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I 

 

H2–HCl 凡德瓦錯合物之全初始化互相作用能曲面 

研究生:李彥廷 指導教授:魏恆理 

 

國立交通大學應用化學系分子科學碩士班 

摘要 

 一個六維 H2–HCl 錯合物之分子間互相作用能曲面已被提出。全

初始化計算點完成於六維的網格，包含了H–Cl及H–H 距離的相關。

首先，利用高效率明確相關耦合簇超分子方法 (efficient 

explicitly correlated coupled-cluster supermolecular method 

(CCSD(T)-F12b)) 及大基底函數組，通過外插法計算出互相作用能。

接著，三重迭代及四重非迭代激發貢獻，由較小的基底函數組計算得

出並且加入。此研究中也包含了內層電子互相作用及相對論修正。所

得到的互相作用能接著對 HCl 及 H2之基態振動波函數進行平均。 

由此進行解析擬合，產生四維勢能面。在勢能井，對應到真實完

整基底函數組的不確定性小於 0.6 波數。藉由我們提出的兩步擬合，

勢能面的形貌及能量皆能正確地呈現。擬合步驟在勢能井最大誤差及

平均誤差分別為 0.47cm-1及 0.0066 cm-1。擬合使用簡單的三角函數。

這些簡單的三角函數在未來工作中容易進行操作。相似的互相作用能

曲面可以依照本論文中所發展的方法來產生。  
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An ab initio interaction energy surface of the H2–HCl 

van der Waals complex 

Student: Yen-Ting Li     Advisor: Henryk Witek 

 

M. S. Program in Molecular Science, 

Department of Applied Chemistry 

National Chiao Tung University 

Abstract 

A six-dimensional intermolecular potential energy surfaces for the H2–HCl complex is 

presented. The ab initio points have been computed on a six-dimensional grid 

including the dependence on the H–Cl and H–H separations. The interaction energies 

were first calculated using the efficient explicitly correlated coupled-cluster 

supermolecular method (CCSD(T)-F12b) with large basis sets, followed by an 

extrapolation procedure. Next, a contribution from iterative triple and noniterative 

quadruple excitations was added from calculations in smaller basis sets. The core 

electron correlation and relativistic correction were also included. The resulting 

interaction energies were then averaged over the vibrational ground-state wave 

functions of HCl and H2.  

The final four-dimensional potential energy surfaces were fitted by analytic 

expressions. In the potential well, the uncertainty corresponding to the true complete 

basis set limit is less than 0.6 cm
-1

. We proposed a two-step fitting procedure which 

reproduced well both the correct shape of the whole potential energy surface and 

interaction energy itself. The maximum error of the fitting in the attractive part of 

potential is 0.47 cm
-1

 and the mean error is 0.0066 cm
-1

. The simple trigonometric 
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functions were used which are easy to manipulate in future work. Similar interaction 

energy surface can be produced based on methodology developed in presented Thesis. 

 

 

 

關鍵詞/Keywords:互相作用能(Interaction energy)、勢能面(Potential energy surface)、

凡德瓦錯合物(van der Waals' complexes) 
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Chapter 1  

Introduction 

The importance of intermolecular forces in Nature is very difficult to overestimate. It 

is sufficient to say that the existence of liquids and solid is due to intermolecular 

interactions. In the absence of intermolecular interactions our world would be a 

uniform ideal gas. 

 A detailed knowledge of intermolecular interactions is required to solve a wide 

class of problems in physics, chemistry and biology. The thermodynamic properties of 

gases and liquids and their kinetic characteristics are determined by the nature of 

intermolecular interactions. Intermolecular forces also determine to a large degree the 

properties of crystals, such as the equilibrium geometry, the binding energy, etc. 

 Intermolecular interactions are involved in the formation of chemical complexes, 

such as charge‐transfer and hydrogen‐bond complexes. Study of the mechanism of 

elementary chemical reactions is impossible without the knowledge of the exchange 

processes between the translational and electron‐vibration energies, which depend on 

the interaction of particles under collisions. Knowledge of the potential surface, 

characterizing the mutual trajectories of the reactants, is necessary to obtain the rates 

of chemical reactions. 

 Theoretical modeling of these properties requires knowledge of the usually 

multidimensional potential energy surface for a wide range of separations, which have 

to be found independently. Owing to the fast development of computing technology 

and enhancement of the speed of the central processing units (CPUs), we are able to 
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calculate the full-dimensional potential energy surface for H2–HCl with errors below 

one wavenumber. 

 In 2004, Jankowski proposed
[1]

 a method for the generation of highly accurate, 

full-dimensional interaction energy surfaces for weakly interacting subsystems (Ar–

HF). The method is based on the local expansion of the exact interaction energy 

surface in Taylor series with respect to the intramolecular coordinates. This leads to 

significant savings in computational time for the full-dimensional interaction energy 

surfaces. Later in 2005, Jankowski and Szalewicz
[2]

 applied this method on H2–CO. 

The ab initio points have been computed on a five-dimensional grid including the 

dependence on H–H separation (the C–O separation was fixed). The surface has then 

been obtained by averaging over the intramolecular vibration of H2. In 2013, 

Szalewicz et al. presented
[3]

 a new ab initio interaction potential energy surfaces for 

the H2–CO complex computed on a six-dimensional grid. The resulting interaction 

energies were then averaged over the ground–state and both ground– and first–

excited–states vibrational wave functions of H2 and CO, respectively. Theoretical 

infrared spectra calculated from these surfaces agree extremely well, to within a few 

hundredth of a wavenumber, with the experimental spectra of para and ortho H2–CO 

complexes. In the latter case, this agreement enabled an assignment of the 

experimental spectrum, ten years after it had been measured. 

 In 2002, Anderson et al.
[4]

 studied the behavior of HCl and DCl isolated in solid 

parahydrogen (pH2). They found that the gas phase vibrational and rotational 

quantum numbers of the dopant are conserved within the pH2 solid. In addition, the 

pure vibrational Q1(0) (ν=1←0, J=0←0) H2 transition, which is infrared inactive in 

pure solid pH2, is detected in the HCl doped sample. They propose that this transition 

is induced in pH2 molecules by neighboring HCl molecules through a weak “overlap 
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induction” mechanism that is the only induction mechanism operative for J=0 

impurities in pH2. Rovibrational transitions are also detected near the induced Q1(0) 

H2 absorption. 

 In this Thesis, we tried to provide an accurate, vibrationally averaged H2–HCl 

interaction energy surface that can be used for simulating the spectrum of HCl trapped 

in pH2. Furthermore, analogous methodology can be used for generating also other 

H2–HX (X=F, Br) interaction energy surfaces. The detailed introduction to the 

computational method used in this Thesis is given in chapter 2. The definition of the 

coordinate system, grid points, and fitting functions are given in chapter 3. The 

investigation of the basis set convergence for different methods and features of 

potential surface are discussed in chapter 4. The conclusions of this Thesis is given in 

chapter 5. 

1.1 The concept of interatomic potential and 

adiabatic approximation 

A consistent theory of intermolecular forces can only be developed on the basis of 

quantum‐mechanical principles. Because of the quantum nature of the electronic and 

nuclear motions, the solution of the intermolecular interaction problem reduces to 

solving the Schrödinger equation for a system of interacting molecules. Such a 

problem may be solved only after adopting some approximations. A substantial 

simplification may be achieved because of the possibility of separating the electronic 

and nuclear subsystems and introducing the concept of the adiabatic potential. This 

approach, denoted as the adiabatic approximation, is based on a large difference 

between the masses of electrons and nuclei. 
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 Within the adiabatic approach, the electron subsystem is studied with fixed 

nuclei positions. In the Schrödinger equation, the nuclear kinetic energy operator is 

neglected and the nuclear coordinates are treated as fixed parameters. The 

Schrödinger equation splits into two: one for the electron motion with fixed nuclei 

and the other for the nuclear motion with the electron energy as the potential energy. 

 Below, I represent the basic equations for the system of two atoms A and B with 

NA and NB electrons, respectively, and the total number of electrons in the system N= 

NA + NB. Let us denote the set of 3N electron coordinates as r and the distance 

between nuclei as R. The total wave function in the adiabatic approximation is written 

as a simple product: 

 ( , ) ( ) ( , )mv mv mr R R r R     (1.1) 

where we denote the wave function describing the nuclear motions as ( )mv R  and 

the wave function of the N‐electron system in a quantum state m  as ( , )m r R : for 

each electronic quantum state m there is a corresponding set of nuclear quantum states 

v  . 

 The electronic wave function ( , )m r R  has to satisfy the Schrödinger equation 

for the electronic motion: 

 ( , ) ( ) ( , )e m m mH r R E R r R     (1.2) 

with the Hamiltonian: 

 
2 2 22 2

2

1 1

( )
2

N N
a b a b

e i

i i i jai bi ij

Z e Z e Z Z ee
H

m r r r R  

           (1.3) 

where air  and bir  are the distances between electron i  and nuclei a  and b , 

having the charges aZ  and bZ , respectively, and R is the fixed interatomic distance. 
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The wave function ( , )m r R  describes the electronic motion at fixed nuclear 

coordinates or at an infinitely slow change of nuclear coordinates. So, the eigenvalues 

mE  of Equation (1.2) depend upon the value of parameter R. The solution of 

Equation (1.2) at different values of R allows to obtain the function ( )mE R . This 

function plays the role of the potential energy in the Schrödinger equation for the 

nuclear motion, which in the so ‐called Born–Oppenheimer approximation
[5]

 is 

presented as: 

 
2

2[ ( )] ( ) ( )
2

R m mv mv mvE R R E R 


      (1.4) 

 As was noted by Born
[6]

, the adiabatic potential energy ( )mE R  can be corrected 

by adding the diagonal contribution of the electron‐nuclear interaction. In this Born 

adiabatic approximation, the Schrödinger equation for the nuclear motion is written 

as: 

 
2

2[ ( )] ( ) ( )
2

R m mv mv mvV R R E R 


      (1.5) 

 ( ) ( ) ( )m m mmV R E R W R    (1.6) 

 Here the adiabatic potential energy ( )mV R  is referred to as the interatomic 

potential. The second term in Equation (1.6), ( )mmW R , is called adiabatic correction. 

Because of computational complexity, the adiabatic corrections are often neglected 

and the interatomic potential is approximated by the energy ( )mE R  found in solution 

of the Schrödinger equation for the electronic motion at different values of the 

interatomic distance R . 

 The potentials describing the interaction between two molecules may be, as in 

the two-atom case, represented by a potential curve depending only on one variable, if 
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the interaction is averaged over all molecular orientations in space. This potential, 

( )V R  where R  is the distance between the center of masses of the molecules, is 

named the intermolecular potential. When the interacting molecules are fixed in space, 

the intermolecular potential, ( , )V R  , depends on a set of Euler’s angles,  , which 

determine the mutual orientation of the molecules. In addition, the interaction depends 

on the electronic state of the interacting systems. Therefore, for any pair of molecules 

there is a set of intermolecular potentials, ( , )mV R  , where m  labels the quantum 

states of the systems. 

1.2 General classification of intermolecular 

interactions 

The classification of intermolecular interactions depends on the distance between 

interacting objects. Various types of intermolecular interactions are listed in Figure 

1-1. They are classified according to the three ranges of intermolecular separation 

where they play dominating role in the description of the interaction of molecules. 

These three ranges are:  

I. A range of short distances at which the potential has a repulsive nature.  

II. A range of intermediate distances with the van der Waals minimum, which is a 

result of the balance of the repulsive and attractive forces.  

III. A range of large distances at which the electronic exchange is negligible and the 

intermolecular forces are attractive. 

