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研究生：顏大剛              指導教授：賴伯承教授 

 

國立交通大學 

電子工程學系 電子研究所 

 

摘 要 

通用式繪圖處理器是目前一主流支援大量平行運算的處理器。為了在進行大量平行

運算時有更好的效能，快取記憶體與多執行緒並行為目前主流設計理念。然而，快取記

憶體大小的限制，使此二機制在需要大量記憶體存取的應用中會發生互相抵消其效能上

帶來的好處。針對這議題，本篇論文首先探討此二機制間的關聯性，並依此關聯性建立

一多執行緒並行運算量的決定機制，取得記憶體快取機制與多執行緒並行運算的平衡點。

在擁有大量記憶體存取的應用中，此機制降低多執行緒並行運算量，並提高快取記憶體

效率，因此平均運算效能提升 60%。在非大量記憶體存取的應用中，此機制也能將多執

行緒並行運算量設定在較高的值，避免效能降低。 
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ABSTRACT 

GPGPUs have emerged as one of the most widely used throughput processors. Deep 

multithreading and cache hierarchy are the two effective implementations to achieve high 

throughput computing in modern GPGPUs. However, these are two conflicting design options. 

Finding a proper design point between the two has become a significant performance factor to 

GPGPUs. This paper investigates the correlation between caching behavior and 

multithreading technique. By demonstrating the trade-off issue between the multithreading 

and cache contention, the proposed decision scheme dynamically adjusts the multithreading 

degree to achieve superior performance. With the proposed decision scheme, the system 

performance of memory-intensive workloads can be improved by 60% averagely, and it 

prevents computation-bound workloads from performance degradation. 
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1. Introduction 

GPGPUs (General Purpose Graphic Processing Units) are becoming widely used 

many-core throughput processors to achieve great performance in modern computing 

platforms. By supporting general purpose programming environments, like CUDA [11] and 

OpenCL [12], GPGPUs can handle massive parallel execution of various types of applications. 

To expose massive computing parallelism, the stringent data access requirements become a 

design challenge to achieve high performance on GPGPUs. The enormous concurrent tasks 

pose high bandwidth data demands with complex data access patterns. These data demands 

require higher DRAM bandwidth and cache capacity to sustain the memory level parallelism 

and hide memory request latency. Once the data demand exceeds the limit of cache capacity 

and DRAM bandwidth, some memory requests that should be processed in parallel would be 

executed sequentially and result in longer execution time [1]. In addition, the enormous 

concurrent threads could create serious contention on the on-chip memory resource, and 

would significantly degrade the overall performance. A thorough understanding of the 

performance correlation between the multithreading degree and cache utilization has become 

a critical factor to achieve superior performance.  

Exposing massive computation parallelism through multithreading is an essential design 

factor for a GPGPU to achieve great performance. Figure 1 illustrates an example of the 

architecture of a modern GPGPU. The concurrent threads in a GPGPU are organized as 

multiple thread groups, where each group is referred as a Collaborative Thread Array (CTA). 

A CTA can be further decomposed into many warps, where each warp contains 32 threads 

according to NVIDIA’s GPGPU architecture [22]. A centralized CTA scheduler is 

implemented to dispatch CTAs to the CTA buffer of each shader core. Shader cores are the 

basic functional units that perform concurrent execution on a large number of threads. There 

is a warp scheduler on each shader core to control the instruction issuing. When the pipeline 
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is stalled by long latency instructions, the multithreading mechanism allows the warp 

scheduler to issue warp instructions from other warps in the CTA buffer to improve the 

pipeline utilization and execution throughput. The number of warps in the CTA buffer is 

named as Multithreading Degree in this work.  

 

However, as demonstrated in Figure 2, a higher multithreading degree does not always 

achieve a better system performance. Figure 2 shows the performance (IPC: Instruction per 

Cycle) of our in-lab benchmarks [9]. The performance results are simulated by a cycle 

accurate GPGPU simulator, GPGPU-Sim [13], with 32KB L1 data cache at different 

multithreading degrees. The benchmarks are selected to evaluate the performance of memory 

system by featuring memory intensive computing with irregular memory accesses. There are 

two observations from this experiment. First, higher multithreading degrees do not always 

 

Figure 1: CTA scheduler and Warp scheduler diagram 
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lead to better overall performance. Excessive concurrent threads could cause serious 

contention on the local cache, and hence degrade the overall performance. Second, the best 

multithreading degree is dependent upon the characteristic of each benchmark, such like the 

working set sizes, data reusing, and the instruction level parallelism.  

 

 

According to the above observations, the performance of a parallel application on a 

GPGPU can be optimized by tuning the multithreading degree. This thesis proposes a 

multithreading decision scheme that observes the memory behavior of CTAs, and predicts the 

performance at each possible multithreading degree. The proposed scheme will then set an 

appropriate multithreading degree for better system performance. In summary, this thesis 

makes the following contributions: 

 This thesis demonstrates the performance benefit of the cache hierarchy and 

multithreading technique when executing the general-purposed workload on GPGPUs. It 

 

Figure 2: Performance variation of BFS bench with cache sizes and multithreading degree 
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also shows the trade-off between multithreading technique and caching behavior when 

they are all applied.   

