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Abstract

The electrostatic integrity for UTB GeOI MOSFETs is examined comprehensively by using an
analytical solution of Poisson’s equation verified with TCAD simulation. Our results indicate
that UTB GeOI MOSFETs with the ratio of channel length (Lg) to channel thickness (Tch)
around 5 can show comparable subthreshold swing to that of the SOI counterparts. The impact
of the buried oxide thickness (TBOX) and back-gate bias (Vback-gate) on the electrostatic integrity
of GeOI devices is also examined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Germanium as a pFET channel material has been recently
proposed [1–6] to enable mobility scaling. However, its higher
permittivity makes it very susceptible to short channel effects
(SCEs). The ultra-thin body (UTB) MOSFETs with thin
buried oxide (BOX) have emerged as an important candidate
for CMOS scaling [7–9]. Germanium-on-insulator (GeOI)
devices are expected to offer better electrostatic control over
bulk Ge devices [10].

Several studies [10–12] have compared the electrostatic
integrity of Ge and Si devices in the past. An et al [11]
showed that the off-state leakage current of UTB GeOI devices
is comparable to or even a little lower than that of SOI
devices. Pethe et al [12] showed that the Ge double gate suffers
worse SCEs and therefore has higher subthreshold swing than
the Si device. Batail et al [10] showed that UTB GeOI
devices present equivalent threshold voltage control as SOI
devices. These studies, either employing numerical simulation
or using a semi-empirical model with fitting parameters, have
not shown consistent results. Moreover, analytical analysis
of the UTB GeOI MOSFET has rarely been seen. In this
work, we assess the electrostatic integrity for nanoscale UTB
GeOI MOSFETs by using analytical solution of Poisson’s
equations and provide more scalable and predictive results for
UTB GeOI MOSFET analysis. Following the 2007 edition

of the International Technology Roadmap for Semiconductors
[13], UTB MOSFETs for various generations are investigated.
Through our theoretical model, a comprehensive analysis
including the impact of TBOX, Tch and Vback-gate on the
electrostatic integrity of the UTB GeOI MOSFET is presented.

2. Analytical model and methodology

Our theoretical subthreshold swing for UTB GeOI is derived
from analytical potential solution in the subthreshold region.
Figure 1 shows a schematic sketch of a UTB MOSFET with
thin BOX structure. In the subthreshold regime, the channel
is fully depleted with negligible mobile carriers. Therefore,
the channel potential distribution, φch(x, y), satisfies Poisson’s
equation:

∂2φch(x, y)

∂x2
+

∂2φch(x, y)

∂y2
= −qNch

εch
. (1)

Since there is no charge in the BOX region, the BOX potential
distribution, φbox(x, y), satisfies the Laplace equation:

∂2φbox(x, y)

∂x2
+

∂2φbox(x, y)

∂y2
= 0. (2)
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Figure 1. Schematic sketch of a UTB MOSFET with thin BOX
structure investigated in this study.

Above, Nch is the channel doping concentration and εch is the
permittivity of the channel. The required boundary conditions
can be described as

φch(Tch, y) + Ti

εch

εi

· ∂φch(x, y)

∂x

∣∣∣∣
x=Tch

= Vg − Vfb, (3a)

φch(x, 0) = −φms + Vs, (3b)

φch(x, Lg) = −φms + Vd, (3c)

φbox(−TBOX, y) = Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub),

(3d)

φbox(x, 0) = [Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

+
(−φms + Vs) − [Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

TBOX
x,

(3e)

φbox(x, Lg) = [Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

+
(−φms + Vd) − [Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

TBOX
x,

(3f )

εch · ∂φch(x, y)

∂x

∣∣∣∣
x=0

= εox · ∂φbox(x, y)

∂x

∣∣∣∣
x=0

, (3g)

∂φch(x, y)

∂y

∣∣∣∣
x=0

= ∂φbox(x, y)

∂y

∣∣∣∣
x=0

, (3h)

where Tch, Ti and TBOX are the thicknesses of the channel, gate
insulator and buried oxide, respectively; Lg is the gate length;
εi and εox are the permittivities of the gate insulator and BOX,
respectively; Vg , Vback-gate, Vd and Vs are the voltage biases
of the gate, back-gate, drain and source, respectively; Vfb and
Vfb,back-gate are the flat-band voltages of the gate and back-gate,
respectively; φms is the built-in potential of the source/drain
to the channel; Ei,ch and Ei,sub are the intrinsic Fermi levels of
the channel and substrate (back-gate), respectively.

