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Abstract

Owing to the recent great advances in mobile communication technology, more and
more information services are available via wireless networks. As such, users are able to
access a variety of services from anywhere at anytime. Note that with proper caching
mechanisms, the response time of services is reduced. Due to the limited size of local
cache and transmission bandwidth of handheld devices, in this paper, we address the
cache problem of mobile computing environments. By integrating cache usages in both
mobile devices and base stations, we propose an efficient collaborative cache
replacement (referred to as CCR) algorithm. In our proposed algorithm, we derive a
profit function which includes several important factors of both location dependent
service and location independent service. In light of the profit function devised, we can
evaluate the profit of each cached service object for cache replacement. In addition to
deriving a profit function, we further develop a collaboration mechanism between
mobile devices and base stations. The experiment results show that the proposed CCR is
very effective and outperforms the conventional:cache replacement policies.

Keywords — Mobile computing, location-dependent service, cache replacement.
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1 Introduction

Owing to the recent great advances in mobile communication technology, more and more
information services which provided via wireless network are available. We can anticipate
that in the near future world, people can use their handheld devices to access a variety of
services everywhere. For example, a driver can use a portable computer equipped with GPS
to get information like traffic report, weather report, nearest gas station and restaurant.
Further more, the computer can plan a traffic route which can guide the driver to avoid heavy
traffic, to fuel up, than to have lunch in the nearest seafood restaurant. Also, the passenger
on this car can receive and watch video or play games supplied by the broadcasting station.

To achieve above scenarios, we must construct a suitable framework. The mobile com-
puting environment model is shown in Figure 1, where the network consists of three parts:
service server (SS), base station (BS), and clients(C). Service servers are constructed by service
providers, which store and maintain-all'kinds of services.. Base stations are the intermediates
between service servers and mobile clients. They provide wireless access points and handle
the requests of mobile clients in their managing areas via wireless channel and then obtain the
required data from service servers via fixed network. Mobile clients can move among service
areas haphazardly, and they can discover and access services what they want.

To improve the system efficiency, mobile devices often store certain hot data in the local
cache for future using, but the size of local cache in the handheld devices is limited. When
an object comes and the local cache is full, we must pick some cached data and remove them
from the cache to make enough space for the new coming data. In mobile service networks, the
storage and computing capability of portable devices are relatively small compared to desktop
computers. Due to this constraint, we must take good care of the cache storage to gain
more efficiency, so the cache replacement problem is significant to the system performance.

Different from traditional cache replacement algorithms in operating system and database
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Figure 1: Mobile computing environment model

system, several characteristics are found in mobile computing environment: (1) The size of
cached data may be different. In the traditional operating system, the units of the data
objects are the same, which are called.page or bloek:. However, in mobile service networks,
the size of data can vary from bytes to-megabytes. (2)-There are a huge number of mobile
users in the mobile environment. Compared totheroperating system or the database system,
this environment is more complicate and ‘highly dynamic. With good caching methods, we
can decrease the transmission overhead, and have shorter response time. (3) There are two
categories of service: Location Dependent Service (LDS) and Location Independent Service
(LIS). The information of LDS is various in different areas. For example, the traffic report is
distinct according to different location. The access probability of LDS will be different due to
the accessed location. For example, if restaurant R is located in area A, the access probability
of restaurant R becomes smaller if the client leaves the area A. The more distance apart from
area A, the less access rate of restaurant R is. Oppositely, the content and access rate of LDS
are invariable anywhere, such as news report. Location dependent services have their own
valid scopes, which indicate the valid areas of the service. For example, the traffic report of
area 1 is not suitable for service area 2. Above factors make the design of cache replacement

algorithm a challenge. In mobile computing environments, users can get the desired data



instantly if the data are cached in the user’s handheld device. If not, user can use the device
to send request messages to the base station, and the base station either sends the requested
data back if it has cached the data or it can acquire the data from service servers. When an
user requests a service, he may expect the response time of the service is short. Obviously, if
we get higher cache hit rate in both client and base station caches, the response time will be
reduced.

In this paper, our goal is to devise an efficient cache replacement algorithm for the mobile
computing environments. We briefly survey and categorize some traditional cache replacement

schemes here [2].

1. Key-based replacement method : The key-based replacement method is
to sort data based on a primary key, break ties based on a secondary key, and so
on. For example, the well-know.'Least Recently Used (LRU) algorithm is to treat
access time as the first key. If there is no sufficient, eache space for the new coming
data, the system will prune off the data which are’least recently used. LRUMIN
is the method which is biased in favor of smaller sized data so as to minimize the
number of data replaced. If the size of an incoming object is S and there is not
enough cache space for it. We will check whether there is any object in the cache
which has size at least S, and we remove the least recently used such objects from
the cache. If there is no object whose sizes at least S, we start removing data in
LRU order of sizes at least 1/2 S, then the data with sizes at least 1/4 S, and so
on. In First In First Out (FIFO) algorithm, the key is the timestamp when the
data entry the cache. We will pick the data which came into the cache earliest. In
the SIZE policy, the data are removed according to data sizes. The object with

the largest size is removed first.