Range I 

In this region, the perturbation theory (PT) for calculating the intermolecular 

interactions cannot be applied. To some extent, the interacting atoms (molecules) lose 
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their individuality because of a large overlap of their electronic shells. The same 

variational methods, which are used for molecular calculations, can be applied to the 

calculation of the total energy of interacting system, which can be considered as a 

‘supermolecule’. The interaction energy is found as a difference: 

 
1

n

int tot a

a

E E E


    (1.7) 

where aE  is the energy of isolated subsystems (molecules or atoms) that have to be 

calculated at the same approximation as a whole system. In this region one can 

separate only two types of interaction energies: the Coulomb energy and the exchange 

energy. If zero is put for all integrals containing the exchange or overlap of electron 

densities, CoulE  can be calculated. Then, the exchange energy is defined as the 

difference: 

 exch int CoulE E E    (1.8) 

Range II 

Both repulsive and attractive forces exist in this region. This causes the minimum of 

intermolecular potential energy and provides the ground for the stability of the system. 

The magnitude of the interaction energy is much smaller than the self–energy of the 

interacting molecules and the perturbation theory can be applied although the electron 

exchange, appearing as a consequence of the antisymmetry of the total wave function, 

is still large. The standard perturbation Rayleigh–Schrödinger and Brillouin–Wigner 

theories are developed for the zero–order wave function taken as a simple product of 

the wave functions of the interacting molecules. In the intermediate distance region, 

the antisymmetric zero–order wave function has to be dealt with. This leads to 

essential modifications of the standard perturbation schemes. The approaches 

developed were named Symmetry Adapted Perturbation Theories (SAPT)
[7]

.  
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The exchange energy is separated only in the first order of SAPT. The 

decomposition of intE  into a perturbation series can be written as: 

 (1) (1) ( )

.

2

n

int el exch pol exch

n

E   




     (1.9) 

Where (1)

el  is the classical electrostatic interaction energy between two (or more) 

systems of charges. The only difference to the classical expression is in the charge 

distribution: instead of point charges, (1)

el  contains distributed electron densities. 

(1)

exch  is the exchange energy in the first order of PT. Its origin is based on the Pauli 

principle demanding the antisymmetrization of many–electron wave functions. 

Because of antisymmetrization, electrons have the probability of being located on 

each interacting molecules. This is a specific quantum–mechanical effect. In the 

second and higher orders of SAPT, the exchange effects cannot be separated from the 

polarization energy. 

Range III 

In this region, exchange effects can be neglected. Usually, it is valid for R ≥ 15 0a .    

The different types of intermolecular interactions are classified in the frame of the 

standard Rayleigh–Schrödinger perturbation theory. In the second order of PT, the 

polarization energy splits on the induction (2)

ind  and dispersion 
(2)

disp  energies. In 

higher orders, some mixed term ,ind disp , which results from coupling of the induction 

and dispersion energies, appears. In the third order of PT, 
(3)

,ind disp  was analyzed by 

Jeziorski et al.
[7a]

. At distances where the exchange effects are negligible, the PT 

expansion can be written: 

 (1) ( ) ( ) ( )

,

2 3

[ ]n n n

int el ind disp ind disp

n n

E    
 

 

       (1.10) 
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 At these distances the multipole expansion of the electrostatic potential is valid. 

The interaction operator can be expanded in the multipole series. As a result, (1)

el  

represents a direct multipole–multipole electrostatic energy. At sufficiently large 

distances, only the first term in the multipole expansion is sufficient to describe the 

interaction. For polar molecules, it is the dipole term. 

 The physical sense of the induction energy (2)

ind  is the same as in classical 

physics: the induction of the dipole electric moment in one molecule by the 

permanent quadrupole moment of the other molecule. The dispersion energy is a pure 

quantum-mechanical phenomenon. It originates in the quantum-mechanical 

fluctuations of electronic density. The instant redistribution of electron density leads 

to the nonzero mean dipole moment even in the cases when the permanent dipole 

moment is equal to zero (nonpolar molecules, noble gas atoms). This instant dipole 

moment induces a dipole and higher moments in the other molecule. In the second 

order of PT, the multipole expansion of the dispersion energy 
(2)

disp  is usually written 

in the following form: 

 (2)

6

n
ind n

n

C

R






    (1.11) 

The coefficients nC  are named as dispersion coefficients. In higher orders of PT, the 

interpretation of different terms in Equation (1.11) becomes more complex.  

 Magnetic interactions exist at all distances, but in ranges I and II they are often 

negligible in comparison with larger electrostatic interactions. On the other hand, 

magnetic interactions are precisely detected by measurements of the energy level 

splitting in a magnetic field. In some special cases, the magnetic interactions become 

the largest at sufficiently large distances. This is the case for oriented nonpolar 
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molecules possessing the quadrupole moment as the first nonvanishing multipole 

moment and having, in the ground state, the total electronic spin 0S  . The first term 

in the multipole expansion of different electrostatic intermolecular interactions for 

these molecules has the following distance dependence: 

5

1
~

R
 in the electrostatic energy (1)

el  (the quadrupole–quadrupole interaction). 

6

1
~

R
 in the dispersion energy 

(2)

disp  (the dipole–induced dipole interaction). 

8

1
~

R
 in the induction energy (2)

ind  (the quadrupole–induced dipole interaction). 

 The magnetic spin–spin interaction is relativistic one and has a dipole-dipole 

distance behavior. It is proportional to 2 3/ R , where 1/137   is the fine 

structure constant. Although 2  is small, it is evident that the magnetic interactions 

become predominant with increasing intermolecular distance due to their asymptotics. 

The described situation is realized in example for oxygen molecules adsorbed on 

some surface. The oxygen molecule, as all homonuclear diatomic molecules, has no 

dipole moment and its ground state is triplet (total electronic spin 1S 
[8]

). 

 At distances at which the propagation time of the interaction, /R c , is of the 

same order as the average time of the electronic transitions, which is proportional to 

1/ I  (where 1I  is the first ionization potential), that is, ~ /R c I , the retardation 

effect should be taken into account. Usually, this effect becomes appreciable at 

~ 500R  bohrs and this is not consider in the Thesis. 
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Figure 1-1 Classification of intermolecular interactions.
[9]
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Chapter 2  

Theory and method 

2.1 Coupled–cluster Theory 

Coupled–cluster (CC) theory is one of several post–Hartree–Fock ab initio quantum 

chemistry methods. It is nowadays one of the most popular methods in quantum 

chemistry that treats electronic correlation. 

Coupled–cluster theory constructs solutions to the time–independent Schrödinger 

equation 

Ĥ E  
 

where Ĥ  is the Hamiltonian of the system and the CC wavefunction   is written in 

an exponential form 

0
ˆexp( )T    

where 0  is a Slater determinant constructed from Hartree–Fock molecular orbitals 

and T̂  is the cluster operator. 

The cluster operator is expressed as  

1 2 3
ˆ ˆ ˆ ˆ ...T T T T     

where 
1T̂  is the operator of all single excitations, 

2T̂  is the operator of all double 

excitations and so on. In the formalism of second quantization these excitation operator 

are written as 
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1
ˆ ˆ ˆi a

a i

i a

T C a a , 

2

, ,

1ˆ ˆ ˆ ˆ ˆ
4

ij a b

ab j i

i j a b

T C a a a a  , 

and for the general nfold cluster operator 

1 2 1 2

1 2 2 1

1 2 1 2

, ,...,

, ,...,2
, ,..., , ,...,

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
( !)

n n

n n

n n

i i i aa a

n a a a i i i

i i i a a a

T C a a a a a a
n

     

In the above formula, ˆaa  and ˆ
ia  are denoted as creation and annihilation operators,  

i, j denote occupied orbitals and a, b denote unoccupied orbitals. When the cluster 

operator is truncated at the twoelectron excitations, i.e., when 1 2
ˆ ˆ ˆT T T  , people 

usually denote the method as CCSD method. Continue to CCSD(T), CCSDT, etc. 

2.2 Explicitly correlated coupled–cluster methods 

The CCSD(T) method is known to have an excellent accuracy for many applications in 

quantum chemistry. Unfortunately, the steep O(N
7
) cost scaling of CCSD(T), where N 

is a measure of the molecular size, combined with its strong basis set dependence, 

limits its applicability for obtaining highly accurate results to small molecules. The 

slow convergence of the electron correlation energy with respect to the basis set size 

can be improved by including terms into the wave function that depend explicitly on 

the interelectronic distances. In 2007, Werner et al. proposed
[10]

 a simple and efficient 

CCSD(T)‐F12x approximations (x=a, b) that yields highly accurate results. Recently, 

the interaction energies for weakly bound dimer computed by several variants of the 

explicitly correlated CCSD(T)‐F12 method has been reported
[11]

. It is shown that the 

F12 approach significantly speed up the convergence of the CCSD(T)/aug-cc-pVXZ 

interaction energies with the basis set cardinal number X. 

In the following, the indices , ,...,i j p  denote occupied orbitals, , ,...,a b d  
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denote virtual orbitals and ,...,   are the (orthonormal) orbitals of a formally 

complete virtual space. This can be partitioned into the virtual orbital basis set 

{ , ,...}a b  and the complementary auxiliary basis set (CABS) { , ,...}x y , so that 

   can be approximated by a a x x . The one‐electron operators 

ˆ
n n no i i , ˆ

n n nv a a  project onto the occupied and virtual orbital subspaces, and 

their subscripts refer to the electron coordinates on which they act. 

 The wave function employed in the full CCSD‐F12 approach has the form 

1 2CCSD-F12
ˆ ˆexp( )T T    , where   is the Hartree‐Fock reference function. The 

single and double excitation cluster operators 1T̂  and 2T̂  are defined as 

1
ˆ ˆi a

a iT t E , 

2

1 1ˆ ˆ ˆ
2 2

ij ab ij

ab ij ijT T E E

  ,                              

where ˆ
iE

 and ˆ ˆ ˆ
ij i jE E E    are the usual spin‐free one‐ and two‐electron excitation 

operators. We use different notation here from previous section. The excitation into 

the standard virtual orbitals a, b in 1T̂  and the first part of 2T̂  are the same as those 

used in the conventional CCSD theory. The additional 
ij

  amplitudes are given by 

,ij ij mn

mnT F    

12 12
ˆ ,mnF mn F Q    

12 1 2 1 2
ˆ ˆ ˆ ˆ ˆ(1 )(1 )(1 ),Q o o v v      

where 12 12( )F F r  is a short‐range correlation factor and ij

mnT  are the actual 

amplitudes used in the F12 treatment. The projector 12Q̂  is necessary to make the F12 
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configurations, mn mn

ij ijF E

   , orthogonal to the configurations in the 

molecular orbital space. Thus, 0mnF  , and therefore 0ij

rs  . 

 In practice people use an exponential correlation factor fitted to a set of Gaussian 

geminals, 2

12 12 12

1
( ) exp( ) exp( )i i

i

F r r c r 


      . 

 The above ansatz is orbital invariant. However, it suffers from germinal basis set 

superposition errors, and for larger molecules also numerical instabilities occur. In 

order to avoid these problems, people use the “diagonal” ansatz. The short‐range 

asymptotic behavior of the correlation cusp of the exact wave function can be used to 

great advantage in the F12 theory. As pointed out by Tenno
[12]

, a wave function 

ij mn

mn ijT   with amplitudes ij

mnT  fixed to ii

ii sT t , 
1

( )
2

ij

ij s tT t t  ,  
1

( )
2

ij

ji s tT t t  , 

where i j , 
1

2
st  , 

1

4
tt  , and the remaining amplitudes are set to zero, fulfills 

these asymptotic conditions.  

 To compensate for the lack of an F12 triples contribution, a scaling approach has 

been suggested
[13]

 

corr
* MP2-F12
( ) ( ) corr

MP2

T T

E
E E

E
 ,  

where corr

XE  denotes correlation energy at the X level of theory, i.e., X SCFE E . 

