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Abstract--Based on grinding mechanism and machine-tool settings of the Gleason modified roll hypoid 
grinder, a mathematical model for the tooth geometry of spiral bevel and hypoid gears is developed. Since 
all the machine-tool settings and machine constants are involved in the proposed mathematical model, 
excellent correlation between the mathematical model and actual manufacturing machines can be 
obtained. An example is given to illustrate the application of the proposed mathematical model. Surface 
deviation between a real cut spiral bevel gear surface and the model surface is investigated. Bearing 
contacts and kinematic errors in the spiral bevel gear set are also studied. Copyright 01996 Elsevier 
Science Ltd 

1. INTRODUCTION 

There are several important  systems for the manufacture of  circular-cut spiral bevel and hypoid 
gears, for example, the spread blade-fixed setting method with a modified roll machine, the 
spherical duplex method, the helical duplex method, the spread blade-fixed setting method with 
tilted cutter axis, the helixform method and the formate method. Spiral bevel and hypoid gears 
manufactured by the helixform method and formate method have been proposed by the Gleason 
Works [1], Baxter [2] and Litvin and Gutman  [3]. Huston and Coy [4], Huston et al. [5] proposed 
mathematical  models for logarithmic spiral bevel gears in 1981 and for circular-cut spiral bevel 
gears in 1983. Tsai and Chin [6] investigated the surface geometry of straight and spiral bevel gears 
in 1987. In 1988, Litvin et al. [7] proposed a method for determining the machine-tool settings for 
the machine cradle of  a tilted head cutter. Fong and Tsay [8-11] presented a series of  papers to 
investigate spiral bevel gear surface geometry, cutting machine mechanisms, kinematic 
characteristics and undercutting effects. 

Recent technological development on the CNC machinery makes it possible to manufacture and 
inspect spiral and hypoid gears under full quantitative and qualitative controls. Several 
computer-aided CNC inspection systems and closed loop manufacturing systems, that combine 
CNC coordinate measuring machines and theoretical gear surface data, for bevel and hypoid gears 
have been developed by the Gleason Works [12], M&M Precision Systems [13], Klingelnberg 
Soehne [14] and Lemanski [15] in the past few years. Krenzer [16] proposed computer-aided 
corrective machine settings for bevel and hypoid gears manufacturing that use first-order and 
second-order sensitivity matrices. Litvin et al. [17-19] also proposed a series of  methodologies for 
minimizing surface deviations and analyzing the meshing and contact of  real cut gear tooth surfaces 
using coordinate measuring machines. 
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Since the tooth surface geometries of spiral bevel and hypoid gears are quite complex and vary 
with the manufacturing method, accurate data calculation of theoretical tooth surfaces is difficult 
for engineers wanting to establish CNC inspection systems for spiral bevel and hypoid gears. 
Therefore, it is desirable to investigate theoretical tooth surface calculations of spiral bevel and 
hypoid gears as manufactured by different systems. 

In this paper, a mathematical model for spiral bevel and hypoid gears manufactured by the 
Gleason modified roll method [20-23] is proposed. To guarantee close correlation between the 
mathematical model and actual manufacturing machine, the proposed mathematical model for 
spiral bevel and hypoid gears is developed based on the mechanism of Gleason no. 463 series 
hypoid grinder. The generating train of the Gleason no. 463 hypoid grinder is designed to perform 
the modified roll motion by means of a special cam reciprocator mechanism. The kinematic 
characteristics of the hypoid grinder are grouped into four modules: (a) surface geometry of 
cup-shaped grinding wheel; (b) special modified roll generating train; (c) spatial relationship 
between the workpiece and the grinding wheel; and (d) equation of meshing that simulates the 
grinding generation process. 

Since the proposed mathematical model for spiral bevel and hypoid gears is derived in terms 
of actual machine-tool settings and machine constants, it is very easy to implement the 
mathematical model and to establish a closed loop manufacturing system for spiral bevel and 
hypoid gears. Many computer problems such as the tooth contact analysis (TCA) program, 
computer-aided CNC inspection program and corrective machine-tool settings calculation program 
have been developed and can be used to form a closed loop manufacturing system. An example 
is given to illustrate application of the proposed mathematical model. Surface deviation between 
the real cut spiral bevel gear and the proposed mathematical model has been investigated. Bearing 
contacts and kinematic errors in the sprial bevel gear have also been studied. 