 This thesis observes that an improper multithreading degree would not only increment 

cache misses and DRAM reads, but also the execution time of CTAs and the latencies of 

DRAM accesses. The experiments illustrate the relation between the multithreading 

degrees and the performance effects. The correlation information is then used to estimate 

the cache status and overall performance (IPC) at different multithreading degrees based 

on the status of the single active CTA.  

 This estimation would be executed every time workloads are launched, and it will pick a 

proper multithreading degree that achieves better overall performance. Comparing to the 

default multithreading degree, the proposed scheme can improve the overall performance 

of in-lab benchmarks by 60% in average 

According to the above observations, the performance of a parallel application on a 

GPGPU can be optimized by tuning the multithreading degree. This thesis proposes a 

multithreading decision scheme that observes the memory behavior of CTAs, and predicts the 

performance at each possible multithreading degree. The proposed scheme will then set an 

appropriate multithreading degree for better system performance. In summary, this thesis 

makes the following contributions: 
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2. Background 

2.1 Baseline GPGPU architecture 

The baseline GPGPU architecture used in this thesis is shown in Figure 3. It is modeled 

by a cycle accurate GPGPU simulator, GPGPU-Sim [13]. The configurations of the 

architecture adopt  NVIDIA’s Fermi GTX480 [24]. More detail information of this simulator 

can refer to its manual [14]. The GPGPU model consists of 15 shader cores, a centralized CTA 

scheduler, a unified L2 cache shared by all shader cores, and 6 DRAM partitions. Each shader 

core has a 32-way pipeline, a private read only L1 cache, a CTA buffer, and a warp scheduler. 

The default size of the CTA buffer can accommodate 8 CTAs.  

The private L1 data cache of each shader core is read-only. All the write requests would 

be view as write-misses and the target cache line would be evicted from the cache to the lower 

level memory hierarchy. The unified L2 data cache is writable, and it is divided into 6 

memory partitions, which is connected to one controller and one DRAM partition. The cache 

lines of both L1 and L2 cache can be accessed in a single transaction. This feature is referred 

as memory coalescing while all the requests to the same cache line can be serviced at once. 

The cache line size is set to 128 bytes, designed for a memory requests from a warp with 32 

threads. If some threads in a warp do not access data within the continuous addresses 128 

bytes, there would be additional memory accesses until all the requests are fulfilled. These 

un-coalesced accesses would increase the memory access latency and waste cache space since 

some data in the cache line may be useless.  

To comprehensively understand the performance effects of different multithreading 

degrees, this work first evaluates the system behavior with no L2 cache, and only enables the 

private L1 cache. This is mainly because the private L1 cache is easier to control and observe 

the effects of different multithreading degrees. The unified L2 cache needs to support all the 
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shader cores, therefore the multithreading from different shader cores together would have 

more complex and correlated effects. For instance, the inter-block data sharing issue is mainly 

determined by hardware scheduler at runtime and relatively difficult to predict. If the 

workloads have no inter-block data locality, then the behavior of L2 cache would be very 

similar to L1 cache, except for supporting memory requests from all the 15 shader cores by 

larger cache capacity. Therefore, to simplify the experiments, L2 cache is disabled in this 

work. A detailed baseline platform configuration is described in Table 8 at section 6. Except 

for L2 cache, the experimental environment is the same with the default configuration of 

GTX480 in GPGPU-Sim v.3.2.1. 

 

 

 

 

  

 

Figure 3: Baseline GPGPU architecture 
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2.2 CTA Scheduler and Warp Scheduler 

The centralized CTA scheduler dispatches the CTA to shader cores. It is simulated as the 

NVIDIA GigaThread Scheduler in the Fermi architecture. Before CTA dispatching, the 

scheduler checks the maximum number of CTAs that can be supported by each shader, 

including the number of registers and the capacity of shared memory. For example, if a CTA 

needs 20 registers, and there are total 60 registers in one shader core, the maximum number of 

CTAs is 3.  

The warp scheduler of each shader core controls the instruction issuing. It decides the 

order of warp selection in the CTA buffer, and it checks the status of instructions belonging to 

the selected warp whether some of them are ready to be issued. One common warp selection 

order is the round-robin scheme, and other scheduling algorithms are proposed for different 

purposes. For example, Jog et al. [10] proposed a two-level round-robin scheduling policy to 

improve the efficiency of hiding instruction latency. Rogers et al. [8] proposed a scheduling 

scheme to capture the intra-CTA data locality. This work only modifies the CTA scheduler to 

achieve the goal of controlling multithreading degree of each shader core. The warp 

scheduling policy is greedy-then-oldest (GTO) scheme, which is implemented by the 

GPGPU-Sim. The GTO is a widely used scheduling scheme [9] and performs well compared 

to the simple round-robin scheduling scheme. 
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2.3 Workloads and Metrics 

In this work, some synthetic benchmarks are used to demonstrate the benefits of cache 

hierarchy design and the multithreading technique. The proposed decision scheme of 

multithreading degree is evaluated by some GPGPU applications that are implemented by 

CUDA programming interface, including in-lab benchmarks [19] and Rodinia [15, 18]. 

The in-lab benchmarks target on massive memory access pattern, and the working set 

sizes of some benchmarks are bigger than the L1 data cache, inflicting high pressure. The 

details of this bench suite are shown in Table 1. Another bench suite, Rodinia benchmarks, 

comes from many fields, including image processing, data mining, scientific simulation, and 

linear algebra. These benchmarks target on computation intensive workloads with relatively 

smaller pressure on the memory system. Table 2 shows some details of Rodinia benchmarks. 

