AT E dp 4 F B BRIE BT iy £ AR

Mge o #£ 5 P e

Instruction Level Scheduling for Low-Power on
VLIW DSP

FyA oy iEte
th R MR R

PEAR 4 L E

BAT R dp 4 F OB SLAIE BT ddn £ AR G 2
= B

Instruction Level Scheduling for Low-Power on VLIW DSP

Prd o P Student : Wei-Fan Yang
I ERE ML B Advisor : Prof. Cheng Chen
=2+ 5

AL X
e Ty
A Thesis
Submitted to
Institute of Computer-Science:and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science and Information Engineering
June 2005

Hsinchu, Taiwan, Republic of China

PEAR 4 e E 27

-1-

GATE dn £ F AT iU SLAIE B g £ AE o
Tﬁﬁé /}J 7)@*%‘-\ B e
A e BEFE M %

DR S X I R

BABFNAESARAL EY @ TARRARE 2 o pl4o L S B BAp 1 -PDA £ % o
B AER AT LA E I el F LB P A e R R it R g
- BRERARRAL - A AT B ARRB DL B2 G o dp b IR T L R R
ATILT iR fk dt bl H P switching activities &7 F4p £ iR B AL - B E
BT E o AP ARNE KA AHEM svitching activities #% 1 — 1 > ;2 Greedy
Switching Activities Scheduling (GSAS) - GSAS & .z 7 & By & @ % - BRIP4 ¥4 4
BB f 02 ' K switching activities 5 P oee 13957 B % % GSAS ' MSAS { 4 it £
oo B PFEREACE Y - PR) eh schedule B registers re-assign s (T 0 B e A

1'% 14 switching activities: @ 1R F KB E T UFRF - FET N LT —H kg w4

i 45

Instruction Level Scheduling for Low-Power on
VLIW DSP

Student : Wei-Fan Yang Advisor : Prof. Cheng Chen

Institute of Computer Science and Information Engineering National Chiao Tung

University

Abstract

Portable devices become so popular, nowadays.‘How to reduce the power consumption in
these portable devices, such as digital camera, cellularphone, PDA, etc., becomes a more and
more important issue. Switching: activities-is:one of the most important factors in power
dissipation. In this thesis, we focus on reducing the power consumption of application on
VLIW architectures by reducing switching activities on the instruction bus. An agorithm,
Greedy Switching Activities Scheduling (GSAS) is proposed. The algorithm contains two
phases. The phase one of GSAS can reduce more switching activities than MSAS and it can
save more time than MSAS. The phase two of GSAS can reduce the switching activities
further by re-assigning the registers. The experimental results show effectiveness of the

method.

Acknowledgements

I would like to express my sincere thanks to my advisor, Prof. Cheng Chen, for his
supervision and advice. Without his guidance and encouragement, | could not finish this thesis.
| also thank Prof. Jyj-Jiun Shann and Dr. Guan-Joe Lai for their valuable suggestions.

There are many others whom | wish to thank. My thanks to Yi-Hsuan Lee for her kindly
advice suggestion. Wen-Pin Liu, Chia-Chun Lee, Che-Yin Liao and Ming-Xian Cai are
delightful fellowa, | felt happy and relaxed because of your presence.

Finally, | am grateful to my dearest family. They accompany me all the time.

Table of Contents

ACKNOWIEAGEMENES.ot e e e e e e
TablE Of CONMENES. et et e e e e e e e e e
S 0] o 0=

List Of TaDIES. WV

Chapter 1. INtrodUCLION. ..ot e e e e e e
Chapter 2. Fundamental Background and Related Work..............ccooviiiiiii i,
2.1 Fundamental Background.............c.oiieiii i

2.2 POWEN COSE FUNCHION. e et e e et e et e e et e et e e e e e e

23 REEEAWOIK. ... e
2.3.1 Minimizing Switching Activities Scheduling.......................

2.3.2 Horizontal Scheduling and-Vertical Scheduling....................

2.3.3 Power Reduction-Retation Schedulingz................cooii i

2.3.4 Switching-Activity Minimization Loop Scheduling...............

24 MOUVELION.o ee e e i e e e e et et e et e et e e e e e e
Chapter 3. Greedy Switching Activities Scheduling.................ccoviiien.
3. 1 MaChine ArChITECIUNE. ot e e e e
3.1.1 Architecture of TM320CBKccuuuiiiiie it

3.1.2 Proposed Machine ArChiteCtUre.cc.vvuioeiie i e e e e

3.2 Greedy Switching Activities Scheduling............ccooi i,
321 PhaseOneof GSAS. e

3.3.2 Re-assign the Registers by the Phase Two of GSAS..........cocoiiiiiii i,

Chapter 4. Preliminary Performance Evaluations..............cccccovievii i
4.1 The Experimental resultsfor phaseoneof GSAS............ccocvvieenn .

4.2 The Experimental resultsfor phasetwo of GSAS..........ccceviiiieinnns
Chapter 5. Conclusion and FULUrE WOTK............o oo e e e e e e
5.1 CONCIUSION. ...t e e e e e e

B 2 FULUIE WO . .. oo e

Bibliography

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8

Figure4.1
Figure 4.2

List of Figures

A VLIW(very long instruction word) in TI TMS320c6000 CPU...................
An example of DAG and the schedule of the DAG........................
An example of how to calculate switching activities...................cocoennnn
An example of bipartite matching for horizontal scheduling..............
A DAG with different schedules and switching activities..........................
TMS320C62X/C64X/C67X Block Diagram..........ccvovvvvveiieiinnnn.
Instruction to functional unit Mapping..........cccoveiieiiiicie e e
TMS320C62X/C64X/CE7X OpcodeMapoveuveeiiiiiiiiieie e
The algorithm of phaseoneof GSAS..........co i
A DAG with different schedules and switching activities..........................
The algorithm of phasetwo of GSAS........cco i
The algorithm of register assignment...........c.cocvee e i ieiieieeeene

An example of how 10 re-assign regIStEr'S.c.vvvnieiie e

The percentage of energy with different (Ppase, o) (based on list schedule).....
The percentage of energy with different (Poase, o) (based on Phase 1)

Vi

Table 3.1
Table 3.2
Table4.1
Table 4.2
Table 4.3
Table4.4
Table4.5
Table 4.6
Table4.7

List of Tables

Functional units of proposed machine architecture................ccovveveiviiennns 18

Machine code of eaCh INStrUCLION.cooeeee e 18

The comparison on the schedule length and the switching activities.............. 30
The comparison on energy when Poase=1and o = 1....ovvviiiiiiii i, 31
The comparison on energy when Ppae =2and o =1.......ccccoveivvniennnnnnnl31

The comparison on energy when Ppase =1 and o =2....ccvvvvv i 032
The comparison on energy when Ppase =5and o =21......ccoeovvivnin el 32
The comparison on energy when Ppase =1 and oo =5.........cceveivi .33
Theresult of Phasel + 11 of GSAS. ... e 35

vii

Chapter 1. Introduction

A VLIW processor has multiple functional units. It can process several instructions
simultaneously and is widely adapted in DSP processorg[8-9]. In embedded systems, high
performance digital signal processing (DSP) used in image processing, multimedia, wireless
security, etc., needs to be processed with high data throughput[10]. Moreover, most embedded
systems, such as digital camera, cellular phone, PDA, etc., get the power from batteries and
are used widely in the world. Therefore, it becomes an important problem to reduce the power
consumption in embedded systems to lengthen the time of using the portable
deviceg[10-14][19].

We focus on reducing the power, consumption of application on VLIW architectures by
reducing transition activities on: the instruction. bus. Due to large capacitance and high
transition activities, buses consume a significant fraction of total power dissipation in a
processor [22]. Recent research “for various processors [1-2] shows that the instruction
sequence of an application plays an important role in its energy consumption. Thus, new
research directions in power optimization have begun to address the issues of instruction-level
scheduling for reducing energy consumption [10-16]. MSAS was an instruction-level
scheduling algorithm and was designed to minimize switching activities as much as
possible[12]. It assigns instructions by using the min-cost maximum bipartite matching.
However, it takes too much time to find minimum weight maximum bipartite matching and
may not find the minimal switching activities.

