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以 X光顯微鏡進行三維斷層影像重建  
學生：鄭昌杰  

 

指導教授：荊宇泰  博士  
胡宇光  博士  

 

國立交通大學資訊學院  

資訊科學與工程研究所  

摘 要	 	 	 	 	 	  

    由於高解析度影像在取像上並不是那麼容易，所以從這些影像上取
得的資訊是十分有價值的。X光顯微鏡利用了硬 X光的短波長與高穿
透力的特性來取得厚實標本的奈米解析度影像，這是其他取像技術無法

辦到的。一般的 X光取像設備是以 X光吸收率來取像，但若以折射率
來進行相位取像可有效地取得物體材質間的對比變化並加強之，且這種

取像過程不會被某些生物標本的高 X光吸收結構所影響。這種先進的
技術在生醫研究上具有獨特的價值，但也浮現許多問題需要解決。本研

究針對其中幾個問題並提出新的影像處理方法來解決。在斷層取像過程

中，物體的旋轉會發生影像上的不對稱抖動現象，我們提出一個特徵點

對齊法來對齊這些 X光投影影像，使得斷層掃描影像可以成功的重建
出來。為了解決高解析度攝影視野的限制，我們提出一個影像拼貼的技

術將數張較小視野的影像合成一張可完整包含物體的大尺寸影像。此方

法經由一組模擬資料來驗證其大型物體的三維斷層影像重建之可行

性。最後，我們以傅立葉體積描繪法來快速地瀏覽重建完成的三維立體

資料，也運用了具備美觀性與準確性的紋理體積描繪法來進行三維立體

資料的視覺化。其中，我們為傅立葉體積描繪法提出一個快速的資料分

類方法，可有效地改變轉換函數的權重並即時地反映在繪圖結果上。 
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ABSTRACT 
High resolution images pushing the performance limit are always difficult to 
acquire and therefore extremely valuable to extract crucial information from 
them. X-ray microscopy takes advantage of the short wavelength and high 
penetration characteristic nature of hard-X-rays and demonstrated nanometer 
level resolution on thick specimens that is not available by other techniques. 
With devices to obtain contrast from differences of the refractive index, 
rather than the absorption of X-rays, the phase imaging can effectively 
enhance the contrast of materials which does not contain high X-ray 
absorbing structures such as biology specimens. The cutting edge level of 
performance found unique value in particularly biomedical research but also 
highlighted several problems which requires attention. This study addresses 
specifically several issues and tackles them by new image processing 
approaches. An image alignment method is implemented to eliminate the 
problem caused by the nonsystematic jitter of the sample rotation 
mechanism using a feature-recognition based alignment algorithm so a 
tomography reconstruction can be performed on these aligned projection 
images. To overcome the limitation of small field of view associated with 
the high resolution and limited number of imaging pixels, another image 
alignment method is developed to stitch these small field-of-view images 
into a larger one covering larger area of the specimen. This method is tested 
on a large number of simulated projection images of a phantom to 
demonstrate the possibility of tomography reconstruction in 3D of a large 
object. Finally, to visualize the tomography reconstructed images, a method 
based on the Fourier volume rendering (FVR) algorithm is designed to 
achieve better visualization and precision of the commonly used 
texture-based volume rendering (TVR) method. Improved processing 
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efficiency by adjusting the weight of transfer function for FVR drastically 
reduces the processing time and computation resources required for voxel 
classification and make it possible for routine application. 
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Chapter 1

Introduction

Analyze high resolution images of any imaging method are of very high value. Particu-

larly for those images obtained at the cutting edge level performance. When an imaging

method pushes its performance at its limit, it is not likely be improved with technical ad-

vancement. Image processing methods repeatedly can offer invaluable support to advance

the imaging technique over barriers which cannot be resolved otherwise. X-ray microscopy

is an emerging imaging method takes advantage of the unique short wavelength and high

penetration characteristics and offer nanometer resolution at thick, hundreds of µm, spec-

imens in 3D which is currently not available by other imaging techniques. Its importance

in biomedical research is boosted by the high quality X-ray photons generated by syn-

chrotron accelerators[1]. Characteristics of X-rays from synchrotron radiation such as

very high intensity, coherence, and tunable in energy are all very valuable to achieve high

performance for X-ray imaging [2]. At some energy range, such as soft-X-rays (wavelength

longer than 1 nm), no other devices offer photons of sufficient number for useful imaging

applications. X-ray microscopy using hard-x-rays suffer from the low efficiency optics

and therefore the high intensity X-rays from synchrotron are the only choice to allow

high performance imaging. Using nanofabricate Fresnel zone plate (FZP) [3] optics of 20

nm outermost zone with high thickness, >500 nm, of Au (gold), 16.5 nm resolution was

demonstrated using synchrotron X-rays. Inserting a ring device placing at the back focal

plane, Zernike phase contrast is able enhance images of materials which show no strong

X-ray absorption such as biology specimens. Fig. 1.1 shows a schematic of a full-field
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X-ray microscope based on FZP and Zernike phase contrast. Three dimensional imaging

is achieved by rotating the specimen and image the transmitted X-rays at different angles

as the “projection images”. Several devices, such as the capillary condenser, the pinhole,

and the beamstop, are required to facilitate the illumination conditions for the FZP. An

X-ray microscopy of this type is implemented at the BL01B beamline in National Syn-

chrotron Radiation Research Center (NSRRC, Hsinchu) and provide all the images used

in this study. Fig. 1.2 shows the X-ray microscopy in NSRRC. This beamline is capable

of performing X-ray imaging at different resolution and specimens size. In addition to the

X-ray microscopy, a phase contrast micro-radiation imaging setup can produce X-ray mi-

crographs of live animals at µm resolution. Fig. 1.3 shows three images taken from these

X-ray imaging apparatuses. Specifically, Fig. 1.3(a) shows a high resolution 1024× 1024

pixels X-ray micrograph of an EMT (Epithelial-Mesenchymal Transition) cell with, Fig.

1.3(b) shows 1600× 1200 pixels phase contrast X-ray image of the tip of a toothpick, and

Fig. 1.3(c) shows a montage image of 5× 7 1024× 1024 pixels phase contrast microradi-

ology images of a mouse head. The size of the pixels of these images are 11.78 nm (a),

2.87 µm (b), and 2.87 µm (c). These images showcased the superior performance of the

X-ray imaging in resolution and contrast and the size of specimen compare of conventional

X-ray imaging and other imaging techniques.

After taking projection images at a large number, typically > 100, at different rotation

angles, ideally cover 180 degree, many processing methods can be used to generate a 3D

models from these projection images [4]. For example, a most common method, filtered-

back-projection method (FBP), transforms the sinogram, consist of a stack image lines

from different projection images, to a reconstructed slice of reconstructed image. Putting

these slices together, one can obtain a 3D data metrics of the absorption of each voxel.

Visualization tools can then be used to produce a “model” to recreated the 3D models

which nevertheless is accurate, in terms of special resolution, to the level of the X-ray

microscopy imaging.

The most advanced development in X-ray microscopy, reaching 16.5 nm as mentioned

above, however, as a technology is pushed to state-of-the-art, suffers from a number
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of technical problems and many of these issues cannot be solved by improvement on the

hardware alone. One of the most severe problem due to the extreme high resolution of the

imaging, is the lack of sufficient precision in the rotation movement. It is not possible with

the current technology to guarantee two consecutive rotated images produced precisely

at the pre-assigned rotation axis. Even with the best rotation movement, the axis is

wobbling and jittering which moves the rotation axis from its otherwise fixed position

µm away, which is intolerable with the images of 20 nm resolution and 2-5 nm pixels

size. Such inaccuracy cannot be calibrated because it is not systematic and therefore it

does not only reduce the resolution of the reconstructed model, most likely also cause the

complete failure of the tomography reconstruction. Current solution to this problem is by

manually recognize specific feature in the individual micrographs and then project their

position in the rotation motion and then align the images accordingly. Which is not only

time consuming, but difficult to execute in most of the cases.

The limitation due to the matching of pixel size and the resolution, the size of the

object are often larger than the field of view of an individual image. Although tomography

reconstruction is possible, it loses the references to blank area and therefore the absolute

references of the absorption coefficient. This makes the quantitative analysis based on the

pixel value difficult, if not impossible. There is therefore a strong desire to obtain image

to cover the whole specimen while not losing the resolution. Most common method is to

stitch a series of images taken by imaging different location of the specimen. Alignment

of these images without a precise recording of the specimen position, again limited by

the mechanical movement, would require similar image processing effort. Fig. 1.4 shows

a high-resolution image of a cancer cell stitched from a 3× 3 patch of 1024× 1024 pixel

images. Without obtaining a full set of such stitched images at the full rotation angle,

we tested our tomography process with a set of phantom data generated to simulate the

large-scale tomography reconstruction.

In this study, we also tackle the issue of visualization which is required to analyze 3D

volume data rendered from the X-ray projection images. Volume rendering is a commonly

used technique that generates a two-dimensional image from a volume data with given

8
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Figure 1.1: The structure of synchrotron X-ray microscope.

viewing parameters. Texture-based volume rendering (TVR) [5] using graphics hardware

and texture mapping to accelerate the integration of ray casting is the most popular

visualization technique in recent years. Fourier volume rendering (FVR) [6], [7], is another

real-time visualization method based on Fourier transform. Theoretically, the FVR can

be faster than TVR. But in reality, the voxel classification scheme in FVR is much more

demanding than in TVR because the rendering is carried out in the frequency domain.

This study proposed a method to set a transfer function based on B-spine and demonstrate

successfully its much enhanced efficiency in classifying the voxels in FVR.

This thesis is organized as following: In Chapter 2 two tomography reconstruction

algorithms used in this study is described in detail and two visualization techniques,

TVR and FVR, are presented in Chapter 3. The proposed algorithm for high-resolution

volume reconstruction is described in Chapter 4. The proposed method for tomography

reconstruction of large high-resolution volume is presented in Chapter 5. Chapter 6

summarizes this thesis with further discussion and proposed future work. In Appendix A,

the method of background removal described and the similarity estimation of two images

is described in Appendix B.
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(a)

(b) (c)

Figure 1.2: The synchrotron X-ray microscope in NSRRC. (a) The overview of
microscope. (b) The X-ray emitter. (c) The object holder.
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(a) (b)

(c)

Figure 1.3: The synchrotron X-ray images. (a) An EMT cell. (b) A toothpick. (c)
A mouse head.
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(a) (b)

Figure 1.4: The stitched image of a cancer cell. (a) Nine image blocks acquired
by synchrotron X-ray microscope. (b) The stitched result.
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Chapter 2

Tomography Reconstruction

It is known that a series of X-ray projections around an object can be used to reconstruct

a 3D volume data by using an appropriate reconstruction algorithms [4] (Fig. 2.1). In this

study, two tomography reconstruction methods are used to reconstruct three-dimensional

volumes. For completeness, the following sections review these two reconstruction meth-

ods

2.1 Filtered Back Projection

The Radon transform [8] expresses that using an apparatus of parallel-beam projection

to gather the intensity of X-ray. Let f(x, y) be a two-dimensional function to represent a

slice of an object. Given a projection angle θ, The Radon transform is defined as follows.

pθ(x
′) =

∫ ∞
−∞

f(y′ sin θ + x′ cos θ,−y′ cos θ + x′ sin θ)dy′. (2.1)

pθ(x
′) can be expressed a θ − x plane called sinogram. The middle figure of Fig. 2.1

shows an example of sinogram generated from the Shepp-Logan phantom object [9]. The

sinogram is an image in the plane of θ and x. Each raw of the sinogram is retrieved from

the X-ray images with the same y coordinate.