2.3 Complete basis set limit extrapolation 

The complete basis set (CBS) limit does not correspond to any existing basis set 

though it is often written in such a form, e.g. CCSD(T)/CBS. Instead, the CBS limit is 

obtained by extrapolating the results which come from large basis set calculations. 

For many properties the CCSD(T)/CBS value can be regarded as a numerically exact 

for all practical purposes, i.e. it is unlikely that any higher level of theory predicts 



 

16 

 

significantly better results. 

The extrapolation is based on a minimum of two separate calculations with 

increasingly larger basis sets. CBS limit extrapolation works only with basis sets 

designed specifically for the task, such as the correlation– or polarization–consistent 

basis sets, e.g. cc–pVXZ or pc–n. 

The procedure is as follows: a given property E  of interest (e.g. a relative 

energy, a frequency, or a bond length) is computed at a given level of theory (e.g. 

B3LYP) using three basis sets (e.g. cc–VDZ, cc–VTZ, and cc–VQZ). These data 

points are then fit to an equation, the two most popular equations are given here 

 ( )( ) C X

CBSE x E Ae     (2.1) 

 3( ) CBSE x E AX     (2.2) 

Here, CBSE  is the CBS limit we want to determine and X is 2 for cc–pVDZ, 3 

for cc–pVTZ, and so on. X is also often denoted as maxL  (or “cardinal number”), 

which is the highest angular momentum included in the basis set. For cc–pVDZ this 

means d orbitals, which have an angular momentum of 2, so X and  maxL  are really 

the same.  

Equation (2.1) contains three parameters ( CBSE , A , and C ) so a minimum of 

three different basis sets are needed to determine them. While Equation (2.2) only has 

two parameters, a minimum of two data points are needed.  

For some properties and correlation methods the use of the low–zeta basis sets 

does not provide high accuracy, so calculations with even pentuple–zeta basis sets are 

sometimes necessary. CBS limit extrapolation is computationally very demanding and 

is typically done on relatively small systems to provide benchmark values. 
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2.4 Basis set superposition error 

The intermolecular interaction energy is defined as a difference of the total energy of 

the ‘supermolecule’ and the energies of constituent molecules. For a two‐molecule 

system, we have 

 int ( ) [ ( ) ( )]E E AB E A E B     (2.3) 

The supermolecular approach is valid for any intermolecular separations and this is its 

advantage in comparison with the perturbation approaches. The determination of two 

large quantities, imposes strict requirements on the accuracy of the energies. The 

calculation of the interaction energy in the supermolecular approach is a subject to 

one serious defect connected with a basis set inconsistency leading to an artificial 

enhancement of the intermolecular interaction energy. Consider this problem in the 

case of a dimer AB. In the standard approach, it is natural to define: 

 ( ) ( ) [ ({ }, ) ({ }, )]St AB A B

intE R E R E A E B       (2.4) 

where R  is the separation between monomers in the dimer AB and ({ }, )AE A    

( ({ }, )BE B  ) denotes the monomer A (B) energy calculated at infinite separation 

using only the monomer basis set { }A  ({ }B ), respectively. Note that in practice the 

monomer basis is never complete. The unified dimer basis { }AB  is larger than that 

of monomer A from the point of view of monomer A. This cause an artificial energy 

stabilization deepening the potential energy curve of the dimer. 

 The solution for this defect was proposed by Jansen and Ros
[14]

 for a particular 

reaction and, as a general method, by Boys and Bernardi
[15]

. They suggested that the 

supermolecular basis is used for all terms in Equation (2.4). Their approach was 

called function counterpoise
[15]

; it is usually designated by an abbreviation CP: 
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 ( ) ( ) [ ({ }, ) ({ }, )]CP AB A B

intE R E R E AB R E AB R     (2.5) 

where ({ }, )AE AB R  is the energy of the monomer A calculated using the dimer basis 

set {AB}. It means that A is calculated using not only its own basis set { }A  but also 

a set of ghost orbitals { }B  centered at the distance R  from A. In practice, this 

calculation is formally identical to the dimer calculation except that the nuclear 

charges are put at zero for all nuclei belonging to B and an appropriate number of 

electrons is subtracted from the calculation. 

 Thus, the CP procedure adds an ‘extra’ stability to monomers that makes their 

calculation consistent with the dimer calculation. The error in Equation (2.4) caused 

by the basis inconsistency is named the basis set superposition error (BSSE)
[16]

. It is 

defined as the difference 

 ( ) [ ({ }, ) ({ }, )] [ ({ }, ) ({ }, )]CP St A B A B

int intBSSE R E E E A E B E AB R E AB R          

2.5 Midbond function technique 

This technique was proposed by Tao and Pan
[17]

. It enables the calculation of accurate 

interaction energies and equilibrium distances for dimers in a substantially smaller 

basis set by adding some basis functions centered between the subsystems. The 

so-called midbond functions lead to faster convergence than high angular momentum 

functions centered on the nuclei. 

 As noted by Tao and Pan
[17a]

, the major contribution to the correlation interaction 

energy comes from double excitations. Two types of double excitations may be 

identified. First, both excited electrons from one subsystem. Second, only one 

electron originates from each system. The first produces the intrasystem correlation 

interaction energy, which is either repulsive or attractive and relatively small, and the 
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second produces the intersystem correlation interaction energy, which is always 

attractive and dominant. 

 The intersystem correlation energy may be analogous to the regular bonding 

energy. Consider two isolated atoms or molecules A and B, each with an excited 

electron in its own virtual orbital space 0 . When the two systems approach each 

other to form the complex AB, the interaction of 0  between the two systems results 

in the formation of the “bonding” molecular orbital,  , which is to be occupied by 

the two excited electrons. This produces the energy lowering,  , which is a 

contribution to the intersystem correlation energy and is quite similar to the regular 

bonding energy. The resulting molecular orbital   should have the following 

characteristics: it is located mainly in the region between A and B, and it is highly 

diffuse. In a normal calculation, very diffuse and highly polarized functions were used 

to provide the adequate description of the orbital  . This is one of the key reasons 

for using large basis sets for intermolecular energy calculations. A possible and 

straightforward way is to place some basis functions at the midway of the van der 

Waals bond between A and B. These midway functions are referred to as midbond 

functions. Such midbond functions are more efficient for the description of the orbital 

  than the functions centered on the nuclei of A and B. The above description is 

illustrated in Figure 2-1. 

Some precautions should be considered when using midbond functions. First, the 

nucleus-centered basis functions describing the core and valence electrons should be 

approximately saturated before introducing the midbond functions. This means that 

the BSSE of the basis set at the Hartree–Fock level should be sufficiently small. 

Otherwise, severe distortion of electron distribution may result, which in turn causes 
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incorrigible higher-order BSSE. Second, some of the nucleus-centered polarization 

functions are still needed for the description of intrasystem correlation effects since 

the midbond functions are usually limited to provide the description only for the 

intersystem correlation effects. 

 

Figure 2-1 Graphic representation of the molecular-orbital interactions in the doubly 

excited configurations of the complex AB
[17a]

. 

  



 

21 

 

2.6 Vibrationally averaged interaction energy 

surfaces 

One of the challenges of the theory of intermolecular interactions is to go beyond the 

rigid monomers approximation. The time required for constructing full-dimensional 

interaction energy potential is a product of two factors: the time required to get 

interaction energy for one spatial configuration and the number of points of the grid. 

The total time of calculations would be prohibitive if the interaction energy is 

calculated by very accurate method. In order to take into account the dependence of 

interaction energy on intramolecular coordinates efficiently, a method called 

vibrationally averaged interaction energy for the generation of a reliable interaction 

potential energy surfaces has been proposed
[1]

 and tested
[1-3]

.  

A characteristic feature of any van der Waals complex is that the constituent 

fragments of the complex preserve their identity. Thus one can distinguish among the 

coordinates describing the geometry of the whole system, the set X of N  

intermolecular coordinates iX  and the set x of n  intramolecular coordinates ix . The 

approximation ( , )APV X x  to the exact interaction energy surface ( , )V X x  is 

represented as the truncated Taylor expansion around some reference intramolecular 

configuration cx , 

 
2

=0 =0

1
( , ) ( , ) ,

2
AP i i j

i i j

V V
V V q q q

q q q

   
            

c

q q

X x X x   (2.6) 

where the set q  consists of the components i i ciq x x   , and cix  is the i th 

element of cx . The Einstein summation convention is used for Latin indices , ,i j . 
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The partial derivatives computed for 0q  in the equation above depend on the 

intermolecular coordinates X and define the coefficients of the expansion. Thus, as 

one has the knowledge of the functional form of these partial derivatives, one has the 

full information needed to calculate the values of ( , )APV X x . In many cases, the 

dependence of ( , )V X x  on the intramolecular coordinates x is weak. So, the Taylor 

expansion can be truncated to only a few leading terms. 

The ( , )V X x  interaction potential energy surface is defined as

     AB A B( , ) , ,V E E E  
A B

X x X x x x  where ABE  is the total energy of the dimer, 

AE ( BE ) is the total energy of monomer A (B), and Ax ( Bx ) is the set of internal 

coordinates of the monomer A (B). 

The dimensionality of ( , )APV X x  surface can be further reduced by averaging it 

over definite vibrational states   of the subsystems A and/or B, which yields the 

following formula 

 
2

=0 =0

1
( ) ( , )

2
AP i i j

i i j

V V
V V q q q

q q q  

   
            

c

q q

X X x  . (2.7) 

This equation shows that to calculate the vibrationally averaged ( )APV


X  potential, 

one needs to know only a limited number of the potential derivatives and the values of 

iq


 and i jq q


. iq


 and i jq q


 can be readily obtained from the theoretical 

or empirical data for monomers. 

In this Thesis, the set  1 2= , , ,R   X  and the set { , }r sx  (see Ch.3.1). The 

interaction energy of the H2–HCl complex, 1 2( , ) ( , , , , , )V V R r s  X x , can be written 

as 
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f r r f s s



      
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X X

X X X

X X

  (2.8) 

The derivatives ijf  are calculated numerically with steps rh  and sh  from the 

following formulas: 

 00( ) ( , , ),c cf V r sX X   (2.9) 

 

c

10

( , , ) ( , , )
( ) ,

2

c r c c r c

r r r

V r h s V r h sV
f

r h

   
  

 

X X
X  (2.10) 

 

c

01

( , , ) ( , , )
( ) ,

2

c c s c c s

s s s

V r s h V r s hV
f

s h

   
  

 

X X
X   (2.11) 

 

c

2

20 2 2

( , , ) 2 ( , , ) ( , , )
( ) ,c r c c c c r c

rr r

V r h s V r s V r h sV
f

r h


     
  
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X X X
X   (2.12) 

 

c

2

02 2 2

( , , ) 2 ( , , ) ( , , )
( ) ,c c s c c c c s

ss s

V r s h V r s V r s hV
f

s h


     
  
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X X X
X   (2.13) 

c

2

11

,

( )

( , , ) ( , , ) ( , , ) ( , , )
.

cr r s s

c r c s c r c c c s c c

r s

V
f

s r

V r h s h V r h s V r s h V r s

h h

 

 
  

  

      


X

X X X X
 (2.14) 

Later, the full-dimensional potential energy surface will be vibrationally averaged 

over the vibrational wave functions of a molecule A,  , and B,  
 , 
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  (2.15) 
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where ( ) ( )n nr r r r 
   and ( ) ( )n ns s s s 

  
   denote 

vibrationally averaged values of powers of intramonomer distances. The result 

( )V
 

X  is a four-dimensional functional of the following variables 1 2, , ,R    . 

The ground vibrational states of both HCl and H2 molecules were used ( 0v v  ) in 

the Thesis. Thus, the resulting surface will be denoted as 
00

V .  