Parboil [16] suite is another famous GPGPU bench suite, but it is not suitable for the 

performance evaluation in this work because its kernel implementation can only support up to 

80 CTAs. The kernel functions of Parboil only execute single iteration of CTAs. This feature 

does not fit our experiment setup since the proposed approach in this work would evaluate the 

multithreading degrees in the first iteration, and then decide the best multithreading degree for 

the following iterations of CTA computation.  

This work focuses on the overall performance improvement that is measured by 

instructions per cycle (IPC). The multithreading degree is defined as the total number of 

active warps as shown in equation (1)  

multithreading_degree = (effective CTA buffer size) × (#warps per CTA)         (1) 
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Table 1. In-Lab Massive Irregular Memory Parallel Applications [9] 

Applications Domain Descriptions Source Data Set 

Sizes 

bfs Electronic 

Design 

Automation  

bread first search Kuo et 

al.[19] 

2.6 MB 

sta Static timing analysis 3.0 MB 

gsim gate-level logic simulation 3.5 MB 

nbf Molecular 

Dynamics  

kernel abstracted from the GROMOS code Cosmic 

[20] 

6.3 MB 

moldyn force calculation in the CHARMM program 10.2 MB 

irreg Computational 

Fluid 

Dynamics  

kernel of Partial Differential Equation 

solver 

6.3 MB 

euler finite-difference approximations on mesh Chaos 

[21] 

8.5 MB 

unstructured fluid dynamics with unstructured mesh 10.2 MB 

 

 

Table 2. Rodinia Benchmarks [15, 18] 

Applications Domain Descriptions Data Set Sizes 

BFS Graph 

algorithm 

Graph Traversal 3.7 MB 

Gaussian Linear 

Algebra 

Dense Linear Algebra 192 KB 

Hotspot Physics 

simulation 

Structured Grid 5.1 MB 

Needleman-Wunsch Bioinfomatics Dynamic Programming 4 MB 

Pathfinder Grid traversal Dynamic Programming 9.5 MB 

Srad_v2 Image 

Processing 

Structured Grid 4 MB 
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3. Related Work 

In this section, some previous researches that focused on the CTA/warp scheduling 

scheme will be discussed. They targeted on different issues, including branch divergence, 

hiding memory latency, and cache locality optimization. Only few of them address the 

trade-off between multithreading and cache contention. 

Cheng et al. [2] transformed the CMP applications into the streaming programming 

model that decouples computation and memory accesses. The approach in [2] extracts tasks 

from a loop that can be entirely unrolled. The execution flow of a for-loop is decoupled to a 

memory task and a computation task. This decouple scheme is inspired from the CUDA 

programming interface, which allows higher controllability of both computation and memory 

tasks. The memory tasks and the computation tasks are all equally-sized. The computation 

task and memory task decoupled from the same loop is bound as a dispatching unit. Then, the 

analytical decision scheme monitors memory bandwidth demand of memory tasks, and it 

estimates the latency of memory accesses considering different level of memory parallelism. 

The analytical model adjusts the parallelism degree gradually based on the execution time of 

memory tasks. In contrast to the work in [2], the work in this thesis focuses on the correlation 

between the multithreading degree, system performance, and cache behavior. This work uses 

the correlation to predict the performance at different multithreading degrees. The approach in 

this work does not need a progressive adjustment scheme, and therefore it takes much lower 

overhead for the adjustment progress.  

Hong and Kim [3] proposed a performance analytical model for GPGPUs. They 

discussed the efficiency of memory latency hiding by the multithreading technique. The key 

component of this approach is to estimate the number of parallel memory requests by 

considering the number of running threads and memory bandwidth. Based on the degree of 
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memory parallelism, their model evaluates the system runtime considering the multithreading 

effect, coalescing of memory accesses, and synchronization overhead. However, their work 

did not consider the possible side-effect of multithreading, such like memory bandwidth limit 

that could lengthen the latencies of memory accesses. In addition, their work did not consider 

the cache hierarchy, and there is no discussion about the overheads of cache conflicts. This 

thesis gives a comprehensive discussion on various design concerns and trade-offs between 

cache performance and multithreading degree. The key issues discussed in this thesis includes 

the cache conflicts, the increment of memory requests, the latencies of memory requests and 

the effect of pipelining. These aspects are not addressed in the work of [3]. 

Fung et al. [4,5], Narasiman et al. [6], and Meng et al. [7] proposed warp scheduling 

schemes to solve branch divergence issues on SIMD GPGPU computation. Their approaches 

dynamically reformulate warps from all ready threads with the same PC (Program Counter), 

which expects warps to fully utilize all pipeline lanes. The work [6] also targeted on the 

improvement of hiding memory accesses through multithreading. They modified the warp 

hierarchy as a two-level design, and each warp has different priority to issue instruction. It 

prevents all warps from reaching the long latency instruction concurrently. In this thesis, the 

branch divergence is not under consideration, and the built-in warp scheduling policy and 

branch control on GPGPU-Sim is adapted directly.   

