
 

國 立 交 通 大 學 
 

資訊工程學系 
 

碩 士 論 文 
 
 
 
 

藉由二元向量到排列的對映之排列碼建構法 
 

On the Construction of Permutation Arrays via 
Mappings from Binary Vectors to Permutations 

 
 
 
 
 

研 究 生：黃彥穎 

指導教授：蔡錫鈞 教授 

 

 
 
 

中 華 民 國 九 十 四 年 八 月 

 
 

 



 

藉由二元向量到排列的對映之排列碼建構法 

On the Construction of Permutation Arrays via 
Mapppings from Binary Vectors to Permutations 

 
 
 
 

研 究 生：黃彥穎                 Student：Yen-Ying Huang 

指導教授：蔡錫鈞                Advisor：Shi-Chun Tsai 

 
 
 

國 立 交 通 大 學 
資 訊  工 程 學 系 
碩 士 論 文 

 
 

A Thesis 

Submitted to Department of Computer Science and Information Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science and Information Engineering 

 
August 2005 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十四年八月 



 

藉由二元向量到排列的對映之排列碼建構法 

學生：黃彥穎 指導教授：蔡錫鈞 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘 要       

本論文中, 我們持續探討如何建構從二元向量到排列的對映. 我們成
功地建構出改善目前最好的排列碼邊界的對映. 由於建構這些對映的流

程大致相同, 我們提出一個如何建構這特定系列對映的大綱. 另外注意
到我們的對映可能不是保持長度相等, 我們將說明非保持長度對映存在

的必要性. 如果只使用保持長度的對映, 會失去很多可以改進的空間. 
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Abstract 

In this paper, we continue the study of constructing distance-increasing 
mappings from binary vectors to permutations. We successfully construct 
some mappings which induce better lower bounds for permutation codes than 
the current existing one : P(n,r) ≥A(n,r-1). Since the approaches for 
constructing our mappings are similar, we give a framework for constructing 
a certain class of mappings. Note that our mappings may not be 
length-preserving. We will show the necessity of non-length-preserving 
mappings. We will lose many improvements if we only use length-preserving 
mappings. 
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Chapter 1

Introduction

1.1 Background

A permutation array(PA) is a set of permutations of 1, 2, ..., n. From the

combinatorial view, it is interesting to discuss the maximum size of PAs

with given minimum distance. Early studies about PAs rose in the 70’s. [6]

and [7] are the well-known papers from that period. In 2000, by Vinck [12]

a new application of PAs to a coding/modulation scheme for communica-

tion over power lines has leaded to the design of PAs, see also [9],[13],[14].

Thus the construction of PAs has gradually become more important. Re-

cent discussions about the constructions of PAs are [4],[5],[8],[11],[15]. Since

the permutation space is quite different from the Euclidean space which we

are familiar with, it is not easy to have a systematic approach. Due to the

unknown structure of permutation codes, we hope to investigate the permu-

tation arrays by something we are familiar with : the M -ary codes. There

are many good M -ary codes such as Reed-Soloman Codes etc. Suppose we

have an efficient transformation from M -ary space to permutation space and

vice versa. Then it is clear that we can construct a good permutation codes

with desired minimum distance. This motivates the design of mappings from

M -ary vectors to permutations.

5



6 CHAPTER 1. INTRODUCTION

For the mappings preserving length and M = 2, there are some re-

sults, see [3],[10],[2]. These papers introduced two kinds of mappings. One

is the distance-preserving mapping(DPM)[3] and the other is the distance-

increasing mapping(DIM)[2]. Preciesly, an n-DPM is a mapping from binary

vectors to permutations of the same length n such that if the Hamming

distance of two binary strings is d0, then the Hamming distance of the cor-

responding permutations must be at least d0. A n-DIM is quite like n-DPM

except that when d0 is less than the length of the string, the Hamming dis-

tance of the images of this two binary strings must be larger than d0. Once

we have a DPM (respectively DIM) f , for any binary code C with minimum

distance r, it is easy to see that the image of C, i.e. f(C), is a permutation

array with minimum distance r,(respectively r + 1). Therefore by DPMs

and DIMs, permutation arrays can be constructed straightly and the size of

permutation codes can be bounded by the size of binary codes.

Why is DIM better than DPM? In order to construct a permutation

code with minimum distance d0, we only need a binary code with minimum

distance d0 − 1 if we have a DIM. On the contrary, we need a binary code

with minimum distance d0 when we are only given a DPM. We know that

it is easier to construct a code with shorter minimum distance. From this

point, our goal may be to construct a length-preserving mappings that is

stronger than DIMs, that is a mapping which increases more distance than

DIMs. However, this is not an easy task. In order to discuss the rest of the

paper clearly, we introduce some necessary notations first.

1.2 Preliminaries and Notations

Let Sn denote the set of all permutations of Zn = {1, 2, · · · , n} and the set

Zn
q denote the set of all q-ary vectors of length n. For a permutation π =

(π1, · · · , πn) ∈ Sn, let π(i) = πi and π[i..j] denote that sub-array (πi, · · · , πj)

of π. For i ∈ {1, 2, · · · , n}, π−1(i) denotes the position of i in π, i.e. if
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π(j) = i then π−1(i) = j. The Hamming distance dH(a, b) between two n-

tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) is the number of positions

where they differ, i.e.

dH(a, b) = |{j|aj 6= bj}|.
We now define a class of distance-increasing mappings from q-ary vectors to

permutations.

Definition 1.2.1. For d ≤ n + k, an (n, d, k, q)-mapping f : Zn
q → Sn+k is a

mapping such that for all x, y ∈ Zn
q ,

dH(f(x), f(y)) ≥ dH(x, y) + d, if dH(x, y) ≤ (n + k)− d

dH(f(x), f(y)) = n + k, if dH(x, y) > (n + k)− d

Let F(n, d, k, q) denote the collection of all (n, d, k, q)-mappings.

Since we are more familiar with binary vectors, we simply ignore the last

parameter q if q = 2, i.e. let F(n, d, k) denotes F(n, d, k, 2). Clearly, the

collection of DPMs is equal to F(n, 0, 0) and the collection of DIMs in [2] is

equal to F(n, 1, 0). Let nd,k,q be the smallest integer such that for n ≥ nd,k,q,

F(n, d, k, q) is not empty, and let md,k,q = nd,k,q + k, i.e. the smallest image

length. When we say that we have a series of F(n, d, k, q)

1.3 Previous Results

The concept of (n, 0, 0)-mappings(DPMs) was first proposed in [3]. But as

the authors said, the inspiration came partly from the paper [9]. In [9],

they found a (4, 0, 0)-mapping by computer search. Based on that mapping,

they constructed (n, 0, 0)-mappings, for 5 ≤ n ≤ 8. However the method

couldn’t be extended to n > 8. Later, the paper [3] generalized their results

for n ≥ 4 and gave two kinds of recursive constructions of F(n, 0, 0): One

is that when given an (m, 0, 0)-mapping g and an (n, 0, 0)-mapping h, de-

fine f : Zm+n
2 → Sm+n as f(x1, · · · , xm+n) = (π1, · · · , πm, σ1 + m, · · · , σn +

m), where π = g(x1, · · · , xm) and σ = h(xm+1, · · · , xm+n). Then f is an
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(m + n, 0, 0)-mapping. Roughly speaking, it first concatenates the images

of g and h then adjusts the values in the image of h. The other approach

extends an (n− 1, 0, 0)-mapping one-bit long, i.e. given one (n− 1)-mapping

f , it constructs an (n, 0, 0)-mapping f ′. Assume we have a permutation

π = (π1, π2, · · · , πn−1) ∈ Sn−1 which is the image of a binary string s ∈ Zn−1
2 .

We extend s one bit long. If the extended bit is 0, then replace the value at

the p-th entry with value n and append the replaced value to the right of π,

and if the extend bit is 1, just append an entry of value n to the right of π.

Later in [10], an alternative algorithm for constructing (n, 0, 0)-mappings of

odd length was given.

In [2], a construction of (n, 1, 0)-mappings(DIMs) was given, which is sim-

ilar to the first one in [3]. At the beginning, it does the two steps as that in

[3] did. Then it starts to do some swap operations: if x1 = 1, swap π1 and

σn +m, and if xm+1 = 1, swap πn and σ1 +m. These swap operations stands

in order to remedy a bad situation: given two strings s1, s2, the first m bits

are exactly the same, but the rest n bits are totally different(vice reverse).

Concatenation is enough to produce an (m + n, 0, 0)-mapping when given

an (m, 0, 0)-mapping g and an (n, 0, 0)-mapping h, but it is not enough to

produce an (m+n, 1, 0)-mapping. In addition to swap operations, it becomes

realized. Later the same author of [2] generalize the induction method for

constructing (n, 1, 0)-mappings to (n, d, 0)-mappings, when d > 1, with only

minor modification(more swap operations). The only problem is that to find

the basis cases when d > 1 is really tough.

In both [3] and [2], the bound P (n, r) ≥ A(n, r − 1) was given, for n ≥
4, where P (n, r) denotes the maximal size among all permutation codes of

length n and minimum distance r, and A(n, r) denotes the maximal size

among all binary codes. If one could construct the (n, d, 0)-mappings, for

d > 1, the bound would be P (n, r) ≥ A(n, r − d). Let md̃ be the smallest

integer such that for n ≥ md̃, F(n, d̃, 0) is not empty. It is easy to see that
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md̃ ≤ md̃+1 and A(n, r − d̃ − 1) > A(n, r − d̃). Thus for md̃ ≤ n < md̃+1,

we can only apply P (n, r) ≥ A(n, r − d̃), but for md̃+1 ≤ n, we can apply

P (n, r) ≥ A(n, r − d̃ − 1). We plot the best bound for P (n, r) induced by

F(n, d, k) in the following diagram which we call the P (n, r)-diagram. In

Chapter 3, we will illustrate our results by the P (n, r)-diagram many times.

P (n, r) ≥
-

m1 = 4
r

m2

r
m3

r
md̃

r
md̃+1

r
² ¯A(n, r − 1) ² ¯A(n, r − 2) · · · ² ¯A(n, r − d̃)

-
md̃+1

r
md̃+2

r
mr−1

r
² ¯A(n, r − d̃− 1) · · · ² A(n, 1)

1.4 Our Results

We successfully construct a series of F(n, 2, 1) and a series of F(n, 3, 2), and

the bounds induced by F(n, 2, 1) and F(n, 3, 2) beat the current existing

bound. Moreover we propose a framework for constructing F(n, k + 1, k).

