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摘要 

無線感測網路提供一個經濟又方便的方法來進行環境偵測，而將可提供豐

富內容的無線感測網路結合至監視系統是一個新的研究方向。在這邊，我們提出

了整合無線感測器行動監視系統，該系統包含了大量較便宜但不具行動能力的定

點感測器及少量較昂貴但具行動能力的行動感測器。定點感測器是用來進行環境

偵測，行動感測器則是用來移動至特定目標點並且採取近一步措施，結合起來就

是具移動能力及豐富資訊的監視系統。在這邊採用家庭安全應用來映證我們提出

來的系統。在這邊我們也發現影響整個系統效能最大的因素是事件偵測延遲，我

們將這個問題制定成任意感測模型或是更精密的多重感測模型。我們將在這兩個

模型下分析事件偵測延遲，並且利用幾個模擬結果來映證我們的分析。這個分析

也同樣適用於其他無線感測網路應用。 
 
 
 

關鍵字: 無線感測網路，監視系統，定點感測器，行動感測器，事件偵測延遲，

任意感測模型，多重感測模型。 
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iMouse: An Intelligent Mobile Surveillance Security System

by Wireless Sensors and its Detection Delay Analysis

Student: Kai-Yang Cheng Advisors: Prof. Yu-Chee Tseng

Institute of Computer Science and Information Engineering

National Chiao-Tung University

ABSTRACT

Wireless sensor networks (WSN) provide an inexpensive and convenient way to mon-

itor physical environments. Integrating the context-aware capability of WSN into surveil-

lance systems is an attractive direction. We thus propose an integrated mobile surveillance

and wireless sensor (iMouse) system, which consists of a large number of inexpensive

static sensors and a small number of more expensive mobile sensors. The former is to

monitor the environment, while the latter is capable of moving to certain target loca-

tions and taking more advanced actions. The iMouse system is a mobile, context-aware

surveillance system. We demonstrate our current prototyping for home security appli-

cations. One important performance metric of the system is the event detection latency.

We analyze the latency under an any-sensor-detection and a k-sensor-detection models,

where k > 1. The analytical results are also verified by simulations.

Keywords: pervasive computing, robotics, surveillance system, wireless communi-

cation, wireless sensor network.
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Chapter 1

Introduction

Recent advances in wireless communications and MEMS technologies have made wire-

less sensor networks (WSN) possible. A WSN consists of many tiny, low-power devices

equipped with sensors, transceivers, and actuators [1]. It provides an inexpensive and

convenient way to monitor physical environments. With its context awareness, WSN may

enrich human life in many ways. Applications of WSN include surveillance, biological

detection, habitat, agriculture, and traffic monitoring [2, 3, 4, 5, 6].

Integrating the context-aware capability of WSN into surveillance system is an attrac-

tive direction that deserves investigation. Surveillance systems typically collect a large

volume of audio/video information, which requires intensive computation/manpower to

analyze. Including the intelligence of WSN can help reduce such overheads and even pro-

vide more advanced, context-rich services. For example, in security applications, when

something abnormal is detected, in-depth analyses may be conducted to find out the pos-

sible sources. In intrusion detection applications, when trespassing is detected, a metal

detector may help determine whether the intruder is carrying a weapon or not.

In this work, we propose an integrated mobile surveillance and wireless sensor (iMouse)

system. The iMouse system consists of a large number of inexpensive static wireless sen-

sors and a small number of more expensive mobile sensors. The former is to monitor

the environment, while the latter is capable of moving to certain target locations (such

as potential emergency sites) and taking more advanced actions (such as taking pictures

of the emergency scenes and conducting in-depth analyses). The iMouse system is a

mobile, context-aware surveillance system. We demonstrate our current prototyping for

home security applications. In particular, each mobile sensor has a mini-computer, which

is connected to a data collector, a WebCam, and a 802.11 WLAN card, and is mobilized
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by a Lego car. At normal times, a mobile sensor can collect sensory data and report to an

external server. When special events are detected, it can move to the event locations, take

snapshots of the scenes, and send pictures to the server through its 802.11 interface. We

demonstrate applications of iMouse through a fire emergency example.

In iMouse, when an event or an object appears, the event detection latency is an impor-

tant factor that can affect the responsiveness of the system. This depends on the network

deployment and the location where the event appears. We adopt a probabilistic approach

to model this problem and analyze the latency under an any-sensor-detection and a k-

sensor-detection models, where k is a predefined integer. Simulation results are presented

to verify our analyses. Also, the result is believed to be applicable to general sensor

networks.

