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Abstract

In this paper, we continue the study of constructing distance-increasing
mappings from binary vectors to permutations. We successfully construct
some mappings which induce bétter lower bounds for permutation codes than
the current existing one » P(n,r)- ZA(n,r-1). Since the approaches for
constructing our mappings are similar, we give a framework for constructing
a certain class of mappingss ' Note that “our mappings may not be
length-preserving. We will 'show the necessity of non-length-preserving
mappings. We will lose many improvements if we only use length-preserving
mappings.
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Chapter 1

Introduction

1.1 Background

A permutation array(PA) is a set of pérmutations of 1,2,...,n. From the
combinatorial view, it is interésting to disetiss the maximum size of PAs
with given minimum distance. Harly studies about PAs rose in the 70’s. [6]
and [7] are the well-known papets from that period. In 2000, by Vinck [12]
a new application of PAs to a coding/moedulation scheme for communica-
tion over power lines has leaded to the design of PAs, see also [9],[13],[14].
Thus the construction of PAs has gradually become more important. Re-
cent discussions about the constructions of PAs are [4],[5],[8],[11],[15]. Since
the permutation space is quite different from the Euclidean space which we
are familiar with, it is not easy to have a systematic approach. Due to the
unknown structure of permutation codes, we hope to investigate the permu-
tation arrays by something we are familiar with : the M-ary codes. There
are many good M-ary codes such as Reed-Soloman Codes etc. Suppose we
have an efficient transformation from M-ary space to permutation space and
vice versa. Then it is clear that we can construct a good permutation codes
with desired minimum distance. This motivates the design of mappings from

M-ary vectors to permutations.
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For the mappings preserving length and M = 2, there are some re-
sults, see [3],[10],[2]. These papers introduced two kinds of mappings. One
is the distance-preserving mapping(DPM)[3] and the other is the distance-
increasing mapping(DIM)[2]. Preciesly, an n-DPM is a mapping from binary
vectors to permutations of the same length n such that if the Hamming
distance of two binary strings is dy, then the Hamming distance of the cor-
responding permutations must be at least dy. A n-DIM is quite like n-DPM
except that when dj is less than the length of the string, the Hamming dis-
tance of the images of this two binary strings must be larger than dy. Once
we have a DPM (respectively DIM) f, for any binary code C' with minimum
distance r, it is easy to see that the image of C, i.e. f(C), is a permutation
array with minimum distance r,(respectively r + 1). Therefore by DPMs
and DIMs, permutation arrays can be constructed straightly and the size of

permutation codes can be Bounded by the size of binary codes.

Why is DIM better than DPM? In order to construct a permutation
code with minimum distance. dp,-we-only need a binary code with minimum
distance dy — 1 if we have a DIM. On the contrary, we need a binary code
with minimum distance dy when 'we ‘are only given a DPM. We know that
it is easier to construct a code with shorter minimum distance. From this
point, our goal may be to construct a length-preserving mappings that is
stronger than DIMs, that is a mapping which increases more distance than
DIMs. However, this is not an easy task. In order to discuss the rest of the

paper clearly, we introduce some necessary notations first.

1.2 Preliminaries and Notations

Let S,, denote the set of all permutations of 7, = {1,2,--- ,n} and the set
Z; denote the set of all g-ary vectors of length n. For a permutation m =
(w1, ,mp) € Sy, let w(i) = m; and 7 ;) denote that sub-array (m;,--- ,7;)

of m. For i € {1,2,---,n}, 7 1(i) denotes the position of ¢ in , ie. if
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7(j) = i then 771(i) = j. The Hamming distance dg(a,b) between two n-
tuples a = (aq, a9, -+ ,a,) and b = (by, be,- -+ ,b,) is the number of positions
where they differ, i.e.

dp(a,b) = [{jla; # b;}/.
We now define a class of distance-increasing mappings from g-ary vectors to

permutations.

Definition 1.2.1. For d < n+k, an (n,d, k, q)-mapping f : Z)' — Sy, is a
mapping such that for all z,y € Z7,

du(f(z), f(y)) =2 du(z,y) +d, i dy(z,y) < (n+k)—d

du(f(z), f(y)) =n+Fk, if du(z,y) > (n+ k) —d

Let F(n,d, k,q) denote the collection of all (n, d, k, ¢)-mappings.

Since we are more familiar with binagy wectors;.we simply ignore the last
parameter ¢ if ¢ = 2, i.e. let F(myd, k) denotes F(n,d, k,2). Clearly, the
collection of DPMs is equal to ZF(n,0;0)‘and the collection of DIMs in [2] is
equal to F(n,1,0). Let ngy, be the smallestinteger such that for n > ngy 4,
F(n,d, k,q) is not empty, and let mgrg==nar, + k, i.c. the smallest image

length. When we say that we have a series of F(n,d, k, q)

1.3 Previous Results

The concept of (n,0,0)-mappings(DPMs) was first proposed in [3]. But as
the authors said, the inspiration came partly from the paper [9]. In [9],
they found a (4,0, 0)-mapping by computer search. Based on that mapping,
they constructed (n,0,0)-mappings, for 5 < n < 8. However the method
couldn’t be extended to n > 8. Later, the paper [3] generalized their results
for n > 4 and gave two kinds of recursive constructions of F(n,0,0): One
is that when given an (m,0,0)-mapping g and an (n,0,0)-mapping h, de-
fine f: Zy"" — Spin as f(x1, 0 Tman) = (T1, T, 00 Mo+ 0 +

m), where 7 = g(z1, -+ ,xy) and 0 = h(Tpmy1, -+ s Tmin). Then f is an
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(m + n,0,0)-mapping. Roughly speaking, it first concatenates the images
of g and h then adjusts the values in the image of h. The other approach
extends an (n — 1,0, 0)-mapping one-bit long, i.e. given one (n — 1)-mapping
f, it constructs an (n,0,0)-mapping f’. Assume we have a permutation
7 = (71,2, ,Tn_1) € Sp_1 which is the image of a binary string s € Z5 .
We extend s one bit long. If the extended bit is 0, then replace the value at
the p-th entry with value n and append the replaced value to the right of =,
and if the extend bit is 1, just append an entry of value n to the right of .
Later in [10], an alternative algorithm for constructing (n,0,0)-mappings of

odd length was given.

In [2], a construction of (n, 1, 0)-mappings(DIMs) was given, which is sim-
ilar to the first one in [3]. At_thebeginning, it does the two steps as that in
[3] did. Then it starts todo some swap operations: if z; = 1, swap m; and
on+m, and if x,, 1 = 15 swap 7 and g3+ m. These swap operations stands
in order to remedy a bad situation: given two strings si, so, the first m bits
are exactly the same, but. the rest 7 bits are totally different(vice reverse).
Concatenation is enough to:produce-an*(m + n,0,0)-mapping when given
an (m,0,0)-mapping g and an (n,0,0)-mapping h, but it is not enough to
produce an (m+n, 1,0)-mapping. In addition to swap operations, it becomes
realized. Later the same author of [2] generalize the induction method for
constructing (n, 1,0)-mappings to (n,d, 0)-mappings, when d > 1, with only
minor modification(more swap operations). The only problem is that to find

the basis cases when d > 1 is really tough.

In both [3] and [2], the bound P(n,r) > A(n,r — 1) was given, for n >
4, where P(n,r) denotes the maximal size among all permutation codes of
length n and minimum distance r, and A(n,r) denotes the maximal size
among all binary codes. If one could construct the (n,d,0)-mappings, for
d > 1, the bound would be P(n,r) > A(n,r — d). Let mj be the smallest
integer such that for n > my, F(n, d, 0) is not empty. It is easy to see that
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mg < mg,, and A(n,r — d—1) > A(n,r — d). Thus for my < n < mg, q,
we can only apply P(n,r) > A(n,r — J), but for mj,, < n, we can apply

P(n,r) > A(n,r —d —1). We plot the best bound for P(n,r) induced by
F(n,d, k) in the following diagram which we call the P(n,r)-diagram. In

Chapter 3, we will illustrate our results by the P(n,r)-diagram many times.

“U N Al =Dy

my =4 me ms mg Mgy

A(n,r — 2)

1.4 Owur Results

We successfully construct a series of F(n,2,1) and a series of F(n,3,2), and
the bounds induced by F(n,2,1) and F(n,3,2) beat the current existing
bound. Moreover we propose a framework for constructing F(n,k + 1, k).
Follow the steps we state, a series of F(n,k + 1,k) might be built. As
we involve one more parameter k, we show that by using the non-length-
preserving mappings, there are many cases with the bound improved. In
other words, several improvements will be lost if we abandon non-length-

preserving mappings.

1.5 Organization of this paper

In Chapter 2, we discuss the constructions of F(n,d, k) of different settings
of (d, k). First we give an alternative construction of F(n,0,0). Second we

give two new constructions of F(n, 1,0) by using the substitution technique.
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Third we give the constructions of F(n,2,1) and F(n,3,2), and propose a
framework for constructing F(n,k + 1,k). In Chapter 3, we show how the
bound induced by F(n,2,1) and F(n,3,2) beats the previous bound, and
the reason why we should discuss the F(n, d, k) of different settings of (n, k)
rather than just F(n,d,0). In Chapter 4, we will talk about the possible

future works and make some conclusions.



