Eq. (4.13) have only r, terms in odd powers.

Therefore, we can assume the following ansatz for f,

f1,71 = z fl,—1,2k+1(r1’ rz) : r122k+1 , (4-16)

k=0
since Eq. (4:4) has on the right hand side r, in an odd power.

After substituting Eq. (4.16) into Eg. (4.4), one obtains

& 4 g
T(z fl,—1,2k+1(r1’ r2)'r122k 1)+r_

=0 12

o0 o0

_ = 2k+1 =

- Z Fl ne2ksl fl,—1,2k+1 I, + Z Fz 2kl fl,—1,2k+1 I
k=0 - k=0 - iz

-1 = al
4 f1,71,1 +1) I, + Z( Fl

k=0

2 L2 2 2
= _l(ui_ﬂb r;]_ i)_z f1_11+1 .|‘12’l+
2 L on r, o, T

=~

2k-1 1

A

2k+1
fl,—1,2k+1 v FZ

fl,—1,2k+3 ) I,

m=2k+1 m=2k+3

= 1 ,0° 2k+30 &* 2k+30
Z . ( _) f1,71,2k+1+
2

(=+ —+—+
2 on L or or, r, or

_2k+3 rf—rzziJrrzz—rl2 0
Looon P I

G_J —(2k +3)(2k + 4)} fl,—1,2k+3} ’ r122k+1 =0, (4.17)

where F, and F, is defined in Eq. (4.14) and Eq. (4.15).

In order to solve this equation step by step, we can collect different powers of r,.
27



The first equation we can solve of Eq. (4.17) with r,™ reads
2 L2 2 L2
U UL Sl WUR Y S P (4.18)
2 1 o r, o, o

The solution to Eq. (4.18) is

> +c-(r2+r°)

r12 - I’22

fia(n,n) = (4.19)

We easily see that f,_,, can have a singularity when r,=r,, and f,_,, should
be symmetric with respect to the interchange of r, and r,. Expanding f,_,, as a

power series in (r, —r,) determines value of ¢ which removes the singularity and

makes this function be symmetric. After expanding, the function in Eq. (4.19) will
become

rz(zc"‘l)/z+(§+E)+M'(rl_r2)+_u_ (4.20)
L=, 4 2" 8r,

f1,—1,1 =

. d : 1 : .
It is easy to'see in Eq.(4.20) that setting c=—§ removes the singularity. Therefore,

f,_,, becomes

r12 _;'(rlz + rzz) 1
fi.(hn)= r12 _r7_2 =§- (4.21)

The equation corresponding to r," can be extracted from Eq. (4.17) as

- (—+—+—+—)f r,r)+
Z(arlZ arZZ rl arl r2 arz) 1,—1,1(1 2)

{ 1,° & 306 30
3 (r*-r”) ) o _15(1, 1) +§ (r*-r”) _ o _15(n 1)

[ 2 or, 2 or,

-12 f1,—1,3(r11 rz)]}' I, = 0. (4-22)

After substituting f,_,, from Eq. (4.21) into Eq. (4.22), we can solve for f,_,, and

get
28



_ C'(r12 + rzz)

1-13 (rlz —I’22)2 :

(4.23)

In this case, ¢ must equal to zero to remove the singularity when 1, =r,. Therefore,

we easily see that f, ,, =0. By this result, we can solve the following equations:

< 1,0° 2k+30 ©o0° 2k+30
Z 7t -~ T2t A
2 on L or or, r, o,

):| fl,—l,2k+l +

k=1

2k+3 (r?-r? 0 r’-r’ o 21
- . —+ — |- (2k+3)(2k +4) | f - =0. 4.24
|: 2 ( r;L ar;[ r2 arz ( )( ) 1,-1,2k+3 12 ( )

If f,_,,.,=0,Eq. (4.24).becomes

o 202 22
3 J2KH3 [0 6 00 L ordhay k| f, L, =0, (4.25)
=t 2 K - or, o

The solution.of Eq. (4.25) for each Kk is

_ C- (r12 + rzz)
1,-1,2k+3 — W ’

(4.26)

where ke N .
As mentioned above, we know that ¢ must equal to zero to remove the singularity

when r, =r, and also makes this function symmetric with respect to the interchange

of r, and r,. So we know

1
— whenk =0
fl,—l,2k+1 =32 ) (4-27)
0 whenk e N
f=3f qrenol 4.28
1-1 z 1,—1,2k+1(rl’ r2) r12 - 2 r12 . ( . )

k=0

So we have solved Eq. (4.1) and the solution of Eq. (4.5) has the explicit form.

‘{'1:—Z(rl+r2)+%r12+2cn-Hlyn. (4.29)
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For homogeneity one, there are no well-behaving homogeneous solutions which

fulfills all of the conditions of a physical wave function. So we finally obtain

Y, :—Z(rl+r2)+%r12 (4.30)
In this chapter, we introduce two general techniques of solving equations. For

the equations without r,,, we introduce ratio coordinates to simplify the equation

into an ODE (Method 1). For equations involving r,,, we expand our unknown

function as a power series in r,, so we can solve a family of equations in only two

variables (e.g., r, and r,). After collecting different powers of r,, the differential

equations become first-order partial differential equations (Method 2). Solving this
kind of equations is much easier than original differential equations. By using these
two techniques, we can gradually tackle the following equations arising in the

theory of the wave function of the helium atom.
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Chapter 5

Wave Function of Homogeneity Two

5.1 Solving the Equation and Removing Singularities
After solving ¥, =1 and ‘Plz—Z(r1+r2)+%r12, we proceed to the next

equation T¥, =V, +EW¥, to find ¥,

292
f‘PZ=£(£+1)-I’12+[—M+E—E]+Z~(I’1+I’2)~I’12_l. (5.1)
21 0 4
We expand ¥, into three parts
f\Pz :f( f2,1 + 1:2,0 + f2,—1) =051 +09501+ 095, (5.2)

where f,,,"f,; and f,., ‘are defined implicitly by

A /LN

Tt =0 =—(F+-)-1,, (5.3)
21 2075 FON 12

, (r+1,)?2* 1

Tf,0=0,, =——>2—+E&) 5.4
0 =G = 5 (5.4)

ff2,71 =0,.,= YA '(rl + rz) : '12_1- (5-5)

Since Eq. (5.4) does not contain r,, we can use Method 1 to solve this equation.

For the remaining two equations, Eq. (5.3) and Eg. (5.5), we use Method 2.

After changing to ratio coordinates, Eq. (5.4) becomes
. 1 1
T3 (6P =05 (0, ) =~ 24 p+ )+ B (5.6)

In this equation, we know that the function on the right hand side has homogeneity
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zero, and the homogeneity of T is —2. So we can assume that fRC( I, p) has

homogeneity two. Tf (r,, p) can be written as

Thy (n,p) =T (- fRC(p))—{ a(j) p(l;p) aaz }fRC( ), (5.7)

Therefore, Eq. (5.6) can be rewritten as

0 iy (1+,0) o’ RC 1
3 +3 | ;) =-7%(2+ +— +E-—= 5.8
{ P ap 2 o o (0) 2+p ) 5 (5.8)

General solution of this differential equation is given by

2t 2+3p 1-2E

1-6p°+ p*
f,5 (p)=(1- —) C+—————-C,+ (5.9)
P P Top 6
After changing back to interparticle coordinates, the solution becomes
le,g(rlirz)—rz fRC(P)"‘ZC H,,
r’ r’ 2Z2* 1 E
=(%l—6r1r2+rl—z)'C1+(r12—r22)-C2+er1r2+(T+E—§)r22
DI - (5.10)

In Eq. (5.10), we can easily see that C, should be set to zero to avoid singularities
when r, or r, are equal to zero. The value of C, must be selected in a way to
make the solution symmetric with respect to the r <>r, permutation. After

expanding, Eq. (5.10) becomes

2
£5(r,1,) =C, - 12 +(C +%—E+E) Ll + 2%, +Zc Hyp - (5.11)

This equation will be symmetric if

2Z° E

3 3

C,=-C,+ +%, (5.12)
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which can be solved to yield

2
1,2 E (5.13)

C,=—
12 3 6

Therefore physically acceptable, f,5 becomes
f,5 :%(rf +1,%)- (427 +1)—%(r12 +1,7)-E+Z%rn,+ > ¢, -H, .. (5.14)

By solving the equation
TH,, =0, (5.15)

we can find out only one symmetricisolution without any singularity. It is one of

the two hyperspherical harmonics of homogeneity two,
H2,1 =r12‘HF22_r122- (5.16)
2