The rest of this work is organized as follows. Chapter 2 reviews some related work.

Chapter 3 discusses detailed design and implementation of our iMouse system. Chapter 4

presents our analyses and simulation results on event detection latency. Conclusions are

drawn in Chapter 5.
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Chapter 2

Related Work

The objective of this work is to study the feasibility of combining surveillance systems

with sensor networks. Most visual surveillance systems deal with the real-time monitor-

ing of persistent and transient objects. The primary goals of these systems are to provide

an automatic interpretation of scenes and to understand/predict actions of the observed

objects from the information acquired from cameras or CCTV (closed circuit television)

[7]. For example, a video-based surveillance network is proposed in [8], where the infor-

mation collected by each video camera is transmitted by an IEEE 802.11 wireless card.

The surveillance issue has also been discussed in the field of robotics [9, 10, 11]. The

system is assumed to have a robot with many static cameras installed on locations such as

walls. These cameras are used to find obstacles or humans in the field, so that the robot

can detour around these obstacles.

On the side of WSN, the event/object tracking issue has been intensively studied [12,

13, 14, 15, 16, 17]. Most works assume that the intrusion objects can emit some signals

(such as noise or light), or the objects themselves are phenomenal (such as diffused gas or

chemical liquid [16]). However, results reported from a WSN are typically very brief and

lack of more in-depth information. This motivates us to study the feasibility of integrating

WSN with surveillance systems to support intelligent context-aware surveillance services.

3



Chapter 3

Design of the iMouse System

3.1 System Architecture

Fig. 3.1 shows the system architecture of the iMouse system. It consists of a static WSN

and few mobile sensors. At normal times, the WSN is responsible of collecting and

reporting environment information to the mobile sensors. When necessary, the mobile

sensors are able to move to the event locations, conduct more advanced analyses of the

event scenes, and report the analysis results to the remote sink.

Each sensor of the WSN consists of a data collector and a sensing board. The data

collector is used to communicate with other static/mobile sensors. The sensing board is

used to collect environment data. In our current prototype, three types of data can be

collected, including voice, temperature, and light. Reporting of events is reactive, and an

event is defined when the sensory input is higher than a predefined threshold. Different

inputs can be combined to define an event. For example, for fire emergency, a combination

of light and temperature thresholds can be used. To detect an explosion, a combination of

temperature and sound thresholds may be used. For home security, an unusual sound or

temperature can be used. More advanced sensors may be added later.

Mobile sensors have five major functionalities: issuing commands to the WSN, gath-

ering data from the WSN, moving to some target areas, taking snapshots, and reporting

analyses to the remote sink. Each mobile sensor is empowered by a microprocessor called

Stargate [18], which is connected to a data collector, a Lego car, a WebCam, an IEEE

802.11 WLAN card, as shown in Fig. 3.2. The data collector can communicate with static

sensors to issue commands or gather data. The Lego car [19], produced by MindStorms,

supports mobility. The WebCam is to take photos of the emergency scenes. To eliminate

4
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Figure 3.1: System architecture of the iMouse system.
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Data collector

Stargate
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WLAN card

Lego car

15cm

Figure 3.2: The mobile sensor.

the wiring problem, the 802.11 WLAN card is used to talk to the home gateway. The

Stargate is the “brain” of a mobile sensor. For example, it decides the visiting sequence

of potential emergency sites.

3.2 A Fire Emergency Scenario

Below, we give a fire emergency scenario to demonstrate how the iMouse system works

(refer to Fig. 3.1). On receiving the remote sink’s command, the WSN will form a span-

ning tree to collect environment data. Suppose that sensors D and H reply high tem-

peratures and are thus suspected of fire emergency in their neighborhood. On receiving

such notifications, the mobile sensors will coordinate and decide who will be delegated

to which sensors via which shortest path. On visiting D and H , the mobile sensor(s) will

take snapshots of these sites from different angles. After returning to the home gateway,

the mobile sensor(s) will send these snapshots back to the remote sink for further actions.
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(a) sensor board (b) data collector

Figure 3.3: The sensor.

Figure 3.4: The Stargate.

3.3 Implementation Details

3.3.1 Hardware Specifications

We use the MOTE-KIT2400-MICAz by CrossBow [20] as sensor nodes (refer to Fig. 3.3).