Rogers et al. [8] proposed a warp scheduling scheme considering the data reusing on 

data caches, named as Cache Conscious Wavefront Scheduling (CCWS). It uses additional 

on-chip storage to record the reusing status of data on each cache line, and scores all warps in 

the CTA buffer for prioritization. They concerned the cache contention issue since the data 

locality can be destroyed by multithreading when cache capacity is not enough. They 

implemented an effective approach to control the multithreading scheme. Even though they 

demonstrated the effect of multithreading on their system performance, there is no further 
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discussion about the trade-off between multithreading and cache contention. This thesis does 

not modify the warp scheduler and the data locality improving scheme, but controls the 

multithreading degrees through CTA scheduler. Besides, this thesis demonstrates various 

trade-offs between mulithtreading degrees and the contention in memory system.  

Kuo et al. [9] proposed a cache contention aware locality optimization scheme on 

GPGPU by software. They formulate the cache conflict issue of the unified last level cache, 

and proposed methods to pack CTAs, whose total working set size is smaller than a bound 

related to the size of last level cache, as a scheduling step. Scheduling the CTAs in a 

scheduling step would not harm the cache locality, and it blocks the CTA dispatching from 

other scheduling steps unless the current scheduling step is finished. To implement this 

approach, it takes off-line profiling of the CTA working set sizes, and the bound of the 

scheduling steps needs to be adjusted by designers. Unlike the static approach in [9], this 

thesis proposes an approach to dynamically adjust the multithreading degree based on a 

decision model that considers the relation between system performance and multithreading 

degrees. 

Jog et al. [10] proposed a work that discusses several performance issues on warp 

scheduling scheme of GPGPUs, including CTA-aware two-level warp scheduling, locality 

aware warp scheduling, DRAM bank level scheduling, and the prefetching scheme on 

memory side. The proposed two-level warp scheduling policy bound a number of CTAs as a 

group. The key idea of their idea is to set different priorities for warps in different groups. A 

higher issue priority is set on warps in the same group. Unless all warps in the current group 

are idled, the scheduler only issue instructions from warps in the current active group. 

However, this approach is not effective since the total number of candidate warps is far from 

enough to hide the memory access latencies, which are usually around hundreds of cycles. In 

our work, a direct limit of multithreading degree is set in CTA scheduling policy based on a 
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prior estimation, and it demonstrates significant improvement in system performance of 

memory intensive benchmarks. 
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4. Analysis of Performance Effect from Multithreading 

In this section, simulation results are used to demonstrate the multithreading effects. The 

detail simulator configurations are shown in Table 8, and some special settings are specified 

in each section. To simplify the discussion, this paper uses “MD” as the abbreviation of 

“Multithreading Degree”. 

4.1 The Performance Impact of Multithreading 

This section first uses the simulation results of a linear algebra, vector addition, to 

demonstrate the benefit of multithreading on performance. The kernel code of the vector 

addition is shown in Table 3.  

Table 3. Kernel Function of Vector Addition 

1: int A [20480]; 

2: int B [20480]; 

3: int C [20480]; 

4: kernel_vec_add ( int *C, int *A, int *B ) {        // CUDA kernel function  

5:    id = blockDim.x * blockIdx.x + threadIdx.x;   // per thread id 

6:    C[id] = A[id] + B[id]; 

7: } 

This workload is a memory-intensive benchmark because the computation time is much 

less than the latency of memory requests. The computation takes only a small part of the 

overall execution time in this benchmark, including an integer addition of 6 cycles, and an 

integer multiplication of 6 cycles with issue period of 2 cycles. Therefore, it is assumed that 

most execution cycles are consumed by memory tasks, and the multithreading enhances the 

performance by overlapping memory instructions. The performance at each multithreading 

degree is shown in Table 4. The performance improvement is almost proportional to the 

multithreading degree. Based on this runtime profiling, Figure 4 demonstrates the 

multithreading behavior on GPGPU-Sim. If the multithreading degree (MD) is 1 CTA, 

containing 2 warps, then these two warps can be executed almost concurrently. However, due 
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to the implementation limit, other CTAs need to wait until the active CTA is finished. In this 

example, the pipeline takes a long idle time due to the latency of memory accesses, but no 

other computation tasks can be executed at this moment. An improvement with MD = 4 (a 

CTA contains four warps) is demonstrated. It shows that four warps in a CTA can be executed 

concurrently, bring about 2x performance improvement. With MD = 6 warps, the performance 

is improved by about 3x compared to MD = 2. All these cases are ideal cases without 

considering memory bandwidth limit and pipeline resource competition. 

 

Table 4. Vector Addition Simulation Results 

MD 2 warps 4 warps 6 warps 8 warps 10 warps 12 warps 14 warps 

Execution Cycles 197157 100867 67506 50857 40823 34682 29757 

Norm. Cycles 1 0.51 0.34 0.26 0.21 0.18 0.15 

# DRAM_Reads 1280 1280 1280 1280 1280 1280 1280 

DRAM Access Latency 264 269 267 269 268 271 270 

* 1 CTA = 2 warps 

 

 

 

Figure 4: Timing of warp multithreading 
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Figure 5 demonstrates the multithreading effect on the overall performance of the in-lab 

benchmarks. To extract the essential impact of multithreading, L1 and L2 data caches are 

disabled to remove the effect from caches. The performance improvement of multithreading 

in this bench suite is not obvious. The benches, bfs, gsim, and sta, have smaller working set 

sizes, and therefore the multithreading enhances the performance when MD is smaller than 18 

warps. There shows no performance enhancement when applying higher MDs. Moreover, the 

multithreading does not attain performance enhancement for benches with bigger working set 

sizes. The reason is that the limits of memory bandwidth and interconnection still cause the 

long data access latencies. The prolonged memory latency compromises the benefit of 

multithreading, and the performance does not have further improvement. Note that some 

experimental results of benchmarks are not shown since the benchmark reaches the 

multithreading bound due to insufficient registers.  

