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Recognition of specific Parkinsonian gait patterns is helpful in the diagnosis of Parkinson’s disease (PD).
However, there are few computer-aided methods to identify the specific gait patterns of PD. We propose
a vision-based diagnostic system to aid in recognition of the gait patterns of Parkinson’s disease. The pro-
posed system utilizes an algorithm combining principal component analysis (PCA) with linear discrimi-
nant analysis (LDA). This scheme not only addresses the high data dimensionality problem during image
processing but also distinguishes different gait categories simultaneously. The feasibility of the proposed
system for the recognition of PD gait was tested by using gait videos of PD and normal subjects. The effi-
ciency of feature extraction using PCA and LDA coefficients are also compared. Experimental results
showed that LDA had a recognition rate for Parkinsonian gait of 95.49%, which is higher than the conven-
tional PCA feature extraction method. The proposed system is a promising aid in identifying the gait of
Parkinson’s disease patients and can discriminate the gait patterns of PD patients and normal people with
a very high classification rate.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Most of the current methods used for evaluating Parkinson’s
disease (PD) rely heavily on human expertise, e.g., the use of the
unified Parkinson disease rating scale (UPDRS) (Martm et al.,
2004). UPDRS is a rating tool that follows the longitudinal course
of PD. It is composed of 5 separate categories including mentation,
behavior, mood, activities of daily living and motor examinations,
all evaluated by interview. Some sections require multiple grades
assigned to each extremity.

The analysis of gait characteristics, as documented by Knutsson
(1972), shows that PD patients exhibit large gait variability.
Compared with normal people, PD patients’ walking speed is
slower, duration of gait cycle is longer, stride length is shorter,
and amplitude of range of movement of joints is decreased. These
specific gait patterns (e.g. festinating gait, freezing gait) are widely
accepted as a prominent feature of PD (McDowell, 1971). However,
since posture and gait movement can vary from person to person,
the evaluation of Parkinsonian gait tends to be subjective and de-
pends greatly on the experience and judgment of the clinician
(Blin, Ferrandez, & Serratrice, 1990; Lubik et al., 2006; Melnick,
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Radtka, & Piper, 2002; Shan et al., 2001; Salarian et al., 2004; Sof-
uwa et al., 2005; Stern et al., 1983; Vokaer, Azar, & Beyl, 2003).

In addition to evidence-based practice, therapists also use
objective, quantitative methods to improve diagnosis of Parkinso-
nian gait. As a result, engineering-oriented machine learning-
based methods have attracted more and more attention in this
field (Engin et al., 2007; Fahrenberg et al., 1997; Makikawa &
lizumi, 1995; Sekine et al., 2002; Veltink et al., 1996). Many previ-
ous studies have used dc and ac accelerometers to assess gait pat-
terns. They classified the accelerometer signals into different types
of walking and correlated them with energy consumption. Never-
theless, those methods often used a number of sensors, causing
patient discomfort.

Vision-based gait analysis systems avoid this problem. Since
these systems require no physical contact, they are more comfort-
able and acceptable to the patients. Vision-based gait analysis is di-
vided into two main categories, model-based and holistic. Model
based approaches fit their model to the image data (Cunado, Nixon,
& Carter, 1999; Yam, Nixon, & Carter, 2002). These image process-
ing systems use markers on the body and record several steps of
the patient. An average of three or more walks is then computed.
The temporal characteristics of gait, e.g., stride length, width,
cadence and velocity are measured (Melnick et al., 2002). In one
study (Cunado et al., 1999) the gait signature was extracted using
a Fourier series to describe the motion of the leg and temporally
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correlate this leg motion to determine the dynamic model from a
sequence of images.

Holistic methods (Huang et al., 1999a, 1999b; Little and Boyd,
1998) extract posture cues by preserving the silhouettes of people
when walking, derive statistical information directly from the gait
image and attempt to correlate various features for biometric
authentication. The holistic approach has a high human identifica-
tion rate. For instance, Murase and Sakai(1996) captured the com-
plete gait images of people which they then subtracted and
matched using spatial-temporal correlation.