Follow the steps we state, a series of F(n, k + 1, k) might be built. As

we involve one more parameter k, we show that by using the non-length-

preserving mappings, there are many cases with the bound improved. In

other words, several improvements will be lost if we abandon non-length-

preserving mappings.

1.5 Organization of this paper

In Chapter 2, we discuss the constructions of F(n, d, k) of different settings

of (d, k). First we give an alternative construction of F(n, 0, 0). Second we

give two new constructions of F(n, 1, 0) by using the substitution technique.
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Third we give the constructions of F(n, 2, 1) and F(n, 3, 2), and propose a

framework for constructing F(n, k + 1, k). In Chapter 3, we show how the

bound induced by F(n, 2, 1) and F(n, 3, 2) beats the previous bound, and

the reason why we should discuss the F(n, d, k) of different settings of (n, k)

rather than just F(n, d, 0). In Chapter 4, we will talk about the possible

future works and make some conclusions.



Chapter 2

Mappings from Zn
2 to Sn+k

In this chapter, we discuss the constructions of various kinds of (n, d, k)-

mappings, including constructions of basis cases and induction methods.

These mappings are useful for constructing permutation arrays. We will

discuss these applications in Chapter 3.

2.1 Construction of F(n, 0, 0)

In [3], we have already known two kinds of recursive constructions of (n, 0, 0)-

mappings: given one (m, 0, 0)-mapping g and one (n, 0, 0)-mapping h, con-

structing an (m + n, 0, 0)-mapping f , and given an (n − 1, 0, 0)-mapping g,

constructing an (n, 0, 0)-mapping f . In this section we give a new construc-

tion method which is similar to the second one in [3]. We prove by Lemma

2.1.1.

Lemma 2.1.1. [3] Given g ∈ F(n − 1, 0, 0) and f : Zn
2 → Sn, if f satisfies

the following inequality, for all x, y ∈ Zn−1
2 , and xn, yn = 0 or 1:

dH(f(x, xn), f(y, yn)) ≥ dH(g(x), g(y)) + dH(xn, yn) (∗)

then f ∈ F(n, 0, 0).

Our construction mainly depends on a switching operation. Assume we

have a permutation π = (π1, π2, · · · , πn−1) ∈ Sn−1 which is the image of a

11
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binary string s. If we extend s one bit long, we want π to be also extended

one bit long. The idea is that if the extended bit is 0, then replace value

n− 1 with n and append a entry of value n− 1 to the right of π, and if the

extend bit is 1, just append a entry of value n to the right of π. The formal

definition is as follows.

Definition 2.1.2. We define an operation p, which assigns new value to each

entry of a n-tuple according to the relative ordering of their original values.

For (π1, π2, · · · , πn−1) ∈ Sn−1, assume πk = n− 1. Define p : Sn−1×{0, 1} →
Sn by

p(π1, · · · , πk−1, n−1, πk+1, · · · , πn−1, 0) = (π1, · · · , πk−1, n, πk+1, · · · , πn−1, n−1),

p(π1, · · · , πk−1, n−1, πk+1, · · · , πn−1, 1) = (π1, · · · , πk−1, n−1, πk+1, · · · , πn−1, n).

Construction 2.1.3. Let g ∈ F(n− 1, 0, 0). Define f : Zn
2 → Sn by

f(x, i) = p(g(x), i), x ∈ Zn−1
2 , i = 0, 1

where p is the operation defined above. Then f ∈ F(n, 0, 0).

Proof. (correctness of Construction 2.1.3)

Let (x, xn), (y, yn) ∈ Zn
2 , where x, y ∈ Zn−1

2 . Let g(x) = ρ = (ρ1, ρ2, · · · , ρn−1)

and assume ρi = n − 1. Let g(y) = τ = (τ1, τ2, · · · , τn−1) and assume

τj = n−1. We consider the following cases according to the values of xn and

yn.
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• Case [xn = yn = k]:

dH(f(x, 0), f(y, 0))

= dH(p(g(x), 0), p(g(y), 0))

= dH((ρ[1..i−1], n, ρ[i+1..n−1], n− 1), (τ[1..j−1], n, τ[j+1..n−1], n− 1))

= dH(g(x), g(y)).

dH(f(x, 1), f(y, 1))

= dH(p(g(x), 1), p(g(y), 1))

= dH((ρ[1..n−1], n), (τ[1..n−1], n))

= dH(g(x), g(y)).

⇒ dH(p(g(x), k), p(g(y), k)) = dH(g(x), g(y)).

• Case [xn = 1, yn = 0]:

If i = j

dH(f(x, 1), f(y, 0))

= dH(p(g(x), 1), p(g(y), 0))

= dH((ρ[1..i−1], n− 1, ρ[i+1..n−1], n), (τ[1..i−1], n, τ[i+1..n−1], n− 1)))

= dH(g(x), g(y)) + 2.

If i 6= j

dH(f(x, 1), f(y, 0))

= dH(p(g(x), 1), p(g(y), 0))

= dH((ρ[1..i−1], n− 1, ρ[i+1..n−1], n), (τ[1..j−1], n, τ[j+1..n−1], n− 1)))

= dH(g(x), g(y)) + 1.
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• Case [xn = 0, yn = 1]:

Symmetrically, we have dH(f(x, xn), f(y, yn)) ≥ dH(g(x), g(y)) + 1.

⇒ dH(p(g(x), k), p(g(y), k) ≥ dH(g(x), g(y)) + 1.

The inequality (*) holds for all cases, thus we have f ∈ F(n, 0, 0).

2.2 Construction of F(n, 1, 0)

In [2], given an (m, 1, 0)-mapping g, and an (n, 1, 0)-mapping h, through

concatenation with some switchings, an (m + n, 1, 0)-mapping f can be con-

structed. However the method needs many basis cases. In this section, we

will use the substitution technique to give a new construction of F(n, 1, 0),

and our methods need fewer basis cases than that in [2]. We give two almost-

sequential constructions of (n, 1, 0)-mappings. We give the first one below.

As it is known that the smallest integer n0 such that for n ≥ n0, F(n, 1, 0)

is not empty is 4. The goal is that, given an (4, 1, 0)-mapping h and an

(n, 1, 0)-mapping g, we will construct an (n + 3, 1, 0)-mapping f . Our main

idea is that when given a binary string of length n + 3, make the first n bits

as the input of g, and the last 4 bits as the input of h. Note that the n-th

bit is taken as input bit for both g and h.

Construction 2.2.1. Let g ∈ F(n, 1, 0) and h ∈ F(4, 1, 0). By the following

algorithm, a mapping f ∈ F(n + 3, 1, 0) is constructed.

Input: (x1, · · · , xn, · · · , xn+3) ∈ Zn+3
2

Output: (π1, · · · , πn+3) = f(x1, · · · , xn+3)

begin

0 Let ρ = g(x1, · · · , xn), τ = h(xn, · · · , xn+3)

1 τi = τi + n− 1, for 1 ≤ i ≤ 4

2 ττ−1(n) = ρn
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3 (π1, · · · , πn−1) = ρ[1..n−1]

4 (πn, · · · , πn+3) = τ[1..4]

end

Example 2.2.2. Let g(0, 1, 0, 0, 1) = (1, 5, 2, 4, 3), h(1, 1, 0, 1) = (2, 4, 1, 3).

Then f(0, 1, 0, 0, 1, 1, 0, 1) = (1, 5, 2, 4, 6, 8, 3, 7)

Proof. (correctness of Construction 2.2.1)

First note that ρi ∈ {1, · · · , n}, and after line 1, τi ∈ {n, · · · , n + 3}. But

at line 2, the value n of τ is substituted with ρn. Thus the rest values in τ

range from n + 1 to n + 3.

Let (x,w), (y, z) ∈ Zn+3
2 , where x, y ∈ Zn

2 , and w, z ∈ Z3
2 . Let g(x) =

ρ = (ρ1, · · · , ρn), g(y) = ρ′ = (ρ′1, · · · , ρ′n), h(xn, w) = τ = (τ1, · · · , τ4),

and h(yn, z) = τ ′ = (τ ′1, · · · , τ ′4). And f(x,w) = π = (π1, · · · , πn+3),

f(y, z) = π′ = (π′1, · · · , π′n+3).

Now we explain the effect of the operation at line 2. Since ρn and ρ′n are

from {1, · · · , n}, after the substitution, if τ−1(n) = τ ′−1(n) then ρn and ρ′n
are still in the same coordinate and the distance of this coordinate is at least

preserved, else ρn and ρ′n correspond to a value from {n+1, · · · , n+3}. Thus

after substituting operation at line 2, the distance dH(τ, τ ′) won’t decrease.

Next we consider the following cases:

• case dH(x, y) = 0: We know that dH(w, z) 6= 0, otherwise (x,w), (y, z)

are identical. Let dH(w, z) = t ≤ 3. dH(x, y) = 0 implies that xn =

yn. So dH((xn, w), (yn, z)) = t ≤ 3. Since h ∈ F(4, 1, 0), we have

dH(τ, τ ′) ≥ t + 1. Therefore dH(π, π′) ≥ t + 1 = dH((x,w), (y, z)) + 1.

• case 0 < dH(x, y) = s < n: In this case, we have dH(ρ, ρ′) ≥ s+1, thus

dH(ρ[1..n−1], ρ
′
[1..n−1]) ≥ s. Let dH(w, z) = t. If xn = yn and t = 0, it is

easy to see dH(π, π′) ≥ s + 1 = dH((x,w), (y, z)) + 1. If xn = yn and

0 < t ≤ 3, then dH(τ, τ ′) ≥ t + 1. Therefore dH(π, π′) ≥ s + (t + 1) =
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dH((x,w), (y, z))+1. If xn 6= yn, no matter what value t is, dH(τ, τ ′) ≥
t + 1. Therefore dH(π, π′) ≥ s + (t + 1) = dH((x,w), (y, z)) + 1.

