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Freeing Local Objects in Heap upon Method Returning
in JVM

Student: Yen-Shih Liu Advisors: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Java Virtual Machine is adopted in embedded memory constrained system
recently. However, executing a Java program in memory constrained system
will result in more frequent invocation of garbage collection. Objects whose
lifetime will not escape scope,of-method which allocates it are called local
objects. Freeing local objects .upon method return to reduce frequency of
garbage collection is important in memory constrained system. Current
approach to allocate local objects in method frame can not free all identified
local objects. So, we propose a mechanism to manage local objects in heap but
not method frame, to free all identified local objects upon method return. In this
research issues about how to allocate local objects in heap, how to free local
objects in heap upon method return, and problems to add this design to original
JVM are discussed. Overhead of this design will be analyzed, too. As a result, it
reduces 60% of GC invocation counts, and brings 11% speedup over original
JVM on total execution time in extremely memory constrained environment.
When heap size is less than 9 times of minimal execution heap size, our design

helps on speed performance -
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Chapter 1

Introduction

In this chapter, we will simply show that why reducing overhead of Garbage
Collection is important and how can we reduce overhead of Garbage Collection. And
then we will illustrate our motivation and objective to do this research. Finally, we will

describe the organization of this thesis.

1.1 Reducing Frequency of Garbage Collection

Application of Java Virtual Machine in embedded system is getting popular
recently. In an embedded system, memaory constraint is usually a common issue
that we have to face; However, because Java is an object oriented programming
language which does not provide mechanism for programmer to free dead objects
themselves, it uses Garbage Collector to collect dead objects when heap is full,
which is called Garbage Collection. So, Java Virtual Machine in a memory
constrained system will lead to frequently invocation of Garbage Collection, that is
because heap tends to be full frequently. In extremely memory constrained
environment, the overhead from Garbage Collection occupies significant portion of
total execution time. Ratio of Garbage Collection time to total execution time can

be more than 50%

Conventionally, Garbage Collection is invoked by Java Virtual Machine
whenever more free space is required when allocating object. So, to reduce

frequency of Garbage Collection, the trivial idea is to freeing dead objects in heap
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1.2

to bring more free space in heap [1].

However, in Java Virtual Machine, we do not provide mechanism for
programmers to free dead objects, because of concerning about safety. So,
generally Java Virtual Machine does not know whether an object is dead except
invoking Garbage Collection. Nevertheless, there are some objects whose lifetime
will not escape scope of method which allocates them, called Local Obijects.
Because knowing Local Objects are surely dead after method return, we can free
them upon method return to bring more free space in heap. As a result, freeing
Local Objects upon method return helps to reduce frequency of Garbage

Collection.

The Existing Method

To identify Local Objects in Java program, current conventional approach is
Escape Analysis. And to free Local Objects upon method return, Java Virtual
Machine will put local objects in method frame, which is called Stack Allocation.
Then, when method returns, the frame will be popped and Local Objects will be

freed, too.

However, objects in stack are not collectable. It leads to that there are some
constraints in stack allocation that we can not free all identified Local Objects

upon method return. The reason will be explained in detail in section 2.3.

1.3 Motivation and Objective

Because Stack Allocation can not free all identified Local Objects because
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1.4

objects in stack is not collectable. And we know that objects in heap are collectable.
So | am motivated to propose and evaluate a mechanism to allocate Local Objects
in heap and free them upon method retuning. Expecting to free all identified Local

Objects upon method return.

Thesis Organization

The rest of the thesis is organized as follows: Section 2 describes the
background of freeing Local Objects upon method return, including architecture of
Java Virtual Machine, Escape Analysis, and Stack Allocation. Section 3 presents
the proposed design to allocate identified Local Objects in heap and free them
upon method return. Section 4_simulate xesults of our mechanism and evaluate it.
The last section summarizes this research=and discuss about contribution of this

research.



Chapter 2

Background

Before illustrating my design, some background technology should be known. So,
they will be illustrated in this chapter. First, we will present the conceptual architecture
and conventional implementation of Java Virtual machine, which executes Java class
files. Then, current approach to identify and free local objects upon method returning
will be presented. Finally, we will discuss about advantages and constraints of current

approach.

2.1 Java Virtual Machine

To execute Java programs; we-need Java Runtime Environment. The core of JRE
is Java Virtual Machine. Java Virtual Machine is a virtual stack machine to execute
Java class file. Specification of Java Virtual Machine is illustrated in The Java Virtual

Machine Specification [2]. We will illustrate it simply in this section.