The other hyperspherical-harmonic, H,, =1 =r,?, is anti-symmetric. Therefore,

we can use this homogeneous solution to simplify our result.
f)0 =%(r12 +r’)- (422 +1)—%(r12 +12)«E+Z%nr, — (427 +1)-H,, + > ¢, -H,,

=$r122 (427 +1)—%(r12 +1,2)-E+Z°rr, +ch H,, . (5.17)

Finally, we set ¢, =0 for the moment to obtain the simplest form of the particular

solution to Eq. (5.4),

f,0= é r,>-(4Z%+1) —%(rl2 +1,2)-E+Z7%rr,. (5.18)

In order to solve Eq. (5.5), we set

f(fZ,—l(ri’ r, rlZ)) -Z '(rl + rz) ' rlzil

:f(z 1:2,71,2k+1(r1' rz) : r122k+1) —Z- (I’l + I’2) : I‘1271 =0. (5.19)
k=0
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After acting with the operator T , Eq. (5.19) becomes

1, 10 10 .
{—{E'(E ).(Fé_r_r_c’?_r) 2} 2 M—Z-(r1+r2)}r12

S| 1,00 o 2k+1 10 13
A e 1 1
;ﬂ: 2 (6r 6r2 ) (r ar r, arz ):| 2,-1,2k-1

1 10 190 _
—(2k+1)-{§-<rf -, )-(;a—r—r—a—rnzkw} f} %" =0. (5.20)
1 1 2 2

After substituting Eqg. (5.20) into Eqg. (5.5), we can follow the sequence of steps

defining Method 2 to collect different powers of r,,, and start with solving the first

equation corresponding to r,™

1 1 o0 1.0
_E(rlz - rzz)(ra_r_r_a_r) f2,—1.1(r1’ rz)_z(r1 + I’z)—Z- fz,—l,l(rl’ rz) =0. (5-21)
1 1 2 2

The solution is

1-2Z(r’ =r,®) +3c (5 +r, )3’2

fo1a(Hs 2)_3 & (5.22)
L

We can easily see that.this solution may have asingularity when r, =r,. Therefore,

we can expand this function at r, =r,- by power series.

fz,l,l(n,rz)=#+r2-(oﬁ Z)+ (% ——) (n—n)+ (5.23)

17 2
Setting ¢=0 removes the singularity when r,=r,.The well-behaving function

becomes

fZ,—l,l(r:UrZ)__'%:_?'T (5.24)

Next, we solve the second equation corresponding to r,'
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1,9 & 38 30

— —)- f r,r.
2 ariZ ar22 riar;l r2 arz) 2,—1,1(1 2)

3 10
_E(rlz - rZZ)(Fla_rl_r_za_rg). f2,_1]3(r1, r,)—12- fz,—1,3(r1’ r,)=0. (5.25)
After substituting Eq. (5.24) into Eq. (5.25), the equation becomes

3 10 10
SR )

I, 8!’1 r, arz f2’_1’3(l’l,l’2)—12- f2,—l,3(rl'r2)

2 2
+E_11r1 +18rr, Jsrllr2 0. (5.26)
3 (h+1,)

The solution is

2 23/2 2 2
fZ,—l,S(rlirz): ¢ (rl :_rz ) > +Ew _ (5.27)
(r1+r2) (rl_rz) J (r1+r2)

Setting ¢ =0"removes the-singularity when r,=r,. Therefore, the well-behaving

solution is given by

2Z 7 +3ir, 41
f2,—1,3(r11 rz) E o\

9 (r+r)’ (5.28)

We continue this.process by solving the next equation corresponding to .’
1,0° &8 50 50

gttt ) ()
205" or, rorn r,or,

5 10 1290
__(nz_rzz)(

—————— f r,r,)—-30-f r,r,)=0. 5.29
2 rlarl r2 arz) 2,—1,5(1 2) 2,—1,5(1 2) ( )

After substituting Eq. (5.28) into Eq. (5.29), the equation becomes
5 10 10

(- - ) fos (1) =30- F, 15 (1)
21 2 r_larl rzarz 2,-15\11 72 2,-1,5\11 72

+%_ or” +10rr, +9r,° _ 0

. 5.30
(+n) (5:30)
The solution is
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()= c-(r’+15,°)" 2Z r’+5nn, 417 (5.31)
e (rl+r2)3(rl—r2)3 45 (rl"'rz)5 ' |

Setting ¢ =0 removes the singularity when r, =r,. Therefore, the solution becomes

22 L2 +50r, +1,° | (5.32)

f ,r)=—
2,—1,5(1 2) 45 ('.1+r2)5

In order to find a closed form of those functions, we continue this process by

solving the next equation corresponding to r,°.

1,62 % 70 790
__(_"‘_"‘__"‘r_a_)' f2,-1,5(r11 rz)

2 2
205" or, ron r,or,

7 10 190
_E( 12 - rzz)(rla_rl_ga_rz)' f2,—1,7 (rl’ rz) —56- fz,—1,7(r1’ rz) =0. (5-33)
After substituting Eq. (5.32)-into Eqg. (5.33), the equation becomes
7 1071 o
_E(rlz - 22)(F18_I’1_I’_25_I’2) f2,—1,7("1"‘2)_56' fz,—1,7(r1' I’2)
2 2
+£_17r1 +14rr, ;r17r2 0 (5.34)
5 (h+1)
The solution is
c-(’+0°)* 22 wiaTnn+r’ | (5.35)

f r,r)=
2’_1’7( ' 2) (rl+r2)4(rl_r2)4 105 (r1+r2)7
Setting ¢ =0 removes the singularity when r, =r,. Therefore, the solution becomes

27 _r12+7rlr2+r22 (5.36)

105 (r+r)’

f2,71,7(r1’ rz) =
Analyzing Egs. (5.24), (5.28), (5.32) and (5.36), it is relatively easy to discover the
closed form of the computed solutions for a general index n=0,1,2,...

27 > +(2n+1)-rr, +r?
f2,71,2n+1(r1’ rz) = ) 2n+1
3(2n+1)(2n-1) (rhL+r,)
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2Z 2Zrr,
= 1t - 2ni (5.37)
32n+1)(2n-1)(r, +1,) 3@2n+1)(r, +r1,)

Therefore, we can rewrite f, ,,

- 2Z 27rr, e
fZ,—l(rl’ 6 h,) = Z( T - i/’ r122 '
32n+1)(2n-1)(r, +1,) 32n+1)(r, +1,)

n=0

Z,, 9 r+r,—r Z
=—— (" +1r, -1, ) - In(——2)—— (L +1,)-1,. 5.38
6(1 2 12) (I’l+l’2+r12) (l 2) 12 ( )

this solution have a singularity when r,=r+r,. We need a

However,
homogeneous solution to remove the singularity produced by the term
In(r, +r, —r,). It is easy to verify that the homogeneous solution

(5.39)

—%(rf+r22—r122)-[ln(r1+r2—r12)+ln(r1+r2+r12)]+%r1r2
has the desired properties. After using this homogeneous solution to remove the
singularity, f, .(r,r,,r,,) becomes

A . e Z
ot 0) =5 (0 B ) I B )= (6 4 B)eh, + 2 (5.40)

Solving Eq."(5.3) vields the final ingredient needed to solve ¥,. In order to

solve Eqg. (5.3), we also follow Method 2 to set

- Z,1 1
T(fz,l(rl’rz"12))_5(_+_)"12
1 r2
g2 aw 2,11
=T foama(lh) R =S (C+2) 1, =0 (5.41)
k=0 2
After acting with the operator T , the equation becomes
1,, n,10 10 4 1,0° o 30 30
= -r)(==-= —)+2|f,, = (—+—+——+——) (1T
|:2 (1 2) (ri arl rz arz) j| 211 "12 { 2 arlz arzz '1 6I’l r2 ar_2) 2,1,1(1 2)

3., ,,10 10
+ —=( - )(=——-=—)-12 |f, . (r, )= (=+2) ;T
{ L }( )-S5 r)} ?
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> 1 .04 o 2k+1 10 1 0
+> 4 -= + - (==+ f
& {|: 2 (ariz ar 2 ) 2 ( ):| 21,2k-1

2 r;l. ar;l. r2 arZ

2r2

—(2k +1) {% ) ("12 - r22) ) (%g_ii) +2K + 2j| f2,1,2k+1}' "122k71 =0. (5.42)
1%

After substituting Eq. (5.42) into Eq. (5.3), we can start to solve the first equation
with r,™

1

10 10
2(flz—'fzz)(—'——

ror, Ea_rz) f2,l,1(rl’ rz) -2 f2,1,1(r1’ I’2) =0. (5.43)
Then we can get the solution

C-(I’2 +r 2)3/2
f2,1,1(r11r2):12—22'
L =1

(5.44)

In order to remove the singularity when r, =r,; we set ¢=0.The equation becomes

O' I’2+l‘2 3/2
foa(rnn)= % =0. (5.45)
L -

We continué solving the next equation corresponding to '

t——+=—
2 or”  or}

1,8° & 38,3
Lo .