• case dH(x, y) = n: If dH(w, z) = t ≤ 2, then dH((xn, w), (yn, z)) =

t + 1 ≤ 3. By the definition dH(τ, τ ′) ≥ t + 2. Therefore dH(π, π′) ≥
(n− 1) + (t + 2) = dH((x,w), (y, z)) + 1. If dH(w, z) = 3, it is easy to

check that dH(π, π′) = n + 3.

We can simply generalize Construction 2.2.1 for the q-ary edition. Miner

modifications are needed for the proof above. We will show the statement

next section.

Through Construction 2.2.1, if we have three basis cases, we can construct

a series of F(n, 1, 0). Next we give another almost-sequential construction

method which extend 2-bit longer from the basis mapping. We will use an

auxiliary mapping E as help.

Construction 2.2.3. Let g ∈ F(n, 1, 0) and E defined as follows:

x E(x) x E(x) x E(x) x E(x)

00 (1, 2, 3) 10 (2, 1, 3) 01 (1, 3, 2) 11 (3, 1, 2)

Note that E ∈ F(2, 1, 1) and value 1 in any permutation in E(Z2
2) only

appears in coordinate 1 or coordinate 2. By the following algorithm, a map-

ping f ∈ F(n + 2, 1, 0) is constructed.

Input: (x1, · · · , xn, · · · , xn+2) ∈ Zn+2
2

Output: (π1, · · · , πn+2) = f(x1, · · · , xn+2)

begin

0 Let ρ = g(x1, · · · , xn), τ = E(xn+1, xn+2)

1 τi = τi + n− 1, for 1 ≤ i ≤ 3

2 ττ−1(n) = ρn
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3 (π1, · · · , πn−1) = ρ[1..n−1]

4 (πn, · · · , πn+2) = τ[1..3]

5 if x1 = 1 then swap (π1, πn+2)

end

Proof. (correctness of Construction 2.2.3) First note that ρi ∈ {1, · · · , n},
and after line 1, τi’s range from n to n + 2. Since either τ1 or τ2 equals to n,

τ3 equals to n + 1 or n + 2.

Let x, y ∈ Zn+2
2 . Let B(x[1..n]) = ρ = (ρ1, · · · , ρn), B(y[1..n]) = ρ′ =

(ρ′1, · · · , ρ′n), E(xn+1, xn+2) = τ = (τ1, τ2, τ3), and E(yn+1, yn+2) = τ ′ =

(τ ′1, τ
′
2, τ

′
3). And f(x) = π = (π1, · · · , πn+2), f(y) = π′ = (π′1, · · · , π′n+2).

Let’s first explain the change of the distance due to the swap step at line

5. If both x1 = 1 and y1 = 1 or both x1 = 0 and y1 = 0, the distance of these

two coordinates remains the same. If exact one of x1 and y1 equals to 1, as

we know that the possible values of π1 and π′1 range from 1 to n and πn+2 and

π′n+2 equal to n+1 or n+2, thus the distance of these two coordinates won’t

decrease. Therefore after the swap step the distance of this two coordinates

is at least the same as before. In some cases, the distance even grows up.

Thus for the rest part of our proof, we won’t discuss the effect due to the

swap step if not necessary.

Now we explain the effect of the operation at line 2. Since the values of ρn

and ρ′n fall between 1 and n, after the substitution, if τ−1(n) = τ ′−1(n) then

ρn and ρ′n are still in the same coordinate and the distance of this coordinate

is at least preserved, else ρn and ρ′n correspond to n + 1 or n + 2. Thus after

substituting operation at line 2, the distance dH(τ, τ ′) won’t decrease.

Now we consider the following cases:

• case dH(x[1..n], y[1..n]) = 0: We know that dH((xn+1, xn+2), (yn+1, yn+2)) 6=
0, otherwise x and y are identical. Let dH(w, z) = t(= 1 or 2). Since
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E ∈ F(2, 1, 1), we have dH(τ, τ ′) ≥ t + 1. Therefore d(π, π′)) ≥ t + 1 =

dH(x, y) + 1.

• case 0 < dH(x[1..n], y[1..n]) = s < n: Since g ∈ F(n, 1, 0), we have

dH(ρ, ρ′) ≥ s + 1. If dH((xn+1, xn+2), (yn+1, yn+2)) = 0, it is easy to see

that dH(π, π′) ≥ s+1 = dH(x, y)+1. If dH((xn+1, xn+2), (yn+1, yn+2)) =

t(= 1 or 2), then dH(τ, τ ′) ≥ t + 1. dH(π, π′) = dH(π[1..n−1], π
′
[1..n−1]) +

dH(π[n..n+2], π
′
[n..n+2]) ≥ s + (t + 1) = dH(x, y) + 1.

• case dH(x[1..n], y[1..n]) = n: Let dH((xn+1, xn+2), (yn+1, yn+2)) = t. If t =

0, before line 5, dH(π, π′) = n and πn+2 = π′n+2. Since dH(x[1..n], y[1..n]) =

n, x1 6= y1, one of the permutations will be swapped. Therefore after

line 5, dH(π, π′) = n+1(now πn+2 6= π′n+2). If t = 1, then dH(ρ, ρ′) = 2.

Before the substitution, suppose value n in ρ does correspond to value

n in ρ′, then after the substitution , dH(ρ, ρ′) = 3(since πn 6= π′n).

Therefore dH(π, π′) = (n− 1) + 3 ≥ dH(x, y) + 1. Suppose value n in ρ

does not correspond to value n in ρ′, then ρ3 = ρ′3. The remain proof

is the same as the case when t = 0. If t = 2, then dH(ρ, ρ′) = 3. It is

easy to check that dH(π, π′) = n + 2.

By Construction 2.2.3, we will only need two basis cases to fulfill a se-

ries of F(n, 1, 0). The number of basis cases needed is fewer than that by

Construction 2.2.1. But as we have already said, Construction 2.2.1 can be

generalized to the q-ary edition. That is its advantage. Compare our almost-

sequential induction methods with the concatenation method in [2], from the

aspect of construction time, our constructions run slowlier. Nevertheless the

number of basis cases needed in [2] is at least 4. If Construction 2.2.3 is

adopted, we save almost half of the space.

The swap operation will be used very often for the rest constructions in

this chapter. From the previous discussion, as long as the ranges of the values
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of these two swapped coordinate don’t intersect, the distance of these two

coordinates won’t decrease. Therefore after many swap steps the distance of

these coordinates is at least the same as before. Thus for all the remaining

proofs, we won’t discuss the effect due to the swap operations if not necessary.

2.3 Construction of F(n, d, 0, q)

As we said in previous section, Construction 2.2.1 can be generalized to the q-

ary edition. Next we show the statement without proof. We simply use md,q

instead of md,k,q defined in the preliminary only in this section for convenient.

Construction 2.3.1. Let m = m1,q. Let g ∈ F(n, 1, 0, q) and h ∈ F(m, 1, 0, q).

We construct a mapping f ∈ F(n+m−1, 1, 0, q). The construction algorithm

is exact the same as that in Construction 2.2.1.

In fact, we can even generalize Construction 2.3.1 to the d-distance-

increasing edition. But there are some limitations about the choice of the

mapping h.

Construction 2.3.2. Let g ∈ F(n, d, 0, q). And let m be the smallest integer

such that the function h ∈ F(m, d, 0, q) with the following limitations exists:

∀i, j, 1 ≤ i, j ≤ d, i 6= j, {π−1(i)|π ∈ h(Zm
2 )} ∩ {π−1(j)|π ∈ h(Zm

2 )} = ∅.
By the following algorithm, a mapping f ∈ F(n+m−d, d, 0, q) is constructed.

Input: (x1, · · · , xn, · · · , xn+m−d) ∈ Zn+m−d
q

Output: (π1, · · · , πn+m−d) = f(x1, · · · , xn+m−d)

begin

0 Let ρ = g(x1, · · · , xn), τ = h(xn−d+1, · · · , xn+m−d)

1 τi = τi + n− d, for 1 ≤ i ≤ m

2 ττ−1(n−d+i) = ρn−d+i, for 1 ≤ i ≤ d

3 (π1, · · · , πn−d) = ρ[1..n−d]

4 (πn+1−d, · · · , πn+m−d) = τ[1..m]

end
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Proof. (correctness of Construction 2.3.2) First note that ρi’s range from

1 to n, and after line 1, and τi’s range from n− d + 1 to n− d + m. But at

line 2, value n− d + i of τ is substituted by ρn−d+i, for 1 ≤ i ≤ d. The rest

values in τ range from n + 1 to n− d + m.

Let (x,w), (y, z) ∈ Zn+m−d
q , where x, y ∈ Zn

q , and w, z ∈ Zm−d
2 . Let

g(x) = ρ = (ρ1, · · · , ρn), g(y) = ρ′ = (ρ′1, · · · , ρ′n), h(x[n−d+1..n], w) = τ =

(τ1, · · · , τm), and h(y[n−d+1..n], z) = τ ′ = (τ ′1, · · · , τ ′m). And f(x,w) = π =

(π1, · · · , πn+m−d), f(y, z) = π′ = (π′1, · · · , π′n+m−d).

Now we dicuss the effect of the operation at line 2. Since the values of

ρn−d+i and ρ′n−d+i are from {1, · · · , n}, after the substitution, if τ−1(n− d +

i) = τ ′−1(n − d + i), then ρn−d+i and ρ′n−d+i are still in the same coordi-

nate and the distance of this coordinate is at least preserved, else ρn−d+i and

ρ′n−d+i correspond to a value from {n + 1, · · · , n − d + m} (note that value

n− d + j, for 1 ≤ j ≤ d, i 6= j is impossible, since value n− d + j must not

be in the coordinate where value n− d + i lies due to the limitations). Thus

after substituting operation at line 2, the distance dH(τ, τ ′) won’t decrease.

Next we consider the following cases:

• case dH(x, y) = 0: We know that dH(w, z) 6= 0, otherwise (x, w), (y, z)

are identical. Let dH(w, z) = t ≤ m − d. dH(x, y) = 0 implies that

x[n−d+1..n] = y[n−d+1..n]. So dH((x[n−d+1..n], w), (y[n−d+1..n], z)) = t ≤
m − d. Since h ∈ F(m, d, 0, q), we have dH(τ, τ ′) ≥ t + d. Therefore

d(π, π′) ≥ t + d = dH((x,w), (y, z)) + d.

