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在爪哇虛擬機器中於方法回傳時釋放堆積中區域性

物件 
 

學生：劉彥志 

 

指導教授：鍾崇斌 博士 

國立交通大學資訊工程學系碩士班 

摘 要       

爪哇虛擬機器(Java Virtual Machine)近來被利用在記憶體受限的嵌入

式系統中。然而，在記憶體受限的環境下執行爪哇程式會導致呼叫垃圾收

集的次數變多。生命週期不會超出配置他之方法的物件被稱為區域物件。

如何在方法回傳後掃除生命週期已經結束之區域物件來減少垃圾收集的頻

率就變成記憶體受限系統下的重要課題。現存將區域物件放入方法框

(Method Frame)中的方案並無法掃除所有的被辨識出來的區域物件。所以

我們將提出一種在堆積(Heap)而非方法框中管理區域物件的機制，讓堆積

中被辨識出來的區域物件可以在方法回傳時被釋放。這個研究將分別針對

如何在堆積中配置區域物件，如何在方法回傳時掃除堆積中該方法的區域

物件，以及在原機器上加入這個設計會碰到的問題做討論，並分析帶來的

負擔。最後的結果，我們可以看到把物件配置在堆積中並在方法回傳時釋

放他可以讓我們在記憶體極受限的情形下減少 60%的垃圾收集呼叫並得到

比原始爪哇機器好 11%的整體執行時間速度效能。而只要堆積的大小不要

大於程式最小執行大小的 9 倍，用我們的方法對於速度效能都有幫助。 
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Freeing Local Objects in Heap upon Method Returning 
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Student: Yen-Shih Liu Advisors: Dr. Chung-Ping Chung 

Department of Computer Science and Information Engineering 
National Chiao Tung University 

ABSTRACT 

Java Virtual Machine is adopted in embedded memory constrained system 

recently. However, executing a Java program in memory constrained system 

will result in more frequent invocation of garbage collection. Objects whose 

lifetime will not escape scope of method which allocates it are called local 

objects. Freeing local objects upon method return to reduce frequency of 

garbage collection is important in memory constrained system. Current 

approach to allocate local objects in method frame can not free all identified 

local objects. So, we propose a mechanism to manage local objects in heap but 

not method frame, to free all identified local objects upon method return. In this 

research issues about how to allocate local objects in heap, how to free local 

objects in heap upon method return, and problems to add this design to original 

JVM are discussed. Overhead of this design will be analyzed, too. As a result, it 

reduces 60% of GC invocation counts, and brings 11% speedup over original 

JVM on total execution time in extremely memory constrained environment. 

When heap size is less than 9 times of minimal execution heap size, our design 

helps on speed performance。 
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Chapter 1 

Introduction 
 

In this chapter, we will simply show that why reducing overhead of Garbage 

Collection is important and how can we reduce overhead of Garbage Collection. And 

then we will illustrate our motivation and objective to do this research. Finally, we will 

describe the organization of this thesis. 

  

1.1 Reducing Frequency of Garbage Collection 

 

Application of Java Virtual Machine in embedded system is getting popular 

recently. In an embedded system, memory constraint is usually a common issue 

that we have to face. However, because Java is an object oriented programming 

language which does not provide mechanism for programmer to free dead objects 

themselves, it uses Garbage Collector to collect dead objects when heap is full, 

which is called Garbage Collection. So, Java Virtual Machine in a memory 

constrained system will lead to frequently invocation of Garbage Collection, that is 

because heap tends to be full frequently. In extremely memory constrained 

environment, the overhead from Garbage Collection occupies significant portion of 

total execution time. Ratio of Garbage Collection time to total execution time can 

be more than 50% 

 

Conventionally, Garbage Collection is invoked by Java Virtual Machine 

whenever more free space is required when allocating object. So, to reduce 

frequency of Garbage Collection, the trivial idea is to freeing dead objects in heap 
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to bring more free space in heap [1]. 

 

However, in Java Virtual Machine, we do not provide mechanism for 

programmers to free dead objects, because of concerning about safety. So, 

generally Java Virtual Machine does not know whether an object is dead except 

invoking Garbage Collection. Nevertheless, there are some objects whose lifetime 

will not escape scope of method which allocates them, called Local Objects. 

Because knowing Local Objects are surely dead after method return, we can free 

them upon method return to bring more free space in heap. As a result, freeing 

Local Objects upon method return helps to reduce frequency of Garbage 

Collection. 

 

1.2 The Existing Method 

 

To identify Local Objects in Java program, current conventional approach is 

Escape Analysis. And to free Local Objects upon method return, Java Virtual 

Machine will put local objects in method frame, which is called Stack Allocation. 

Then, when method returns, the frame will be popped and Local Objects will be 

freed, too. 

 

However, objects in stack are not collectable. It leads to that there are some 

constraints in stack allocation that we can not free all identified Local Objects 

upon method return. The reason will be explained in detail in section 2.3. 

 

1.3 Motivation and Objective 

 

Because Stack Allocation can not free all identified Local Objects because 
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objects in stack is not collectable. And we know that objects in heap are collectable. 