0
6_I‘2) ' f2,1,1(r1' rz)

16 10 z 11
(=L m 2 Oy () —12-f,, () = (24 1) =0. 5.46
2(1 2 )(rl 6G rz arz) 2,1,3(1 2) 2,1,3(1 2) 2 (r r2) ( )

1

After substituting Eq. (5.45) into Eq. (5.46), we obtain

3 10 190
(60X

Z 1 1
- —=—)-f,,.(r,r)-12-f, . (r,1,)-—=(=+=)=0.
2 rlarl r2 arz) 2,1,3(1 2) 2,1,3(1 2) ( )

(5.47)
1 2
The solution is

c-(r+r)¥*  Z
f2,1,3(r11r2) = - : +

o+,
(h-5)(r+r,)°

§(r1_r2)2 .

(5.48)

In this equation, we can easily see that this function has a singularity when r, =r,.
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In order to inspect the singularity in detail, let us expand this function as a power

series in (r,—r,)

(ﬁc_FgZ).rz ﬁc_FlZ \/—

2 9 4 9 32 c 3\/2 c

f2,1,3(r1’r2): > + + —(I‘ —r,)+ (5.49)
(rl_rz) r—r 16 r, 32 r,

Therefore, setting c:—&z removes the singularity. Eq. (6.48) becomes

2 2\3/2
Z r+r, 2322 (r2+rp) (5.50)

N IR L R A U CETA

We continue solving the next equation corresponding to r,,°.

1,0° ©o? 58 50
_) f2,1,3(r1’ rz)

__(_ T ., /il

2 o or) rlar1 r, or,

5 10 120
_E(rlz—rzz)(rla_rl_r_za_rz)' 2,1,5(r11r2)—30' f2,1,5(r1’r2)=0- (5-51)
After substituting Eq. (5.50) into Eg. (5.51), we know
5 1o 10
_E(rlz_rzz)(rla_rl_r_za_rz)' 2’1’5(I’1,I’2)—30- f2,l,5(rl’r2)
fz (13r + 6”2+ 13n," ),/r Iy’ Z (5 1,)(5r° — 61, +51,°)
=0. (5.52)
3 (r+r)*(r=n) 6 (r,—r)*rr,
The solution is
L+,
215(1’ 2) lsﬁ
2 2 _ 2
L _c (r13+r2) - J2z (r* -13r’r 4r24) N (5.53)
(h+1)(r-r) 15 (n -H’) (I’ )

As mentioned above, we can expand the function as a power series in (f,—r,)
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f 1 2) 3\/§C+Z

f,..(r,1,)= VRAEY) L% 1 18‘ECJF7Z+.... (5.54)
215\ I (r,—r,)’ -, 192 r,’

. 2 . . :
So setting ¢ :—%Z removes the singularity when r, =r,. The function becomes

3" +26r°r,% +3r,2)\r” +1,°
Z «/_Z( + +3,7)\n? + (5.55)

Faaalin ) = 15(r ) 30 (L+n)'(n-1)"

Now we can continue solving the next equation corresponding to r,,’

1,0 o 70 70
oyttt )

- f r,r
2°0r7 a2 ror r,on aas(iul2)

7 1. 1'0
_E (I’12 - rzz)( _____ )
hon o

r,)—56-f,,.(5,1,)=0. (5.56)

"2z (rl’ 2

After substituting Eq. (5.55) into Eqg. (5.56), we obtain

7 10710
_E(rlz_rzz)(ra_r_r_a_r)' 2’1’7(I’1,I’2)—56- f2,1,7(r11r2)
il 1 2 2
6, 2 4.4 2.8
Iz (@215 +5405°r,” +726n¢r, +5405°5+1216°) (5.57)

12 (6 +15,)°(r —1,)° 12 +1,2

The solution is

Z r+r, c-(F° )

R T T TS

Voz (3¢+ 1mii  Pof rpifir (5.58)

84 (+r)°(r or)Wr r 7,

And we expand this function in power series of (r,—r,)

1 _8\/2C—5Z 1 8\/ c-57

64 I 128 o
f,..(n,r)= - -
LI ('—1_"2)4 (I’—I’Z)S
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5 8/2c-5Z 11 8J2c-5Z

3 4 _
N 512 I’22 B 1024 r, N 1 ‘1992\/205 12617 . (5.59)
(r,—r,) L —r, 24576 r,

Therefore, setting c=1—622 removes the singularity. Eq. (5.58) will become

Z r+r, «/EZ (23r° +484r°r” +1034r,°r,* + 484r°r,° +23r)%)
2(5-n) 3% (1, +1)° (5 = B) N+

217( 11 2)

. (5.60)

Analyzing Egs. (5.50), (5.55) and (5.60), we see that the functions are getting

more and more complicated. It seems difficult to discover a closed form. In order

to find a closed form, we ignore the singularities for the moment, and set ¢=0 in

all of these functions obtaining

f2,1,1 =0,

(5.61)
Z =+
fra=07=57 5.62
9 (o) (562
Z G+r
fos =z —a 5.63
2,15 15 (rl = r2)4 ( )
Z r+r
f,,=—-"1—24 5.64
21( )’ (569
The closed form is easy to discover now.
0 n=0
frrona(f) =9 Z _hth neN (5.65)

6n+3 (r,—r,)""

And f,, will be

f21(r r rz) Zf212n+1( rz)'rlzzml

+,

_(26n+3 (r r)Z“'r12

1y £
2 l)_g(rl"'rz)'rlz
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Z I — r, _E
:E'In( L4+ )(1 ) 3(r1+r2)r12 (5-66)

The function given by Eq. (6.65) has singularities when r,=r,+r, and r, =1, +1,.
These singularities are not easy to remove. We are still trying to find homogeneous
solutions to remove the singularities.

5.2 Analysis and Plotting

Since our solution for homogeneity two is not complete yet, in order to
proceed to the homogeneity three terms, we discuss here briefly. The wave function

which was found by J. E. Gottschalk, P. C. Abbott and E. N. Maslen. The wave

function of homogeneity two in the region 1, >r, can be written as

(5 5) = (50, + G = 1) S (5 1) — (=) (5, %)

Z 2 2 2 Z 2 2 2 2 2
g e 2R 2T+ () (0 )

+i’rlz '\/Zrlz +2I’22 _r122 'ﬂ‘%ln("l‘HE +r12)(r12+r22 _Gzz)_%'rlz '(rl"'rz)

37
Z 1 2 2 E 2 2 2
+§-r1-r2+1—2~r12 (42 +1)—€~(rl +65)+ 21, (5.67)
where
s, =In(r, 257 +257 -, + 12 =1)%), (5.68)

=—f-In(r, -\/er +2r7 =17+ —r,%)+ B-In(r, -\/Zrl2 +2r7 —r,” +r,° 1)

.. In(i+cose) 2{ (a;ﬁ)_L(a;ﬂHL(zz—025+ﬂ)_|_(#)}, (5.69)

L(x) is Lobachevsky function (Chapter 2.7),
and « and S were defined in Chapter 2.2. [(r,a, ) coordinates].

However, this solution is valid only in the region r, >r,. The complete ¥, should
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be written as

f(r,r,) whenr, >,

= 5.70
? {f(rz,rl) whenr, >, (5.70)

To have a depth discussions and analysis of ¥,, we separate this solution into

several parts and classify each part by our rule we defined in last section at first.

We set
Z 2 n Z
Pm(rl,rz):§In(r1—r2+r12)-(r1 - )_Erlz'(rl"'rz)’ (5-71)
1 2 2 E 2 2 2
leo(rl,rz):ﬁ-r12 (42 +1)—€-(rl +6)+Z°-1-1,, (5.72)
Z 2 2 n Z Z
Pz,—l(rprz):_gln('&"'rz+r12)(r1 +h =0, )_E'qz'(rl“'rz)"‘g"l'rz- (5-73)

It is easy to wverify that

T(Py) =0, (5.74)
f(Pz,o) =00 (5.75)
-Ic(Pz,fl) =0,- (5.76)

Therefore, Eq. (5.67) can be written as

f(r,1,) =P, +Py+P, , +Py, 5.7
where
Z s,. Z
I::slse :_E(rlz_rzz)'(sl_;z)+g'r12'\/2I’12+2r22—r122
Z 2 2 2 2 2 Z 2 > >
+§-In(r1 +0,7)-( 415" —n, )+§-F12-\/2r1 +2r2-r2-p. (5.78)

Clearly, P, is a homogeneous solution of homogeneity two.