The MICAz is a 2.4 GHz, IEEE 802.15.4-compliant Mote module enabling low-power

operations and offering a data rate of 250 kbps with a DSSS radio. The sensing board

can offer three kinds of readings: temperature, voice, and light. The Stargate [18], also

manufactured by Crossbow, consists of a 32-bit, 400-MHz Intel PXA-255 XScale RISC

processor with 64 MB main memory and 32 MB extended flash memory. It also has

a daughter board with a RS-232 serial port, a PCMCIA port, a USB port, and a 51-

pin extention connector, which can be attached to a MICAz mote. (refer to Fig. 3.4 and
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Table 3.1). It drives a WebCam through the USB port, and an 802.11 WLAN card through

the PCMCIA slot. The Stargate controls the Lego car [19] via a USB port connected to a

Lego tower (9713 IR-TRANSMITTER). The Lego car has an infrared ray receiver in the

front and two motors on the bottom (refer to Fig. 3.5). It also has a light sensor, which we

use for navigation purpose. This is realized by different colors of the tapes that we stick

on the ground. With this mechanism, the Lego car can localize itself in the sensing field.

Table 3.1: The hardware specification of Stagate.

Element Type

CPU 32-bit, 400 MHz Intel PXA-255 XScale RISC processor

Flash memory 32MB of Intel StrataFlash

Main memory 64MB of SDRAM

Daughter Card Host USB

RS-232 Serial Port via DB-9 Connector

1 Type II CompactFlash Slot

Others 1 PCMCIA slot

MICA2 Mote capacity, GPIO/SGPP and other signals via

a 51-pin extension connector

An experimental 2 × 2 grid-like sensing field (Fig. 3.6) is demonstrated. On the

ground, golden tapes represent intersections and black tapes represent roads. The ori-

gin (0, 0) is at the lower left corner. Four sensors are placed at (1, 1), (0, 2), (2, 0), and

(2, 2), respectively. The transmission range is manually set to two units to fit into the

relatively small sensing field. A light reading below 800 is to simulate a potential fire

emergency.

3.3.2 Protocol Specifications

Each static sensor runs the algorithm in Fig. 3.7. Initially, it waits for commands from

mobile sensors or other static sensors. A tree-construct command will trigger the sensor

to check if its tree parent is null or has expired. If so, it sets the sender as its parent.

Then it will re-broadcast the command. To distinguish new from old commands, each

tree-construct command is assigned a unique sequence number. The goal is to form a

spanning tree of the network. Then the sensor turns on its sensing devices. On detecting

potential emergencies, sensors will transmit a status report to mobile sensor along the

8



Figure 3.5: The Lego car.

9



4

1

3 2
Emergency siteEmergency site

(0,0) (1,0) (2,0)

(0,1)

(0,2) (1,2) (2,2)

(2,1)(1,1)

Spanning tree

Patrol path for the mobile sensor

Figure 3.6: A 2 × 2 grid-like sensing field in our experiment.
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Figure 3.7: The algorithm run by the static sensors.
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Figure 3.8: The algorithm run by the mobile sensors.

spanning tree. The event flag is to determine if an update of status report is needed.

Each mobile sensor runs the algorithm in Fig. 3.8. If a tree-construct command is re-

ceived from the remote sink, it will broadcast it to the WSN. It then waits for status report

from static sensors and forwards the report to the sink. On receiving the sink’s patrol com-

mand, the mobile sensors have to take further actions. The traveling-salesman algorithm

APPROX-TSP-TOUR [21] is used to compute their patrolling paths. A spanning tree of

all potential emergency sits is formed, and then a heuristic is used to partition the tree into

a number of regions, each to be visited by a mobile sensor. For each region, the patrolling

path is the preorder tree walk. Photos are saved in the Stargate’s flash memory. When

moving back to the origin, each mobile sensor forwards photos of all visited sites to the

sink.

Two types of packets, command and data, are defined. The former is initiated by mo-
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Type
2 Bytes 2 Bytes2 Bytes 2 Bytes2 Bytes

Original_ID Source_ID Dest_ID Seq_Num Data

1 Byte 2 Bytes 2 Bytes2 Bytes 2 Bytes2 Bytes

Type Original_ID Source_ID Dest_ID Seq_Num Hop_count Other
2 Bytes

(a) command packet

(b) data packet

1 Byte

Figure 3.9: Packet formats.

bile sensors and the latter is initiated by static sensors. The formats are shown in Fig. 3.9.