2. Function-based replacement method : The idea of the function-based



replacement method is to employ a general profit value function to evaluate the
importance of each data. The profit function is combined with certain attributes
of data, such as size, access count, time since last access, entry time, transfer
cost. The data with smaller profit values will first be removed. In [2], the au-
thors derived the Pyramidal Selection Scheme for cache replacement in Web proxy
which considers the access cost, expiration time and size of data. In [8], the au-
thors proposed a gain-based cache replacement policy, Min-SAUD for the wireless
data dissemination system. The policy takes access rate, size, update frequency,
cache validation delay into consideration and is suitable for devices with different

transmission bandwidths.

In mobile computing environments, due to the dynamic properties of the client and the
characteristic of location dependent services, prior.works are not totally applied on this envi-
ronment. In client’s perspective, the importance of cached data is changed with the client’s
location. For example, in Figure 2;.LDSL is a-gas station located in area Al, LDS2 is a
gas station located in area A2. When client: Cl is leaving from area Al to area A2, the
importance and the access possibility of LDS1 become smaller than those of LDS2. Due to
the dynamic properties of clients and the different service ranges of LDS, we must devise a
method to handle this situation. For the same reason, the base station would like to store
services which are near to it’s responsible location. Moreover, consider the overall cache usage
in mobile computing system, where base stations may tend to store data accessed by most
clients. The popular services usually have higher access possibility for coming clients than
other services. If a new coming client requests the popular service cached in the base station,
the base station can return it immediately without obtaining the service from the service
server. On the contrary, in the client’s perspective, it would like to store services which are
requested most by itself. The other challenge in mobile computing environments is that we
must handle the cache replacement simultaneously of two kind of services, LDS and LIS. If

7



Service Range of LDS2

Service Range of LDS1

8 Order | Name 8 Order | Name

1 LDS1

2 LDS1

Figure 2: Example of handling LDS

we don’t take the characteristics of LDS into consideration and just use the traditional cache
replacement algorithm, some problems may eecurs In Figure 3, if the cache size of the client
is 3. When he is moving from LDSLto LDS3 via LDS2,the cache is full. When he moves to
LDS4 and accesses it, with LRU algorithm; the‘client will remove LDS1 from the cache and
puts LDS4 into the cache. When he moves to LDS1 and sends a request of LDS1 in the next
step, a cache miss will occur. In this situation, we must discard LDS2 rather than LDS1 since
LDS2 is far away from the client.

In this paper, we propose Collaborative Cache Replacement (referred to as CCR) algorithm
which takes both location dependent and independent service into consideration. Furthermore,
by the collaboration between clients and base stations, we can make the caching usage of entire
environment more efficient. In CCR, we consider a variety of important factors such as data
size, life time, access rate, and three novel factors: popular factor, location factor, and scope
factor. Popular factor represents the popularity in one service area of data. Data objects
with higher popular factors mean that these data are very hot. The later coming user may

be interested in these data objects. Location factor and scope factor are used for location



Figure 3: Problem in handling LDS

dependent services. Assume that eachdocation dependent service has its own service area. If
the location of accessed service is near to the location where the service resides, then it has
higher location factor. Besides, scope factor represents' the service range. A service with a
broader service range has higher scope factor. For example, the scope factor of a gas station
is larger than that of a public telephone. Otherwise, the service ranges of some services may
change with time or specific events. For example, the service range of an ice shop is larger
in summer than in winter, the service range of a hospital may increase when the influenza
occurs. We must devise a dynamic scope factor to accommodate this situation. In addition
to deriving the profit function, we also construct a collaboration mechanism between clients
and base stations. Through this mechanism, a base station can adjust the caching priority
according to the caching situation of clients in its service area. Base stations can know which
data are popular and keep them in the cache. Thus, we can have the best overall performance.
To the best of our knowledge, prior works don’t consider cache replacement by integrating
both client and base station.