The corresponding 2D boundary value problem can be
divided into two sub-problems, a 1D Poisson’s equation and a
2D Laplace equation. Using the superposition principle, the
complete channel potential solution is φch(x, y) = φch,1(x) +

φch,2(x, y), where φch,1(x) and φch,2(x, y) are solutions of 1D
and 2D sub-problems in the channel, respectively. The 1D
solution φch,1(x) can be expressed as

φch,1(x) = −qNch

2εch
x2 + A · x + B, (4a)

A=
{
(Vg − Vfb)− [Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

+
qNch

2εch

(
T 2

ch + 2
εch

εi

TiTch

) }/{
Tch +

εch

εi

Ti +
εch

εox
TBOX

}
,

(4b)

B = εch

εox
TBOX · A + [Vback-gate − Vfb,back-gate

+ (Ei,ch − Ei,sub)]. (4c)

In solving the 2D sub-problem, the boundary condition
of the gate dielectric/channel interface (3a) is simplified by
converting the gate dielectric thickness to (εch/εi) times and
replacing the gate dielectric region with an equivalent channel-
material region. The electric field discontinuity across the gate
dielectric and channel interface can thus be eliminated. For
the channel/BOX interface, both potential distribution in the
channel (φch,2(x, y)) and that in the BOX (φbox,2(x, y)) have
to be considered to satisfy the boundary conditions (3g) and
(3h).

The 2D solution φch,2(x, y) can be obtained using the
method of separation of variables:

φch,2(x, y) =
∑

n

{[cn · sinh(γny)

+ c′
n · sinh(γn(Lg − y))] · sin(γnx)

+ en · sinh(λn(Tch + (εch/εi)Ti − x)) · sin(λny)}, (5a)

where

λn = (nπ)/Lg, (5b)

γn = (nπ)/(Tch + (εch/εi)Ti). (5c)

The coefficients cn, c′
n and en in (5a) can be expressed as

cn = 1

sinh(λnLg)

[
2(−φms + Vd − B) · 1 − (−1)n

nπ
+ 2A

·
(

Tch +
εch

εi

Ti

)
(−1)n

nπ
+ 2

(
Tch +

εch

εi

Ti

)2

· (−1)n − 1

(nπ)3

]
,

(5d)

c′
n = 1

sinh(λnLg)

[
2(−φms − B)

1 − (−1)n

nπ
+ 2A

·
(

Tch +
εch

εi

Ti

)
(−1)n

nπ
+ 2

(
Tch +

εch

εi

Ti

)2

· (−1)n − 1

(nπ)3

]
,

(5e)

en = (RHSn/LHSn)

sinh
(

nπ
Lg

(Tch + (εch/εi)Ti)
) , (5f )

2
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Figure 2. Analytical potential distribution compared with the result
of TCAD simulation. A midgap work function (4.5 eV) is used.

where

LHSn = λn · coth(λnTBOX)

+
εch

εox
λn · coth(λn((εch/εi)Ti + Tch)), (5g)

RHSn = 2
εch

εox
A · 1 − (−1)n

nπ

+
∑
m

{[
cn ·

(2εch/εox)(−1)n+1

nπ
sinh(λmLg)

1 + (γm/λn)2

+ c′
n ·

(2εch/εox)

nπ
sinh(λmLg)