 

25 

 

Chapter 3  

Computational details 

All calculations were performed with MOLPRO (version 2012) package
[18]

 and MRCC 

program
[19]

. The values of the total interaction energy, intE , of the H2–HCl complex 

have been obtained by the supermolecular approach, i.e. 2 2H -HCl H HCl

intE E E E   . 

All interaction energies were corrected for basis set superposition error using the 

counterpoise correction of Boys and Bernardi
[15, 20]

. The relativistic corrections were 

performed by using the Douglas-Kroll-Hess Hamiltonian
[21]

. Unless otherwise 

specified, the core electrons were not correlated. The basis sets used in this Thesis are 

Dunning's correlation consistent basis sets aug-cc-pVXZ
[22]

 (abbreviated as AVXZ), 

cc-pVXZ (VXZ), and the tight-d augmented sets aug-cc-pV(X+d)Z
[23]

 (AV(X+d)Z). 

The correlation consistent basis set for core correlation aug-cc-pCVXZ
[24]

 (ACVXZ) 

and the weighted sets aug-cc-pwCVXZ
[24]

 (AWCVXZ), are also used for core 

electrons correlation calculations. 

For CCSD(T)–F12b
[10, 13]

 calculations, AVXZ/MP2FIT auxiliary bases
[25]

, with X 

the same as for the orbital set, were used to fit the MP2-F12 pair functions. For the 

resolution of the identity (RI) approximation to many-electron, as well as for the 

density fitting of the Fock matrix, the AVXZ/jkfit auxiliary basis
[26]

 were used. The 

default diagonal fixed-amplitude ansatz 3C(FIX)
[27]

 was used. Exponent for 

Slater-type frozen geminal, or parameter for weight function in other frozen geminal 

models,  , was set to be 1

01.0 a . The interaction energies obtained both with and 

without the scaling of the triples contribution will be presented. In the former case, the 
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scaling factor determined for the dimer was also used for both monomers to maintain 

size consistency
[28]

. 

The finite-basis results were extrapolated to the complete basis set (CBS) limit 

using the standard 3X   formula
[29]

 if the extrapolation technique is used. Specifically, 

the interaction energy extrapolated from basis sets (X-1)Z and XZ (this extrapolation 

will be denoted as CBS(X-1, X)) is a sum of the self-consistent field (SCF) 

contribution SCF

intE  computed in the larger XZ set and the correlation contribution 

(CBS)corr

intE  obtained from the computed correlation energies ((X-1)Z)corr

intE  and 

(XZ)corr

intE  as 

 

3

3

1
(1 )

X(CBS)= (XZ)+ ( (XZ) ((X 1)Z))
1

1 (1 )
X

corr corr corr corr

int int int intE E E E



  

 

. 

While the 3X   formula has been extensively used in conventional CCSD(T) 

calculations, it might not be the best choice for the CCSD(T)-F12b calculations. 

Theoretical considerations shows that 7X   extrapolation scheme should be suitable 

here
[30]

. In my case, tests show that there is no systematic behavior from 3X   to 

7X   extrapolation scheme. Therefore, the 3X   formula still be used as an 

empirically justified way to improve basis set convergence
[11]

. 

 The midbond functions were chosen as hydrogenic functions when they were 

used. In CCSD(T)–F12b calculations, the additional auxiliary basis functions for 

density-fitting and RI were chosen as described above. In other words, the midbond 

set varies with X in accordance with the atomic basis sets. The basis set symbol will 

be added “M”, e.g. AVTZ+M, to indicate the midbond functions are included. In rare 

cases the midbond functions have been removed when convergence problem occured 
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in CCSD(T)–F12b calculations. This happened at short R distances (R=5.5, 6, 6.5) for 

the strongly repulsive part of the potential energy surface. 

3.1 Coordinate system 

The geometry of the H2–HCl is described by six variables using Jacobi coordinates. R 

denoting the distance between the center of the mass of H2, CM(H2), and the center of 

the mass of HCl, CM(HCl). To define the angles 1 , 2 , and  , one can choose an axis, 

z, pointing from CM(H2) to CM(HCl). 1  is the angle between z axis and the vector 

pointing from CM(H2) to the H atom on H2 (H1). 2  is the angle between z axis and the 

vector pointing from CM(HCl) to Cl.   is the dihedral angle between two planes 

extending from z axis to H1 and to Cl. r and s are bond lengths of HCl and H2, 

respectively. R, 1 , 2 , and   are called intermolecular coordinates. r and s are called 

intramolecular coordinates. The midbond functions were chosen to be H atom 

functions which centered halfway between the projection of H atom from H2 and the 

projection of H or Cl atom from HCl on the z axis. The system is plotted in Figure 3-1. 

 

Figure 3-1 Jacobi coordinates system of H2–HCl. 
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3.2 Grid points 

To obtain approximate full-dimensional potential energy surface for H2–HCl, the 

leading 00f  term of expansion (Eqs. (2.9)) and the other ijf  coefficients (Eqs. 

(2.10)–(2.14)) need to be calculated. To calculate 00f  term, one has to perform 

calculations for ( , )c cr s , while to compute the ijf  coefficients one has to use all six 

grid points in ( , )r s , as shown in Eqs. (2.10)–(2.14). These six points are defined by 

the values of the steps 0.025r sh h   bohr. The Taylor expansions have been 

performed around the points c 2.434r   and 1.474cs   bohrs for HCl and H2, 

respectively. cr  is chosen close to vibrationaly averaged bond length for the 

vibrational ground state. cs  is chosen to lie between 
0

s  and 
1

s . The value of 

0
2.4391r   bohr, 2

0
5.9703r   bohr were calculated by P. Jankowski

[31]
 using 

analytical potential for HCl molecule
[32]

 using modified version of the TRIATOM 

program
[33]

. 
0

1.44874s   bohrs and 2

0
2.12705s   bohrs

2
, taken from Ref. 

[34]. 

The grid was chosen by combining the following values of R (in bohr): 5.5, 6, 

6.25, 6.5, 6.75, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 15, 20 with the set of 33 unique 

combinations of the following angles: 0°, 45°, 90° and 135° for 1 ; 0°, 45°, 90°, 135° 

and 180° for 2 ; and 0°, 45° and 90° for  . For three intermolecular distance, 6.5, 7.5, 

and 9 bohrs, the angular grid was made twice as dense in each of the 1 , 2  and   

coordinates, which resulted in 208 additional angular configurations to enhance the 
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fitting performance for the angular dependences of the potential energy surface near 

the region of its’ minimum. Total of 1119 grid points were chosen in  1 2X= , , ,R     

intermolecular coordinates. 

 Besides, in order to improve the performance of the fit, additional 15495 grid 

points were calculated for ( , )c cr s  at CCSD(T)-F12b/AVTZ level. These grid was 

chosen by combining the following angles: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 

and 157.5° for 1 ; 0°, 5.625°, 11.25°, 16.875°, …, 174.375° for 2 ; and 0°, 22.5°, 45°, 

67.5° and 90° for  . The values of R were the same as listed above. The details about 

the fitting procedure would be presented in next section. 

3.3 Analytic fit 

In order to improve the performance of the fit without a large numerical effort, the 

final potential 
00

V  is not directly fitted from the most accurate 1119 grid points. 

The procedures were listed in the following and in Figure 3-2: 

1. Computing all coefficients in Eqs. (2.9)–(2.14) of 1119 grid points, later did the 

average procedure as shown in Eqs. (2.15). This step generated a set of energies 

called 
00

E . 

2. Computing additional 15495 grid points for ( , )c cr s  at CCSD(T)-F12b/AVTZ 

level. The set of energies is called 12 /F b TZE . Fit 12 /F b TZE  to generate the analytic 

representation of the potential energy surface called 12 /F b TZV . 

3. Selecting the same 1119 grid points from 15495 grid points in 1 2{ , , , }R     
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coordinates. Calculating the difference 12 /00 F b TZE E E   . Fit E  to 

generate the analytic representation of the potential energy surface called V . 

4. The resulting potential energy surface 12 /00 F b TZV V V  .  

There were two analytic representations of the potential energy surface have been 

chosen:  

 1 2
12 / 1 2 12 / 1 2

6,8,10,12,14,16,18,20,11,13,15

( , , )
( , , , ) ( ; , , ) i

F b TZ F b TZ i
i

a
V R V R

R

  
     



    

 

1 2 1 2
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, , ,

(2 ( cos( )
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, , )

j n

F b TZ i j k n i
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V R d
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And the expansion for V   

 1 2
1 2 1 2

6,8,10,12,14,16

( , , )
( , , , ) ( ; , , ) i

i
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A FORTRAN program computing the fitted surfaces was developed by Michał 

Slawik
[35]

 and be used in the Thesis. 
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Figure 3-2 The fitting procedure.  
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Chapter 4  

Results and discussions 

4.1 Benchmark calculations of interaction energies  

In the following sections, the interaction energies at 

1 2{ , , , , , }={6.5, 90, 0, 0, 2.409, 1.449}R r s    will be discussed with respect to 

different levels of CC theory and different basis sets in order to find the most suitable 

theory level and basis set combinations to calculate the interaction energy of H2–HCl 

complex. The main reason for choosing this geometry is that it is located on the grid 

points 1 2{ , , , }R     close to the interaction energy minimum. The interaction 

energies changed with varying basis set at this geometries is relatively large than at 

other geometries’.  

4.1.1 CCSD(T) part 

The CCSD(T) and CCSD(T)-F12b interaction energies computed in different basis 

sets with and without midbond functions, are presented in Table 4-1. Table 4-1 

displays conventional CCSD(T) results for basis sets AVXZ, where X=D–6 and 

CCSD(T)-F12b results, with and without the scaling of triples, for basis sets AVXZ 

(X=D–5). 

Results shown that for both the conventional CCSD(T) method and explicitly 

correlated extension of CCSD(T), obtained with addition of mindbond functions 

converge much faster than the results computed without midbond functions. The 
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CCSD(T)/CBS(5-6)+M result which derived from two largest AV5Z+M and AV6Z+M 

basis sets can be considered as the benchmark value and the difference between the 

value of CCSD(T)/CBS(5-6)+M and CCSD(T)/CBS(Q-5)+M can be considered as 

the error, then we get the -206.080  0.4 cm
-1

 as the benchmark value of the 

frozen-core CCSD(T)/CBS limit. The result is consistent with the both 

CCSD(T)-F12b/CBS(Q-5)+M (with and without scaled triple) results. Finally for 

calculating potential energy surface, use CCSD(T)-F12b/CBS(Q-5)+M approach 

which gives here a value -205.835 cm
-1

 with the estimated error 0.4 cm
-1

. 

 Since the value -205.835 cm
-1 

(CCSD(T)-F12b/CBS(Q-5)+M) is within the 

error range of my benchmark value ( -206.080 0.4 ), I can assume that it reproduces 

the benchmark value and the expected error should be below 0.4 cm
-1

. It is very 

unlikely that the true value for CBS limit of CCSD(T) method is somehow above 

-206.080 cm
-1

 (since the trend for CBS(T-Q)+M, CBS(Q-5)+M, CBS(5-6)+M goes 

from smaller values to bigger ones). 

There is one more possibility to estimate the interaction energy due to fact that 

the scaled-triples result for the basis set with midbond functions tend to overshoot the 

interaction energy
[11]

. The CCSD(T)-F12b (without scaling) results tend to somewhat 

underestimate it. Therefore good estimation can be provided by averaged value of 

CCSD(T)-F12b methods, with and without scaled triples, which gives value -206.118 

cm
-1

. This value is again within the error range of my best estimations for 

CCSD(T)/CBS(5-6)+M and CCSD(T)-F12b/CBS(Q-5)+M.  
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Table 4-1 Interaction energies (in cm
-1

) calculated by CCSD(T) and CCSD(T)-F12b 

(both with and without scaled triple excitations) methods for diffent basis sets. 