• case 0 < dH(x, y) = s ≤ n − d: We have dH(ρ, ρ′) ≥ s + d, thus

dH(ρ[1..n−1], ρ
′
[1..n−1]) ≥ s. Let dH(x[n−d+1..n], y[n−d+1..n]) = c and dH(w, z)

= t. If c = 0 and t = 0, it is easy to see dH(π, π′) ≥ s + d =

dH((x,w), (y, z))+d. If c = 0 and 0 < t ≤ m−d, then dH(τ, τ ′) ≥ t+d.

Therefore dH(π, π′) ≥ s + (t + d) = dH((x,w), (y, z)) + d. If c > 0,
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no matter what value t is, dH(τ, τ ′) ≥ t + d. Therefore dH(π, π′) ≥
s + (t + d) = dH((x,w), (y, z)) + d.

• case n − d + 1 ≤ dH(x, y) ≤ n: We know that dH(ρ, ρ′) = n, thus

dH(ρ[1..n−d], ρ
′
[1..n−d]) = n− d. Let dH(x[n−d+1..n], y[n−d+1..n]) = c. c is at

least 1, otherwise dH(x, y) ≤ n − d, If dH(w, z) = t ≤ m − d − c,

then dH((x[n−d+1..n], w), (y[n−d+1..n], z)) = t + c ≤ m − d. By the

definition dH(τ, τ ′) ≥ t + c + d. Therefore dH(π, π′) ≥ (n − d) +

(t + c + d) ≥ dH((x,w), (y, z)) + d. If dH(w, z) > m − d − c, then

dH((x[n−d+1..n], w), (y[n−d+1..n], z)) = t + c > m − d. By definition

dH(τ, τ ′)) = m. It is easy to check that dH(π, π′) = n− d + m.

Although Construction 2.3.2 is really general, there are still many obsta-

cles. First it is hard to find the mappings h when d > 1. Second it is also

not easy to figure out the basis cases when d > 1. What we are discussing

is only theoretical. But once these mappings have been found, a series of

F(n, d, 0, q) are easily produced.

2.4 Construction of F(n, 2, 1)

In this section, we give a systematic study on the construction of the class,

F(n, 2, 1). First we will give the basic constructions: g6 ∈ F(6, 2, 1), g7 ∈
F(7, 2, 1), g8 ∈ F(8, 2, 1), g9 ∈ F(9, 2, 1). Then, we can inductively construct

gn+4 ∈ F(n + 4, 2, 1) from a mapping gn ∈ F(n, 2, 1). Thus finally we have a

series of F(n, 2, 1), for n ≥ 6.

Consider two auxiliary mappings A6 ∈ F(2, 2, 2) and B6 ∈ F(4, 2, 2). We

construct g6 with these two mappings. Similarly, for each of g7, g8 and g9,

we will use two auxiliary mappings for the constructions. Note that in the

image of A6, 4 only appears in coordinate 1 or 2 . Similarly, in the image

of B6 the value 1 only appears in coordinate 1 or 2, and the value 2 only
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appears in coordinate 3 or 4. We call such property the position property

and we give the formal definition as follows.

Definition 2.4.1. We say that a mapping f ∈ F(n, d, k, q) has the position

property for {v1, v2, · · · , vp} ⊆ {1, 2, · · · , n+k} if ∀i, 1 ≤ i ≤ p, |{π−1(vi)|π ∈
f(Zn

2 )}| = 2 and ∀i, j, 1 ≤ i, j ≤ p, i 6= j, {π−1(vi)|π ∈ f(Zn
2 )}∩ {π−1(vj)|π ∈

f(Zn
2 )} = ∅.

A6 has the position property for {4} and B6 has the position property for

{1, 2}. With this observation, we can construct a mapping g6 ∈ F(6, 2, 1).

Construction 2.4.2. Let A6 : Z2
2 → S4 and B6 : Z4

2 → S6 defined as follows:

x A6(x) x A6(x)

00 (1, 4, 3, 2) 10 (4, 2, 3, 1)

01 (2, 4, 1, 3) 11 (4, 1, 2, 3)

x B6(x) x B6(x)

0000 (1, 3, 2, 4, 5, 6) 1000 (3, 1, 2, 5, 4, 6)

0001 (1, 3, 2, 5, 6, 4) 1001 (3, 1, 2, 4, 6, 5)

0010 (1, 3, 5, 2, 4, 6) 1010 (3, 1, 4, 2, 5, 6)

0011 (1, 3, 4, 2, 6, 5) 1011 (3, 1, 5, 2, 6, 4)

0100 (1, 5, 2, 6, 4, 3) 1100 (4, 1, 2, 6, 5, 3)

0101 (1, 4, 2, 6, 3, 5) 1101 (5, 1, 2, 6, 3, 4)

0110 (1, 4, 6, 2, 5, 3) 1110 (5, 1, 6, 2, 4, 3)

0111 (1, 5, 6, 2, 3, 4) 1111 (4, 1, 6, 2, 3, 5)

By the following algorithm, a mapping g6 ∈ F(6, 2, 1) is constructed.

Input: (x1, x2, · · · , x6) ∈ Z6
2

Output: (π1, · · · , π7) = g6(x1, · · · , x6)

begin

0 ρ = A6(x1, x2); τ = B6(x3, x4, x5, x6);
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1 τi = τi + 1 for 1 ≤ i ≤ 6;

2 ρρ−1(4) = τ6;

3 ττ−1(2) = ρ3;

4 ττ−1(3) = ρ4;

5 (π1, π2) = ρ[1..2];

6 (π3, π4, π5, π6, π7) = τ[1..5];

end

Besides the position property, B6 holds another property that if the Ham-

ming distance of two binary vectors is 3, then the 5th entries of the images

must be different, i.e. for x, y ∈ Z4
2 , if dH(x, y) = 3, then B6(x)5 6= B6(y)5.

Any mapping holds these properties could be B6.

Similar to [2], given g ∈ F(2, n, 1), let Dn×(n+1) denote the distance ex-

pansion matrix where Dij represents the number of all unordered pairs {x, y},
x, y ∈ Zn

2 such that dH(x, y) = i and dH(g(x), g(y)) = j. The expansion ma-

trix not only reveal the distance-increasing property, but also helps us to

check the correctness. If you implement Construction 2.4.2, you will get the

same distance expansion matrix. Our D is a little bit different from those in

previous works. Our D is an n × (n + 1) matrix, instead of n × n matrix.

Since the permutations in the range of g is one dimension larger than the

domain of g. We show the distance expansion matrix D for g6 is as follows:

0 0 128 64 0 0 0

0 0 232 88 120 40

0 0 160 384 96

0 0 192 288

0 0 192

0 32

Construction 2.4.3. Let A7 : Z3
2 → S5 is defined as follows and B7 is the

same as B6:
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x A7(x) x A7(x)

000 (1, 5, 3, 4, 2) 100 (5, 2, 1, 4, 3)

001 (1, 5, 4, 2, 3) 101 (5, 3, 2, 4, 1)

010 (2, 5, 3, 1, 4) 110 (5, 4, 1, 3, 2)

011 (2, 5, 4, 3, 1) 111 (5, 1, 2, 3, 4)

By the following algorithm, a mapping g6 ∈ F(6, 2, 1) is constructed.

Input: (x1, x2, · · · , x7) ∈ Z7
2

Output: (π1, · · · , π8) = g7(x1, · · · , x7)

begin

0 ρ = A7(x1, x2, x3); τ = B7(x4, x5, x6, x7);

1 τi = τi + 2 for 1 ≤ i ≤ 6;

2 ρρ−1(5) = τ6;

3 ττ−1(3) = ρ4;

4 ττ−1(4) = ρ5;

5 (π1, π2, π3) = ρ[1..3];

6 (π4, π5, π6, π7, π8) = τ[1..5];

7 if x1 = 1 then swap (π3, π8);

end

In fact, B7 could be simpler than B6, any mapping that holds the position

property would work. The distance expansion matrix D for g7 is as follows:

0 0 256 128 32 32 0 0

0 0 448 208 336 272 80

0 0 224 912 736 368

0 0 224 1184 832

0 0 320 1024

0 0 448

0 64
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Construction 2.4.4. Let A8 : Z4
2 → S6 is defined as follows and B8 is the

same as B7.

x A8(x) x A8(x)

0000 (1, 6, 3, 4, 5, 2) 1000 (6, 2, 1, 4, 5, 3)

0001 (1, 6, 3, 5, 2, 4) 1001 (6, 2, 3, 1, 5, 4)

0010 (1, 6, 4, 2, 5, 3) 1010 (6, 4, 5, 1, 2, 3)

0011 (1, 6, 4, 3, 2, 5) 1011 (6, 2, 4, 3, 1, 5)

0100 (2, 6, 5, 4, 3, 1) 1100 (6, 3, 2, 4, 5, 1)

0101 (2, 6, 3, 5, 4, 1) 1101 (6, 3, 2, 5, 1, 4)

0110 (3, 6, 1, 2, 4, 5) 1110 (6, 4, 1, 2, 3, 5)

0111 (3, 6, 5, 2, 1, 4) 1111 (6, 1, 2, 3, 4, 5)

By the following algorithm, a mapping g8 ∈ F(8, 2, 1) is constructed.