1 + (γm/λn)2

]
· λm

− dn

mπ

TBOX

(−1)m+n+1

nπ

2 sinh
(

mπ
TBOX

Lg

)
1 + (γm/λn)2

− d ′
n

mπ

TBOX

(−1)m

nπ

2 sinh
(

mπ
TBOX

Lg

)
1 + (γm/λn)2

}
, (5h)

dn = 2

sinh(γnLg)

{
[Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

·1 − (−1)n

nπ
+ [(−φms + Vd − B)] · (−1)n+1

nπ

}
, (5i)

d ′
n = 2

sinh(γnLg)

{
[Vback-gate − Vfb,back-gate + (Ei,ch − Ei,sub)]

·1 − (−1)n

nπ
+ [(−φms − B)] · (−1)n+1

nπ

}
. (5j )

Our analytical potential solution has been verified with
TCAD simulation [14]. Figure 2 shows that our model is
fairly accurate for various channel doping (Nch). Based on the
potential solution, the subthreshold current can be derived by

Id = qμnW(kT /q)
(
n2

i

/
Nch

)
[1 − exp(−Vd/(kT /q))]∫ Lg

0 dy
/∫ Tch

0 exp[qφch(x, y)/(kT )] dx
. (6)

Figures 3–6 demonstrate that our UTB subthreshold
current model is quite scalable with important device design
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parameters such as Nch, Tch, Lg and Vback-gate. The UTB
subthreshold current model shows good agreement with
TCAD simulation for both N/P FET UTB SOI and GeOI
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devices. With the subthreshold current model, subthreshold
swing can be obtained. Several papers recently published
indicated that an accurate investigation of electrostatic
integrity for bulk [15] and FDSOI [16] MOSFETs must
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Figure 7. The impact of INWE on the subthreshold swing for the
UTB thin BOX GeOI MOSFET with (a) Vd = −0.05 V and
(b) Vd = −1 V.

be carried out by 3D Poisson analysis to consider the
inverse narrow width effect (INWE). However, as shown in
figure 7, for UTB thin BOX MOSFETs with a lightly doped
channel, the impact of INWE on the subthreshold swing is
insignificant. Therefore, our analytical subthreshold current
model is sufficient for examining the electrostatic integrity of
the UTB MOSFETs.

Compared with the TCAD device simulation, our
methodology shows higher efficiency in determining the
subthreshold current of a UTB MOSFET. For TCAD
simulation, the CPU time needed for a single subthreshold
current is about several minutes, while in our calculation
several seconds only is needed.

In this work, important device parameters used for
investigating the electrostatic integrity of the lightly doped
(Nch = 1 × 1016 cm−3) pFET UTB MOSFET such as Lg and
EOT for each generation are determined based on the ITRS
roadmap [13].

3. Electrostatic integrity for UTB GeOI MOSFET

Figure 8 shows that due to higher permittivity, the hole
conduction path of GeOI devices is closer to the back-gate

4
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Figure 9. Impact of the buried oxide thickness (TBOX) on (a) the
subthreshold swing and (b) the hole density distribution in the
subthreshold region.

interface (Tch/BOX interface) than SOI devices. Thus, the
GeOI device has worse electrostatic integrity than the SOI
device generally. Figure 9 illustrates the impact of TBOX
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Figure 10. Impact of the channel thickness (Tch) on the subthreshold
swing for (a) Vd = −1 V and (b) Vd = −0.05 V with Lg = 25 nm.

on the subthreshold swing (figure 9(a)) and hole density
distribution in the subthreshold region (figure 9(b)). At
Vd = −1 V, the SCEs of UTB devices result from the electric
field coupling between the source and drain through BOX. As
TBOX is scaled, the SCEs of UTB SOI and GeOI devices can
be improved, and the UTB devices show lower subthreshold
swing (figure 9(a)). Figure 9(b) shows that as TBOX is scaled,
the hole conduction path becomes closer to the front-gate
surface (Ti/Tch interface). Therefore, thin BOX with stronger
front-gate controllability is needed for GeOI devices.

