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iIMouse: An Intelligent Mobile Surveillance Security System
by Wireless Sensorsand its Detection Delay Analysis

Student: Kai-Yang Cheng Advisors: Prof. Yu-Chee Tseng

Institute of Computer Science and Information Engineering
National Chiao-Tung University

ABSTRACT

Wireless sensor networks (WSN) provide an inexpensive and convenient way to mon-
itor physical environments. Integrating the context-aware capability of WSN into surveil-
lance systemsisan attractive direction. We thus propose an integrated mobile surveillance
and wireless sensor (iMouse) system, which consists of a large number of inexpensive
static sensors and a small number of more expensive mobile sensors. The former is to
monitor the environment, while the latter is‘capable of moving to certain target loca-
tions and taking more advanced actions: The iMouse system is a mobile, context-aware
surveillance system. We demonstrate our current prototyping for home security appli-
cations. One important performance metric of the system is the event detection latency.
We analyze the latency under an any-sensor-detection and a &-sensor-detection models,
where & > 1. The analytical results are also verified by simulations.

Keywords. pervasive computing, robotics, surveillance system, wireless communi-
cation, wireless sensor network.
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Chapter 1
| ntroduction

Recent advances in wireless communications and MEM S technol ogies have made wire-
less sensor networks (WSN) possible. A WSN consists of many tiny, low-power devices
equipped with sensors, transceivers, and actuators [1]. It provides an inexpensive and
convenient way to monitor physical*environments. With its context awareness, WSN may
enrich human life in many ways: Applications:of WSN include surveillance, biological
detection, habitat, agriculture, and traffic monitoring {2, 3, 4, 5, 6].

Integrating the context-aware capability of WSN into surveillance system is an attrac-
tive direction that deserves investigation. Surveillance systems typically collect a large
volume of audio/video information, which requires intensive computation/manpower to
analyze. Including theintelligence of WSN can hel p reduce such overheads and even pro-
vide more advanced, context-rich services. For example, in security applications, when
something abnormal is detected, in-depth analyses may be conducted to find out the pos-
sible sources. In intrusion detection applications, when trespassing is detected, a metal
detector may help determine whether the intruder is carrying a weapon or not.

Inthiswork, we propose an integrated mobile surveillance and wirel ess sensor (iM ouse)
system. TheiMouse system consists of alarge number of inexpensive static wireless sen-
sors and a small number of more expensive mobile sensors. The former is to monitor
the environment, while the latter is capable of moving to certain target locations (such
as potential emergency sites) and taking more advanced actions (such as taking pictures
of the emergency scenes and conducting in-depth analyses). The iMouse system is a
mobile, context-aware surveillance system. We demonstrate our current prototyping for
home security applications. In particular, each mobile sensor has a mini-computer, which
is connected to a data collector, a WebCam, and a 802.11 WLAN card, and is mobilized



by aLego car. At normal times, a mobile sensor can collect sensory data and report to an
external server. When special events are detected, it can move to the event locations, take
snapshots of the scenes, and send pictures to the server through its 802.11 interface. We
demonstrate applications of iMouse through a fire emergency example.

IniMouse, when an event or an object appears, the event detection latency isan impor-
tant factor that can affect the responsiveness of the system. This depends on the network
deployment and the location where the event appears. We adopt a probabilistic approach
to model this problem and analyze the latency under an any-sensor-detection and a k-
sensor-detection models, where & is a predefined integer. Simulation results are presented
to verify our analyses. Also, the result is believed to be applicable to general sensor
networks.

The rest of thiswork is organized as follows. Chapter 2 reviews some related work.
Chapter 3 discusses detailed design and implementation of our iMouse system. Chapter 4
presents our analyses and simulation results on event detection latency. Conclusions are
drawn in Chapter 5.