In Java Virtual Machine specification, it describes the function of each component
and abstract inner architecture of Java Virtual Machine, but not the detail
implementation of each component. Figure 2.1 shows the abstract inner architecture of

Java Virtual Machine. Afterwards, we will illustrate the function of each component

simply. [3][4][5]
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Figure 2.1: Abstract inner structure of Java Virtual Machine
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structure in Java Virtual Machine, and store it to Method Area. Class information
in Method Area includes type information, constant pool, fields, method
information, class variables, bytecodes, and method tables. All thread in a Java
Virtual Machine instance share the same method area, so the method area should

be designed to be thread safe.

2.1.2  Interpreter

Interpreter is the execution engine of Java Virtual Machine. It reads the
runtime execution information in Stack to get the current PC and related

information to know which bytecode should be interpreted now. Then, it reads the



corresponding bytedcode and related information from method area, and executes
it. In current research, there are some new technologies which replace some
function from interpreter. For example, the Just-in-time Compiler helps interpreter
to execute program with native code. But conventionally, interpreter is still the

central controller in Java Virtual Machine.

2.1.3 Java Stack

Java Stack in Java Virtual Machine is responsible for maintaining method
invocation and return. Each thread in Java Virtual Machine has a private Java Stack.
The Java Stack is created when a thread is created. The stack is never manipulated
directly except to push and.pop frames. Each frame in Java Stack is a memory
space corresponding toa invoked method."Runtime information like local variables
and operand stack are stored in‘frame. Frame in Java Stack is created when the
corresponding method is invoked, and then it will be pushed into Java Stack. Only
method corresponding to the top frame in Java Stack is currently executed in the
thread. So, when the currently executed method returns, the top frame will be
popped, and then the currently executed method will become one which

corresponding to new top frame in stack.

Figure 2.2 shows how Java Stack maintains method invocation and return.



Java stack Java stack Java stack

(a) Ajava stack, method  (b) Method 3 is invoked,  (c) Method 3 returns. Frame 3

2 is currently executed and then frame 3 is is pushed, and currently
pushed and becomes executed method becomes
currently executed method 2

Figuré 2.2: Wlethod invocation and return
If Java Stack is full when method invocation, StackOverflowError will be

thrown
2.1.4  Heap

During execution of Java program, if an object is created, we will allocate a
free space for it in heap. Conventionally, heap is management with Free Chunk
List. Free Chunk List is a linked list data structure which links Free Chunks in
heap . Each Free Chunk is a contiguous free space and has a header which shows
the size of Free Chunk, and the point to next Free Chunk in Free Chunk List. Data
structure of Free Chunk is shown in Figure 2.3. Then free space in heap is
represented with Free Chunk List, like Figure 2.4. We can see that free space in

heap is linked by Free Chunk List.



size next Free space

Figure 2.3: Data structure of Free Chunk

Start of Free Chunk

Heap

7 Y v
NULL

. Object D Free Chunks

Figure 2.4: Data structure in heap

When Java Virtual Machine needs.a free space to allocate new object, it will
traverse the Free Chunk List. If'there is suitable space for currently created object,
Java Virtual machinezallocates-object in the found out free space. If there are no
suitable space after traversing the whole Free Chunk list, Java Virtual Machine
invokes Garbage Collection to sweep dead objects in heap. If there are still no

suitable space after Garbage Collection, OutOfMemoryError will be thrown.

2.1.5 Garbage Collector

Garbage Collector is responsible to sweep dead objects in heap in Java Virtual
Machine. Dead Objects are objects which are not referenced any more. Because
Java programs access objects via reference, an object which is not referenced can
not be used in future, so we say that it is dead. Conventionally, Garbage Collector
is implemented with Mark-Sweep-Compact (MSC) algorithm. There are three

phase in MSC algorithm: (1) Mark phase: traverse the reference tree and mark



reachable objects as live. (2) Sweep phase: traverse the heap to sweep unmarked
objects in heap, because there are not referenced at all, which is called dead. Then
it links free space in heap to Free Chunk List. (3) Compact phase: if Java Virtual
Machine need more space after Sweep phase, it compact objects in heap. It will
traverse the heap and move live objects to become contiguous allocated from
beginning of heap. Compact phase helps Java Virtual machine to eliminate
fragmentation in heap. It should be noted that compact phase is optional in each

invocation of Garbage Collection.

Figure 2.5 shows how Garbage Collector works in 3 phases. In Figure 2.5(a),
the point means reference relation, we can see referenced objects are marked, In
figure 2.5(b), we can see non-referenced objects are swept from heap. Finally, in
figure 2.5(c), we can see objects are moyved to contiguous address from begining of

heap.