The Filtered Back Projection(FBP) algorithm based on the Fourier slice theorem [10]

can estimate a tomographic image from a sinogram. The Fourier slice theorem in 2D space

13



is described as follows. Given a 2D function in spatial domain, f(x, y) (Fig. 2.2(a)), and

let pθ(x
′) be the projection of f(x, y) in direction θ where

x′ = x cos θ + y sin θ, (2.2)

and

y′ = −x sin θ + y cos θ. (2.3)

Let F (u, v) be the Fourier transform of f(x, y) (Fig. 2.2 (b)), and Pθ(w) be the 1D Fourier

transform of pθ(x
′). Pθ(w) is a line segment with orientation θ in F (u, v) passing through

the origin. Using the Fourier slice theorem, the projection of f(x, y) along orientation

θ can be obtained by taking the inverse Fourier transform of Pθ(w). To apply the fast

Fourier transform (FFT) [11], a convention between Cartesian coordinate system (x-y

plane) and polar coordinate system (w-θ plane) is required. Let F−12 be the 2D inverse

Fourier transform, the relation between f(x, y) and F (u, v) can be expressed as follows.

f(x, y) = F−12 {F (u, v)}

=
∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2π(ux+uy)idudv, (2.4)

where i =
√
−1. Let u = w cos θ and v = w sin θ to convert the u− v coordinate system

to w-θ coordinate system. Eq. 2.4 can be rewritten as follows.

f(x, y) =
∫ 2π

0

∫ ∞
0

F (w, θ)ew2π(x cos θ+y sin θ)iwdwdθ

=
∫ 2π

0
(
∫ ∞
−∞
|w|F (w, θ)ew2π(x cos θ+y sin θ)idw)dθ. (2.5)

Define

qθ(x
′) =

∫ ∞
−∞
|w|F (w, θ)ew2πx

′idw. (2.6)

qθ(x
′) is the inverse Fourier transform of a filtered line segment. This line segment passes

though the origin of frequency domain and its angle from the horizontal axis is θ. Then,

a ramp waveform, |w|, is multiplied to this line segment. |w| is called the ramp filter

14



because a multiplication in the frequency domain is equal to a filtering process in the

spatial domain. Finally, the FBP equation is obtained as follows.

f(x, y) =
∫ π

0
qθ(x cos θ + y sin θ)dθ. (2.7)

Eq. 2.7 is the fundamental theory of FBP. The implementation of FBP is described

as follows.

1. Apply 1D FFT, F1, to transform each row of the sinogram pθ(x
′),

Pθ(w) = F1{pθ(x′)}.

2. Multiply the ramp filter, |w|, to Pθ(w).

3. Calculate the filtered projections, qθ, by applying F−11 to the filtered Pθ(w).

4. Back project qθ for all θ to the output image.

Fig. 2.3 shows the algorithm of FBP. According to the projection angle θ, the back

projection in Step 4 projects a ray for each element of qθ to the output image as shown

in Fig 2.4(a). If a pixel of the output image is covered by a ray of qθ(x
′), estimate the

covered area and add the value of qθ(x
′) multiplied by the covered area to this pixel. Fig

2.4(b) shows the estimation of the pixel area covered by a ray . Given a re-projected ray,

and there are several sampling points with uniform interval on this ray. For each pixel

f(x, y), if its perpendicular distance to the ray, d, is less than the pixel width, find the

nearest two sampling points on the ray, Ra and Rb. Two areas of rectangles, Wa and Wb,

then can be calculated by Ra, Rb, x and y. Therefore, the area covered by ray can be

estimated by Wa +Wb.

FBP can be implemented on a parallel computing machine[12]. In this study, FBP was

implemented on the GPU (graphic processing unit) and the multi-core processor. The

GPU is a multi-processor chip of SIMD (single instruction multiple data) architecture.

The GPU and CPU used in this study respectively are nVidia GTX 760 and i7 3.4 GHz

with four cores. In the experiments, the test image was the Shepp-Logan phantom object

with 1024×1024 pixels as shown in Fig. 2.5(a). The interval between each two successive
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projection angles was 1◦ and the range of projection angles was 0◦ to 179◦. The CPU

with single-core mode consumed 13.6 second to produce the reconstructed image. The

computational time of CPU with four-core mode was 2.9 second. The computational

time of GPU was 0.1 second. These experiments exhibited that the parallel computing

can reduce the computation cost of FBP extremely.

If the number of projection data is insufficient, FBP could produce a poor result. Fig.

2.5(b) shows an FBP result from a incomplete sinogram of large angle between projec-

tions. The size of image was 1024× 1024 pixels, the interval between each two successive

projection angles was 10◦, and the range of the projection angles was 0◦ to 179◦. Fig.

2.5(c) shows an FBP result from a incomplete sinogram of insufficient projections. The

size of image was 1024× 1024 pixels, the interval between each two successive projection

angles was 1◦, and the range of projection angles was 20◦ to 159◦. The main reason of

these two poor results is that the number of projection data is far less than the size of

output image.
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Figure 2.1: The tomography reconstruction. The middle figure shows a sinogram
created from a series of X-ray projection images, where the object is a Shepp-Logan
phantom and the projection range is 0 to π. A tomography reconstruction algorithm then
can be applied to generate the tomographic image.
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Figure 2.3: The FBP algorithm.
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Figure 2.4: The pixel area covered by ray. (a) In back projection, each filtered
projection is re-projected on the output image. The number in each cell represents the
area covered by ray. (b) The approximation of pixel area covered by ray.

Figure 2.5: The results of FBP. The object was the SheppLogan phantom. (a)
The quality result reconstructed from the range and interval of projection angles were
[0◦, 179◦] and 1◦ respectively. (b) The result of large angle between projections. The
range and interval of projection angles were [0◦, 179◦] and 10◦ respectively. (c) The result
of insufficient projections. The range and interval of projection angles were [20◦, 159◦]
and 1◦ respectively.
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2.2 Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) is an iterative method of tomography re-

construction [13]. There are two main differences between the ART and FBP. First, all

estimation processes of ART is in spatial domain rather than in frequency domain. Sec-

ond, the ART uses several iterations to correct the errors to reconstruct the image. In

most cases, the ART can achieve a better reconstruction than the FBP can get. However,

the computational cost of ART is much larger than the FBP.

Fig. 2.6 shows how does the ART work. Assume that the size of output image

is N pixels, and the size of sinogram is M projections. Let the reconstructed image

and the pixel areas covered by jth ray respectively be two N -dimensional vector, ~f =

[f1, f2, · · · , fN ] and ~wj = [wj1, w
j
2, · · · , w

j
N ]. The projection measured from the jth ray, pj,

then can be expressed as follows.

pj = ~wj ·~f . (2.8)

Assume that ~fi is the result of i-th iteration. The line OU in Fig. 2.6 is the normalized

vector of ~wj,

OU =
~wj√
~wj · ~wj

, (2.9)

and

|OF | = ~fi−1 ·OU. (2.10)

The lengths of OA and HG then can be obtained by the following equations.

|OA| = OU ·OC =
pj√
~wj · ~wj

(2.11)

|HG| = OF −OA =
wj · ~fi−1 − pj√

~wj · ~wj

~wj. (2.12)
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Finally, the result of i-th round, ~fi, then can be obtained by the following equation.

~fi = ~fi−1 +
pi − ~wj · ~fi−1

~wj · ~wj

~wj. (2.13)

Eq. 2.13 is the recursion for the ART. The implementation of ART consists of four

steps as described as follows. First, calculate the ~wj for the j-th ray. The second step is

called forward-projection that estimates a projection value by inner product of ~fi−1 and

~wj. The correction then can be obtained by subtraction of pj and ~wj · ~fi−1. Finally,

back project this correction to ~fi−1. These four steps are iteratively executed until the

correction is smaller than a threshold or the number iteration is larger than a limitation.

However, the original method of ART is not practical because it iterates for each single

projection such that the computational time is extreme high. Eq. 2.13 can be rewritten

by the following equation.

~fi = ~fi−1 +
K∑
j=1

pi − ~wj · ~fi−1
~wj · ~wj

~wj. (2.14)

In Eq. 2.14, the output of each iteration is updated by K rays to achieve better

performances than Eq. 2.13. This improved method is called Simultaneous Iterative

Reconstruction Technique (SIRT). There are many software systems of SIRT have been

developed. Tomo3D is a parallel-computing software system of SIRT [14, 15]. Tomo3D

can be executed on an environment of multi-core CPU and GPU. This study used tomo3D

to reconstruct the large tomographic images. Table 2.1 shows the time comparisons of

FBP on GPU and Tomo3D. Two test data sets named HeLa and Kidney that were a

HeLa cell and a kidney of mice respectively. In HeLa, the range of projection angle was

±70◦, the angle interval was 1◦, and the size of output was 1024×1024 pixels. In Kidney,

the range of projection angle was ±90◦, the angle interval was 1◦, and the size of output

was 4880× 4880 pixels. Note that Tomo3D used 30 iterations to reconstruct each results.

Fig. 2.7 shows the images reconstructed by FBP and Tomo3D. As shown in Fig. 2.7, the

quality of SIRT is better than FBP when the image size is large.

21



!
fi !

fi−1

!w j

pj =
!w j ⋅
!
f

Figure 2.6: The theory of ART. The size of output image is N pixels, and the
size of sinogram is M projections. ~f = [f1, f2, · · · , fN ] is the reconstructed image. ~wj =
[wj1, w

j
2, · · · , w

j
N ] contains the pixel areas covered by jth ray. pj is The projection measured

from the jth ray. ~fi is the reconstructed image after i iteration.
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(a) (b)

(c) (d)

Figure 2.7: The tomogrphic images of FBP and SIRT. (a) and (b) are the images
of HeLa cell, and (c) and (d) are the images of mice kidney, respectively. (a) and (c) were
reconstructed by FBP on GPU, and (b) and (d) were reconstructed by Tomo3D.
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Table 2.1: The time comparisons of FBP and SIRT.
Data Sinogram size Output size Time cost of Time cost of

(pixels) (pixels) FBP on GPU Tomo3D
(sec) (sec)

HeLa 1024× 140 1024× 1024 0.1 0.61
Kidney 4880× 180 4880× 4880 9.1 63.6

The run time statistics were obtained by using Intel i7 3.4GHz CPU, 12GB main
memory, nVidia GTX 760 GPU, and running Windows 8.1. 30 iterations for SIRT.
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Chapter 3

Visualization

Visualization is a technique generates images, animations, or figures, enabling users to

understand and analyze a multidimensional data set. Volume visualization techniques can

be divided into two types, surface rendering and ray-casting rendering. Surface rendering

requires geometric primitives to construct the isosurfaces that represent the set of points

of a selected constant value. These isosurfaces are then rendered using a shading algo-

rithm. Lorensen and Cline [16] proposed the marching cube method. In this approach,

15 primitive types of polygons were defined to create isosurfaces from a unit cube.

Unlike surface rendering, ray-casting rendering produces rendered images by imitating

X-rays passing through an object. The 2D projections are obtained by integrating the

voxel values on the lines along the view direction. The integral is an optical model

proposed by Max [17]. This study uses two ray-casting rendering methods, texture-based

volume rendering and Fourier volume rendering, to verify the reconstructed volume data.