Chapter 2

Related Work

The objective of this work is to study the feasibility of combining surveillance systems
with sensor networks. Most visual surveillance systems deal with the real-time monitor-
ing of persistent and transient objects. The primary goals of these systems are to provide
an automatic interpretation of scenes and to understand/predict actions of the observed
objects from the information acquired from cameras or CCTV (closed circuit television)
[7]. For example, a video-based surveillance network'is proposed in [8], where the infor-
mation collected by each videa camerais transmitted by an IEEE 802.11 wireless card.
The surveillance issue has also been discussed in-the field of robotics [9, 10, 11]. The
system is assumed to have arobot with'many: static cameras installed on locations such as
walls. These cameras are used to find obstacles or humans in the field, so that the robot
can detour around these obstacles.

On the side of WSN, the event/object tracking issue has been intensively studied [12,
13, 14, 15, 16, 17]. Most works assume that the intrusion objects can emit some signals
(such asnoiseor light), or the objects themsel ves are phenomenal (such as diffused gasor
chemical liquid [16]). However, results reported from aWSN are typically very brief and
lack of morein-depth information. This motivates usto study the feasibility of integrating
WSN with surveillance systemsto support intelligent context-aware surveillance services.



Chapter 3

Design of the iM ouse System

3.1 System Architecture

Fig. 3.1 shows the system architecture of the iMouse system. It consists of a static WSN
and few mobile sensors. At normal times, the WSN is responsible of collecting and
reporting environment information to the mobile sensors. When necessary, the mobile
sensors are able to move to the event locattons, conduct more advanced analyses of the
event scenes, and report the analysi sresultsio-the remote sink.

Each sensor of the WSN consists of a data collector and a sensing board. The data
collector is used to communicate with other"static/mobile sensors. The sensing board is
used to collect environment data. In our current prototype, three types of data can be
collected, including voice, temperature, and light. Reporting of eventsisreactive, and an
event is defined when the sensory input is higher than a predefined threshold. Different
inputs can be combined to define an event. For example, for fire emergency, acombination
of light and temperature thresholds can be used. To detect an explosion, a combination of
temperature and sound thresholds may be used. For home security, an unusua sound or
temperature can be used. More advanced sensors may be added | ater.

Mobile sensors have five major functionalities: issuing commands to the WSN, gath-
ering data from the WSN, moving to some target areas, taking snapshots, and reporting
analysesto the remote sink. Each mobile sensor isempowered by a microprocessor called
Stargate [18], which is connected to a data collector, a Lego car, a WebCam, an |EEE
802.11 WLAN card, asshownin Fig. 3.2. The data collector can communicate with static
sensors to issue commands or gather data. The Lego car [19], produced by MindStorms,
supports mobility. The WebCam is to take photos of the emergency scenes. To eliminate
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Data collector

Figure 3.2: The mobil € sensor.

the wiring problem, the 802.11 WLAN card is used“ to talk to the home gateway. The
Stargate is the “brain” of a mobile sensor. For example, it decides the visiting sequence
of potential emergency sites.

3.2 A FireEmergency Scenario

Below, we give a fire emergency scenario to demonstrate how the iMouse system works
(refer to Fig. 3.1). On receiving the remote sink’s command, the WSN will form a span-
ning tree to collect environment data. Suppose that sensors D and H reply high tem-
peratures and are thus suspected of fire emergency in their neighborhood. On receiving
such natifications, the mobile sensors will coordinate and decide who will be delegated
to which sensors viawhich shortest path. On visiting D and H, the mobile sensor(s) will
take snapshots of these sites from different angles. After returning to the home gateway,
the mobile sensor(s) will send these snapshots back to the remote sink for further actions.



(a) sensor board (b) data collector

Figure 3.3: The sensor.

Figure 3.4: The Stargate.

3.3 Implementation Details

3.3.1 Hardware Specifications

We usethe MOTE-KI1T2400-MICAz by CrossBow [20] as sensor nodes (refer to Fig. 3.3).
The MICAz is a 2.4 GHz, |IEEE 802.15.4-compliant Mote module enabling |ow-power
operations and offering a data rate of 250 kbps with a DSSS radio. The sensing board
can offer three kinds of readings. temperature, voice, and light. The Stargate [18], aso
manufactured by Crossbow, consists of a 32-bit, 400-MHz Intel PXA-255 XScale RISC
processor with 64 MB main memory and 32 MB extended flash memory. It also has
a daughter board with a RS-232 seria port, a PCMCIA port, a USB port, and a 51-
pin extention connector, which can be attached to a MICAz mote. (refer to Fig. 3.4 and



Table 3.1). It drivesaWebCam through the USB port, and an 802.11 WLAN card through
the PCMCIA dot. The Stargate controls the Lego car [19] viaa USB port connected to a
Lego tower (9713 IR-TRANSMITTER). The Lego car has an infrared ray receiver in the
front and two motors on the bottom (refer to Fig. 3.5). It aso has alight sensor, which we
use for navigation purpose. Thisisrealized by different colors of the tapes that we stick
on the ground. With this mechanism, the Lego car can localize itself in the sensing field.