The Original ID, Source ID, and Dest ID fields are the initiator, transmitter, and receiver

of the packet. The Seq Num field, together with the Original ID field, guarantees the

uniqueness of a message. The Hop Count field of the command packet helps establish

the spanning tree, and the Data field contains the sensing value and status of the originat-

ing sensor.

3.3.3 User Interfaces

At the remote sink, we provide an interface to monitor the status of the WSN and to con-

trol mobile sensor, as shown in Fig. 3.10. It includes six major components: Config,

Command, Status, Control, Monitoring and Log fields. The Config area is to input con-

figuration information of the iMouse system, such as mobile sensors’ IP addresses, ports,

sensors’ positions, etc. The Command area is to load the configuration file ( such as sen-

sors’ positions) to sensors, establish connection from the sink to mobile sensors, issue the

tree-construct commands, change the parent of a static sensor 1, calculate the patrolling

paths of mobile sensors, disconnect all mobile sensors (so as to reset all environment pa-

rameters), add a new sensor in the sensor network, set a sensor’s position, remove a sensor

from the network, and check the status of a static sensor. The Status area shows the status

of a static sensor being queried. The Control area can be used to control the movement

of a mobile sensor or ask a mobile sensor to take a snapshot. The Monitoring area shows

the network topology of the WSN, and the patrolling paths of mobile sensors. When a

sensor detects an event, a fire icon will be shown in the corresponding site. A camera icon

will be shown when a snapshot has been taken for the site. Finally, the Log area shows

1This is to adjust the topology of the spanning tree.
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Figure 3.10: User interface at the remote sink.
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some status messages. For example, Fig. 3.10 shows the user interface when sensors at

coordinates (2, 2) and (0, 2) detect potential fire emergencies.
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Chapter 4

Analysis of Event Detection Latency

In this section, we propose a model to analyze the event detection latency of the iMouse

system. The results may be applied to general sensor networks, too. We are given a

sensing field A, on which there are n homogeneous sensors. Each sensor has a sensing

distance of r. Without loss of generality, we assume that these n sensors form a connected

network. To simplify the analysis, we assume that the time axis is divided into fixed-

length slots and the working schedule of each sensor is modeled by cycles, where each

cycle consists of T slots. Each cycle is divided into an active phase and an idle phase.

The former consists of the first D slots, and the latter the rest of the T −D slots. Sensors

only conduct detection jobs in their active phases. However, sensors do not synchronize

their clocks, so their cycles are not necessarily aligned. Fig. 4.1 shows an example.

Our goal is to evaluate the detection latency when an event appears in any location in

the sensing field. To take errors into account, we assume that in an active slot, a sensor

has a probability of p to successfully detect the appearance of the event if the event is

within this sensor’s sensing range. We consider two detection models in this work:

• any-sensor-detection model: To capture the event, the network needs at least one

sensor to successfully detect the event.

• k-sensor-detection model: To capture the event, the network needs at least k sen-

sors to successfully detect the event, where k > 1. (The value of k is application-

dependent. For example, for trilateration, at least three sensors are needed.)

Suppose that at time slot 0, an event appears at location (x, y) in the sensing field.

Let M(x, y) be the number of sensors whose sensing ranges cover location (x, y). Con-

sider these M(x, y) sensors’ first active slots after slot 0. We can classify them into T

16
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. . . . . . . . . . . .

Figure 4.1: Modeling of sensors’ active phases and idle phases.

groups such that each group i consists of mi sensors whose first active slot is at the ith

slot, i = 1, . . . , T . Clearly,
∑T

i=1 mi = M(x, y). Taking all combinations of mi’s into

consideration, the detection latency can be written as

Latency(x, y) =

M(x,y)∑
m1=0

M(x,y)−m1∑
m2=0

M(x,y)−m1−m2∑
m3=0

· · ·

M(x,y)−(m1+m2+···+mT−2)∑
mT−1=0

(
M(x, y)!

m1! · m2! · · · · · mT !
× (

1

T
)M(x,y)

)
× δ(m1, m2, ..., mT ),

where the first term is the probability to observe a particular combination (m1, m2, · · · ,
mT ), and the second term δ(m1, m2, ..., mT ) is the expected delay for this particular com-

bination. As the event may appear in any location inside A, the average latency can be

written as

ET,D =
Σ∀(x,y)Latency(x, y)

Σ∀(x,y)1
. (4.1)