3.1 Texture-Based Volume Rendering

Texture-based volume rendering (TVR) [5] is the most popular visualization technique

in recent years. This method uses graphics hardware (GPU) and texture mapping to

accelerate the integration of ray casting. A texture is a data set stored in a video memory

space of graphics hardware. To use the texture, a proxy polygon is constructed. Each

vertex of the proxy polygon is assigned a coordinate of texture. Note that the range of
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each component of texture coordinate is in [0, 1]. The graphics hardware then uses linear

interpolation to compute the texture coordinate of each pixel on the drawing area of proxy

polygon during the rendering of proxy polygon. According to these interpolated texture

coordinates, the texture then can be mapped to the drawing area of proxy polygon. Fig.

3.1 shows the procedure of texture mapping.

Before the volume rendering, a volume must be stored into the video memory as a

three-dimensional texture. Given a viewpoint and a bounding cube of the volume, TVR

then constructs a set of proxy polygons that parallel the view plane and all vertices are

on the edges of bounding cube. Fig. 3.2 shows the proxy polygons for TVR. These

proxy polygons are used to sample voxels from the three-dimensional texture during the

rendering. In the voxel sampling stage, the color and opacity of each voxel can be decided

by a transfer function to enhance the region of interest. Next, sort these polygons by their

distances to the viewpoint. As shown in Fig. 3.2, Polygon N is the farthest polygon and

Polygon 1 is the nearest polygon. Finally,the rendering result can be generated by using

the alpha blending method to draw the proxy polygons from Polygon N to Polygon 1.

Fig. 3.3 shows a rendering result of two volumes of 2563 voxels, a tomography of head and

a car engine. This result was rendered by TVR with Phong shading [18] and shadowing

[19].

To enhance the region of interest, designing an appropriate transfer function is vital.

Numerous practical and effective transfer functions have been proposed. For example,

Engel et al. [20] proposed the pre-integrated 2D transfer function to improve the rendering

quality. Kindlmann et al. [21] used the surface curvature to determine the contour

thickness for non-photorealistic volume rendering. Lum and Ma [22] proposed the lighting

transfer function to enhance the boundary surfaces of the region of interest. Caban and

Rheingans [23] designed a transfer function that considered the texture of a feature.

Additionally, Correa and Ma developed a number of multidimensional transfer functions

for various purposes [24], [25], [26]. To conveniently modify a transfer function, Wu and

Qu [27] devised three operations for combining transfer functions. Zhou and Takatsuka

[28] utilized the contour tree and residue flow model to automatically generate a harmonic
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color transfer function.

Because TVR samples volume data from the video memory, the original TVR method

cannot render a large volume data if the size of volume data is larger than 10243 voxels. To

solve this problem, the large volume is divided to several blocks before the data loading.

These blocks are then loaded into the video memory according to their visibilities. There

are two methods proposed to construct a data structure for large volume data. Kniss et

al. used level of detail (LOD) to construct a multi-resolution data structure for a large

volume [29]. Wang et al. used the entropy to divid a large volume to several blocks [30].

0.0,	  0.0 1.0,	  0.0

1.0,	  1.00.0,	  1.0

0.4,	  0.75	   0.7,	  0.74	  

0.2,	  0.5	   0.8,	  0.5	  

0.4,	  0.3	   0.68,	  0.3	  

Figure 3.1: Texture mapping. The image on left side is a 2D texture of a tomographic
head. The image on right side is a proxy polygon. Each vertex of proxy polygon is
assigned a texture coordinate. The range of texture coordinate is (0, 0) to (1, 1).
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Polygon N

Polygon 3

Polygon 2

Polygon 1

Figure 3.2: The proxy polygons in TVR Each proxy polygon parallels the view plane
and each vertex is exactly on the edges of bounding cube.

Figure 3.3: A result of TVR This result was generated by TVR with Phong shading
and shadowing. Two volume of 2563 voxels were rendered, a CT head and car engine.
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3.2 Fourier Volume Rendering

Fourier Volume Rendering (FVR)[6], [31], [7] is a volume rendering method based on the

Fourier slice theorem. With a 3D volume data, the FVR algorithm requires O(n2 log n)

time to generate a result. Because it requires time less than O(n3) does, FVR is preferred

for designing a real-time rendering algorithm with a preprocessing step. The Fourier slice

theorem has been described in Section 2.1. The Fourier slice theorem holds in 3D space

(Fig. 3.4). Let F (u, v, w) be the Fourier transform of 3D volume f(x, y, z). Given the

view direction v, the projection Pv(x, y) is the projection along v. Using the Fourier slice

theorem, Pv(x, y) is obtained by taking the inverse Fourier transform of Pv(u′, v′), where

Pv(u′, v′) is the frequency signals in a 2D plane passing through the origin in F (u, v, w).

The FVR method can be summarized in the following equations. Given the volume

data f(x), x∈R3, we define Πv as an operator that performs FVR from the viewing

direction v. The FVR of f(x) from v can be presented as:

I = Πv(f(x))

= F−12 (F3(f(x))δv). (3.1)

In the first part of Eq. (3.1), I is the projection of f(x) from the viewing direction v;

in the second part, δv restricts the spectrum of the 3D Fourier transform, F3, to a plane

passing through the origin and perpendicular to v. We then take the 2D inverse Fourier

transform, F−12 , to obtain the projection I.

Assuming that the Fourier transform of volume data is available, the inverse Fourier

transform of a slice from the frequency domain, which passes through the origin and

is perpendicular to the view direction, is the projection of the volume along the view

direction. This projection is the exact result of direct volume rendering. Using FVR,

because only the inverse Fourier transform of a slice must be calculated, a volume of

n3 voxels can be rendered in O(n2 log n) time, providing the Fourier transform of the

volume is available. To accelerate the speed of rendering, Viola et al. [32] presented an

implementation of FVR using GPU with the advantage of parallel computing to accelerate
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FVR computation.

Because resampling in frequency domain could produce replicas in spatial domain [10],

Malzbender designed several filters to reduce the artifacts caused by the resampling in the

frequency domain [7]. Levoy [31] presented three shading models for FVR, including depth

cueing, directional lighting, and specular reflections. Combined with Levoy’s shading

model, Entezari et al. [33] used the spherical harmonic function to approximate cubic

illumination shading for FVR.

To enhance the region of interest, designing an appropriate transfer function is vital.

Numerous practical and effective transfer functions have been proposed. For example,

Engel et al. [20] proposed the pre-integrated 2D transfer function to improve the rendering

quality. Kindlmann et al. [21] used the surface curvature to determine the contour

thickness for non-photorealistic volume rendering. Lum and Ma [22] proposed the lighting

transfer function to enhance the boundary surfaces of the region of interest. Caban and

Rheingans [23] designed a transfer function that considered the texture of a feature.

Additionally, Correa and Ma developed a number of multidimensional transfer functions

for various purposes [24], [25], [26]. To conveniently modify a transfer function, Wu and

Qu [27] devised three operations for combining transfer functions. Zhou and Takatsuka

[28] utilized the contour tree and residue flow model to automatically generate a harmonic

color transfer function.

For any volume rendering algorithm that processes volume data in a spatial domain,

the transfer function can be applied to the volume, and calculate the rendered result

within the same time bound. However, for FVR with frequency domain data, re-rendering

the volume after applying a transfer function within the same O(n2 log n) time bound is

challenging. A naive approach would be to employ one of the following two methods:

apply the transfer function to the volume data and recompute the Fourier transform, or

implement the convolution operation in the frequency domain. The time required for both

approaches exceeds O(n2 log n). To improve the re-rendering time after the application

of a transfer function, Nagy et al. [34] proposed designing a binary classification transfer

function for FVR. They used the Fourier series of a step function to eliminate unwanted
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Figure 3.4: The FVR algorithm. In the frequency domain, the 2D frequency function
Pv(u′, v′) passing through the origin of F (u, v, w) is extracted. The projection pv(x, y) is
obtained by taking the 2D inverse Fourier transform of Pv(u′, v′).

voxels.

3.2.1 Transfer Function Design for FVR

This study proposes a voxel classification method for FVR [35, 36]. This method uses the

Bézier curve and B-spline to construct transfer functions such that the voxel classification

can be immediately adjusted in rendering time. Let f(x)=a · f1(x) + b · f2(x) where f1(x)

and f2(x) are two integrable functions. The Fourier transform, F , possesses the linear

combination property as shown in Eq. (3.2),

F(f(x)) = F(a · f1(x) + b · f2(x)) = a · F(f1(x)) + b · F(f2(x)), (3.2)

where a and b ∈ R are two constants. This property can be used to efficiently implement

the shading model and transfer function of FVR.

The shading model of FVR proposed by Levoy [31] employs the linear combination

property advantage. Let g be a shading model applied to the volume data f(x). From

Eq. (3.1), the FVR of the resulting volume can be presented as

I = Πv(g(f(x)))
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= F−12 (F3(g(f(x)))δv). (3.3)

If g(f(x)) can be decomposed into a linear combination of m terms, then:

g(f(x)) = h0 · g0(f(x)) + h1 · g1(f(x))

+ . . .+ hm−1 · gm−1(f(x)), (3.4)

where hi is the shading factor. Substituting Eq. (3.4) into g(f(x)) in Eq. (3.3), we obtain

Eq. (3.5).

I = Πv(h0 · g0(f(x)) + h1 · g1(f(x))

+ . . .+ hm−1 · gm−1(f(x)))

= FT−12 ((h0F3(g0(f(x)))

+h1 · F3(g1(f(x)))

+ . . .+ hm−1 · F3(gm−1(f(x))))δv)

= h0 · Πv(g0(f(x))) + h1 · Πv(g1(f(x)))

+ . . .+ hm−1 · Πv(gm−1(f(x)))

=
m−1∑
i=0

hi · Πv(gi(f(x))). (3.5)

In Eq. (3.5), the rendered result is the summation of m weighted FVR results. Therefore,

recomputing the 3D Fourier transform is not required if Πvgi(f(x)), i = 0, 1, ...,m− 1, in

Eq. (3.5) are available.

3.2.2 Bézier curve Transfer Function

A Bézier curve defined by m control points is shown as Eq. (3.6):

B(u) =
m−1∑
i=0

wibi,m−1(u), (3.6)
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Figure 3.5: A spline with m control points can be used to present the transfer
function. The shape of a spline curve can be modified by changing the height of the
control points using a graphic user interface system.

where u and wi∈R, and

bi,m−1(u) =

 m− 1

i

 (1− u)m−i−1ui. (3.7)

As shown in Fig. 3.5, a Bézier curve is defined in the U-W coordinate system, where

the U-axis corresponds to the voxel value and the W-axis corresponds to the shading

weight of the voxel value. The Bézier curve consists of m control points, pi = (ui, wi), i =

0, 1, ...,m− 1, ui = u0 + ih and h = 1
m−1 . By adjusting wi, we edit the transfer function.

Combining Eqs. (3.6), (3.3), and (3.5), FVR with a Bézier curve transfer function is

written as

I = F−12 (F3(
m−1∑
i=0

wibi,m−1(f(x)))δv)

= F−12 ((
m−1∑
i=0

wiF3(bi,m−1(f(x))))δv)

=
m−1∑
i=0

wiΠv(bi,m−1(f(x))). (3.8)

According to Eq. (3.8), the FVR of a volume after applying the Bézier curve transfer

function of m control points is the summation of m weighted FVR results.
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3.2.3 B-Spline Transfer Function

One disadvantage of the Bézier curve transfer function is its inability to enable good

localized control of the curve shape. Modifying a control point may alter the shape of a

significant portion of the Bézier curve. Compared to the Bézier curve, a B-spline [37] is

more useful in controlling the curve shape.