2. MATHEMATICAL MODEL FOR THE GLEASON SPIRAL BEVEL AND 
HYPOID GEARS 

2. I. Surface geometry of the cup-shaped grinding wheel 
The surface geometry of the face mill cutter and the cup-shaped grinding wheel is usually 

considered a cone surface as shown in Fig. 1 [8, 9]. The axial cross-section of the cup-shaped 
grinding wheel is straight-edged in the a-a cross-section in Fig. 1. The position vector and unit 
normal vector of the cup-shaped grinding wheel surface can be represented by [9]: 

R,(uj,/~) = 

FJ 

.7 t 

1 

Ir~ + (W + uJ sin ~kJ)lsin flJ 1 

Ir" --- (W + uJ sin @J)lc°s BJ ] -  uj ~os @j (1) 

and 

where 

Nj 
n j -  INA' 

~Rj ~Sj N j = - ~ u j × - ~ j ,  and j = i , o .  
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The subscripts "i" and "o" denote the inside and outside blades, respectively. The "+_" sign should 
be considered a " + "  sign for the outside blade and a " - "  sign for the inside blade. Parameters 
u~, fli, Uo, and Bo are the surface coordinates of the inside and outside blades, respectively. 

Actually, the axial cross-section of the grinding wheel need not necessarily be straight-edged. 
Other cross-sections can be used for special manufacturing systems such as the spherical duplex 
system. In such cases, equation (1) should be modified according to the corresponding cross-section 
geometry. 

2.2. The modified roll generating train 

The roll ratio between the imaginary generating gear and the workpiece is not a constant during 
the generation process of the modified roll method. As shown in Fig. 2(a), the timing relationship 
between the workpiece and the imaginary generating gear is determined by the positive 
cam-follower reciprocator mechanism and the index change gears of the Gleason no. 463 hypoid 
grinder. The instantaneous roll ratio ~a between the imaginary generating gear and the workpiece 
can be expressed by 

¢w T~ 
~/° -  ~ -- Tp R., (2) 
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Fig. 1. Coordinate system S~ and geometry of the cup-shaped grinding wheel. 
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Fig. 2. The modified roll generating train of the Gleason no. 463 hypoid grinder: (a) generating trains; 
(b) cam follower and reciprocator. 

where ~w is the work spindle rotation angle, ~c is the cradle rotation angle, Ra is the instantaneous 
roll ratio of the cam-follower reciprocator and T~ and Tp are the tooth numbers of the index interval 
and pinion, respectively. The total gear ratio of the index change gears is equal to the ratio of T~/Tp. 
As shown in Fig. 2(b), the cradle reciprocating motion is achieved by the resultant motion of the 
generating cam and the captive swivel. The generating train rotates at a constant rotational speed 
with respect to the input shaft, which is coupled to the work spindle through the index changer 
gears. The generating cam is mounted on the input shaft with a cam seat. By adjusting the cam 
setting on the cam seat, the generating cam can be displaced with respect to the rotational center 
of the input shaft Od by a predetermined distance c5, which is a machine setting for the hypoid 
grinder. The captive swivel has two straight and parallel cam guide ways. The swivel is also 
mounted on the cradle and the rotational angle of the swivel with respect to the cradle is defined 
as the cam guide angle cp, as shown in Fig. 3. The rotational center of the swivel Od is lower than 
that of the cradle center Oa by distance C, which is a machine constant. The rotational center of 
the input shaft Od is also assembled lower than the cradle center Oo by the same distance C. The 
generating cam is in constant contact with the cam guide ways on both sides. Therefore, the cradle's 
reciprocating motion is achieved by the constant-breadth generating cam and the captive swivel. 
The instantaneous rotational speed and rotational angle of the machine cradle are determined by 
the profile and position of the generating cam, cam guide angle ~, cam setting 6, as well as the 
gear ratio of index change gears. 

The instantaneous roll ratio Ra between the input shaft and the cradle can be derived according 
to the following two kinematic requirements: 
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(1) If the cam guide angle tp and cam setting 6 are zeros, the instantaneous roll ratio Ro between 
cradle and input shaft is constant during the generation process. Accordingly, the profile of  the 
generating cam can be obtained by considering the conjugate motion between straight cam guide 
ways and generating cam. 