Hence, in this thesis, we propose a method named Greedy Switching Activities
Scheduling (GSAS) which is an efficient instruction-level scheduling algorithm for VLIW
DSP with lower power consumption in instruction bus. It contains two phases. The phase one

uses a greedy method to choose the minimal switching activities and schedule the instruction.

That is, we only schedule one instruction causing minimal switching activities in one iteration.
The phase two re-assigns the registers used by the instructions to reduce the switching
activities. It also re-assigns the registers in a greedy way which chooses the register causing
the minimal switching activities. Compared with MSAS, GSAS has a better performance in
reducing power when switching activities plays an important role in energy consumption.
Moreover, GSAS saves more time in comparing with MSAS.

This thesis is organized as follows. In chapter 2, we will introduce the fundamental
background, the related work and the motivation of our method. In chapter 3, the proposed
machine architecture of our experiments will be introduced and then GSAS will be presented
in detail. The experimental results will be presented in the chapter 4. Finally, we will conclude

our thesisin chapter 5, and list the future work of our research.

Chapter 2. Fundamental Background and Related
Work

In this chapter, we will introduce the fundamental background of the problem and some
basic definitions. Then the power cost function will be presented. Third, we will introduce
some related work, including MSAS (Minimizing Switching Activities Scheduling),
Horizontal and Vertica Scheduling, PRRS (Power Reduction Rotation Scheduling), and
SAMLS (Switching-Activity Minimization Loop Scheduling). Finally, we will give a briefing

of our motivation.

2.1 Fundamental Background[8-10]

A long instruction is a very-long instruction word executed by a VLIW CPU during each
clock cycle. Sub-instructions are several parallel-instructions composing long instruction. Fig.
2.1 shows that what is along instruction.and what'is a sub-instruction. In a TI TM S320C6000
CPU, it can execute up to eight 32-bit instructions per cycle since the C6000 core CPU
consists of eight functional unitg[8]. In Fig. 2.1, from instruction A to instruction H, each one
is a 32-bit instruction that can be executed simultaneously. Hence, there are eight

sub-instructions in Fig. 2.1, and eight sub-instructions compaose one long instruction.

31 031 031 031 031 031 031 031 0

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

Fig. 2.1 A VLIW (very long instruction word) in TI TMS320C6000 CPU

001 010 110 110 Step Ful | Fu2
(000) (000)
otg | /| 1 1.1 o] 2 w0
001 2 3 @10)| 4 (110)
a 3 5 (001)| 6 (010)
1120 T I
/ 4 7 @10
101 @ 5 8 oy
a

Fig 2.2(a) A given DAG ; (b) A schedule of left DAG

After knowing what a sub-instruction is, we will use it in the following definition,

which is an important input of our algorithm.

Definition 2.1. A Directed Acyclic Graph {DAG).G=(V, E, Bit_String(u)) is a node-weighted
graph, where V is the set of nodes and each node represents a sub-instruction, and E is the
edge set and an edge between two'nodes denotes a dependency relation, and Bit_String(u) isa
function to represents the machine code for each nodeu € V.

A DAG is an input of our algorithm. Fig 2.2(a) is an example of DAG From node 1 to
node 8, each node is a sub-instruction and belongs to V. Each edge between two nodes
denotes the dependency relation. For example, node 6 could not be executed before node 1
and node 2 are executed. The binary strings beside the nodes are their machine code. Hence,

Bit_String(node 5) is 001 and Bit_String(node 7) is 110.

Definition 2.2. The location of a node in a schedule of a DAG is a two dimensions array.
Each element of this array is a sub-instruction.
Fig 2.2(b) is a schedule of Fig 2.2(a). We use (i, j) to denote the location of a

sub-instruction in a schedule, where i is the row and j is the column. The row number

represents the clock cycle in which the sub-instruction is executed. The column number
represents the functional unit on which the sub-instruction is executed. For example the

location of node 6 is (3, 2). On the other hand, we can use (3, 2) to represents node 6.

Next, we will introduce what is switching activities. Basically, it is one of the most
important factors of calculating the consumption of power[10]. Switching activities is the
Hamming Distance of two consecutive instructions. Hamming Distance is the number of bit

differences between two binary strings.

Instruction A | 1001 0010 1010 0111 1010 1101 0001 0000

InstructionB | 1100 1011 0001 1101 0000 1011 0101 0100

Different Bit 0101 1001 1011 1:02041:010 0110 0100 0100

Switching activities = Hamming Distance =15

Fig 2.3 An example ofthow te calcdlate switching activities

Fig 2.3 shows that how we calculate the switching activities between two instructions.
We suppose that instruction A and instruction B are two contiguous sub-instructions on the
same functiona unit and the binary strings are their machine code. We can observe that the
number of different bit of two binary strings is 15, so the switching activities of two

instructionsis 15.

2.2 Power Cost Function

In this section, we will introduce the energy consumption equation based on the energy
model proposed by [10]. We will use this energy model to evaluate our method.
As we mention before, a VLIW processor executes a long instruction during each clock

cycle. A long instruction is composed of severa parallel sub-instructions. The power

onsumption to execute along instruction during a clock cycle, Peyqe, Can be computed by :

F)cycle = I:)base + Inzs:t{ Plnsti + SP (|1 J)} (1)

where P iS the base power needed to support a long instruction execution even when along
instruction contains only NOPs. Py iSs the power to execute a sub-instruction I; on a
functional unit, and SP(i, j) is the switching power caused by switching activities between
Inst; (current sub-instruction) and Instj(last sub-instruction) executed on the same functional
unit.

The switching power is proportional to the number of transitions. So

SP (i,) = a - WHD(Bit_String(Inst_i), Bit_String(Inst_j)) (2)

where a is a power coefficient representing the consumed power per transition, and WHD
(Weighted Hamming Distance) is a.function used to compute the number of transitions
between Instiand Ingtj. Let X = Bit_String(lnst):and-Y = Bit_String(Inst;), and WHD(X, Y)
is:

WHD(X, Y)= Zw, (X TH@Y 1) (3

Where w; is the weight of a transition. w;is used to denote the weight for power consumption
caused by one transition on different units.

The energy consumption of a program is the summation of al its power consumption
during each clock cycle. Let S be a schedule for an application and L the schedule length of S.

Then the energy consumption of schedule S, Es, can be computed by

L L c ® . .
K=1 K=1 Inst W K=1 Insl,(K)

>y Pis the summation of basic power consumptions for all sub-instructions of an application
that does change with different schedules. PyaseiS @ constant and Ppase+ L Varies with schedule
length for specific VLIW processor. > SP(i,j) is the switching power and changes with

6

different schedules. Therefore, schedule length and switching activities need to be considered
together in instruction-level scheduling techniques in order to minimize energy consumption

of a program.

2.3 Related Work[11-13][19]

In this section, we'll show how Minimizing Switching Activities Scheduling (MSAYS)
works, and then Horizontal and Vertical Scheduling will also be introduced. Finaly, we will
introduce Power Reduction Rotation Scheduling (PRRS) and Switching-Activity

Minimization Loop Scheduling (SAMLYS)

2.3.1 Minimizing Switching Activities Scheduling[12]

The agorithm, Minimizing Switching Activities' Scheduling (MSAS), was designed to
solve a special case of instruction=level energy-minimization scheduling, i.e., the case when
switching activities play the most important role in energy consumption.

When Ppaseis very small compare with o ((in equation 2 in section 2.2), the energy of a
schedule depends mainly on switching activities. For example, when Py equals 0.1 and o
equals 1, then we need to reduce 10 control steps in schedule length to count one bit switch.
Thus, the MSAS algorithm was designed to minimize switching activities as much as
possible.

On the other side, considering the performance, the algorithm also wants to minimize
schedule length. Hence, MSAS algorithm minimizes switching activities in first priority and
still considers schedule length. Since most previous work focus on one functional unit, the
algorithm takes advantage of multiple functional units under VLIW architectures.