Chapter 2
Mappings from 75 to S,

In this chapter, we discuss the constructions of various kinds of (n,d,k)-
mappings, including constructions of basis cases and induction methods.
These mappings are useful for comstructing permutation arrays. We will

discuss these applications in Chapter 3!

2.1 Construction of F{n;070)

In [3], we have already known two kinds ‘of recursive constructions of (n, 0, 0)-
mappings: given one (m,0,0)-mapping ¢g and one (n,0,0)-mapping h, con-
structing an (m + n,0,0)-mapping f, and given an (n — 1,0,0)-mapping g,
constructing an (n,0,0)-mapping f. In this section we give a new construc-
tion method which is similar to the second one in [3]. We prove by Lemma
2.1.1.

Lemma 2.1.1. /3] Given g € F(n —1,0,0) and [ : Z} — S, if f satisfies
the following inequality, for all x,y € Zy~*, and x,,y, = 0 or 1:

du(f(2,20), (Y, yn)) 2> du(g(2), 9(y)) + du (T, ya) (%)
then f € F(n,0,0).

Our construction mainly depends on a switching operation. Assume we

have a permutation m = (my, 7, -+ ,T,—1) € S,_1 which is the image of a

11
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binary string s. If we extend s one bit long, we want 7 to be also extended
one bit long. The idea is that if the extended bit is 0, then replace value
n — 1 with n and append a entry of value n — 1 to the right of 7, and if the
extend bit is 1, just append a entry of value n to the right of 7. The formal

definition is as follows.

Definition 2.1.2. We define an operation p, which assigns new value to each

entry of a n-tuple according to the relative ordering of their original values.

For (my, 7y, ,Mp_1) € Sp_1, assume 7y = n — 1. Define p: S,,_1 x{0,1} —
S, by

p(ﬂ-la"' ,7Tk_1,n—1,77'k+1,"‘ 77Tn—170) — (7T17"' s =1, T 41, * * 77Tn—17n_1)7
p(ﬂ_l;”' 77Tk—17n_177rk‘+17”' 77Tn—171) — (71-17"' 77rk—17n_177rk+1a"' )ﬂ-n—l;n)'

Construction 2.1.3. Let g € F(n —1,0,0). Define f: Z} — S, by

flz,i) =plg(x),i), xeZy'i=0,1

where p is the operation defined above. Then f € F(n,0,0).

Proof. (correctness of Construction 2.1.3)
Let (z,2,), (y, yn) € Z%, where x,y € Zy~ . Let g(x) = p = (p1, P2, » Pu_1)
and assume p; = n — 1. Let g(y) = 7 = (71,72, -+ ,7Tn—1) and assume

7; = n— 1. We consider the following cases according to the values of z,, and

Yn-



2.1. CONSTRUCTION OF F(N,0,0)

e Case |

Tp = Yn = k|

(
(

du((pp1.i=1)> M, Plitt.n—1)> 1 — 1), (Trj=1]> 1, Tj41.m—1] 0 — 1))
(

= du(p(9(z), k), p(9(y), k)) = deilg(@)g(y))-

e Case [z, =1,y, =0]:
Ifi=j
du(f(x,1), f(y,0))
= du(p(g(x),1),p(9(y),0))
= du((pp.i—1),n = L, plit.n—1), 1), (T(1.6-1) 1 Tl 1.0—1, 0 — 1))
= du(g(x), 9(y)) +2.

du(f(x,1), f(y,0))

du(p(9(x),1),p(9(y),0))

a((ppic,n =1, v rn1), 1), (T =11 1 Tt 1.m1), 1 — 1))
du(g(x),9(y)) + 1.

o

13
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e Case [z, =0,y, = 1]:
Symmetrically, we have dy (f(z, %), f(y, yn)) = du(g(x), 9(y)) + 1.

|

= du(p(g(z), k),p(9(y), k) > du(g(z),g(y)) + 1.

The inequality (*) holds for all cases, thus we have f € F(n,0,0). O

2.2 Construction of F(n,1,0)

In [2], given an (m,1,0)-mapping ¢, and an (n,1,0)-mapping h, through
concatenation with some switchings, an (m + n, 1,0)-mapping f can be con-
structed. However the method needs many basis cases. In this section, we
will use the substitution technique to give a new construction of F(n, 1,0),
and our methods need fewer basis casesithan that in [2]. We give two almost-
sequential constructions of (m, 1,0)-mappings. We give the first one below.
As it is known that the smallest-integer ng such that for n > ngy, F(n,1,0)
is not empty is 4. The goal is that, given an (4,1,0)-mapping h and an
(n,1,0)-mapping g, we will construct an (n + 3,1,0)-mapping f. Our main
idea is that when given a binary string of length n + 3, make the first n bits
as the input of g, and the last 4 bits as the input of h. Note that the n-th
bit is taken as input bit for both g and h.

Construction 2.2.1. Let g € F(n,1,0) and h € F(4,1,0). By the following
algorithm, a mapping f € F(n+ 3,1,0) is constructed.

Input: (x1,--+ T, ,Tny3) € 25073
Output: (w1, ,Tpes) = f(z1,+ , Tpis)
begin

0 Letp:g(‘rh ,%n),T:h<In,"' 7xn+3>
1 7m=m+n—-1, for1<i<A4
2 T’rfl(n):pn
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3
4

end

(71, T 77Tn71) = P[1.n—1]

(Tns = Tnys) = TlL.4)

Example 2.2.2. Let ¢(0,1,0,0,1) = (1,5,2,4,3), h(1,1,0,1) = (2,4,1,3).
Then £(0,1,0,0,1,1,0,1) = (1,5,2,4,6,8,3,7)

Proof. (correctness of Construction 2.2.1)

First note that p; € {1,---,n}, and after line 1, 7; € {n,--- ,n + 3}. But

at line 2, the value n of 7 is substituted with p,. Thus the rest values in 7

range from n 4+ 1 to n + 3.

Let (z,w), (y,2) € Zy*3, where x,y € Z%, and w,z € Z3. Let g(x) =

P = (Ph"‘ 7pn)7 g(y) = pl = (pllv 7p41)7 h(In,W) =T = (Tla"' 77—4>7
and h(y,,z) = 7 = (11, ,7)abAnd fleiw) = 7 = (711, , Tnts),

fly,2) =7 = (71, i)

Now we explain the effect of the operation-at line 2. Since p,, and p!, are

from {1,---,n}, after the substitution, if 7 '(n).= 7/~'(n) then p, and pl,

are still in the same coordinate and the distane¢ of this coordinate is at least

preserved, else p, and p/, correspond to a value from {n+1,--- ;n+3}. Thus

after substituting operation at line 2, the distance dy (7, 7") won’t decrease.

Next we consider the following cases:

e case dy(z,y) = 0: We know that dy(w, z) # 0, otherwise (z,w), (y, 2)

are identical. Let dy(w,z) =t < 3. dy(x,y) = 0 implies that x, =
Yn- S0 dp((xn,w), (yn,2)) = t < 3. Since h € F(4,1,0), we have
dy(7,7") >t + 1. Therefore dy(m,7') >t +1=dy((z,w), (y,2)) + 1.

case 0 < dg(z,y) = s < n: In this case, we have dy(p, p') > s+ 1, thus
dH(p[lnn_l],p’[l”n_l}) > s. Let dg(w,z) =t. If 2, =y, and t = 0, it is
easy to see dy(m,7') > s+ 1 =dy((z,w), (y,2)) + 1. If 2, = y, and
0 <t <3, then dy(r,7") >t + 1. Therefore dy(m,7") > s+ (t+1) =
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dy((z,w), (y,2))+ 1. If z,, # y,, no matter what value ¢ is, dy (7, 7") >
t + 1. Therefore dy(m,7') > s+ (t + 1) = du((z,w), (v, 2)) + 1.

e case dy(z,y) = n: If dy(w,z) =t < 2, then dy((zn,w), (Yn,2)) =
t +1 < 3. By the definition dg(7,7") > t + 2. Therefore dgy(m, ') >
(n—1)+ (t+2) =dy((z,w), (y,2)) + 1. If dg(w, z) = 3, it is easy to
check that dy(m,7") = n + 3.

]

We can simply generalize Construction 2.2.1 for the g-ary edition. Miner
modifications are needed for the proof above. We will show the statement

next section.

Through Construction 2:2.1, if we hawe three basis cases, we can construct
a series of F(n,1,0). Next wergive another almost-sequential construction
method which extend 2-bit longer from the-basis mapping. We will use an

auxiliary mapping E as help.

Construction 2.2.3. Let'g.€ F(n,1;0) and E defined as follows:

00 | (1,2,3) | 10| (2,1,3) | 01| (1,3,2) | 11| (3,1,2)

Note that E € F(2,1,1) and value 1 in any permutation in E(Z3) only
appears in coordinate 1 or coordinate 2. By the following algorithm, a map-

ping f € F(n+2,1,0) is constructed.