So I am motivated to propose and evaluate a mechanism to allocate Local Objects 

in heap and free them upon method retuning. Expecting to free all identified Local 

Objects upon method return. 

 

1.4 Thesis Organization  

 

The rest of the thesis is organized as follows: Section 2 describes the 

background of freeing Local Objects upon method return, including architecture of 

Java Virtual Machine, Escape Analysis, and Stack Allocation. Section 3 presents 

the proposed design to allocate identified Local Objects in heap and free them 

upon method return. Section 4 simulate results of our mechanism and evaluate it. 

The last section summarizes this research and discuss about contribution of this 

research. 
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Chapter 2 

Background 
 

Before illustrating my design, some background technology should be known. So, 

they will be illustrated in this chapter. First, we will present the conceptual architecture 

and conventional implementation of Java Virtual machine, which executes Java class 

files. Then, current approach to identify and free local objects upon method returning 

will be presented. Finally, we will discuss about advantages and constraints of current 

approach. 

 

2.1 Java Virtual Machine 

 

To execute Java programs, we need Java Runtime Environment. The core of JRE 

is Java Virtual Machine. Java Virtual Machine is a virtual stack machine to execute 

Java class file. Specification of Java Virtual Machine is illustrated in The Java Virtual 

Machine Specification [2]. We will illustrate it simply in this section. 

 

In Java Virtual Machine specification, it describes the function of each component 

and abstract inner architecture of Java Virtual Machine, but not the detail 

implementation of each component. Figure 2.1 shows the abstract inner architecture of 

Java Virtual Machine. Afterwards, we will illustrate the function of each component 

simply. [3][4][5]  
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Figure 2.1: Abstract inner structure of Java Virtual Machine 

 

2.1.1 Class Loader and Method Area 
 

In Java Virtual Machine, the static information about each class is stored in 

Method Area, and loaded by Class Loader from Class file. The Class Loader reads 

Java Class file and converts information in Class file to corresponding data 

structure in Java Virtual Machine, and store it to Method Area. Class information 

in Method Area includes type information, constant pool, fields, method 

information, class variables, bytecodes, and method tables. All thread in a Java 

Virtual Machine instance share the same method area, so the method area should 

be designed to be thread safe. 

 

2.1.2 Interpreter 
 

Interpreter is the execution engine of Java Virtual Machine. It reads the 

runtime execution information in Stack to get the current PC and related 

information to know which bytecode should be interpreted now. Then, it reads the 

Class Loader

Method  
Area 

Constant Pool 

Java
Stack

Interpreter 
(Execution Engine) 

Heap 

Garbage Collector

Java class file
Data Flow
Class File 
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corresponding bytedcode and related information from method area, and executes 

it. In current research, there are some new technologies which replace some 

function from interpreter. For example, the Just-in-time Compiler helps interpreter 

to execute program with native code. But conventionally, interpreter is still the 

central controller in Java Virtual Machine. 

 

2.1.3 Java Stack 
 

Java Stack in Java Virtual Machine is responsible for maintaining method 

invocation and return. Each thread in Java Virtual Machine has a private Java Stack. 

The Java Stack is created when a thread is created. The stack is never manipulated 

directly except to push and pop frames. Each frame in Java Stack is a memory 

space corresponding to a invoked method. Runtime information like local variables 

and operand stack are stored in frame. Frame in Java Stack is created when the 

corresponding method is invoked, and then it will be pushed into Java Stack. Only 

method corresponding to the top frame in Java Stack is currently executed in the 

thread. So, when the currently executed method returns, the top frame will be 

popped, and then the currently executed method will become one which 

corresponding to new top frame in stack. 

 

Figure 2.2 shows how Java Stack maintains method invocation and return. 
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Figure 2.2: Method invocation and return 

If Java Stack is full when method invocation, StackOverflowError will be 

thrown 

 

2.1.4 Heap 
 

During execution of Java program, if an object is created, we will allocate a 

free space for it in heap. Conventionally, heap is management with Free Chunk 

List. Free Chunk List is a linked list data structure which links Free Chunks in 

heap . Each Free Chunk is a contiguous free space and has a header which shows 

the size of Free Chunk, and the point to next Free Chunk in Free Chunk List. Data 

structure of Free Chunk is shown in Figure 2.3. Then free space in heap is 

represented with Free Chunk List, like Figure 2.4. We can see that free space in 

heap is linked by Free Chunk List. 
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Figure 2.3: Data structure of Free Chunk 

 

 
Figure 2.4: Data structure in heap 

 

When Java Virtual Machine needs a free space to allocate new object, it will 

traverse the Free Chunk List. If there is suitable space for currently created object, 

Java Virtual machine allocates object in the found out free space. If there are no 

suitable space after traversing the whole Free Chunk list, Java Virtual Machine 

invokes Garbage Collection to sweep dead objects in heap. If there are still no 

suitable space after Garbage Collection, OutOfMemoryError will be thrown. 