Ise

Next, we can discuss each part in detail. As we mentioned, f(r,r,) is not the

full solution of Eq. (5.1) in the (r,r,) plane. The complete solution has another
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component, which is f(r,,r,) when r,>r. We can easily find out that P,; and

P,_, are symmetric with respect to the interchange of r, and r,. But P,, is not

symmetric. In order to make it symmetric, the solution should be written as

P,,(r,r,) whenr, >r
2’1: 21\"11 72 1 2 . (579)
P.(r,r) whenr,>r,
After comparing to our solution in last section, we can find out that
fo0 =P, (5.80)
for=P (5.81)
Therefore, ¥, can be written-as
P, (. )+ P.(n.r,) whenr >,
I R T A\ (5.82)
© T (Pa(gi)+ R (n,n) whenr, > I,

Next, we can try to plot each part of ‘Y.
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Figure 5.1
The plot of f,, with

[Z=2 r=LE=]]
in hyperspherical coordinates

Figure 5.2
The plot of f, , with

[Z=2, r=]]
in hyperspherical coordinates

By Figure 5.1, we canfind out that f,, is smooth and continuous everywhere. But

f, , has a cusp when a:% and @=0. If we consider this situation in a helium

atom, we will find that it means two electrons get together at the same point, which
is very unreasonable and unstable. At this point, special behaviors are acceptable
and imaginable.

Then, the plot of f,, is
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Figure 5.3
The plot of f,, with

[Z=2, r=]]
in hyperspherical coordinates

By Figure 5.3, we can easily find out that this function is not differentiable at

a =2 . To check this, we can plot <2 f, 5
2 oa ~

Figure 5.4

The plot of 9 f,0° with
oa ”

[Z=2, r=]]
in hyperspherical coordinates

. 0 . .
From Figure 5.4, we know that = f,;° is not continuous at « =%. Therefore, we
(04

know that our f,, is not acceptable from physical point of view. So that, we can

assume that P

else

term is using to remove the non-physical behavior of f, . We

define

P._(r,r. whenr, >,
f2,e|se ={ e|Se( : 2) " ? (682)

Pelse(r21 rl) when rnL>n
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The plotof f, +f, . is

Figure 5.5
The plot of f, +f

[Z2=2, r=]]
in hyperspherical coordinates

with

2,else

2,else

And the plot of i(fz”lC +1,C ) is
oa "~

Figure 5.6
The plot of i(szlC + £ ) with
oa ”

2,else
[Z=2 r=]]
in hyperspherical coordinates

From Figures 5.5 and 5.6, we know that f, +f,, is a smooth and
continuous function, which means f, . is the homogeneous function which can
really remove the non-physical behavior of f, . Therefore, we can use this ¥, to

solve ¥, in the following chapter.
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Chapter 6

Wave Function of Homogeneity Three

As we discuss in the last chapter, ¥, can be written as

V,=f, +f,+f,  +f . (6.1)
The equation to solve ¥, is

T, =V, +EY, =V (f; + o+ T+ fue) EVP,. (6.2)
Before trying to solve this equation, we separate ¥, into two parts

Y, =1, + Ty, (6.3)
where

Tf,, =V (fp+ 1, ) +E¥, (6.4)
Thyp =V (fo0 % Trus) - (6.5)

As we know, f,; and f are described in two different regions (r,>r, or

2,else
r,>1), so solving f, will be much easier than solving f,,. The main method

we use to find f;, is making an inversion table of solving terms with homogeneity

one. First, we make an ansatz.

t[a,b,1-a—b] = Z i icm " shasis, (6.6)

m=—N n=-N k=1

1 k=1
In(r) k=2
where sbasis, = In((rl; (_3"
2 =
In(r,) k=4
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The elements of the inversion table are found by solving a set of linear equations

for the coefficients c defined by the following equation

m,n,k
T (t[a,b,1—a—b]) =r?r,r, ", (6.7)
Using this ansatz and some definite values of N, a and b , we can determine the
values of the coefficients c¢_ .

Not every term can be found that way; the terms represented by the finite
ansatz are represented by colored fields in Figure 6.1. Other terms require

probably more complicated ansatz, possibly involving infinite summations.

ba 9|-8|-7|-64-5|-4(3]-2|-1]0|1|2|3]a{5]647|8 |9 remume

-9 polynomial

-8 B oiynomial +In(r,)
-7 W Loynomial +In(r,)
-6 W poiynomial + In(r,,)
-5 B poiynomial + [infr)Inr.J]
-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9
Figure 6.1

The monomial table of homogeneity 3—1

We expand our equation to see what terms are needed to solve the equation.

Eq. (6.4) can be rewritten as
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1. 1 Z(3Z+1) rr,

- Z
T, =——=(-62°-2Z+7E-2)-(r,+1,)+(-Z2°+=E—--—2) 1, —
=" ( )+ R+ (2 G E) y —m
E r° r? ZE r,’ L, Z(4Z% +1 r,’
R B e B
12 12 2 2 1 2
1 > r? r’ r)} r’ r?
— |22+ -2 2 ) 7(r, L — 2 LIn(r 41, + 1) 6.8
3 (1 2 r2 r_l rl r2 ) (12 - riz ):| (1 2 12) ( )
About the term with In(r; +r1, +1,), we can use a property of T, which is
T(F (R0, 0,) (5 +1,+15,)) =T (£ (5,15, 5,)) - In(r + 1, +1,) +O(f (1,1, ,)) (6.9)
where
é:_q—r2+r12.i_—rl+r2+r12.i+(rl—r2)2—r12(rl+r2). 0 _ L+n . (6.10)
2r1r;L2 ar-1 2r-2r12 arZ 2IFlrzrlZ ar12 2rlr2r12
In order to solve f,,, we'can set
f3,a = f3,a,poly - f3,a,|n 'In(rl +0,+ rlz) ) (6-11)
where
2 2 2 2 2
nga.n=—1{22(r1+rz+i+i—r—— )+Z(r12—r——i)}, (6.12)
“ 3 I r, I,
2 1 1 2 12 12
A Z ) 1 1 Z(3Z+1) ryr
TfS,a,poly:_E(_GZ —2Z+TE-2)(+1,)+(-Z +EE—E)-r12—T-E—22
2 2 2 2 2 2
+E.(L+L)_E.(L+i)_z_ (” 12) Z(42°+1) ( rlL)
6 r12 r12 6 r2 r-l 3 r-2 2 rl r2
~Ofy - (6.13)

Then, we can solve Eqg. (6.12).

f ;[z (t[L, 0,0]+1[0,1, 0] +t[2, -1, 0] +[~1, 2,0] —t[-1,0, 2] — t[0, -1, 2])

3a|n

+Z(t[0,0,1]-t[2,0,-1] [0, 2, —1])] +homogeneous solutions. (6.14)
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For finding f we can find out that we have every term we need by Figure 6.1.

3,a,In?

The following are the functions of t[a,b,1-a—b] we need in f

3,a,In*

t[l,O,O]=—%r13, (6.15)
1.,
t[0,1,0]=—€r2 , (6.16)
1r!
t[2,-1,0]=——-1, 6.17
[ 1=-2 rz (6.17)
1r}
t[-1,2,0]=——-2-, 6.18
[ =3 : (6.18)
1 %% 7
t[-1,0,2]=——=2—=rr  +—r°; 6.19
[102)= s o (6.19)
1 1 7
t[0,-1, 2] =——-t-==rr,°+—",°, 6.20
[ ] 20 r2 2 2°12 12 2 ( )
1
t[O,O,l]:—Er12 , (6.21)
3 1 1
t[2101_1]:_§r12r12_§r22r12+gr1231 (6-22)
1 3 1
t[o,2,—1]:—§r12r12—§r22r12+gr123. (6.23)
After using the functions of the above, f,,, can be written as
VAN A A A Z° VA 5Z
fS,a,In :E(;_Z"'%l)"'j(rls + I’23)—€(I’1+ rz)rlzz _E(rlz + I’22)I’12 +%r123
+ homogeneous solutions (6.24)

By Eq. (6.24), we know we need to add some homogeneous solutions to remove the
4 4

: . o . .
singularity from the term (%+-%). We can easily get a homogeneous solution
2 1
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with this term inside, which is

r4 r4

3,homogeneous,1 (r +_)+5 (r + ) —10- (r I, +1l ) (625)

2 h

f

2

After adding _Z f
60

to remove the singularity, f becomes

3,homogeneous,1 3,a,In

Z? Z
3aln = F(rl + rz)(r12 + r22 - '122)_6'12 (r12 + r22 - rlzz)__

f 36 M,

3 (6.26)

Now we can use f, , to find f, . After substituting Eq. (6.26) into Eq.