InpUt (1:17 Tyttt 7'rn+2) € Z;L+2
OUtPUt (7T1, U 77Tn+2) = f(a?la U 7xn—|—2)
begin

0 Letp=g(xy, - ,2,), 7= E(xpi1, Tpi2)
I m=7m4+n—-1,for1 <i<3
2 Tr=i(n) = Pn
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3 (71, T 77Tn71) = P[1.n—1]
4 (7Tm T 77Tn+2) = T[1..3]
5 ifxy =1 then swap (w1, Tpi2)

end

Proof. (correctness of Construction 2.2.3) First note that p; € {1,--- ,n},
and after line 1, 7;’s range from n to n + 2. Since either 7 or 75 equals to n,

T3 equals ton + 1 or n + 2.

Let T,y € Z;H'Q. Let B('r[ln]) =p = (ph... 7pn)7 B(y[ln]> — p/ —
(pllv 7p;z)v E(wn+17$n+2) = T = (7'1,7'2,7'3), and E(yn+17yn+2) = 7 =

(7—{77_577_?,)' And f(l’) =T = (Wla e 77rn+2)7 f(y) =7 = (7T/1, e 77r7/1+2)'

Let’s first explain the change of the distance due to the swap step at line
5. If both 1 =1 and y; = 1 or both z; = 0 and ¥, = 0, the distance of these
two coordinates remains the same. If-exact one.of ; and y; equals to 1, as
we know that the possible values of 7y and7rj range from 1 to n and 7,5 and
.o equal to n+1 or n+ 2, thus the distance of these two coordinates won’t
decrease. Therefore after the swap'step the distance of this two coordinates
is at least the same as before. In some cases, the distance even grows up.
Thus for the rest part of our proof, we won’t discuss the effect due to the

swap step if not necessary.

Now we explain the effect of the operation at line 2. Since the values of p,
and p!, fall between 1 and n, after the substitution, if 771(n) = 7/~1(n) then
pn and p! are still in the same coordinate and the distance of this coordinate
is at least preserved, else p,, and p, correspond to n+ 1 or n+ 2. Thus after

substituting operation at line 2, the distance dg(7,7') won’t decrease.

Now we consider the following cases:

o case dy (2.}, Yj1.n) = 0: Weknow that dg ((Zn11, Tnt2), (Ynt1: Uni2)) 7#

0, otherwise x and y are identical. Let dy(w,z) = t(= 1 or 2). Since
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E € F(2,1,1), we have dg(7,7") > t 4+ 1. Therefore d(m, 7)) > t+1 =

o case 0 < dy(xp.n),yp.n) = s < n: Since g € F(n,1,0), we have
du(p,p') > s+ 1. f dg((®nt1, Tnt2), (Ynt1, Ynt2)) = 0, it is easy to see
that diz(m, 1) 2 s+1 = dir(2,y)+1 W (@01, Tns), Gor1, Yra)) =
t(=1or2), then dy(r,7") >t + 1. dy(m,7") = du(Tj.n-1), T 1) +
A (Tpnt2)s T nyoy) = 8+ (E+1) =dn(z,y) + L.

o case dy (T n), yp.n)) = n: Let dg((Tnt1, Tnga)s Yng1, Yng2)) =t It =
0, before line 5, dg (7, 7') = n and 7,42 = 7, 5. Since dg(T1.n), Yp1.m]) =
n, ry # iy, one of the permutations will be swapped. Therefore after
line 5, dy(m,7') = n+1(now m,19 # m,,). If t =1, then dy(p, p’) = 2.
Before the substitution, suppose value n in p does correspond to value
n in p', then after the substitution , dy(p,p’) = 3(since m, # 7).
Therefore dy(m, 7t) = (n=1)+3 2> dg(x,y) + 1. Suppose value n in p
does not correspond to value n in p, then p3 = pi. The remain proof
is the same as thé caseswhenttr= 0./ If t = 2, then dy(p,p’) = 3. It is
easy to check that dg(m,7') = n+2.

]

By Construction 2.2.3, we will only need two basis cases to fulfill a se-
ries of F(n,1,0). The number of basis cases needed is fewer than that by
Construction 2.2.1. But as we have already said, Construction 2.2.1 can be
generalized to the g-ary edition. That is its advantage. Compare our almost-
sequential induction methods with the concatenation method in [2], from the
aspect of construction time, our constructions run slowlier. Nevertheless the
number of basis cases needed in [2] is at least 4. If Construction 2.2.3 is

adopted, we save almost half of the space.

The swap operation will be used very often for the rest constructions in

this chapter. From the previous discussion, as long as the ranges of the values
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of these two swapped coordinate don’t intersect, the distance of these two
coordinates won’t decrease. Therefore after many swap steps the distance of
these coordinates is at least the same as before. Thus for all the remaining

proofs, we won’t discuss the effect due to the swap operations if not necessary.

2.3 Construction of F(n,d,0,q)

As we said in previous section, Construction 2.2.1 can be generalized to the g-
ary edition. Next we show the statement without proof. We simply use m,

instead of mg 1, , defined in the preliminary only in this section for convenient.

Construction 2.3.1. Letm = my . Letg € F(n,1,0,q) andh € F(m,1,0,q).
We construct a mapping f € F(n+m—1,1,0,q). The construction algorithm

1s exact the same as that in Construction 2.2:1.

In fact, we can even generalize Construction 2.3.1 to the d-distance-
increasing edition. But there are ‘'some limitations-about the choice of the

mapping h.

Construction 2.3.2. Let g € F(n,d;0;q):"And let m be the smallest integer
such that the function h € F(m,d,0,q) with the following limitations ezists:
Vi,j,1<i,j<di#j, {7 (i)|m € h(Z5")} 0 {x = (j)|m € h(Z3")} = 0.

By the following algorithm, a mapping f € F(n+m—d,d,0,q) is constructed.

Input: (x1, -+ ,Tp,** , Tpom—d) € Z;”rm*d

Output: (m1,+ Tntm—da) = f(T1, s Tnim—a)

begin

0 Letp=g(x1, - ,20), 7 = ”Tpar1, s Tnim-d)
1 m=7m4+n—d, for1l1<i<m

2 Tr-i(n—dti) = Pn-dti, Jor 1 <i<d

3 (71, s ,and) = Pll.n—d

4 (Tnsr-ds s Tngm—d) = T[1.m)

end



20 CHAPTER 2. MAPPINGS FROM ZY TO Sn,x

Proof. (correctness of Construction 2.3.2) First note that p;’s range from
1 to n, and after line 1, and 7;’s range from n —d + 1 to n — d + m. But at
line 2, value n — d + ¢ of 7 is substituted by p,_44i, for 1 <7 < d. The rest

values in 7 range from n+ 1 ton —d + m.

Let (z,w), (y,z2) € Zq"+m_d, where z,y € Z, and w,z € Z3=4. Let

g(ZE) = (Ph'" apn)7 g<y) = pl - (p/17 710,71,)’ h(x[n—d+1..n]7w) =T =
(71, Tm), and W(Yp—ay1.m),2) = 7 = (1,---,7,,). And f(z,w) =7 =
(7T1> e 77Tn+mfd)> f(ya Z) = 7T, = (’/T/l? e 77r7/z+m—d>'

Now we dicuss the effect of the operation at line 2. Since the values of
Pn—d+i and pl,_,. . are from {1,--- ,n}, after the substitution, if 7' (n —d +
i) = 7"Yn —d + 1), then p,_44; and pl,_,.,; are still in the same coordi-
nate and the distance of this coordinate'is at least preserved, else p,_4.; and
Ph—as; correspond to a value from {n + 1,=-- ,n —d +m} (note that value
n—d+j, for 1 <j <d, v jis timpossible, since value n — d 4+ j must not
be in the coordinate where valtie-#-—-d+ i lies due to the limitations). Thus

after substituting operation at line 2, the'distance dy(7,7") won’t decrease.