 

2.1.5 Garbage Collector 
 

Garbage Collector is responsible to sweep dead objects in heap in Java Virtual 

Machine. Dead Objects are objects which are not referenced any more. Because 

Java programs access objects via reference, an object which is not referenced can 

not be used in future, so we say that it is dead. Conventionally, Garbage Collector 

is implemented with Mark-Sweep-Compact (MSC) algorithm. There are three 

phase in MSC algorithm: (1) Mark phase: traverse the reference tree and mark 

Object Free Chunks 

Start of Free Chunk 

NULL

Heap 

Free space size next 
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reachable objects as live. (2) Sweep phase: traverse the heap to sweep unmarked 

objects in heap, because there are not referenced at all, which is called dead. Then , 

it links free space in heap to Free Chunk List. (3) Compact phase: if Java Virtual 

Machine need more space after Sweep phase, it compact objects in heap. It will 

traverse the heap and move live objects to become contiguous allocated from 

beginning of heap. Compact phase helps Java Virtual machine to eliminate 

fragmentation in heap. It should be noted that compact phase is optional in each 

invocation of Garbage Collection. 

 

Figure 2.5 shows how Garbage Collector works in 3 phases. In Figure 2.5(a), 

the point means reference relation, we can see referenced objects are marked, In 

figure 2.5(b), we can see non-referenced objects are swept from heap. Finally, in 

figure 2.5(c), we can see objects are moved to contiguous address from begining of 

heap. 

 

 
Figure 2.5: Garbage Collection 

 

HEAP

HEAP

HEAP

(a) After mark phase 

(b) After sweep phase 

(c) After compact phase 
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Garbage Collector helps Java Virtual Machine to sweep dead objects in heap, 

but also brings overheads in speed because if traversing reference tree and heap 

(traversing reference tree in mark phase, traversing heap in sweep and compact 

phase). So, if we can reduce frequency of Garbage Collection, we can reduce total 

execution time of Java program. 

 

2.2 Escape Analysis  

 

Before sweeping local objects upon method returning, we have to identify 

which objects are local ones. In current research, there is a kind of static analysis 

algorithm called Escape Analysis which can helps us to find out Local 

Objects.[6][7] 

 

 Before illustrating Escape analysis, we have to define the term Allocation 

Site. In bytecode sequence, a bytecode instruction which will allocate new object 

(including bytecode new, newarray, anewarray, multianewarray in original JVM) is 

called Allocation Site (AS). And if an allocation site always allocate Local Object, 

then we call it a Local Allocation Site (LAS). It means that if an allocation site has 

any possibility to allocate non-Local Object, it is not a Local Allocation Site. 

 

Escape Analysis is a static analysis algorithm. It statically analyzes the 

bytecode sequence in Class File to find out Local Allocation Sites in bytecode 

sequence. 

 

To identify Local Allocation Site in byte code sequence, Escape Analysis will 

first do control flow analysis. Then it will traverse all control flow path to see if an 

object from some allocation site will be assign to global reference. If it will never 
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be returned or assigned to a global reference, it means that all references to it will 

be eliminated when method return. So, the object will become dead when method 

returns, too. Then we call the allocation site which allocate the object Local 

Allocation Site, because object allocated by it is always local. Global reference in 

Java Program including static reference, arguments, and reference field of global 

objects. 

 

Escape Analysis can be done offline or after class loading, figure 2.6 shows 

the flow to do Escape Analysis. If we do Escape Analysis offline, we can store 

information of Local Allocation sites by (1) storing with annotation in class file or 

(2) replacing the Local Allocation site with other bytecode to point out Local 

Allocation Sites.. 

 

With Escape Analysis, we can find out Local Objects allocated by Local 

Allocation Sites. However, there are some objects which are not allocated by Local 

Allocation Site but still are Local Object. So, we have to note that Escape Analysis 

can not find out all Local Objects. 
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Figure 2.6: Escape analysis 

  

2.3 Stack Allocation 

 

After identifying Local Objects with Escape Analysis, then how can we free 

local objects upon method return? Current approach is Stack Allocation. [6][7] 

When method is invoked, JVM preserves contiguous space in the method frame 

for LASs in this method. Then, when LAS in method is executed, it allocates 

object in method frame but not heap. We can see figure 2.7. In figure 2.7 (a) spaces 

are preserved for Local Allocation site in frame. In Figure 2.7 (b) Local Objects are 

freed with popped frame. 
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Figure 2.7: Stack Allocation 

 

Then because Local Objects are allocated in method frame, when method 

returns all local Objects allocated in frame will be freed when the frame is popped. 

It should be noted that because reference recorded the real address in memory, and 

accessing to objects will be independent to storing in heap or stack. So, mechanism 

and time to access objects in heap and stack is the same. 