. (a) After mark phase

HEAP

(b) After sweep phase

HEAP

. (c) After compact phase

HEAP
Figure 2.5: Garbage Collection



2.2

Garbage Collector helps Java Virtual Machine to sweep dead objects in heap,
but also brings overheads in speed because if traversing reference tree and heap
(traversing reference tree in mark phase, traversing heap in sweep and compact
phase). So, if we can reduce frequency of Garbage Collection, we can reduce total

execution time of Java program.

Escape Analysis

Before sweeping local objects upon method returning, we have to identify
which objects are local ones. In current research, there is a kind of static analysis
algorithm called Escape Analysis which can helps us to find out Local

Obijects.[6][7]

Before illustrating  Escape analysis, We have to define the term Allocation
Site. In bytecode sequence; a bytecode instruction which will allocate new object
(including bytecode new, newarray, anewarray, multianewarray in original JVM) is
called Allocation Site (AS). And if an allocation site always allocate Local Object,
then we call it a Local Allocation Site (LAS). It means that if an allocation site has

any possibility to allocate non-Local Object, it is not a Local Allocation Site.

Escape Analysis is a static analysis algorithm. It statically analyzes the
bytecode sequence in Class File to find out Local Allocation Sites in bytecode

sequence.

To identify Local Allocation Site in byte code sequence, Escape Analysis will
first do control flow analysis. Then it will traverse all control flow path to see if an

object from some allocation site will be assign to global reference. If it will never

-10 -



be returned or assigned to a global reference, it means that all references to it will
be eliminated when method return. So, the object will become dead when method
returns, too. Then we call the allocation site which allocate the object Local
Allocation Site, because object allocated by it is always local. Global reference in
Java Program including static reference, arguments, and reference field of global

objects.

Escape Analysis can be done offline or after class loading, figure 2.6 shows
the flow to do Escape Analysis. If we do Escape Analysis offline, we can store
information of Local Allocation sites by (1) storing with annotation in class file or
(2) replacing the Local Allocation site with other bytecode to point out Local

Allocation Sites..

With Escape Analysis, we can. find -out Local Objects allocated by Local
Allocation Sites. However, there are some objects which are not allocated by Local
Allocation Site but still are Local Object. So, we have to note that Escape Analysis

can not find out all Local Objects.

-11 -



How to add
information?
-Annotation
-Replace LAS with
new bytecode

[ woditea |z

. 1896

—
Interpreter Interpreter
Heap Heap
Garbage | Garbage |
Escape Arj%‘),l“ysis biafl()ref'f?w Escape Analysis after
=i — s
N Figure 2.6: ”E‘écape analysis

2.3 Stack Allocation i

After identifying Local Objects with Escape Analysis, then how can we free
local objects upon method return? Current approach is Stack Allocation. [6][7]
When method is invoked, JVM preserves contiguous space in the method frame
for LASs in this method. Then, when LAS in method is executed, it allocates
object in method frame but not heap. We can see figure 2.7. In figure 2.7 (a) spaces
are preserved for Local Allocation site in frame. In Figure 2.7 (b) Local Objects are

freed with popped frame.

212 -



Java stack it i, Java stack

(a) Preserve:space in| - s - (b) Local Objects in
‘ = frame are freed with
frame for LAS ‘ popped frame

‘Figure 2.7:-Stack Allocation

Then because Local Objects are allocated in method frame, when method
returns all local Objects allocated in frame will be freed when the frame is popped.
It should be noted that because reference recorded the real address in memory, and
accessing to objects will be independent to storing in heap or stack. So, mechanism

and time to access objects in heap and stack is the same.

However, because Frame is not collectable, if there are too many dead objects
in it, the Java Virtual Machine will tend to throw StackOverflowError or
OutOfMemoryError. So, if there is a Local Allocation Site which allocates lots of
Local Objects in a method execution. We will only allocate the first one in frame,
or it violates the space safety. For example, if there is a Local Allocation Site in

loop, it will allocate a new Local Object in each iteration. However, the object may

-13 -



2.4

be only live in scope of the iteration. Then, if we allocate each one in frame,
because the object is not collectable, space complexity variants and space safety is
violated. This constraint make Stack Allocation not be able to free all identified

Local Objects upon method return.

Summary

In this Chapter, we introduce the basic concepts of Java Virtual Machine,
Escape Analysis, and Stack Allocation. We also describe the constraint of Stack
Allocation. Stack Allocation is constrained because objects in stack are not
collectable. To overcome the constraint and free all identified Local Objects upon
method return, I am motivated to design a mechanism to manage Local Objects in
heap where objects in it/ is collectable.~The details about my design will be

presented in next chapter.