In Sections 4.1 and 4.2, we will show how to compute δ(m1, m2, ..., mT ) under our two

detection models. Section 4.3 presents our simulation result. Table 4.1 summarizes the

notations used in this work.
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4.1 Any-Sensor-Detection Model

Under this model, the event is considered to be captured by the network, once any sensor

successfully detects its existence. Let xi be the number of active sensors at the ith slot,

i = 1, . . . , T . These xi sensors can be classified into three types: (1) sensors which turn

into active at the ith slot, (2) sensors which turn into active between the first and the

(i− 1)th slots, and (3) sensors which turns into active at or before the 0-th slot. Note that

xi �= mi unless D = 1. This leads to

xi = mi +

i−1∑
j=1

mi−j +

D−i−1∑
j=0

mT−j .

We also define xaT+b as the number of active sensors at the (aT + b)th slot for any a ≥ 1.

Since cycles repeat every T slots, we have xaT+b = xb.

The probability that there is at least one sensor successfully detecting the event in the

first slot is (1 − (1 − p)x1). For i ≥ 2, the probability that the event is not detected in the

first (i−1) slots but is successfully detected in the ith slot is (1−p)x1+...+xi−1(1−(1−p)xi).

Hence, the expected detection latency under the any-sensor-detection model is

δ(m1, m2, ..., mT ) =
∞∑

a=0

T∑
b=1

(aT + b)(1 − p)a×(x1+···+xT )+x1+···+xb−1(1 − (1 − p)xb).

(4.2)

Eq. (4.2) contains an infinite number of expressions. The following theorem shows that it

will converge.

Theorem 1. The expected delay δ(m1, m2, ..., mT ) under the any-sensor-detection model

is bounded by

δ(m1, m2, ..., mT ) ≤ T 2

(1 − α)2
,

where α = (1 − p)D×M(x,y).

Proof. Since the sequence x1, x2, ... has a period of T , we can rewrite Eq. (4.2) in terms

18



of cycles:

∞∑
a=0

T∑
b=1

(aT + b)(1 − p)a×(x1+···+xT )+x1+···+xb−1(1 − (1 − p)xb)

≤
∞∑

a=0

T∑
b=1

(aT + b)(1 − p)a×(x1+···+xT )

≤
∞∑

a=0

(
(1 − p)a×D×M(x,y)

T∑
b=1

(a + 1) × T

)

=

∞∑
a=0

αa(a + 1)T 2

=
T 2

(1 − α)2
. �

4.2 k-Sensors-Detection Model

Under this model, the event is considered to be captured by the network, once there are at

least k sensors successfully detecting its occurrence. Since the sequence x1, x2, ... has a

period of T , the expected latency can be written as

δ(m1, m2, ..., mT ) =
∞∑

a=0

T∑
b=1

(aT + b) · Psucc(m1, m2, ..., mT , aT + b), (4.3)

where Psucc(m1, m2, ..., mT , aT + b) is the probability that there are at least k sensors

successfully detecting the event at the (aT + b)th slot, but not so before that slot. To find

Psucc(m1, m2, ..., mT , aT + b), let Nalready be the number of sensors that already detected

the event before the (aT + b)th slot, and Nfirst be the number of sensors that detect this

event at the (aT + b)th slot for the first time. We first categorize sensors according to their

behaviors as shown in Fig. 4.2. There are xaT+b = xb active sensors at the (aT + b)th

slot, and the rest of M(x, y)−xb sensors are inactive. The inactive sensors can be further

divided into a set of N1 sensors which have detected this event before the (aT + b)th slot,

and a set of M(x, y) − xb − N1 sensors which have not. Similarly, the active sensors can

be divided into a set of N2 sensors which successfully detect this event at this slot, and a

set of xb − N2 sensors which fail to detect this event at this slot. From the latter set, we

further identify a set of N3 sensors which ever succeeded to detect this event before the

(aT + b)th slot, but fail to detect this event at the current slot.

19



Conduct detection 
this slot?

Succeed for the 
first time?

Succeed this slot?

Succeeded before?

Succeeded before?

YN

Y

Y Y

Y

N N

N N
bx

2N2bx N−

( , ) bM x y x−

1N
1( , ) bM x y x N− −

3N2 3bx N N− −

1 3alreadyN N N− −

2 1 3( )already

first

N N N N
N
− − −

=

( , )M x y

Figure 4.2: Classification of sensors in the (aT + b)th slot. Numbers in ovals indicate

numbers of sensors.