A k-degree B-spline is defined in Eq. (3.9):

R(u) =
m−1∑
i=0

wiri,k(u), (3.9)

where

ri,k(u) =
si,k(u)∑m−1
j=0 sj,k(u)

(3.10)

and si,k(u) is the B-spline basis function. Let a non-decreasing sequence T = {ti|ti ≤

ti+1, i = 1, . . . , l − 1} be the knot vector. si,k(u) is recursively defined as Eq. (3.11):

si,k(u) =
u− ti
ti+k − ti

si,k−1(u) +
ti+k+1 − u
ti+k+1 − ti+1

si+1,k−1(u), (3.11)

and

si,0 =


1 if ti ≤ u < ti+1,

0 otherwise.
(3.12)

Given the volume data f(x), taking Eq. (3.9) as the transfer function, and applying FVR

to the resulting volume, we have

I = Πv(R(f(x))). (3.13)

Substituting Eq. (3.9) into Eq. (3.13), and according to Eq. (3.5), we have

I = F−12 (F3(
m−1∑
i=0

wiri,k(f(x)))δv)

= F−12 ((
m−1∑
i=0

wiF3(ri,k(f(x))))δv)

34



=
m−1∑
i=0

wiΠv(ri,k(f(x))). (3.14)

The FVR of a volume after applying the B-spline transfer function is the summation of

the m-weighted FVR results.

3.2.4 Increasing the Control Points

Using additional control points enables the transfer function to be easily shaped to a

desired form. Unfortunately, the memory space requirements are linearly proportional to

the number of control points. Consequently, the volume data may not fit into the GPU

memory. To overcome this problem, we propose to increase the number of control points,

but then cluster the control points into groups. Control points in the same group will

either share identical shading factors, or their shading factors can be obtained through

interpolation. The memory required then depends on the number of groups, which are

manageable in size.

Given n control points in q clusters, the i-th cluster contains mi control points with

the weight wi, and the formula of the spline curve is provided as Eq. (3.15):

R(u) =
q−1∑
i=0

mi−1∑
j=0

wiαjrî(pj),k
(u), (3.15)

where αj is a constant and î(pj) is the index of the control point pj. Applying Eq. (3.15)

to Eq. (3.5), we have:
q−1∑
i=0

wiΠv(
mi−1∑
j=0

αjrî(pj),k
(f(x))). (3.16)

The control points in the same cluster share the same shading weight; thus, only one

copy of the volume data is stored in the GPU memory. In Fig. 3.6, the curve consists

of eight control points. We can cluster the eight control points into four groups, G0 =

{p0},G1 = {p1,p3,p5},G2 = {p2,p4} and G3 = {p6,p7}. In this case, only four copies

of the volume data are required.

If the weight of a control point can be obtained by interpolation from the weights of

other control points, the control point can be clustered into a group. Given a sequence of
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control points pc, 0 ≤ i ≤ c ≤ j < m, the weight of the control point pd, i < d < j, can

be obtained through polynomial interpolation

wd =
j∑

c=i,c6=d
wclc(ud). (3.17)

In Eq. (3.17), lc is an interpolation basis function, such as linear interpolation, spline

interpolation, or Lagrange interpolation. For the ease of explanation, we assume only

one control point is obtained through interpolation. However, generalizing to more than

one control point is not difficult. Applying the transfer function to a volume, Eq. (3.14)

becomes:

I = wdΠv(rd,k(f(x))) +
m−1∑

c=0,c6=d
wcΠv(rc,k(f(x)))

=
j∑

c=i,c6=d
wclc(u)Πv(rd,k(f(x))) +

m−1∑
c=0,c6=d

wcΠv(rc,k(f(x)))

=
j∑

c=i,c6=d
wiΠv(lc(u)rd,k(f(x)) + rc,k(f(x))) +

∑
0≤c<i

wcΠv(rc,k(f(x))) +
∑

j<c<m

wcΠv(rc,k(f(x))). (3.18)

The simplest polynomial interpolation is linear interpolation, given three control points

pi = (ui, wi), pj = (uj, wj) and pd = (ud, wd), where ui < ud < uj. The weight wd can be

obtained by

wd = (1− β)wi + βwj, (3.19)

where β = (ud − ui)/(uj − ui). Applying the transfer function to the volume, Eq. (3.14)

becomes

I = wiΠv(ri,k(f(x))) + wdΠv(rd,k(f(x))) + wjΠv(rj,k(f(x)))

= wiΠv(ri,k(f(x))) + wjΠv(rj,k(f(x))) +

((1− β)wi + βwj)Πv(rd,k(f(x)))

= wiΠv(ri,k(f(x)) + (1− β)rd,k(f(x))) +

wjΠv(rj,k(f(x)) + βrd,k(f(x))). (3.20)
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Figure 3.6: The clustered control points. Eight control points are clustered into four
groups. In this case, only four copies of volume data are required.

Equation (3.20) shows that recomputing the Fourier transform of the volume data is not

required if the weights of the control points are modified.

3.2.5 Results of FVR

We developed a GUI (Graphical User Interface) software system with the proposed trans-

fer function for FVR. Using the developed software system, users can easily modify the

transfer function and change the view direction. Our implementation environment was

as follows:

• CPU: Pentium 4, 2.4 GHz,

• Memory: 2 GB,

• GPU: nVidia GeForce 8800 GT,

• Video memory: 768 MB,

• Viewport size: 512× 512 pixel.

To evaluate the performance, we used two sets of volume data of different size, 1283 and

2563, with the B-spline transfer functions defined by one, four, and six control points.
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We measured the rendering time and the pre-processing time, which included computing

a 3D FFT. The performance of different cases is shown in Table 3.1. Because modern

GPUs support parallel computing, increasing the volume size and number of control points

slightly affect the frame rate. However, the pre-processing time is linearly proportional

to the volume size and the number of control points.

This study presents the rendered results using several data sets. The first data set

was CT-scan human chest volume data. The volume size was 2563 voxels. The rendered

results obtained using the Bézier curve and the B-spline transfer functions defined by six

control points are shown in Figs. 3.7 and 3.8. In both Figs. 3.7 and 3.8, the images on the

left show the rendered result obtained by applying the transfer functions that are shown

on the right. The transfer functions in the first and second rows of both figures were

designed to depict lung and bone structure, respectively. As shown in Fig. 3.8, using

B-spline as the transfer function can significantly enhance lung capillaries. The result

in Fig. 3.9 show that using a transfer function with greater control points can achieve

better rendering. This study used a B-spline transfer function with 20 control points

clustered into six groups. A comparison of the images shown in Figs. 3.8 and 3.9, the

lung capillaries were significantly enhanced.

We also tested two volume data sets of HeLa cells, HeLa1 and HeLa2 (see Section

4.1.3). These data sets were reconstructed from the synchrotron radiation images aligned

by the proposed alignment method(see Ch. 4). The size of HeLa1 and HeLa2 is 2563

voxels. Fig. 3.10 shows the results of HeLa1. The results were obtained using the B-

spline transfer function of 25 control points. Among these control points, three control

points, P0 to P2, were used to adjust the weights of membrane voxels. The cluster

G0 contained first two control points to adjust the background voxels. The cluster G1

contained middle six control points to adjust the weights of the voxels which contain the

intensities between membrane and particles. The cluster G2 contained the remained 11

control points to adjust the weights of particle voxels. In the top row, we mainly enhanced

the weights of P1 and P2 to render the membrane of cell. The bottom row shows the

results of the particles. The gray scales of particles are between 0.5 to 1.0, the weight of

38



G2 was enhanced to render the particles.

Fig. 3.11 shows the results of HeLa2. The results were obtained using the B-spline

transfer function of 50 control points. Among these control points, three control points,

P0 to P2, were used to adjust the weights of membrane voxels. The cluster G0 contained

first two control points to adjust the background voxels. The cluster G1 contained middle

seven control points to adjust the weights of the voxels which contain intensities between

membrane and particles. The cluster G2 contained the remained 38 control points to

adjust the weights of particle voxels. In the top row, we mainly enhanced the weights

of P1 and P2 to render the membrane of cell. The bottom row shows the results of

the particles. The gray scales of particles are between 0.5 to 1.0, the weight of G2 was

enhanced to render the particles.

One disadvantage of the proposed method is the significant amount of memory re-

quired. A user can more easily design a curve shape if more control points are used.

However, the memory required increases in linear proportion to the number of control

points, and the GPU memory is limited. Currently, commercially available GPUs can

process a volume of 2563 if six control points are used. When additional control points

are required, the control points can be clustered into groups if they possess the same

weight or their weight can be obtained through interpolation. Each group requires a copy

of the volume to ensure the required memory can be maintained at a manageable size.

One limitation of the proposed method is that transfer functions containing a negative

value are not allowed. This issue is the future research. Additionally, another future works

is designing an efficient sampling method for extracting a slice of the frequency domain

volume because the computing time required for sampling a slice of the frequency domain

data is longer than that required to perform the inverse 2D Fourier transform. A more

efficient sampling method is required to improve the overall performance.
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Figure 3.7: The results of FVR with Bézier curve transfer function(CT chest).
The rendered results that were obtained using the Bézier curve transfer function. The
data set was the CT-scan human chest of 2563 voxels. The left image in the first row
depicted lung structure. The image in the right shows the transfer function. We tried to
enhance the gray scales between 0.4 and 0.65. But the gray scales between 0.25 and 0.8
are also enhanced so that the lung capillaries were blurred. The left image in the second
row shows the bone structures through enhancing the gray scales between 0.9 and 1.0.
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Figure 3.8: The results of FVR with B-spline transfer function(CT chest). The
same volume data used as Fig. 3.7. The rendered results that were obtained using the
B-spline transfer function. The first row shows lung structure and the second row shows
the bone structure. Using the B-spline transfer function was easier to control the curve
shape. The lung capillaries were more clearly shown in the rendered result compared to
the result in Fig. 3.7.
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Figure 3.9: The results of FVR with B-spline transfer function(CT chest).
The same volume data used as Fig. 3.7. The rendered results were obtained using the
B-spline transfer function defined by 20 control points. The control points were clustered
into six groups, G0∼5. The first row shows lung structure, the gray scales between 0.4
and 0.65 were enhanced. The second row shows bone structure, the gray scales between
0.7 and 1.0 were enhanced. Compared to the results that are shown in Fig. 3.8, the lung
capillaries and backbone structure were further enhanced.
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Figure 3.10: The results of FVR with B-spline transfer function(HeLa1). This
is the volume of HeLa cell with 2563 voxels. The results were obtained using the B-
spline transfer function of 25 control points. P0 to P2, were used to adjust the weights
of membrane voxels. The cluster G2 contained the final 11 control points to adjust the
weights of particle voxels. In the top row, the weights of P1 and P2 were enhanced to
render the membrane of cell. In the bottom row, the weights of G2 is enhanced to render
the particles.
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Figure 3.11: The results of FVR with B-spline transfer function(HeLa2). This
is the volume of HeLa cell with 2563 voxels. The results were obtained using the B-
spline transfer function of 50 control points. P0 to P2, were used to adjust the weights
of membrane voxels. The cluster G2 contained the final 11 control points to adjust the
weights of particle voxels. In the top row, the weights of P1 and P2 were enhanced to
render the membrane of cell. In the bottom row, the weights of G2 is enhanced to render
the particles.
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Table 3.1: The computing time of two cases using the B-spline as a transfer
function.