 

  

 
Figure 5: In-lab bench with no caches 
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4.2 The Effect on Cache Misses and DRAM Reads  

The overheads of cache misses and DRAM reads are the main concern of the proposed 

decision scheme in this work. It is the most intuitive overhead of multithreading, and it is easy 

to be observed. More clearly, the decision scheme uses the number of DRAM reads to make 

decisions, since it represents the actual DRAM accesses, which take long latencies to fetch 

data into the cache.  

The increment of DRAM reads is due to the conflicts in caches. For example, some 

in-cache data might be evicted when the new data is fetched due to multithreading. If the 

evicted data is still useful for the later execution, extra DRAM reads are needed.  

 

Figure 6 demonstrates a possible situation that increases the DRAM reads when cache 

misses occur. In step 1, there is a cache with 4 lines and miss rate 50%, and 2 cache lines will 

be evicted since new data is fetched. In step 2, two new data are fetched, DRAM reads are 

increased by 2. The two corresponding cache lines have been evicted to accommodate the 

new data. In step 3, one of the evicted data will be reused based on the hit rate approaching to 

 

Figure 6: Multithreading adverse effect on cache misses and DRAM reads 
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50%, and it is fetched again from DRAM. The DRAM reads is increased by 1 again.  

Cache line evictions do not always harm the performance except for the evicted cache 

line will be reused. Data reusing status is useful to evaluate the probability of data refetching. 

This work uses cache_miss_rate as an indicator of data reusing. Based on the 

cache_miss_rate, it is assumed that each cache line has the same probability, (1- 

cache_miss_rate), to be accessed again. It infers that if one cache line is evicted now, the 

cache line has the probability of (1-cache_miss_rate) to be reused again. In this case, a 

DRAM fetching is needed in the neat future. This is the key reason why DRAM_read is 

increasing. Step 2 in Figure 6 shows other factors, including cache capacity and additional 

working set sizes with higher multithreading degrees. When additional data is fetched, a cache 

needs to empty some lines to store new data. Therefore, a bigger working set could cause a 

cache to evict more reusable lines. Table 5 shows some profiling data that are used as the key 

indicators in the prediction of DRAM accesses. This work develops the prediction model with 

a segmented curve fitted to the observed data. 

Table 5. Results of the increment of DRAM reads 

# CTAs 
bfs nbf unstructured 

miss rate dram_r dr_inc_rate miss rate dram_r dr_inc_rate miss rate dram_r dr_inc_rate 

1 0.41 72.94 (72.94) 0.13 169.39 (169.4) 0.22 1557.52 (1557.5) 

2 0.40 71.12 0.98 0.22 439.13 2.59 0.44 3406.75 2.19 

3 0.40 71.16 1.00 0.33 763.62 1.74 0.56 4384.41 1.29 

4 0.40 71.64 1.01 0.45 1125.74 1.47 0.63 5007.40 1.14 

5 0.41 73.03 1.02 0.54 1419.73 1.26 0.67 5341.11 1.07 

6 0.43 77.90 1.07 0.58 1545.29 1.09 0.67 5341.11 1.00 

7 0.46 83.01 1.07 0.59 1570.32 1.02 0.67 5341.11 1.00 

8 0.49 89.29 1.08 0.59 1570.32 1.00 0.67 5341.11 1.00 

* 1 CTA = 6 warps 

** dr_inc_rate = dram_r’/dram_r 
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4.3 The Effects of DRAM Access Latencies 

According to baseline configurations of GPGPU-Sim (Table 8 in section 6), the initial 

memory access latency is the sum of the following latencies: rop_latency + dram_latency + 

dram_chip_access_latency. These three types of latencies accumulate a total of 250 cycles. 

However, the real memory access latency when executing real applications would vary 

depending on the characteristics of applications. For our in-lab memory intensive benchmarks, 

the memory access latencies are around 350 cycles when the multithreading degree is set to 6 

warps. 

There are two possible reasons causing longer memory access latency. The first one, as 

demonstrated in section 4.1, is the memory bandwidth limit. This issue (memory bandwidth 

limit) involves many factors, including interconnection, memory bank-level parallelism, 

request queue size, and etc. The second reason is the cache allocation fail. The cache 

allocation fail occurs when all cache lines are reserved to wait for the arrival of newly fetched 

data back. In this case, the new-issued memory request to DRAM would be blocked until 

some cache lines become non-reserved. This situation prevents the possibility of overlapping 

DRAM accesses. The DRAM latencies cannot be hidden and the overall latency would be 

considerably prolonged since the new memory instruction needs to wait for the finish of a 

pervious DRAM fetch. 
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Table 6 shows the profiling of execution time and the increment of DRAM reads of a 

CTA in three benches, bfs, nbf, and unstructured. In most cases, the average execution time of 

a CTA becomes longer when the multithreading degree is higher, due to resources sharing by 

more CTAs. So, it assumes that this adverse effect of multithreading is due to the increment of 

DRAM reads. However, the profiled result shows that the adverse effect of more DRAM 

reads is not enough, which means the increasing rates of CTA execution times are bigger than 

DRAM reads growing.  