-14 -



Chapter 3

Design

In this chapter, the mechanism to free Local Objects upon method returning is
presented. Section 3.1 will introduce the overview of the whole design, section 3.2 to
3.3 shows two main issues in my design, section 3.4 will discuss about problems and
solution about adding my design to original Java Virtual Machine, and section 3.5 will

summarize whole my design.

3.1 Design Overview

Stack Allocation=does not| sweep all identified local objects upon method
return. So my objective IS to-design ‘a mechanism to free all identified Local
Obijects in heap upon method return. So, we will introduce a mechanism to specify
local objects and others in heap, and free local objects upon method return. To
manage Local Objects in heap, there are two main issues about my design (1) how
to allocate and (2) how to free upon method return. And there is also a problem
that how can garbage collector still work after adding our mechanism. So, we will

discuss about these two issues and one problem in later section.

About issue 1, we will discuss about how to identify Local Objects and how
to allocate Local Objects efficiently. In our design, Local Objects are identified by
Escape Analysis, mentioned in chapter 2. So, we will not discuss about it in detail
here. Discussion about allocating Local Objects efficiently including time to

allocate and space to store local objects and management information.
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3.2

About issue 2, we will discuss about how to know which objects are local in
specific method upon return, and how to free Local Objects efficiently. Because
method invocation and return is frequently in Java program execution, time to

specify and free should be short to lower overhead of my design.

About problem, we will discuss about how can my design cooperate with the
original Garbage Collector, we will show the modification of Garbage Collector.

And we will discuss about additional overhead after adding modification, too.
Allocating Local Objects

To allocate Local Objects in heap, we have to know how Local Objects are
stored in heap. So, we will introduce:the data structure to store Local Objects in
heap first. Then, we will'illustrate the allocation policy when we allocating Local
Objects or others. And. we willrdiscuss: about overhead of each design after

introducing them, too.

3.2.1 Data structure to store Local Objects in heap

To know how our mechanism allocates Local Objects, we have to know how
Local Objects are stored in heap in my design. To store Local Objects in heap, we
need a data structure to point out which objects in heap are local ones, and this
structure must be variable size, because new Local Objects may be allocated
anytime and we have to point out them, too. To satisfy the requirements, we add a

linked list chunk in heap, which is called Local Chunk List.

Local Chunk List is a linked list data structure which links all Local Chunks

-16 -



in heap. Each Local Chunk is a contiguous memory space that points out that the
space is for Local Objects only. Figure 3.1 (a) is heap of original Java Virtual

Machine, and Figure 3.1 (b) is heap after adopting my design.

Start of Free Chunk list
SVEETE :-Qriainal JVM Hean

.Common Ot_')iwéct' :ii;c_iéél “O'tgiect I:l Free Chunk
(a) Hea_-giih origi—nall-'.lﬂava Virtual Machine

] |

Start of Local Chank' List

JEEEDE D

Start of Free Chunk list

Modified JVM Heap

. Common Object .Local Object I:l Free ChunkIZl Local chunk

(b) Heap after adding my design

Figure 3.1: Data structure in heap in my design

-17 -



The difference of Free Chunk and Local Chunk is that Free Chunk is a
contiguous free space, and Local Chunk is a contiguous space that points out
objects in this chunk is Local. But space in Local Chunk can be either allocated by

Local Object or not. Data structure of Local Chunk is shown in Figure 3.2.

@2
(0)) N pd
5 | &0° 2
wn
Local Chunk

Figure 3.2: Data structure of Local Chunk

First three cells in local chunk are used to store information about Local
Chunk List management."The field “Size” is size of this Local Chunk, the field
“Size_used” is how much space has been used in this chunk, and field “Next”
maintains the address:of next-L.ocal Chunk: The other space in the Local Chunk is

used to store Local Objects.

Size of Local Chunk will not grow after Local Chunk allocation, because to
increase size of Local Chunk is complex. To increase size of Local Chunk, Java
Virtual Machine has to traverse the Free Chunk List to see if there is free space in
end or begin of the Local Chunk. In some condition, there is no free space to
extend size of Local Chunk, because the end of Local chunk has been allocated
with some other object, and then we have to move the object to another address if
we want to extend size of Local chunk. So, in our design, size of Local Chunk will
not increase after allocation. However, compare with increasing size, decreasing
size of Local chunk is much easier. Java Virtual Machine can just link the free

space in end of Local Chunk to Free Chunk List, and reset the value of field ”size”.
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So, decreasing size of Local Chunk is allowed. We will decrease the size of Local

Chunk in compact phase of Garbage Collection, which will be mentioned later.