To reduce the dimensionality of image data, there are many lin-
ear transformation approaches that can be used. These methods
are usually expressed as y = W', where x and y are the original
and the dimensionality-reduced image vectors, respectively, and
W is a linear projection matrix such that y becomes discriminative
so as to aid separation of different classes of image sequences.

Many types of optimization criteria can be used to determine an
appropriate W, such as maximizing the variance, non-Gaussianity
for independancy, negentropy, or the ratio of between- and with-
in-class variations (Hyvarinen et al., 2001; Liu & Wechsler, 1998;
Murase & Sakai, 1996). Among them, principal component analysis
(PCA) is well-known and widely used (Polat & Giines, 2007). PCA
focuses on computing eigenvectors that account for the largest var-
iance of the data selected, but these directions do not necessarily
provide the best separation of gait classes. On the other hand,
the ratio of between- and within-class variations (Fisher’s linear
discriminant criterion) appears to be an especially valid index since
it allows simultaneous balancing between the maximization and
minimization of the between- and within-class variations. Based
on Fisher’s linear discriminant criterion, linear discriminant analy-
sis (LDA) then produces a linear projection matrix, which greatly
enhances classification.

The aim of this paper is to discriminate PD patients from normal
subjects using a vision-based gait analysis approach. The scheme
utilizes the holistic image of subjects, and extracts and reduces
the feature space by using PCA and LDA. The meaning of the ob-
tained LDA transformation matrix (reduced to a vector in our case)
is not only treated as a black box but is also used to describe the
posture information of PD patients in a numerical way.

2. Mathematical background used for signal processing
2.1. Principal component analysis (PCA)

PCA is a classic technique used in statistical data analysis,
featuring extraction and data compression (Jolliffe, 2002). It is
useful in reducing the dimensionality of an input data space by
transforming the data from a correlated high-dimensional space
to an uncorrelated low-dimensional space. We briefly describe
PCA as follows. Suppose that there are Ny vectors being grouped
into c¢ classes. We can express these vectors as Xii,...,Xing,---,
Xit, -, XiNs - -, Xel, - - -, Xen., Where X;; is the jth vector of the ith
class and N; is the number of vectors in the ith class. To proceed,
the mean my of the entire set of vectors is given by

1 c N;
mx:N—T;;x,-j. 1)

To compute the covariance matrix C, we have
1 &G
C= N DO (x5 — my)(x; —my)" )
i=1 j=1

If the rank of C is K, the eigenvalues of C,/ 1,43,...,Ax, and the asso-
ciated eigenvectors p;,.. .,px can be computed accordingly. Suppose,
without loss of generality, 41| > |22] =---> |A|. A partial eigen-

space can be spanned using the partial set of k < K eigenvectors
{P1.p2. . ..px}. Afterwards, the resultant projection y;; of each vector
X;; on the partial eigenspace can be obtained by

Vi =1, P "Xy
:Pxiﬁ (3)

where y;; is also named the PCA coefficients in this paper.
2.2. Linear discriminant analysis (LDA)

Suppose that @O; represents the set of the vectors
{Vi1,¥i2; - - -, ¥in, }- The mean vector of &; is given by

1 d
my, = Zy,j. (4)
Ni &

Hence, the mean vector of the entire set @ = {®,P,,..., D} is given
by

] C
my = Ny ;Nimy,-- (5)

The within-class matrix S,, and the between-class matrix S;, of the
entire set of vectors can be calculated by

1 &G
Sw =, 2 D% = my) (x5 —my,)! (6)
i=1 j=1
and
-1 [
Sy = N > Ni(m; — my)(m; — my)". (7)
i=1

Maximizing the between-class variance and minimizing the within-
class variance simultaneously is equivalent to maximizing