  

However, because Frame is not collectable, if there are too many dead objects 

in it, the Java Virtual Machine will tend to throw StackOverflowError or 

OutOfMemoryError. So, if there is a Local Allocation Site which allocates lots of 

Local Objects in a method execution. We will only allocate the first one in frame, 

or it violates the space safety. For example, if there is a Local Allocation Site in 

loop, it will allocate a new Local Object in each iteration. However, the object may 
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be only live in scope of the iteration. Then, if we allocate each one in frame, 

because the object is not collectable, space complexity variants and space safety is 

violated. This constraint make Stack Allocation not be able to free all identified 

Local Objects upon method return. 

 

2.4 Summary 
 

In this Chapter, we introduce the basic concepts of Java Virtual Machine, 

Escape Analysis, and Stack Allocation. We also describe the constraint of Stack 

Allocation. Stack Allocation is constrained because objects in stack are not 

collectable. To overcome the constraint and free all identified Local Objects upon 

method return, I am motivated to design a mechanism to manage Local Objects in 

heap where objects in it is collectable. The details about my design will be 

presented in next chapter. 
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Chapter 3 

Design 
 

In this chapter, the mechanism to free Local Objects upon method returning is 

presented. Section 3.1 will introduce the overview of the whole design, section 3.2 to 

3.3 shows two main issues in my design, section 3.4 will discuss about problems and 

solution about adding my design to original Java Virtual Machine, and section 3.5 will 

summarize whole my design. 

 

3.1 Design Overview 

 

Stack Allocation does not sweep all identified local objects upon method 

return. So my objective is to design a mechanism to free all identified Local 

Objects in heap upon method return. So, we will introduce a mechanism to specify 

local objects and others in heap, and free local objects upon method return. To 

manage Local Objects in heap, there are two main issues about my design (1) how 

to allocate and (2) how to free upon method return. And there is also a problem 

that how can garbage collector still work after adding our mechanism. So, we will 

discuss about these two issues and one problem in later section. 

 

About issue 1, we will discuss about how to identify Local Objects and how 

to allocate Local Objects efficiently. In our design, Local Objects are identified by 

Escape Analysis, mentioned in chapter 2. So, we will not discuss about it in detail 

here. Discussion about allocating Local Objects efficiently including time to 

allocate and space to store local objects and management information.  
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About issue 2, we will discuss about how to know which objects are local in 

specific method upon return, and how to free Local Objects efficiently. Because 

method invocation and return is frequently in Java program execution, time to 

specify and free should be short to lower overhead of my design. 

 

About problem, we will discuss about how can my design cooperate with the 

original Garbage Collector, we will show the modification of Garbage Collector. 

And we will discuss about additional overhead after adding modification, too. 

 

3.2 Allocating Local Objects  

 

To allocate Local Objects in heap, we have to know how Local Objects are 

stored in heap. So, we will introduce the data structure to store Local Objects in 

heap first. Then, we will illustrate the allocation policy when we allocating Local 

Objects or others. And we will discuss about overhead of each design after 

introducing them, too. 

  

3.2.1 Data structure to store Local Objects in heap 
 

To know how our mechanism allocates Local Objects, we have to know how 

Local Objects are stored in heap in my design. To store Local Objects in heap, we 

need a data structure to point out which objects in heap are local ones, and this 

structure must be variable size, because new Local Objects may be allocated 

anytime and we have to point out them, too. To satisfy the requirements, we add a 

linked list chunk in heap, which is called Local Chunk List. 

 

Local Chunk List is a linked list data structure which links all Local Chunks 
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in heap. Each Local Chunk is a contiguous memory space that points out that the 

space is for Local Objects only. Figure 3.1 (a) is heap of original Java Virtual 

Machine, and Figure 3.1 (b) is heap after adopting my design. 

 

 

 
(a) Heap in original Java Virtual Machine 

 

 
(b) Heap after adding my design 

Figure 3.1: Data structure in heap in my design 
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The difference of Free Chunk and Local Chunk is that Free Chunk is a 

contiguous free space, and Local Chunk is a contiguous space that points out 

objects in this chunk is Local. But space in Local Chunk can be either allocated by 

Local Object or not. Data structure of Local Chunk is shown in Figure 3.2. 

 

 
Figure 3.2: Data structure of Local Chunk 

 

First three cells in local chunk are used to store information about Local 

Chunk List management. The field “Size” is size of this Local Chunk, the field 

“Size_used” is how much space has been used in this chunk, and field “Next” 

maintains the address of next Local Chunk. The other space in the Local Chunk is 

used to store Local Objects.  

 

Size of Local Chunk will not grow after Local Chunk allocation, because to 

increase size of Local Chunk is complex. To increase size of Local Chunk, Java 

Virtual Machine has to traverse the Free Chunk List to see if there is free space in 

end or begin of the Local Chunk. In some condition, there is no free space to 

extend size of Local Chunk, because the end of Local chunk has been allocated 

with some other object, and then we have to move the object to another address if 

we want to extend size of Local chunk. So, in our design, size of Local Chunk will 

not increase after allocation. However, compare with increasing size, decreasing 

size of Local chunk is much easier. Java Virtual Machine can just link the free 

space in end of Local Chunk to Free Chunk List, and reset the value of field ”size”. 