Table 3.1: The hardware specification of Stagate.
Element Type
CPU 32-bit, 400 MHz Intel PXA-255 X Scale RISC processor
Flash memory | 32MB of Intel StrataFlash
Main memory | 64MB of SDRAM
Daughter Card | Host USB
RS-232 Serial Port via DB-9 Connector
1 Type |l CompactFlash S| ot
Others 1 PCMCIA slot
MICA2 Mote capacity, GPIO/SGPP and other signalsvia
a 51-pin extension connector

An experimental 2 x 2 grid-like'sensing field (Fig. 3.6) is demonstrated. On the
ground, golden tapes represent intersections and black tapes represent roads. The ori-
gin (0,0) is at the lower left corner. Four sensors are placed at (1, 1), (0,2), (2,0), and
(2,2), respectively. The transmission range is manualy set to two units to fit into the
relatively small sensing field. A light reading below 800 is to simulate a potential fire
emergency.

3.3.2 Protocol Specifications

Each static sensor runs the algorithm in Fig. 3.7. Initialy, it waits for commands from
mobile sensors or other static sensors. A tree-construct command will trigger the sensor
to check if its tree parent is null or has expired. If so, it sets the sender as its parent.
Then it will re-broadcast the command. To distinguish new from old commands, each
tree-construct command is assigned a unique sequence number. The goa is to form a
spanning tree of the network. Then the sensor turns on its sensing devices. On detecting
potential emergencies, sensors will transmit a status_ report to mobile sensor along the



Figure 3.5: The Lego car.
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Figure 3.6: A 2 x 2 grid-like sensing field in our experiment.
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Figure 3.7: The algorithm run by the static sensors.
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A
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Figure 3.8: The algorithm run by the mobile sensors.

spanning tree. The event_flag isto determine if an update of status_report is needed.

Each mobile sensor runs the algorithmin Fig. 3.8. If atree-construct command isre-
ceived from the remote sink, it will broadcast it to the WSN. It then waitsfor status report
from static sensors and forwards the report to the sink. On receiving the sink’spatrol com-
mand, the mobile sensors have to take further actions. The traveling-salesman algorithm
APPROX-TSP-TOUR [21] is used to compute their patrolling paths. A spanning tree of
all potential emergency sitsisformed, and then aheuristic is used to partition the tree into
anumber of regions, each to be visited by a mobile sensor. For each region, the patrolling
path is the preorder tree walk. Photos are saved in the Stargate’s flash memory. When
moving back to the origin, each mobile sensor forwards photos of all visited sites to the
sink.

Two types of packets, command and data, are defined. The former isinitiated by mo-

12



1 Byte 2 Bytes ) 2 Bytes ) 2 Bytes ) 2 Bytes ) 2 Bytes ) 2 Bytes
Type|Origina_ID | Source ID | Dest ID | Seq Num | Hop_count Other

() command packet

1 Byte 2 Bytes ) 2 Bytes ) 2 Bytes ) 2 Bytes ) 2 Bytes
Type|Origina _ID | Source ID | Dest ID | Seq Num Data

(b) data packet
Figure 3.9: Packet formats.

bile sensors and the latter isinitiated by static sensors. The formats are shownin Fig. 3.9.
The Original _ID, Source_ID, and Dest_ID fields are the initiator, transmitter, and receiver
of the packet. The Seq_-Num field, together with the Original _ID field, guarantees the
unigueness of a message. The Hop_Count field of the command packet helps establish
the spanning tree, and the Data field.containSthe sensing value and status of the originat-
ing sensor.