Input: (x1, x2, · · · , x8) ∈ Z8
2

Output: (π1, · · · , π9) = g8(x1, · · · , x8)

begin

0 ρ = A8(x1, · · · , x4), τ = B8(x5, · · · , x8);

1 τi = τi + 3, for 1 ≤ i ≤ 6;

2 ρρ−1(6) = τ6;

3 ττ−1(4) = ρ5;

4 ττ−1(5) = ρ6;

5 (π1, · · · , π4) = ρ[1..4];

6 (π5, · · · , π9) = τ[1..5];

7 if x1 = 1 then swap (π3, π9);

end

Like B7, any mapping that satisfies the position property could be B8. A8

holds another property that if the Hamming distance of two binary vectors

is 3, then the 4th entries of the images must be different, i.e. for x, y ∈ Z4
2 ,

if dH(x, y) = 3, then A8(x)4 6= A8(y)4. The distance expansion matrix D for
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g8 is as follows:

0 0 432 384 144 48 16 0 0

0 0 1008 368 696 912 472 128

0 0 464 1416 2512 2088 688

0 0 320 2368 3936 2336

0 0 352 3088 3728

0 0 592 2992

0 0 1024

0 128

Construction 2.4.5. Let A9 is the same as A8 and B9 : Z5
2 → S7 is defined

as follows:

x B9(x) x B9(x)

00000 (1, 3, 2, 4, 5, 6, 7) 10000 (3, 1, 2, 4, 6, 5, 7)

00001 (1, 3, 2, 4, 6, 7, 5) 10001 (7, 1, 2, 5, 3, 4, 6)

00010 (1, 3, 2, 5, 7, 6, 4) 10010 (4, 1, 2, 3, 7, 5, 6)

00011 (1, 3, 2, 5, 4, 7, 6) 10011 (5, 1, 2, 4, 3, 7, 6)

00100 (1, 3, 4, 2, 6, 5, 7) 10100 (3, 1, 4, 2, 5, 6, 7)

00101 (1, 3, 7, 2, 5, 4, 6) 10101 (4, 1, 7, 2, 3, 6, 5)

00110 (1, 3, 6, 2, 7, 5, 4) 10110 (7, 1, 3, 2, 5, 6, 4)

00111 (1, 4, 3, 2, 5, 7, 6) 10111 (7, 1, 3, 2, 4, 5, 6)

01000 (1, 5, 2, 3, 6, 4, 7) 11000 (3, 1, 2, 6, 7, 4, 5)

01001 (1, 4, 2, 7, 6, 3, 5) 11001 (6, 1, 2, 7, 3, 4, 5)

01010 (1, 4, 2, 6, 7, 5, 3) 11010 (5, 1, 2, 6, 7, 3, 4)

01011 (1, 5, 2, 6, 3, 7, 4) 11011 (5, 1, 2, 7, 4, 3, 6)

01100 (1, 6, 4, 2, 7, 3, 5) 11100 (4, 1, 5, 2, 6, 3, 7)

01101 (1, 6, 5, 2, 3, 4, 7) 11101 (5, 1, 7, 2, 6, 4, 3)

01110 (1, 5, 6, 2, 4, 3, 7) 11110 (6, 1, 5, 2, 7, 3, 4)

01111 (1, 6, 5, 2, 4, 7, 3) 11111 (5, 1, 6, 2, 4, 7, 3)
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By the following algorithm, a mapping g9 ∈ F(9, 2, 1) is constructed.

Input: (x1, x2, · · · , x9) ∈ Z9
2

Output: (π1, · · · , π10) = g9(x1, · · · , x9)

begin

0 ρ = A9(x1, · · · , x4); τ = B9(x5, · · · , x9);

1 τi = τi + 3, for 1 ≤ i ≤ 6;

2 ρρ−1(6) = τ7;

3 ττ−1(4) = ρ5;

4 ττ−1(5) = ρ6;

5 (π1, · · · , π4) = ρ[1..4];

6 (π5, · · · , π10) = τ[1..6];

7 if x1 = 1 then swap (π3, π9);

8 if x5 = 1 then swap (π4, π10);

end

There is no other limitations about B9 as long as the position property

is satisfied. The distance expansion matrix D for g9 is as follows:

0 0 672 704 560 240 128 0 0 0

0 0 1088 1428 1480 2122 1628 1094 376

0 0 944 1402 4370 6478 5590 2720

0 0 270 2522 8390 11998 9076

0 0 134 4284 12118 15720

0 0 474 5884 15146

0 0 976 8240

0 0 2304

0 256

Next we show how to construct a mapping gn+4 ∈ F(n + 4, 2, 1) induc-

tively from a mapping gn ∈ F(n, 2, 1). To do that, we reapply the auxiliary

mapping B6 : Z4
2 → S6. Actually we can use any mapping that holds the
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position property. We denote it as E. We give the algorithm below and then

proof the correctness.

Algorithm 2.4.6. Input: (x1, · · · , xn, · · · , xn+4) ∈ Zn+4
2

Output: (π1, · · · , πn+5) = gn+4(x1, · · · , xn+4)

begin

0 ρ = gn(x1, · · · , xn); τ = E(x1, x2, x3, x4);

1 τi = τi + n− 1, for 1 ≤ i ≤ 6;

2 ττ−1(n) = ρn;

3 ττ−1(n+1) = ρn+1;

4 (π1, · · · , πn−1) = ρ[1..n−1];

5 (πn, · · · , πn+5) = τ[1..6];

6 if x1 = 1 then swap (π1, πn+4);

7 if x2 = 1 then swap (π2, πn+5);

end

Theorem 2.4.7. gn+4 ∈ F(n + 4, 2, 1), for n ≥ 6.

Proof. First note that after line 1, ρi ∈ {1, · · · , n + 1}, for i = 1 to n + 1

and τi ∈ {n, · · · , n + 5}, for i = 1 to 6. But at line 2 and 3, the value n in

τ is replaced by ρn and the value n + 1 in τ by ρn+1. The other values in τ

range from n+2 to n+5. Thus the swap operation can be taken successfully.

Let (x,w) and (y, z) ∈ Zn+4
2 , where x, y ∈ Zn

2 , and w, z ∈ Z4
2 . Let gn(x) =

ρ = (ρ1, · · · , ρn+1), gn(y) = ρ′ = (ρ′1, · · · , ρ′n+1), B7(w) = τ = (τ1, · · · , τ6),

and B7(z) = τ ′ = (τ ′1, · · · , τ ′6). And gn+4(x,w) = π = (π1, · · · , πn+5),

gn+4(y, z) = π′ = (π′1, · · · , π′n+5). We illustrate the transforms of these two

strings in the following diagram.

n 4

y z

x w
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=⇒line 0

n + 1 6

ρ′ τ ′

ρ τ

=⇒line 1,2,3

n− 1 6

ρ′[1..n−1] new τ ′

ρ[1..n−1] new τ

=⇒line 4,5

n + 5

π′

π

Now we explain the effect of the operation at line 2. Since the values of ρn

and ρ′n are from {1, · · · , n+1}, after the substitution, if τ−1(n) = τ ′−1(n) then

ρn and ρ′n are still in the same coordinate and the distance of this coordinate

is preserved, else ρn and ρ′n correspond to a value from {n + 2, · · · , n + 5} (

note that n+1 is impossible, since value n+1 is in coordinate 3 or 4). Thus

after substituting operation at line 2, the distance won’t decrease. Same

argument holds for the operation at line 3. Therefore, after line 5, we have

dH(π[n..n+5], π
′
[n..n+5]) ≥ dH(τ, τ ′).

Next we consider the following cases:

• Case [dH(x, y) = 0]: We know that dH(w, z) 6= 0, otherwise (x,w) and

(y, z) are identical. Let dH(w, z) = t ≤ 4. Since B7 ∈ F(2, 4, 2), we

have dH(τ, τ ′) ≥ t+2. Therefore d(π, π′)) ≥ t+2 = dH((x,w), (y, z))+

2.

• Case [0 < dH(x, y) = s < n]: It is clear that dH(ρ, ρ′) ≥ s + 2.
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If 0 < dH(w, z) = t, then dH(τ, τ ′) ≥ t + 2. Thus, by the above

mentioned observation, we have dH(π, π′) = dH(π[1..n−1], π
′
[1..n−1]) +

dH(π[n..n+5], π
′
[n..n+5]) ≥ s+(t+2) = dH((x,w), (y, z))+2. For dH(w, z) =

0, it is easy to see dH(π, π′) ≥ s + 2.

• Case [dH(x, y) = n]: In this case, it is clear that dH(ρ, ρ′) = n +

1. Let dH(w, z) = t. Again by earlier observation, we know that

dH(π[1..n−1], π
′
[1..n−1]) = dH(ρ[1..n−1], ρ

′
[1..n−1]) = n− 1 and

dH(π[n..n+5], π
′
[n..n+5]) ≥ dH(τ, τ ′) ≥ t + 2 (even when t = 0). Thus

dH(π, π′) ≥ n+ t+1. We argue that this lower bound is indeed at least

n + t + 2, except when t = 4. There are two subcases on the value of

dH(w, z), which is denoted as t.

1. Subcase [t = 4]: Then dH(τ, τ ′) = 6. It is easy to see dH(π, π′) =

n + 5.

2. Subcase [0 ≤ t ≤ 3]: If dH(τ, τ ′) = 6, then dH(π, π′) = n + 5 ≥
n + t + 2 = dH((x,w), (y, z)) + 2. If dH(τ, τ ′) ≤ 5, there must

be one coordinate i such that τi = τ ′i . Note that x1 6= y1 and

x2 6= y2, since dH(x, y) = n. If τ5 = τ ′5 or τ6 = τ ′6, then after the

swap steps in line 6 and line 7, dH(π[n..n+5], π
′
[n..n+5]) ≥ t + 3. So

dH(π, π′) ≥ n + t + 2. If τ1 = τ ′1 or τ2 = τ ′2, the value 1’s in τ and

in τ ′ must be in the same coordinate. Besides ρn 6= ρ′n, we can get

Thus we have dH(π[n..n+5], π
′
[n..n+5]) ≥ t+3. Same argument holds

for τ3 = τ ′3 or τ4 = τ ′4.

This completes our proof on the correctness of construction.

2.5 Construction of F(n, 3, 2)

The approach for the construction of F(n, 3, 2) is alike that for the con-

struction of F(n, 2, 1). We first give five basis cases: h6 ∈ F(6, 3, 2), h7 ∈
F(7, 3, 2), h8 ∈ F(8, 3, 2), g9 ∈ F(9, 3, 2), h10 ∈ F(10, 3, 2). Then, we give
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the induction method for constructing hn+5 ∈ F(n + 5, 3, 2) from a map

hn ∈ F(n, 3, 2). Thus a series of F(n, 3, 2) is built, for n ≥ 6.

Like previous section, we will use two auxiliary mappings Ci,Di for each

basis case. Both Ci and Di have the position property for {1, 2} and {π−1(1)|π ∈
Ci(·), Di(·)} = {1, 2}, {π−1(2)|π ∈ Ci(·), Di(·)} = {3, 4}. There may be some

further limitations about certain C ′
is and D′

is. We will state the special prop-

erties they hold as they first appear.