Data size
(voxel) 1283 2563

The number of
the control points 6 4 1 6 4 1
Memory required

(MB) 96 64 16 768 512 128
Pre-processing

(second) 18.1 12.1 3 167.4 109 8.7
Frame rate

(FPS) 64.1 65.8 66.46 59.2 62.41 66.26
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Chapter 4

High-Resolution Volume

Reconstruction

Theoretically, the volume image can be reconstructed from a sequence of high-resolution

projections. This is not true, because the problem of mechanical imprecision arises when

the resolution increases to a certain level, such as that required for cell tomography. When

the pixel size is approximately 10 nm, a slight mechanical vibration can hinder accurate

reconstruction. Fig. 4.1 demonstrates this problem. In Fig. 4.1(a), four X-ray images of

a cancer cell are taken from different projection angle. The yellow lines mark the Y-axis

positions of a black particle. Because the mechanical vibration, the Y-axis position of each

black particle in the images are different. Fig. 4.1(b) shows the sinogram constructed

from a row in each image of the 140 X-ray images of a cancer cell. The sinogram is no

smooth and the reconstruction is not possible. Fig. 4.1(c) shows the FBP result.

In our cell tomography experience, the pixel size of image is 11.78 nm. Rotating the

object holder can cause a 5 to 30 pixel difference in position because of the mechanical

instability. Although the position of the object holder can be calibrated during image ac-

quisition, the calibration process can take an unacceptably long time, causing the object

to receive excessive X-rays. The TXM controller provided by Xradia (hereinafter called

“Xradia”) was designed to solve the misalignment problem. Unfortunately, manual ad-

justments are generally required to obtain satisfactory tomography reconstruction. A sim-
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ilar problem also exists in electron microscopic tomography. Using the cross-correlation

function to align the electron microscopic images is a common solution to this problem

[38]. A software system , “SPIDER”, was implemented based on the cross-correlation

function[39]. However, the cross-correlation function alignment does not considering the

projection model, thus limiting the quality of tomography reconstruction.

This study presents a feature-based alignment approach for calibrating the displace-

ment caused by mechanical vibration [40]. Because a synchrotron X-ray is a parallel

beam projection, the resulting displacement can be decomposed into vertical and hori-

zontal displacements. The proposed method aligns the images in the vertical direction

by direct image alignment. Calibrating the images in the horizontal direction is more

complex than that in the vertical direction. In addition to matching feature points, the

matched feature points must form sine-wave shaped loci. We propose approximating the

loci of the matched feature points in the x-θ coordinate system according to sine waves

by using the least square curve fitting. The deviation between the loci and the sine waves

provides information for horizontal calibration.

The following two sections respectively describe the proposed method and the results.

4.1 Methods

4.1.1 Sample Preparation and Image Acquisition

HeLa cells were used in this study. The cells were grown on Kapton film, and endocytosis

[41] was used to stain HeLa cells by absorbing gold nanoparticles of 250µM (micromo-

lar). The cells were then fixed in a container using a mixture of paraformaldehyde and

glutaraldehyde[42].

The synchrotron microscope used in this study was built at the National Synchrotron

Radiation Research Center, Hsinchu, Taiwan. The CCD size is 2048×2048 pixels, and the

field of view is 24 µm. Each projection image was taken after a 1◦ rotation. To prevent

the object holder from becoming perceptible (occurring when the object holder is nearly

parallel to the X-ray), the range of the rotation angle of the object holder was ±70◦. Only
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(a)

(b)

(c)

Figure 4.1: The misalignment in tomography. (a) Four X-ray images of a cancer
cell acquired from different projection angles. The yellow lines mark the Y-axis positions
of a black particle. These positions are different due to the mechanical vibration. (b) The
sinogram extraced from 140 X-ray images with misalignment. (c) The FBP result of (b).
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140 projection images were acquired. The size of each image was 1024× 1024 pixels, and

the pixel size was 11.78 nm. In this study, the exposure time of each image was 1 second.

4.1.2 The Alignment Method

A projected feature point is a pronounced mark in an X-ray projection image. Alignment

is accomplished by first aligning the projected feature points in the vertical direction and

then in the horizontal direction. The projected feature points should be maintained in

the vertical direction. Thus, vertically aligning the projected feature points in the second

image to the previous image is sufficient. However, the location of the feature points in the

horizontal direction varies among projection images. Calculating the horizontal location

of the feature points is a more difficult task than alignment in the vertical direction. The

following subsections describe these steps.

Vertical Direction Alignment

For each pair of projection images, the sum of the intensity values on each row is calcu-

lated. The sums of the rows form histograms that should be similar in a pair of consecutive

images. The vertical displacement can be calculated by minimizing the difference between

the histograms.

Given an N ×M image I(x, y), 0 ≤ x < N , 0 ≤ y < M and I(x, y) ∈[0, 1]. The

vertical histogram h is calculated by

h(I, y) =
1

N

N−1∑
x=0

I(x, y). (4.1)

Assume that Ia is the unaligned image and Ib is the reference image. The vertical cor-

rection of Ia is ŷ, which can be estimated by

ŷ = arg min
y′

M−1∑
y=0

(h(Ia, y + y′)− h(Ib, y))2. (4.2)

To achieve the most favorable results, the image is preprocessed to enhance the features. In

this experiment, the estimated correction is more accurate when the images are enhanced
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by applying the edge detection method[43].

Horizontal Direction Calibration

The horizontal calibration is based on the projected feature points forming a sine-shaped

locus in the x-θ coordinate system. This calibration involves three steps: detecting pro-

jected feature points, matching projected feature points to construct a set of loci from

the matched projected feature points, and fitting the loci to sine curves to adjust the

horizontal displacement of images.

Detecting Projected Feature Points

Feature point extraction is a fundamental step in image stitching, object recognition, and

feature-based image alignment [44]. Researchers have proposed many feature detection

methods. The corner detection method proposed by Harris and Stephen [45] is commonly

used to extract corner-shape regions in an image. To achieve scale invariance, Kadir

and Brady [46] selected the salient region from the image scale-space as the feature that

possesses the maximum entropy. Lowe [47] proposed the scale-invariant feature transform

(SIFT) algorithm to select local extrema from the differences of a Gaussian (DoG) pyramid

in an image. The SIFT algorithm uses the gradient location-orientation histogram as a

feature descriptor to achieve rotation invariance and illumination invariance. Researchers

have proposed several improved versions of the SIFT algorithm. Bay et al. used the Haar

wavelet to expedite feature detection [48]. Rady et al. proposed entropy-based feature

detection [49], and Suri et al. combined mutual information alignment with the SIFT

algorithm [50].

In this study, a modified SIFT algorithm was employed to extract automatically the

projected feature points contained in X-ray images. The typical SIFT implementation in-

volves describing a feature according to its location, size, the orientation of the sampling

region, and the image gradient histogram in the sampling region. Because the proposed

method matches the projected feature points in two X-ray images based on mutual in-

formation [51, 52, 53], each projected feature point in this study contained the entropy
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of the sampling region rather than the image gradient histogram. To reduce the noise

and the number of low-contrast projected feature points, the entropy of each selected

projected feature point must exceed a given threshold. The experiments in this study

entailed setting a threshold between 0.5 and 1.0. Because the features in the objects

are gold nanoparticles, the size and orientation of the sampling region were fixed in this

implementation.

Matching Projected Feature Points

Let Fi, i = 1, . . . ,m be the sets of projected feature points in m projection images. The

projected feature points are classified into k groups. In the ideal case, each group is the

set of projected feature points, which are the projections of a feature (i.e., gold nanopar-

ticle) in the object from various angles. Because the rotation angle of the object is small,

the projected feature points are in proximity and have similar mutual information in two

consecutive images. However, the distance between the two matched projected feature

points depends on the distance between the feature and the rotation axis of the object.

This means that an affine transform cannot match the projected feature points in two im-

ages. Therefore, this study presents a greedy method for classifying the projected feature

points. For each pair of images, the random sample consensus (RANSAC) method[54] was

first applied to compute an initial alignment of the two images, and a tracking method

was then employed to match the projected feature points in the next image.

Several feature tracking methods are available [44]. The proposed method is designed

based on the Shafique and Shah’s method [55], which is a greedy algorithm for tracking

moving objects in videos, and the Tang and Tao’s method [56], which integrates the

hidden Markov model to eliminate unreliable matches.

Given the projected feature points sets Fi−1 and Fi, the RANSAC method was applied

to compute a translation matrix Ti,i−1, so that a sufficient number of projected feature

points p and q in Fi−1 and Fi respectively, |Ti,i−1(q)− p| is less than a given threshold ε.

Applying translation matrices Ti,i−1, i = 2, . . . ,m to the consecutive images achieves the

initial alignment of the m projection images. All of the images are aligned based on the
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first image.

Given the initially aligned projected feature points Fi, i = 1, . . . ,m, the following

procedures yield a set of possible loci of the projected feature points produced by feature

points in the object.

1. Every projected feature point in F1 is the starting point of a locus.

2. Iteratively process Fi, i = 2, . . . ,m;

(a) Let L be the set of the loci computed. For each locus l ∈ L, compute Ti−1,i(p)

where p is the final point of l and Ti−1,i is the inverse of Ti,i−1. Let Λ be a

region in I i centered at Ti−1,i(p). Search in Λ for the projected feature points

(Fig. 4.2). If this region contains only one projected feature point q, then that

point q is selected as the final point of l. If the region contains more than one

projected feature point, then select the q that has the greatest M , where M

is the average entropy of q and the previous t points on l. If t is greater than

i− 1, then M is the average entropy of q and the points of the entire locus l.

(b) If Fi contains unmatched projected feature points, then each of these points

creates a new locus.

3. Reverse the image orders and repeat Step 2, but do not include 2b to backtrack all

loci.

The X-ray images used in this study measured 1024 × 1024 pixels, and 128 × 32 pixels

was the size of search region Λ, and five previous points for t.

Because two loci could intersect (i.e., two projected feature points on two loci could

overlap or be extremely close), the average entropy must be computed to select the best-

matching projected feature point in Step 2a. In this step, some projected feature points

with a high entropy in Fi are not included in any locus. These significant projected feature

points should not be disregarded, and Step 2b entails creating a new locus for each of

them.
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After Step 2, the forward feature tracking required to construct the set of loci is

complete. To verify the correctness of the loci and complete the loci added in the Step

2b, backtrack all loci in the final step.

4.1.3 Horizontal Displacement Estimation

Let the set of k loci collected in the previous step be {l1, l2, . . . , lk}. Each locus, lj,

1 ≤ j ≤ k, consists of m projected feature points, < f 1
j , f

2
j , . . . , f

m
j >. These projected

feature points are expected to be the projections of a feature, pj, in the object from

various angles. Assume that these projected feature points are the projections from −π/2

and π/2. Recall that f ij is not a point, but a rectangular box. Take the X-coordinates

of the center of the rectangular boxes, x, and transform the j to θ, the direction of the

projections. Then, draw (x, θ) for all f ij in the x-θ coordinate system. The locus of (x, θ)

corresponds to a sine curve, (i.e., the sinogram). Given a set of loci of features, the

horizontal alignment is conducted by fitting the curves to a set of sine curves and then

by computing the deviations.

Consider a locus, lj, and assume that the projected feature points on the locus are

the projections of the feature point pj. This feature point pj can be expressed as (γj, ωj),

where γ is the radial coordinate and ω is the angular coordinate. According to the Radon

transform [4], the corresponding horizontal position xj in the ith image (rotation angle

θi), 1 ≤ i ≤ m, can be written as

xij = γj sin(θi + ωj) (4.3)

= γj(cos θi sinωj + sin θi cosωj), (4.4)

or in matrix form as

x = Θu, (4.5)
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where u = [u1, u2]
T = [γj sinωj, γj cosωj]

T , x = [x1j , x
2
j , ..., x

m
j ]T , and

Θ =



cos θ1 sin θ1

cos θ2 sin θ2
...