Figure 10 shows the impact of Tch on the subthreshold
swing of SOI and GeOI devices for Vd = −1 V and Vd =
−0.05 V with Lg = 25 nm. As Tch is scaled, the subthreshold
swing of the UTB device is reduced. When Tch = 10 nm, the
GeOI device with worse electrostatic integrity shows larger
subthreshold swing than that of the SOI device. When Tch is
scaled to 5 nm, the subthreshold swing of the GeOI device
becomes comparable to that of the SOI device because the
GeOI device with thin Tch shows well-controlled electrostatic
integrity. Moreover, the UTB devices with Vd = −1 V
and Vd = −0.05 V show comparable subthreshold swing as
Tch = 5 nm. In other words, the impact of drain-induced barrier
lowering (DIBL) on subthreshold swing can be suppressed

5
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Figure 11. Impact of the channel thickness (Tch) on the subthreshold
swing for (a) Vd = −1 V and (b) Vd = −0.05 V with Lg = 16 nm.

when Tch is scaled. Figure 11 shows the impact of Tch on the
subthreshold swing of UTB devices with Lg = 16 nm. When
Tch is reduced to 3 nm, the GeOI device shows comparable
subthreshold swing to that of SOI devices.

More generations of UTB devices are investigated for the
device design of GeOI devices (figure 12(a)). As for the ITRS
roadmap [13], the device design for SOI devices with a Si
channel, the ratio of Lg to Tch is around 3. Figure 12(a) shows
that the GeOI devices with the ratio of Lg to Tch around 5 can
show well-controlled electrostatic integrity and comparable
subthreshold swing to that of the SOI devices. Figure 12(b)
shows that even considering quantum effects, the UTB GeOI
and SOI MOSFETs still show comparable subthreshold swing
as Lg/Tch around 5. The comparison between UTB GeOI and
SOI MOSFETs in figure 12 is based on the same off-current
(2 × 10−8 A μm−1) by adjusting the gate work function for
both GeOI and SOI MOSFETs, respectively.

Besides TBOX and Tch scaling, Vback-gate is also beneficial
for suppressing the SCEs of GeOI devices. Figure 13 shows
the impact of Vback-gate on the subthreshold swing for Lg =
25 nm. As Vback-gate is increased, the subthreshold swing
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gradient model in TCAD simulation [14].
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Figure 13. Impact of the back-gate bias (Vback-gate) on the
subthreshold swing with Lg = 25 nm.

of UTB devices is reduced. In figure 13, the subthreshold
swing of the GeOI device with larger Tch (= 10 nm) shows
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higher sensitivity to Vback-gate as compared to that of the GeOI
device with smaller Tch (= 5 nm). The GeOI device shows
better front-gate controllability and electrostatic integrity with
increasing Vback-gate because the hole conduction path for the
GeOI device becomes closer to the front-gate surface.

Besides UTB MOSFETs, silicon-on-nothing (SON)
MOSFETs have also been proposed as a possible alternative
scalable solution to satisfy the ITRS roadmap requirements
[17, 18]. Therefore, the comparison of the electrostatic
integrity among GeOI, SOI and SON is an important issue
and merits investigation in the future.

4. Conclusion

We have investigated the electrostatic integrity for UTB GeOI
devices using analytical solution of Poisson’s equation verified
with TCAD simulation. Especially, the impacts of TBOX,
Tch and Vback-gate on the electrostatic integrity for the UTB
GeOI MOSFET have been carefully examined. Our results
indicate that the UTB GeOI MOSFETs with the device design
of Lg/Tch ∼ 5 show acceptable and comparable subthreshold
swing to that of SOI devices. The electrostatic integrity for
the UTB GeOI MOSFET is very sensitive to the Tch scaling.
TBOX reduction and positive Vback-gate are also beneficial for
suppressing the SCEs of pFET UTB GeOI MOSFETs. This
study may provide insights for the UTB GeOI device design.
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