(6.13), the equation becomes

Tf

7 (r_ r, &\ (_£+Z_ )( rz) Z(SZ—ZE—Z)‘(LJFrL)

daupol E r r ”12 12 r12 12 r-2 IF1
Z(6Z+1) tr, Z(-127% -7Z +14E-2) \\, # )_2(122 +5)

6 I, 12 \\s 24
52°°°Z E 1 Z(122° -3Z +13) e

et =), + o 6.27
3 122 12) / 36 r, r2) (6:27)

nr LI
(L2 4 2 12)
f h

2

+(-

We can solve. f,, ., easily by using t[a,b,1-a-b].

z Z°

faapoy = (t[3 —1,-1]+t[-1,3, 1])+(——+?+—) (t[2,0,-1]+t[0,2,-1])

N 2(32 122E 2 2=t oretet 2 o))~ 262D

_ Z(-127*

L1, —1]

—7Z+14E-2) (t[1,0,0]+t[0,1,0])

12
Z(12Z +5) 52° Z E
~ S L+ (- E_E) t[0,0,1]

By the monomial table, f can be written as

3,a, poly

f —(—Z—2+£——)( +1,7)-r, +(Zz Z+E L
3., poly 6 12 12" 2°Y4 16 72 144

—)r,

2 2 _
Z(lZZ —-3Z +13) (I’ ) 122 + Z(12Z° —-63Z +84E +79) '(r13

r 3
72 432 )
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N Z(-12Z% -15Z +12E -1) . L4+ r,*
720 L n

yA Z(12Z +5)
+ E . (t[31 _l! _1] + t[_11 31 _1]) - T . (t[l, —l, 1] + t[—l, 1, 1])

—w -t[1,1, —1] + homogeneous solutions (6.29)

For (t[3,-1-1]+t[-13,-1]), (t[L,-L1]+t[-111]) and t[L1,—1] parts, we have not
found the solutions in the inversion table yet.

2
we can also add  2(124° —15Z +12E 1) f

3,a,poly ? 720 * 13, homogeneous,1

For f to remove

4 4
: : Lo .
the singularity from the term (;—+%). The solution becomes
2 1

2 2
&FF TR iMbE XA AE

f =(——= —+—
sy = ( 6 12 12 416 72 144

3
7)o

'2(12z* 37 +13) (s

2
= Z(242° —9Z + 24E +41) s

L) 216 %)

Z(-12Z% —15Z +12E -1
+ 3 (n+0,)-nr

Z Z(12Z 45)
+ (03, -1 A3 =)= == (1 -1 1)+ -1 11))

_202+Y g g (6.30)

Therefore, f,, can be written as

—(—Z—2 5——) (r?+r%)-r, +(Zz Z +£+i
6 12 12 12 16 72 144

3
)'r12

2(122°-3Z +13) o

Z(24Z2° -9Z +24E +41) |,
72 (7

0) e 216 %)

Z(-12Z% -15Z +12E 1)
+ = “(rL+r)-rr.
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+ % (t[3, -1 ~1]+t[-1,3,~1]) - w (L -L1]+t[-1,1,1])

_M t[L,1,-1]

Z2 Z Z
+|:?(rl + rz)(rlz + r22 - r122) _E '12('12 + r22 - r122) _%r123i|'ln(rl +hL+ r12) (6-31)

By Eqg. (6.31), we can see some terms of f,  have not been solved yet. The

unsolved terms and difficulties we will discuss in the next chapter.

Solving f,, is much more difficult than solving f,  because there are a lot of
special functions in f, which make the equation very hard to solve. To continue
solving next part, we need to find an easier way to simplify ¥, or rewrite it by
using different coordinate system. To know more about ¥, and try to simplify or

rewrite it become:the main idea to find ‘Y, completely. All the ideas we mentioned

here we will-discuss in the next chapter.
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Chapter 7

Future Work and Discussions

7.1 Unsolved Terms and Difficulties

In the last chapter, we have mentioned some terms of f,, have not been
solved yet. These terms are t[3,-1,-1], t[-1,3,-1], t[1,-11], t[-1,11] and t[1,1,-1].
If we can solve those term, we will find a lot of unsolved terms in our monomial
table (inversion table). After finding enough terms in our monomial table, we can

use our own method to generate a.particular solution of ¥, easily.

In order to find ‘those terms we have not solve yet, we know we have some

equations to solve, which are

3

T3 -1 -1)==, (7.1)
T(t[-13-1) = rl% , (7.2)
T L -11) =% (7.3)
T-111]) = rzT:lz , (7.4)
TLL-1) =" (7.5)

12

To find these terms, we use a larger ansatz, which is

N 8
Ansatz= > > > c. . 5", " " - shasis, (7.6)
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1

In(r,)

In(r,)

In(r,)
In(r,+r,+r,)

In(-r,+r,+r,)

In(r1 —-hL+ rlz)
In(rl +h - rlz)

where sbasis, =

x X X X X X X x
I
0 N o g b~ wN R

After using this generalized ansatz, we still cannot find the solutions of these terms.

The main difficulty is what kinds of special functions we need to add to our
sbasis, in order to solve those equations. Looking for special functions to add to
our sbhasis becomes the main problem we need to overcome.
For the next part, solving f,, is much more difficult than solving f,,. The
main difficulty comes from-the fact that Eqg. (6.5) has two different regions, which
IS

_V(Pz,l(rl’ rz) + Pelse(rl’ rz)) when rl 2 rz

ff3,b = _\7( f2,1 + f2,e|se) = { (7-7)

oV (QREN Ik =r= (0 +0) whenr, >,

Even if we can solve both regions completely, the function will become

indifferentiable when r, =r,. Besides, P.

else

part contains Lobachevsky function and

some terms which are really difficult to be solved. In order to solve these equations

easily, it is important to rewrite ¥, in a simpler form. The following section is
about the new coordinates we used to rewrite ¥, in order to solve the equations.
7.2 Using New Coordinates to Find the Wave Function

First, we try to use (r,a, ) coordinates to rewrite T . The reason why we use
this coordinate system is that ¥, which was found by P. C. Abbott et al. have S

term inside. After changing to (r,a, ) coordinates, this operator becomes
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2

82)+2cotatanﬂ-
oadf

5 1. (7.8)

2 0 0 0
~Z[(@cota-—+—)+(-2tan B-— +
r? I¢ oa 8a2) ( P op

Using this coordinate system can simplify T cleanly. However, we still have the

2

mixed differential term . This term include two different arguments. If we

000

can find a coordinate system which can make T without this kind of term, the

equation can be simplified in a simple form. Therefore, we use (r,&,0) coordinates

to rewrite T and V..

foeo -1 0L 1870,
20r% 2ror
ol e (0L O Gins (200, 0y (19)
r<(sin & +sin o) Sine dg O¢ Sino 06 00
and

) 22,/1+sin(g+5) .
\(red) 2 " , (7.10)
r -sin(@) r 1—sin(@)
2 2

After using (r,&,0) coordinate, we can easily find out that there is no differential

term with different arguments in T . Even if V™ becomes much more
complicated than V'® we can still try to use this coordinate system to the first
equation, which is

TO= (P (r,&,8)) =0. (7.11)
After we solved Eq. (7.11), we can get the solution

¥ (r,,8) = Fl(e)- F2(5), (7.12)
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where

2
d Fi(s)=¢, Fl(¢) cose d 9 ke
& sing sing de¢
and
2
d2F2(5) _2F2(5)_cos§iF2(5).
do sind sind do

Next, we can solve Eq. (7.13) and Eq. (7.14).

(@-sing)¥* - (L+[sin &)

Fl(¢)=C ,-HG&1+C -HGe2,
( ) el &2 m
and
1—sin8)** - (1+]sin 54
F2(5)=C,,-HGIL+C, - ) QIO s,

Jcoss

where

HGel= HeunG(2,—c,,0,1, % ,L1+sing),

HGe2 = HeunG(2, —c, + g 11+sine),

-I>I<J‘I
|\>||—\
le

HGS1= HeunG(Z,cZ,O,L%,l,Hsin 0),

HGo62 = HeunG(2,c, g g 1,1+sino).