In this algorithm, the input is the DAG we have defined it in previous section and the

output is a schedule with switching activities minimization. Due to the existence of the
dependency in DAG, we can only schedule a node after all its parent nodes have been
scheduled. The scheduling problem with switching activities minimization is how to find a
matching between functional units and ready nodes in such a way that it can minimize the
total switching activitiesin every scheduling step. Thisis equivalent to the min-cost weighted
bipartite matching problem. Thus, in the first scheduling step of MSAS algorithm, it creates a
weighted bipartite graph Ggu, where the verticesof one side are the set of the functional units
and the vertices of the other side are the nodes in ready list and the weight of the edge
between the node and the functional unit is the switching activities when the node is assigned
to the functiona unit. Then it assigns nodes based the min-cost maximum bipartite matching.
After assigning the nodes, it updates the nodes in the ready list according to the DAG and the
machine codes of the functional units. Then it repeatedly creates the weighted bipartite graph
and assigns the nodes until all the nodes are schedul ed:

The schedule created by MSA S:.can reduce total switching activities since it considers
the min-cost maximum bipartite matching in.each step. It is know that finding a min-cost
maximum bipartite matching take O(n®) by the Hungarian Method[20]. Let N be the number
of functional unit. In every scheduling step, it needs at most O((N+|V])®) to find minimum
weight maximum bipartite matching using Hungarian Method and the scheduling step is at
most |V|. Thus, the complexity of MSAS is O(V[* (N+[V])?). It takes too much time to find
minimum weight maximum bipartite matching and it may not find the minimal switching

activitiesin some cases. We will show you in our motivation.

2.3.2 Horizontal Scheduling and Vertical Scheduling[13]

Both high performance and low power are two important objectives of complier
optimization. Thus, in [13], the authors propose a two-phase instruction scheduling approach.

8

In the first, instructions are scheduled by list schedule for performance. Then, in the second
phase, horizontal and vertical scheduling methods are employed to re-arrange the codes
reducing the power without incurring performance penalty.

We first introduce the horizontal scheduling algorithm which re-schedul es the instruction
components of a long instruction to minimize switching activities of instruction bus. Suppose
we have n VLIW instructions which have been scheduled by list schedule, then the horizontal
scheduling won’t change the control step of each long instruction and the component of each
long instruction, but it will try to re-arrange the position of each sub-instruction of a long
instruction to reduce the switching activities. The way of re-schedule the position of
sub-instructions of a long instruction is to create the weighted bipartite graph Ggu between
the long instruction which is re-scheduled and the long-instruction is considered to
re-schedule right now. In Ggu, the vertices of two.sides are the sub-instructions of two long
instructions and the weight -of _the edge- is. the switching activities between two
sub-instructions. Like as MSAS; the horizontal scheduling finds the min-cost maximum
bipartite matching and re-arranges-the. position-of each sub-instruction according to the
min-cost maximum bipartite matching. For example, in figure 2.4, Ul to U4 are the
sub-instructions in the last long instruction already scheduled and L1 to L4 are the
sub-instructions of a long instruction to be re-scheduled. Thus, it creates bipartite matching
between them and finds the min-cost maximal matching. Then it re-schedul es the positions of
L1 to L4 according to the matching.

This algorithm repeatedly creates weighted bipartite graph and re-arranges the positions
of the sub-instructions of each long instruction from the first long instruction to the last long
instruction in the schedule created by list schedule. After re-scheduling al the long
instructions, we can get a schedule which has less total switching activities.

Next, we will introduce the vertical scheduling. The vertical scheduling is similar with
horizontal scheduling, but it allows sub-instructions to move across long instructions.

9

FU1 FU2 FU3 FU4

Scheduled

Instruction
Ul U2 U3 U4

Instruction to
L1 L2 L3 L4 be Scheduled

Fig. 2.4 An example of bipartite matching for horizontal scheduling

That is, the horizontal scheduling won't change each sub-instruction’s control step but the
vertical scheduling. How can vertical .scheduling. do this? Because it uses a window size w to
decide the weighted bipartite graph between the.sub-instructions in the last long instruction
aready scheduled and the sub-mnstructions in the next w long instructions that satisfy data
dependence constraint. We can say that horizontal” scheduling is a special case of vertical
scheduling when the window size w = 1. Like as the horizontal scheduling, the vertical
scheduling finds the min-cost maximum bipartite matching and re-arranges the position of
each sub-instruction according to the min-cost maximum bipartite matching repeatedly until
all sub-instructions are schedul ed.

The two algorithms present the essential idea of their low power optimization. It requires
the functional units of target VLIW architectures to be identical. Thus, they can only perform
sub-instructions swapping with identical functional units on target host without performance
penalty. However, the functional units are normally classified into several classes in most of
VLIW architecture designs. The swapping can only be done with functional units of the same

class. Thisisthe main constraint of their method.

10

2.3.3 Power Reduction Rotation Scheduling[11]

The agorithm, Power Reduction Rotation Scheduling, was designed to minimize both
switching activities and scheduling length for loop applications and is based on rotation
scheduling[3].

Rotation Scheduling presented in[3] is a scheduling technique used to optimize a loop
schedule with resource constraints. The main goal of rotation scheduling is to reduce the
schedule length of aloop application. It transforms a schedule to more compact one iteratively.
Retiming[21] can be used to break the intra-dependence between instructions in a loop
application, so that the rotation can be done to reduce the schedule length of a loop
application. In each step of rotation, nodes in the first row of the schedule are rotation down.
By doing so, the nodes in the first row are re-seheduled to the earliest possible available
locations. From retiming point of view, each node gets retimed once by drawing one delay
from each of incoming edges of ‘the node and-adding-one delay to each of its outgoing edges
in the DFG. The new location of the node in-the schedule must also obey the precedence
relation in the new retimed graph.

The Power Reduction Rotation Scheduling is totally based on rotation scheduling. In
addition, each node needed to be rotated must to be scheduled on the location with minimum
switching activities. So it can achieve the goa to reduce power consumption. The
disadvantage of PRRS is that it was designed for the loop application and it can not be use in
none loop application. It needs an initial schedule to be its input and it takes extra time to

create theinitial schedule.

2.3.4 Switching-Activity Minimization Loop Scheduling[19]

Switching-Activities Minimization Loop Scheduling is an improving agorithm of PRRS

11

which was developed to reduce both schedule length and switching activities of a loop
application.

Switching-Activity Minimization Loop Scheduling (SAMLS) was based on rotation
scheduling and bipartite matching. In the first phase of SAMLS, it performed the same thing
as PRRS did. Then the schedule created by phase one will be the input of the phase two of
SAMLS. In the phase two of SAMLS, it performed the same thing as horizontal scheduling
did.

As the results of experiments, SAMLS has a little better performance than that of PRRS

in reducing switching activities, but SAMLS takes much more time than that of PRRS.

2.4 Motivation

From the relative work, we can observe that.reducing the switching activitiesis
an important factor of reducing total power consumption, especialy when switching activities
play the most important role in.energy consumption. Hence, we focus our working on
reducing switching activities as much as possible, despite it may take more control steps to
complete the application.

In section 2.3.1 and section 2.3.2, we can see that both algorithms create weighted
bipartite graph. Then MSAS finds the min-cost maximum bipartite matching and horizontal
scheduling finds the maximum bipartite weighted matching. Both of them try to find the
minimal switching activities in each alocation. We can observe that it may not find the
minimal switching activities. For example, figure 2.5(a) is a simple example of DAG,, and
figure 2.5(b) is the schedule of figure 2.5(a) by using MSAS. Assuming the binary strings in
Figure 2.5(c) are the machine codes of these instructions. Then the switching activities is 9.
But in figure 2.5(d) and figure 2.5(e), we can find that another schedule will cost less

switching activities. We can observe that instruction A and instruction B have the same

12

6 e FUl | FU2 0000 | 0000

A B 1111 | 1111

e C 1110

(@) (b) (c)

FUL | FU2 0000 | 0000
Al 1111

B 1111

C 1110

(d) (e)

Fig 2.5 (a) A DAG ; (b) the schedule of (a) with MSAS ; (c) switching
activities = 9 (d) other schedule of (a) ; (e) switching activities =5

machine code in this case. If we use MSAS to schedule it, we lost the benefit of scheduling B
instruction after A instruction. In addition;iinactual® VLIW architectures, different functional
units perform different functions. For example, a load:instruction can be executed in specific
unit and so is a multiply instruction. Hence; it-is not'a good way to find min-cost maximum
bipartite matching in an architecture while the functional units are not identical. Therefore we
try to find a better way to schedule the applications to reduce power consumption in real
VLIW architectures.