After adding Local Chunk List, the heap is separate to Local Area and Other
Area. Local Area includes Local Chunk List, and Other Area includes Free Chunk
List and objects which are not in Local Area. So, Local Area is space for Local

Objects, Other Area is space for objects which is not sure if local.

Overhead

Then, we can discuss about the space overhead to use Local Chunk. First
Overhead is space to store management information. For each Local Chunk, we
need three cells to store management, information, which is shown in Figure 3.2.
So, the more Local Objects allocated in the Local Chunk, the less space overhead
per Local Object brings. Second overhead in space is the internal fragmentation in
Local Chunk. When we allocating Local Objects in Local Chunk, there may be
some free space which is too small to allocate another Local Object. Then, it will

lead to internal fragmentation in Local Chunk.

3.2.2 Policy to allocate Local Objects in heap

After introducing how Local Objects are stored in heap. We will see that how
Java Virtual Machine allocate objects in my design. Initially, the size of Local Area
is zero, which means Local Chunk List is empty. The basic principle of allocation
is that if allocated object is local, we put it into Local Chunk. And if free space in
Local Chunk is not enough when allocating, we will allocate a new Local Chunk

from Free Chunk List for it. However, as mentioned before, the more Local

-19 -



Objects in a Local Chunk, the less space overhead per Local Object brings. So,

constant N bytes will be set to be the minimal size of local chunk when allocating

new local chunk. And appropriate N will discussed in section 4.4. However, if size

of allocated Local Object bigger than minimal Local Chunk allocation size N, then

we will allocate a Local Chunk which is fit to size of the big Local Object, and link

the allocated Local chunk to Local Chunk List. So, the allocation policy is:

Initially, size of local area is zero

When a object not sure if local is going to be allocated
» Allocating it by traversing free chunk list, as original
JVM
When local object is going to be allocated
» If objectsize S > N bytes, allocate a big enough S
bytes local chunk for it
» Else if space from end of Local Objects to end of
Local Chunk is enough to allocate it
» Allocating object in end of local objects
* Else
» Allocate and link an N bytes local chunk from
free chunk list
» Allocate local object in start of new local

We can see example in figure 3.3. Figure 3.3 (a) shows the initial state in heap.

In Figure 3.3 (b) When a Local Object is to be allocated, we allocate a new Local

Chunk for it. In figure 3.3(c), a Local Object is going to be allocated, and space is

enough, so we allocate it right after the end of Local Objects in Local Chunk List.

In figure 3.3(d), another Local Object is to be allocated, but space is not enough.

So, we allocate a new Local Chunk and allocate the Local Object in it.
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Overhead

Speed overhead of allocation mechanism in my design is similar to allocation
mechanism in original Java Virtual Machine. Because both of they use linked

chunk list to allocate Local Objects in heap.

3.3 Freeing Local Objects upon method return

After discussing about Local Object allocation, lets focus on freeing Local
Objects upon method returning. In this issue, we have to separate which Local
Objects are in returning method and free them. And because method invocation

and return in Java Program is frequent, speed overhead to free should be noted,

-21-



too.

In our design, we separate Local Objects from different method by recording
the end of current end of Local Object in Local chunk List when method
invocation. This recorded end of Local Objects is called Method Boundary, which
will be stored in corresponding method frame. And when the method returns, the
end of Local Objects in Local Chunk List will be set to value recorded when

method invocation. Then, Local Objects in returning method are freed.

We can see example in figure 3.4. In Figure 3.4 (a), when method is invoked,
we record the end of Local Objects in Local Chunk List to be Method Boundary in
frame. In Figure 3.4 (b) Local Objects in the method is allocated in Local Chunk
List. And when method returns in figure 3:4 (c), end of Local Objects is reset to be
recorded boundary, :and Local- Objects in returning method become out of

boundary and freed.
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Overhead

To discussing about the issue of speed overhead in freeing, we can see that we
only record the address of end of Local Objects when method invocation, and reset
the address when method return. Both of them are simple action and overhead will
be light in each invocation and return. And total overhead of my mechanism in
freeing will be direct proportion to numbers of method invocation and return in

java Program.

3.4 Cooperation of Garbage Collector and my design
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After adding my design, we have to consider about the cooperation of my
design and original Garbage Collector. Because our design modifies the data
structure in heap, we have to modify Garbage Collector to suit our data structure,
and ensure the correctness of my design after Garbage Collection invoked. The
main problem we will meet is that compact phase in Garbage Collection moves
positions of objects in heap, then our data structure Local Chunk and method
boundary will point to wrong address. So the boundary of method and Local
Chunk must be adjusted, or the program sweep objects which are still alive when

method returns, and result in error when executing program.