Next we consider the following cases:

e case dy(z,y) = 0: We know that dy(w, z) # 0, otherwise (z,w), (y, 2)
are identical. Let dg(w,z) =t < m —d. dg(z,y) = 0 implies that
Thn—ditn] = Ypn—ditn]- S0 da((Tp—dsin) W), Yn-dt1.n),2)) = t <
m — d. Since h € F(m,d,0,q), we have dy(7,7") > t + d. Therefore
dim, 7"y >t+d=dy((z,w),(y,2)) +d.

e case 0 < dy(z,y) = s < n—d: We have dg(p,p’) > s+ d, thus
dr(ppn—1], Pt 1) = S Let dy(Tn—ds1.n], Yp-d+1.n)) = cand dy(w, 2)
=t Ifc=0andt = 0, it is easy to see dy(m, ') > s+ d =
dy((z,w), (y,2))+d. If c=0and 0 <t < m—d, then dy(7,7") > t+d.
Therefore dg(m,7’) > s+ (t + d) = dy((z,w), (y,2)) +d. If ¢ > 0,
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no matter what value ¢ is, dy(7,7') > t + d. Therefore dy(m, ') >

s+ (t+d)=du((z,w), (y,2)) +d.

e case n —d+ 1 < dg(z,y) < n: We know that dy(p,p’) = n, thus
du(pp.n—d, ph“n_d}) =n—d. Let dg(®pm—d+1.n), Yn—d1.m]) = C. C s at
least 1, otherwise dy(x,y) < n —d, If dg(w,2z) =t < m—d— ¢,
then dy((Tp—dt1.n)> W), (Yp-dt1.m]:2)) = t + ¢ < m —d. By the
definition dg(7,7") > t + ¢ + d. Therefore dgy(m,7') > (n — d) +
(t+c+d) > dy((z,w),(y,2)) +d. If dg(w,z) > m —d — ¢, then
dg(Tn—dt1.n) W), (Yp—ds1.m,2)) = t + ¢ > m — d. By definition
dy(1,7")) = m. It is easy to check that dy(7,7") =n —d+ m.

]

Although Construction 2.3.2 is really genéral, there are still many obsta-
cles. First it is hard to find the mappings hwhen. d > 1. Second it is also
not easy to figure out the basis-cases when d > 1. “What we are discussing
is only theoretical. But once these mappings have ' been found, a series of

F(n,d,0,q) are easily produced.

2.4 Construction of F(n,2,1)

In this section, we give a systematic study on the construction of the class,
F(n,2,1). First we will give the basic constructions: gg € F(6,2,1), g7 €
F(7,2,1), 98 € F(8,2,1), go € F(9,2,1). Then, we can inductively construct
nta € F(n+4,2,1) from a mapping g, € F(n,2,1). Thus finally we have a
series of F(n,2,1), for n > 6.

Consider two auxiliary mappings Ag € F(2,2,2) and B € F(4,2,2). We
construct gg with these two mappings. Similarly, for each of g7, gs and gy,
we will use two auxiliary mappings for the constructions. Note that in the
image of Ag, 4 only appears in coordinate 1 or 2 . Similarly, in the image

of Bg the value 1 only appears in coordinate 1 or 2, and the value 2 only
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appears in coordinate 3 or 4. We call such property the position property

and we give the formal definition as follows.
Definition 2.4.1. We say that a mapping f € F(n,d, k, q) has the position
property for {vy,ve, -+ ,u,} C{1,2,--+ ,n+k}ifVi,1 <i < p,|[{m ' (v;)|r €
F(Z)} =2 and Vi, j,1 <i,j <pi# 5 {7 (v)|m € f(Z3)} n{n " (v;)|m €
f(Z3)} =0.

Ag has the position property for {4} and Bg has the position property for
{1,2}. With this observation, we can construct a mapping gg € F(6,2,1).

Construction 2.4.2. Let Ag : Z3 — Sy and Bg : Z3 — S defined as follows:

x Ag(z) x Ag(x)
00| (1,4,3,2) | 10 | (4,2,3,1)
01 (2,4,1,3) || 11 | (4,292, 3)

T Be () T Bg ()
0000 | (1,3,2,4,5,6) <1000 (3715275, 4,6)
0001 | (1,3,2,5,6,4) || 100%:| (3,1,2:4.6,5)
0010 | (1,3,5,2,4,6) || 1010 | (3,1,4,2,5,6)
0011 | (1,3,4,2,6,5) || 1011 | (3,1,5,2,6,4)
0100 | (1,5,2,6,4,3) || 1100 | (4,1,2,6,5,3)
0101 | (1,4,2,6,3,5) || 1101 | (5,1,2,6,3,4)
0110 | (1,4,6,2,5,3) || 1110 | (5,1,6,2,4,3)
0111 | (1,5,6,2,3,4) || 1111 | (4,1,6,2,3,5)

By the following algorithm, a mapping gs € F(6,2,1) is constructed.

IHPUt (‘xl?IQJ Tt 7‘T6) € ZQG
Output: (my,- - ,m7) = ge(T1, -+ ,T6)
begin

0 p= A6(l’1,l’2);7' = 36(353,1’4,«735,336);
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1 m=1+1forl1<i<6;
2 Ppia) = Te;

3 Tr=1(2) = P3;

4 Tr=1(3) = P4,

5 (m,m2) = pp.ay;

6 (71'37774777'5;77'67777) = T[1..5]5
end

Besides the position property, Bg holds another property that if the Ham-
ming distance of two binary vectors is 3, then the 5th entries of the images
must be different, i.e. for z,y € Z3, if dy(z,y) = 3, then Bg(z)s # Bs(y)s.
Any mapping holds these properties could be Bg.

Similar to [2], given g € F(2,n,1),let sy (1) denote the distance ex-
pansion matrix where D;; represents the number ¢f all unordered pairs {z, y},
x,y € Z} such that dy(x,y) = +and dglg(2);g(y))= j. The expansion ma-
trix not only reveal the distance-inereasing property, but also helps us to
check the correctness. If you implement Construction 2.4.2, you will get the
same distance expansion matrix. Our.D is a little bit different from those in
previous works. Our D is an n x (n + 1) matrix, instead of n x n matrix.
Since the permutations in the range of g is one dimension larger than the

domain of g. We show the distance expansion matrix D for gs is as follows:

0 0 128 64 O 0 0
0 0 232 88 120 40
0 0 160 384 96

0 0 192 288

0 0 192

0 32

Construction 2.4.3. Let A; : Z3 — Sy is defined as follows and By is the

same as Bg:
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x Az (x) x Az (z)
000 | (1,5,3,4,2) || 100 | (5,2,1,4,3)
001 | (1,5,4,2,3) || 101 | (5,3,2,4,1)
010 | (2,5,3,1,4) || 110 | (5,4,1,3,2)
011 | (2,5,4,3,1) || 111 | (5,1,2,3,4)

By the following algorithm, a mapping gs € F(6,2,1) is constructed.

Input: (xvq, 29, ,27) € Z3

Output: (my, -+ ,ms) = gr(T1,- -+ ,T7)
begin

0 p=A:(x1,29,23); 7 = Br(xy, x5, 76, 27);
1 m=7+2for1<i<6;

2 Pp=1(5) = Té6;

8 Tro13) = pa;

4 Tr=1(4) = P5;

5 (my, T, T3) = P

6 (74,75, T, M7, Tg) = T1.8)5

7 if x1 =1 then swap (73, ms);

@
3
U

In fact, B; could be simpler than Bg, any mapping that holds the position

property would work. The distance expansion matrix D for g; is as follows:

0 0 256 128 32 32 0 0
0 0 448 208 336 272 80
0 0 224 912 736 368
0 0 224 1184 832
0 0 320 1024
0 0 448
0 64
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Construction 2.4.4. Let Ag : Z3 — Sg is defined as follows and Bg is the

same as By.

x As(x) x As(x)
0000 | (1,6,3,4,5,2) || 1000 | (6,2,1,4,5,3)
0001 | (1,6,3,5,2,4) | 1001 | (6,2,3,1,5,4)
0010 | (1,6,4,2,5,3) | 1010 | (6,4,5,1,2,3)
0011 | (1,6,4,3,2,5) | 1011 | (6,2,4,3,1,5)
0100 | (2,6,5,4,3,1) | 1100 | (6,3,2,4,5,1)
0101 | (2,6,3,5,4,1) | 1101 | (6,3,2,5,1,4)
0110 | (3,6,1,2,4,5) | 1110 | (6,4,1,2,3,5)
0111 | (3,6,5,2,1,4) | 1111 | (6,1,2,3,4,5)

By the following algorithm, a mapping gs € F(8;2,1) is constructed.