Basis CCSD(T)-F12b CCSD(T)-F12b  

(scaled triples) 

CCSD(T) 

 E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) E(X) E(X)-E(X-1) 

AVDZ+M -185.845  -197.026  -158.961  

AVTZ+M -201.518 -15.67 -205.518 -8.68 -193.692 -34.73 

AVQZ+M -204.624 -3.11 -206.231 -0.53 -202.361 -8.67 

AV5Z+M -205.062 -0.44 -206.161 0.07 -203.921 -1.56 

AV6Z+M     -204.683 -0.76 

CBS(T-Q)+M -207.061  -206.788  -209.320  

CBS(Q-5)+M -205.835 1.23 -206.401 0.53 -206.487 2.83 

CBS(5-6)+M     -206.080 0.41 

AVDZ -171.656  -181.128  -122.888  

AVTZ -198.449 -26.79 -202.582 -21.45 -183.349 -60.46 

AVQZ -203.723 -5.27 -205.372 -2.79 -199.442 -16.09 

AV5Z -204.680 -0.96 -205.821 -0.45 -202.779 -3.34 

AV6Z     -204.096 -1.32 

CBS(T-Q) -207.746  -207.583  -210.647  

CBS(Q-5) -205.984 1.76 -206.593 0.99 -207.019 3.63 

CBS(5-6)     -206.240 0.779 

 

  

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ basis set. 
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4.1.2 CCSDT and CCSDT(Q) contributions  

Since nowadays inclusion of higher excitations beyond CCSD(T) method are 

available, I tested the inclusion of full triple excitations CCSDT, of noniterative 

quadruple excitations CCSDT(Q), and of full quadruple excitations CCSDTQ.  

Let’s consider four quantities related to various levels of excitations in the 

coupled-cluster method: 

 ( ) ( )T T CCSDT CCSD T

int int intE E E    ,  

 ( ) ( )Q T CCSDT Q CCSDT

int int intE E E    , 

 ( ) ( ) ( ) ( )Q T CCSDT Q CCSD T

int int intE E E    , and 

 ( ) ( )Q Q CCSDTQ CCSDT Q

int int intE E E      

The values of these quantities are presented in Table 4-2. ( )Q Q

intE   can be ignored 

entirely and assumed that only 0.01 cm
-1 

for the uncertainty comes from the neglect of 

full quadruples and all higher coupled-cluster excitations.  

The contribution of the midbond functions is very small, as well, especially if we 

consider the computational times increases strongly with number of functions. 

The sum ( ) ( )Q T

intE   converges faster with the basis set than the ( )T T

intE   and 

( )Q T

intE   terms separately, but one should exercise a great deal of caution. The 

estimated CBS limit for all three quantities is as follows: ( )T T

intE  =-1.43 0.25 cm
-1

 

(the CBS(Q-5) result and the estimated error is the difference between CBS(Q-5) and 

AV5Z), ( )Q T

intE  =-2.15 0.16 cm
-1

 (the CBS(T-Q) result and the estimated error is the 

difference between CBS(T-Q) and AVQZ)
 
and a sum of the above two values 
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( ) ( )Q T

intE  =-3.58  0.30 (the estimated error is calculated by 
2 20.25 0.16 ). We can 

compare it to another CBS limit ( ) ( )Q T

intE  /CBS(T-Q) value of -3.72 0.20cm
-1

 (the 

estimated error is the difference between CBS(T-Q) and AVQZ). The two estimates of 

( ) ( )Q T

intE   are perfectly consistent.  

Here I tried to find a better way of calculating the ( ) ( )Q T

intE   correction without 

a need to compute CCSDT(Q) for any basis larger than AVDZ+M/AVDZ because 

computational cost is too big for computing it for the whole potential energy surface.  

The difference ( )T T

intE   decreases as the basis set size increases while the 

( )Q T

intE   difference shows opposite trend. The best approach in this case would be to 

calculate ( )T T

intE   in a larger AVTZ basis set and ( )Q T

intE   in AVDZ. This gives a 

value of -3.55 cm
-1

 which is a very reasonable estimate. The error which comes from 

different basis sets might cancel each other. I can also try to calculate ( )T T

intE 

/AVTZ+M and ( )Q T

intE  /AVDZ+M which gives -3.46 cm
-1

 but this does not seem like 

any improvement. Also adding midbond functions to a basis set as small as AVDZ 

might result in an unbalanced basis that actually performs worse. In the view of the 

benchmark results with the uncertainty of about 0.3 cm
-1

 gives the estimate of the 

post-CCSD(T) effects to -3.55 0.30 cm
-1

 .
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Table 4-2 Comparison of the interaction energy for the CCSD(T), CCSDT, CCSDT(Q), and CCSDTQ calculations and values of the ( )T T

intE  , 

( )Q T

intE  , ( ) ( )Q T

intE  , and ( )Q Q

intE   contributions. All energies are given in cm
-1

 . 

 CCSD(T) CCSDT CCSDT(Q) CCSDTQ 

Basis E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

( )T T

intE 
 E(X) E(X)-E(X-1) 

( )Q T

intE 
 

( ) ( )Q T

intE 
 E(X) 

( )Q Q

intE 
 

AVDZ+M -158.961  -161.971  -3.01 -163.162  -1.19 -4.20 -163.153 0.01 

AVTZ+M -193.692 -34.73 -195.966 -34.00 −2.27 -197.792 -34.63 -1.83 -4.10   

AVQZ+M -202.361 -8.67 -204.169 -8.20 -1.81 -206.175 -8.38 -2.01 -3.81   

AV5Z+M -203.921 -1.56          

AV6Z+M -204.683 -0.76       -4.06   

CBS(T-Q)M -209.320    -1.47   -2.14 -3.61   

CBS(Q-5)M -206.487 2.83          

CBS(5-6)M -206.080 0.41          

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ+M basis set. 
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Table 4-2 (continued) 

 

 CCSD(T) CCSDT CCSDT(Q) CCSDTQ 

Basis E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

( )T T

intE 
 E(X) E(X)-E(X-1) 

( )Q T

intE 
 

( ) ( )Q T

intE 
 E(X) 

( )Q Q

intE 
 

AVDZ -122.888  -125.611  -2.72 -126.733  -1.12 -3.84 -126.743 -0.01 

AVTZ -183.349 -60.46 -185.775 -60.16 -2.43 -187.549 -60.82 -1.77 -4.20   

AVQZ -199.442 -16.09 -201.369 -15.59 -1.93 -203.361 -15.81 -1.99 -3.92   

AV5Z -202.779 -3.34 -204.462 -3.09 -1.68       

AV6Z -204.096 -1.32          

CBS(T-Q) -210.647  -212.392  -1.75   -2.15 -3.72   

CBS(Q-5) -207.019 3.63 -208.446 3.98 -1.43       

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ basis set. 
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4.1.3 CCSD(T) core electron correction 

Here I denote the difference between interaction energy calculated by the all 

electron-correlated CCSD(T) method and frozen-core electron CCSD(T) method as 

AE

intE . Values of the AE

intE , all electron-correlated CCSD(T), and frozen-core 

electron CCSD(T) are presented in Table 4-3. Based on the results presented in the 

table I can draw 3 conclusions:  

First, the addition of midbond functions does not make a significant enhancement. 

Second, standard AVXZ bases converge very slow. 

Third, the agreement between ACVXZ and AWCVXZ results is very good. The latter 

basis set can be viewed as a little bit better.  

The core-valence electron correlation should be more important for interaction 

energy calculations than the core-core electron correlation, and AWCVXZ emphasizes 

better description of the core-valence electron correlation. Therefore CCSD(T) with 

the (AWCVTZ, AWCVQZ) extrapolation gives an excellent estimate -1.80 0.20  

cm
-1

 for the core electron correlation. The esitmate error comes from the observation 

that the difference between the CBS(AWCVTZ, AWCVQZ) and CBS(AWCVQZ, 

AWCV5Z) is 0.08 cm
-1

,
 
therefor the best available value is -1.88 0.08  cm

-1
. So 

using value -1.80  the biggest possible error should be smaller than 0.20 cm
-1

. It is 

worth to note that for AWCV5Z basis set the correction is 1.74 cm
-1

. All these values 

are again in the range of estimated error (1.80 0.20 cm
-1

). No result in the regular 

AVXZ bases is even close to this accuracy.  
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Table 4-3 The electron-correlated correction AE

intE . The energies are given in cm
-1

 . 

Basis 
CCSD(T)  

 

CCSD(T)-AE   

(All electron-correlated) 

AE

intE  

ACVTZ+M -192.010 -193.304 -1.29 

ACVQZ+M -201.212 -202.750 -1.54 

CBS(T-Q)+M -208.210 -209.924 -1.72 

AWCVTZ+M -191.605 -192.972 -1.37 

AWCVQZ+M -201.297 -202.895 -1.60 

CBS(T-Q)+M -208.339 -210.139 -1.80 

ACVTZ -181.773 -183.057 -1.29 

ACVQZ -198.284 -199.832 -1.55 

ACV5Z -202.480 -204.188 -1.71 

CBS(T-Q) -209.762 -211.502 -1.74 

CBS(Q-5) -206.662 -208.537 -1.88 

AWCVTZ -181.481 -182.804 -1.32 

AWCVQZ -198.382 -199.979 -1.60 

AWCV5Z -202.539 -204.276 -1.74 

CBS(T-Q) -209.872 -211.669 -1.80 

CBS(Q-5) -206.637 -208.521 -1.88 

AVTZ -183.349 -183.238 0.11 

AVQZ -199.442 -199.412 0.03 

AV5Z -202.779 -203.609 -0.83 

AV6Z -204.096 -205.241 -1.15 

CBS(T-Q) -209.320 -210.987 -1.67 

CBS(Q-5) -206.487 -208.918 -2.43 

CBS(5-6) -206.080 -207.705 -1.63 
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4.1.4 Relativistic correction 

Here I denote the difference between interaction energy calculated by the all 

electron-correlated, relativistic corrected CCSD(T) method and all electron-correlated 

CCSD(T) method as rel

intE . The relativistic corrections are presented in Table 4-4. 

The additional “d” in front of each abbreviated basis set notation means the basis set 

is decontracted. The relativistic correction is more important for inner-shell electrons, 

so midbond functions were not included. Most reasonable basis sets give very close 

results, but this is not true in the case of AVXZ sets. Sufficient flexibility of the basis 

set in the large-exponent range is needed. Such flexibility is not provided by the 

AVXZ basis set and that explains here the slow convergence with the size of basis set. 

The ACVXZ and AWCVXZ bases are better because they provide additional functions 

with large exponents, but decontracted basis sets have even more flexibility and 

should be still better. 

 Decontracted AVXZ bases are easier to work with than decontracted ACVXZ 

bases where the convergence problem makes calculation difficult. This problem rises 

from the additional tight exponents in dACVXZ bases which create nearly linear 

dependencies. For these reasons, use the dAVQZ basis set which gives the relativistic 

correction of 1.06 0.05  cm
-1

. The uncertainty is assumed somewhat arbitrarily, the 

data presented in the Table 4-4 suggest that the error should be much smaller. 
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Table 4-4 The relativistic correction ( rel

intE ). The energies are given in cm
-1

 . 