So, we will modify the Garbage Collector. In mark phase, it traverses the
reference tree and marks the referenced objects, the same as original Garbage
Collector. In sweep phase, the garbage coHector will sweep dead objects, but not
sweep Local Chunk containing-live-Local Objects. And in compact phase, because
positions of objects are mowved, we will adjust location and compact the size of
Local Chunks. And Method Boundary in method frame must be adjusted, too. We
can see figure 3.5 as example to compact. Figure 3.5 () is heap after sweep phase,
and figure 3.5 (b) is heap after compact phase. We can see Local Chunk and

method boundary are adjusted in figure 3.5 (b).
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Figure 3.5: Compaction in modified Garbage Collector

Overhead

In speed overhead‘ issue, my modification on Garbage collector will result in
more actions in compact phase;ito adjusi Local Chunk and method boundary. So,
the overhead will be direct proportion to number of Local Chunks and depth of
Java Stack, because number of method boundary is the same as number of method

frames in stack..

Summary

In this chapter, we present the mechanism of our design. We add a Local
Chunk List in heap to separate Local Objects from others. And when allocating
local objects, we will contiguously allocate Local Objects in end of Local Objects
in Local Chunk List if space is enough, or we will allocate a new Local Chunk for

it. To free Local Objects in heap upon method return, we will record end of Local
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Objects in Local Chunk List to be method boundary when method invoked, and
reset it when method returns. The modified garbage collector will adjust Local

Chunk and method boundary in compact phase.

Then, We will summarize my design by comparing my design with Stack

Allocation, Table 3.1 shows the results.

Table 3.1: Comparing Stack Allocation with my design

Only one of them will be | All of them will be freed
freed upon method return | upon method return

Preserved Local Chunk
can be collected, if all
objects in the Local
Chunk are dead

Local objects allocated in
the same method will not
allocated contiguously in
boundary of local chunks

continuously

1.Escape analysis 1.Escape analysis
(Optional) (Optional)
2.Allocating space for 2.Management of local
local objects when area

method frame is pushed | 3.Garbage collection s

Compare to stack allocation, there are four issues to be discussed. We show
them in Table 3.1. Because of constraints of Stack Allocation, My design can
allocate more identified Local Objects than Stack Allocation. An in Garbage

Collection issue, Garbage Collector can collect Local Chunk which all Local
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Object in it is dead in my design, but it can not collect preserved space in method
frame even if there are no living Local Objects in it in Stack Allocation. And
because Stack Allocation allocates Local Objects which will be freed in the same
time in contiguous address, it reduces fragmentation. In my design, Local Objects
are allocated contiguous in Local Chunk, too. But Local Objects in different Local
Chunks are scatter. So, Stack Allocation can reduce more fragmentation than my
design. Finally, the overhead in stack allocation is slight, because almost all
computation can be processed offline. Overhead in my design is discussed in early
section, and we will show how much it occupies in total execution time in next

chapter.
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Chapter 4

Simulation

In this chapter, we will evaluate my design with simulation. In section 4.1 we will
introduce the evaluation equation. In section 4.2, Simulation Environment will be
described. In section 4.3, the benchmark will be introduced. In section 4.4, the
appropriate minimal size of local chunk when allocating new local chunk N will be
discussed. In Section 4.5, simulation results of my design will be presented, and

compared with original Java Virtual Machine and Stack Allocation.

4.1 Evaluation Equation

The evaluation overhead is:show as bellow:

U Total Execution Time = Ngc*Tgc + (Olnvoke_total + OReturn_total  +
Ocompact_total) + TUnchanged
*  Ngc : Number of GC
* Tgc : Average time of each Garbage Collection
*  Oinvoke_total - Extra overhead when method invoked
*  Okrewmn ot : Extra overhead when method return
*  Ocompact total - EXtra overhead when method return
*  Tunchanged : €Xecution time of unchanged components

O Oinvoke ot = NInvoke * Olnvoke
*  Ninvoke : Number of method invocation
*  Oinvoke : Extra overhead in each method invocation
(constant)
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d OReturn_totaI = NReturn * OReturn
*  Ngetwrn : Number of method return
*  Orewm : Extra overhead in each method Return (constant)

d Ocompact_total = NAdj_boundary * OAdj_bounda\ry + NAdj_LocaIChunk *
OAdj_Loca\IChunk
*  Nadj_boundary - Number of adjusted boundary
*  Oadj_boundary - Overhead to adjust each boundary
*  Nadj_Locaichunk : Number of adjusted Local Chunk
*  Oadj_Localchunk : Overhead to adjust each Local Chunk

It should be noted that overhead.in space influences Ngc in simulation,

4.2 Simulation Environment

In our simulation, information ©f method invocation and return and objects
life time is recorded by executing benchmark with modified KVM CLDC 1.1. The
KVM is an embedded Java Virtual Machine produced by SUN. We modify it to do
excessively Garbage Collection whenever (1) method returns and invocation (2)

object allocation to get the more accurate life time of objects.