Input: (x1, T, - ,28) € Z5

Output: (my, -+ ,m9) = gs(x1, - = 52%)
begin

0 p=As(x1, - ,x4), 7 = Bg(xs, - | 1%);
1 m=71+3, for1<i<6;

2 Pp-16) = T6;

3 Tr-1a) = P55

4 Tr=1(5) = P6;

5 (my,-- M) = pp.ag;

6 (75, ,T9) = Ti1.5);

7 if xy =1 then swap (73, m9);

@
S
QL

Like By, any mapping that satisfies the position property could be Bg. Ag
holds another property that if the Hamming distance of two binary vectors
is 3, then the 4th entries of the images must be different, i.e. for x,y € Z3,
if dy(x,y) =3, then Ag(x)y # As(y)s. The distance expansion matrix D for
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gs is as follows:

0 0 432 384 144 48 16 0 0
0 0 1008 368 696 912 472 128
0 0 464 1416 2512 2088 688
0 0 320 2368 3936 2336
0 0 352 3088 3728
0 0 092 2992
0 0 1024
0 128

Construction 2.4.5. Let Ag is the same as Ag and By : Z5 — Sy is defined

as follows:

x By(x) x By ()
00000 | (1,3,2,4,5,6,7) | 100004 (3,1, 2:4,6,5,7)
00001 | (1,3,2,4,6,7,5) | 100015 (7, 1,2,5,3,4,6)
00010 | (1,3,2,5,7,6,4) 100TOC@T, 2.3, 7,5,6)
00011 | (1,3,2,5,4,7,6) 1.10011 | (5;1,2,4,3,7,6)
00100 | (1,3,4,2,6,5,7) | 10100 | (3,1,4,2,5,6,7)
00101 | (1,3,7,2,5,4,6) | 10101 | (4,1,7,2,3,6,5)
00110 | (1,3,6,2,7,5,4) || 10110 | (7,1,3,2,5,6,4)
00111 | (1,4,3,2,5,7,6) || 10111 | (7,1,3,2,4,5,6)
01000 | (1,5,2,3,6,4,7) | 11000 | (3,1,2,6,7,4,5)
01001 | (1,4,2,7,6,3,5) | 11001 | (6,1,2,7,3,4,5)
01010 | (1,4,2,6,7,5,3) || 11010 | (5,1,2,6,7,3,4)
01011 | (1,5,2,6,3,7,4) || 11011 | (5,1,2,7,4,3,6)
01100 | (1,6,4,2,7,3,5) || 11100 | (4,1,5,2,6,3,7)
01101 | (1,6,5,2,3,4,7) | 11101 | (5,1,7,2,6,4,3)
01110 | (1,5,6,2,4,3,7) || 11110 | (6,1,5,2,7,3,4)
01111 | (1,6,5,2,4,7,3) || 11111 | (5,1,6,2,4,7,3)




2.4. CONSTRUCTION OF F(N,2,1) 27

By the following algorithm, a mapping g9 € F(9,2,1) is constructed.

Input: (x1, T, ,T9) € Z3

Output: (my, -+ ,mT10) = go(x1, -+, Xg)
begin

0 p=Ag(xy, - ,x4);7 = Bo(xs, - ,T9);
1 m=1+3, for1<i<6;

2 Pp-r6) = T7;

3 Tr=1(4) = P5;

4 Tr-1(5) = Pe;

5 (e Ta) = pp.a);

o (7T5,"' ,7T10) = T[1..6]5

7 if xy =1 then swap (73, m9);

8 if x5 =1 then swap (w4, m10);

@
3
S

There is no other limitations about By as long as the position property

is satisfied. The distance expansion matrix-P-for gy is as follows:

0 0 672 704 560 240 128 0 0 0
0 0 1088 1428 1480 2122 1628 1094 376
0 0 944 1402 4370 6478 5590 2720
0 0 270 2522 8390 11998 9076
0 0 134 4284 12118 15720
0 0 474 5884 15146
0 0 976 8240
0 0 2304
0 256

Next we show how to construct a mapping g,+4 € F(n +4,2,1) induc-
tively from a mapping g, € F(n,2,1). To do that, we reapply the auxiliary
mapping Bg : Z3 — Sg. Actually we can use any mapping that holds the
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position property. We denote it as E. We give the algorithm below and then

proof the correctness.

Algorithm 2.4.6. Input: (z1,- ,Tp, -, Tnya) € Zy T2

Output: (71, Tnts) = Gna(T1, -+ Tnta)
begin

0 p=gn(T1, + 2T0); T = E(1, 72,73, 74);
I i=1+n—-1, for1 <i<6;

2 Troi(n) = Pni

3 Tr-1(n+1) = Pnt1;

4 (7717 s ,7Tn—1) = Pll.n—1]5

5 (7Tn, T 77Tn+5) = T1..6]5

6 if v1 =1 then swap (71, Tpiq);

7 if xg = 1 then swap (ma, Tpes);

end
Theorem 2.4.7. g,.4€ F(n+4,2:1), forn > 6.

Proof. First note that after line 17pi€ {1,--- ,n+ 1}, fori =1ton+1
and 7; € {n,--- ,n+ 5}, for4.= 1 to.6..But at line 2 and 3, the value n in
T is replaced by p, and the value n + 1 in 7 by p,.1. The other values in 7

range from n+2 to n+5. Thus the swap operation can be taken successfully.

Let (z,w) and (y, z) € Z5 where z, y € Z3, and w, z € Z3. Let g,(v) =
p=(p1,- s pns1), Gu(y) = p' = (P}, 7p;1+1>7 Br(w) =7 = (11, ,7e),
and Br(z) = 7 = (r1,---,7). And gpia(z,w) = m = (71, , Tpys),
Gn+a(y,2) = " = (7,--- ,7m,,5). We illustrate the transforms of these two

strings in the following diagram.
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line 0 ’ P ‘ ’ T ‘
— /
A R
n+1 6
line 1,2,3| PlL-n—1] | [new 7 |
— i
’ Pl1.n—1] ‘ ’ new 7’ ‘
n—1 6
line 4,5 | T |
—
| m |
n+95

Now we explain the effect of the operation at line 2. Since the values of p,
and p!, are from {1,--- ,n+1}, after the substitution, if 7~!(n) = 7/~!(n) then
prn and p!, are still in the same coordinate and the distance of this coordinate
is preserved, else p,, and p!, correspond to a value from {n +2,--- ,n+ 5} (
note that n+ 1 is impossible, since value n+ 1 is in coordinate 3 or 4). Thus
after substituting operation at line 2, the distance won’t decrease. Same
argument holds for the operation at line 3. Therefore, after line 5, we have
A (Tn.nt5)s Ty nps) = A (T, 7).

Next we consider the following cases:

e Case [dy(x,y) = 0]: We know that dy(w, z) # 0, otherwise (x,w) and
(y,z) are identical. Let dy(w,z2) =t < 4. Since B; € F(2,4,2), we
have dy(7,7') > t+2. Therefore d(mw, 7)) > t+2 = dy((x,w), (y, 2)) +
2.

e Case [0 < dy(z,y) = s < n]: It is clear that du(p,p’) > s+ 2.
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If 0 < dy(w,z) = t, then dy(7,7") > t + 2. Thus, by the above
mentioned observation, we have dgy(m,7') = dH(W[l--n—1]77Tf1..n—1]) +
A (Tn.nt5)s Ty nps) 2 sHE+2) = du((z, w), (y, 2))+2. Fordy(w,z) =
0, it is easy to see dy(m, ') > s+ 2.

Case [dy(z,y) = n]: In this case, it is clear that dy(p,p’) = n +
1. Let dy(w,z) = t. Again by earlier observation, we know that
dr (711 Ty 1) = dr(pin—1), Py p—y)) =7 — 1 and

A (Tpnn+5)s T pas) = du(7,7") >t + 2 (even when ¢ = 0). Thus
dy(m,7') > n+t+1. We argue that this lower bound is indeed at least
n+t+ 2, except when t = 4. There are two subcases on the value of

dp(w, z), which is denoted as t.

1. Subcase [t = 4]: Then dy(7,7") = 6. It is easy to see dy(m, ') =
n+95.

2. Subcase [0 < ¢t'< 3] Ifdy(, )= 6, then dy(m,7') =n+5 >
n+t+2 =idy((z wylys2) £2. If dy(r,7) < 5, there must
be one coordinate ¢ such that'r, = 7/. Note that x; # y; and
Ty # Yo, since dy(x,y) = n. If 75 = 74 or 74 = 7¢, then after the
swap steps in line 6 and line 7, dg (7, 45, an_.n%]) >t+3. So
dy(m,7') >n+t+2. If 4 =71] or 75 = 74, the value 1I’s in 7 and

in 7/ must be in the same coordinate. Besides p,, # pl,, we can get

Thus we have dH(W[n,,n%],an“n%]) > ¢+ 3. Same argument holds
for 73 = 74 or ™y = 7.
This completes our proof on the correctness of construction. O

2.5 Construction of F(n,3,2)

The approach for the construction of F(n,3,2) is alike that for the con-
struction of F(n,2,1). We first give five basis cases: hg € F(6,3,2), h;y €
F(7,3,2), hg € F(8,3,2), go € F(9,3,2), hig € F(10,3,2). Then, we give
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the induction method for constructing h,y5 € F(n + 5,3,2) from a map
hn, € F(n,3,2). Thus a series of F(n,3,2) is built, for n > 6.

Like previous section, we will use two auxiliary mappings C;,D; for each
basis case. Both C; and D; have the position property for {1,2} and {7~1(1)|7 €
Ci(+), Di(+)} = 41,2}, {7 *(2)|m € Cys(-), Di(-)} = {3,4}. There may be some
further limitations about certain Cls and D’s. We will state the special prop-

erties they hold as they first appear.

Construction 2.5.1. Let Cy : Z3 — Sy define as follows and Dy is the same
as Cg:

x Cs(x) x Cs(z)

000 | (1,3,2,4,5,6) | 100 | (4,1:2,6,5,3)
001 | (1,4,2,3,6,5) | 101 | (3:1.2.5,6/4)
010 | (1,5,3,2,4,6) || 110 | (551,6,2,4,3)
011 | (1,6,4,2,3,5) || 111 | (6;145,2:3:4)

By the following algorithm, a mapping he € F(6,3,2) is constructed.