(2) By applying equations of  the generating cam and constant contact conditions between 
generating cam and captive swivel, the instantaneous roll ratio Ro between input shaft and cradle 
can be derived in terms of the cam guide angle tp and cam setting 6. 

The coordinate systems for profile derivation of  the generating cam are shown in Fig. 3. 
Coordinate systems S~(xb, y~) and Sc(xc, y~) are rigidly attached to the grinding machine frame 
while coordinate systems So(xa, ya), S,~(x,~, y,t), S,(x, ,  y,) and Ss(xs, Yi) are rigidly attached to the 
cradle, swivel, generating cam and input shaft, respectively. The generating cam profile can be 
determined based on the following consideration: 

If the cam guide angle ~0 and cam setting 6 are zeros, the roll ratio between cradle and input 
shaft during the generating process can be viewed as simply two internally contacting circles. The 
pitch radius of the generating cam is defined as r~ and the distance between the cradle center Oo 
and the rotational center of input shaft Oi is C. Therefore, the instantaneous roll ratio R~ between 
the input shaft and cradle can be expressed by: 

(dcte'~ C + r. when 6 = 0 and tp = 0; (3) 
Ro = ~d~o] = r. ' 

O,,Ob 

C 

x" 

Fig. 3. Relationships among coordinate systems So, Sb, S,, Sa, St and S¢. 
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a, and ae are the rotational angles of the cradle and input shaft, respectively. The generating cam 
profile can be obtained by finding the cam guide ways' motion envelopes. The locus of the cam 
guide ways represented in coordinate system Se(x~, y~) is obtained by 

/x :t ,x{i] =[Me. , w h e n b = O a n d  ~o=0 

[cos(a. - ae) -s in(a.  - ae) 
= "[Isin(a]) - ae) cos(aaO- ae) 

C s inae]f  a 1 
(4) 

where "a" is the half distance between two cam guide ways and parameter "b" is a surface 
coordinate on the cam guide ways, as shown in Fig. 2. The unit normal vector of the locus of the 
cam guide ways is 

{ nxe'~ = ) 'cos(a.-  a~)'~ when 6 = 0  and q~ = O. 
ny~) (s in(ao-  ae)J '  

(5) 
Conjugate motion between the cam guide ways and the generating cam can be obtained by applying 
the equation of meshing [22], i.e. the common normal vector of the cam guide ways and generating 
cam should always be perpendicular to their relative velocity at every contact point. Based on this 
conjugate motion condition, the final formula for the equation of meshing between the cam guide 
ways and generating cam becomes 

( b - C ) = - ( C + r ~ ) c o s a a ,  w h e n 6 = 0 a n d  ~o=0; (6) 

r~ is the pitch radius of the generating cam. Therefore, equations for the generating cam can be 
derived by substituting equations (3) and (6) into equation (4). To distinguish the generating cam 
surface coordinates from the variable rotational angle, the subscript of ao is dropped when the 
variable represents the generating cam surface coordinates. Therefore, the generating cam profile 
can be expressed by 

R,(a) = 
xXa) } 
ye(a) 

1 

a c o s ( - C \  r , a ) + ( C + r " ) c ° s a s i n (  - C a ) + C s i n (  C+rur. a)  

a s i n ( - C a ) - ( C + r , ) c o s a c o s ( - C a ) + C c o s (  C + r "  r~ r~ a 

1 

~. (7) 

Thus, the generating cam profile is defined in terms of the surface coordinate a. The unit normal 
vector of the generating cam becomes 

nYe(a)J sin( _C ~ 
\ r , /  

(8) 

The singular point of equation (7) can be found by letting d x d d a  = dye/da = 0, i.e. the singular 
point exists when 

sin 
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The maximum uniform roll angle between the input shaft and cradle is thus constrained by 
equation (9). 