Basis 
CCSD(T)-AE  

(With all electron correlated) 

CCSD(T)   

(With relativistic correction, 

all electrons are correlated ) 

rel

intE  

ACVTZ -183.057 -182.121 0.94 

ACVQZ -199.832 -198.916 0.92 

ACV5Z -204.188 -203.242 0.95 

CBS(T-Q) -211.502 -210.592 0.91 

CBS(Q-5) -208.537 -207.615 0.92 

dACVTZ -185.016 -183.941 1.07 

dACV5Z
*
 -204.185 -203.131 1.05 

AWCVTZ -182.804 -181.841 0.96 

AWCVQZ -199.979 -199.058 0.92 

AWCV5Z -204.276 -203.330 0.95 

CBS(T-Q) -211.669 -210.746 0.92 

CBS(Q-5) -208.521 -207.596 0.92 

  

                                                 
*
 dACVQZ basis set result did not converge. 
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Table 4-4 (continued) 

Basis 
CCSD(T)-AE  

(With all electron correlated) 

CCSD(T)   

(With relativistic correction, 

all electrons are correlated ) 

rel

intE  

AVTZ -183.238 -182.863 0.38 

AVQZ -199.412 -199.185 0.23 

AV5Z -203.609 -203.119 0.49 

AV6Z -205.241 -204.299 0.94 

CBS(T-Q) -210.987 -210.674 0.31 

CBS(Q-5) -208.918 -208.607 0.31 

CBS(5-6) -207.705 -206.974 0.73 

dAVTZ -185.311 -184.233 1.08 

dAVQZ -199.676 -198.615 1.06 

dAV5Z -203.488 -202.433 1.06 

CBS(T-Q) -211.152 -210.091 1.06 

CBS(Q-5) -208.088 -207.028 1.06 
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4.1.5 Total energy 

Adding all the contributions to the interaction energy and calculating error by taking 

the square root of the sum of the squares of the respective uncertainty, we estimated 

interaction energy for -210.13 0.54  cm
-1

 at the 1 2{ , , , , , }R r s   = {6.5, 90, 0, 0,

2.409, 1.449} geometry. A linear addition of uncertainties would give 0.95  cm
-1

, 

but that would be too conservative as different errors act in fairly random way. In the 

next section, I tried to verify that the theory level and basis set mentioned previously 

can be applied to calculating the whole potential energy surface by repeating similar 

calculations of interaction energies at several different geometries. 

4.2 Interaction energy at general geometries 

The following discussed geometries are all with fixed H2 and HCl bond distance at 

s=1.449 bohr, r=2.409 bohr, respectively. 

4.2.1 {R, θ1, θ2, }={6.5, 90, 180, 0} 

CCSD(T) and CCSD(T)-F12b interaction energies and convergence behavior of 

different basis sets are shown in Table 4-5. CCSD(T)-F12b results show much better 

convergence than CCSD(T)’s. CCSD(T)/CBS(5-6)+M and 

CCSD(T)-F12b/CBS(Q-5)+M values are perfectly consistent. The estimated error can 

be chosen from the difference between CCSD(T)-F12b/CBS(Q-5)+M and 

CCSD(T)-F12b/AV5Z+M, which gives 0.173 cm
-1

. The estimated error at this 

geometries is smaller than the error at {R, θ1, θ2, }={6.5, 90, 0, 0} which is 0.4 

cm
-1

. Here CCSD(T)-F12b/CBS(Q-5)+M gives very accurate result. 

 The core electron correction AE

intE  varies with AWCVXZ basis set size but it is 
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all together small. Results are presented in Table 4-6. All basis gives close results. The 

estimated errors will be less than 0.1 cm
-1

. Here I choose the CBS(T-Q) value 0.03 

cm
-1 

if taking computational time into account. 

 ( )T T

intE  , ( )Q T

intE  , and ( ) ( )Q T

intE   values are presented in Table 4-7. The best 

estimate can be chosen from the summation of ( )Q T

intE  /CBS(T-Q), -0.97, and 

( )T T

intE  /CBS(Q-5), -0.61, which gives -1.58. Taking computational time into account, 

the largest basis calculation that can be done are ( )T T

intE  /AVTZ and ( )Q T

intE  /AVDZ. 

It gives -0.93-0.24=-1.35. The estimated error would be below 0.35 cm
-1

. This 

estimate also covers the ( ) ( )Q T

intE  / CBS(T-Q) result (-1.69 cm
-1

). 

 The relativistic correction rel

intE  are presented in Table 4-8. Like core 

correction results, all dAVXZ sets gives close results. Here I choose the dAVQZ result 

-1.2. The estimated errors will be less than 0.1 cm
-1

. 

 From the above discussion, I calculate the total interaction energy as a sumation 

of CCSD(T)-F12b/CBS(Q-5)+M, AE

intE /CBS(T-Q), ( )T T

intE  /AVTZ, ( )Q T

intE  /AVDZ, 

and rel

intE /dAVQZ. It gives -99.86 cm
-1

. The uncertainty is calculated by the square 

root of the sum of the squares of the respective errors, which gives 0.39 cm
-1

. 
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Table 4-5 CCSD(T) and CCSD(T)-F12b interaction energies (in cm
-1

) and 

convergence behavior of different basis sets.  

Basis CCSD(T)-F12b CCSD(T) 

 E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

AVDZ+M -88.307  -80.935  

AVTZ+M -96.767 -8.46 -94.428 -13.49 

AVQZ+M -97.526 -0.76 -96.381 -1.95 

AV5Z+M -97.517 0.01 -97.143 -0.76 

AV6Z+M   -97.305 -0.16 

CBS(T-Q)+M -97.963  -97.181  

CBS(Q-5)+M -97.344 0.62 -97.154 0.03 

CBS(5-6)+M   -97.347 -0.19 

 

Table 4-6 The core electron correction AE

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T) CCSD(T)   

(All electron-correlated) 

AE

intE  

AWCVTZ -85.351 -85.507 -0.16 

AWCVQZ -93.210 -93.258 -0.05 

AWCV5Z -95.408 -95.395 0.01 

CBS(T-Q) -98.710 -98.680 0.03 

CBS(Q-5) -97.771 -97.694 0.08 

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ+M basis set. 
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Table 4-7 The values of ( )T T

intE  , ( )Q T

intE  , and ( ) ( )Q T

intE   contributions. The energies are given in cm
-1

. 

        CCSD(T) CCSDT         CCSDT(Q)  

Basis E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

( )T T

intE 
 E(X) E(X)-E(X-1) 

( )Q T

intE 
 

( ) ( )Q T

intE 
 

AVDZ -55.565  -56.773  -1.21 -57.194  -0.42 -1.63 

AVTZ -84.382 -28.82 -85.314 -28.54 -0.93 -86.043 -28.8495 -0.73 -1.66 

AVQZ -92.851 -8.47 -93.666 -8.35 -0.81 -94.532 -8.4886 -0.87 -1.68 

AV5Z -95.307 -2.46 -96.023 -2.36 -0.72     

CBS(T-Q)     -0.73   -0.97 -1.69 

CBS(Q-5)     -0.61     

 

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ basis set. 
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Table 4-8 The relativistic correction rel

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T)-AE  

(With all electron correlated) 

CCSD(T)   

(With relativistic correction, 

all electrons are crrelated ) 

rel

intE  

dAVTZ -84.870 -86.112 -1.24 

dAVQZ -93.204 -94.405 -1.20 

dAV5Z -95.748 -96.938 -1.19 
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4.2.2 {R, θ1, θ2, }={7, 0, 0, 0} 

CCSD(T) and CCSD(T)-F12b interaction energies and convergence behavior of 

different basis sets are shown in Table 4-9. Both CCSD(T)-F12b and CCSD(T) results 

converge well. CCSD(T)/CBS(5-6)+M and CCSD(T)-F12b/CBS(Q-5)+M values are 

consistent, and the difference is around 0.12 cm
-1

. The estimated uncertainty would be 

much less than 0.2 cm
-1

. 

 The core electron correction AE

intE  varied with the AWCVXZ basis sets size. 

Results are presented in Table 4-10. Again, all basis gives close results. The estimated 

errors would be less than 0.1 cm
-1

.  

 ( )T T

intE  , ( )Q T

intE  , and ( ) ( )Q T

intE   values are presented in Table 4-11. The best 

estimates can be chosen from the summation of ( )Q T

intE  /CBS(T-Q), -1.93, and 

( )T T

intE  /CBS(Q-5), -1.78, which gives -3.71. Again taking computational time into 

account, the largest basis calculation that can be done for all grid points are ( )T T

intE 

/AVTZ and ( )Q T

intE  /AVDZ. It gives -2.66-0.80=-3.46. Comparing these two values 

provides the error estimating less than 0.35 cm
-1

. This estimate also covers the 

( ) ( )Q T

intE  / CBS(T-Q) result (-3.80 cm
-1

). 

 The relativistic correction rel

intE  is presented in Table 4-12. All dAVXZ sets 

give almost identical results. The estimated errors would be less than 0.1 cm
-1

. 

 Therefor the total interaction energy is [CCSD(T)-F12b/CBS(Q-5)+M]+[ AE

intE

/CBS(T-Q)]+[ ( )T T

intE  /AVTZ]+[ ( )Q T

intE  /AVDZ]+[ rel

intE /dAVQZ]. The total 

interaction energy at {R, θ1, θ2, }={7, 0, 0, 0} is 138.842 cm
-1

. The uncertainty is 
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calculated by the square root of the sum of the squares of the respective errors, this 

gives 0.39 cm
-1

.  



 

52 

 

 

Table 4-9 CCSD(T) and CCSD(T)-F12b interaction energies (in cm
-1

). 

Basis CCSD(T)-F12b CCSD(T) 

 E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

AVDZ+M 152.011   155.479   

AVTZ+M 144.213  -7.80  144.460  -11.02  

AVQZ+M 143.280  -0.93  143.366  -1.09  

AV5Z+M 143.258  -0.02  143.212  -0.15  

AV6Z+M   143.176  -0.04  

CBS(T-Q)+M 142.749   142.818   

CBS(Q-5)+M 143.292  0.54  143.341  0.52  

CBS(5-6)+M   143.170  -0.17  

 

Table 4-10 The core electron correction AE

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T) CCSD(T)   

(All electron-orrelated) 

AE

intE  

AWCVTZ 150.394 149.926  -0.47  

AWCVQZ 145.173 144.713  -0.46  

AWCV5Z 143.734 143.291  -0.45  

CBS(T-Q) 142.527 142.071 -0.46  

CBS(Q-5) 142.759 142.325 -0.43  

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ+M basis set. 
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Table 4-11 The values of ( )T T

intE  , ( )Q T

intE  , and ( ) ( )Q T

intE   contributions. The energies are given in cm
-1

. 

        CCSD(T) CCSDT         CCSDT(Q)  

Basis E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

( )T T

intE 
 E(X) E(X)-E(X-1) 

( )Q T

intE 
 

( ) ( )Q T

intE 
 

AVDZ 163.206  159.969  -3.24  159.172  -0.80  -4.03  

AVTZ 150.181 -13.03  147.517 -12.45  -2.66  145.949 -13.22  -1.57  -4.23  

AVQZ 144.947 -5.23  142.742 -4.78  -2.21  140.966 -4.98  -1.78  -3.98  

AV5Z 143.682 -1.27  141.686 -1.06  -2.00      

CBS(T-Q)     -1.87    -1.93  -3.80  

CBS(Q-5)     -1.78      

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ basis set. 
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Table 4-12  The relativistic correction rel

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T)-AE  

(With all electron correlated) 

CCSD(T)   

(With relativistic correction, 

all electrons are correlated ) 

rel

intE  

dAVTZ 148.911 148.397  -0.51  

dAVQZ 144.483 143.958  -0.53  

dAV5Z 143.155 142.624  -0.53  
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4.2.3 {R, θ1, θ2, }={7, 90, 90, 90} 

CCSD(T) and CCSD(T)-F12b interaction energies and convergence behavior of 

different basis sets are shown in Table 4-13. Both CCSD(T)-F12b and CCSD(T) 

results converge. CCSD(T)/CBS(5-6)+M and CCSD(T)-F12b/CBS(Q-5)+M values 

are consistent, the difference is around 0.1 cm
-1

. The estimated uncertainty would be 

0.25 cm
-1 

approximately. 