Input: (x1, 29, -+ ,76) € Z8

Output: (my, 7, -+ ,mg) = he(x1, -+ ,T¢)
begin

0 p=Cs(xy,me,23); T = De(x4, 75, 76);
1 pi=pi—2, for1 <i<6;

2 1i=1+2, for1<i<6;

5 Ppri(-1) = Ts;

4 Pp=1(0) = T6;

5 Tr-13) = Ps;

6 Tr-14) = pe;

7 (7T1,"' ,7T4) = P[1.4]
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8 <7T57 e 77T8) = T[l..4]7'

end

There is no other limitations about Cs. And Cg and Dg do not need
to be the same, as long as the position property is satisfied. The distance

expansion matrix D for hg is as follows:

0 0 0 192 0 0 0 0
0 0 0 128 128 128 96
0 0 0 64 128 448

0 0 0 0 480

0 0 0 192

0 0 32

Construction 2.5.2. Let C; besthessame,as Cs and Dy : Z3 — S; defined

as follows:

x Dr(x) . D+(x)
0000 | (1,3,2,4,5,6,7) |[1000 | (5,1:2.4,6,7,3)
0001 | (1,3,2,5,4,7,6) || 1001 | (6,1,2,5,4,3,7)
0010 | (1,3,4,2,6,5,7) | 1010 | (7,1,4,2,5,6,3)
0011 | (1,4,3,2,5,7,6) | 1011 | (5,1,7,2,4,3,6)
0100 | (1,5,2,3,7,6,4) || 1100 | (7,1,2,6,3,5,4)
0101 | (1,5,2,7,3,4,6) | 1101 | (4,1,2,6,7,3,5)
0110 | (1,7,5,2,3,6,4) | 1110 | (3,1,6,2,7,5,4)
0111 | (1,6,3,2,7,4,5) || 1111 | (6,1,7,2,3,4,5)

By the following algorithm, a mapping hy € F(7,3,2) is constructed.

Input: (1,29, ,27) € Z3
Output: (7T1, T, =+ ,7Tg) = h7([E1, e ,277)

begin
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0 p=Crxy,x9,23);7 = Dr(xg,-+ ,27);
1 pi=pi—2, for1 <1 <6

2 T=7,+2, for1 <i<7T;

I P = T

4 Ppi(0) = Tr;

5 Tr-1(3) = Ps;

6 Tr—14) = pe;

7 (m, - Ta) = ppa;

8 (7T5,"' 779) = T[1..5)5

end

Besides the position property, D~ holds another property that if the Ham-
ming distance of two binary vectors is 3, then the 5th entries of the images
must be different, i.e. for z,y € Z3, if dg(w,y) = 3, then D;(z)s # D:(y)s.

The distance expansion matrix D«for h;_is as follows:

0 0 0 312 128 8 0 0 0
0 0 0 408 176 256 408796
0 0 0 232 3684952 688
0 0 0 120 792771828
0 0 0 208 1136

0 0 0 448

0 0 64

Construction 2.5.3. Let both Cs and Dg be the same as D7. By the follow-
ing algorithm, a mapping hs € F(8,3,2) is constructed.

Input: (1,29, -+ ,18) € Z
Output: (7r1, T, -+ ,7T1o) = h8($1, T 7$8)
begin

0 p:CS(:Clu'” ,$4);T:D8(Z’5,"' 7568);'
1 pi=pi—2, for1 <i <7,
2 m=7+3, for1 <1< 7T,



Pp=1(-1) = T6;
ppfl(O) = T7;

3
4
9 Tr-i(a) = Pe;
6
7
8

Tr=1(5) = P75

(7T1, T ,7Ts) = P[1..5]5

<7T67 T 77T10) = T[1..5]5
end
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The distance expansion.matrix D for hg is as follows:

0 0 0 480 512

0 0
0

32 0 0 0 0
0 0 0 11202392 300+ 818" 760 194
0 0 0 688+ 6722048 12752 1008

0774161720 3856 2968
0 0 372 3192 3604
0 0 0 832 2752
0 0 0 1024

0 0 128

Construction 2.5.4. Let Cy be the same as Cy and Dy : Z3 — Sg defined

as follows:
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T Dy(x) r Dy(z)

00000 | (1,3,2,4,5,6,7,8) || 10000 | (3,1,2,5,8,6,7,4)
00001 | (1,3,2,4,6,5,8,7) || 10001 | (3,1,2,7,6,5,8,4)
00010 | (1,3,2,5,4,7,6,8) | 10010 | (3,1,2,4,7,8,5,6)
00011 | (1,3,2,5,7,4,8,6) | 10011 | (4,1,2,3,6,7,5,8)
00100 | (1,3,4,2,5,8,6,7) || 10100 | (3,1,7,2,5,8,6,4)
00101 | (1,3,4,2,8,5,7,6) | 10101 | (5,1,7,2,8,4,3,6)
00110 | (1,3,6,2,7,8,5,4) | 10110 | (6,1,7,2,4,3,5,8)
00111 | (1,3,6,2,8,7,4,5) | 10111 | (4,1,3,2,8,7,5,6)
01000 | (1,4,2,6,5,8,7,3) | 11000 | (8,1,2,6,5,3,7,4)
01001 | (1,4,2,6,8,5,3,7) || 11001 | (8,1,2,6,3,5,4,7)
01010 | (1,4,2,8,7,6,5,3) || 11010 | (7,1,2,8,4,3,6,5)
01011 | (1,4,2,8,6,7,3,5) | 11011 | (4,1,2,6,3,7,8,5)
01100 | (1,5,8,2,4,6,7,3) || 11100°F(7, 1,8,2.5,6, 3, 4)
01101 | (1,5,8,2,6,4,3,7) | 11101 (7,1,8,2:6,5:4, 3)
01110 | (1,4,5,2,7,3,6,8) | 11110 | (4,1,8,2,7,3,6,5)
01111 | (1,4,5,2,3,7,8,6) || 11111 (7516253, 4,8, 5)

By the following algorithm, a mapping hg € F(9,3,2) is constructed.

Input: (x1, 29, ,T9) € Z3

Output: (my, e, -+ ,m1) = ho(x1, -+, T9g)
begin

0 p=Co(xy, - ,24);7 = Do(x5, -+ ,Tg);
1 pi=pi—2, for1 <i<7T;

2 1,=1+3, for1 <i<8§;

3 Ppi(-1) = Tr;

4 Pp=1(0) = 785

5 Tr-1(3) = Pe;

o Tr=1(4) = P75

7 (m,-,T5) = pp.s);
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8 (mg, -+ ,m1) = T[1..6]5
9 if x5 =1 then swap (s, T10);

end

In fact, Cy could be simpler than Cg, any mapping that holds the posi-
tion property could be Cy. Dy holds another property that if the Hamming
distance of two binary vectors is 4, then the 6th entries of the images must
be different, i.e. for z,y € Z3, if dy(x,y) = 4, then Dg(x)s # Do(y)s. The

distance expansion matrix D for hg is as follows:

0 0 0 912 912 336 112 32 0 0 0
0 0 0 1952 1090 918 1934 2034 1024 264
0 0 0 1328 1334 3782 6916 5870 2274
0 0 0 544 1910 8726 13074 8002
0 0 0 132 4060 13852 14212
0 0 0 454 6756 14294
0 0 0 1168 8048
0 0 2304
0 0 256

Construction 2.5.5. Let both C'yy and Dqy be the same as Dy. By the fol-
lowing algorithm, a mapping hiy € F(10,3,2) is constructed.

Input: (x1, 29, ,210) € Z3°

Output: (my, w9, -+ ,m12) = hio(T1,- -+, Z10)
begin

0 p=Cil(x1, - ,25);7 = Dio(w6,- -+, T10);
1 pi=pi—2, for1 <1 <8

2 1m=T1+4, for1 <i1<8;

5 Py =TT

4 Ppi(0) = Ts;

5 Tr-i(4) = p1;

O Tr-16) = Ps;
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7 (m,-,T6) = Pl
8 (7T77 T 7712) = T[1..6]5
9 ifxy =1 then swap (75, m12);
10 if xg = 1 then swap (mg, 711);
end
The distance expansion matrix D for hyg is as follows:
0 0 0 1728 1600 1216 448 128 0 0 0 0
0 0 0 3328 2818 234814540 :,4300 3528 1652 526
0 0 0 2624 2868 7084413904 17352 12172 5436
0 0 0 21024 2772 . 14192 32644 35416 21472
0 0 0 8 4352= 26788 51992 45884
0 0 0 136 8596 40320 58468
0 0 0 768 15168 45504
0 0 2176 20864
0 0 5120
0 0 512