Since the profiles of the generating cam and cam guide ways are known, the time relationship 
between the input shaft and cradle can be determined by the constant contact condition between 
the generating cam and cam guide ways. In other words, the surface position vectors and surface 
unit normal vectors of the generating cam and cam guide ways should be the same at the contact 
point. However, both position and unit normal vectors of the mating surfaces should be expressed 
in the same coordinate system, say, the Sc coordinate system. According to the coordinate systems 
shown in Fig. 3, the position and unit normal vectors of the generating cam and cam guide ways 
can be expressed in coordinate system S~(xc, y.) as follows: 

c o s . .  [s'7" o ' (lO) 

fxW 1 ~cos .. -- sin .. O]Fcos~ p sin~p _OC]Ib I 
R, = Jy?I--- LSio.° coS..o c][-sin~OljL 0 COS~Po --I J[lJ' (11) 

)'ngc~ = f 

COs(--C(~) cOs (~e--sin( -Cct~sinr. J ~e 

c°s(  - C r . ~ ) s i n ~ + s i n (  - C \  ru J~c°s°~" 

(12) 

and 

~nxW] ~'cos ct~ cos ~0 + sin ~o sin ~ t  
n~ = ~ny~J = (sin . .  cos q~ - cos cto sin ' (13) 

where superscript "w" denotes the cam guide ways and superscript "g" denotes the generating cam. 
Subscript "c"  denotes that the vector is represented in coordinate system So. The time relationship 
between the cradle and input shaft can be obtained by letting: 

R~ = R~, (14) 

and 

n~ = n w. (15)  

Since equation (15) is constrained by In~[ = [n~'l = 1, equations (14) and (15) imply three scalar 
equations with four variables: b, a, aa, and ae. The time relationship between ct~ and a. can be solved 
by eliminating a and b as follows: 

ru 
ct = ~ (a. - aa + q0, (16) 

and 

b = (ru + C)sin(~. - q~ + ct) + (ru - C)sin(ao - q~ - ~) - 2C sin ~a + 26 sin ~e 
2 sin(q~ - cto) (17) 
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By substituting equations (16) and (17) into equations (14) and (15), the constant contact condition 
between generating cam and cam guide ways can be reduced to only one scalar equation as follows: 

{ [r l } f(cto, Ot,) = C sin q~ + sin ~ (Oto - ~, - ~o) + sin(Ot, - ~o) + 6 sin(cto - ~e - -  ~ 0 )  = 0. (18) 

Thus, the instantaneous roll ratio Ra between the input shaft and cradle is obtained by the following 
differentiation: 

Ra(ota, ote) -- dOte ~ C COS(Ota - -  (p )  
dOta - - f , ,  = + 1. (19) ? ] Ot COS(ae -- ao + tp) + ru cos ~ (Ote -- 0~ + q~) 

2.3. The spatial relationship between the imaginary generating gear and the workpiece 

The spatial relationship between the imaginary gear and the workpiece is shown in Figs 4 and 
5. The Modified Roll Method cutter spindle is parallel to the cradle axis. Based on the geometry 
shown in Fig. 4, the tooth surface and surface unit normal of the imaginary generating gear can 
be represented as follows: 

Q = 360 ° - tk~ + ~b--2~ 
2 '  

(20) 

{x2t {  cos +xl t y2 - S  sin Q + yj 
R 2 ~ ~ 

22 Zl 

1 1 

(22) 

and n2 = I l l ,  where 

q~c is the cradle angle and is one of  the machine settings for the Gleason hypoid grinder; 
q~e is the eccentric angle and is also a machine setting; 
e is the machine constant of  eccentric, e = 8 inches for the Gleason no. 463 hypoid grinder; 
S is the basic radial distance setting; 
Q is the basic cradle angle setting; 

and, x~, y~ and z~ are the surface coordinates of  the cup-shaped grinding wheel represented in 
equation (1). 

As shown in Fig. 5 [9], coordinate systems S2(xz, y2, z2), $3(x3, y3, 23), $4(X4, y4, g4), Ss(xs, y5, z5) 
and $6(x6, y6, z6) are rigidly attached to the cradle, machine frame, sliding base, work head and 
workpiece, respectively. Therefore, the locus of  the imaginary generating gear represented in the 
workpiece coordinate system $6 can be obtained by applying the following coordinate 
transformation matrix equation: 

R, = [M6s][M53][M32]R2, (23) 
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where 

[M~] = 
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I'° ° !] - -  O x 

0 cOS¢w - s i n ¢ ,  

0 s in¢,  cos¢~ 

0 0 0 

[M~] = 

COS ))m 0 sin ~)m --Es sin ?o, 

0 1 0 -Ev  

-- sin ~'m 0 cos 7m Es COS ~m 

0 0 0 1 

[M32] = 

cosG s i n ~  0 0 

- s i n g  cosG 0 0 

0 0 1 0 

0 0 0 1 

~c is the cradle rotational angle; 
~w is the work spindle rotational angle; 
)'m is the machine root angle; 
Dx is the increment of machine center to back; 
Es is the sliding base setting; 
Ev is the vertical offset setting• 