S
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S
ize_us
ed 

N
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Local Chunk 
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So, decreasing size of Local Chunk is allowed. We will decrease the size of Local 

Chunk in compact phase of Garbage Collection, which will be mentioned later. 

 

After adding Local Chunk List, the heap is separate to Local Area and Other 

Area. Local Area includes Local Chunk List, and Other Area includes Free Chunk 

List and objects which are not in Local Area. So, Local Area is space for Local 

Objects, Other Area is space for objects which is not sure if local. 

 

Overhead 

Then, we can discuss about the space overhead to use Local Chunk. First 

Overhead is space to store management information. For each Local Chunk, we 

need three cells to store management information, which is shown in Figure 3.2. 

So, the more Local Objects allocated in the Local Chunk, the less space overhead 

per Local Object brings. Second overhead in space is the internal fragmentation in 

Local Chunk. When we allocating Local Objects in Local Chunk, there may be 

some free space which is too small to allocate another Local Object. Then, it will 

lead to internal fragmentation in Local Chunk. 

 

3.2.2 Policy to allocate Local Objects in heap 
 

After introducing how Local Objects are stored in heap. We will see that how 

Java Virtual Machine allocate objects in my design. Initially, the size of Local Area 

is zero, which means Local Chunk List is empty. The basic principle of allocation 

is that if allocated object is local, we put it into Local Chunk. And if free space in 

Local Chunk is not enough when allocating, we will allocate a new Local Chunk 

from Free Chunk List for it. However, as mentioned before, the more Local 
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Objects in a Local Chunk, the less space overhead per Local Object brings. So, 

constant N bytes will be set to be the minimal size of local chunk when allocating 

new local chunk. And appropriate N will discussed in section 4.4. However, if size 

of allocated Local Object bigger than minimal Local Chunk allocation size N, then 

we will allocate a Local Chunk which is fit to size of the big Local Object, and link 

the allocated Local chunk to Local Chunk List. So, the allocation policy is: 

 

 
 

 

We can see example in figure 3.3. Figure 3.3 (a) shows the initial state in heap. 

In Figure 3.3 (b) When a Local Object is to be allocated, we allocate a new Local 

Chunk for it. In figure 3.3(c), a Local Object is going to be allocated, and space is 

enough, so we allocate it right after the end of Local Objects in Local Chunk List. 

In figure 3.3(d), another Local Object is to be allocated, but space is not enough. 

So, we allocate a new Local Chunk and allocate the Local Object in it. 

 

• Initially, size of local area is zero 
 
• When a object not sure if local is going to be allocated 

• Allocating it by traversing free chunk list, as original 
JVM 

• When local object is going to be allocated 
• If object size S > N bytes, allocate a big enough S 

bytes local chunk for it 
• Else if space from end of Local Objects to end of  

Local Chunk is enough to allocate it 
 Allocating object in end of local objects 

• Else 
 Allocate and link an N bytes local chunk from 

free chunk list 
 Allocate local object in start of new local 
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Figure 3.3: Allocating Local Objects  

 

Overhead 

 

Speed overhead of allocation mechanism in my design is similar to allocation 

mechanism in original Java Virtual Machine. Because both of they use linked 

chunk list to allocate Local Objects in heap. 

 

3.3 Freeing Local Objects upon method return  

 

After discussing about Local Object allocation, lets focus on freeing Local 

Objects upon method returning. In this issue, we have to separate which Local 

Objects are in returning method and free them. And because method invocation 

and return in Java Program is frequent, speed overhead to free should be noted, 

Start of Local Chunk 

Start of Free Chunk list 

Local Object Free Chunk 

Start of Local Chunk 

Start of Free Chunk list 

Start of Local Chunk 

List

Start of Free Chunk list 

(a)

(b)

(d)

Start of Local Chunk 

Start of Free Chunk list 

(c)

Common Object Local Chunk  
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too. 

 

In our design, we separate Local Objects from different method by recording 

the end of current end of Local Object in Local chunk List when method 

invocation. This recorded end of Local Objects is called Method Boundary, which 

will be stored in corresponding method frame. And when the method returns, the 

end of Local Objects in Local Chunk List will be set to value recorded when  

method invocation. Then, Local Objects in returning method are freed.  

 

We can see example in figure 3.4. In Figure 3.4 (a), when method is invoked, 

we record the end of Local Objects in Local Chunk List to be Method Boundary in 

frame. In Figure 3.4 (b) Local Objects in the method is allocated in Local Chunk 

List. And when method returns in figure 3.4 (c), end of Local Objects is reset to be 

recorded boundary, and Local Objects in returning method become out of 

boundary and freed. 
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Figure 3.4: Freeing Local Objects upon method return 

 

Overhead 
 

To discussing about the issue of speed overhead in freeing, we can see that we 

only record the address of end of Local Objects when method invocation, and reset 

the address when method return. Both of them are simple action and overhead will 

be light in each invocation and return. And total overhead of my mechanism in 

freeing will be direct proportion to numbers of method invocation and return in 

java Program. 