Construction 2.5.1. Let C6 : Z3
2 → S6 define as follows and D6 is the same

as C6:

x C6(x) x C6(x)

000 (1, 3, 2, 4, 5, 6) 100 (4, 1, 2, 6, 5, 3)

001 (1, 4, 2, 3, 6, 5) 101 (3, 1, 2, 5, 6, 4)

010 (1, 5, 3, 2, 4, 6) 110 (5, 1, 6, 2, 4, 3)

011 (1, 6, 4, 2, 3, 5) 111 (6, 1, 5, 2, 3, 4)

By the following algorithm, a mapping h6 ∈ F(6, 3, 2) is constructed.

Input: (x1, x2, · · · , x6) ∈ Z6
2

Output: (π1, π2, · · · , π8) = h6(x1, · · · , x6)

begin

0 ρ = C6(x1, x2, x3); τ = D6(x4, x5, x6);

1 ρi = ρi − 2, for 1 ≤ i ≤ 6;

2 τi = τi + 2, for 1 ≤ i ≤ 6;

3 ρρ−1(−1) = τ5;

4 ρρ−1(0) = τ6;

5 ττ−1(3) = ρ5;

6 ττ−1(4) = ρ6;

7 (π1, · · · , π4) = ρ[1..4];
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8 (π5, · · · , π8) = τ[1..4];

end

There is no other limitations about C6. And C6 and D6 do not need

to be the same, as long as the position property is satisfied. The distance

expansion matrix D for h6 is as follows:

0 0 0 192 0 0 0 0

0 0 0 128 128 128 96

0 0 0 64 128 448

0 0 0 0 480

0 0 0 192

0 0 32

Construction 2.5.2. Let C7 be the same as C6 and D7 : Z4
2 → S7 defined

as follows:

x D7(x) x D7(x)

0000 (1, 3, 2, 4, 5, 6, 7) 1000 (5, 1, 2, 4, 6, 7, 3)

0001 (1, 3, 2, 5, 4, 7, 6) 1001 (6, 1, 2, 5, 4, 3, 7)

0010 (1, 3, 4, 2, 6, 5, 7) 1010 (7, 1, 4, 2, 5, 6, 3)

0011 (1, 4, 3, 2, 5, 7, 6) 1011 (5, 1, 7, 2, 4, 3, 6)

0100 (1, 5, 2, 3, 7, 6, 4) 1100 (7, 1, 2, 6, 3, 5, 4)

0101 (1, 5, 2, 7, 3, 4, 6) 1101 (4, 1, 2, 6, 7, 3, 5)

0110 (1, 7, 5, 2, 3, 6, 4) 1110 (3, 1, 6, 2, 7, 5, 4)

0111 (1, 6, 3, 2, 7, 4, 5) 1111 (6, 1, 7, 2, 3, 4, 5)

By the following algorithm, a mapping h7 ∈ F(7, 3, 2) is constructed.

Input: (x1, x2, · · · , x7) ∈ Z7
2

Output: (π1, π2, · · · , π9) = h7(x1, · · · , x7)

begin
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0 ρ = C7(x1, x2, x3); τ = D7(x4, · · · , x7);

1 ρi = ρi − 2, for 1 ≤ i ≤ 6;

2 τi = τi + 2, for 1 ≤ i ≤ 7;

3 ρρ−1(−1) = τ6;

4 ρρ−1(0) = τ7;

5 ττ−1(3) = ρ5;

6 ττ−1(4) = ρ6;

7 (π1, · · · , π4) = ρ[1..4];

8 (π5, · · · , π9) = τ[1..5];

end

Besides the position property, D7 holds another property that if the Ham-

ming distance of two binary vectors is 3, then the 5th entries of the images

must be different, i.e. for x, y ∈ Z4
2 , if dH(x, y) = 3, then D7(x)5 6= D7(y)5.

The distance expansion matrix D for h7 is as follows:

0 0 0 312 128 8 0 0 0

0 0 0 408 176 256 408 96

0 0 0 232 368 952 688

0 0 0 120 792 1328

0 0 0 208 1136

0 0 0 448

0 0 64

Construction 2.5.3. Let both C8 and D8 be the same as D7. By the follow-

ing algorithm, a mapping h8 ∈ F(8, 3, 2) is constructed.

Input: (x1, x2, · · · , x8) ∈ Z8
2

Output: (π1, π2, · · · , π10) = h8(x1, · · · , x8)

begin

0 ρ = C8(x1, · · · , x4); τ = D8(x5, · · · , x8);

1 ρi = ρi − 2, for 1 ≤ i ≤ 7;

2 τi = τi + 3, for 1 ≤ i ≤ 7;
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3 ρρ−1(−1) = τ6;

4 ρρ−1(0) = τ7;

5 ττ−1(4) = ρ6;

6 ττ−1(5) = ρ7;

7 (π1, · · · , π5) = ρ[1..5];

8 (π6, · · · , π10) = τ[1..5];

end

The distance expansion matrix D for h8 is as follows:

0 0 0 480 512 32 0 0 0 0

0 0 0 1120 392 300 818 760 194

0 0 0 688 672 2048 2752 1008

0 0 0 416 1720 3856 2968

0 0 0 372 3192 3604

0 0 0 832 2752

0 0 0 1024

0 0 128

Construction 2.5.4. Let C9 be the same as C8 and D9 : Z5
2 → S8 defined

as follows:
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x D9(x) x D9(x)

00000 (1, 3, 2, 4, 5, 6, 7, 8) 10000 (3, 1, 2, 5, 8, 6, 7, 4)

00001 (1, 3, 2, 4, 6, 5, 8, 7) 10001 (3, 1, 2, 7, 6, 5, 8, 4)

00010 (1, 3, 2, 5, 4, 7, 6, 8) 10010 (3, 1, 2, 4, 7, 8, 5, 6)

00011 (1, 3, 2, 5, 7, 4, 8, 6) 10011 (4, 1, 2, 3, 6, 7, 5, 8)

00100 (1, 3, 4, 2, 5, 8, 6, 7) 10100 (3, 1, 7, 2, 5, 8, 6, 4)

00101 (1, 3, 4, 2, 8, 5, 7, 6) 10101 (5, 1, 7, 2, 8, 4, 3, 6)

00110 (1, 3, 6, 2, 7, 8, 5, 4) 10110 (6, 1, 7, 2, 4, 3, 5, 8)

00111 (1, 3, 6, 2, 8, 7, 4, 5) 10111 (4, 1, 3, 2, 8, 7, 5, 6)

01000 (1, 4, 2, 6, 5, 8, 7, 3) 11000 (8, 1, 2, 6, 5, 3, 7, 4)

01001 (1, 4, 2, 6, 8, 5, 3, 7) 11001 (8, 1, 2, 6, 3, 5, 4, 7)

01010 (1, 4, 2, 8, 7, 6, 5, 3) 11010 (7, 1, 2, 8, 4, 3, 6, 5)

01011 (1, 4, 2, 8, 6, 7, 3, 5) 11011 (4, 1, 2, 6, 3, 7, 8, 5)

01100 (1, 5, 8, 2, 4, 6, 7, 3) 11100 (7, 1, 8, 2, 5, 6, 3, 4)

01101 (1, 5, 8, 2, 6, 4, 3, 7) 11101 (7, 1, 8, 2, 6, 5, 4, 3)

01110 (1, 4, 5, 2, 7, 3, 6, 8) 11110 (4, 1, 8, 2, 7, 3, 6, 5)

01111 (1, 4, 5, 2, 3, 7, 8, 6) 11111 (7, 1, 6, 2, 3, 4, 8, 5)

By the following algorithm, a mapping h9 ∈ F(9, 3, 2) is constructed.

Input: (x1, x2, · · · , x9) ∈ Z9
2

Output: (π1, π2, · · · , π11) = h9(x1, · · · , x9)

begin

0 ρ = C9(x1, · · · , x4); τ = D9(x5, · · · , x9);

1 ρi = ρi − 2, for 1 ≤ i ≤ 7;

2 τi = τi + 3, for 1 ≤ i ≤ 8;

3 ρρ−1(−1) = τ7;

4 ρρ−1(0) = τ8;

5 ττ−1(3) = ρ6;

6 ττ−1(4) = ρ7;

7 (π1, · · · , π5) = ρ[1..5];
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8 (π6, · · · , π11) = τ[1..6];

9 if x5 = 1 then swap (π5, π10);

end

In fact, C9 could be simpler than C8, any mapping that holds the posi-

tion property could be C9. D9 holds another property that if the Hamming

distance of two binary vectors is 4, then the 6th entries of the images must

be different, i.e. for x, y ∈ Z5
2 , if dH(x, y) = 4, then D9(x)6 6= D9(y)6. The

distance expansion matrix D for h9 is as follows:

0 0 0 912 912 336 112 32 0 0 0

0 0 0 1952 1090 918 1934 2034 1024 264

0 0 0 1328 1334 3782 6916 5870 2274

0 0 0 544 1910 8726 13074 8002

0 0 0 132 4060 13852 14212

0 0 0 454 6756 14294

0 0 0 1168 8048

0 0 0 2304

0 0 256

Construction 2.5.5. Let both C10 and D10 be the same as D9. By the fol-

lowing algorithm, a mapping h10 ∈ F(10, 3, 2) is constructed.