Next we show how to construct a mapping h,.5 € F(n + 5,3,2) induc-

tively from a mapping h, € F(n,3,2). In fact, suppose we have a mapping
Ee F(n,3,2) with the position property for {1, 2,3}, then the concept of the
induction algorithm for F(n,2,1) can also be applied to F(n,3,2). And the

algorithm only need to be modified subtly, so as the proof. Unfortunately we

haven’t find such E, for 7 = 5,0r 6. Instead, we use a mapping E : Z5 — Sg

which are closed to the desired one and defined as follows.
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x Dyi(x) x Dy (x)
00000 | (1,8,2,4,3,5,6,7) | 10000 | (8,1,2,4,3,5,6,7)
00001 | (1,7,2,4,3,6,5,8) | 10001 | (7,1,2,4,3,6,5,8)
00010 | (1,8,2,4,5,3,7,6) | 10010 | (8,1,2,4,5,3,7,6)
00011 | (1,7,2,4,6,3,8,5) | 10011 | (7,1,2,4,6,3,8,5)
00100 | (1,5,2,6,3,8,4,7) | 10100 | (5,1,2,6,3,8,4,7)
00101 | (1,6,2,5,3,7,4,8) | 10101 | (6,1,2,5,3,7,4,8)
00110 | (1,5,2,6,8,3,7,4) || 10110 | (5,1,2,6,8,3,7,4)
00111 | (1,6,2,5,7,3,8,4) || 10111 | (6,1,2,5,7,3,8,4)
01000 | (1,4,5,2,3,8,7,6) | 11000 | (4,1,5,2,3,8,7,6)

(1, ) ( )
(1, 7) ( )
(1, ) ( )
(1, ) ( )
(1, ) ( )
(1, ) ( )
(1, ) ( )

01001 | (1,4,6,2,3,7,8,5) || 11001 | (4,1,6,2,3,7,8,5
01010 | (1,4,5,2,8,3,6, 11010 | (4,1,5,2,8,3,6,7
01011 | (1,4,6,2,7,3,5,8) || 11011 | (4,1,6,2,7,3,5,8
01100 5,7,2,3,8,6,4) 1 11100 [ (5¢1,7,2,3,8,6,4
01101 | (1,6,8,2,3,7,5;4) | 11101 1.(6,1,8,2,3,7,5,4
01110 5,7,2,8,3,4,6) || 11110 (5,1,7,2,8,3,4,6
01111 | (1,6,8,2,7,3,4,5) |- LELEE4-(6, 1,8,2,7,3,4,5

Let’s explain how the mapping F is produced. We first find a mapping
e € F(4,3,3) with the position property for {1,2}, and do some switchings
such that value 1 appears in coordinate 2 and 3, value 2 appears in coordinate
4 and 5. Second add 1 to each entry of all the permutations in the image.
Third define F : Z — S as: for all w € Zy, E(Ow) = (1,7, 72, ,77))
and E(1w) = (my, 1,79, -+ ,77)), where m = e(w). It is easy to check that for
all distinct strings =,y € Z3, if dg(x,y) = d, then dg(E(z), E(y)) > d+3 ex-
cept the case when z,y only differ at the first bit. In this case, dy(x,y) = 1,
but dy(E(x), E(y)) = 2. We give the algorithm below and then proof the

correctness.

Algorithm 2.5.6. Input: (z1, -+ ,%p, -+ ,Tnys) € ZyHP

Output: (71, , Tpy7) = Pnys(T1, -+, Tgs)

begin
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if t1 = 1 then swap (71, This);

0 p=hp(xy, - ,2,);7 = E(Tpy1, s Tnis);
1 m=1+n—1, for1 <i<8;

2 Tr-i(n) = Pn;

3 Tr-1(nt1) = Pntl;

4 Tr-i(nt2) = Pnt2;

5 (7, Tne1) = Plln—1))

6 (T, Tngr) = T8

7

8

Zf Tpt+1 = 1 then swap (7T277Tn+7>;

Theorem 2.5.7. h,5 € F(n+5,3,2), for n > 6.

Suppose ignore the exception, the proof for the rest cases is quite similar
to the proof in previous section. Thus we simiply omit this part. Next we

proof the correctness for the exception ecase.

Proof. Let =, y € Z& and wi€ Zy. let h(x)2= p = (p1, -, Pns2),
ha(y) = p" = (P}, Plhio), and E(Qw)=1(176, 03, - - - ,07). By the defini-
tion of F, we know that F(lw) =4{oy4,1, 09, -+ y07). And let h,5(z,0w) =

™= (77-17 te 77Tn+7>7 hn+5(y7 1w) =7 = (ﬂ-i? e 77T;L+7)'

Since the the string (y, lw) will trigger the swap at line 8 but the string
(z,0w) won’t, then after line 8, m,,7 # m,+7. Besides value 2 and value
3 in F(Ow) must be in the same position as value 2 and value 3 in E(lw)
respectively. Therefore after line 8, dg (7. ny7, ﬂfn”n +7]) > 3+
A1 (Pn 112 ), (Pas ). Purthermore we get dy(r, 7') —

A (1.1, T 1) + i (Tt 7], T i) = 3+ du(p,p') =1 =2+dpu(p, p).

Next we consider the following cases:

e Case [dy(z,y) = 0]: Since the string (y, lw) will trigger the swap at
line 8 but the string (z,0w) won’t, then after line 8, 7,19 # m,12. So
dH(ﬂ-77rl)) >4 = dH((xv 0w)7 (ya 1U})) + 3.
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e Case [0 < dy(z,y) = s < n|: Itis clear that dy(p, p') > s+2. Therefore
dg(m,7") =>2+du(p,p') =2+ (s +2) =dy(z,y) + 1.

2.6 A Framework for Constructing F(n,k +
1, k)

The approach for constructing a series of F(n, 2, 1) is similar to that for con-
structing a series of F(n,3,2). We wonder if there is a generalized approach
for constructing F(n, k + 1, k). In this section, we give a possible framework

for constructing F(n, k + 1, k).

Let’s talk about how-to constiuct the basis cases first. We use the con-
struction of F(n, 2, 1) as example to-illustrate our idea. When we dealt with
F(n,2,1), we tried to find out the basis cases by computer search. Unfortu-
nately, after a time consuming search, there were still no outcome. Rather
than just by searching, we found-a method to construct the basis cases di-
rectly. We noticed that any mappings in F(n,2,2) can be easily found by
computer, even with some restrictions. We wondered if we could use these
mappings in F(n, 2,2) to construct a mapping g € F(n,2,1). But there was a
big problem. Suppose we simply concatenate a mapping A € F(m,2,2) and
a mapping B € F(n,2,2). The resulted mapping is from ZJ"*" to Sy ni4.
Undoubtedly it doesn’t belong to F(n,2,1). There should be a way to shrink
the length of the image. Therefore we adopted the substitution technique
again. In order to let the substitution step work well, the mappings we use
should hold the position property. Let A € F(m,2,2) with the position
property for {1} and B € F(n,2,2) with the position property for {1,2}.
Let A(x) = p, z € Z3* and B(y) = 7, y € Z5. Replace the value 1 in p
with an entry of 7 in the coordinate where the value 1 and 2 won'’t appear,

and replace the value 1 in 7 with an entry of p in the coordinate where the
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value 1 won’t appear, so does the value 2 in 7. Then the resulted image
length is 7 + 7 4+ 1 . The resulted mapping has a chance to be in F(n,2,1).
However there may still be some problems. Let’s look at the construction of
gs as the example. Note that we have made a further restriction about Bg.
Suppose Bg is simply a mapping in F(4,2,2) with only the position prop-
erty, and Bg(0000) = (1,3,2,4,5,6), Bg(1110) = (4,1,6,2,5,3). Through
our algorithm, we will find that g¢(000000) = (1,7,3,4,2,5,6) and g¢(111110)
= (4,1,5,2,7,3,6). du(gs(000000), gs(111110)) = 6 # dy(000000,111110) + 2.
Thus such gg doesn’t belong to F(6,2,1). That’s why we made the restric-

tion about Bs.

We state the framework for constructing the basis cases for F(n,k+1,k)
as follows: find 2 mappings in F(n,k + 1,k + 1) with the appropriate posi-
tion property, such that after subsfitution, the'resulted image size is legal,
and make some extra restrictions abouti these two mappings if necessary, i.e.
the construction still need to be dealt case by easer In fact, the framework
could be generalized for even F(n,d;k).-We-only-need to make more re-
strictions about these 2 mappings: We have tried to find out the basis cases
for F(n,2,0) based on this framework, but unsuccessful. Many restrictions
make these 2 mappings hard to be found quickly by computer, even they
don’t exist. But we believe the framework is helpful for constructing the
basis cases for F(n, k+1,k). We can find these 2 auxiliary mappings quickly

even with additional restrictions.

Next we discuss the induction method for F(n,k + 1,k). As a matter of
fact, Algorithm 2.4.6 can be generalized to any k, as long as the the proper
extension mapping E is found. We modify Algorithm 2.4.6 for F(n,k+1,k)
as follows. Assume E € F(l,k + 1,k + 1) with the position property for
{1,2,--- ,k+ 1} and b, € F(n,k+ 1,k).