 

 

 

 

 

 

Figure 7: Memory time is extended 
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Table 6. DRAM Reads vs Execution Time 

#CTAs 
bfs nbf unstructured 

cta exe 

time 

ratio dr_inc_rate cta exe 

time 

ratio dr_inc_rate cta exe 

time 

ratio dr_inc_rate 

1 2582 (2582) (72.94) 9161 (91671) (169.4) 87292 (87292) (1557.5) 

2 2897 1.12 0.98 17261 1.88 2.59 164058 1.88 2.19 

3 3351 1.16 1.00 35438 2.05 1.74 377487 2.30 1.29 

4 3875 1.16 1.01 73959 2.09 1.47 566328 1.50 1.14 

5 4601 1.19 1.02 121446 1.64 1.26 760938 1.34 1.07 

6 7097 1.54 1.07 159845 1.32 1.09 915126 1.20 1.00 

7 7831 1.10 1.07 190175 1.19 1.02 1065425 1.16 1.00 

8 9412 1.20 1.08 217308 1.14 1.00 1217622 1.14 1.00 

* 1 CTA = 6 warps, (val): the initial value 

 

The following results in Table 7 have demonstrated the adverse effect of longer memory 

latencies caused by improperly excessive multithreading. One of the main issues is that the 

dr_inc_rate * mf_latency_rate is greater than the cta_exe_rate in some cases, but smaller in 

many other cases especially when the growing ratio of cta_exe_rate is smaller than 2. 

Table 7. DRAM Reads vs Execution Time 

#CTAs 
bfs nbf unstructured 

cta exe 

rate 

dr_inc_rate mf_latency cta exe 

rate 

dr_inc_rate mf_latency cta exe 

rate 

dr_inc_rate mf_latency 

1 (2582) (72.94) (329) (9161) (169.4) (374) (87292) (1557.5) (302) 

2 1.12 0.98 1.09 1.88 2.59 1.06 1.88 2.19 1.46 

3 1.16 1.00 1.08 2.05 1.74 1.46 2.30 1.29 1.74 

4 1.16 1.01 1.06 2.09 1.47 1.49 1.50 1.14 1.12 

5 1.19 1.02 1.07 1.64 1.26 1.08 1.34 1.07 1.04 

6 1.54 1.07 1.43 1.32 1.09 1.03 1.20 1.00 1.00 

7 1.10 1.07 1.02 1.19 1.02 1.01 1.16 1.00 1.00 

8 1.20 1.08 1.04 1.14 1.00 1.00 1.14 1.00 1.00 

* 1 CTA = 6 warps, (val): the initial value 
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4.4 The Effect of Pipeline Architecture  

The product of adverse effects of DRAM reads and memory latencies is not enough for 

the adverse effect of CTA execution time as shown in Table 7. One supposition is that the 

latencies of most types of instructions are about 6 to 10 cycles. To cover these latencies, 10 

warps for multithreading is enough. If the multithreading degree is higher than the pipeline 

ALU latencies, the execution time of a single warp is lengthened. Therefore a parameter is 

used to compensate the adverse effect, named as pipeline adverse effect. This parameter is not 

that important as the previous two, in most cases, 1.1 is enough. But for some memory 

intensive benchmarks, whose working set size is bigger than 5 times of cache capacity or the 

amount of DRAM reads is close to warp instructions, the adverse effect should be set as 1.2. 
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5. A Decision Scheme of Multithreading Degree  

5.1 Decision Scheme of Multithreading Degree 

The proposed decision scheme is based on three performance parameters, including 

DRAM reads, memory access latency, and effects of pipeline architecture. The flow diagram 

of multithreading decision scheme is shown in Figure 8. All these predictions are formulated 

as segmented curve-fitting issues. The predictions on these three parameters are performed by 

a hardware predictor. The detailed hardware support of the GPGPU architecture will be 

introduced in section 5.2. 

As shown in Figure 8, the first step of this decision scheme is DRAM reads prediction. 

This is the one of the main factor of this decision scheme. It predicts the DRAM reads of each 

CTA at different multithreading degrees from 1 CTA to 8 CTAs. Cache miss rate, cache 

capacity, and the working set size of each CTA will affect the competition of cache. The cache 

miss rate is set to DRAM reads over total cache accesses. Here, a measurement, increasing 

rate of DRAM reads, is defined as equation (2), and it is a key indicator to represent the 

increment of DRAM reads. 

Increasing Rate of DRAM reads =  
# DRAM reads at MD=N

# DRAM reads at MD=(N−1)
         (2) 
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Figure 9 shows the increasing rate of DRAM reads by different cache miss rate with 

similar working set size and 8KB L1 cache. The working set size of a bfs CTA is about 70 

cache lines, and the working set size of an nbf CTA is about 65 cache lines; 8KB L1 cache 

contains 64 cache lines. The data of benchmark, bfs, is shown in red color, and the blue data 

comes from nbf benchmark. The most important information in this figure is at MD = 1 CTA 

and MD = 2 CTAs. At MD = 1, the numbers of DRAM reads per CTA of both benchmarks are 

similar, but the cache miss rate of nbf is much lower than bfs. When MD increase to 2 CTAs, 

the total working set size of both benchmarks are doubled. However, the additional working 

set size comes from another CTA leading to different effect, a lower miss rate making the 

amount of DRAM reads increase more than two times, reaching about 4 times more. 