J(W) = Trace{(W'S,,W) ' (WTS,W)}. (8)

By solving the eigenvectors of the matrix S,'Sy, we can obtain ¢ — 1
eigenvectors wy, ..., W._ to span a canonical space. Thus, we can
further project a vector y;; on the partial eigenspace to a vector z;
on the canonical space by

where z;; is also named the LDA coefficients in this paper.
Consequently, the mean vector of the ith class on the canonical
space can be computed by

1 &
m, =Y 7 (10)
L

2.3. Minimum distance classifier (MDC) (Duda, Hart, & Stork, 2000)

In this study, MDC is used to classify an input vector u to the ith
class whose centroid m; minimizes the Euclidian distance from u
(using either PCA or LDA coefficients). The minimum distance clas-
sifier can be expressed as

i = argmin;(u — m;)"(u — m,). (11)

3. System used for detection of PD gait patterns

As shown in Fig. 1, we propose a gait analysis system which can
detect the gait pattern of Parkinson’s disease using computer
vision. This system comprises three main parts: (1) preprocessing,
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Fig. 1. Flow chart of the proposed system.

(2) training and (3) recognition. In this study, we first captured sev-
eral videos of both normal subjects and patients with PD. We then
processed the images from the videos to characterize the subjects.
All subjects were encoded as vectors such that we could use PCA
and LDA to extract features. An MDC was then used as the classi-
fier. The flow chart of the proposed system is shown in Fig. 1.

3.1. Environment set-up, image acquisition and subject detection

A structured environment—a corridor with a deep blue cur-
tain—was utilized and the room was well illuminated as shown
in Fig. 2. Image acquisition equipment, including a CCD camera
connected to a PC or a handy DV, was also used.

There are many background models proposed (Haritaoglu, Har-
wood, & Davis, 2000), to help extract clear foreground objects. For
simplicity, the background model was constructed by taking a pho-
tograph of the environment beforehand. Both normal subjects and

PD patients were asked to wear light-colored clothing to achieve
high color contrast between the background and their profiles.
Each subject was instructed to walk from the left to the right end
(and then walk back if needed). Afterwards, the subjects’ image se-
quences were captured, as illustrated in Fig. 3.

The difference between the background and each of the image
frames was then computed. The absolute value of the difference
was then calculated such that every pixel of the input image was
judged to belong to the foreground object pixel if the correspond-
ing absolute value exceeded a threshold. This threshold depended
on the color contrast of the curtain and the clothing of the subjects
and the illumination condition. As a result, we binarized each of
the images during walking (see Fig. 4a).

To obtain a more compact silhouette size, we projected the bin-
ary image to the vertical axis. The histogram of the projection is
shown in Fig. 4(b). From this plot, it is clear that the upper and low-
er bounds of the silhouette can be computed by using a threshold

Fig. 2. The set-up of the laboratory.

Fig. 3. A subject walked from the left to the right end.



7036 C.-W. Cho et al./Expert Systems with Applications 36 (2009) 7033-7039

b

0

50+
100
150

200

0 5 10 15 20 25 30 35

-
Cc
100
80
60
40
20
0

0 50 100 150 200 250 300

Fig. 4. Subject detection. (a) The detection of a subjection using image differences.
The histogram of the detected subject on the (b) vertical and (c) horizontal axes.

Fig. 5. Two examples of detected subjects: (a) a normal person and (b) a patient of
Parkinson’s disease.

of 2% of the maximum projection amount. Similarly, the left and
right boundaries of the silhouette were also obtained by projecting
the binarized image to the horizontal axis. Finally, we show two
examples of the sequences of the binarized and truncated images
of the normal subjects and PD patients in Fig. 5a and b, respec-
tively. It is noted that the resultant images were normalized to
the size of 64 x 64 pixels to further reduce the computational
costs.