Here we review some related works about the cache replacement issue. Previous researches

9



put much efforts on Web proxy caching [1][2][13]. We briefly introduce some traditional meth-
ods for cache replacement in Web proxy servers. In [1], the authors observed that the doc-
uments with small size are accessed frequently. The LRU-MIN cache replacement algorithm
was proposed to handle the small document retrieval. It first tests whether there are any
documents equal or larger in size than incoming document; if there is, the algorithm chooses
one of them by LRU. A function-based cache replacement PSS policy was proposed in [2].
The author employed a potentially general function of different factors such as size, time since
last access, entry time and so on to decide which object is going to be replaced. Recently,
Chang and Chen proposed caching replacement for transcoding proxy [4]. Transcoding proxy
is used for transformation between multimedia objects in different versions and resolutions.
A weighted transcoding graph was devised to manage multiple versions of different objects
cached in transcoding proxy. In mobile environments, there are a lot of researches focused on
cache consistency. The authors in [3} presented three invalidation report (IR) based schemes
for cache consistency. The server will send invalidation reports to clients to inform which
object is invalid and replaced. Many of later propesed cache invalidation schemes are variants
of the above IR schemes [5][7][9][17], and these researches are devoted to designing efficient al-
gorithms to reduce IR overhead and to improve uplink cost. All of these invalidation schemes
result in cache invalidation delay for confirming the data consistency before the object is
used. More recently, much work puts emphasis on location dependent services [6][12][14][15].
In [15], the author studied the cache consistency issue for location-dependent information
in the context of mobile environments. For location-dependent updates, three invalidation
schemes called BVC, GBVC, and ISI are proposed. Other work try to cache some frequently
queried data in client side [6][12]. The authors in [12] found that the location dependent query
is more likely to exhibit a semantic locality in terms of locations rather than spacial locality.
In [6], the authors proposed a proactive caching model for spacial queries. The proactive

caching captures the semantics of queries by caching the index responsible for querying. The
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authors in [14] presented dynamic location dependent data management to replicate the data
of the most frequently accessed neighborhood cells at the local server. Some researches deal
with the caching strategy in ad hoc networks [16][11].

The rest of this paper is organized as follows. In Section 2, we describe the system architec-
ture of CCR and some attributes of data objects. In Section 3, we derive the profit function
and the CCR algorithm. The metric measurement and simulation results are presented in

Section 4. This paper concludes with Section 5.

2 Preliminaries

To facilitate the presentation of this paper, we describe the attributes of service object in

Section 2.1. In Section 2.2, we briefly introduge;the architecture of the mobile service system.

2.1 Attributes of Service:Object

Following we describe the attributes that can represent the statuses of a service objects for
cache replacement.

(1) Size : The size is an important attribute for cache replacement policy. Most cache
replacement algorithm tends to prune off the data with large sizes to make more sufficient
space for later data. (2) Expire time : The attribute to indicate the life time of an object.
We can discard an object with less life time. (3) Access Count : It is dynamic statistic in
both base station and client for traditional counting-based cache replacement algorithm. The
objects with higher access frequency indicate that the objects are hot. (4) Last access time
: It is the timestamp which is recorded when the objects are accessed the last time. This
information is used for traditional LRU algorithm. (5) Residing location : The information
which is used for location dependent service. We assume a geometric location model in this

paper, and the location is specified as a two-dimensional coordinate. Services can identify

11



Service Server

LDS Manager

Scope Factor/ |<==>| Central
\ Handler

Database

Client

LIS

5
Manager | <= LIS Manager
Cache

LDS Manager f Inform location of data,T 1Return of data

Request of data

J Base Station

Register, LDS Manager -
Request of &>| Local
Cache

LIS Manager /

Return
of data

Figure 4: Architecture of mobile computing environment

their location by their service providers using/GPS: (6) Furthest access location : It is the
location where the object is accessed furthest.:-The information is used for location dependent
service, and it is kept in service server. We ean use thisiinformation to represent the service
range. 8) Access client count : The number of acéess client which access the object in this
area. The record is kept in the base station. If the number is large, we can say that this

object is popular.

2.2 Mobile Service System Architecture

The mobile computing environment we describe here must accommodate two conditions. First,
the system must serve both location dependent service (LDS) and location independent service
(LIS). Second, it must be suitable for the mobile environment in the present and the future.
As Figure 4, the system architecture is composed of three components.

(1) Service Server : The service servers store all kinds of information and services. There
are a variety of service providers such as map service, traffic report service, news service.

When a service provider wants to publish its services into the environments, it must register

12



its services to the service server including name, size, expire time and the residing location.
The service server is connected with the base station via fixed wired network. The main task
of the service server is to receive requests from base stations and to send requested service
objects back. Service servers have two kinds of service managers : LDS manager and LIS
manager. LDS manager has a scope factor handler to handle the scope factors of all data.
(2) Base Station : As we mentioned in Figure 1, all base stations have their own service
areas. The base stations keep tracking all clients who are active in their own service areas.
Similar to service servers, the base station must take responsibility to serve the clients in their
service areas. Furthermore, they gather some statistics of services accessed by the clients in
their service areas such as last accessed time and accessed frequency. The base station has a
local cache to store some specific data for future using. (3) Clients : The clients vary from
laptop computers to smartphones. People uise them to send requests to base stations through
wireless communication and get desired services. Also, all clients have small cache storage to
keep some useful data and gather statistic-of.data.. Clients can move from a service area to

another.