Input: (x1, x2, · · · , x10) ∈ Z10
2

Output: (π1, π2, · · · , π12) = h10(x1, · · · , x10)

begin

0 ρ = C10(x1, · · · , x5); τ = D10(x6, · · · , x10);

1 ρi = ρi − 2, for 1 ≤ i ≤ 8;

2 τi = τi + 4, for 1 ≤ i ≤ 8;

3 ρρ−1(−1) = τ7;

4 ρρ−1(0) = τ8;

5 ττ−1(4) = ρ7;

6 ττ−1(6) = ρ8;
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7 (π1, · · · , π6) = ρ[1..6];

8 (π7, · · · , π12) = τ[1..6];

9 if x1 = 1 then swap (π5, π12);

10 if x6 = 1 then swap (π6, π11);

end

The distance expansion matrix D for h10 is as follows:

0 0 0 1728 1600 1216 448 128 0 0 0 0

0 0 0 3328 2818 2348 4540 4300 3528 1652 526

0 0 0 2624 2868 7084 13904 17352 12172 5436

0 0 0 1024 2772 14192 32644 35416 21472

0 0 0 8 4352 26788 51992 45884

0 0 0 136 8596 40320 58468

0 0 0 768 15168 45504

0 0 0 2176 20864

0 0 0 5120

0 0 512

Next we show how to construct a mapping hn+5 ∈ F(n + 5, 3, 2) induc-

tively from a mapping hn ∈ F(n, 3, 2). In fact, suppose we have a mapping

Ê ∈ F(n̂, 3, 2) with the position property for {1, 2, 3}, then the concept of the

induction algorithm for F(n, 2, 1) can also be applied to F(n, 3, 2). And the

algorithm only need to be modified subtly, so as the proof. Unfortunately we

haven’t find such Ê, for n̂ = 5,or 6. Instead, we use a mapping E : Z5
2 → S8

which are closed to the desired one and defined as follows.
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x D11(x) x D11(x)

00000 (1, 8, 2, 4, 3, 5, 6, 7) 10000 (8, 1, 2, 4, 3, 5, 6, 7)

00001 (1, 7, 2, 4, 3, 6, 5, 8) 10001 (7, 1, 2, 4, 3, 6, 5, 8)

00010 (1, 8, 2, 4, 5, 3, 7, 6) 10010 (8, 1, 2, 4, 5, 3, 7, 6)

00011 (1, 7, 2, 4, 6, 3, 8, 5) 10011 (7, 1, 2, 4, 6, 3, 8, 5)

00100 (1, 5, 2, 6, 3, 8, 4, 7) 10100 (5, 1, 2, 6, 3, 8, 4, 7)

00101 (1, 6, 2, 5, 3, 7, 4, 8) 10101 (6, 1, 2, 5, 3, 7, 4, 8)

00110 (1, 5, 2, 6, 8, 3, 7, 4) 10110 (5, 1, 2, 6, 8, 3, 7, 4)

00111 (1, 6, 2, 5, 7, 3, 8, 4) 10111 (6, 1, 2, 5, 7, 3, 8, 4)

01000 (1, 4, 5, 2, 3, 8, 7, 6) 11000 (4, 1, 5, 2, 3, 8, 7, 6)

01001 (1, 4, 6, 2, 3, 7, 8, 5) 11001 (4, 1, 6, 2, 3, 7, 8, 5)

01010 (1, 4, 5, 2, 8, 3, 6, 7) 11010 (4, 1, 5, 2, 8, 3, 6, 7)

01011 (1, 4, 6, 2, 7, 3, 5, 8) 11011 (4, 1, 6, 2, 7, 3, 5, 8)

01100 (1, 5, 7, 2, 3, 8, 6, 4) 11100 (5, 1, 7, 2, 3, 8, 6, 4)

01101 (1, 6, 8, 2, 3, 7, 5, 4) 11101 (6, 1, 8, 2, 3, 7, 5, 4)

01110 (1, 5, 7, 2, 8, 3, 4, 6) 11110 (5, 1, 7, 2, 8, 3, 4, 6)

01111 (1, 6, 8, 2, 7, 3, 4, 5) 11111 (6, 1, 8, 2, 7, 3, 4, 5)

Let’s explain how the mapping E is produced. We first find a mapping

e ∈ F(4, 3, 3) with the position property for {1, 2}, and do some switchings

such that value 1 appears in coordinate 2 and 3, value 2 appears in coordinate

4 and 5. Second add 1 to each entry of all the permutations in the image.

Third define E : Z5
2 → S5 as: for all w ∈ Z4

2 , E(0w) = (1, π1, π2, · · · , π7))

and E(1w) = (π1, 1, π2, · · · , π7)), where π = e(w). It is easy to check that for

all distinct strings x, y ∈ Z5
2 , if dH(x, y) = d, then dH(E(x), E(y)) ≥ d+3 ex-

cept the case when x, y only differ at the first bit. In this case, dH(x, y) = 1,

but dH(E(x), E(y)) = 2. We give the algorithm below and then proof the

correctness.

Algorithm 2.5.6. Input: (x1, · · · , xn, · · · , xn+5) ∈ Zn+5
2

Output: (π1, · · · , πn+7) = hn+5(x1, · · · , xn+5)

begin



2.5. CONSTRUCTION OF F(N, 3, 2) 39

0 ρ = hn(x1, · · · , xn); τ = E(xn+1, · · · , xn+5);

1 τi = τi + n− 1, for 1 ≤ i ≤ 8;

2 ττ−1(n) = ρn;

3 ττ−1(n+1) = ρn+1;

4 ττ−1(n+2) = ρn+2;

5 (π1, · · · , πn−1) = ρ[1..n−1];

6 (πn, · · · , πn+7) = τ[1..8];

7 if x1 = 1 then swap (π1, πn+6);

8 if xn+1 = 1 then swap (π2, πn+7);

Theorem 2.5.7. hn+5 ∈ F(n + 5, 3, 2), for n ≥ 6.

Suppose ignore the exception, the proof for the rest cases is quite similar

to the proof in previous section. Thus we simply omit this part. Next we

proof the correctness for the exception case.

Proof. Let x, y ∈ Zn
2 and w ∈ Z4

2 . Let hn(x) = ρ = (ρ1, · · · , ρn+2),

hn(y) = ρ′ = (ρ′1, · · · , ρ′n+2), and E(0w) = (1, σ1, σ2, · · · , σ7). By the defini-

tion of E, we know that E(1w) = (σ1, 1, σ2, · · · , σ7). And let hn+5(x, 0w) =

π = (π1, · · · , πn+7), hn+5(y, 1w) = π′ = (π′1, · · · , π′n+7).

Since the the string (y, 1w) will trigger the swap at line 8 but the string

(x, 0w) won’t, then after line 8, πn+7 6= πn+7. Besides value 2 and value

3 in E(0w) must be in the same position as value 2 and value 3 in E(1w)

respectively. Therefore after line 8, dH(π[n..n+7], π
′
[n..n+7]) ≥ 3+

dH((ρn+1, ρn+2), (ρ
′
n+1, ρ

′
n+2)). Furthermore we get dH(π, π′) =

dH(π1..n−1, π
′
1..n−1) + dH(π[n..n+7], π

′
[n..n+7]) ≥ 3 + dH(ρ, ρ′)− 1 = 2 + dH(ρ, ρ′).

Next we consider the following cases:

• Case [dH(x, y) = 0]: Since the string (y, 1w) will trigger the swap at

line 8 but the string (x, 0w) won’t, then after line 8, πn+2 6= πn+2. So

dH(π, π′)) ≥ 4 = dH((x, 0w), (y, 1w)) + 3.
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• Case [0 < dH(x, y) = s ≤ n]: It is clear that dH(ρ, ρ′) ≥ s+2. Therefore

dH(π, π′) =≥ 2 + dH(ρ, ρ′) = 2 + (s + 2) = dH(x, y) + 1.

2.6 A Framework for Constructing F(n, k +

1, k)

The approach for constructing a series of F(n, 2, 1) is similar to that for con-

structing a series of F(n, 3, 2). We wonder if there is a generalized approach

for constructing F(n, k + 1, k). In this section, we give a possible framework

for constructing F(n, k + 1, k).

Let’s talk about how to construct the basis cases first. We use the con-

struction of F(n, 2, 1) as example to illustrate our idea. When we dealt with

F(n, 2, 1), we tried to find out the basis cases by computer search. Unfortu-

nately, after a time consuming search, there were still no outcome. Rather

than just by searching, we found a method to construct the basis cases di-

rectly. We noticed that any mappings in F(n, 2, 2) can be easily found by

computer, even with some restrictions. We wondered if we could use these

mappings in F(n, 2, 2) to construct a mapping g ∈ F(n, 2, 1). But there was a

big problem. Suppose we simply concatenate a mapping A ∈ F(m̂, 2, 2) and

a mapping B ∈ F(n̂, 2, 2). The resulted mapping is from Zm̂+n̂
2 to Sm̂+n̂+4.

Undoubtedly it doesn’t belong to F(n, 2, 1). There should be a way to shrink

the length of the image. Therefore we adopted the substitution technique

again. In order to let the substitution step work well, the mappings we use

should hold the position property. Let A ∈ F(m̂, 2, 2) with the position

property for {1} and B ∈ F(n̂, 2, 2) with the position property for {1, 2}.
Let A(x) = ρ, x ∈ Zm̂

2 and B(y) = τ , y ∈ Z n̂
2 . Replace the value 1 in ρ

with an entry of τ in the coordinate where the value 1 and 2 won’t appear,

and replace the value 1 in τ with an entry of ρ in the coordinate where the
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value 1 won’t appear, so does the value 2 in τ . Then the resulted image

length is m̂ + n̂ + 1 . The resulted mapping has a chance to be in F(n, 2, 1).

However there may still be some problems. Let’s look at the construction of

g6 as the example. Note that we have made a further restriction about B6.

Suppose B6 is simply a mapping in F(4, 2, 2) with only the position prop-

erty, and B6(0000) = (1, 3, 2, 4, 5, 6), B6(1110) = (4, 1, 6, 2, 5, 3). Through

our algorithm, we will find that g6(000000) = (1,7,3,4,2,5,6) and g6(111110)

= (4,1,5,2,7,3,6). dH(g6(000000), g6(111110)) = 6 � dH(000000, 111110) + 2.

Thus such g6 doesn’t belong to F(6, 2, 1). That’s why we made the restric-

tion about B6.

We state the framework for constructing the basis cases for F(n, k +1, k)

as follows: find 2 mappings in F(n, k + 1, k + 1) with the appropriate posi-

tion property, such that after substitution, the resulted image size is legal,

and make some extra restrictions about these two mappings if necessary, i.e.

the construction still need to be dealt case by case. In fact, the framework

could be generalized for even F(n, d, k). We only need to make more re-

strictions about these 2 mappings. We have tried to find out the basis cases

for F(n, 2, 0) based on this framework, but unsuccessful. Many restrictions

make these 2 mappings hard to be found quickly by computer, even they

don’t exist. But we believe the framework is helpful for constructing the

basis cases for F(n, k+1, k). We can find these 2 auxiliary mappings quickly

even with additional restrictions.

Next we discuss the induction method for F(n, k + 1, k). As a matter of

fact, Algorithm 2.4.6 can be generalized to any k, as long as the the proper

extension mapping E is found. We modify Algorithm 2.4.6 for F(n, k +1, k)

as follows. Assume E ∈ F(l, k + 1, k + 1) with the position property for

{1, 2, · · · , k + 1} and bn ∈ F(n, k + 1, k).