Another important motivation is that how to assign registers to reduce switching
activitiesin MSAS or other algorithm is not considered. We will also try to find a better way
to assign registers to achieve further reducing the switching activities. Moreover, finding a
min-cost maximum bipartite matching takes too much time. The complexity of MSAS is
O(IV[* (N+[V])®), where N is the number of functional units and V is the number of nodes.
Thus, we will also consider of reducing the complexity of our scheduling algorithm.

In the next chapter, we will describe the basic concepts and principles of our method in

some detailed.

13

Chapter 3. Greedy Switching Activities Scheduling

In this chapter, we will first introduce our experimental machine architecture. Then our
proposed method, GSAS (Greedy Switching Activities Scheduling), will be presented. We
will use an example to explain our GSAS in some detail. We will aso analyze our algorithm

compared with MSAS[12].
3.1 Machine Architecture

The architecture of our experimental VLIW processor is based on TI TMS320C6K
processor, since it is commonly used in image processing, multimedia, wireless security,
etc[8-9]. There are multiple functional units executed simultaneously in these architectures,
power consumption becomes one of the-most impertant issues to be considered with the
concern of performance. Thus, we choose TI TMS320C6K processor to be the base of our
experimental model. We will first.introduce the architecture of TI TMS320C6K processor.

Then we will introduce our proposed machine for our experiments.

3.1.1 Architecture of TM320C6K[8-9]

The architecture of TMS320C62X/C64X/C67X processor is shown in Figure 3.1. The
CPU contains program fetch unit, instruction dispatch unit, advanced instruction packing(C64
only), instruction decode unit, two data paths and each with four functional units, 32 32-bit
registers or 64 32-bit registers (C64 only), control registers, ontrol logic, test, emulation and
interrupt logic.

The program fetch, instruction dispatch, and instruction decode units deliver up to eight

32-bit instructions to the functiona units every CPU clock. The processing of instructions

14

CB2x/CR4Ax/CETY davice

Frogram cache/pragram memary
J2-hit address
258-hit data
CE2x/CE4Ax/CETx CPU
Power Program fetch
down Instruction dispatch (See MNote) Control
- registers
Instruction decode
Data path A Data path B

by DMA. EMIF : : Cl"”t.“"

| Reaisterfile A | RegisterfileB | LLIE

r 1 x —p Test

S1] M1] O D2] M2 S2] L2] | Cmulaton
Interrupts

i Additional
x peripherals:

Timers,

Data cache/data memaory ial port
32-bit address sefla’ poris,

8-, 16-, 32-bit data (64-bit data, CB4x only) ete.

Fig 3.1 TMS320C62X/C64X/C67X Block Diagram

occurs in each of the two data paths (A and B), each of which contains four functional units
and 16 32-bit general-purpose registers for the C62X/C67X and 32 32-bit general-purpose
registers for C64X.

As for functional units, there are eight functional units in the architecture. The eight
functional units in the C6000 data paths can be divided into two groups of four; each
functional unit in one data path is almost identical to the corresponding unit in the other data
path. The functional units are named .L, .M, .S, and .D. Figure 3.2 shows the mapping

between instructions and functional units.

15

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)t
ADD MPYU ADDK SHL ADDAB STH (15-bit offset)t
ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)®
AND MPYSU AND SHRU ADDAW sSUB

CMPEQ MPYH B disp SSHL LDB SUBAB

CMPGT MPYHU B IRPT SUB LDBU SUBAH

CMPGTU MPYHUS B NRPT SUBU LDH SUBAW

CMPLT MPYHSU B reg suB2 LDHU ZERO

CMPLTL MPYHL CLR XOR LOW

LMBD MPYHLU EXT ZERO LDB (15-bit offset)t

MY MPYHULS EXTU LDBU (15-bit offset)t

NEG MPYHSLU MY LDH (15-bit offset)t

NORM MPYLH wvect LDHU (15-bit offset)t

NOT MPYLHU MVEK LDW (15-bit offset)t

OR MPYLUHS MVKH MY

SADD MPYLSHU MVKLH STB

SAT SMPY NEG STH

SSUB SMPYHL NOT STW

suB SMPYLH OR

suBU SMPYH

SUBC

XOR

ZERO
T52 only
T2 only

Fig 3.2 Instruction to functional unit mapping

In figure 3.1, we can see that there are two general-purpose register files (A and B) in the
C6000™ date paths. For the C62X/C67X DSPs, each of these files contains 16 32-bit
registers (AO-A15 for file A and BO-B15 for the file B). The general-purpose registers can be
used for data, data address pointers, or condition registers. The C64X DSP register file
doubles the number of general-purpose registers that are in the C62X/C67X cores, with 32
32-bit registers (A0-A31 for file and BO-B31 for file B).

Each functional unit read directly from and writes directly to the register file within its

16

Operations on the L unit
1 29 28 27 23 22 18 17 13 12 11 5 4 3 210

creg z dst se? sic Vest X op 11|10 s|p

3 2 5 3 ¥

Operations on the .M unit
Ky 29 28 27 23 22 18 17 13 12 11 7 B 5 4 3 210

oreg z st sl sre West x op olo|o|o|o|s|p

3 3 5 5 3

Operations on the .D unit
£y 29 28 27 23 22 18 17 13 12 7 6B 5 4 3 210

oreg z dst snod src 1fcst ap 1|ojo|jo|0| s|p

3 =3 5 5 L

Load/store with 15-bit offzet on the .D unit
K} 29 28 27 23 22 i 7 8 4 3 2 10

oreg z datiarc ucst1s y Idliat 1{1|s]|p

3 2 15 3

Operations on the .S unit
Ky 29 28 27 23 22 18 17 13 12 1 B 5 4 3 2 1 0

creq z dsf e 2 aredest X op 1(o0f(o0f0f=s|p

3 3 3 3 6

Fig. 3.3 TMS320C62X/C64X/C67X Opcode Map

own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file A and

the L2, .S2, .D2, and .M2 units write to register file B.

3.1.2 Proposed Machine Architecture

In our experimental machine architecture, we use a simplified model based
TMS320C6000 described in previous section. We used the same functional units and data

17

Functional Unit | .L1.L2 S1.82 M1 .M2 .D1 .D2

Addition | Addition Load / Store
Operation Subtraction [Subtraction | Multiplication Addition
Subtraction

Table 3.1 Functional units of proposed machine architecture

Machine Code Field
Load op(10000) memory address (10bit) dst (5 bit)
Store op(10100) memory address (10bit) src (5 bit)
Addition op(01000) srcl (5 bit) | src2 (5 bit) dst (5 bit)
Subtraction op(01100) srcl (5 bit) | src2 (5 bit) dst (5 bit)
multiplication| op(00000) srcl (5 bit) | src2 (5 bit) dst (5 bit)

Table 3.2 Machine code of'each inStruction

paths, but with the simplified instructions. Based on the opcode of the instruction set[8] in the
Fig 3.3, we can find that the most important factors affecting the machine code are the
destination, sourcel, source2, and operate fields. The symbol creg and z represent the
conditional registers. In most case, the conditional registers are not used. The symbol s means
select side A or B for destination. In the counting of switching activities, it won't cause
switching on the same side. The symbol p represents the parallel execution. We can’'t decide
its' value until the schedule have been done. Hence, we delete those fields and preserve the
fields of destination, sourcel, source2, and operate.

In most DPS benchmarks, the additions and multiplications are executed frequently.
Hence, we preserve the instructions of addition, multiplication, subtraction, load, and store in
our experiments. Table 3.1 shows the mapping between instructions and functional units.