3 Collaborative Cache Replacement Algorithm

In Section 3.1, several important factors are presented for the derivation of the profit function.
In Section 3.2, according to profit functions, we develop the collaborative cache replacement

algorithm.

3.1 Deriving Factors of Profit function

In traditional counting-based cache replacement algorithms, the access count is an important
information for cached objects. Usually, object with high access count represents that the

object is very hot to users. Obviously, systems which cache such kind of objects will gain
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Symol Description
ACY Access count of service S; in client C; or in base station B;
TACY | Total access count of all cached services in client C; or base station B;
AF! Access factor of service S; in client C; or base station B;
T?. Timestamp of service S; enter client C,; or base station B;
Tie Expire time of service S;
LT! Life time of service S;
TF] Time factor of service S; in client C; or base station B,
AD; Access distance of serice S;
LF; Location factor of service S; in client C; or base station B;
D, Distance sequence of serice S;
L; Level sequence of serice S;
SF; Scope factor of service S;
SCY Total count of clients which cache S; in B;
TC? Total count of clients in B;
PF} Popular factor of S; in B;

Table 1: Description of symbols

more cache hit rates. Here, we want to normalize this information to one of the terms in the
profit function.

The access count, denoted by AC’g presents the access count of service S; in client C; or
in base station B;. Both clients and base:stations keep these statistics of all cached services

in their cache. Total access count, denoted by T'AC, presents the total access count of all

(2

cached services in C; or Bj, and TACY = 3" AC?. We have the access factor AF/ of S; in C;
-1

or B; as follows :

: ACY
J 7
AR =14 730

Services in mobile computing environments often be assigned expiration times. If a service
is going to expire, it probably need to be discarded soon. This kind of service should be
a good candidate for replacement. Suppose S; is in the cache of C; or B; at time Tijs, and
the expire time of service S; is T;.. We define the life time of service S;, denoted by LTij,
such that LT/ = T, — T7.. Then we define the active time of service i, denoted by AT}, and

AT; = T,. — current _time. Finally we have the time factor TFZ-j of S; in C; or B; as follows :

14



Figure 5: Example of service range

i L AL

Location factor is applied to the locationTdépendent service. Since each LDS has its own
service area, the access possibility of a LDS sheuld be different according to the location, where
it is requested. Employing this feature into the profit function will make the cache replacement
algorithm more accurate. For clients, we define the access distance of S;, denoted by AD;,
which represents the distance between the access location of S; and S; residing location. For
base stations, AD; represents the distance between the base station’s location and S; residing

location. We define the location factor of S;, denoted by LFj;, as follows :

1, if ADi is smaller than 1

1
LFizl—i‘E;d: AD:i

oo, if S; is LIS

Each LDS has its own service range. For example, the service range of a public telephone

may be ten or more meters, but the service range of a gas station may be several kilometers.
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In Figure 5, although the distance d; between client C; and LDS; is smaller than the
distance dy between client C; and LDS,, but the client is more close to LDS,’s service area
than LDS;’s. Note that the client C; has higher probability in entering LDS,’s service than
LDS;’s. We must consider this feature in the profit function to give the higher priority to the
services which have larger service ranges. As mentioned before, services may have different
service ranges due to certain reasons. Let us denote the scope factor of S; as SF;. SF; is
handled by the scope handler in the service server, and it is initially set to 1. Base stations
will periodically inform service servers the access locations of all LDSs. To derive SF;, the
service server will keep top n long distances access records of S; by all the clients, which is

called distance sequence D;.

D; ={dy,ds, ...,d,},d; is the first i long.distance of access records

Then we transform the distance sequence D; to level sequence L; :

d;
R O {LevelThresholdJ

LevelThreshould is a system parameter which determines the range of one level. For
example, in a very wide environment, we can let the Level Threshould be 1 km. Therefore, level

1 represents that the access distance is between 0 to 1km. Then we can get MaxLevel(L;) :

MaxLevel(L;) = lnax,

lmae 18 the maximum element of L; which count of [,,,, > ¢,¢€ is a system threshold.