 The core electron correction AE

intE  varied with the AWCVXZ basis set and 

extrapolated results are presented in Table 4-14. Again, all basis gives close results. 

The estimated errors will be less than 0.05 cm
-1

.  

 I cannot perform CCSDT and CCSDT(Q) with large basis set (AVQZ, AV5Z) 

calculations because of the convergence problem which comes from nonplanar 

geometries. Here I assume conservative estimate of 0.35 cm
-1

 for the uncertainty. 

 The relativistic correction rel

intE  is presented in Table 4-15. All dAVXZ sets 

gives almost identical results. The estimated errors will be less than 0.05 cm
-1

. 

 Therefore, the total interaction energy is [CCSD(T)-F12b/CBS(Q-5)+M]+ 

[ AE

intE /CBS(T-Q)]+[ ( )T T

intE  /AVTZ (-0.91 cm
-1

)]+[ ( )Q T

intE  /AVDZ (-0.24 cm
-1

)]+ 

[ rel

intE /dAVQZ]. The total interaction energy at {R, θ1, θ2, }={7, 90, 90, 90} is 

-39.20 cm
-1

. The uncertainty is calculated by the square root of the sum of the squares 

of the respective errors, this gives 0.40 cm
-1

. 
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Table 4-13 CCSD(T) and CCSD(T)-F12b interaction energies (in cm
-1

). 

Basis CCSD(T)-F12b CCSD(T) 

 E(X)
*
 E(X)-E(X-1) E(X) E(X)-E(X-1) 

AVDZ+M -27.639   -20.660   

AVTZ+M -35.644  -8.01  -35.337  -14.68  

AVQZ+M -36.735  -1.09  -36.812  -1.48  

AV5Z+M -37.179  -0.44  -37.170  -0.36  

AV6Z+M   -37.316  -0.15  

CBS(T-Q)M -37.523   -38.114   

CBS(Q-5)M -37.637  -0.11  -37.654  0.46  

CBS(5-6)M   -37.540  0.11  

 

Table 4-14 The core electron correction AE

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T) CCSD(T)   

(All electron-orrelated) 

AE

intE  

AWCVTZ -27.097 -27.439 -0.34 

AWCVQZ -33.176 -33.509 -0.33  

 
AWCV5Z -35.530 -35.852 -0.32 

CBS(T-Q) -37.889 -38.213 -0.32 

CBS(Q-5) -38.108 -38.420 -0.31 

  

                                                 
*
 E(X) stands for the interaction energy calculated in the AVXZ+M basis set. 
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Table 4-15 The relativistic correction rel

intE . The energies are given in cm
-1

. 

Basis 
CCSD(T)-AE  

(With all electron correlated) 

CCSD(T)   

(With relativistic correction, 

all electrons are crrelated ) 

rel

intE  

dAVTZ -27.074 -27.167  -0.09 

dAVQZ -33.417 -33.504  -0.09 

dAV5Z -35.812 -35.896  -0.08 
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4.2.4 Summary of the calculations of interaction 

energies 

Results presented in section 4.1 and 4.2 show that the theory level and basis sets 

mentioned in section 4.1 can be applied to calculating the interaction energy surface at 

grid points of the H2–HCl complex with the total uncertainty of 0.6 cm
-1

. The 

estimated uncertainty at the different levels of theory and the total uncertainty for 4 

chosen geometries are summarized in Table 4-16. The theory level and basis sets used 

to calculate the potential energy surfaces are summarized in Table 4-17. 
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Table 4-16 Estimated uncertainty at the different levels of theory and the total uncertainty for 4 chosen geometries. The energies are given in 

cm
-1

. Total uncertainties are calculated by the square root of the sum of the squares of the respective uncertainty. 

 1 2, , ,R     ( ) 12CCSD T F b

intE   AE

intE  ( ) ( )T T Q T

int intE E    rel

intE  intE  

{6.5,90,0,0} -205.835 0.4 -1.8 0.2 -3.55 0.3 1.06 0.05 -210.13 0.54 

{6.5,90,180,0} -97.344 0.17 0.03 0.1 -1.35 0.35 -1.2 0.1 -99.86 0.41 

{7,0,0,0} 143.292 0.2 -0.46 0.1 -3.46 0.35 -0.53 0.1 138.84 0.43 

{7,90,90,90} -37.637 0.25 -0.32 0.05 -1.15 0.35 -0.09 0.05 -39.20 0.44 

  


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Table 4-17 The description of the theory level and basis sets used to calculate potential energy surfaces. 

( ) 12 ( ) ( )CCSD T F b AE T T Q T rel

int int int int int intE E E E E E           

 Basis set Theory level 

( ) 12CCSD T F b

intE 
 aug-cc-pVQZ+aug-cc-pv5Z+midbond 

functions+extrapolation 

Interaction energy were calculated by CCSD(T)-F12b,  

frozen core 

AE

intE  aug-cc-pwCVTZ+ aug-cc-pwCVQZ+extrapolation Correction including all electron correlation,

( ) ( )

int int(  ) (frozen core elecall electron-cor tron)relatedCCSD T CCSD TE E  

( )T T

intE 
 aug-cc-pVTZ Correction including triple excitations in coupled cluster methods,  

( )

int int

CCSDT CCSD TE E , frozen core 

( )Q T

intE 
 aug-cc-pVDZ Correction including quadruple excitations (perturbative) in coupled cluster methods, 

( )

int int

CCSDT Q CCSDTE E , frozen core 

rel

intE  decontracted aug-cc-pVQZ Correction for relativistic effect, 

( ) ( )

int intrelativistic corrected all electron-correlated( ) ,  CCSD T CCSD TE E  
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4.3 The levels of theory and basis sets used to 

calculate derivatives fij(X) 

We already investigated the levels of theory and basis sets which should be used to 

calculate the interaction energies to reach the desired accuracy at the reference points. 

Now the question is how to calculate the derivatives fij(X). In the following tests, 429 

grid points were chosen out of 1119 gird points. Those grids were chosen by 

combining the following values of R (in bohr): 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 

15, 20 with the set of 33 unique combinations of the following angles: 0°, 45°, 90° and 

135° for 1 ; 0°, 45°, 90°, 135° and 180° for 2 ; and 0°, 45° and 90° for  . The bond 

length of H2 was fixed at sc-hs=1.449 bohr. The calculated 4 dimensional potential 

energy surfaces only include HCl vibration. The vibrationally averaging formula in 

this case becomes 
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 For the derivatives ,  0,  1,  2kf k   of 429 points in the grid, I calculated each of 

them by CCSD(T)-F12b method and included the core electron correction AE

intE , post 
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CCSD(T) contributions ( ) ( )T T Q T

int intE E   , and the relativistic correction rel

intE .  

Therefore I generated three different vibrationaly averaged interaction energy 

surfaces to compare them and test the final approximation proposed by Jankowski
[3]

: 

1. Derivatives 0f , 1f  and 2f  were calculated from the interaction energies 

derived from CCSD(T)-F12b method with inclusion of all AE

intE , ( )T T

intE  , 

( )Q T

intE  and rel

intE  terms. The four-dimensional vibrationaly averaged 

interaction energy surface was calculated by the formula presented above. This 

potential is noted as 
0

fullV V . 

2. Derivatives 0f , 1f  and 2f  were computed from the interaction energies, 

which derived from CCSD(T)-F12b method plus only core electron correction 

AE

intE . The four-dimensional vibrationaly averaged interaction energy surface 

was calculated by the formula presented above, later corrections ( )T T

intE  , 

( )Q T

intE  and rel

intE  terms calculated at (rc, sc) reference H2 and HCl distances 

were added. This potential is noted as

     12 ( ) ( )

0
, , ,F b AE T T Q T rel

int c c int c c int c cV V E r s E r s E r s        . 

3. Derivatives 0f , 1f  and 2f  were computed from the interaction energies only 

by CCSD(T)-F12b method. The four-dimensional vibrationaly averaged 

interaction energy surface was calculated by the formula presented above and 

finally all corrections AE

intE , ( )T T

intE  , ( )Q T

intE  and rel

intE  terms calculated at 

(rc, sc) reference H2 and HCl distances were added. This potential is noted as 

       12 ( ) ( )

0
, , , ,F b AE T T Q T rel

int c c int c c int c c int c cV V E r s E r s E r s E r s         . 
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The statistical data for the differences between the vibrationaly averaged potential 

interaction energy surfaces calculated in 3 different approaches described above,      

|
fullV -

12F b AEV 
| and |

fullV -
12F bV |, are presented in Table 4-18. In both cases, 

the biggest deviations occurred in the short R distances. Absolute values of these 

differences are slightly bigger but absolute values of interaction energies are very big 

here, as well. Additionally some discrepancy for short R distances might be due to the 

convergence problem we met at the highly repulsive region. For the purpose of 

simulating the spectrum of HCl trapped in pH2, the error in the repulsive region is 

acceptable. After removing 3 extreme cases where these differences are the biggest 

out of 429 values, the errors and standard deviation are reduced drastically. This 

phenomenon indicated that the large discrepancy happened in very rare cases in the 

region where quality of the calculated points are somehow lower. Figure 4-1 also 

shows over 90% of differences are smaller than 0.1 cm
-1

. In the attractive region of 

potential energy surface ( 0fullV  ), the maximum deviations occurred at {12, 135, 

135, 0} and {6, 90, 0, 0}, but they are in the range not much bigger than 0.1 cm
-1

. The 

uncertainty coming from approximations used in calculating the interaction energy is 

as big as 0.6 cm
-1

, therefore errors generated by simplification of the calculations for 

derivatives (f1, f2) are much smaller. 

 These small discrepancies indicate that fairly time-consuming calculations at the 

higher levels of theory and larger basis sets are only needed for (X, rc) or (X, rc, sc) 

points. One does not need to apply such high levels to calculate derivatives f1 and f2 or

ijf , 0i j  . Based on this study about one dimensional averaging, I decide to 

compute the ijf  derivatives from interaction energies obtained from ( ) 12CCSD T F b

intE 

/CBS(AVQZ, AV5Z), since it produces negligible error.  
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Table 4-18 The statistical data for |
fullV -

12F b AEV 
| and |

fullV -
12F bV |. The 

energies are given in cm
-1

. 

 |
fullV -

12F b AEV 
| |

fullV -
12F bV | 

Average 0.006 0.012 

Standard deviation 0.021 0.053 

Maximum 
0.240  

at {5.5, 0, 0, 0} 

0.666  

at {5.5, 90, 135, 45} 

 Without 3 extreme values 

 
at {5.5, 0, 0, 0}, {5.5, 90, 0, 

0} , {6, 0, 0, 0} 

at {5.5, 0, 0, 0}, {5.5, 90, 135, 

45}, {6, 0, 0, 0},  

Average 0.005 0.009 

Standard deviation 0.013 0.028 

Maximum 
0.137  

at {6.5, 0, 0, 0} 

0.312  

at {5.5, 45, 0, 0} 

 Attractive part ( ( ) 0fullV X ) 

Average 0.003 0.004 

Standard deviation 0.008 0.012 

Maximum 
0.090 

at {12, 135, 135, 0} 

0.104 

at{6, 90, 0, 0} 

 

  



 

65 

 

418

7 1 2 1

407

12 4 2 1 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

400

450

C
o

u
n

t

E
int

 (cm
-1
)

 |<V
full

>-<V
F12b+AE

>|

 |<V
full

>-<V
F12b

>|

 

Figure 4-1 Histogram for | ( )fullV X -
12 ( )F b AEV 

X | and | ( )fullV X -
12 ( )F bV X |. 
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4.4 Features of potential energy surfaces 