Table 3.2 shows the machine codes of each instruction. The machine codes of all instructions

18

in our proposed architecture are 20 bits binary strings. The symbol src represents the source
and dst represents the destination and they are 5 bits binary strings. The registers can be used
in the fields of src or dst. In our proposed architecture, 32 registers (A0-A15 for file A and
BO-B15 for the file B) can be used. It is the same as C62X/C67X processors. The machine
codes of register file A are from 00000 to 01111, and the machine codes of register file B are
from 10000 to 111111. The machine codes of memory address are from 0000000000 to

1111111111,

3.2 Greedy Switching Activities Scheduling

In this section, we will introduce our algorithm, GSAS (Greedy Switching Activities
Scheduling), which is an effective method to reduce the switching activities in scheduling
applications. GSAS consists of two phases: T-he first phase is to arrange the schedule. In other
word, the first phase will decidewnhat Tocation and cycle the sub-instructions should be placed.
After deciding the schedule, the second phase can be executed. The goal of second phase isto

re-assign the registers to reduce the switching activities.

3.2.1 Phase One of GSAS

In this section, we will introduce phase one of our algorithm, GSAS (Greedy Switching
Activities Scheduling). The word “greedy” is the main principle of our method. As we
mention in the section 2.4, the drawback of MSAS isthat it may neglect some situation which
will cause less switching activities. Moreover, it takes much time to find a min-cost maximum
weight bipartite matching. Hence, we use a greedy method to choose the sub-instruction
which will cause the minimal switching activities.

The figure 3.4 shows the phase one of GSAS. The input of the algorithm isa DAG and the

functional unit set. The output of the algorithm is a schedule with minimal switching

19

Input : DAG G = (V, E, Bit_String(u)), FU_SET
Output : A schedule with minimal switching activities

1. Height €< the number of nodes of the longest pathin G ;
2. fori=1toHeghtdo
3. Lrp € All nodesin Level(i) ;
4 while Lrp '= ¢ do
/* when the nodes in ready list are not empty, construct the bipartite matching
between the nodes and functional units */

5. Construct Ggm = (Vem , E, W) ;
6. Find E(F , u) in Gg, that has the minimal weight among all edgein Ggpm ;
7. Schedule Node u to functional unit Fi ;
[* update the content of instruction bus and the ready list */
8. Bit_String(Fi) < Bit_String(u) ;
0. Remove u from Lgp ;
10. end while
11. end for

Fig. 3.4 The algorithm of phase one of GSAS

activities. We will introduce it in the following.

We first define some symbols in our algorithm. We use Level(i) to represent the set of
nodes, where i represents the critical path of the nodes according to data dependency. For
example, in Figure 3.5 (@), node 1 to 2 belong to Level(1) since these nodes have no parent.
Node 3, Node 4, and Node 5 belong to Level(2) since these nodes couldn’t be executed until
some nodes in Level(1)have been executed. Hence, node 6 and node 7 are in Level(3) and so
on. Height represents the number of the nodes of the critical path of the DAG. For example, in
Figure 3.5 (a), the Height is 4. Lrp represents the nodes ready to be schedul ed.

Aswe mention in our motivation, we focus our working on reducing switching activities

as much as possible, and it may take more control steps to complete the application. We

20

schedule the DAG level by level. It can assure that the nodes in high level will be scheduled
first and avoid creating schedule with too long length.

In this algorithm, we schedule the nodes level by level. In line 3, we first assign the

nodes in Level(1) to the ready list. When the ready list is not empty, we construct the
weighted bipartite matching Ggm = (Vem, E, W), where Vgy = FU_SET U Lgp Where
FU SET = < Fy, F,...,Fy> is the set of all functional units and Lgpis the set of al nodes in
ready list . For each functional unit F; € FU_SET and each node u € Lrp, an edge e(F;, u) is
added into E andthe weight of e(F;, u), W(F;, u) = WHD(B, Bit_String(u), Bit_String(F;)) and
Bit_String(F) = Bit_String(v) where v is the last node executed on F. WHD(B, X, Y) is the
weighted hamming distance function and is the same as WHD(X, Y) in equation 3 besides a
new parameter 3. We use the parameter 3 represents the first § bits in the binary string. In the
WHD(B, X, Y), we only calculate the-hamming distance of the first 8 bits between two binary
strings. We do this because we will re-assign the register used by the destination of the
sub-instructions in phase two. Therefore, we-only consider the fields of op, srcl, src2, and
memory address of the machine codes ef the sub-thstructions in Table 3.2 and the value of 3
will be 15. It will increase the probability of operand sharing. The value of B will be 20 if we
only use phase one and do not re-assign the registers. We will use an example to demonstrate
our method and show the benefit of our algorithm.
After constructing the Ggu, we use a greedy method to choose the minimal weight edge and
schedule the node. After scheduling the node, then we update the nodes in the ready list and
the content of the instruction bus. We repeatedly choose the node from the ready list until all
the nodes in the ready list are scheduled. When the ready list is empty, we assign the nodes in
the next level to the ready list and repeat the step we did it before until all nodes in the DAG
are scheduled.

Let's use a simple example to demonstrate our method. Since the machine codes of the

sub-instructions are 4 bits, we calculate al the bits in hamming distance and B is 4 in

21

1001 0110 Step || FUl| FU2
(0000) (0000)

1 1(oo01)| 2 (0110)

1101 0010(5)1010 2 3(101)| 4 (0010)

1000 ; 1010 4 7 (1010)

® 1101 5 || 8ao

(@) (b)

Step FUl | FU2
(0000) (0000)

Step FUl1 | FU2

(0000) (0000) 1 1(001)| 2 (0110)

2 3(@101)| 4 (0010) 3 5 (1010)
3 6(1000)| 5 (1010) 4 7 (1010)
4 7 (1010) 5 6 (1000)
5 8(1101) 6 8(1101)

(c) (d)

Fig. 3.5 (a) A DAG ; (b) list schedule with total SA =14, SL.=5; (c) MSAS with total SA

=11,SL=5; (d) GSAS with total SA=8,SL =6

WHD(B, X, Y). Figure 3.5(a) isa DAG. According to the algorithm of the phase one of GSAS,
node 1 and node 2 will be in the Lrp first since they are in Level(1). Then we construct the
edges between the ready nodes and the functional units and weight of the edges are both 2.
We schedule node 1 on FU1 first and there is only node 2 in Lgp. Hence, we construct the
edges between node 2 and functional units. The weight of the edge connected to FU1 is4 and
the weight of the edge connected to FU2 is 2. Thus, we schedule node 2 on FU2. By the same
way, we can schedule the nodes in Level(2) and so on until all the nodes are scheduled. Figure

22

3.5(b)~(d) are the schedules of different algorithms. In those figures SA stands for switching
activities and SL stands for schedule length. From the result, we can see that phase one of
GSAS has the better performance in reducing switching activities.

Let's compare the schedule of MSAS with the schedule of phase one of GSAS. We can
see that both algorithms have the same schedule in the first two control steps. In the control
step 3, MSAS has to find the min-cost maximal weight bipartite matching, so it has to
schedule the node 6 at (3, 1) and schedule the node 5 at (3, 2). Hence, in the control 4, MSAS
only can schedule the node 7. But when we use GSAS to schedule the nodes, we can only
schedule node 5 at (3, 2) in the control step 3 since it causes the minimal switching activities.
Hence, in the control step 4, GSAS can choose the best option from node 6 and node 7 which
can be scheduled after node 3 or node 5. Obviously, scheduling node 7 at (4, 2) causes the
least switching activities. Then, in.the control step.5, scheduling node 6 at (5, 2) causes the
least switching activities and is better ‘than that.of scheduling it at (3, 1). Therefore, GSAS can
avoid the disadvantageous arrangement caused by -schedule more than one node in one
iteration.

Moreover, the complexity of MSAS is O(|V[* (N+|V|)*), where |V| is the number of the
sub-instructions and N is the number of functional units. But the complexity of phase one of
GSAS is ([VI*(]V|*N)), since instead of finding the min-cost maximal weight bipartite
matching, we just finds the only one node in one iteration which needs at most O(|V|*N) to be

completed. Hence, the phase one of GSAS saves more time in comparing with MSAS,

23

Input : DAG G = (V, E, Bit_String(u)), schedule S
Output : A new DAG G’ =(V, E, Bit_String’ (u))
1. alsrcanddstinV €< NULL,;
2. Height < the number of nodes of the longest pathin G ;
3. fori=1toHeight do
4. Lra € all thenodesin Level(i) ;
5. while Lra '= ¢ do
6. u < the node has minimal time(v) for each ve Lga;
7. unlock(all registers);
/* lock al register if assigning it to the u.src will cause data hazard */
8. lock(v.src) for each ve V and time(v) > time (u) ;
0. find the register A; will cause the minimal switching activities
10. when assigning it at dst of u
[* from al the registers which are not locked */
11. udst € A;;
12. re-assign src of al children of u,;
13. end while
14. end for

Fig. 3.6 The algorithm of phase two of GSAS

3.2.2 Re-assign the Registers by the Phase Two of GSAS

In this section, we will introduce the phase two of GSAS. The main goal of phase two is
to re-assign the registers used by the src and dst in each sub-instruction to reduce the
switching activities of the schedule created by phase one of GSAS. The meaning of
symbol src and dst have been introduced in section 3.1.2.