For example, if LevelThreshold = 100m, l,,.. = 3,€ = 3, it can be verified that there are

more than 3 clients access S; further than 200 meters. Finally we can get SF; as following :
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D dy [ dy | dg | dy | ds | dg | d7 | ds | dy | dio
Distance (m) | 425 | 403 | 372 | 360 | 344 | 320 | 290 | 281 | 260 | 255
Level 5/ 5444 4]3]3]3]3

Table 2: Distance and level sequence of S;

Level | Count
5 2
4 4
3 4

Table 3: Level count

MazxLevel(L;),if MaxLevel(L;) < «
SF;, =
a,if MazLevel(L;) > «

Where « is a system parameter which is the upper bound of service range.

For example, we give LevelThreshold = 100m ¢ = 3,a = 5. If the access record is as
Table 2. The result is shown in Table 3. Therefore, SF! = 4.

In the base station’s perspective, dataitems with high access counts are not sure that they
are really hot. Perhaps these data are accessed by few individual people. On the other hand,
the base station should keep the popular services as much as possible. We derive popular
factor to add weights to those popular data. Considering service S; in base station B;, we

define SCY as the total count of clients that cache S; in B; and T'CY as the total count of

clients in B;. Popular factor of S; in B;, denoted by PFij , is defined as follows :

e

PF/ =1 :
i =t Ta

Based on the above discussion, in the base station, we tend to keep popular object with
high access frequency, long life time, small data size, high location factor, and high scope
factor in the cache. So we simply multiply all factors and divide size to obtain the profit

function applied to the base station, denoted by B Profit(i) as following :
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AF; x TF; x LF; x SF; x PF;
Size;

B_Profit(i) =

Otherwise, the client is moving around and just focuses on his own usage. When we derive

the profit function of the client, we evict the PF from the function as follows :

AF; x TF, x LF, x SF;

C _Profit(i) = Sive.

3.2 Collaborative Cache Replacement Algorithm

In Section 3.1, we have formulated the profit function of cache replacement. Based on the
profit function, we derive the Collaborative Cache Replacement algorithm in this section. In
CCR, both clients and base stations have individual cache replacement algorithms themselves.
The main idea of CCR is to sort cached data according to their profit values, to keep the
data with higher profit values, and then to discard those data with values lower. The main
difference between clients and base stations is that the clients are active and moving, yet the
base stations are passive and static. Clients may move from one base station to another, and
they probably send requests of services to the base stations. The interaction between clients
and base stations is shown by Figure 6. When a client C; enters a new service area Areas, the
base station BSs of Areay, will detect and send a welcome message to C;. When C; receives
the message, he knows that he is entering a new service area, and then he sends information
such as client id and cached objects’ id, and registers them to BS;. When BS, receives these
records, it computes and updates the profit values of cached data. Afterward, C; informs BS;
for leaving. Then BS; removes C; from the client list, computes and updates the profit values

of data cached in C;.
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Figure 6: Interaction between clients and base stations

3.2.1 Cache Maintenance of CCR

In order to have a good cache replacement mechanism, we employ a small auxiliary cache Hy
which maintains the statistic of some numbers ofidata, as shown in Figure 7. The Hy can help
us to keep a period of statistic records ofi the removed data. In a heavy loading environment,
employing large Hy can prevent system from removing -data rapidly without gathering any
statistics on them. Therefore it can improve the accuracy of CCR. The Hs is constructed by
Heap data structure. In Hs, we keep the passed statistic records of data including size, access
count, access time, expire time and residing location. The size of Hy is § X (size of Hy), (3 is
an adjustable system parameter. When the number of services is tremendous or the access
frequency of system is very high, we could set a big value of .

To decrease the maintaining cost of Hy, we employ the Pyramidal Selection Scheme|2],
to design a cache management algorithm, named Pyramidal Replacement Algorithm (PRA).
The primary idea of the PRA is to make a pyramidal classification of service objects upon
their sizes. In H;, the objects of group i have sizes ranging from 2°=! to 2¢-1. Therefore,
we will have N = [log,(S + 1)] different groups of objects, where S is the maximum size of
service objects. In Figure 8, for each group G; in H;, we have two heaps h;; and h;, in Hs.

In h;y, it stores the statistics of service objects cached in G;. Each entry of h;; has a pointer
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pointing the address of cached service object in G;. The h;; simply stores the statistics of
service objects whose size ranges are containedsin: (5;, but the contents are not cached in G;.
The entries in h;; and h;, are sorted-by profit values. In h;;, the first entry has the smallest
profit value. But in h;s, the entry with the biggest profit value will be placed in the first. It is
because that all the entries in h;s are the candidates to replace the entries in h;;. For example,
if the entry h;s(1) with the maximum profit value in h;, is bigger than the entry h;; (1) with
the minimum profit value in h;;, we can replace h;;(1) by hy2(1) and put the content of h;»(1)
into H;. In PRA, we perform cache replacement in separate group. The algorithm form of
PRA is shown below.