The cradle rotational angle ¢c and work spindle rotational angle ¢w can be represented in terms 
of the generating cam surface coordinate ~ as follows: 

• _,F,s . fc~,'~ ] 
¢c(~) = ~o + s,n s'nt-~-~ J + sin ~ - sin ~0, (24) 

and 

~w(a) = npn--2(C-~ + ~¢- ~o). (25) 

2.4• Equation of meshing 
The generation process during modified roll cutting or grinding can be simulated by considering 

the equation of meshing [9] and the kinematic relationship between the imaginary generating gear 
and the workpiece, simultaneously. Due to the tangency of two mating surfaces, the relative 
velocity of mating surfaces must lie on the common tangent plane during the generating process• 
Therefore, the following equation must be observed: 

n" Vl2 = 0, (26) 

where n is the unit normal vector of the generating tool surface and V,2 is the relative velocity 
between the generating tool surface and the generated gear blank surface. It is worth mentioning 
that equation (26) is the so-called "equation of meshing" in the theory of gearing• After some 
mathematical manipulations, equation (26) becomes 

A + B sin G + C cos ~c = 0, (27) 
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where 

ha =(sinTm-1)(y2nx2-X2ny2)+nz2EvcoS~m, 

BB = - Evn,2 s i n  ]~m - -  [nx2(Z2  - -  E s )  - -  X2nz2]COS "))m, 

and 

co__  vnx0sin m+[n (z0- + ) ] 2re ~ - yon.~ cos 7,,. 

2.5. Mathematical  model for  generated spiral bevel and hypoid gear surfaces 

Note that the roll ratio, r/a, between the cradle and workpiece is a function of the cradle roll 
angle, ~c, as shown in equation (1). Substituting equation (22) into equation (23), one obtains the 
locus of the imaginary generating gear represented in the workpiece coordinate system. The tooth 
surfaces of the generated spiral bevel and hypoid gears are determined by considering equations 
(23) and (27) simultaneously. 

3. EXAMPLE 

In this section, a spiral bevel gear set generated using a Gleason no. 463 hypoid grinder is used 
as an example to demonstrate application of the proposed mathematical model and verify its 
accuracy. The gear blank dimensions and grinding wheel specifications are given in Table 1, and 
the machine settings are shown in Table 2. The gear was finished using the duplex grind (i.e. spread 
blade) process while the pinion was ground side-by-side using different machine settings (i.e. fixed 
settings). 

The theoretical tooth surfaces calculated by the proposed mathematical model can be regarded 
as the tooth geometry standard for inspecting finished spiral bevel and hypoid gears. With the aid 
of the proposed mathematical model, the continuous bevel gear tooth surface is discretized into 
m x n sampling points, using a mapping method as shown in Fig. 6. The values of m and n depend 
on the tooth surface geometry, sampling accuracy, machine precision as well as product 
requirements. The sampling surface points are numbered in ascending order from toe to heel, and 
root to face. The coordinates of the theoretical sampling points are down-loaded to the CNC 
coordinate measuring machine. Using the down-loaded data, the CNC coordinate measuring 
machine measures the relative points on the real cut tooth surface. The measured data are then 
compared with the theoretical data and any deviations are calculated. 

Comparisons of the tooth topographies, obtained from the mathematical model and measured 
data from real cut gears, are shown in Figs 7-9. Since the convex and concave pinion sides were 
ground side-by-side with different machine settings, Figs 7 and 8 show the surface deviation 
comparisons between the theoretical pinion surfaces and the convex and concave side surfaces of 
the real cut pinion, respectively. The maximum surface deviations are 0.013 mm on the convex side 
and 0.023 mm on the concave side, respectively. A comparison of surface deviations between the 
theoretical spiral bevel gear surface and the real cut gear surface finished by duplex grinding is 
shown in Fig. 9. The tooth thickness deviation at reference point E3 is 0.023 mm and the maximum 
surface deviation is about 0.005 mm. Therefore, the tooth surfaces generated by the proposed 
mathematical model are quite consistent with those of real cut gears. This indicates that the 
modified roll motion during grinding was successfully simulated by the proposed mathematical 
model. 