In previous work of[11-13], they didn't consider about how to assign the registers to
reduce the switching activities. Actualy, the register assignment is an important factor

affecting the component of the machine codes of sub-instructions. Thus, we use the phase two

24

of GSAS to re-assign the registers to reduce the switching activities.

Figure 3.6 shows the phase two of GSAS. The input of the algorithm is the DAG and the
schedule produced by the phase one of GSAS and the output of the algorithm is the DAG
with different registers used by each sub-instruction. The DAG with new machine codes
reduces the switching activities of the schedule produced by the phase one of GSAS.

We first define some symbols in our algorithm. In the algorithm, the meanings of Level(i)
and Height are the same as that of the phase one. Lra represents the list of nodes to which the
registers are re-assigned. u.dst represents the register of destination of u and u.src represents
the register of source of u. We use two functions lock() and unlock() to decide the state of the
registers. If the state of the register is locked, then it couldn’t be used; otherwise it can be
re-assigned. With the lock() and unlock(), data hazard can be avoided. The function time()
returns the control step of the node in schedule S.

In the algorithm, Line 1 sets the registers in.all-sub-instructions to be null in the first.
Line 3 re-assigns the registers of the nodes level by level. In this sequence, data dependence
won't be violated. In the first, the nodes.in Level(1) will be assigned to Lra. Then we choose
the first node to re-assign register to it in line 6 and u represents the node. We will assign the
register which will cause minimal switching activities to dst of u. Before we choose the
register, we should unlock all registers and then we lock all the registers which may cause
datahazard in line 7 and line 8.

From line 9 to line 11, we scan the register file and find the register to cause the minimal
switching activities when assigning it at dst of u. That is, assigning it to dst of u will make the
switching activities between the field of destination of u and the previous sub-instruction on
the same functional unit minimal. Figure 3.7 show the detail of how to assign the register.
Line 12 updates the src of the children of u. according to the DAG Then, the first
iteration of the algorithm is done. According to input of the schedule, we can find the next
node. After we have re-assigned registers to al the nodesin Level(1), we can consider the

25

© o N Ok~ wWwDdPE

Input : current sub-instruction u and last sub-instruction v on the same functional unit
Output : register A;

R< number of registers, Min & oo ;
for i=0toR-1 do
if Ajisnotlocked then
if WHD(Bit_String(u.A)), Bit_String(v.dst)) < Min;
then Reg< A
end if
end if
end for
return Reg ;

Fig. 3.7 The algorithm of register assignment
11d (Ar) A0 P

21d (Ai) Al
31d (Br) A2

41d (Bi) A3 D=, @ @ @ G ©

51d (Cr) A4
00

6 Id (Ci) A5

7mul A0 A2 A6

8mul A1 A3 A7 Level(2) =
9mul A0 A3 A8
10mul A1 A2 A9
11ladd A6 A4 A10
12add A8 A5 A1l
13sub A10 A7 A12 Level(4) = 113
14add A11 A9 A13
15 st (Dr) Al12 Level(5) =15
16 st (Di) A13

(a) (b)

Level(3) = A1)

Fig 3.8 (a) Assembly code of complex_update ; (b) DAG of complex_update

26

11d (Ar) A3
2 1d (Ai) A2
31d (Br) A0
41d (Bi) Al
51d (Cr) A3
Sl L1 Ml DI 61d (Ci) A1
3 7mul A3 A0 A4
4 8mul A2 Al A4
1 9mul A3 Al A5
7 2 10mul A2 A0 A0
> 1ladd A4 A3 A8
6 12add A5 Al A9
13sub A8 A4 A1l
14add A9 A0 Al
15 st (Dr) Al
16 st (Di) Al

() (d)

Fig 3.8 (¢) schedule of the phase onejof GSAS ; (d) Assembly code of complex_update

after phase two

nodesin Level(2) and so on.

Let’'s use an example to demonstrate our algorithm of phase two. This example performs
a complex update of the form D = C + A*B where A, B, C and D are complex numbers. We
first assign the dst of the nodes in a common way: from Ag to A;s Figure 3.8 (a) shows the
initial assembly code of complex update. Figure 3.8 (b) isthe DAG of complex update. Figure
3.8 (¢) isthe schedule created by the phase one of the GSAS. In the phase one, the value of 3
in WHD (B, X, Y) is 15 since we will re-assign the register of the destination of a node. We
only consider about the first 15 bits of the binary string. In figure 3.8 (c) we can find the
benefits of using the phase one of GSAS. Node 7, 8, 9, 10 are scheduled in this sequence 7, 9,
8, 10”. They are scheduled in the sequence since we choose the node which will cause
minimal switching activities to schedule. That will increase the probability of operand
sharing.

After the phase one of GSAS, we can re-assign the registers. According to the DAG,

27

node 1 to 6 will be considered first. Node 3 will be re-assigned first since its control step is 1
and we assign Ay to the dst of node 3 since A, cause the minimal switching activities. Then
we will re-assign register to dst of node 4. Before we re-assign the register we should lock
some register. According to the DAG and the schedule, the src of node 7 and node 10 will use
the register AO and the numbers of control steps of them are more than that of node 4,
therefore we lock Ag and Ao can not be assigned to dst of node 4. A; will be assigned to the dst
of node 4. By the same way, we can re-assign al the nodes and the new registers will reduce
the total switching activities. Figure 3.8(d) shows the assembly code of complex update after
we re-assign the registers.

The complexity of the phase two of GSAS is O(|V||*([V[+R), where V| is the number of
nodes and R is the number of the registers. It needs O(|V|) to lock registersin line 8 and O(R)
to find the register in one iteration: It needs |V iteration to re-assign all nodes. Hence, the
complexity is O(|V|* ([VI+R).

In this chapter, we have demonstrated.our.method in some detail. In the next chapter, we

will see the experimental results and some analyses about our experiments.

28

Chapter 4. Preliminary Performance Evaluations

In this chapter, we will demonstrate our experimental results. The machine architecture
of our experiments has been introduced in chapter 3. The benchmarks of our experiments are
from DSPstone[23]. We will first compare the results of phase one of GASA with the results
of other methods. Then we will evaluate the results of phase one of GSAS with the results of

phase one and two of GSAS.

4.1 The Experimental results for phase one of GSAS

In this section, we will illustrate our experimental results of phase one of GSAS. In Table
4.1, it shows the schedule length and switching activities of each benchmark for each method.
We can find that list schedule-has. the shortest ‘schedule length in comparing with other
methods. Our method, the phase one.ef .GSAS, has the least switching activities in each
benchmark although it may have thelonger schedule length.

From the section 2.2, we found that schedule length and switching activities are two
important factors affecting the power consumption. Two constant Pyase and o play important
role in calculating the total energy consumption in equation (4). Therefore, we change the
value of Pyaeand o to consider different situations. When Pya IS bigger than o, it means that
schedule length plays the most important role in energy consumption. Conversely, when a is
bigger than Puas, it means that switching activities play the most important role in energy
consumption
Table 4.2 to 4.6 show the total energy and reduction compared with list schedule. We use
different value of Ppase and o to calculate the total energy. We can find that the more Pyase iS
bigger than a, the less reduction in our method. But when o is bigger than Pyase, We have a
better performance in reducing total energy consumption since switching activities play an

29

List Schedule MSAS Phase I
complex_multiply SL. 9 9 11
SA. 50 44 40
dot_product SL. 7 7 8
SA. 41 32 28
real_update SL. 5 5 5
SA. 33 27 27
complex update SL. 9 10 12
SA. 80 69 65
biquad_one_section SL. 13 15 14
SA. 111 97 84
fir SL. 12 12 13
SA. 59 51 48
mat1X3 SL. 21 21 23
SA 137 113 102
convolution SL. 8 8 8
SA. 66 58 58

Table 4.1 The comparison-on; the schedule length and the switching activities

important factor in affecting power.consumption.