 

3.4 Cooperation of Garbage Collector and my design 
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After adding my design, we have to consider about the cooperation of my 

design and original Garbage Collector. Because our design modifies the data 

structure in heap, we have to modify Garbage Collector to suit our data structure, 

and ensure the correctness of my design after Garbage Collection invoked. The 

main problem we will meet is that compact phase in Garbage Collection moves 

positions of objects in heap, then our data structure Local Chunk and method 

boundary will point to wrong address. So the boundary of method and Local 

Chunk must be adjusted, or the program sweep objects which are still alive when 

method returns, and result in error when executing program. 

  

So, we will modify the Garbage Collector. In mark phase, it traverses the 

reference tree and marks the referenced objects, the same as original Garbage 

Collector. In sweep phase, the garbage collector will sweep dead objects, but not 

sweep Local Chunk containing live Local Objects. And in compact phase, because 

positions of objects are moved, we will adjust location and compact the size of 

Local Chunks. And Method Boundary in method frame must be adjusted, too. We 

can see figure 3.5 as example to compact. Figure 3.5 (a) is heap after sweep phase, 

and figure 3.5 (b) is heap after compact phase. We can see Local Chunk and 

method boundary are adjusted in figure 3.5 (b). 
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Figure 3.5: Compaction in modified Garbage Collector 

 

Overhead 

 

In speed overhead issue, my modification on Garbage collector will result in 

more actions in compact phase, to adjust Local Chunk and method boundary. So, 

the overhead will be direct proportion to number of Local Chunks and depth of 

Java Stack, because number of method boundary is the same as number of method 

frames in stack.. 

 

3.5 Summary 

 

In this chapter, we present the mechanism of our design. We add a Local 

Chunk List in heap to separate Local Objects from others. And when allocating 

local objects, we will contiguously allocate Local Objects in end of Local Objects 

in Local Chunk List if space is enough, or we will allocate a new Local Chunk for 

it. To free Local Objects in heap upon method return, we will record end of Local 
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Objects in Local Chunk List to be method boundary when method invoked, and 

reset it when method returns. The modified garbage collector will adjust Local 

Chunk and method boundary in compact phase. 

 

Then, We will summarize my design by comparing my design with Stack 

Allocation, Table 3.1 shows the results. 

 

Table 3.1: Comparing Stack Allocation with my design 

 

Compare to stack allocation, there are four issues to be discussed. We show 

them in Table 3.1. Because of constraints of Stack Allocation, My design can 

allocate more identified Local Objects than Stack Allocation. An in Garbage 

Collection issue, Garbage Collector can collect Local Chunk which all Local 

Issues Stack Allocation My Design 

Multi local objects 

from single LAS 

Only one of them will be 
freed upon method return

All of them will be freed 
upon method return 

 

Garbage Collection 

Preserved space in frame 
can not be collected, 
even if objects in it is 
dead  

Preserved Local Chunk 
can be collected, if all 
objects in the Local 
Chunk are dead 

 

Reducing 

fragmentation 

Local objects in the same 
method will be allocated 
continuously 

Local objects allocated in 
the same method will not 
allocated contiguously in 
boundary of local chunks

 

Overhead 

1.Escape analysis 
(Optional) 
2.Allocating space for 
local objects when 
method frame is pushed 

1.Escape analysis 
(Optional) 
2.Management of local 
area 
3.Garbage collection s 
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Object in it is dead in my design, but it can not collect preserved space in method 

frame even if there are no living Local Objects in it in Stack Allocation. And 

because Stack Allocation allocates Local Objects which will be freed in the same 

time in contiguous address, it reduces fragmentation. In my design, Local Objects 

are allocated contiguous in Local Chunk, too. But Local Objects in different Local 

Chunks are scatter. So, Stack Allocation can reduce more fragmentation than my 

design. Finally, the overhead in stack allocation is slight, because almost all 

computation can be processed offline. Overhead in my design is discussed in early 

section, and we will show how much it occupies in total execution time in next 

chapter. 
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Chapter 4 

Simulation 
 

In this chapter, we will evaluate my design with simulation. In section 4.1 we will 

introduce the evaluation equation. In section 4.2, Simulation Environment will be 

described. In section 4.3, the benchmark will be introduced. In section 4.4, the 

appropriate minimal size of local chunk when allocating new local chunk N will be 

discussed. In Section 4.5, simulation results of my design will be presented, and 

compared with original Java Virtual Machine and Stack Allocation. 

 

4.1 Evaluation Equation 

 

The evaluation overhead is show as bellow: 

 

 Total Execution Time = NGC*TGC + (OInvoke_total + OReturn_total  + 
Ocompact_total) + TUnchanged 

• NGC : Number of GC 
• TGC : Average time of each Garbage Collection 
• OInvoke_total : Extra overhead when method invoked 
• OReturn_total  : Extra overhead when method return 
• Ocompact_total : Extra overhead when method return 
• TUnchanged : execution time of unchanged components 

 
 OInvoke_total  = NInvoke * OInvoke 

• NInvoke : Number of method invocation  
• OInvoke : Extra overhead in each method invocation 

(constant) 
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It should be noted that overhead in space influences NGC in simulation. 