3.2. Training and testing

According to the view point of Machine Learning (Alpaydin,
2004), when designing a classifier, we should use training data,
which are independent of test data used in the test phase. Thus,
we divided the videos of the subjects into two groups: the first
group was used to train the system and the remainder was used
to evaluate the classification performance of the system.

3.3. Feature extraction

For comparison purposes, two kinds of feature extraction meth-
ods, PCA and LDA, were used in this study, as described below.

3.3.1. PCA coefficient extraction
The silhouette of a subject in an image frame was originally rep-
resented as a binary matrix. Since this matrix, in general, contains

redundancy, we extracted efficient features by first using PCA. To
this end, we reshaped each of the obtained silhouettes as a vector
form such that we could collect all the silhouettes to perform PCA.

The mean vector and covariance matrix of the silhouette vectors
can be computed using (1) and (2). Consequently, the features are
obtained by evaluating the eigenvalues and the associated eigen-
vectors through PCA. We rearranged the resultant eigenvectors
by ordering their associated eigenvalues from large to small. The
largest eigenvectors were selected such that their associated eigen-
values accumulated a certain degree of energy, approximately 90%
of the total energy in this study. By (3), each of the original silhou-
ette vectors were thus approximated using a new vector on the
space generated by the selected partial eigenvectors so as to reduce
the dimensionality of silhouette vectors.

3.3.2. LDA coefficient extraction

Although PCA can reduce the dimensionality of silhouette vec-
tors, it is not used aiming for classification. As a result, further pro-
cessing is needed to improve the recognition capability of the
proposed system. In this study, we focus on two categories of sub-
jects: normal people and patients with Parkinson’s disease. The
means of the silhouette vectors of each category and of the entire
set of vectors were computed by (4) and (5), respectively. After
evaluating the LDA transformation matrix, each silhouette vector
in the partial eigenspace was mapped to a new vector on the
canonical space by (9).

4. Experimental results and discussion

Seven PD patients and seven normal people from Buddhist Tzu
Chi General Hospital in Taiwan were enrolled in this study. All the
experiments were conducted in the laboratory of the neurosurgery
department of the hospital. Under supervision, the subjects were
asked to walk from left to right and then to walk back. A SONY
HDR-HC3 camcorder was utilized to capture the motion video of
the subjects. All video recordings were then extracted to image
clips with a sampling rate of 15 frames/s. Because the subjects
walked at different speeds, the lengths of the video sequences var-
ied from person to person (see Table 1).

Pixel candidates of the silhouettes of the subjects were labeled
to construct binary images in order to ensure that the absolute val-
ues of the difference values were larger than an intensity threshold
(10, in the experiments). The binarized silhouettes were then ob-
tained by truncating the input image frames and the shapes were
normalized to the size of 64 x 64 matrix. After encoding the de-
tected silhouette images to image vectors, we obtained 3551
vectors.

The mean of the silhouette vectors was computed and the
covariance matrix was then calculated. Accordingly, the eigen-

Table 1
The recorded video sequences

Subject number Status Length (min) Sampling rate (frame/s)
1 Normal 3 15
2 Normal 2 15
3 Normal 2 15
4 Normal 3 15
5 Normal 3 15
6 Normal 3 15
7 Normal 3 15
8 PD 3 15
9 PD 2 15

10 PD 2 15

11 PD 3 15

12 PD 3 15

13 PD 2 15

14 PD 2 15
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Fig. 6. The sorted eigenvalue diagram.

values and associated eigenvectors of the covariance matrix were
computed. Figs. 6 and 7 show the sorted magnitudes and accumu-
lated variance of sorted eigenvalues, respectively. Among the
eigenvectors calculated, the first 280 eigenvectors corresponding
to the largest 280 eigenvalues (accumulating 90% of the total var-
iance) were selected as the bases of the partial eigenspace. The im-
age vectors were then projected onto the obtained partial
eigenspace to extract the PCA coefficients.