Algorithm 2.6.1. Input: (x1, · · · , xn, · · · , xn+l) ∈ Zn+l
2

Output: (π1, · · · , πn+l+k) = bn+l(x1, · · · , xn+l)
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begin

0 ρ = bn(x1, · · · , xn); τ = E(x1, · · · , xl);

1 τi = τi + n− 1, for 1 ≤ i ≤ l + k + 1;

2 ττ−1(i) = ρi, for n ≤ i ≤ n + k;

3 (π1, · · · , πn−1) = ρ[1..n−1];

4 (πn, · · · , πn+l+k) = τ[1..l+k+1];

5 If xi = 1 then swap (πi, π(n−1)+2(k+1)+i), for 1 ≤ i ≤ l − (k + 1);

end

Theorem 2.6.2. Suppose E ∈ F(l, k + 1, k + 1) with the position property

for {1, 2, · · · , k + 1} and bn ∈ F(n, k + 1, k). Then Algorithm 2.6.1 induces

an (n + l, k + 1, k)-mapping.

The proof is similar to that for Algorithm 2.4.6. We omit the proof here.

Unfortunately as we have seen in the case F(n, 3, 2), the extension mapping

E may not be found easily. We just point out a possible induction method

and a framework of constructing F(n, k + 1, k).



Chapter 3

Application to Permutation

Arrays

As shown in [3] and [2], we know that distance-increasing(distance-preserving)

mappings are quite helpful for constructing permutation arrays. In this

chapter we give a general view of constructions of permutation arrays via

distance-increasing mappings. An (n, r)-permutation code is a permutation

code of length n and minimum distance r. Let P (n, r) denote the maximal

size among all (n, r)-permutation codes, and A(n, r) the maximal size among

all (n, r)-binary codes. Recall that in the preliminaries, we define nd,k,q to be

the smallest integer such that for n ≥ nd,k,q, F(n, d, k, q) is not empty, and

md,k,q = nd,k,q + k, i.e. the smallest image length. Let nd,k denote nd,k,2 and

md,k denote md,k,2 for convenience. We have the following bound.

Theorem 3.0.3. For n ≥ md,k and d+1 ≤ r ≤ n, P (n, r) ≥ A(n−k, r−d).

Proof. Let C be a binary (n−k, r−d)-code. Since n ≥ md,k, then n−k ≥ nd,k.

Thus we have a mapping f ∈ F(n − k, d, k). From the definition, we know

that f(C) is an (n, r)-permutation array. Thus P (n, r) ≥ |C|. Therefore

P (n, r) ≥ A(n− k, r − d).

Theorem 3.0.3 tells us that if we have an efficient (n, d, k)-mapping and a

binary (n− k, r − d)-code, then we get an efficient (n, r)-permutation code.
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The current existing P (n, r)-bound, P (n, r) ≥ A(n, r − 1), for n ≥ 4

was shown in [3] and [2]. If F(n, 2, 1) is applied, the P (n, r)-bound becomes

P (n, r) ≥ A(n− 1, r − 2), for n ≥ 7. It is well-known that A(n− 1, r − 2) =

A(n, r − 1) if r is odd. But when r is even, A(n − 1, r − 2) > A(n, r − 1).

Thus we improve the bound when r is even. If F(n, 3, 2) is applied, the

P (n, r)-bound becomes P (n, r) ≥ A(n − 2, r − 3), for n ≥ 8. It is known

that A(n − 2, r − 3) > A(n, r − 1) no matter r is even or odd. Thus we do

improve the P (n, r)-bound.

The difference between the classes of distance-increasing mappings de-

fined by previous researches and ours is that we consider one more parame-

ter, k. When k = 0, the classes of mappings we defined are the same as

those before. We restate Theorem 3.0.3 when k = 0: For n ≥ md,0 and

d+1 ≤ r ≤ n, P (n, r) ≥ A(n, r−d). Here we will show that with parameter

k involved, there are several cases with better bounds.

For md,0 ≤ n < md+1,0, we have P (n, r) ≥ A(n, r − d). We want to

show that there are possible improvements for n in the gap. First it is

known that A(n, t) ≤ A(n− 1, t− 1). Therefore assume md+1,1 < md+1,0, for

md+1,1 ≤ n < md+1,0, P (n, r) ≥ A(n− 1, r − d− 1) ≥ A(n, r − d), where the

improvement occurs. The assumption md+1,1 < md+1,0 really makes sense.

Since suppose there is a mapping f ∈ F(n̂, d+1, 0), ignore half of the binary

vectors in the domain, we get a f ′ ∈ F(n̂−1, d+1, 1). Thus md+1,1 ≤ md+1,0

and very likely md+1,1 < nd+1,0. From the above observation, we have the

following lemma:

Lemma 3.0.4. md,k+1 ≤ md,k.

We plot the possible bound for P (n, r) in the following diagram.
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If md,0 < md+1,1 :

P (n, r) ≥
-

md,0
r

md+1,1
r

md+1,0
r

² ¯A(n, r − d) ² ¯A(n− 1, r − d− 1)

If md,0 ≥ md+1,1 :

P (n, r) ≥
-

md+1,1
r

md,0
r

md+1,0
r

² ¯A(n− 1, r − d− 1)

Let’s apply some real examples. We know m1,0 = 4. Although we don’t

know what m2,0 exact is, according to our past experience, we believe m2,0 ≥
8. Assume m2,0 = 10. The bound-diagram of this interval is plotted as

follows:

P (n, r) ≥
-

m1,0 = 4
r

m2,1 = 7
r

m2,0 = 10
r

² ¯A(n, r − 1) ² ¯A(n− 1, r − 2)

Second it is known that A(n, t) < A(n−2, t−2). Assume md+2,2 < md+1,0,

for md+2,2 ≤ n < md+1,0, P (n, r) ≥ A(n − 2, r − d − 2) > A(n, r − d). Un-

fortunately the assumption might not hold for all time. However suppose

md+2,2 ≥ md+1,0, Compare A(n, r − d− 1) and A(n− 2, r − d− 2) from the

optimal binary codes table[1], we can find that there are still cases such that

A(n, r − d − 1) < A(n − 2, r − d − 2) depending on n and r. Usually it is

believed that md,k ≤ md+1,k+1. So assume md+1,1 < md+2,2, the most likely

bound-diagram is as follows:

If md+2,2 < md+1,0 :

P (n, r) ≥
-

md+1,1
r

md+2,2
r

md+1,0
r

² ¯A(n− 1, r − d− 1) ² ¯A(n− 2, r − d− 2)
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If md+2,2 ≥ md+1,0 :

P (n, r) ≥
-

md+1,1
r

md+1,0
r

md+2,2
r

² ¯A(n, r − d− 1) ² A(n, r − d− 1) or
A(n− 2, r − d− 2)

Again we use the real examples to illustrate the situation. Assume

m2,0 = 10.

P (n, r) ≥
-

m2,1 = 7
r

m3,2 = 8
r

m2,0 = 10
r

² ¯A(n− 1, r − 2) ² ¯A(n− 2, r − 3)

As we have said, when n ≥ m2,0, there are still cases such that A(n, r −
2) < A(n − 2, r − 3) depending on n and r. For example, A(12, 5) = 32,

but A(10, 4) = 40; A(14, 7) = 16, but A(12, 6) = 24. Thus when n ≥ m2,0,

P (n, r) ≥ A(n, r − 2) or A(n − 2, r − 3) depending on n and r. Recall that

we have made a conjecture in the last paragraph, now we restate it formally

in the following.

Conjecture 3.0.5. md,k ≤ md+1,k+1.

We have discussed the comparison between the bounds induced by F(n, d, 0),

F(n, d + 1, 1),F(n, d + 1, 0), and F(n, d + 2, 2) in the interval [md,0,md+1,0].

In fact, we should consider all the P (n, r)-bounds by F(n, di, ki)’s as long

as mdi,ki
’s ≤ md+1,0. More generally when given certain n̂ and r̂, we should

compare all the P (n̂, r̂)-bound induced by F(n, di, ki)’s as long as mdi,ki
≤ n̂

and A(n̂− ki, r̂− di) is meaningful. Now we make a formal statement about

what the possible best P (n̂, r̂)-bound would be when given certain n̂ and r̂.

Theorem 3.0.6. Given n̂ and r̂, P (n̂, r̂) ≥ maxi{A(n̂ − ki, r̂ − di)}, where

(di, ki) satisfy ki ≤ n̂− 1, di ≤ r̂ − 1, and mdi,ki
≤ n̂.



Chapter 4

Conclusion and Future Works

4.1 Conclusion

We have shown how to construct a series of F(n, d, k) for (n, k) = (1, 0),

(2, 1), and (3, 2) in Chapter 2. We reduce the number of basis cases needed

for constructing a series of F(n, 1, 0). For F(n, 2, 1), P (n, r) ≥ A(n− 1, r −
2) > A(n, r − 1), n ≥ 7 when r is even. For F(n, 3, 2), P (n, r) ≥ A(n −
2, r − 3) > A(n, r − 1), n 6= 8. We improve the current existing bound

P (n, r) ≥ A(n, r − 1). We also propose a framework of constructing a series

of F(n, k + 1, k). We believe that this framework will be better than an

exhaustive search. The idea, that with parameter k involved, we can find

better bounds in the gap between md,0 and md+1,0, is presented. Thus we have

shown that different settings of (d, k) may make the P (n, r)-bound better.

Therefore it is worth discussing a wider class, F(n, d, k). We might lose many

improvements if we only adopt the bound contributed by F(n, d, 0).

4.2 Future Works

The basis cases for F(n, d, 0) when d > 1 are still unknown so far. We have

tried to find them out by computer exhausting search, but unfortunately

there is still not much done. Generally speaking, it is difficult to find the
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basis cases for F(n, d, k) when d > k + 1. Thus we are curious whether an

efficient searching algorithm or even a straight-forward construction method

exists.

Second we have given several induction methods for different (n, d, k)-

mappings. Although these methods look alike, they are still different. Is

there a general induction method for construct a series of F(n, d, k)?

The discussion about possible best P (n, r)-bound in the gap mainly de-

pend on the value md,k. Is there a way to estimate md,k or can we give this

value a lower bound or an upper bound?
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