Algorithm PRA:
1 While (a request of S of group G; comes in) {

3 Calculate and update Profit(S), then adjust h;;
4 }
5 else if (S hit in h;y) {
6 calculate and update Profit(S), then adjust h;s;
7 if (hi2(1) == S) {
8 for (hnl to h(i+1)1) {
9 if (Profit(S) > Profit(h,1(1))) {
10 move h,(1) to hye then adjust h,o;
11 move hﬂ(l) to hil then adjust hil;
12 }
13 }
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14 for (hzl to hn) {

15 select first n object of h,, in order of Profit(S,,) and access time
n n—1

16 which satisfies : > Size(S,) > Size(S), > Size(S,) < Size(S)
i=1 1=1

17 if ( Y Profit(S;) < Profit(S)){

18 zmlove this n object from h,; to h,o then adjust h,o;

19 move h;s(1) to h;; then adjust h;y;

20 }

21 }

22 }

23 }

24 else {

25 calculate Profit(S);

26 if (H; is not full){

27 insert S to G;

28 add S to h;s and adjust h;s;

29 }

30 else if (H; is not full){

31 insert S to h;s and adjust h;s;

32 do the same procedure from line 7 to line 22

32 }

34 }

If a service object S comes and it"belongs to:group G;. If S is in h;;, we just calculate and
update the profit value of S in h;; and then adjust-h;;. If S is not in h;; but in h;s, it means
that we have the record of S in h;,. We first. calculate and update the profit value of S in h;s
and then adjust h;s. If S becomes the root of h;s, it means that S has the biggest profit value
in h;, and has the chance to replace other data cached in H;. In line 8 to line 13, we compare
the profit value of S with h,;(1), where the value range of x is from n to ¢ + 1. If the profit
value of S is greater than h,;(1) for some x and the size of the object in G, is larger than
S, we can move h,(1) to hys and then move S to h;; directly. If we do not find such h,y in
the range of n to i + 1, we start to look for the replacement candidates in h;; to hy; (line 14
to line 21). We select the first n data objects from h,; sorted according to profit values, the
access time, and the total size of this n data is greater than that of S. If there are such n data
objects, we calculate the sum of these n data objects’ profit values and then compare it with
the profit value of S. If the profit value of S is bigger, the base station removes the n data

objects from h,; and keep all the records in h,s, and we put S in h;;. If S does not appear in
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Figure 8: The data structure of pyramidal selection scheme

both h;; and h;s, we calculate the profit,value of S, and then insert S to h;s and adjust h;s.

Finally we check whether S can replace the objects in Hy or not (line 32).

3.2.2 Actions of Base Station

There are three event-driven actions of base stations.

1. When the base station receives a request of S; : First, the base station will
check H; to see if S; is there. If a cache hit occurs in the base station, the base
station will simply send S; back to the client. If S; does not exist in H; but it has
some access records in Hs, the base station will obtain S; from the service server
and then perform PAR. If S; does not appear in H; and Hs, the base station surely
must obtain S; from the service server and perform PRA. The last step is to send

S; back to client.

2. When a client enters or leaves the base station : Because the computing of the

popular factor requires the number of clients in the service area, the base station
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must always track the clients who are active in its service area. When a client
comes, the base station will add the client’s identification to the client list and
update the profit values of all data cached in the newcoming client. When a client

leaves, the base station does the similar work.

3. Base stations periodically inform the service server the furthest access location
of data : For the calculation of the scope factor, the base station will periodically
inform the service server the furthest access locations of all location dependent

data which it cached. The period is a system-defined parameter.

3.2.3 Actions of Client

Different from the base station, the client has two actions :

1. When a client requires a ser¥ice S; 51 Thé.cache replacement algorithm of the
client is the same as the base station’s. There are only two little differences : When
the client does not get a cache hit:in local cache; it will send the request of service
to the base station in this service area. When the client receives the requested

data, it will pass them to the application.

2. When a client is moving : When a client C; is moving from the base station
B; to the base station Bs, the client will first receive a welcome message from B,.
C; knows that he is entering a new service area, and he informs the previous base
station By for his leaving. The LF of cached LDS must be updated because the
client’s location is changed. The client recomputes the profit values of all affected

data. Finally, the client must send the information of all cached data to Bs.
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4 Performance Analysis

In this section, we will describe our simulation model and evaluate the performance of CCR.
In Section 4.1, we illustrate the simulation model and events. Several system parameters are
also introduced to facilitate our simulation. The experimental results of performance analyses

will be presented in Section 4.2.