...

cos θm sin θm


.

u1 and u2 can be solved by the least-squares method,

u = (ΘTΘ)−1ΘTx. (4.6)

Finally (γj, ωj),

γj =
√
u21 + u22 (4.7)

and

ωj = sin−1(
u1
γj

). (4.8)

The horizontal displacement x̂ij is estimated by

x̂ij = γj sin(θi + ωj)− xij. (4.9)

Because both ωj and π−ωj are solutions to (4.8), choose the one that minimizes the sum

of errors,
∑m
i=1 x̂

i
j. To determine the horizontal displacement ci for the ith image from k

feature loci, use the average of the k horizontal corrections:

ci =
1

k

k∑
j=1

x̂ij. (4.10)

Some loci are unreliable because of noises, out-of-view projected feature points, or bad

projected feature points matching. These loci should be removed. For each locus lj,

adjust the points on lj based on the estimated ci, 1 ≤ i ≤ m. lj is unreliable if the

absolute peak distance between a point on the adjusted lj and its best-fitting sine wave

is greater than a given threshold σ. If there are no unreliable loci, stop the algorithm
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and output the aligned results. Otherwise, remove the unreliable loci and repeat the

horizontal displacement estimation algorithm.

Figure 4.2: The feature tracking between two X-ray projection images I i−1 and
I i. For a point p, its corresponding projected feature point, q, can be searched in the area
Λ that is determined by applying the affine transformation Ti−1,i to p.

4.2 Results

The proposed algorithm was used to align projection images and then reconstruct the

3D volume data of HeLa cells from X-ray projections. To verify the correctness of the

alignment algorithm, a phantom data set was used to simulate the HeLa cell stained

using the gold nanoparticles. The following subsections present the construction details

and results obtained.

4.2.1 The Phantom

A volume datum containing 20 imitative gold nanoparticles was constructed, and X-ray

projections of the shifted volume were generated to simulate machine vibrations. Fig.

4.3 shows the simulated X-ray image of the phantom cell, in which 180 projections of

512 × 512 pixels images were generated. The volume rotated is 1◦ between successive
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projections. Before each projection, the volume was shifted in the vertical and horizontal

directions to simulate the mechanical imprecision of the object holder. The amount of

displacement was determined according to a random number uniformly distributed over

the range ±20 pixels.

The proposed alignment algorithm was used to calibrate the images, which were first

aligned in the vertical direction. The detection and matching methods of projected feature

points were then applied to determine 16 feature points. The locus of the horizontal

position of a feature point over various angles should form a sine-shaped curve. Fig. 4.4(a)

shows the loci of the 16 points. This figure is in the x-θ coordinate system: the vertical axis

represents the rotation angle, and the horizontal axis represents the horizontal position of

the projected feature point. The loci are not smooth because of horizontal displacement.

The most suitable sine waves to fit the loci (Fig. 4.4(b)) were then calculated, and the

displacement of the feature points in the horizontal position were estimated (Fig. 4.4(c)).

The filtered back projection (FBP) algorithm was then used to reconstruct the 3D volume

data based on the aligned X-ray images [12].

To verify the accuracy of the proposed alignment method, the positions and diameters

of the spherical particles in the reconstructed images were compared with the original

volume data, which included 20 spherical particles, and the diameter of each particle was

12 voxels. There were 20 particles found in the reconstructed volume. The average errors

of the particle center and diameter were found to be 0.72 and 0.03 voxels, respectively.

The reconstructed volume is close to the original volume. Fig. 4.5(a) shows a slice in the

original volume data. Fig. 4.5(b) shows the tomography results of the same slice obtained

using the proposed alignment method. For comparing the results of the proposed method

with the SPIDER, the same phantom image was reconstructed using SPIDER. Fig. 4.5(c)

shows the tomography reconstructed results using SPIDER.

The mean squared error (MSE) of the foreground voxels between the original volume

data and the reconstructed volume was also calculated. A voxel was classified as a fore-

ground voxel when its intensity exceeded a given intensity threshold. The MSE between

the original volume and the reconstructed volume from the unaligned volume was found
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to be 0.029. The reconstructed volume obtained from the images aligned using SPIDER

has an MSE of 0.002. For the volume reconstructed from the images aligned using the

proposed method, the MSE was found to reduce to 0.0005. Because Xradia does not

recognize the file format of the phantom images, the proposed method was not compared

with Xradia.

4.2.2 HeLa Cells

Figs. 4.6(a) and (b) separately show the projection images of two HeLa cells. The first

HeLa cell, named HeLa1, contained 84 identified projected feature points. Six reliable

feature points were selected from the identified projected feature points. Fig. 4.7(a)

shows the loci of the selected points in the x-θ coordinate system. Fig. 4.7(b) shows the

sine waves that fit the loci most effectively. The projection images of HeLa1 are aligned

according to the fitted sine waves, and Fig. 4.7(c) shows the loci of the projected feature

points after alignment. In the second HeLa cell, HeLa2, four reliable features were selected

from 89 identified projected feature points, and Fig. 4.7(d) shows the loci. Fig. 4.7(e)

shows the sine waves that fit the loci. Fig. 4.7(f) shows the loci of the projected feature

points after alignment. To compare the different alignment methods, SPIDER and Xradia

were also applied to align the projection images of HeLa1 and HeLa2. The same FBP

algorithm was then applied to reconstruct the volumes from the aligned images.

Slices in the reconstructed volumes of HeLa1 and HeLa2 are shown in Figs. 4.8(a), (b),

and (c) and Figs. 4.8(d), (e), and (f) respectively. Figs. 4.8 (a) and (d) were obtained

using the proposed method, Figs. 4.8 (b) and (e) were obtained using SPIDER, and

Fig. 4.8 (c, f) were obtained using Xradia. As shown in Fig. 4.8, the results of the

proposed method were more favorable than those of SPIDER and Xradia. Comparing

the results of the SPIDER and Xradia, the proposed method exhibits most well-defined

membrane structures with least amount of artifacts, which is evident from 4.8(a) and (d).

The texture-based volume rendering algorithm [5] was used to produce a 3D image of the

volume data. Figs. 4.9 (a), (b), and (c) show the volume-rendering results of HeLa1, and

Figs. 4.9 (d), (e), and (f) show the volume-rendering results of HeLa2. Figs. 4.9 (a) and
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(d) show the results of the proposed method, Figs. 4.9 (b) and (e) show the results of

SPIDER, and Figs. 4.9 (c) and (f) show the results of Xradia. The gold nanoparticles in

Figs. 4.9 (a) and (d) are clearly shown, thereby enabling the evaluation of the location,

the size, and the amount of the particles. The cell membranes can also be visualized in

the rendered image, helping the user identify the geometry of the cells.

The proposed algorithm was applied to process 10 other X-ray image sets of HeLa cells.

Among these 10 image sets, eight were successfully reconstructed (A1-A8, Figs. 4.10 and

4.11) except the other two (B1 and B2, Fig. 4.12 and 4.13). SPIDER and Xradia were also

applied to the same sets of image data. Neither SPIDER nor Xradia could align the images

in B1 and B2 for reconstruction. Specifically, SPIDER was effective for A3, A5, and A6;

Xradia was effective for A1, A2, A5, A7, and A8. Although the reconstructions could be

completed, comparing to our results, the artifacts produced due to the misalignment are

more apparent.

Table 4.1 lists the experiments conducted in this study including the phantom, HeLa1,

HeLa2, and the other 10 HeLa cells, as well as the computing time required. This table

shows that the main factors affecting computational time are the image size, number of

images, and number of identified projected features. The experiments in this study show

that when the input data contains 180 images of 1024 × 1024 pixels, the alignment can

be performed in 10 min.

Fig. 4.12 and 4.13 show 16 frames of unsuccessful cases respectively. The main reason

for the unsuccessful cases is the insufficient number of projected feature points in the X-

ray images. In B1, most projected features exist in the image series less than 10 frames.

Although the membrane of cell appears in each frame, the low contrast and large size

cause the membrane cannot be a feature. The occluded projected features also exist in

B1 and cause the feature matching failed. The same problem is in B2. No any reliable

projected feature can be found in B2.

The most crucial factor affecting the performance of the proposed method is the num-

ber of reliable projected feature points. If there are enough reliable projected feature

points, even if the projected feature points are not in the field of view in some projec-
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tions, the method still works well because it also considers the set of partial loci. The

proposed method performs most favorably if the features that produce the projected fea-

ture points are close to the rotational axis. Carefully adjusting the rotation axis before

images acquisition can improve the quality of the reconstruction.

Considering the shape of the projected feature points, aside from particle objects,

the proposed method can manage any shape of object if it contains a sufficient number

of distinct projected features. For examples, the corners of a square, the two tips of a

rod, and the branch points of a tree-structured object can be used as feature points as

long as the features do not deform during image acquisition. If the images satisfy these

requirements, then the proposed method can successfully align the images.

A graphical user interface software system for the Windows system and Mac OS X

10.8 has been developed. The software system can be downloaded from the following

URL: http://www.cs.nctu.edu.tw/∼chengchc/SCTA or http://goo.gl/s4AMx.
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Figure 4.3: The simulated X-ray image of the phantom data. 180 emulated X-ray
images were generated. The size of each image is 512 × 512 pixels, the rotation angle
between two consecutive images is 1◦, and the ranges of the vertical and horizontal errors
are ±20 pixels.
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Figure 4.4: Feature loci of the phantom data: (a) loci of 16 projected feature
points before horizontal alignment; (b) best-fit sine waves; and (c) the aligned loci.

Figure 4.5: One slice in the phantom data: (a) original image; (b) result of proposed
method; and (c) the result of SPIDER.
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Figure 4.6: X-ray projection images of HeLa cells. 140 synchrotron X-ray projection
images of 1024 × 1024 pixels were acquired for HeLa1 (a) and HeLa2 (b). The rotation
angle between two projection images is 1◦.
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Figure 4.7: The loci of the reliable projected feature points of HeLa1 and
HeLa2. (a) There were six reliable feature loci found in the acquired images of HeLa1.
(b) Most suitable sine waves of HeLa1, and (c) aligned loci of HeLa1. (d) There were four
reliable feature loci identified in the acquired images of HeLa2. (e) Best-fit sine waves of
HeLa2, and (f) aligned loci of HeLa2.
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Figure 4.8: One slice in the reconstructed tomographic images of HeLa1 and
HeLa2. (a), (b), and (c) are the same slice in the tomographic images of HeLa1: (a)
result of proposed method; (b) result of SPIDER, and (c) result of Xradia. (d), (e), and
(f) are the same slice in the tomographic images of HeLa2: (a) result of proposed method;
(b) result of SPIDER, and (c) result of Xradia.
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Figure 4.9: The 3D volume rendering of the reconstructed volume (a), (b), and
(c) are HeLa1; (d), (e), and (f) are HeLa2: (a) and (d) Results of proposed method; (b)
and (e) results of SPIDER, and (c) and (f) results of Xradia.
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Figure 4.10: Eight examples of successful alignment (1).
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Figure 4.11: Eight examples of successful alignment (2).
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Figure 4.12: The first example of unsuccessful alignment, B1. No one projected
feature exists in the image series over 10 frames. The membrane of cell cannot be a feature
because the low contrast and large size.
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Figure 4.13: The second example of unsuccessful alignment, B2. No any reliable
projected feature can be found in B2.
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Table 4.1: The test results.
Number of

Size Number of identified Number of Time
Name (pixel) images projected features reliable features (sec.)