4>|0'|
I\JII—‘

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

The definition of Heun function we have already mentioned in Chapter 2.7.

Nowadays, we still have not perfectly understood the properties of Heun function

yet. At least we know that we find a closed form of homogeneous solutions with

homogeneity zero in (r,&,0) coordinates. Using (r,&,0) coordinates to simplify

our equations is an important and useful step to continue solving the wave function

of helium.
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7.3 Expansions of ¥,

From Chapter 4.2, we know that finding a wave function in an expansion of
I, is a useful way of solving those equations. Even if we cannot solve the full
solutions now, we can still try to find the functions in expansion forms. As we
know, W, is really complicated and hard to simplify. If we can represent ¥, in
expansion forms, the following equations may be easier to be solved. At this
chapter we will try to represent ¥, in expansions of r, and other arguments in
different coordinate systems.

As mentioned above, we know that ‘¥, found by Abbott et al. is

V,=f +f, o+ i+ fetC fp (7.21)

2.else

As we know, the expansions of f,, and c-f,, are simple. The main problems of

expansions-of ¥, are the difficulty of expanding f, , and f, +f which are

2,else?

much more_complicated than the other two functions. Therefore, the following

sections are about the expansions of f, , ‘and f,, + f, ..

7.3.1 Expansionsof f;

Now we can try to expand each function into power series of some arguments,

which are r,, r, r, in interparticle coordinates, s, t, u in (s,t,u) coordinates,
and sina, cos@ in hypersperical coordinates.

First, we expand f, ;.

f,© {—%(rf +1,2)-In(r, + rz)%rlrz}%ln(n +1,) -1,

2,-1 (seriesat r12:0):
z 1 k
< -,
2 2 12
DY
3 k) L+,
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Ly z( er , (7.22)

k=2

Z z ] z Z
—{—E(rzz—r122)-ln(r2+r12)—§r2r12 +§(r2—r12)-r1—gln(r2+r12)-r12

f IC
2,~1(seriesat p=0) —
1 k
~ -,
2 2 1
L= )Z[_j( j
2\ k) \L+n,

+— (f, +1,)° Z[k 2) [rjlr ] , (7.23)

Z Z Z Z
_{_E( rlz)ln(r+r12) 3 12}‘*‘3(r 12)~r2—§In(rl+r12)-r22

f IC
2,~1(seriesatr,=0) —
Oo k
2
=1, ) Z( j
k=1 n+ '12

+_ (I’+I’12) Z(k 2] (r:_rzr j ) (7-24)

We can easily see that Eq. (8.23) and (8.24) are symmetric to each other when we

interchange r; <> r,, which is an important property of a well-behaving wave

function. In (s,t,u) coordinates,

Z Z Z t? Z Z t*—u
f o0 —=(t*-2u") Inu——t* |- =—-s+|-=Inu+— s?
2,1 (seriesats=0) — [ 6( ) 12 i| 6 u { 6 12 U2 i|
2 (1) (=s)
+= (P —2u? — =
-3 3)
Z ,&( 1) (-sY
NN o DR N e I 7.25
DI 729
- z z Z z z
£ oriesattco) = [—g(s —2u?)- In(s+u)—§su+ﬁs } [—Eln(s+u)—ﬁ]t2.(7.26)

We can find out that f, , in power series at t=0 is not an infinite series, which is
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different from others.

2,-1 (seriesatu=0) ~

f ot [——(s +1?). Ins+ (s —t )} +=Ins-u?

Z ,&( 1) (-u)
5+ 2S5 720

We notice that Eq. (8.22) and (8.27) should be very similar because of u=r,. They
are the same function but presentrin two different coordinate systems, which are

interparticle coordinates and (S,t,u) coordinates. In hypersperial coordinates,

f2Hc1 —— —ZTr[(InZHn r)- cose—ﬂ -Sin

1143
(_1)"(—;)@'25 235 coso

72 = | %_| "1+cosé
" -sin' «
3 ; I
-k
(3] -oh }/ coso
2
+Z—rcos€-z sinta, (7.28)
6 = k-k!
2 2
fZHcl (series at cos0=0) — Zr 'Sina—z?r'lnr'Sina'COSQ

} (—j sin* a
«/1+3|na Z—-cos"@

( 1)'-sin'"" o -cos'™" @ (7.29)

These two expansions are much more complicated than others. In Eqg. (7.28), we
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can find out two hypergeometric functions and pochhammer functions. We can also

see pochhammer functions and binomial coefficients in Eq. (7.29).

7.3.2 Expansions of f, +f

2,else

Finding the expansion of f, +f, . in the power series of r, is difficult
because of the special functions in f,,.. In order to find the expansion, we

represent f,, + f in five different parts:

2,else

f2,1 + fZ,else = 1:2,1 + ¢else,a + ¢else,b + ¢else,c + ¢else,d ! (730)
where
fz,l = E In(rl -+ rlz)'(rl -0 )_E P '(rl + rz) ' (7.31)
Z S
q)else,a =——(r12—|’22)'(81——2) ) (732)
6 T
Z 2 2 2
Deise b zg'rlz'\lzrl +2I’2 LTI (7-33)
Z 2 2 2 2 2
q)else,c =§|n(rl +r2 )(rl +r2 _r12 ) ) (734)
Z 2 2 2 . r122
Detse,d :E' P \/2rl +2r2 - 'ﬁfCSln(l—m) : (735)

For those five functions, we only focus on the region r, >r,. The functions of the
other region (r, >r,) are interchange of r, <> r, than the original functions. The

following are the expansions of f,,, @,.., Puepr Peusec ANA Gy

h=n

k
Z Z Z 1 (-
f?_'l:—-In(rl—rz)-(rlz—r22)——(rl+r2)-r12——(r12—rf)-Z—- 12 ) (7-36)
3 3 3 =k -

o » (k V—n _ n+k 2 2 %*“
€De|se,a:_%(r12_rzz)' In(rlerZ)ZZ(AJZ 2 ( 1) (I’l +k|’2 ) r122n+|<

n0 k=L{ n k(rl2 - r22)
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l i:([.12_"22)2”2(2i‘ +2r 122)*%71"12%71_ _l+i ﬁ(%)k r122k+2
3|1 7 (2i+1) 4 P

r)e r24r?_r.2
+g(r12—r22)arctan = L [hth —h
3 I )ns2n+1 2rr,

¥ 2’|+1,(r12_r22j2
L) —f) ii[ml] % \u+n [ o Jk
|,

7.37

3 A A 2i+1 r°+r ( )
© 1 _

(Delse,b=%'Z(%J'(_l)i(2r12+2r22)2 'r122H:L ) (738)

i=0 |
_Z (K2 + £2) - (r2 4 1.2 _Z In(r? 4 £2) .2 739
¢)else,c_3 ) (rl +h )(rl +r2) n(rl +r2)'r12 ) ( . )
T 3z

> 1 _ o _ ‘
s =2 SN2 | @R P B ey
' 6 T\ i 97 ;
(7.40)
These expansions are important results because the equation to find ¥, will

become

= () (7.41)

k=0

In the future, we can use this new idea to find ‘¥, by Eq. (7.41).

7.4 Physical meaning in special situations

After the wave function of hydrogen has been solved, hydrogen-based models
are used for describing atoms. For solving Schrddinger equation of helium, a model
based on hydrogenic solution is an important and easy start. However, the wave
function of helium atom is very different than the wave function of hydrogen atom.

One can imagine that the helium atom should reduce to a hydrogen-like model in
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some special situations, i.e., at the limits r, =0, p=00rr,=0,and r,=0wo0rr, =co.
The following chapter discusses the behavior of helium wave function at these
limits.