 

4.2 Simulation Environment 
 

In our simulation, information of method invocation and return and objects 

life time is recorded by executing benchmark with modified KVM CLDC 1.1. The 

KVM is an embedded Java Virtual Machine produced by SUN. We modify it to do 

excessively Garbage Collection whenever (1) method returns and invocation (2) 

object allocation to get the more accurate life time of objects. 

 

Then, we run Arm Develop Suite 1.2 to simulate total execution time and 

each overhead parameter in my design in equation in section 4.1. Values of 

parameters in my simulation are: 

- TGC : 100467 cycles 

- OInvoke : 4 cycles 

- OReturn : 4 cycles  

 
 OReturn_total = NReturn * OReturn 

• NReturn : Number of method return 
• OReturn : Extra overhead in each method Return (constant)

 
 Ocompact_total = NAdj_boundary * OAdj_boundary + NAdj_LocalChunk * 

OAdj_LocalChunk 
• NAdj_boundary : Number of adjusted boundary 
• OAdj_boundary : Overhead to adjust each boundary 
• NAdj_LocalChunk : Number of adjusted Local Chunk 
• OAdj_LocalChunk : Overhead to adjust each Local Chunk 
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- OAdj_boundary : 35 cycles 

- OAdj_LocalChunk : 83 cycles 

- TUnchanged : 244053153 cycles 

 

Finally, We use information get by Modified KVM and ADS 1.2 to simulate 

the management behavior in heap and total execution time in my design. 

Management behavior includes allocation, freeing local objects upon method 

return, and garbage collection. The results will be presented in section 4.5. 

 

4.3 Benchmark 
 

Embedded CaffeineMark < http://www.benchmarkhq.ru/cm30/info.html> is a 

typical bench mark to test performance of embedded Java Virtual Machine, for 

example KVM CLDC 1.1. Because my design is focus on memory constrained 

system, we adopt it to be my benchmark. The following is a briefly description of 

what embedded CaffeineMark do:  

 

– Sieve 

The classic sieve of Eratosthenes finds prime numbers.  

– Loop 

The loop test uses sorting and sequence generation as to 

measure compiler optimization of loops.  

– Logic 

Tests the speed with which the virtual machine executes 

decision-making instructions.  

– Method 
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The method test executes recursive function calls to see how 

well the VM handles method calls.  

– String  

String comparison and concatenation  

 

4.4 Discussion about minimal size of Local Chunk when 

allocating new Local chunk 
 

The minimal size N of Local Chunk when allocating new Local Chunk 

influences our results in simulation. If N is too small, it will lead to (1) more 

overhead in management space and (2) fragmentation in heap. When number of 

Local Objects is the same, if Local Chunks are small ones, it needs more Local 

Chunks to maintain them and bring more overhead in management space. And 

because Local Objects in the same method will be freed at the same time, if chunk 

is small, it means objects which will be freed at the same time will scattered 

around the heap. Then fragmentation problem in heap will be more serious than 

sequential allocation. 

 

However, if N is too big, problems will be (1) Allocating new chunk tends to 

invoke Garbage Collection and (2) Occupying lots of free space results in that 

common object can not be allocated. 

 

So an appropriate N should be discussed, we can see figure 4.1. Because 

overhead in speed of each Garbage Collection is much bigger than each other 

overhead, so we will consider times of Garbage Collection first. 
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Figure 4.1: Times of Garbage Collection with different N 

 

We can find that when N is between80 bytes to 320 bytes, number of Garbage 

collection is similar. However, the bigger N, the less times to allocate Local 

Chunks for the same number of Local Objects. So we adopt N to be 320 bytes in 

out simulation. 

 

4.5 Simulation results 
 

4.5.1 Ratio of GC time to total execution time 

 

First we will show the ratio of Garbage Collection time to total execution in 

different heap size. It shows how much opportunity we can improve. Figure 4.2 is 

the ratio is different heap size in original Java Virtual Machine. The heap size is 16 

to 128 Kbytes, because the minimal heap size of KVM is 16 Kbytes, and the 

default heap size in CLDL 1.1 is 128 Kbytes. 
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Figure 4.2: Ratio of Garbage Collection time to total execution time 

 

We can see that the Garbage Collection occupies about 32% of total execution 

time when heap size is 16Kbytes. However, when heap size is 128 Kbytes, the 

ratio of Garbage Collection decreases to about 4%. It means that our design have 

more opportunities to improve speed performance in memory constrained system. 

 

4.5.2 Times of Garbage Collection in different design 

 

Number of garbage collection invoked in different design is presented here. In 

this chart, our design adopt 320 Kbytes to be the minimal size N of Local Chunk 

when allocating new Local Chunk, as discussed in section 4.4. 