In Figure 4.1, the row is (Puase, o) @nd the column is the percentage of total energy based
on list schedule. From figure 4.1 (a) to (h), we can see the reduction in total energy for each
method clearly. In al figures, GASA have more reduction in total energy than that of MSAS
when o is bigger than Pyase. But in figure 4.1 (@), (b), (d), (f), we can find that phase one of
GASA isworse than MSAS when (Ppase, @) = (5, 1). For the phase one of GSAS, it has the
longer schedule length than that of MSAS while Pyase is much bigger than .. Hence, GSASis
not as good as MSAS. In figure 4.1 (c), (h), MSAS and the phase one of GSAS have the same

results since they have the same schedule. Thus, we can find that our method has the better

benefit of reducing switching activities and reduced more power while o is bigger.

30

List Schedule MSAS Phase 1
complex_multiply E. 59 53 51
Reduction -- 10.2 13.6
dot_product E. 48 39 36
Reduction -- 18.8 25
real update E. 38 32 32
Reduction -- 15.8 15.8
complex update E. 89 79 77
Reduction -- 11.2 13.5
biquad_one_section E. 124 112 98
Reduction - 9.7 21.0
fir E. 71 63 61
Reduction -- 11.3 14.1
mat1X3 E. 158 134 125
Reduction -- 15.2 20.9
convolution E. 74 66 66
Reduction -- 10.8 10.8
Table 4.2 The comparison on energy when Py,.=1and =1
List-Schedule MSAS Phase 1
complex_multiply E. 68 62 62
Reduction -- 8.8 8.8
dot_product E. 55 46 a4
Reduction -- 16.4 20.0
real _update E. 43 37 37
Reduction -- 14.0 14.0
complex_update E. 98 89 89
Reduction -- 9.2 9.2
biquad_one_section E. 137 127 112
Reduction -- 7.3 18.2
fir E. 83 75 74
Reduction -- 9.6 10.8
mat1X3 E. 179 155 148
Reduction -- 13.4 17.3
convolution E. 82 74 74
Reduction -- 9.8 9.8

Table 4.3 The comparison on energy when Py, =2 and o =1

31

List Schedule MSAS Phase 1
complex_multiply E. 109 97 91
Reduction -- 11.0 16.5
dot_product E. 89 71 64
Reduction -- 20.2 28.1
real _update E. 71 59 59
Reduction -- 16.9 16.9
complex_update E. 169 148 142
Reduction -- 12.4 16.0
biquad_one_section E. 235 209 182
Reduction -- 11.1 22.6
fir E. 130 114 109
Reduction -- 12.3 16.2
mat1X3 E. 295 247 227
Reduction -- 16.3 23.1
convolution E. 140 124 124
Reduction -- 114 11.4
Table 4.4 The comparison on energy when Py, =1 and o =2
List Schedule MSAS Phase 1
complex_multiply E. 95 89 95
Reduction -- 6.3 0
dot_product E. 76 67 68
Reduction -- 11.8 10.5
real _update E. 58 52 52
Reduction -- 10.3 10.3
complex_update E. 125 119 125
Reduction -- 4.8 0
biquad_one_section E. 176 172 154
Reduction -- 2.3 12.5
fir E. 119 111 113
Reduction -- 6.7 5.0
mat1X3 E. 242 218 217
Reduction -- 9.9 10.3
convolution E. 106 98 98
Reduction -- 7.5 7.5
Table 4.5 The comparison on energy when Py, =S and a =1

32

List Schedule MSAS Phase 1
complex_multiply E. 259 229 211
Reduction -- 11.6 18.5
dot_product E. 212 167 148
Reduction -- 21.2 30.2
real _update E. 170 140 140
Reduction -- 17.6 17.6
complex_update E. 409 355 337
Reduction -- 13.2 17.6
biquad_one_section E. 568 500 434
Reduction -- 12.0 23.6
fir E. 307 267 253
Reduction -- 13.0 17.6
mat1X3 E. 706 586 533
Reduction -- 17.0 24.5
convolution E. 338 298 298
Reduction -- 11.8 11.8
Table 4.6 The comparis hen Pyase =1and o =5
Complex_Multiply 7 Dot_Product
100
g 90r]
£ 801
§ 70r]
60(B List Schedule
50F BMSAS
40< OPhase T
30r]
20f
10
0“ 0 L
G 2D WD 1Y) 1LY (Ppe) G e G 1) 1) (Pusea)
() (b)
Real_Update Complex_Update
100¢ 100
o 90 s 90
g 8o H g % i
g 7ol s 5 70 i
* 60t i 60 [—
s0f - 50 .
40H - |[OPhasel 40 - [OPhasel
30f B 30 i
20f l 20 i
10 B 10 i
0" I T 5 § T 6 T S 'S) N 6) i 0 G, e dG,D d,2 1,5 '(Pbase'a)

(©)

(Pbasev a)

(d)

Fig. 4.1 The percentage of energy with different (Ppas, &) (based on list schedule)

33

Biguad_One_Section FIR

100

100y]
o 90 e
g g0t : w0 i
£ ;
60r1
50(:ﬁ;t:schedule 50 | :ﬁ:;s;hedule
40 (Sl 40 B OPhase I
30 30 i
20 20 i
107] 10 i
0 4
G @D WD L) L5 (Ppea) 5D eb WD) 0D 05 (P

(e) ®

Mat1X3 Convolution

100y]
901
801
707
60r]

Percentage
Percentage

B List Schedule
BMSAS
OPhase T

@ List Schedule
EMSAS
OPhase I

507

40
301
207
10

GD @) WD (1L, S5 B Ak ey ab b) 45 (Puea)
(@ = ")

4.2 The Experimental results for phase two of GSAS

In this section, we will demonstrate the experimental results of phase two of GSAS. In
Table 4.7, it shows the schedule length and switching activities of phase one and two of
GSAS. We can find that it has better performance in reducing switching activities than that of
only using the phase one of GSAS.

Figure 4.2 issimilar to Figure 4.1. The row is (Pyase, @) and the column is the percentage
of total energy based on the phase one of GSAS. We can find that in every benchmark,

re-assigning registers can reduce the total energy further.

@ | ® © @@ [O @ |0

Phase I + 11 SL. 10 8 5 |10 |14 |13 | 23
SA. 38 |22 |22 |50 |68 |41 |91 | 45

(oe]

Table 4.7 The result of Phase I + II of GSAS

Complex_Multiply Dot_Product

100

100
. 90 5 90
g 50 g 80
S 70 S 70
* 6 * 60

BPhase 50 @ Phase I

: :
30 30
20 20
10 10

0
6D @b WD L) LY Ph.a) 6D e WD L2 (L5 Puea)
@) (b)

Real_Update Complex_Update

Percentage

: B Phase T+ W Phase T+1T

0
6D ad @D L) L) P a) GD o@D WD 42 (15 P a)
() (d)

Biquad_One_Section FIR

100

o 90 5 90
g 50 g 50
S 70 S 70
* 60 * 60

BPhase 50 @ Phase I

0 ol 50
30 30
20 20
10 10
0

G @D LD (1,2 (L5 (P a) G @b LD 1,2 (1,5 (Phsea)

© 0)

Fig. 4.2 The percentage of energy with different (Ppas, o) (based on Phase I)

35

Mat1X3 Convolution

100
90
80
70
60

0
30

20
10

Percentage
Percentage

BPhase I
W Phase I+11

0
G @b WD 1L (LS (P a) G @b D 42 (1,5 (Pusea)
9) (h)
Fig. 4.2 The percentage of energy with different (Pyas, o) (based on Phase I)

In summary, the phase one of GSAS has the better benefit of reducing switching
activities and reduced more power while a is bigger. The phase two of GSAS can reduce the

total energy further by re-assigning the registers.