Tooth contact patterns and kinematic errors in the sprial bevel and hypoid gears were simulated 
using the proposed mathematical model and tooth contact analysis (TCA) program; the results are 
shown in Fig. 10. The quadrangles formed by the solid lines indicate, respectively, the spiral bevel 
gear and pinion teeth boundaries. The thick solid line traces the contact point path. The solid-line 
ellipses show the single-tooth-pair instantaneous contact mesh zones, and the dotted-line ellipses 
show the multiple-tooth-pair mesh zones. The dotted lines drawn within the quadrangles indicate 
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Table  1. G e a r  b l ank  and  gr ind ing  wheel  used in the example  

I tems  Pin ion  G e a r  

B lank  da ta  
N u m b e r  of  teeth 27 28 
Face  wid th  25.000 m m  25.000 m m  
Pitch angle  22 ° 4 '  22 ° 56' 
Outs ide  d iamete r  128.725 m m  132.911 m m  
Pitch apex to c rown 148.381 m m  147.452 m m  

G r i n d i n g  wheel  specifications 
M e a n  dia. o f  g r ind ing  wheel  - -  250.000 m m  
Poin t  dia.  o f  g r ind ing  wheel  (I.B.) 250.952 m m  - -  
Poin t  dia.  of  g r ind ing  wheel  (O.B.) 251.460 m m  - -  
Ins ide  b lade  angle  21 ° 0' 21 ° 0' 
Outs ide  b lade  angle  19 ° 0' 19 ° 0' 
Po in t  wid th  - -  2.413 m m  
Tip  fillet 1.088 m m  0.048 m m  

Table  2. Mach ine  set t ings used in the example  

Mach ine  set t ings P in ion  I.B. P in ion  O.B. G e a r  

Mach ine  root  angle  20 ° 26' 20 ° 26' 21 ° 15' 
Mach ine  center  to  back  - 9 . 0 1 3  m m  - 8 . 4 6 3  m m  - 2 . 4 0 2  m m  
Sliding base 3.146 m m  2.964 m m  0.870 m m  
Blank  offset - 11.642 m m  - 11.275 m m  2.957 m m  
C a m  set t ing 101.600 m m  101.600 m m  76.200 m m  
Eccentr ic  angle  32 ° 49'  32 ° 38' 35 ° 44' 
Crad le  angle  67 ° 3' 71 ° 45' 324 ° 59' 
C a m  guide  angle  5 ° 10' 0 ° 0' - 0  ° 40' 
Feed cam set t ing 6 ° 0" 0 ° 0 '  0 ° 0 '  
Gene ra t ing  cam no. # 23 # 23 # 29 
Index  interval  10 10 9 
Index  gears  48/80 x 50/81 48/80 x 50/81 42/70 x 45/84 

4 

4 5 / ,  

Fig. 6. Sampl ing  surface poin ts  on the spiral  bevel gear  convex side. 
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Fig. 7. Comparison of theoretical data with measured data for pinion convex side. 

the tooth work-surface boundaries generated by the grinding wheel's straight-line generatrix. In 
this example, the bearing contacts are located in the center region of the tooth face with a slight 
"bias in" contact pattern. The kinematic errors are 9.49 arc-seconds on the pinion convex side and 
9.91 arc-seconds on the pinion concave side. 

4. CONCLUSION 

The proposed mathematical model was divided into four main kinematic modules: grinding 
wheel surface geometry, modified roll generating train, spatial relationship between grinding wheel 
and workpiece and equation of meshing that simulates the generation process. Tooth surfaces 
obtained by the proposed mathematical model can be considered the tooth geometry standard for 
inspecting spiral bevel and hypoid gears manufactured using the modified roll method. Variation 
in roll ratio between the imaginary generating gear and generated gear during the generation 
process has also been taken into consideration. Since the proposed mathematical model was 
developed in terms of actual manufacturing machine-tool settings and machine constants, it is 
therefore very easy to implement it and to establish a closed loop manufacturing system for spiral 
bevel and hypoid gears. Computer programs such as the TCA program, computer-aided CNC 
inspection program, and corrective machine-tool settings calculation program have been developed 
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Fig. 10. Bearing contacts and kinematic errors of the sprial bevel gear set. 

and used successfully to form such closed loop manufacturing system. The results of this paper 
can be applied to improve the quality and quantity controls for the manufacture of sprial bevel 
and hypoid gears. 
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