7.4.1 The r, =0 limit

When r, >0 in interparticle coordinates, the helium atom becomes a

composite particle consisting of nucleus with charge +2 and an electron-like
particle with charge -2. In this case, the behavior of this situation is not
hydrogen-like because of two reasons. First, when two electrons come together and
become one particle, this particle is not a fermion anymore, which means this atom
Is not similar to a hydrogen atom. The behavior should not be the same as a
hydrogen atom either. Second, when we assume that two electrons get together and
become one particle, the kinetic energy of such an object includes translational
energy. Rotational energy and vibrational energy are ignored on this assumption,
which certainly is not correct. According to these two reasons, we know that the

situation when 1, =0 is not hydrogen-like.
7.4.2 The r,=0 or r, =0 limit

When r, -0 or r, >0, the nucleus and an electron coalesce. If we consider

that the nucleus and one of the electrons become a composite particle with charge
+1, this situation should be hydrogen-like. However, we know that the two
electrons in the helium atom are indistinguishable. Even if one electron becomes a
part of the nucleus, the permutation symmetry of two electrons still cannot be
ignored. Besides, we are solving a two-electron system, which means we need to
consider the spin of electrons. For the ground state, we know that these two

electrons should have different spin wave functions. For hydrogen atom, we don’t
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need to consider the spin wave function. For these reasons, we know that helium
wave function is much more complicated than hydrogen even when r,=0orr, =0.
7.4.3 The r, =0 or r, =0 limit

We can imagine that the situation should become a hydrogen-like atom and
one free particle when rp - or r, >o. However, because these two electrons
are indistinguishable, the interaction between them still cannot be ignored.
Therefore, the “free particle” is not really free, and the rest parts are also not as

simple as a hydrogen atom.
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Chapter 8

Conclusion

A simple method to solve particular solutions of Schrédinger equation of
helium is proposed. After expanding the wave function of helium corresponding to
homogeneity, the problem of finding an exact wave function of helium reduces to a
series of differential equations to solve. We know that if we can find enough terms
in our inversion table of monomial terms for every homogeneity, we will create a

new and simple method to-generate particular solutions of ¥, with every
homogeneity h. According to our research, we know that we also are able to solve
the logarithm terms by the inversion table of monomial term. By this method, we
can keep solving subsequent terms until we find out the closed form of the solution.
If we can find the closed form of well-behaving ¥, for every homogeneity h, we
will finally find the exact.wave function of helium. This research shows initial steps
in the step-wise procedure of the pursuit of the exact wave function of helium, and it

also demonstrates that solving the Schrodinger equation of helium is not hopeless.
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Appendix

Expansion of Lobachevsky function
We know that there are Lobachevsky functions in ¥, which are found by

Abbott and Gottschalk in 1986. As mentioned above, we know that Lobachevsky
functions play important roles in removing singularities and in some formula of
homogeneous solutions. In this section, we will discuss about the expansion of

Lobachevsky function. The definition.of Lobachevsky function is
L(x) = —'[Oxln(cost)dt.

The following are the Lobachevsky functions included in \V,:

Lof :{L(—a;ﬁ)—L(aZﬂ)+L(ﬂ_Z+ﬂ)—L(ﬁ_ozl_ﬁ)}

a+p V4 T_atp

:-j 3 In(cost)dt + j 2 In(cost)dt — jaz In(cost)dt + j 2" In(cost)dt (A.1)

where g =arcsin(sing cosé) .

By simplifying, we can convert.them.into two integrals.

ﬁaﬂ ;ra+/3

Lof ——I 2 In(cost)dt+j 2 In(cost)dt — j In(cost)dt+'[ In(cost)dt

a+f
—J. 2 In(cost)dt+J',, . ﬁln(cost)dt+_|. 2 In(cost)dt — J.,[ a+ﬁln(cost)dt
2
a+p
:—J 2 In(cost)dt — Ia 5 ,,In(cost)dt+j 2 In(cost)dt+ja+ﬂ ,,In(cost)dt

a=p a+p

=— In(cost)dt +_[J7

z
2 2

In(cost)dt (A.2)

For _[Xlln(cost)dt , We can convert it into polylog function.
2
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~[ < In(costydt = —%-[4“ -polylog(2,—e?™) 41 - polylog(2,e”) — 4lxz — 4z In 2+ 1% |,
2

(A.3)

whenx:{o,z]
2

Here we plot a;ﬂ and a;’g to prove that there are both at the range {0 , %}

% o — % arcsin(cos(0) sin(0)) % o+ % arcsin(cos(0) sin( o))

Therefore, we can use Eq. (A.3) to simplify our Lof:

a+p

Ll Caii]
Lof =—], % In(cost)dt+ [, 2, , In(cost)dt
2 g8 2.2

2
= —%[w— polylog(2,e'“*”) + polylog(2,e' ")

+polylog(2,~&"“*)y=polylog(2,—'“*") | (A.4)
(The polylog functions sometimes are represented as dilog(x). In Maple, the dilog

function is defined as dilog(1—x) = polylog(2, x) .)

After converting into polylog function, Maple can plot the function easily.
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> Lof;
plot3d(Re (Lof) ,alpha=0..Pi,theta=0..Pi,axes=boxed) ;
s I ( —polylog(2, e ( -0+ arcsin(cos(0) sin(a) ) ) ) (o + arcsin(cos(0) sin(a))) )

2 i polylog(Z, ¢

+ m arcsin(cos(0) sin(at))

-I( -0+ arcsin(cos(0) sin())) )

_ polylog(2 i (o + arcsin(cos(0) sin( o)) ) ) )

& polylog(Z, 96

The reason we only plot the real part is that numerical evaluation of the function
polylog(2,x) does not give the imaginary part identically equal to zero, as it

should be. Nevertheless, the imaginary part can be made arbitrary small as can be

seen from the following is the plot of imaginary part of our function.

> Digits:=35:
LoE:;
plot3d(Im(Lof) ,alpha=0..Pi,theta=0..Pi,axes=boxed) ;

_% I ( —polylog(Z, &7 ( -0+ arcsin(cos(0) sin(a))) ) s polylog(Z, & (ot + arcsin(cos(0) sin(a))) ) e arcsin(cos(e) sin((x) )
-1 (- o+ arcsin(cos(0) sin(a))) ) I (o:+ arcsin(cos(0) sin(e))) ) )

A= polylog(Z, =€ = polylog(Z7 -€

We can also rewrite Lof in an easy series form:

Lof =—| i 1 . @la(@n+1) 'I:elﬂ(2n+1) _e—lﬁ(2n+1)]_ | B (A.5)
~(2n+1) 2

By Euler’s formula, Eq. (A.5) becomes:
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[cos((2n+D)a)+ Isin((2n+Da) |- 2l sin((2n+Da) -

Lof:—l-i I"%

n=0 (2n+1)2
=2. i(z ! s[cos((2n+D)a)-sin((2n+1a)+ I sin((2n+1)a)-sin((2n+D)a) |- ﬂ”
o, ni (2n+1();xn)+sll)n((2n+1)a ni; (2n+1z;en)i;1((2n+1)a) Igzz
s i (@n+1)a)-sin((2n+1)a) +| ism (2n+Da)- sm((2n+1)a)j_@}
- (2n+1)? = (2n+1)? 2
(A.6)

isin((Zn +1a)-sin((2n +1)a)J_@_

Here is the plot of > ;
—ry (2n+1) 2

Because the calculation only considers as finite digits, this problem causes the plot

< sin((2n+Dea)-sin((2n+1
cannot really show that | (2n+Da) 2(( +Da)
n=0 (2n+1)

J—% is identically

equal to zero. By this result, we can simplify Eqg. (A.6):

cos((2n+1)e)-sin((2n+De)
Lof =2- Z 1) (A7)

By the definition of Chebyshev polynomials of the first kind and the second kind,
we can represent Eq. (A.7) as

Lof = ﬁ T, (cosa)-U,, (cos B)sin B
n=0
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=2sin 3- Z Ty (COS@)-U,, (cos B) (A.8)

5 (2n +1)
where T, , andU,,  Chebyshev polynomials of the first kind and the second kind.