 

Figure 8: Proposed decision scheme 
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Figure 10 shows the effect of cache capacity. The data is profiled from bfs benchmark 

executed at different L1 cache size. If the same workload executed on caches with different 

size, the increasing rate of both DRAM reads and cache misses would be lower with a bigger 

cache capacity, especially when the working set size is bigger than the cache capacity. 

 
Figure 9: Variation on cache miss rate and DRAM reads as multithreading degree changes 
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Figure 11 demonstrates the effect of working set size increasing along with 

multithreading degree rising. The data is profiled from bfs benchmark but with different size 

of CTAs, one is 3 warps, another is 6 warps. In the case of 6 warps per CTA, the increasing 

rate of either cache miss rate or DRAM reads are higher than the case with smaller working 

set size. 

Based on these three factors, a basic prediction scheme for DRAM reads can be built. 

However, to fit for more general purpose applications, more runtime data is needed for 

off-line model building. 

 

Figure 10: The effect of cache capacity on DRAM reads and cache miss rate when 

multithreading degree increase 
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The second prediction stage, latency prediction, takes the predicted miss rate, DRAM 

reads, and cache capacity as the decision criterions. Before start the decision flow, it needs to 

decide whether the workload is computation bound or memory bound based on the ratio of ( # 

DRAM reads / # warp inst ). From the profiling results, the ratio is set to 0.05. For memory 

intensive benchmarks, the decision scheme can start directly. If the miss rate is lower than 

0.15 or higher than 0.85, the adverse effect of growing latency is small. In this situation, the 

growing rate is set as 1.03. If the miss rate is lower than 0.3 and higher than 0.15, the growing 

rate is set as 1.1. For other cases, if the working set of CTA is larger than 5 times of cache 

capacity and the delta of miss rate is larger than 0.1, the growing rate is set to 1.9. If the 

working set size is larger than 15 times of cache capacity and the delta miss rate is larger than 

0.04, the growing rate is set to 1.75. For other cases, the growing rate is set as 1.1. These 

settings are attained from observations of extensive experiments.   

 

Figure 11: The effect of cache capacity on DRAM reads and cache miss rate when 

multithreading degree increase 
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The third stage is to predict the effect of pipeline architecture. It checks whether the 

working set size at the target multithreading degree is large than the cache capacity. If the 

working set size is lower than the cache capacity, the effect ratio is 1.05. For other cases, if 

the DRAM reads of each CTA is larger than 5 times of cache capacity, the ratio is set to 1.2, 

or otherwise 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

- 29 - 

 

 

5.2 Hardware Support on GPGPU Architecture 

There require two additional components on GPGPUs to achieve dynamic tuning on 

multithreading degrees when each kernel launched. First, there needs one predictor on one of 

the shader cores. The multithreading degree of the shader core with predictor is set as one 

CTA with 6warps. Other shader cores apply the default multithreading degree, which is set to 

8 CTAs. When the core with the predictor finishes the execution of the assigned CTA, it 

passes the collected statistics of cache accesses, DRAM reads, and the average memory 

access latency to the predictor. The predictor tries to attain a better multithreading degree by 

evaluating the memory access latency, increment of DRAM reads, and pipeline overhead. The 

second component is the Multithreading Degree Controller on the CTA scheduler in the CTA 

scheduler. When the evaluation is done, the decision will be sent to the Multithreading Degree 

controller. The CTA scheduler will control the number of CTAs dispatched to each shader 

core. The modifications are shown in Figure 12. 

 

  

 

Figure 12: Proposed GPGPU architecture 
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6. Experimental Results 

6.1 Experimental Setup 

This work runs all the experiments on a cycle-accurate GPGPU simulator, GPGPU-Sim 

[13]. It uses the default configuration for NVIDIA’s GTX480 GPGPU. Note that the L2 data 

cache is disabled to better observe the correlation between multithreading degrees and data 

access patters. Some key parameters are shown in Table 8. The benchmarks for performance 

evaluation include in-lab memory intensive benchmarks [19], Rodinia [15, 18], and Parboil 

[16]. 

Table 8. Baseline architecture configuration * 

Shader Core Configuration 1400MHz, SIMT width = 32 threads, total 15 shaders 

Resources / Core max 1536 threads, max 8 CTAs, 32768 registers 

Caches / Core 4-way L1 data cache, 128B line size 

L2 Cache disable 

Warp Scheduling greedy-then-oldest (GTO) 

CTA Scheduling load balance scheduling / customization 

Interconnection 700MHz, one stage fly topology ( 15 cores + 12 memory partitions),  

DRAM Model 16 banks/partition, 4B partition bus width, FR-FCFS request 

scheduling (max 132 requests/mem controller) 

DRAM Timing  924MHz, tCD=2, tRRD= 6, tRCD=12, tRAS=28, tRP=12, tRC=40, tCL=12, 

tWL=4, tCDLR=5, tWR=12, 

Core to L2 latency 120 cycles 

Core to DRAM latency 220 + DRAM chip access time 

* use the default GTX480 configuration in GPGPU-Sim 3.2.1 
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6.2 Experimental Results 

Figure 13 to Figure 17 show the experimental results of the performance improvement 

and the predicted multithreading degrees of our in-lab benchmarks with different L1 data 

cache sizes, from 8KB to 128KB respectively.  