Algorithm 2.6.1. Input: (zy, -+ ,Zp, -, Tny) € Z5T

Output: (71, , Tngirk) = bt (T1, -+, Tngr)
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begin

0 p=by(xy, - ,2n);7=E(x1,--+ ,70);

I i=1i+n—1,for1 <i<l+k+1,

2 T = pi, forn <i<n+k;

3 (T, Tne1) = Plm—1]}

4 (7Tn> T 77Tn+l+k) = T[1.1+k+1]5

5 If xi =1 then swap (7, T(n-1)42(k+1)+i), for 1 <i <1 — (k+1);

end

Theorem 2.6.2. Suppose E € F(l,k + 1,k + 1) with the position property
for{1,2,--- [k +1} and b, € F(n,k + 1,k). Then Algorithm 2.6.1 induces
an (n+ 1,k + 1,k)-mapping.

The proof is similar to that for Algorithm 2.4.6. We omit the proof here.
Unfortunately as we have séen in the edse F(n,3,2), the extension mapping
E may not be found easily. | We just peint-out a possible induction method

and a framework of constructing F(n, k + 15 k).



Chapter 3

Application to Permutation

Arrays

As shown in [3] and [2], we know thafdistance-inéreasing(distance-preserving)
mappings are quite helpful for=constructing permutation arrays. In this
chapter we give a general view: of construetions of permutation arrays via
distance-increasing mappings. An (n,7)-permutation code is a permutation
code of length n and minimum distance r. Let:P(n,r) denote the maximal
size among all (n, r)-permutation codes, and"A(n, r) the maximal size among
all (n,r)-binary codes. Recall that in the preliminaries, we define ng , to be
the smallest integer such that for n > ngy 4, F(n,d, k,q) is not empty, and
Mdkq = Ndkq + k, i.e. the smallest image length. Let ng denote ngy o and

mq denote mg o for convenience. We have the following bound.
Theorem 3.0.3. Forn > mgy andd+1 <r <n, P(n,r) > A(n—k,r—d).

Proof. Let C be a binary (n—k,r—d)-code. Since n > mgy, then n—k > ngy.
Thus we have a mapping f € F(n — k,d, k). From the definition, we know
that f(C) is an (n,r)-permutation array. Thus P(n,r) > |C|. Therefore
P(n,r) > A(n — k,r —d). O

Theorem 3.0.3 tells us that if we have an efficient (n, d, k)-mapping and a

binary (n — k,r — d)-code, then we get an efficient (n,r)-permutation code.

43
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The cuwrrent existing P(n,r)-bound, P(n,r) > A(n,r — 1), for n > 4
was shown in [3] and [2]. If F(n,2,1) is applied, the P(n,r)-bound becomes
P(n,r) > A(n—1,r —2), for n > 7. It is well-known that A(n — 1,7 —2) =
A(n,r — 1) if r is odd. But when r is even, A(n — 1,r — 2) > A(n,r — 1).
Thus we improve the bound when r is even. If F(n,3,2) is applied, the
P(n,r)-bound becomes P(n,r) > A(n — 2,r — 3), for n > 8. It is known
that A(n — 2,7 —3) > A(n,r — 1) no matter r is even or odd. Thus we do

improve the P(n,r)-bound.

The difference between the classes of distance-increasing mappings de-
fined by previous researches and ours is that we consider one more parame-
ter, k. When k£ = 0, the classes of mappings we defined are the same as
those before. We restate:Theorem 3.0.3 when & = 0: For n > mgo and
d+1<r <n, P(n,r) 2 A(n,r-~d). Here we will show that with parameter

k involved, there are several cases with better bounds.

For mgo < n < mgaiteywe have P(n,r) > A(n,r —d). We want to
show that there are possible improvements for n in the gap. First it is
known that A(n,t) < A(n—1,t—1). Therefore assume mg411 < Mgt10, for
Mar11 <N < May10, P(n,7) > An—1,7—d—1) > A(n,r — d), where the
improvement occurs. The assumption mg411 < Mgy really makes sense.
Since suppose there is a mapping f € F(n,d+1,0), ignore half of the binary
vectors in the domain, we get a f' € F(n—1,d+1,1). Thus mgr11 < Mmat10
and very likely mgi11 < ngy10. From the above observation, we have the

following lemma:

Lemma 3.0.4. mq k+1 S mq-

We plot the possible bound for P(n,r) in the following diagram.
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If mgo < Mgy1,1 -

P(n,r) > A(n,r —d) Lr—d-—

8 N AT Do

M0 Mdt1,1 Mdy1,0

If mgp > mag1 :

P(n,r) > An—1,r—d—1)

g R

ma+1,1 mq,o mMd+1,0

Let’s apply some real examples. We know m; o = 4. Although we don’t
know what my exact is, according to our past experience, we believe mq o >
8. Assume mgo = 10. The bound-diagram of this interval is plotted as
follows:
P(n,r) >

A(n,r —1) Aln =17 — 2)

g A A

ml’(]': 4 m2’1'= 7 m270': 10

Second it is known that A(n,t) < A(n—2]t—2). Assume mgi22 < Mit1,0,
for mayo0 < n < may10, Pn,r) > Aln —2,r —d—2) > A(n,r —d). Un-
fortunately the assumption might not hold for all time. However suppose
Mdt22 > Ma+1,0, Compare A(n,r —d — 1) and A(n — 2,7 —d — 2) from the
optimal binary codes table[1], we can find that there are still cases such that
A(n,r —d —1) < A(n — 2,r — d — 2) depending on n and r. Usually it is
believed that mg, < mgii k1. So assume mgi11 < Mgi22, the most likely

bound-diagram is as follows:

If mayo2 < Mgy :

P(n,r) > Aln—1,r—d— An—2,r—d—2)

r Do 3

Ma11,1 M442,2 Md41,0
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If Mgy > Mayrp

- U A2 mdl)

Mdt1,1 Md+t1,0 Mdy2,2

P(n,r) > A(n,r —d

Again we use the real examples to illustrate the situation. Assume

Mmoo = 10.

P(n,r) > Aln—1,1r—2) Aln —2,7—3)

g S )

TTLQJ': 7 777/3’2': 8 m2,0-: 107

As we have said, when n_2mmsjgsthere are still cases such that A(n,r —
2) < A(n — 2,r — 3) dependinggon n and r. For example, A(12,5) = 32,
but A(10,4) = 40; A(14,7) = 16, but A(12,6) = 24. Thus when n > ma,
P(n,r) > A(n,r — 2) or A(n — 2,7 — 3) depending on n and r. Recall that
we have made a conjecture in the last paragraph, now we restate it formally

in the following.
Conjecture 3.0.5. mg, < Mgi1 jy1-

We have discussed the comparison between the bounds induced by F(n, d, 0),
F(n,d+1,1),F(n,d+1,0), and F(n,d + 2,2) in the interval [mgqo, mat1,0)-
In fact, we should consider all the P(n,r)-bounds by F(n,d;, k;)’s as long
as Mg, k,'s < Mmgyp10. More generally when given certain n and 7, we should
compare all the P(n,7)-bound induced by F(n, d;, k;)’s as long as mg, j, < n
and A(n — k;, 7 — d;) is meaningful. Now we make a formal statement about

what the possible best P(n,7)-bound would be when given certain # and 7.

Theorem 3.0.6. Given n and 7, P(n,7) > max;{A(n — k;,7 — d;)}, where
(di, ki) satisfy k; <n—1,d; <7 —1, and mg, , < n.



Chapter 4

Conclusion and Future Works

4.1 Conclusion

We have shown how to construct; a series of Fin,d, k) for (n,k) = (1,0),
(2,1), and (3,2) in Chapter 2. We reduce the number of basis cases needed
for constructing a series of F (1 1,0). For'F(n,2, 1); P(n,r) > A(n —1,r —
2) > A(n,r — 1), n > 7 when ' is even."For F(n, 3,2), P(n,r) > A(n —
2,r —3) > A(n,r — 1), n # 8. "“We_ improve the current existing bound
P(n,r) > A(n,r —1). We also propose a framework of constructing a series
of F(n,k + 1,k). We believe that this framework will be better than an
exhaustive search. The idea, that with parameter k involved, we can find
better bounds in the gap between mg o and mg.1 o, is presented. Thus we have
shown that different settings of (d, k) may make the P(n,r)-bound better.
Therefore it is worth discussing a wider class, F(n, d, k). We might lose many

improvements if we only adopt the bound contributed by F(n,d,0).

4.2 Future Works

The basis cases for F(n,d,0) when d > 1 are still unknown so far. We have
tried to find them out by computer exhausting search, but unfortunately

there is still not much done. Generally speaking, it is difficult to find the
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basis cases for F(n,d, k) when d > k + 1. Thus we are curious whether an
efficient searching algorithm or even a straight-forward construction method

exists.

Second we have given several induction methods for different (n,d, k)-
mappings. Although these methods look alike, they are still different. Is

there a general induction method for construct a series of F(n,d, k)?

The discussion about possible best P(n,r)-bound in the gap mainly de-
pend on the value mgy. Is there a way to estimate mg or can we give this

value a lower bound or an upper bound?
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