Phantom 512 × 512 180 16 16 102
HeLa1 1024 × 1024 140 84 6 364
HeLa2 1024 × 1024 140 89 4 397.5

A1 1024 × 1024 300 86 3 886
A2 1024 × 1024 150 85 4 393
A3 1024 × 1024 140 104 72 518
A4 1024 × 1024 320 64 8 712
A5 1024 × 1024 140 121 4 454.5
A6 1024 × 1024 280 80 8 784.5
A7 1024 × 1024 140 103 4 406
A8 1024 × 1024 280 26 3 590
B1 1024 × 1024 270 0 0 477
B2 1024 × 1024 300 0 0 490

The run time statistics were obtained by using a MacBook Pro, Intel i7 2.2GHz, 8GB
main memory, and running Mac OS X 10.8.
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Chapter 5

High-Resolution Large Volume

Reconstruction

A noticeable application of X-ray microscope is to construct a high-resolution tomography

of an object without physically slicing the object. If the object is large, because of the

field-of-view limitation, a projection of the object has to be taken by several shots, then to

stitch the sub-images together. The tomography of the object can then be reconstructed

from the stitched projections. We call this the high-resolution large volume, HRLV,

problem. To this problem, we propose the“stitch, align, and then reconstruct” approach.

Given a set of images, if the overlap area between two images is sufficiently large,

these images can be stitched to a single large image [57, 58, 59]. In this study, because

the radiation dosage should be minimized, the number of X-ray image acquisitions is

reduced as much as possible. As a consequence, the overlap of images could be small.

The projection model of the synchrotron microscopy is regarded as the parallel beam

projection model because the frame size is far less than the distance between light source

and object. Object tilting during the acquisition also can be ignored if the observed object

is fixed in a container. Thus, we only considers the vertical and horizontal displacements

for the stitching. In this study, the size of the overlap was 15%-20% of the image size.

The problem with the mechanical stability also exists. The proposed feature-based

alignment method in Chapter 4 was applied for the calibration. Finally, the high-
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resolution volume data then can be reconstructed by FBP or ART.

In this study, real data sets were not available because the time required for image

acquisition is impractically long. A few 5 × 4 projections require a whole day for image

acquisition. We used a phantom data set in this study.

5.1 Stitching

The procedures of image acquisition and stitching are described as follows. First, the

whole image space is divided into a set of uniform gird blocks as shown in Figure 5.1. The

size of each overlap area was ranged 15%-20% of the image blocks. The image alignment

method used for stitching is stated in Appendix B.3. The result of the image alignment

is bounded by a limited range as shown in Fig. 5.2. If the alignment result is out of the

limited range, it is replaced by the average from the alignment results of the other image

pairs. This situation occurs when there are insufficient features in the overlapped area.

Thus taking average does not cause too much bad effects.

In this study, the maximum number of reference images is two, which are the horizontal

and vertical neighbours of Ia (Fig. 5.3). When an image has two reference images, first,

we estimate the transformations and similarities between Ia and all references respectively.

Then, these similarities are used as the interpolation ratios to calculate a alignment result

by the linear interpolation.

Because the center image usually contains the most significant features, we choose the

center image to be the first reference. Given m×n image blocks, we select the bn
2
cth image

of the bm
2
cth row as the center image block. All image blocks then can be sequentially

aligned to the center image block as shown in Fig. 5.4. The alignment order is described

as follows.

1. For the left part of middle row, from right to left, aligning each image to its right-side

image.

2. For the right part of middle row, from left to right, aligning each image to its left-side

image.
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3. For the top part of middle column, from bottom to top, aligning each image to its

down-side image.

4. For the bottom part of middle column, from top to bottom, aligning each image to

its up-side image.

5. For the top-left part, from right-to-left and then bottom-to-top, aligning each image

to its right-side and down-side images.

6. For the top-right part, from left-to-right and then bottom-to-top, aligning each

image to its left-side and down-side images.

7. For the bottom-right part, from left-to-right and then top-to-bottom, aligning each

image to its left-side and up-side images.

8. For the bottom-left part, from right-to-left and then top-to-bottom, aligning each

image to its right-side and up-side images.

The multi-band image blending method [60] proposed by Burt and Adelson is applied

to blend the overlaps. For completeness, we briefly state the blending algorithm. First, a

Gaussian-Laplacian pyramid is constructed for each input image such that the image can

be decomposed into a set of sub-band signals. Define two signal sampling operators, D2

and U2. D2 is the downsampling operator that halves the sampling rate of a signal, and

U2 is the upsampling operator that doubles the sampling rate of a signal. Given an image

I, the m-level Gaussian-Laplacian pyramid of I, L = {L1, L2, · · · , Lm}, is constructed by

the following equations.

Li = Ii − I ′i, i = 1, 2, · · · ,m− 1, (5.1)

Lm = Im, (5.2)

where

I1 = I, (5.3)
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Ii = D2(Ii−1), i = 2, 3, · · · ,m, (5.4)

I ′i = G(Ii), (5.5)

where G is the Gaussian operator. Fig. 5.1 shows the construction of Gaussian-

Laplacian pyramid.

The image I can be reconstructed by L as follows:

Ii = I ′′i + Li, i = 1, 2, · · · ,m− 1, (5.6)

I = I1, (5.7)

where

I ′′i = G(U2(Ii−1)) (5.8)

Fig. 5.1 shows the reconstruction of Gaussian-Laplacian pyramid.

Given two images, IA and IB, and their Gaussian-Laplacian pyramids, LA = {LA1 , LA2 , · · · , LAm}

and LB = {LB1 , LB2 , · · · , LBm}. The result image IAB can be blended by the following algo-

rithm.

1. Given an image, IW , to store the blending weight of each pixel, IW (x, y) = 1 if the

location of (x, y) is in the area of IA, otherwise IW (x, y) = 0.

2. Create a pyramid, W = {W1,W2, · · · ,Wm}, by the following equations.

W1 = IW , (5.9)

Wi = D2(G(Wi−1)), i = 1, 2, · · · ,m. (5.10)

3. Construct a Gaussian-Laplacian pyramid LAB = {LAB1 , LAB2 , · · · , LABm },

LABi (x, y) = LAi (x, y)Wi(x, y) + (1−Wi(x, y))LBi (x, y), (5.11)

where i = 1, 2, · · · ,m.
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4. Reconstruct LAB to obtain the result image IAB.

Fig. 5.1 shows an example of image blending. In the figure, the left image, IA, was

transformed such the the similarity of overlap between IA and IB is maximum. The area

bounded by yellow lines represents the area of IA. Then, a pyramid, W, was constructed

to store the blending weights. Finally, the result, IAB, can be obtain by the blending

algorithm.

75



block 1 block 2 block 3

block 4 block 5 block 6

block 7 block 8 block 9

overlap area

Figure 5.1: The acquisition for a large image. An example of 3× 3 uniform image
blocks. The label of each block represents the acquisition order. There is a small overlap
(15% to 20%) between each adjacent blocks for alignment and stitching.
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I Ia b

overlap

search area

Figure 5.2: The search area for alignment. The alignment is bounded in a search
area to avoid the divergent solution.

I Ia b1

overlap

search area

Ib2

Figure 5.3: The alignment of multiple references. The transformation of Ia is
estimated by linear interpolation from the transformations between Ia and all references
(Ib1 and Ib2).
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1 2

3

4

5 6

78

Figure 5.4: The stitch order for a large image. The numerical labels mark the stitch
order. This order enables that all images are aligned to the center image.
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DownsamplingI1 I'1 I2 I'2Gaussian Gaussian Im  =  Lm


I'1 -‐	  I1

I'2 –	  I2

L1

L2

Figure 5.5: The construction of Gaussian-Laplacian pyramid. A m-level Gaussian-
Laplacian pyramid, L = {L1, L2, · · · , Lm}, is constructed from the input image I1.
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I1 I''1 Im - 1 I''m - 1

Upsampling	  	  
&	  	  

Gaussian

Im

I''m - 1 +	  Lm - 1

L1

Lm - 1

I''1 +	  L1

Figure 5.6: The reconstruction of Gaussian-Laplacian pyramid. The origi-
nal image I1 can be reconstructed from its m-level Gaussian-Laplacian pyramid, L =
{L1, L2, · · · , Lm}.
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 IA   IB 

W1

W2

Wm

 IAB 

Blending

Downampling	  	  
&	  	  

Gaussian

Figure 5.7: The image blending. IA was transformed such the the similarity of overlap
between IA and IB is maximum. The area bounded by yellow lines represents the area
of IA. Then, a pyramid, W = {W1,W2, · · · ,Wm}, was constructed to store the blending
weights. Finally, the result, IAB, can be obtain by the blending algorithm.
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5.2 Results

A volume data of phantom containing 512 imitative gold nanoparticles was constructed,

and X-ray projections of the shifted volume were generated to simulate the machine

vibration and the field-of-view limitation. Fig. 4.3 shows the simulated X-ray image of

the phantom, in which 180 projections of 7×7 images of 512×512 pixels were generated.

The rotation angle is 1◦ between successive projections and the ratio of overlaps was 20%.

The amount of displacement of machine vibration was determined according to a random

number uniformly distributed over the range ±10 pixels. Fig. 5.8(a) shows the image

blocks of the first projection. The proposed stitching algorithm was used to combine

the image blocks of each projection. Fig. 5.8(b) shows the stitch result of Fig. 5.8(a).

The size of each stitched image was 3072× 2866 pixels. The alignment algorithm of Ch.

4) was then used to correct the misalignment. Finally, the tomography reconstruction

algorithm is applied to reconstruct the stitched images. The size of each reconstructed

image was 3072× 3072 pixels, and 2866 images were reconstructed. Fig. 5.9(a) shows the

tomography result reconstructed by Tomo3D(SIRT). Fig. 5.9(b) shows the tomography

result reconstructed by FBP.

The following describes the run time statistics that were obtained by using Intel i7

3.4GHz, 12GB main memory, nVidia GTX760, and running Windows 8.1. The image

stitching consumed 114 seconds per projection angle. The misalignment correction con-

sumed 7023 seconds. The tomography reconstruction consumed 63.6 seconds per image.

The total time was 11.5 hours.
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(a)

(b)

Figure 5.8: Image stitching for the phantom. (a) 7× 7 image blocks of 512× 512
pixels. (b) The stitched result.
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(a)

(b)

Figure 5.9: The tomographic result reconstructed from the stitched images of
phantom. (a) A slice of volume data reconstructed by Tomo3D(SIRT). (b) A slice of
volume data reconstructed by FBP
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5.3 Discussion

In HRLV, the object holder is required to accurately move to a specified position. However,

the current hardware system is unable to support the proposed method when it is used to

acquire the tomographic images. Because its control system of object holder is designed for

single-image acquisition of one rotation, the position on X and Y axes cannot be moved at

each projection angle. Thus, a multiple-image acquisition of one rotation requires several

manual operations and an unacceptable amount of time. For example, the acquisition of

5 × 5 images requires 2-3 hours. The manual operations also could lead a large position

error. So far, the propose method is not applied to a real data since the deficiency of

hardware ability.

Another problem is that the reconstruction of outer ring of volume cannot be done well.

Both FBP and ART cannot successfully reconstruct the outer ring. This problem can be

observed in the phantom data (Fig. 5.9(a) and 5.9(b)). There were several particles evenly

distributed in the volume. The particles near the center can be reconstructed successfully.

However, the particles near the boundary of volume cannot be reconstructed successfully

. This problem is caused by the alignment error and large angle between projections.

The proposed alignment method is required to be more accurate. The reconstruction

algorithm is required to deal with the large projection angle.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This study used image processing techniques to enable the three-dimensional tomography

by using the synchrotron X-ray microscope. The vibration of object holder may cause

the misalignment problem of tomography. The tomography reconstruction is unsuccessful

if misalignment exits in a serial of X-ray images obtained by different viewing direction.