3.3.3 User Interfaces

At the remote sink, we provide aninterface to monitor the status of the WSN and to con-
trol mobile sensor, as shown in Fig. 3.10. "It includes six major components:. Config,
Command, Status, Control, Monitoring and Log fields. The Config area is to input con-
figuration information of the iMouse system, such as mobile sensors' |P addresses, ports,
sensors’ positions, etc. The Command area isto load the configuration file ( such as sen-
sors’ positions) to sensors, establish connection from the sink to mobile sensors, issue the
tree-construct commands, change the parent of a static sensor !, calculate the patrolling
paths of mobile sensors, disconnect all mobile sensors (so as to reset all environment pa-
rameters), add a new sensor in the sensor network, set a sensor’s position, remove a sensor
from the network, and check the status of a static sensor. The Status area shows the status
of a static sensor being queried. The Control area can be used to control the movement
of amobile sensor or ask a mobile sensor to take a snapshot. The Monitoring area shows
the network topology of the WSN, and the patrolling paths of mobile sensors. When a
sensor detects an event, afireicon will be shown in the corresponding site. A cameraicon
will be shown when a snapshot has been taken for the site. Finally, the Log area shows

1Thisisto adjust the topology of the spanning tree.

13



( Patrol Path\

( Command Area)

Config Area

h > N\ / COTIETT*

‘ " \ # ',J' Load Sensar Config File
e -

0,2 m 4.2) Gk, Connect to Stargate

Construct Tree

. o o Set Parent
+ [Havetaken' K Calculate Path |~
__Snapshot |

Add Sensor

Set Sensor Position

LIRhY . 41

Sensor Status
T Sensor Status )
Sensor: NA
Position: N/i&
Parent: N/A
Event: NiA
>

\({0.0

ad config file filed bd < Stop
onnect to Stargate

onstruct Tree Complete
: Rotate | v | jOkt

%&

[
—(M onitoring Area) ( Message Area ) (Control Area) (Status Area)—

Show)
G0 To i Photo
>
Take

Figure 3.10: User interface at the remote sink.
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some status messages. For example, Fig. 3.10 shows the user interface when sensors at
coordinates (2, 2) and (0, 2) detect potential fire emergencies.
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Chapter 4
Analysis of Event Detection L atency

In this section, we propose a model to analyze the event detection latency of the iMouse
system. The results may be applied to general sensor networks, too. We are given a
sensing field A, on which there are n homogeneous sensors. Each sensor has a sensing
distance of r. Without loss of generality, we assume that these n sensors form a connected
network. To simplify the anaysis, werassume.that.the time axis is divided into fixed-
length slots and the working schedule of each sensor is modeled by cycles, where each
cycle consists of 7" dlots. Each-cycle is divided into'an active phase and an idle phase.
The former consists of thefirst D' slots, and the latter the rest of the 7' — D dlots. Sensors
only conduct detection jobs in their active phases. However, sensors do not synchronize
their clocks, so their cycles are not necessarily aligned. Fig. 4.1 shows an example.

Our goal isto evaluate the detection latency when an event appears in any location in
the sensing field. To take errors into account, we assume that in an active slot, a sensor
has a probability of p to successfully detect the appearance of the event if the event is
within this sensor’s sensing range. We consider two detection modelsin this work:

e any-sensor-detection model: To capture the event, the network needs at least one
sensor to successfully detect the event.

e k-sensor-detection model: To capture the event, the network needs at least £k sen-
sors to successfully detect the event, where k£ > 1. (The value of & is application-
dependent. For example, for trilateration, at least three sensors are needed.)