4.1 Simulation Model

The mobile computing environments consists of many service areas with their own base sta-
tions, and the base stations can provide clients with a seamless service when they move between
different service areas. To simulate the mobile computing environment, we use an 8x8 mesh
topology network [10]. Each grid in the mesh network represents a service area, and there
exists one base station which takes responsible for. this service area. The base station will
handle the requests of services. Therefore, there are 64 base stations in the simulation model.
Each base station has the local cache'withthe size BCacheSize. The number of active clients
is ClientNum, and we can adjust this parameter to represent the load of the environment.
The database contains two kinds of services, LDS and LIS. The numbers of them are
LDSNum and LISNum, respectively. The size of service object is randomly distributed from
MinSize to MaxSize. For each service, we assign a value named hot_level according to Zipf
distribution from MIN HOT to MAX HOT with skewness parameter HOT SKEW. Higher
hot level means that the service has higher probability to be accessed. We randomly assign
each LDS one service area and range level. The transmission between clients and base stations
is wireless communication, and the cost is BCCost. Relatively, the transmission between
service servers and base stations is via fixed wired network, and the cost is named SBCost.
The clients are initially randomly distributed on the mesh network, and they can freely

move from one service area to another and request services. The local cache size of the client
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is CCacheRatiox BCacheSize. The CCacheRatio is a value between 0 to 1. The mobile
clients are modeled with two independent actions : move and access. Each client will initially
assign a value step count, meaning that client will move step count steps in the network.
In the move action, the client can move from the current service area to the vicinity and
decrease the step count by one. The clients will terminate his actions when step count is
zero. If a client moves to the boundary of the mesh network, it will change direction or turn
back rather than leave the network. After each move process, the client will execute access
process. In access process, the client first decides the access count between MIN ACCESS
and MAX ACCESS in Zipf distribution with skewness parameter ACCESS SKEW. In each
access, the client decides which kind of services he wants to access according to LDSProb
which represents the probability of requesting LDS. Then the client will choose one service
of the selecting service type according.the hot level. The access probability is distributed
following the Zipf distribution from MAX HOT to' MIN. HOT. If the requested service does
not exist in the client local cache, the client-will.send the access request to the base station
in the service area where the client stays.: Afterward, if the client does not have enough cache
space to store the newcoming service object, it will perform cache replacement.

The base station handles the incoming requests by FCFS. When a base station receives an
access request from a client, it first checks whether the accessed service is in the local cache. If
it exists, the base station simply returns the result to the client. Otherwise, the base station
should obtain the accessed service from the service server and performs cache replacement if

necessary.

4.2 Experimental Results

In this section, the proposed CCR is evaluated based on the simulation model. Each set of
the experimental results are obtained by the average of three runs of simulations. In the

performance evaluation, the cache hit ratio is employed as the primary performance metric
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Parameter Description

BCacheSize size of local cache in base station

ClientNum number of client

LDSNum number of LDS

LISNum number of LIS

MinSize minimum size of service object

MaxSize maximum size of service object

MIN HOT minimum hot _level of service object

Maz HOT maximum hot level of service object

HOT SKEW skewness parameter of Zipf distribution

BCCost transmission cost from the base station to the client
SBCost transmission cost from the service server to the base station
CCacheRatio client cache size ratio to base station

LDSProb probability of accessing LDS

MIN ACCESS minimum access count of client

Maz ACCESS maximum access count of client

ACCESS SKEW | skewness parameter of Zipf distribution

Table 4: Parameters of simulation model

because that most of the other performiances can be derived from the cache hit ratio. We
observe the cache hit ratios in both clients and base stations. In the client’s perspective, the
cache hit ratio is defined as the total caghé hit_count in the local cache to the total access
count. In the base station, the cache hit ratio.issdefined as the total cache hit count to the
total request count in its charging service area. Besides, considering the sizes of service objects
are various, the cache hit ratio may not reflect the actual performance. We employ query cost

to evaluate the performance. The query cost of client QC., is defined as :

~SZ % BOCost  3.SZ; x (BCCost + SBCost)
QC — =1 + j:1

n m

The first term represents the query cost of cache miss in the client’s local cache but cache
hit in the base station. SZ; means the size of the service object which is hit and obtained
in the base station, n means the total count of such objects. The second term represents the
query cost of cache miss in the client’s local cache but cache hit in the service server. SZ;

means the size of the service object which is hit and obtained in the service server, and m
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Parameter | Setting | Parameter Setting
BCacheSize | 2000 HOT SKEW 1
ClientNum | 150 BCCost 3
LDSNum 1000 SBCost 1
LISNum 1000 CCacheRatio 12.5
MinSize 15 LDSProb 2/3
MazxSize 100 MIN ACCESS 1

MIN HOT |1 Max ACCESS 35
Maz HOT |5 ACCESS SKEW | 1

Table 5: Default parameter setting for simulation model

means the total count of such objects. Similarly, the query cost of base station QC, is defined

as .