This study proposed a feature-based alignment method to efficiently correct the misalign-

ment problem. The proposed method identifies projected feature points and classifies

the projected feature points into a set of loci. The key idea of this method is that the

projection of a point in the object should be a sine wave in the x-θ coordinate system.

Thus, fitting the set of loci to a set of sine waves can compute the parameters required

for alignment.

A high-resolution image of an object could not be taken in one image acquisition

because the field-of-view limitation. The image space is divided to several image blocks

are taken in different view position. This study proposed a method of seamless image

stitching that can combine these image blocks to produce a large high-resolution image.

Because the synchrotron radiation is a parallel beam traversal and the object is fixed in a

holder, the alignment variables in stitching can be reduced to the translation in vertical

and horizontal directions. Therefore, the size of overlap between any two image blocks can

be reduced to 15%-20% of the size of image block. After all image blocks are aligned such

86



that the similarity of overlap between any two image blocks is maximum, the multi-band

image fusion algorithm then be applied to mix these image blocks.

The reconstructed volume data of nanoscale object can be verified by a visualization

technique. This study used two real-time interactive techniques of volume rendering for

volume data visualization, TVR and FVR. TVR that is a popular visualization technique

uses a graphics hardware to simulate the integration of ray-casting projection. TVR and

its transfer functions can be easily implemented with lighting and shadowing to generate

a colorful image. Another visualization technique is FVR, a frequency-based method

of volume rendering. Because the voxel classification in FVR equals the convolution in

frequency domain, the transfer function design in FVR is more difficult than in TVR. This

study proposed a method that using B-spline to design transfer functions for the voxel

classification in FVR. The user can adjust the control points of B-spline to immediately

change the transfer function in rendering time.

All of proposed methods have been implemented a GUI (graphical user interface )

software system by C++ with QT library, a cross-platform library for GUI programming

. This software can be executed on Windows 8.1 and Mac OS X 10.9.

6.2 Future Work

In the proposed feature-based alignment method, two main reasons causes the alignment

failed, the insufficient number of features and low-contrast features. The first problem

can be solved by using the loci tracked from partial frames to calculate the correction

value. For the second problem, the enhancement of feature extraction is required for the

detection of low-contrast features.

The proposed feature-based alignment method requires that the object is fixed in a

holder during the image acquisition. However, the object could shrink or swell during

the image acquisition in the in-vivo experiments. Therefore, the modification of feature

matching in alignment is required for the tracking of a deformed feature.

The intensity range of all image blocks could not be the same because each image

block is taken in the different imaging condition including the intensity of radiation,
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exposure time, and ambient illumination. This problem is also existed in the background

signal removal. If the intensity ranges of the background image and object image are

different, the division operation could generate more unwanted signal. There are many

intensity calibration methods have been proposed including histogram equalization [43],

radiometric calibration [61], and camera response functions [62]. However, these methods

are suitable for photographic images rather than synchrotron X-ray images. The intensity

calibration is required to consider the physical optics of synchrotron X-ray.

The visualization for large-scale volume data is the next research work. An efficient

level-of-detail method will be applied to our visualization software system for the large

volume data visualization. Because the synchrotron X-ray microscope can acquire multi-

ple volume data in different resolutions for an object, the visualization system is required

to efficiently navigate these volume data. It is helpful for analysis and verification if the

user can control the view position into the object and the visualization system can alter-

nate a volume data of suitable resolution to be visualized. This is an unexplored research

topic in visualization. We expect that the navigation of multiple-resolution volume data

can bring a valuable contribution for the visualization of biological data.
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Appendix A

Background Removal

The synchrotron X-ray images exist a lot of background signals caused by noises, dirty

camera lens, and uneven illumination. There are many efficient image processing tech-

niques that can be used to eliminate the unwanted signals for photographic images [43].

The subtraction is the most used operator for photographic images. However, the division

operator is used to remove the background signals for X-ray images. According to the

optics model of X-ray [63], an X-ray projection can be formulated as follows.

Id = I0 · I1 · I2, (A.1)

where Id is the intensity of X-ray received by radiation detector, I0 is the initial inten-

sity of X-ray, I1 represents the attenuation of intensity caused by noise and background

signal, and I2 represents the attenuation of intensity caused by object. Let Ib = I0 · I1,

and Ib can be acquired from an empty object holder. The image of object, I2, then can

be calculated by the following equation.

I2 =
Id
Ib
. (A.2)

Fig. A.1 shows the background removal procedure. The sample object was a HeLa

cell, the image size was 1024× 1024 pixels, and the pixel size was 11.78 nm. Fig. A.1(a)

shows the background image, Ib, and A.1(b)) shows the raw image, Id. The pixel-wise

89



division operator then can be applied to obtain the result of background removal, Fig.

A.1(c).

This background removal method requires that Ib and Id must be acquired in the same

imaging conditions including the energy of radiation and exposure time. Otherwise, some

background signals could not be removed, or the intensities of background signals could

be emphasized.
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(a) (b)

(c)

Figure A.1: The procedure of background removal. (a) The background image.
(b) The raw image. (c) The result of background removal.
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Appendix B

Image Similarity

Two methods of similarity estimation between two images, sum of squared error and

mutual information, are described in this section. These two methods are commonly

used to quantize the degree of similarity between two sets of discrete data in information

theory.

Sum of Squared Error The first method of similarity estimation is sum-squared er-

ror, SSE. Assume that A and B are two discrete date sets of n elements, A = {a1, a2, · · · , an},

and B = {b1, b2, · · · , bn}. The SSE between A and B, S(A,B) can be computed by the

following equation.

S(A,B) =
n∑
i=i

(ai − bi)2, (B.1)

SSE is commonly used to quantize the difference between two photographic images.

[64]. Let IA(x) and IB(x) represent two images, where x is the location of each pixel, and

the gray intensity of each pixel is normalized to the range of 0 and 1. The similarity of

IA and IB can be estimated by SSE:

S(IA, IB) =
∑
∀x

(IA(x)− IB(x))2, (B.2)

To prevent the interference of noise, the images can be processed by a noise-removal

filtering [43] before the SSE estimation. If the intensity ranges of two images are different,

the similarity estimated by SSE could not accurate. Using the differentiated images to
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calculate SSE can solve this problem.

S(I ′A, I
′
B) =

∑
∀x

(I ′A(x)− I ′B(x))2, (B.3)

Further, the equation of SSE can be expanded as follows:

S(IA, IB) =
∑
∀x
IA(x)2 −

∑
∀x
IB(x)2 − 2

∑
∀x
IA(x)IB(x), (B.4)

The final term in Eq. B.4 can be used to measure the similarity between IA and IB. If

the pixel location of IA can be transformed by δ such that IA(x + δ) is similar to IB((x)),

the cross-correlation, C, is defined as follows.

C(IA, IB) =
∫ ∞
−∞

∑
∀x
IA(x + δ)IB(x)dδ. (B.5)

The cross-correlation is commonly used to measure the similarity of two waveforms in

signal processing [65]. The frequency-based alignment uses the cross-correlation to align

two images [38].

Although SSE can be easily implemented, the similarity estimated by SSE could not

accurate if the number of pixels is insufficient. A more accurate method of similarity

estimation is needed for the images of small size.

B.1 Entropy

The entropy can quantize the complexity of a discrete data set in information theory [66].

Let I(x) represents a radiation intensity at a location on image and x ∈ R2. All intensity

values of I(x) are then classified to k bins, the width of each bin w = max(I)−min(I)
k

, and

the range of the jth bin bj = [(j − 1)w, jw], j = 0, 1, · · · , k. The intensity histogram of

I(x) in bj, H(I,bj), is defined by the following equation.

H(I,bj) =
1

n

∑
∀x
ψ(I(x),bj), (B.6)
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where

ψ(I(x),bj) =


1 if I(x) ∈ bj,

0 otherwise,
(B.7)

and n =
∑k
j=1 ψ(bj, I(x)), which represents the total number of pixels in the image I.

Based on the histogram, the Shannon entropy of an image, E, is defined as follows:

E(I) = −
k∑
j=1

H(I,bj) lnH(I,bj), (B.8)

Because the range of H is 0 to 1, the value of entropy must be positive. If an image

contains a simple pattern, for example, an image filled by a single color, its entropy must

be close to zero. Otherwise, a high entropy is estimated if the image contains complex

information. Therefore, the entropy is a reasonable method to determine the degree of

complexity for an image.

B.2 Mutual Information

Given two images of n pixels, IA and IB, and their histograms estimated by Eq. B.6, the

mutual information of IA and IB is defined as the following equation:

M(IA, IB) =
k∑
i

k∑
j

H ′(IA, IB,bi,bj) ln
H ′(IA, IB,bi,bj)

H(IA,bi)H(IB,bi)
, (B.9)

where k is the number of bins and H ′ is the joint histogram function defined as follows:

H ′(IA, IB,bi,bj) =
1

n

∑
∀x
ψ(IA(x),bi)ψ(IB(x),bj). (B.10)

Note that the mutual information can be calculated by entropies of images. Eq. B.9 can

be rewritten as follows:

M(IA, IB) = E(IA) + E(IB)− E ′(IA, IB), (B.11)
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where E ′(IA, IB) that is called the joint entropy of IA and IB is defined as follows:

E ′(IA, IB) = −
k∑
i

k∑
j

H ′(IA, IB,bi,bj) lnH ′(IA, IB,bi,bj). (B.12)

According Eq. B.11, there is a relation between the entropies of two images and thier

mutual information:

0 ≤M(IA, IB) ≤ max(E(IA), E(IB)). (B.13)

If IA and IB are the same image, their mutual information must be equal to either

E(IA) or E(IB). Otherwise, the mutual information close to zero if IA and IB are ex-

tremely dissimilar. The mutual information can measure the degree of similarity between

two images, even the images are acquired by different imaging modalities, for example,

two images are respectively taken by X-ray camera and MRI (magnetic resonance imaging

) apparatus. Therefore, the mutual information is a well objective criterion to quantize

the similarity between two images acquired by synchrotron-radiation microscope.

B.3 Two-Image Alignment

There are many applications of image alignment for photographic images, for example,

object tracing, image stitching, and panoramic photography [64]. Fig . B.1 shows an

example of the stitching of two images.

Given an image I, and a transformation function T with a parameter vector u, the

transformed image I ′ is derived by the following equation.

I ′(x) = I(T (x)). (B.14)

Given two images, IA and IB, the two-image alignment problem is that searching a

u to transform the location of all pixels in IA, such that the similarity of IA and IB

is maximum. The simplest solution for two-image alignment problem is the brute force

method that tests all possible u. However, this method is impracticable when the images

are large or the dimension of u is greater than two, for example, a transformation includes
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Figure B.1: The image alignment. (a) IA. (b) IB. (c) The alignment result of IA and
IB.

shift, rotation, and scaling. The level-of-detail method (LOD) is a more efficient method

than the brute force method. However, LOD could find a false solution although it can

be easily implemented. The most popular alignment method is the LucasKanade method

(LKM) [67]. The fundamental of LKM is that it iteratively find the increase of u by

the LevenbergMarquardt algorithm such that the SSE between two images is minimum.

However, because the LKM is based on SSE, the alignment results of LKM could be failed

if the images are taken from different imaging environments.

The mutual information can also solve the two-image alignment problem. Viola [51]

proposed an alignment method by maximizing the mutual information of two images.

Dowson and Bowden combined the mutual information and LKM to devise an efficient

alignment algorithm.

Another alignment method based on the analysis in frequency domain has been pro-

posed. Frank used the cross-correlation (Eq. B.5) to estimate the transformation from

the frequency domain of images [38]. As the LKM, this method could not align the images

taken by different imaging modalities.
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