Based on the above definitions, once the values of Nalready, N1, N2, and N3 are given,

the rest of the variables in Fig. 4.2 will all be fixed. Specifically, the number of sensors that

successfully detect this event at the current slot but have already detected this event before

the (aT + b)th slot is Nalready −N1 −N3, and the number of sensors that detect this event

for the first time at the current slot is Nfirst = N2−(Nalready −N1−N3). In Eq. (4.3), the

latency is considered to be aT+ b if Nalready < k and Nfirst = (N1+N2+N3)−Nalready ≥
k−Nalready. By enumerating all combinations of Nalready, N1, N2, and N3, we can derive

that

Psucc(m1, m2, ..., mT , aT + b) =

k−1∑
Nalready=0

(

Nalready∑
h1=0

Prob[N1 = h1] · (
xb∑

h2=0

Prob[N2 = h2]·

(

Nalready−h1∑
h3=0

Prob[N3 = h3] · Prob[Nfirst ≥ k − Nalready]))).

(4.4)

Depending on the value of b, we further expand Eq. (4.4) into three cases.

Case (1): b < D. Consider the set of M(x, y)−xb inactive sensors at the current slot.
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We divide them into two subsets:

• S1: The set of sensors whose active phases do not cross the boundaries of cycles.

• S2: The set of sensors whose active phases cross the boundaries of cycles.

Clearly, |S1| = mb+1+mb+2+...+mT−(D−1) and |S2| = mT−(D−1)+1+mT−(D−1)+2+

... + mT−(D−b). For example, when b = 2, Fig. 4.3 shows the above two subsets in case

1. Recall the definition of N1. Among these N1 sensors, let R1 be the number of sensors

belonging to S1, and R2 the number of sensors belonging to S2. Note that R1 +R2 = N1.

We can expand Eq. (4.4) as follows:

Psucc(m1, m2, ..., mT , aT + b) =
k−1∑

Nalready=0

(

Nalready∑
h1=0

(
h1∑

r1=0

Prob[R1 = r1] · Prob[R2 = h1 − r1])·

(

xb∑
h2=0

Prob[N2 = h2] · (
Nalready−h1∑

h3=0

Prob[N3 = h3] · Prob[Nfirst ≥ k − Nalready ]))).

(4.5)

Given two integers x and y such that x ≥ y and a probability value z, let us define

Bino(x, y, z) =
(

x
y

)
zy · (1 − z)x−y. (4.6)

The probability functions in Eq. (4.5) are derived as follows:

Prob[R1 = r1] = Bino(|S1|, r1, 1 − (1 − p)aD),

P rob[R2 = h1 − r1] =

D−2∑
i=1

mT−(D−1)+i

|S2| · Bino(|S2|, h1 − r1, 1 − (1 − p)aD+i),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,

b−1∑
i=0

mb−i

xb
(1 − (1 − p)aD+b−i) +

D−b−1∑
i=0

mT−i

xb
(1 − (1 − p)aD+b)),

P rob[Nfirst ≥ k − Nalready] = Bino(h2, Nfirst,

b−1∑
i=0

mb−i

xb
(1 − p)aD+b−i +

D−b−1∑
i=0

mT−i

xb
(1 − p)aD+b−1).

P rob[R1 = r1] is the probability that r1 sensors in S1 have ever detected this event before

the current slot, where 1− (1− p)aD is the probability that a sensor has ever detected this

event before the current slot. Prob[R2 = h1 − r1] is derived similarly, except that we are

concerned about sensors in S2 and, among these sensors, there is a ratio of
mT−(D−1)+i

|S2| of
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Figure 4.3: Classification of sensors in a network with T = 8 and D = 3.

sensors which have tried to detect this event for aD + i slots (and we take their average).

Prob[N2 = h2] is the probability that there are h2 sensors among xb sensors successfully

detecting the event at the current slot. Prob[N3 = h3] is the probability that there are

h3 sensors among xb − h2 sensors that have ever successfully detected the event before

the current slot. The third term in Bino(·) is to take care of those sensors whose active

slots do not (the first expression) and do (the second expression) cross the boundaries of

cycles, and we take their average. Prob[Nfirst ≥ k − Nalready] is similar to the previous

probability except that these sensors succeed for the first time at the current slot.

Case (2): D ≤ b ≤ T −D+1. In this case, we divide the set of inactive M(x, y)−xb

sensors at the current slot into three subsets according to whether their active slots cross

the boundaries of cycles:
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• S1: The set of sensors which have finished their active slots at the current cycle and

whose active slots do not cross the boundaries of cycles.