Suppose that at time slot 0, an event appears at location (x,y) in the sensing field.
Let M(z,y) be the number of sensors whose sensing ranges cover location (z,y). Con-
sider these M (z,y) sensors' first active slots after slot 0. We can classify them into 7'

16



cyclei-1 cyclei cyclei+1

slot
r | T ----- | T‘_’: | }—’—¢—>Time

active phase  idle phase
(D slots) (T-D dlots)

sensor 1 7 Z
sensor 2 | ) )

Sensor n ) )

Figure 4.1: Modeling of sensors’ active phases and idle phases.

groups such that each group 7 consistsiof m; Ssensors whose first active dlot is at the ith
sot,i = 1,...,7T. Clearly, Y= ym; = M4, y): Teking al combinations of m,’s into
consideration, the detection latency can‘be written as

M(z,y) M(z,y)—m1 M(z,y)—m1—ma
Latency(z,y) Z Z Z
m1=0 mo=0 m3=0
M (z,y)—(mi+mo+--+mp_2)
M(z,y)! 1
: X ()M ) x 6
Z <m1'm2| ..... mT! (T) (m17m27

mg_1=0

where the first term is the probability to observe a particular combination (m, ms, - - -,
mr), and the second term 6 (my, ma, ..., mr) isthe expected delay for this particular com-
bination. As the event may appear in any location inside A, the average latency can be
written as

Yv(ey Latency(z, y)
Zv(m,y) 1 '

Erp= (4.2)

In Sections 4.1 and 4.2, we will show how to compute §(my, mao, ..., m7) under our two
detection models. Section 4.3 presents our simulation result. Table 4.1 summarizes the
notations used in this work.

17



4.1 Any-Sensor-Detection M odel

Under this model, the event is considered to be captured by the network, once any sensor
successfully detects its existence. Let x; be the number of active sensors at the ith slot,
i=1,...,T. These z; sensors can be classified into three types: (1) sensors which turn
into active at the ith dot, (2) sensors which turn into active between the first and the
(1 — 1)th dots, and (3) sensors which turnsinto active at or before the 0-th slot. Note that
x; # m; unless D = 1. Thisleadsto

We also define x,1, asthe number of active sensors at the (a7" + b)th slot for any a > 1.
Since cyclesrepesat every T' dots, we have x 1, = .

The probability that there is at |east one sensor successfully detecting the event in the
first slotis (1 — (1 — p)™). For i > 2ytheprobability that the event is not detected in the
first (i—1) slotsbut issuccessfully detectedintheithslotis (1—p)“1 -1 (1—(1—p)®).
Hence, the expected detection latency under the any-sensor-detection model is

oo T
5<m1’m2’ ...,mT) _ Z Z CLT + b a><(w1+ Axr)tr oty 1(1 _ (1 _p>xb).

a=0 b=1

(4.2)

Eq. (4.2) contains an infinite number of expressions. The following theorem shows that it
will converge.
Theorem 1. The expected delay §(my, mo, ..., my) under the any-sensor-detection model
is bounded by

5(m1, meo, ..., mT) S

where o = (1 — p)P>*M@y),
Proof. Since the sequence x4, x», ... hasaperiod of T, we can rewrite EqQ. (4.2) in terms

18
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4.2 k-Sensors-Detection M odel

Under thismodel, the event is considered ta be captured by the network, once there are at
least k sensors successfully detecting its-occurrence. Since the sequence x4, z», ... hasa
period of T, the expected latency-can be written as

fo'e) T
d(mq, ma, ..., mr) :ZZ (aT +b) - Pyyee(my, ma, ...,mp,aT +b), (4.3

a=0 b=1

where Py,c.(mq, ma, ...,mp,aT + b) is the probability that there are at least & sensors
successfully detecting the event at the (a7" + b)th slot, but not so before that slot. To find
Pyyec(my, ma, ...,mp, aT +b), 1€t Nyeqq, b the number of sensorsthat already detected
the event before the (aT" + b)th slot, and Ny, be the number of sensors that detect this
event at the (a7 + b)th slot for the first time. We first categorize sensors according to their
behaviors as shown in Fig. 4.2. There are x,r,, = x; active sensors a the (a7 + b)th
dot, and therest of M (z,y) — x;, sensors are inactive. The inactive sensors can be further
divided into a set of V; sensors which have detected this event before the (a7 + b)th slot,
and aset of M(x,y) — z, — N; sensorswhich have not. Similarly, the active sensors can
be divided into a set of V5, sensors which successfully detect this event at this dlot, and a
set of x, — Ny sensors which fail to detect this event at this slot. From the latter set, we
further identify a set of N3 sensors which ever succeeded to detect this event before the
(aT + b)th slot, but fail to detect this event at the current slot.