 

0%

20%

40%

60%

80%

100%

16 24 32 64 128

Heap Size (KBytes)

T
oa

tl
 E

xe
cu

ti
on

 t
im

e
GC time

Exectuion time excluding GC



 - 34 -

 
Figure 4.3: Times of garbage collection in different design 

 

We can see that in memory constrained environment, my design surly works 

better than original design and Stack Allocation. However, with heap size grows, 

the difference decreases. 

 

4.5.3 Total execution time in different design 

 

Finally, total execution time (including GC, pure execution, and overhead) is 

presented. N is 320 Kbytes, too. 
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Figure 4.4: Total execution time in different design 

We can see that in memory constrained environment, we can improve speed 

about 11%, even including overhead in speed. However, when the heap size is 128 

Kbytes, the overhead will become bigger than the improvement in my design. The 

total execution time in my design is even worse than original Java Virtual Machine 

and Stack Allocation when heap size is 128 Kbytes 

. 

 

Figure 4.5: (GC time + overhead in speed) in different design 
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After discussion about total execution time in different design, we knows that 

when size of memory is large, my design will become useless, or even harmful to 

speed performance. So, let us see the range of heap size which we should adopt our 

design. Figure 4.5 is (GC time + overhead in speed) in different design. (GC time + 

overhead in speed) is (total execution time – unchanged execution time), which 

unchanged execution time is the pure execution time (excluding GC) in original 

Java virtual machine. And the minimal execution heap size without error of our 

benchmark is 11 Kbytes. It helps us to see the curve of execution time with 

different heap size in different mechanism clearly. We can see that we become 

worse than original Java Virtual Machine when heap size is bigger than 11 times of 

minimal execution heap size. And it becomes worse than Stack Allocation when 

bigger than 9 times of minimal execution heap size. 

 

4.5.4 Overheads 
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Figure 4.6: Ratio of overhead to total execution time in my design 
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Then let us discuss about additional overhead when adopting my design. We 

can see figure 4.6, in my simulation, the overhead is 0.6% ~ 0.9%. And about 95% 

of overhead is to record and reset end of local objects in local chunk list when 

method invocation and return. Only 5% of additional overhead is because the 

modification of garbage collector in compact phase. It occupies more little portion 

in memory constrained environment because the total execution time in memory 

constrained environment is larger. But amount of overhead in different heap size is 

similar because most portion of it is to record and reset end of local objects in local 

chunk list when method invocation and return, and number of method invocation 

and return is invariant to heap size. It means that overhead is invariant to heap size. 

So, the more we can improve in reducing frequency of Garbage Collection, the 

more we can improve in total execution time. 
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Chapter 5 

Conclusions 
 

In this thesis, a mechanism to free all identified local objects in heap is purposed 

and evaluated. 

 

First, we propose the mechanism to allocating Local Objects in heap but not stack 

to avoid the constraint in current approach and then discuss about meted problems when 

we add it to original Java Virtual machine. Finally, we evaluate my design with 

simulation and make some conclusions by observing results in my simulation.. 

 

As a result, we can see that: (1) In a system with memory constraints, allocating 

Local Objects in heap is better than in stack to reduce frequency of garbage collection. 

It brings improvement about speedup on total execution time. (2)If heap is large enough, 

my design have less chance to improve the speed performance. Moreover, overhead of 

my design will make modified JVM even slower than the original JVM and Stack 

Allocation mechanism. 

 

So, my design is suitable for memory constrained system. In our simulation, in a 

memory constrained environment, my design leads to 11% speedup over original Java 

Virtual Machine and reduce 60% of Garbage Collection in vocation counts, and 7% 

speedup over Stack Allocation on total execution time.  
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However, if heap is large, my design becomes less useful than memory constrained 

environment, or even harmful to speed performance. But what is the range of size of 

heap which is appropriate to adopt my design? In our simulation, we can see that if heap 

size is less than 11 times of minimal execution heap size, my design is better than 

original Java Virtual Machine in speed issue. If heap size is less than 9 times of minimal 

execution heap size, my design is better than Stack Allocation in speed issue. So, we 

can know when we should adopt our design. 

 

And in overhead issue, it shows that overhead of my design is about 0.6% ~ 0.9% 

of total execution time, which varies because the variation of total execution time. And 

most portion of my overhead is to record and reset end of local objects in local chunk 

list, when method invocation and return. So, we can focus on it if we want to reduce the 

overhead. 

 

In future work, to make our design suitable for all system but not only memory 

constrained system, we can design a mechanism to dynamically profile the ratio of 

garbage collection time to execution time to figure out whether JVM will adopt my 

design in runtime. It can helps to turn off my design to reduce overhead when there are 

not too opportunities to improve. However, the overhead of this mechanism should be 

considered, too. And the threshold to turn on or turn off my design is also an issue 

should be discussed. 

 

Besides freeing Local Objects in heap upon method return to reduce overhead of 

Garbage Collection., allocating Local Objects in the same method contiguously may 

also helpful in locality in environment which has cache system because objects in the 

same method is tend to be used together. So, it can bring some benefits in locality to 
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access objects in heap because data may had been cached. This issue can be a further 

research to be discussed, too. 
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