• S2: The set of sensors which have not started their active slots at the current cycle

and whose active slots do not cross the boundaries of cycles.

• S3: The set of sensors whose active slots cross the boundaries of cycles.

We can obtain that |S1| =
∑b−D

i=1 mi, |S2| =
∑T−(D−1)

i=b+1 mi, and |S3| =
∑T

i=T−(D−1)+1 mi.

For example, when b = 4, Fig. 4.3 shows these subsets in case 2. We can expand Eq. (4.4)

as follows:

Psucc(m1, m2, ..., mT , aT + b) =

k−1∑
Nalready=0

(

Nalready∑
h1=0

(

h1∑
r1=0

h1−r1∑
r2=0

Prob[R1 = r1]·

Prob[R2 = r2] · Prob[R3 = h1 − r1 − r2]) · (
xb∑

h2=0

Prob[N2 = h2]·

(

Nalready−h1∑
h3=0

Prob[N3 = h3] · Prob[Nfirst ≥ k − Nalready ]))), (4.7)

where

Prob[R1 = r1] = Bino(|S1|, r1, 1 − (1 − p)(a+1)D),

P rob[R2 = r2] = Bino(|S2|, r2, 1 − (1 − p)aD),

P rob[R3 = r3] =

D−2∑
i=0

mT−(D−1)+1+i

|S3| Bino(|S3|, r3, 1 − (1 − p)aD+i+1),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,

D−1∑
i=0

mb−i

xb
(1 − (1 − p)aD+i)), and

Prob[Nfirst ≥ k − Nalready ] = Bino(h2, Nfirst,

D−1∑
i=0

mb−i

xb
(1 − p)aD+i).

Case (3): b > T − D + 1. In this case, we divide the set of inactive M(x, y) − xb

sensors at the current slot into two subsets according to whether their active slots cross

the boundaries of cycles:

• S1: The set of sensors whose active slots do not cross the boundaries of cycles.

23



• S2: The set of sensors whose active slots cross the boundaries of cycles.

We have S1 =
∑b−D

i=1 mi and S2 =
∑T

i=b+1 mi. Fig. 4.3 gives an example when b = 7.

We derive Eq. (4.4) as follows:

Psucc(m1, m2, ..., mT , aT + b) =
k−1∑

Nalready=0

(

Nalready∑
h1=0

(
h1∑

r1=0

Prob[R1 = r1] · Prob[R2 = h1 − r1])·

(

xb∑
h2=0

Prob[N2 = h2] · (
Nalready−h1∑

h3=0

Prob[N3 = h3] · Prob[Nfirst ≥ k − Nalready ]))),

(4.8)

where

Prob[R1 = r1] = Bino(|S1|, r1, 1 − (1 − p)(a+1)D),

P rob[R2 = r2] =

D−2∑
i=1

mT−(D−1)+1+i

|S2| Bino(|S2|, r2, 1 − (1 − p)aD+i+1),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,
T−b∑
i=0

mT−(D−1)−i

xb

(1 − (1 − p)aD+i+1)+

b−T+(D−1)−1∑
i=0

mT−(D−1)+1+i

xb
(1 − (1 − p)aD+i+1)), and

Prob[Nfirst ≥ k − Nalready] = Bino(h2, Nfirst,

T−b∑
i=0

mT−(D−1)−i

xb
(1 − p)aD+i+1 +

b−T+(D−1)−1∑
i=0

mT−(D−1)+1+i

xb
(1 − p)aD+i+1).

Finally, by replacing Psucc(m1, m2, ..., mT , aT + b) in Eq. (4.3) with one of the above

three cases, we can obtain the expected latency δ(m1, m2, ..., mT ) under the k-sensor-

detection model.

4.3 Simulation Results

We have developed a simulator to verify our analytical results. A sensing field of size

10 × 10 is simulated, on which 50 sensors are deployed randomly. Each sensor has

a sensing distance of 3 units. Events may appear in any location in the sensing field.