Then, we run Arm Develop Suite 1.2 to simulate total execution time and
each overhead parameter in my design in equation in section 4.1. Values of
parameters in my simulation are:

- Toc: 100467 cycles

- Oinvoke - 4 cycles

- ORreturn - 4 cycles
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= OAdj_boundary 35 CyC|eS
- Oadj_Localchunk = 83 cycles

Finally, We use information get by Modified KVM and ADS 1.2 to simulate
the management behavior in heap and total execution time in my design.
Management behavior includes allocation, freeing local objects upon method

return, and garbage collection. The results will be presented in section 4.5.

4.3 Benchmark

Embedded CaffeineMark < http://www.benchmarkhq.ru/cm30/info.html> is a
typical bench mark te test performance of embedded Java Virtual Machine, for
example KVM CLDE 1.1. 'Because-my design is focus on memory constrained
system, we adopt it to be my benchmark: The following is a briefly description of

what embedded CaffeineMark do:

— Sieve
The classic sieve of Eratosthenes finds prime numbers.

— Loop
The loop test uses sorting and sequence generation as to
measure compiler optimization of loops.

— Logic
Tests the speed with which the virtual machine executes
decision-making instructions.

— Method
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The method test executes recursive function calls to see how
well the VM handles method calls.
— String

String comparison and concatenation

4.4 Discussion about minimal size of Local Chunk when

allocating new Local chunk

The minimal size N of Local Chunk when allocating new Local Chunk
influences our results in simulation. If N is too small, it will lead to (1) more
overhead in management space and (2) fragmentation in heap. When number of
Local Objects is the same,if'Local .Chunks are small ones, it needs more Local
Chunks to maintain them and -bring more overhead in management space. And
because Local Objects in the same method will be freed at the same time, if chunk
is small, it means objects which will‘be freed at the same time will scattered
around the heap. Then fragmentation problem in heap will be more serious than

sequential allocation.

However, if N is too big, problems will be (1) Allocating new chunk tends to
invoke Garbage Collection and (2) Occupying lots of free space results in that

common object can not be allocated.
So an appropriate N should be discussed, we can see figure 4.1. Because

overhead in speed of each Garbage Collection is much bigger than each other

overhead, so we will consider times of Garbage Collection first.
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Figure 4.1: Times of Garbage Collection with different N

We can find that when N is between80 bytes to 320 bytes, number of Garbage
collection is similar.~However, the bigger N, the less times to allocate Local
Chunks for the same number of L.ocal Objects. So we adopt N to be 320 bytes in

out simulation.

4.5 Simulation results

45.1 Ratio of GC time to total execution time

First we will show the ratio of Garbage Collection time to total execution in
different heap size. It shows how much opportunity we can improve. Figure 4.2 is
the ratio is different heap size in original Java Virtual Machine. The heap size is 16
to 128 Kbytes, because the minimal heap size of KVM is 16 Kbytes, and the

default heap size in CLDL 1.1 is 128 Kbytes.
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Figure 4.2: Ratio,of Garbage Collection time to total execution time

We can see that the Garbage Collection occupies about 32% of total execution

time when heap size is 16Kbytes. However, when heap size is 128 Kbytes, the

ratio of Garbage Collection decreases to about 4%. It means that our design have

more opportunities to improve speed performance in memory constrained system.

4.5.2 Times of Garbage Collection in different design

Number of garbage collection invoked in different design is presented here. In

this chart, our design adopt 320 Kbytes to be the minimal size N of Local Chunk

when allocating new Local Chunk, as discussed in section 4.4.
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Figure 4.3: Times of garbage collection in different design

We can see that in memory constrained environment, my design surly works
better than original design and-Stack ‘Allocation. However, with heap size grows,

the difference decreases.