Zn:SZi x SBCost
QOS - =l

n

In each experiment, we compare the performance of CCR with the traditional LRU and
LFU cache replacement algorithms.=The default setting-of the simulation model is shown in

Table 5.

4.2.1 Impact of Client’s Maximum Step

In the first experiment, we observe the performance of our algorithm by varying the maximum
moving step of clients. In the simulation model, the clients will access several data after moving
a step. With the increase of the clients’ moving step, the access records will increase too. Both
the client and the base station could gather more statistic for further cache replacement. The
simulation results are shown in Figure 9, Figure 10, Figure 11, and Figure 12. As shown
in Figure 9, we can see that the client hit ratio of CCR outperforms other algorithms. The
average improvement of client hit ratio over the LRU and LFU is about 50%. The performance
of LRU is the worst and it is not influenced by the variation of clients’ moving step. It is

because that the LRU just takes the access time into consideration. The LFU performs better
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Figure 9: Client hit ratio under various of the client’s maximum moving step
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Figure 10: Base station hit ratio under various of the client’s maximum moving step

than LRU since that LFU can collect more statistic of access records with the increase of
the client’s moving step. The same as CCR, if the clients move further, the CCR can gather
more information of the access patterns and popularity of objects in the environment to do
cache replacement precisely. In Figure 10, we can observe that all three algorithms perform
well when the clients move further, because that all the base stations almost store the objects
which are popular among clients. In Figure 11 and Figure 12, the query cost of CCR is much

smaller than those of LRU and LFU since the cache hit ratio of CCR is higher.
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4.2.2 Impact of Client Cache Capacity

In the second experiment, we investigate the influence of the various client cache capacities.
The simulation results are shown in Figure 13, Figure:14, Figure 15, and Figure 16. Of course
the hit ratio will be improved while the cache size is relative large. But as Figure 13, it
shows that the CCR can use the cache storagermore efficiently than LRU and LFU. When
the client’s cache size is 12% to the base'station, the improvements of client hit ratio over
the LRU and LFU are 72% and 35% respectively. In Figure 14, the base station hit ratio
gets smaller because in the same time the client hit ratio is getting larger, but the CCR still
performs much better than others. Figure 15 and Figure 16 show the query costs of clients

and base stations.

4.2.3 Impact of Maximum Object Size

Then we observe the performance under various maximum sizes of objects. The simulation
results are shown in Figure 17, Figure 18, Figure 19, and Figure 20. If the possible maximum
size of objects is large, the cache insufficiency will happen frequently. If the cache space is
occupied by large size objects, the number of cached objects will be small, so that the hit ratio

will be reduced too. The initial value of client cache is 250, so as Figure 17, all three algorithms
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perform badly when the maximum size of object is approximate to 150, and it reaches 60%
of client cache. But in other cases when the maximum sizes of objects are relatively small,
the CCR performs much better than other algorithms. In Figure 18, as the maximum size of
object gets bigger and the client cache hit ratio gets smaller, the base station hit ratio gets
higher since there are more requests reach the base stations. Figure 19 and Figure 20 show

that the query costs of all three algorithms increase dramatically with the growth of object

size.
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4.2.4 Impact of LDSProb

Finally we adjust the access probability of DS ‘to'observe the impact on all three algorithms.
When LDSProb is large, the properties of LDS will ‘be significant. So the cache replacement
algorithms which take the characteristics of"lEDS into censideration will gain higher perfor-
mance. The simulation results are shown:in Figure 21, Figure 22, Figure 23, and Figure 24.
In Figure 21, we can see that the CCR performs superiorly than LRU and LFU in higher
LDSProb. Since the CCR considers the properties of LDS, so when the access probability of
LDS is high, the performance of CCR is ascendant. The same situation happens in Figure 22,

Figure 23, and Figure 24.

5 Conclusions

In this paper, we proposed the Collaborative Cache Replacement algorithm which takes both
location dependent and independent service into consideration. By the collaboration between
clients and base stations, we can make the caching usage of entire environment more efficient.

We derived a profit function which considering several important factors of both location
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Figure 24: Base station query cost under various of LDSProb

dependent service and location independent service. By using the profit function, we can

evaluate the profit of each cached service objeet for cache replacement. In addition to deriving

profit function, we also construct a colaberation mechamism between clients and base stations.

Through this mechanism, base stations can adjust the caching priority according to the caching

situation of clients in their service area. Base stations.can know which data are popular and

keep them in the cache. The experiment results showed that the proposed CCR is very

effective and outperforms the conventional cache replacement algorithms.
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