19



Conduct detection
thisslot?

Succeed for the
?
Succeeded before? ; E first time?
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Figure 4.2: Classification of sensors in the (al" +.b)th slot. Numbers in ovals indicate
numbers of sensors.

é

Based on the above definitions, once the values of | Naiready, N1, N2, and N3 are given,
therest of thevariablesin Fig. 4.2will al be fixed. Specifically, the number of sensorsthat
successfully detect thisevent at the current slot but have already detected this event before
the (a1 + b)th slot is Nyjpeaay — N1 — N3, and the number of sensorsthat detect this event
for thefirst timeat the current lotis Nyt = No — (Naiready — N1 — N3). IN EQ. (4.3), the
latency isconsideredto beaT+ b if Nyjreqay < k@and Nyipor = (N1+No+N3)— Nojready >
k — Naireaay- By €numerating all combinations of Nyj,cqay, N1, N2, and N3, we can derive
that

k—1 Nal'ready xp
Psucc(mlamQ, e, MM, al + b) = Z ( Z P?"Ob[Nl = hl] . (Z PTOb[NQ = hg]
NalreadyZO h1=0 ha=0

already

Z Pmb[z\f3 hs] - Prob[Nyist > k — Natready])))-

(4.9

Depending on the value of b, we further expand Eq. (4.4) into three cases.
Case(1): b < D. Consider the set of M (x,y) — x, inactive sensors at the current slot.
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We divide them into two subsets:
e 51: The set of sensors whose active phases do not cross the boundaries of cycles.
e S, The set of sensors whose active phases cross the boundaries of cycles.

Clearly, |S1| = mpp1 +mpio+...+mp_(p—1) @d [Sz| = mp_(p_1)41+Mmr—(p-1)+2+

.. +mp_p—p. FOr example, when b = 2, Fig. 4.3 shows the above two subsetsin case

1. Recall the definition of N;. Among these N; sensors, let R; be the number of sensors

belonging to S;, and R, the number of sensors belonging to S;. Notethat R, + Ry = V.
We can expand Eq. (4.4) asfollows:

k—1 Nal'ready h1

Pauec(my, ma, ...omp,al +0) = Y (Y (Y Prob[Ry =r1] - Prob[Ry = hy — r1])-

Nalready:O h1=0 71=0

Ty already h1
(Y Prob[Na=ho]- (> Prob[Nge= hs] - Prob[Nyirse > k — Nuiready))))-
ho=0 h3=0

(4.5)

Given two integers = and ysuch thatz"> y.and aprobability value z, let us define
Bino(2iyyz) = (()a% (1 —z)". (4.6)
The probability functionsin Eq. (4.5) are derived as follows:

Prob[R, = r1] = Bino(|Sy],r1,1 — (1 —p)*P),
D—2

Prob[Ry = hy —n] = Z % - Bino(|Ss|, hy — r1,1 — (1 —p)*P*7),
i=1

Prob[Ny = hy| = Bino(zy, ha, p),

b-1 D—b-1
Prob[N3 = h3| = Bino(xy — ha, hs, Z Mo (1— (1 — p)el+o-iy ¢ my— i
=0 o =0
bl D—b— 1m
Prob|N irst = k — Na rea = Bi ho. N irs b—i 1 — aD+b i T— z
ro [ first — l dy] ZnO( 2, IV t7; o ( + Z

Prob[R, = r] isthe probability that r; sensorsin S; have ever detected this event before
the current slot, where 1 — (1 — p)@? isthe probability that a sensor has ever detected this
event before the current slot. Prob[Rs = hy — 1] is derived similarly, except that we are

(D—1)+1 Of

concerned about sensors in .S, and, among these sensors, thereis aratio of = ‘ S |
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Slot Number |M, /M, M, M, M, mjm, m,
- Subset S
/ 1
(a))T +7 OO0 Q/
/ Subset S,
(@D +8 oblo)/
aT+1 | O d Q/é
aT+2 O O ()__—Subset S,
aT+3 OO0 O __—1 | ——subs S,
aT+4 (J& 0 O( | [ )esusS,
aT+5 0|00
aT+6 ololo — Subset S,
4
aT+7., 010 O )esubset S,
aT+8 O1010
(@)T+110) 0|0
() :active dlot @ DT O O