The benefit of the two-step fitting can be illustrated by Figure 4-2. It shows that the 

shape of the potential energy surfaces along 2  is expected to be close to the line 

shown by CCSD(T)-F12b/AVTZ results. The spline interpolation based on only few 

points cannot correctly reproduce the shape of whole potential. We produced the 

shape of the potential VF12b/TZ and be corrected by adding ΔV. The fitting functions 

for 12 / 1 2( , , , )F b TZV R     and 1 2( , , , )V R     are linear with respect to the fitting 

parameters. This makes the fitting procedure relatively simple. The least square 

approach is used here. In the following sections, the results showing comparison 

between calculated interaction energies and fitted potential energy surfaces for 

VF12b/TZ, ΔV, and < V >00 are presented. 
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Figure 4-2  Shapes of the potential energy surfaces generated by spline interpolation 

based on calculations including all above mentioned corrections and 

CCSD(T)-F12b/AVTZ calculation. 
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4.4.1 Fitting results for VF12b/TZ  

Total of 3003 parameters were used in VF12b/TZ to fit 15459 grid points in {R, θ1, θ2, 

} coordinates. Several geometries were chosen to illustrate the results of the fitting in 

R, θ1, θ2 and  dimensions (Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6, 

respectively). The dots in the figures were derived from CCSD(T)-F12b/AVTZ 

calculations and the lines were corresponding values from the fitting function. The 

statistical information of the fitting error was shown in Table 4-19. 
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Figure 4-3 Comparison between calculated interaction energies and fitted potential 

energy surfaces for VF12b/TZ along R. Dots in the figures were derived from 

CCSD(T)-F12b/AVTZ calculations. Lines were derived from the fitting functions.   
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Figure 4-4 Comparison between calculated interaction energies and fitted potential 

energy surfaces for VF12b/TZ along θ1. Dots in the figures were derived from 

CCSD(T)-F12b/AVTZ calculations. Lines were derived from the fitting functions. 
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Figure 4-5 Comparison between calculated interaction energies and fitted potential 

energy surfaces for VF12b/TZ along θ2. Dots in the figures were derived from 

CCSD(T)-F12b/AVTZ calculations. Lines were derived from the fitting functions.   



 

71 

 

0 20 40 60 80 100

-200

-150

-100

-50

0

         {R




} 

 {6.5, 45, 45}

 {6.5, 90, 0}

 {6.5, 90, 90}

E
in

t (
c
m

-1
)

 (degree)
 

Figure 4-6 Comparison between calculated interaction energies and fitted potential 

energy surfaces for VF12b/TZ along . Dots in the figures were derived from 

CCSD(T)-F12b/AVTZ calculations. Lines were derived from the fitting functions.  
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Table 4-19 The statistical information of the fitting errors for VF12b/TZ. 

VF12b/TZ 

Errors (cm
-1

) All points in the grid Points with negative                                                                                

value of the interaction energy 

Maximum 7.89 <0.110 

Mean 0.082 0.004 

Standard deviation 0.024 0.0006 
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4.4.2 Fitting results for ΔV  

Total of 225 parameters were used inΔV to fit 1119 grid points in {R, θ1, θ2, } 

coordinates. Several geometries were chosen to illustrate the results of the fitting in R, 

θ 1, θ 2 and  dimensions (Figure 4-7, Figure 4-8, Figure 4-9, Figure 4-10, 

respectively). The dots in the figures were derived from the difference between 

averaged results (see 4.2.4 and 4.3) and CCSD(T)-F12b/AVTZ calculations. Several 

grid points were discarded in the repulsive region due to the convergence problem in 

the fitting of ΔV (For example, four values of {R, θ2, }={6.5, 0, 0} in Figure 4-8). 

The statistical information of the fitting error was shown in Table 4-20. 

  



 

74 

 

 

4 6 8 10 12 14 16 18 20 22

-40

-20

0

         {




}  

 {90, 0, 0}

 {90, 90, 0}

 {90, 90, 90}

E
in

t (
c
m

-1
)

R (bohr)
 

Figure 4-7 Comparison between calculated interaction energies and fitted potential 

energy surfaces for ΔV along R. Dots in the figures were derived from the difference 

between averaged results (see 4.2.4 and 4.3) and CCSD(T)-F12b/AVTZ calculations. 

Lines were derived from the fitting functions.  
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Figure 4-8 Comparison between calculated interaction energies and fitted potential 

energy surfaces forΔV along θ1. Dots in the figures were derived from the 

difference between averaged results (see 4.2.4 and 4.3) and CCSD(T)-F12b/AVTZ 

calculations. Lines were derived from the fitting functions. Four values of {R, θ2, 

}={6.5, 0, 0} atθ1=22.5, 45, 135, 157.5 are discarded. 
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Figure 4-9 Comparison between calculated interaction energies and fitted potential 

energy surfaces forΔV along θ2. Dots in the figures were derived from the 

difference between averaged results (see 4.2.4 and 4.3) and CCSD(T)-F12b/AVTZ 

calculations. Lines were derived from the fitting functions. 
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Figure 4-10 Comparison between calculated interaction energies and fitted potential 

energy surfaces forΔV along . Dots in the figures were derived from the difference 

between averaged results (see 4.2.4 and 4.3) and CCSD(T)-F12b/AVTZ calculations. 

Lines were derived from the fitting functions. 

  



 

78 

 

 

Table 4-20 The statistical information of the fitting errors for ΔV. 

ΔV 

Errors (cm
-1

) All points in the grid
*
 

Maximum 3.352 

Mean 0.084 

Standard deviation 0.054 

 

  

                                                 
*
 Discarded points are not include. 
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4.4.3 Fitting results for < V >00 

Several geometries were chosen to illustrate the results of the fitting in R, θ1, θ2 

and  dimensions (Figure 4-11, Figure 4-12, Figure 4-13, Figure 4-14, respectively). 

The dots in the figures were derived from the averaged results (see 4.2.4 and 4.3). The 

lines were corresponding values from the fitting function < V >00 = VF12b/AVTZ+V. The 

statistical information of the fitting error was shown in Table 4-21. 
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Figure 4-11 Comparison between calculated interaction energies and fitted potential 

energy surfaces for < V >00 along R. Dots in the figures were derived from the 

averaged results (see 4.2.4 and 4.3). Lines were derived from the resulting functions  

< V >00 = VF12b/AVTZ +V. 
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Figure 4-12 Comparison between calculated interaction energies and fitted potential 

energy surfaces for < V >00 alongθ1. Dots in the figures were derived from the 

averaged results (see 4.2.4 and 4.3). Lines were derived from the fitting functions   

< V >00 = VF12b/AVTZ +V. 
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Figure 4-13 Comparison between calculated interaction energies and fitted potential 

energy surfaces for < V >00 along θ2. Dots in the figures were derived from the 

averaged results (see 4.2.4 and 4.3). Lines were derived from the fitting functions   

< V >00 = VF12b/AVTZ +V. 
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Figure 4-14 Comparison between calculated interaction energies and fitted potential 

energy surfaces for < V >00 along . Dots in the figures were derived from the 

averaged results (see 4.2.4 and 4.3). Lines were derived from the fitting functions   

< V >00 = VF12b/AVTZ +V. 
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Table 4-21 The statistical information of the fitting errors for < V >00. 

< V >00 

Errors (cm
-1

) All points in the grid Points with negative                                                                                

value of the interaction energy 

Maximum 10.17 0.47 

Mean 0.192 0.066 

Standard deviation 0.017 0.0021 
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4.4.4 Summary of the fit 

From the results in this section, the two-step fitting has following benefits: 

1. The correct shape of the whole potential energy surface can be reproduced by 

denser and much faster CCSD(T)-F12b/AVTZ calculation.  

2. The correction V from the fit of the difference between the most accurate 

results and CCSD(T)-F12b/AVTZ results can reproduce the interaction energy 

very well. 

Also, the fitting functions are linear with respect to the fitting parameters makes the 

fitting procedure relatively simple. These simple trigonometric functions produced 

small fitting errors and are easy to manipulate in future work.  
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Chapter 5  

Conclusion 

A new four-dimensional interaction energy surface for the H2–HCl complex is 

presented. The interaction energy values have been calculated with an averaging over 

the vibrational motion of H2 and HCl. 

 The interaction energies at geometry near global minimum had been investigated 

thoroughly: 

1. The interaction energy computed by CCSD(T)-F12b/CBS(AVQZ-AV5Z) 

approach could achieve comparable accuracy of standard CCSD(T) 

/CBS(AV5Z-AV6Z) with a strongly reduced computing cost. 

2. The post-CCSD(T) correction ( )Q Q

intE   and higher coupled cluster excitations 

can be ignored entirely. The expensive accurate ( ) ( )Q T

intE   correction is handled 

by separating ( ) ( )Q T

intE   into ( )T T

intE   and ( )Q T

intE  . The ( )T T

intE   decreases as 

the basis set size increases while the ( )Q T

intE   shows opposite trend. Therefore 

calculating ( )T T

intE   in a larger AVTZ basis set and ( )Q T

intE   in AVDZ set gave 

very good results with small uncertainty (0.3 cm
-1

). The main benefit comes from 

opposite trends in the corrections to the interaction energy for CCSDT ( ( )T T

intE  ) 

and CCSDT(Q) ( ( )Q T

intE  ) approaches with increasing basis set size. 

3. In core electron correction AE

intE  calculations, standard AVXZ sets converge 

slowly. ACVXZ and AWCVXZ results are consistent.  
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4. In relativistic correction rel

intE  calculations, most reasonable basis sets gave 

very close results except AVXZ sets. This might be due to the insufficient 

flexibility of the sets in the large-exponent range. Decontracted bases are a better 

choice. In this Thesis I choose dAVQZ basis set to avoid convergence problem in 

dACVXZ sets. 

5. Midbond functions increase the convergence rate of the interaction energy 

( ) 12CCSD T F b

intE   and ( )CCSD T

intE . But they do not show improvement for AE

intE , 

( )T T

intE  , ( )Q T

intE  , and rel

intE  calculations. 

The adopted theory level and basis set are later tested for another 3 different 

geometries. All results shows uncertainty lower than 0.6 cm
-1

. This indicates that the 

whole potential energy surfaces can be generated accurately by the method proposed 

here.  

The interaction energies have been obtained as a sum of ( ) 12CCSD T F b

intE  , AE

intE , 

( )T T

intE  , ( )Q T

intE  , and rel

intE  contributions calculated in different-size basis sets up 

to aug-cc-pV5Z for the grid points corresponding to the reference intramonomer 

separations. ( ) 12CCSD T F b

intE   and AE

intE  results were extrapolated to the infinite basis 

set limit. For the energies used for calculations of Taylor-expansion derivatives, the 

fairly time-consuming AE

intE , ( )T T

intE  , ( )Q T

intE  , and rel

intE  terms could be neglected. 

The uncertainty caused by vibrationally averaged approximation can be ignored. 

The two-step fitting was proposed in the Thesis which reproduced the correct 

shape of the whole potential energy surface and the interaction energy well. The 

maximum error of the fitting in the attractive part of potential is 0.47 cm
-1

 and the 

mean error is 0.0066 cm
-1

. The fitting functions are linear with respect to the fitting 
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parameters what makes the fitting procedure relatively simple. The simple 

trigonometric functions were used which are easy to manipulate in future work.  

This excellent accuracy (0.6 cm
-1

) is comparable to the similar ab initio H2–CO 

surfaces of Jankowski et al
[3]

 even in this larger system. The Thesis also demonstrated 

with the powerful computational power nowadays, that it is possible to generate 

accurate high dimensional interaction energy surfaces of many-electrons systems. 

Similar interaction energy surfaces (e.g. H2–HX, X=F, Br) can be produced based on 

the methodology developed in the presented Thesis. The quality of the potential 

energy surfaces can be tested by comparing the second virial coefficient between 

experiment and calculated value. The potential will be used for simulating the 

spectrum of HCl trapped in pH2 to understand more elementary mechanism in the 

field of atmosphere chemistry.   
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