36

Chapter 5. Conclusion and Future Work

In this thesis, we propose a method named Greedy Switching Activities Scheduling
(GSAS) which comprises two phases. The phase one of GSAS schedules the DAG. The phase
two of GSAS re-assigns the registers to reduce the switching activities. The experimental
results have shown the effectiveness of our method. Finally, we will conclude our thesis and

propose some future work for our research.
5.1 Conclusion

Portable devices, such as cellular phone, digital camera, PDA have become so popular
and are used widely in the world. Hence, the poewer.reduction in VLIW DSP becomes a more
and more important problem. Due to buses-consume a significant fraction of total power
dissipation in a processor, so we propose amethod, GSAS, to reduce the switching transitions
on the instruction bus. In summary, we give the following conclusions:

(@) The phase one of GSAS uses a greedy method to schedule the DAG and reduce the
switching activities. According to the experimental results, the more power caused by each bit
switch the more energy our method can save. That is, when the power coefficient o
representing the consumed power per transition is big, then we can save more power in
switching activities.

(b) The time complexity of the phase one of GSAS is (|V[*(|[V[*N)), where |V| is the
number of the sub-instructions and N is the number of functional units. It don’'t need to find
the min-cost maximal weight bipartite matching and just finds the only one node in one
iteration which needs at most O(|[V[*N) to be completed. But the complexity of MSAS is

O([V[* (N+]V])®). Hence, the phase one of GSAS saves more time in comparing with MSAS.

37

(c) The phase two of GSAS can improve the results of the phase one of GSAS by
re-assigning the registers. According to the experimental results, we can observe that when the
phase one collocates with the phase two, it can save more power than only using the phase
one. We can find that the register assignment is an important factor affecting the total
switching activities. The phase two uses a greedy method to re-assign the registers and it can

reduce the total switching activities of the schedule created by the phase one.

5.2 Future Work

There are till many things we can do in the future.

(@) In our experiments, we only use simplified machine of TI TM S320C6000.

In the future, we can try to do our experiments.with different machine architectures to see if
our method works in other architectures.

(b) The phase two of GSAS can be only collocated with the phase one of GSAS. In the
future, we will try to find a better way to re-assign the registers to reduce the switching
activities and we will make it collocated with al other algorithms.

(c) Our method is not designed specially for the loop applications. We don’t do the
optimization for the organization of the loop body. In the future, we can focus our research on
the scheduling for the loop applications to reduce the schedule length and switching activities
of aloop.

(d) Our method only consider about the self-transitions. There are some researches trying
to reduce the coupling-transitions [24-25]. In the future, we can consider about both

self-transitions and coupling-transitions and try to reduce more power.

38

Bibliography

[1] V. Tiwari, S. Malik, and M.Fujita, “Power analysis of embedded software: A first step
towards software power minimization,” in Proceedings of the IEEE.ACM International
Conference on Computer Aided Design, Nov. 1994, pp. 110-115.

[2] N. Chang, K. Kim, and H. G Lee, “Cycle-accurate energy measurement and
characterization with a case study of the ARM7TDMI,” IEEE Tran. On VLSI Systems, vol.
10, no. 2, pp.146-154, Apr. 2002.

[3] L. -k Chao, Andrea LaPaugh, and Edwin H. -M. Sha, “Rotation Scheduling: A Loop
Pipelining Algorithm”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 16, Issue 3, pp. 229-239, March 1997.

[4] Nelson L. Passos and Edwin H. -M. Sha, “Achieving Full Paralelism using
Multidimensional Retiming”, IEEE Transactions on Parallel and Distributed Systems, Vol.
7, No. 11, pp. 1150-1163, Nov..1996.

[5] Nelson L. Pasos and Edwin H. -M. Sha, “Scheduling of Uniform Multidimensional
Systems under Resource Constraints’'ylEEE Transactions on Very Large Scale Integration

Systems, Vol. 6, Issue 4, pp. 719-730, Dec. 1998.

[6] Mike Tien-Chien Lee, and Vivek Tiwari, and Sharad Malik, and Masahiro Fujita, “Power
Analysis and Minimization Techniques for Embedded DSP Software’ ,IEEE Transactions
on VLSI Systems, Vol 5, nol, pp. 123-133, March 1997.

[7] M. J. Irwin. Tutoria: Power reduction techniques in SoC bus interconnects. In 1999 IEEE
International ASIC/SOC Conference, 1999.

[8] Texas Instruments, Inc. TM S320C6000 CPU and Instruction Set Reference Guide 2000
[9] Texas Instruments, Inc. TM S320C6000 Peripherals Reference Guide

[10] Aili Shao, Qingfeng Zhuge, Youtao Zhang, and Edwin H. -M. Sha, “Algorithms and
Analysis of Scheduling for Low-power High-performance DSP on VLIW Processors’,
accepted in International Journal of High Performance Computing and Networking.

[11] zili Shao, Qingfeng Zhuge, Edwin H. -M. Sha, and Chantana Chantrapornchai, “Loop
Scheduling for Minimizing Schedule Length and Switching Activities’, Proc. of
International Symposium on Circuits and Systems, Vol. 5, pp. 109-112, May 2003.

39

[12] zili Shao, Qingfeng Zhuge, Edwin H. -M. Sha, and Chantana Chantrapornchai,
“Analysis and Algorithms for Scheduling with Minimal Switching Activities’, Proc. of
45th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 372-375, Aug. 2002.

[13] C. Lee, J. -K. Lee, and T. Hwang, “ Compiler Optimization on Instruction Scheduling for
Low Power”, Proc. of International Symposium on System Synthesis, pp. 55-60, Sep.
2000.

[14] K. Choi and A. Chatterjee, “Efficient Instruction-level Optimization Methodology for
Low-power Embedded Systems’, Proc. of International Symposium on System Synthesis,
pp. 147-152, Oct. 2001.

[15] Markus Lorenz, Rainer Leupers, Peter Marwedel, Thorsten Drager, and Gerhard Fettweis,
“Low-energy DSP Code Generation using a Genetic Algorithm”, Proc. of International
Conference on Computer Design, pp. 431-437, Sep. 2001.

[16] E. Musoll and J. Cortadella, “.Scheduling and Resource Binding or Low Power”, Proc. of
International Symposium on-System Synthesis, pp. 104-109, April 1995.

[17] Suvodeep Gupta and Srinivas Katkoori;™Force-directed Scheduling for Dynamic Power
Optimization”, Proc. of IEEE“Coemputer Society Annual Symposium on VLSI, pp. 68-73,
April 2002.

[18] Daehong Kim, Dongwan Shin, and Kiyoung Choi, “Low Power Pipelining of Linear
Systems. A Common Operand Centric Approach”, Proc. of International Symposium on
Low Power Electronics and Designs, pp. 225-230, Aug. 2001.

[19] Zzili Shao, Qingfeng Zhuge, Edwin H. —-M. Sha, Meilin Li and Bin Xiao,
“Switching-Activity Minimization on Instruction-level Loop Scheduling for VLIW DSP
Applications’, Proc. of 15th IEEE International Conference on Application-Specific
Systems, Architectures and Processors, Pages224 — 23, Sept. 2004 .

[20] H. Saip and C. L. Lucches, “Matching agorithm for bipartite graphs, Tecn.
Rep.DCC-93-03 (Departamento de Cincia da Computao, Universidade Estudal de
Campinas), March 1994.

[21] C. E. Leiserson and J. B. Saxe, Retiming synchronous circuity. Algorithmica, 6:5-35,
1991.

[22] M. J. Irwin. Tutoria: Power reduction techniques in SoC bus interconnects. In 1999
IEEE International ASIC/SOC Conference, 1999.
[23] http://www.ert.rwth-aachen.de/Projekte/Tools/D SPSTONE/dspstone.html

[24] Chun-Gi Lyuh, Taewhan Kim, Ki-Wook Kim, *“Coupling-Aware High-level
Interconnect Synthesis for Low power”, Proc. of the 2002 IEEE/ACM international
conference in Computer-aided design, Page609 - 613, Nov. 2002.

[25] Yan Zhang, John Lach, Kevin Skadron, Mircea R. Stan. “Odd/Even Bus Invert with

Two-Phase Transfer for Buses with Coupling”, Proc. of the international symposium on
Low power electronics and design, Page 80 — 83, Aug. 2002.

41