Figure 4.3: Classification of sensorsin anetwork with7 = 8 and D = 3.

sensors which have tried to detect this event for a D + i slots (and we take their average).
Prob[Ny = hy) isthe probability that there are i, sensors among x;, sensors successfully
detecting the event at the current slot. Prob[Ns; = hs] is the probability that there are
hs sensors among x;, — hs Sensors that have ever successfully detected the event before
the current slot. The third term in Bino(-) is to take care of those sensors whose active
slots do not (the first expression) and do (the second expression) cross the boundaries of
cycles, and we take their average. Prob[Ny.s > k — Naiready| 1S Similar to the previous
probability except that these sensors succeed for the first time at the current slot.

Case(2): D <b<T-—D+1.Inthiscase, wedividethe set of inactive M (z, y) — z;
sensors at the current slot into three subsets according to whether their active slots cross
the boundaries of cycles:
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e S;: The set of sensorswhich have finished their active slots at the current cycle and
whose active slots do not cross the boundaries of cycles.

e S5: The set of sensors which have not started their active slots at the current cycle
and whose active slots do not cross the boundaries of cycles.

e S3: The set of sensors whose active slots cross the boundaries of cycles.

Wecanobtainthat |S;| = >-"F m, |So| = Z;ﬂ_l) mg, and |Ss| = Y (D—1)+1 M-

For example, when b = 4, Fig. 4.3 showsthese subsetsin case 2. We can expand Eq. (4.4)
asfollows:

k—1 Naiready hi hi—r

Poce(my,mo, ...,mp,aT +b) = Z ( Z (Z Z Prob[Ry = 1]

Nalready:() h1=0 r1=0 7r2=0

Ty
Prob|Ry = r3] - Prob[R s=ilif* =& ro]) - (Y Prob[Na = hy)-

ho=0
already hy
(). Prob[Ns = Hg]: ProbiNire 2% — Natreaay]))), (4.7)
h3=0

where

PTOb[Rl = 7"1] = Bin0<|sl‘7rl7 1 - (1 _p)(a+1)D)7
Prob[Ry = r3) = Bino(|S,|, 72, 1 — (1 — p)*P),

D—2
mMmr—(D-1)4+1+i . aD-+i
Prob[R3 = r3] = Z %BZTLOOS;}‘,TB, 1 — (1 —p) Pttty
i=0 3

Prob[Ny = hy| = Bino(zy, ha, p),

D—1
Prob[N3 = hs| = Bino(xy — ha, hs, Z i (1— (1 —p)*P*t), and
im0 b
D1
Prob[Nyipst = k = Naireaay] = Bino(hz, Nyirst, Z = (1- p)aDH).
im0 b

Case (3): b > T'— D + 1. In this case, we divide the set of inactive M (z,y) — x;
sensors at the current slot into two subsets according to whether their active slots cross
the boundaries of cycles:

e 51: The set of sensors whose active slots do not cross the boundaries of cycles.
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e S5: The set of sensors whose active slots cross the boundaries of cycles.

Wehave S; = ZZ . m;and Sy = Z@T:bﬂ m;. Fig. 4.3 givesan examplewhen b = 7.
We derive Eq. (4.4) asfollows:

k—1 Nal'ready h1

Pauec(my, ma, ...omp,al +0) = Y (Y (Y Prob[Ry =r1] - Prob[Ry = hy — r1])-

Nalready:O h1=0 71=0

Ty already hi1
()" Prob[Na=ho]-( > Prob[Ns = hs]- Prob[Nyirst > k — Nutreaay)))):
ho=0 h3=0
(4.8)
where
Prob|Ry; = 1| = Bino(|Sy|, 1,1 — (1 — p)(aH)D),
D-2
Prob[Ry = 19| = Z WBMO(ISH Iy, 1 — (1 — p)*Prith,
i=1
Prob[Ny = hs] = Bino(xy, ha, p),
T<b
Prob[Ny = hy] = Bino(, — higyhsl yoictalalt (1 _ (1 — p)eDeitt)y
i=0 Lo
b-THDAL ‘
Z T—(D-D)+1+i (1—(1— p)aDJriJrl))’ and
° Tp
=0
PTOb[Nfirst >k — Nalready] = Bin0<h27 Nfirsta
b - b—T+(D—1)—1 o
T—(D—-1)—1 aD+i+1 T—(D-1)+1+: aD+i+1
— (1 - + — (1 - .
; o LD ; 1) )