4.5.3  Total execution time in different design

Finally, total execution time (including GC, pure execution, and overhead) is

presented. N is 320 Kbytes, too.
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Figure 4.4: Total execution time in different design

We can see that in memory constrained environment, we can improve speed

about 11%, even including overhead in speed. However, when the heap size is 128

Kbytes, the overhead will.hecome bigger than the improvement in my design. The

total execution time in-my design 1s even worse than original Java Virtual Machine

and Stack Allocation when heapsize is 128:Kbytes

Cycle counts

120000000

100000000

80000000

60000000

40000000

20000000

— Original JVM

— Stack Allocation
My Design

W

™

T A0 DO NS D

Times of mininal execution heap size

Figure 4.5: (GC time + overhead in speed) in different design
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After discussion about total execution time in different design, we knows that
when size of memory is large, my design will become useless, or even harmful to
speed performance. So, let us see the range of heap size which we should adopt our
design. Figure 4.5 is (GC time + overhead in speed) in different design. (GC time +
overhead in speed) is (total execution time — unchanged execution time), which
unchanged execution time is the pure execution time (excluding GC) in original
Java virtual machine. And the minimal execution heap size without error of our
benchmark is 11 Kbytes. It helps us to see the curve of execution time with
different heap size in different mechanism clearly. We can see that we become
worse than original Java Virtual Machine when heap size is bigger than 11 times of
minimal execution heap size. And it becomes worse than Stack Allocation when

bigger than 9 times of minimal execution. heap size.

45.4 Overheads

Overhead to Total Execution Time
1.2%
1.0%
O Additional overhead in
0.8% compact Phase
m . .
0.6% Reseting end of local objects
04% [ O Recording end of local
obkcts
02% [
0.0%
16K 24K 32K 64K 128K
Heap Szie (bytes)

Figure 4.6: Ratio of overhead to total execution time in my design
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Then let us discuss about additional overhead when adopting my design. We
can see figure 4.6, in my simulation, the overhead is 0.6% ~ 0.9%. And about 95%
of overhead is to record and reset end of local objects in local chunk list when
method invocation and return. Only 5% of additional overhead is because the
modification of garbage collector in compact phase. It occupies more little portion
in memory constrained environment because the total execution time in memory
constrained environment is larger. But amount of overhead in different heap size is
similar because most portion of it is to record and reset end of local objects in local
chunk list when method invocation and return, and number of method invocation
and return is invariant to heap size. It means that overhead is invariant to heap size.
So, the more we can improve in reducing frequency of Garbage Collection, the

more we can improve-in total execution time.
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Chapter 5
Conclusions

In this thesis, a mechanism to free all identified local objects in heap is purposed

and evaluated.

First, we propose the mechanism to allocating Local Objects in heap but not stack
to avoid the constraint in current approach and then discuss about meted problems when
we add it to original Java Virtual machine. Finally, we evaluate my design with

simulation and make some conclusions by observing results in my simulation..

As a result, we can see that: (1) In-a system-with memory constraints, allocating
Local Objects in heap is better than in'stack to reduce frequency of garbage collection.
It brings improvement about speedup:on total execution time. (2)If heap is large enough,
my design have less chance to improve the speed performance. Moreover, overhead of
my design will make modified JVM even slower than the original JVM and Stack

Allocation mechanism.

So, my design is suitable for memory constrained system. In our simulation, in a
memory constrained environment, my design leads to 11% speedup over original Java
Virtual Machine and reduce 60% of Garbage Collection in vocation counts, and 7%

speedup over Stack Allocation on total execution time.
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However, if heap is large, my design becomes less useful than memory constrained
environment, or even harmful to speed performance. But what is the range of size of
heap which is appropriate to adopt my design? In our simulation, we can see that if heap
size is less than 11 times of minimal execution heap size, my design is better than
original Java Virtual Machine in speed issue. If heap size is less than 9 times of minimal
execution heap size, my design is better than Stack Allocation in speed issue. So, we

can know when we should adopt our design.

And in overhead issue, it shows that overhead of my design is about 0.6% ~ 0.9%
of total execution time, which varies because the variation of total execution time. And
most portion of my overhead is to record and reset end of local objects in local chunk
list, when method invocation.and return. So, we can focus on it if we want to reduce the

overhead.

In future work, to make our design. suitable for all system but not only memory
constrained system, we can design a mechanism to dynamically profile the ratio of
garbage collection time to execution time to figure out whether JVM will adopt my
design in runtime. It can helps to turn off my design to reduce overhead when there are
not too opportunities to improve. However, the overhead of this mechanism should be
considered, too. And the threshold to turn on or turn off my design is also an issue

should be discussed.

Besides freeing Local Objects in heap upon method return to reduce overhead of
Garbage Collection., allocating Local Objects in the same method contiguously may
also helpful in locality in environment which has cache system because objects in the

same method is tend to be used together. So, it can bring some benefits in locality to
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access objects in heap because data may had been cached. This issue can be a further

research to be discussed, too.
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