To further discriminate among each class of silhouette vector,
the obtained PCA coefficients of the silhouette vectors were pro-
cessed using LDA. First, the mean vectors of each class and of the
entire set of the vectors on partial eigenspace were computed.
Then, maximization of the ratio of between-class variance and
within-class variance was carried out. Accordingly, the ratios be-
fore and after LDA were 0.0446 and 16.0000, respectively. It is clear
that LDA raised the ratio. Finally, the LDA coefficients of the silhou-
ette vectors were calculated.

To visualize the different features obtained by PCA and LDA, the
distributions of the first two components (for illustration pur-
poses) of PCA and only one LDA coefficient of silhouette vectors
of normal and PD subjects are plotted in Figs. 8 and 9, respectively.
In the figures, the red “O” stands for the normal subjects and the
green “A” for PD patients.’

We observed that the PCA coefficients of different groups of sil-
houette vectors had large overlaps for both vertical and horizontal
axes. On the other hand, the LDA coefficients of different groups of
silhouette classes clearly separated from one another. Note that,
although we illustrated the scatter plots by using only two and
one coefficients for PCA and LDA, respectively, we adopted 280
and one coefficients for PCA and LDA, respectively, during the clas-
sification of normal people and PD patients. Since the LDA coeffi-
cients’ dimensionality is only one, the counting index is then
used as the horizontal axis of Fig. 9 to show the scatter plot.

For further insight, we investigated the LDA projection matrix
carefully (in this study, it reduced to a vector). We computed the
absolute values of this vector and shifted and scaled the obtained
projection vector elements to fall in the range from 0 to 255. We
reshaped this vector to match the shape of captured images. There-
fore, we could visualize the projection vector and correlate it to the
silhouettes of subjects. We show the image form of the projection
vector in Fig. 10. The image pixels with higher intensity in Fig. 10
had more discriminating ability according to LDA projection. The

! For interpretation of color in Figs. 8 and 9, the reader is referred to the web
version of this article.
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Fig. 9. The distribution of the LDA coefficients of the training vectors.

head and neck (a) were especially emphasized by LDA. The system
was able to discern PD patients by “carefully observing” the head
and neck parts of the silhouettes of the subjects.

MDC was adopted in this study to evaluate the classification
performance of the proposed scheme. During the training phase,
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Fig. 10. Visualization of the projection matrix using an image form.

Table 2
Classification accuracy comparison between PCA-MDC and LDA-MDC

Algorithm Accuracy (%)
PCA-MDC 77.1746
LDA-MDC 95.4872
Table 3
Confusion matrix of PCA-MDC

Normal PD
Normal 518 109
PD 240 662
Table 4
Confusion matrix of LDA-MDC

Normal PD
Normal 599 28
PD 41 861

both PCA and LDA had classification rates of 100%. Table 2 com-
pares the test performance of PCA-MDC with that of LDA-MDC
for 1529 test cases. It is obvious that LDA-MDC outperformed
PCA-MDC by 18.31%. Tables 3 and 4 further demonstrate the con-
fusion matrix: LDA-MDC improved the detection rate for both nor-
mal and PD subjects. PCA, functioning mainly as a preprocessing of
LDA-MDC for data dimensionality reduction, did not separate dif-
ferent groups of silhouette vectors well. As illustrated in Fig. 8, the
silhouette vectors of PCA coefficients of the two groups were still
close to each another. Although these components corresponded
to the eigenvectors with maximum variations of the original vec-
tors, the directions of these eigenvectors were not consistent with
the directions that best discriminate between normal subjects and
PD patients.

5. Conclusions

The diagnosis of PD is an important issue in the neuroscience
field. Although gait analysis is important in the diagnosis of PD,

there are limited visual-based methods available. In this paper,
we propose an assistance system using LDA to detect PD gait
patterns. The proposed system uses the image sequences of
human silhouettes during walking and extracts the intrinsic
features by LDA. The proposed system can identify normal
people and PD patients by their gaits with high reliability and
appears a promising aid in the diagnosis of the Parkinson’s
disease.
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