Finally, by replacing Py,c.(mq, ma, ..., mp, aT + b) in EQ. (4.3) with one of the above
three cases, we can obtain the expected latency &(my, ma, ..., mr) under the k-sensor-
detection model.

4.3 Simulation Results

We have developed a ssimulator to verify our analytical results. A sensing field of size
10 x 10 is simulated, on which 50 sensors are deployed randomly. Each sensor has
a sensing distance of 3 units. Events may appear in any location in the sensing field.
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Figure 4.4: The detection latencies under different values of M (z,y).

Given a network configuration, we evaluate the detection latency by both Eqg. (4.1) and
by ssimulation. For simulation, at least 1000 experiments are repeated, and we take their
average.

Fig. 4.4 shows the detection latencies under different values of M (z,y) and detec-
tion probability p. The simulation results coincide well with the analytical results, except
when p = 0.1 and M(z,y) < 5 under the 3-sensor-detection model. Thisis because our
analysis assumes a larger-scale network. It can be observed that a larger M (x,y), which
implies a higher network density, can help reduce the detection latency. A larger detec-
tion probability p, which reflects the sensibility of sensors, can aso reduce the detection
latency. The result can be used to determine how sensors should be arranged at the de-
ployment stage. Fig. 4.5 shows the detection latencies under different values of M (z,y),
D, and p when T' is set to 16. We can observe that the latency drops significantly when
D < 3. The result can be used to decide the length of a sensor’s active phase to reduce
both detection latency and energy consumption of a WSN.
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Figure 4.5: The detection latencies under different valuesof D (T" = 16).
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Table 4.1: Summary of notations.

Notations Definition
number of sensorsin the sensing field
k minimum number of sensors required to successfully detect
the event
T number of slotsin acycle
D number of dlotsthat a sensor continues detecting the event
P probability that a sensor successfully detects the event
during aslot
M(x,y) number of sensors that can detect the event when the event
occursin (z,y)
m; number of sensorsin M (z, y) that conduct detect in the
sth slot.after the event occurs
X number of sensors detect the event in the ith slot of acycle

Psucc(ml, mao, ..., M, aTl + b)

probability that there are at least £ sensors which succeed
to detect the event

Naiready number: of 'sensors that have ever succeeded to detect the
event before the (a7 + b)th slot
Nirst number of sensorsthat first succeed to detect the event at
the (aT" + b)th slot
N; number of sensors that have ever succeeded to detect the
event before but do not detect at current slot
N, number of sensors that succeed to detect the event at the
(aT + b)th slot
N3 number of sensorsthat have ever succeeded to detect the
event before but fail at current slot
S; number of sensorsin the subset ¢
R; number of sensors that have succeeded to detect the event

in the subset ¢
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Chapter 5
Conclusions

The proposed iMouse system combines two areas, wireless sensor network technology
and surveillance system, to support intelligent mobile surveillance services. On one hand,
the mobile sensors can help improve the weakness of traditional wireless sensor networks
that they only provide vague environmental infarmation of the sensing field by including
some mobile cameras to conduct in-depth-analysis of the sensing field. On the other
hand, the wireless sensor network provides context awvareness and intelligence to the
surveillance system. Therefore; the weakness of traditional “dumb” surveillance system
is greatly improved because the real Critical images/video sections can be retrieved and
proactively sent to the users.

We believe that the prototype that we have demonstrated still can be improved in
several ways. First, the grid-like patrolling paths of mobile sensors should be further
improved. Second, the coordination among mobile sensors, especially when they are on-
the-road, can be exploited. Third, how to utilize mobile sensors to improve the network
topology deserves further investigation.
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