Next, we are trying to find the expansion of our Lobachevsky function. We

have

0 X OX

——|—1{ In(cost dt)=——~|n COS X A9
ar12(L() o, Ineos) (A.9)

Before giving an explicit series representation for the derivative of Lof with respect

to r,, let us determine some. For cos(x) we have:

a+f 1
cos 2 j: (1 1r7) [(rl—rz)\f2q2+2r22—r122 +(rl+r2)r12} (A.10)

a—ﬂj_ 1
2 ) 2(rP+r2)

cos wj:sin(wrﬂj
2

CcosS

(F+1,)\/26° 421, —E 7 +(r, =5)K, (A.11)
1 2 1 2 12 1 27°12

|+ o2 72—~ (5, | (AL2)

2 2(r2 +r17)

T—a+p . (a=p 1
cos szsm( 5 j Z(rlz+r22)|:_(r1_r2)\/2ri2+2r22_r122+(r1+r2)r12j|(A'13)

A . oX . .
We can easily find x =arccos(cos x) for-our equations. Then — is given as:

o
_a+fox _ 1 (A14)
2 arlz \er +2r)7
_a- ﬁ 8X_ 1 (A.15)
2 on, \er +2r,°
x=Z=2=F. ax ! (A.16)
2 on, \IZI’ +2r
_rT-a+p . oX 1 (A17)

2 or, J2r+2n? —r,?
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Combination of those formulas gives the derivative four integrals in Lof with

respect to r,,:

_atp. X In(cos x) = —[In(R(r1 —1)+1,(r, +1,)) = In(r2 +r?)—In 2] (A.18)
2 or,

_a=f._ X _ 1 N In(e? e r 2y
X= 2 or In(cos x) R[In(R(r1+r2)+r12(r1 r,))—In(r"+r,°) In2} (A.19)

_ﬂ—a—ﬁ__ax __1 _ _ _ 2 2y
X = 5 s In(cos x) = R[In(R(rl+r2) r,(r—r))—In(r"+r,)—In 2] (A.20)

_T—a+f. X
2 or,

In(cos X) = %[In(—R(rl —1,)+ 1, (6 +5) = In(? +1,7) -In2 | (A.21)

where R = \j2r12 +2rf =1’

After combination, we know & Lof can be represented as four logarithms:
N2

—Lof = _%{In [R(rl + I’2)+ rlZ(rl A rz)]_ In [R(rl + rz) + rlZ(rl - I’Z)]}

~ =0l (5 +8) RO~ )]0 [5,(5 + 1) + RO )]} (A22)

Here we can convert logarithms to inverse tangent hyperbolic functions by the
conversion equation:
In(1+ Xx) —In(1— x) = 2-arctanh(x) . (A.23)

After simplifying, the equation becomes

iLof =—£.arctanh R(6=1) 2-arctanh L (5 =1) (A.24)
or,, R r,(r+r,)| R R(r,+r,)

We also know how to combine two inverse tangent hyperbolic functions into one:

u+v
arctanh(u) +arctanh(v) = arctanh(
1+uv

) (A.25)

After combining, we get the simplest form of iLof :
r-12
72



2 2
9 Lof = —E-arctanh hh | (A.26)
ar, R o

2.2
And the plot ofaiLof —(—%arctanh[rl "2 D is

r12

1.2x10°%
x 107%%
x 107%-
x10°%
x10°%
x107%

A

-2.x10°%
-4.x10°%
-6.x107%

Because the calculation only considers as finite digits, this problem causes the plot
cannot really show that the difference is identically equal to zero. Therefore, we

can rewrite our Lof as

2 r’—r?’
Lof:—jﬁ-arctanh 1R 2 |dr, . (A.27)

12

By this definition, we can change to (r,a,ﬂ) coordinates:

of _Iﬁ-arctanh[m}(s np)= J'— arctanh[ sﬂjd(s nfg).(A.28)

The expansion form of inverse tangent hyperbolic is:

0 2n+1
tanh A.29

arctanh(x) = Z il (A.29)
By this expansion form, we can rewrite Eq. (A.28):
Lof Iz )2n+1 | (Sln ﬂ) J_Z (COS )2n+1 | (Sin ﬂ)

I &on +1 /;)2“2 2n+1(1si ﬂ)”“

2 (cosa)™™ ¢ dsinp
=> | (A.30)
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After evaluating the integral, Eq. (A.30) becomes

,n+1
ZF{%;H ,sin? ,B]
Lof :sinﬂ-i A 1

2n+1

oS oz)2n+1 .

Here we can follow the definition of hypergeometric function:

o),

AT

Therefore, Lof becomes

o =sin ﬂni; 2n1+1i(%z-%; Tl)i |

2n+1

(sin ,H)2i (cosa)

1 (B
2 (5),

Lof = - (%) (5),(n+),
5% (5]

(n+1), _G+mt_ (D)., .

il i'n! ilnt

o (.. (%), (%2),
— (%) (%) ntit

which is called Appell hypergeometric function F,:

11072,
3/ 3/
%%

After changing into interparticle coordinates, our Lof becomes

74

Here we can substitute

, and Eq. (A.33) becomes

2n+l

(sin )" (cosr)

We can also substitute

Lof =005asinﬁ-i (cosza)n (Sinzﬁ)i

n=0

Lof =c03asinﬁ~F2{ cosza,sinzﬂJ

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)



2 2
L+

rlz—rzz)(rf”zz—rlzz) 1%% 22 ) (rier?-r2Y
. . F 1 2 ’ 1 2 12 (A37)

which is the easiest form of Lof.

For the following parts, we want to find the expansion of Lof respect to r,.

(%). 1o (n+1) _(+D! in Eq. (A.33):

(%) T 2i+1 il n!

After substitute

> - 1+1 n 2i41
:COSOc-ZZil+1 Z(}(é??/”() l)n (cos’a) |(sin ) (A.38)
i=0 n=0 ) ! n!

Here we can follow the definition of hypergeometric function again to simplify

Lof:
i+1
2|
R y ,cos’ &
- 2 . 2i+1
Lof =cosa - -(sin . A.39
@2 i1 (sin ) (A.39)

To verify the validity of 'this expansion, we can plot both functions. Let us define

LofE(N), which is a fundamental series of Lof:

2,i+1
N ,F y ,C0s° &
LofE(N) =cosa- ) 22, : (sin g (A.40)
i=0 I+

The following are the plots of Lof —LofE(1), Lof —LofE(10), Lof —LofE(100) and

Lof — LofE(1000) :
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Lof —LofE(D) Lof — LofE(10)

By these plots, we find that our expansion is going well when we include more
terms, but there are two points {a:%,ezo} and [a :%,sz} that have
problems with Riemannian sheets, which mean that we will find branch cuts if we

z

enlarge our plots at the lines when {a= 2} and [49>7ror ¢9<O]. Fortunately, our

Lof multiply one extra cose in ¥, . If we compare the plots of
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cosa - Lof —cose - LofE(L), cosa - Lof —cose - LOfE(10), cose - Lof —cosea - LofE(100)

and cos« - Lof —cos« - LofE(1000):

cos« - Lof —cosa - LofE(D) cosa - Lof —cosa - LofE(10)

The problems of branch cuts are solved here. Here we also plot cosa-Lof to show

that cosa - Lof is a symmetric function.
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> cos (alpha) *Lof;
plot3d(cos (alpha) *Re (Lof) ,alpha=0..Pi, theta=0..Pi,axes=boxed) ;

-% Icos(a) (polylog(l, o Ml c(0) Sin(a)))) + marcsin(cos(0) sin(a) ) — polylog(?., el(eansn(eos(0) Si"(a)))) — polylog(?.,
e—I (-0 + arcsin(cos(®) sin(0r) ) )) e polylog(Z, eI (o + arcsin(cos(8) sin(o’.)))) )
Now we can try to find the expansion of Lof respect to r,, from Eq. (A.39):
A+1
& p y ,COS* &
- 2 . 2i+1
Lof =cosa - -(sin
; 2i+1 ( 'B)
2,i+1
| R y ,cos” a L
=c0Sq ) 2 1- 2
30 21+1 o+,
i+1
2’ 2
E ,COS“ o
COS iz 1 % i( 1)k g r122 k
= o _ g
= 2i+1 5 k \r’+r’
2,i+1
e A I
—cosar- Yy 2 ()| o | (A.41)
==\ k 2i+1 "+,

This is the expansion we want of Lof respectto r,.

At first, we try to find the expansion of Lof by the expansion of Lobachevsky

function at x=0, which is

L(x)=—onln(cost)dt=—%i(_1) Bay :(Zn(il;l)(z D ers (A.42)
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where B, is Bernoulli number.

We also find the expansion of Lobachevsky function at x :%, which is
L(x) = —joxln(cost)dt

_1 1 E_ _ ( 1) 22' 2| 2i+1
—27z|n2+[2 |n(2 x)* 1]( X) + Zl: %2 +D) (2 X) (A.43)

Next, we can use these two expansions to simplify our Lof:

Sa-p) Sa-arp) Sap) “-a-p)
Lof =— [ In(cost)dt— [ In(cost)dt+ [ In(cost)dt+ | In(cost)dt
0 0 0 0

=%[(a—ﬂ)-|n(a—ﬂ)—(a+ﬂ)-|n(a+,3)]—,3'(|n2+1)

_w L i 2|1_ (I 2| 2n ﬂZn
%"( DB, (2 =) (2)n /32 —n)}2i—2n- 1)”(2n+1)|( o (A4

This expansion form is too hard to simplify to the expansion form we want.
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