24



0

10

20

30

40

50

60

4 5 6 7 8 9 10 11 12

M(x,y)

D
et

ec
ti

o
n

la
te

n
cy

(s
lo

ts
)

p = 0.1 (simulation)

p = 0.1 (analysis)

p = 0.5 (simulation)

p = 0.5 (analysis)

p = 0.9 (simulation)

p = 0.9 (analysis)

0

10

20

30

40

50

60

4 5 6 7 8 9 10 11 12

M(x,y)

D
et

ec
ti

o
n

la
te

n
cy

(s
lo

ts
)

p = 0.1 (simulation)

p = 0.1 (analysis)

p = 0.5 (simulation)

p = 0.5 (analysis)

p = 0.9 (simulation)

p = 0.9 (analysis)

0

10

20

30

40

50

60

4 5 6 7 8 9 10 11 12

M(x,y)

D
et

ec
ti

o
n

la
te

n
cy

(s
lo

ts
)

p = 0.1 (simulation)

p = 0.1 (analysis)

p = 0.5 (simulation)

p = 0.5 (analysis)

p = 0.9 (simulation)

p = 0.9 (analysis)

0

10

20

30

40

50

60

4 5 6 7 8 9 10 11 12

M(x,y)

D
et

ec
ti

o
n

la
te

n
cy

(s
lo

ts
)

p = 0.1 (simulation)

p = 0.1 (analysis)

p = 0.5 (simulation)

p = 0.5 (analysis)

p = 0.9 (analysis)

p = 0.9 (simulation)

(a) T = 5 and D = 1 (any-sensor model) (b) T = 5 and D = 2 (any-sensor model)

(c) T = 5 and D = 1 (3-sensor model) (d) T = 5 and D = 2 (3-sensor model)

Figure 4.4: The detection latencies under different values of M(x, y).

Given a network configuration, we evaluate the detection latency by both Eq. (4.1) and

by simulation. For simulation, at least 1000 experiments are repeated, and we take their

average.

Fig. 4.4 shows the detection latencies under different values of M(x, y) and detec-

tion probability p. The simulation results coincide well with the analytical results, except

when p = 0.1 and M(x, y) ≤ 5 under the 3-sensor-detection model. This is because our

analysis assumes a larger-scale network. It can be observed that a larger M(x, y), which

implies a higher network density, can help reduce the detection latency. A larger detec-

tion probability p, which reflects the sensibility of sensors, can also reduce the detection

latency. The result can be used to determine how sensors should be arranged at the de-

ployment stage. Fig. 4.5 shows the detection latencies under different values of M(x, y),

D, and p when T is set to 16. We can observe that the latency drops significantly when

D ≤ 3. The result can be used to decide the length of a sensor’s active phase to reduce

both detection latency and energy consumption of a WSN.
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Figure 4.5: The detection latencies under different values of D (T = 16).
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Table 4.1: Summary of notations.

Notations Definition

n number of sensors in the sensing field

k minimum number of sensors required to successfully detect

the event

T number of slots in a cycle

D number of slots that a sensor continues detecting the event

p probability that a sensor successfully detects the event

during a slot

M(x, y) number of sensors that can detect the event when the event

occurs in (x, y)

mi number of sensors in M(x, y) that conduct detect in the

ith slot after the event occurs

xi number of sensors detect the event in the ith slot of a cycle

Psucc(m1, m2, ..., mT , aT + b) probability that there are at least k sensors which succeed

to detect the event

Nalready number of sensors that have ever succeeded to detect the

event before the (aT + b)th slot

Nfirst number of sensors that first succeed to detect the event at

the (aT + b)th slot

N1 number of sensors that have ever succeeded to detect the

event before but do not detect at current slot

N2 number of sensors that succeed to detect the event at the

(aT + b)th slot

N3 number of sensors that have ever succeeded to detect the

event before but fail at current slot

Si number of sensors in the subset i

Ri number of sensors that have succeeded to detect the event

in the subset i
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Chapter 5

Conclusions

The proposed iMouse system combines two areas, wireless sensor network technology

and surveillance system, to support intelligent mobile surveillance services. On one hand,

the mobile sensors can help improve the weakness of traditional wireless sensor networks

that they only provide vague environmental information of the sensing field by including

some mobile cameras to conduct in-depth analysis of the sensing field. On the other

hand, the wireless sensor network provides context awareness and intelligence to the

surveillance system. Therefore, the weakness of traditional “dumb” surveillance system

is greatly improved because the real critical images/video sections can be retrieved and

proactively sent to the users.

We believe that the prototype that we have demonstrated still can be improved in

several ways. First, the grid-like patrolling paths of mobile sensors should be further

improved. Second, the coordination among mobile sensors, especially when they are on-

the-road, can be exploited. Third, how to utilize mobile sensors to improve the network

topology deserves further investigation.
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