 

 

 

 

Figure 13: Performance with 8KB L1 data cache 

 

 

Figure 14: Performance with 16KB L1 data cache 
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Figure 15: Performance with 32KB L1 data cache 

 

 

Figure 16: Performance with 64KB L1 data cache 
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As shown in these figures, the proposed multithreading decision scheme works 

accurately in cases with smaller cache, i.e. 8KB, 16KB and 32KB; however, the predictions 

are not as accurate for cache sizes of 64KB and 128KB. The main reason is because the large 

cache capacity releases the pressure on memory system from memory intensive benchmarks. 

It makes their characteristics close to memory-computation-balanced workloads, and the 

current design of the decision scheme cannot handle this indistinct field. Even the accuracy of 

prediction decreases, the proposed decision scheme still catches a better multithreading 

degree than the default setting. It shows that the performance improvement reaches 67% when 

L1 cache is 64KB in Figure 16. With 128KB L1 cache, the performance improvement is 

about 23%, and the static best solution is about 33% in Figure 17.  

The average performance improvement in the in-lab benchmarks is about 60%. The best 

performance improvement achieves 180% compared to the default multithreading degree. The 

prediction accuracy becomes lower for computation-bound benchmarks, and therefore 

 

 

Figure 17: Performance with 128KB L1 data cache 
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degrade the effectiveness of the proposed decision scheme. 

Figures 18 to 22 demonstrate the performance of Rodinia benchmarks. This experiment 

shows the results of following benchmarks, including BFS, gaussian, hotspot, nw, pathfinder, 

and srad_v2. The other benchmarks are not used because ……. However, the proposed 

decision scheme cannot achieve better performance than the default CTA parallelism setting 

since the data access patterns of these benchmarks in Rodinia are already optimized. The 

contention on memory systems is minimized and therefore higher multithreading degrees can 

usually return the better performance.  

 

 

 
Figure 18: Performance of Rodinia Benchmarks with 8KB L1 
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Figure 19: Performance of Rodinia Benchmarks with 16KB L1 

 
Figure 20: Performance of Rodinia Benchmarks with 32KB L1 
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Figure 21: Performance of Rodinia Benchmarks with 64KB L1 

 
Figure 22: Performance of Rodinia Benchmarks with 128KB L1 
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6.3 Summary 

These experiments demonstrate the effects of multithreading degrees on overall 

performance. In these benchmark suites (the in-lab suite and Rodinia suite), different 

multithreading degrees lead to different overall performance, and the selection strategy 

depends on the benchmark characteristics. For memory intensive benchmarks, a trade-off 

between multithreading degree and memory behavior is important. The proposed decision 

scheme can find a better multithreading degree for system performance in most cases, 

especially when there is high pressure on memory system. The decision scheme can also 

detect the computation-bound benchmarks, and change the decision scheme tending to higher 

multithreading degrees. The proposed scheme improves system performance of 

memory-intensive benchmark 60% averagely. It also tracks computation-bound benchmarks, 

and keeps them at higher multithreading degrees to efficiently utilize computation resources. 
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7. Conclusions 

This work demonstrates the performance effects of multithreading on GPGPUs. The 

expriemntal results have demonstrated the performance enhancement by applying the 

multithreading technique. However, the results also illustrate the non-trivial trade-off between 

multithreading degrees and cache contention. To achieve the best performance, designers 

should consider the number and latencies of DRAM accesses, as well as the effects of 

pipeline architecture. Some hardware and software properties have also impacted the overall 

performance, including cache miss rate, cache capacity, working set size of each CTA, 

memory intensive or computation intensive workloads, and the latency of DRAM accesses.  

Based on the extensive experiments and observations of these effects, this work proposed 

a multithreading auto decision scheme to make the trade-off between multithreading benefit 

and the associated effects. At first, a prediction scheme is needed to estimate the total DRAM 

reads of every multithreading degree. Second, based on the predicted number of DRAM reads 

at a multithreading degree, the proposed scheme evaluates the possible latency of DRAM 

reads. Third, the proposed scheme estimates the effect of pipeline architecture that cause the 

long execution time of single CTA. Finally, the proposed scheme applies these estimation and 

changes the multithreading degree to achieve the best system performance.  

The experiments are based on two benchmark suites, including an in-lab irregular 

memory intensive benchmarks and the third-party Rodinia benchmarks. All the experiments 

are performed on a cycle accurate GPGPU simulator, GPGPU-Sim. The experimental results 

show that the proposed decision scheme can accurately catch the characteristics of 

applications and return better performance. The overall performance improvement for in-lab 

suite is about 60% in average, and up to 180% for the best case. However, it shows limited 

performance improvement in Rodinia suite since the execution behavior of these benchmarks 
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are already optimized and there leaves limited room for the proposed decision scheme to 

attain further performance enhancement.  
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