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Abstract-The fading number of a general (not necessarily
Gaussian) regular multiple-input multiple-output (MIMO) fading
channel with arbitrary temporal and spatial memory is derived.
The channel is assumed to be non-coherent, i.e., neither receiver
nor transmitter have knowledge about the channel state, but
they only know the probability law of the fading process. The
fading number is the second term in the asymptotic expansion
of channel capacity when the signal-to-noise ratio (SNR) tends
to infinity.

It is shown that the fading number can be achieved by an input
that is the product of two independent processes: a stationary
and circularly symmetric direction- (or unit-) vector process
whose distribution needs to be chosen such that it maximizes
the fading number, and a non-negative magnitude process that
is independent and identically distributed (IID) and that escapes
to infinity.

Additionally, in the more general context of an arbitrary
stationary channel model satisfying some weak conditions on the
channel law, it is shown that the optimal input distribution is
stationary apart from some edge effects.

I. INTRODUCTION

In recent years there has been an ever increasing interest in
the fundamental theoretical understanding of wireless mobile
communication systems, and in particular in the channel
capacity which gives an ultimate limit on the information rate
that can be transmitted reliably over these channels if we do
not constrain delay and computing complexity.

Unfortunately, it turns out that the capacity, especially in the
high signal-to-noise ratio (SNR) regime, is highly sensitive
to some of the basic assumptions made in the modeling of
the channel. For example, there is a tremendous difference in
the high-SNR capacity depending on the assumptions made
about the channel state information that is directly or indirectly
available to the receiver. If the channel state is perfectly
known to the receiver (coherent detection), the capacity grows
logarithmically in the SNR similar to the situation without
fading [1]. If the channel state is not available directly, but
needs to be estimated by the receiver based on the received
sequence of channel output symbols (non-coherent detection),
the capacity depends highly on the assumptions made about
the fading process: for regular fading1 the capacity grows
only double-logarithmically in the SNR [2], [3], i.e., at high
SNR these channels become extremely power-inefficient in the

'For a mathematical definition of regularity see Section II.

sense that for every additional bit capacity the SNR needs to
be squared or, respectively, on a dB-scale the SNR needs to
be doubled! For non-regular Gaussian fading the high-SNR
behavior of capacity depends on the specific power spectral
density and can be anything between the logarithmic and the
double-logarithmic growth [4].

In an attempt to specify the threshold between the efficient
low- to medium-SNR regime and the highly inefficient high-
SNR regime of regular fading channels, [3], [5] define the
fading number X as the second term in the high-SNR asymp-
totic expansion of capacity, i.e., the capacity at high SNR can
be written as

C(SNR) = log log SNR + X + o(1) (1)

where o(l) denotes some terms that tend to zero as SNR --> oo.
We define high-SNR to be the region where the o(l)-terms in
(1) are negligible. Note that due to the extremely slow growth
of log log SNR, the fading number is usually the dominant
term in the lower range of the high-SNR regime. Hence, it is
of great practical interest to have a system with large fading
number.

So far, the fading number has been successfully derived in
some special cases only: the case of single-input multiple-
output (SIMO) fading channels with memory has been solved
in [6], [5], the fading number of memoryless multiple-input
single-output (MISO) fading channels has been derived in [3],
[5], and very recently the memoryless multiple-input multiple-
output (MIMO) case was solved in [7].

In this paper we present the fading number for the remaining
cases of MISO and MIMO fading channels with memory.
The rest of this paper is structured as follows: after some
remarks about notation we will define the channel model in the
following section. In Section III we give some auxiliary results
that are interesting also in a more general context. Section IV
contains the main result and an outline of the proof. Before
we conclude in Section VI we specialize the main result to
some interesting cases in Section V.
We will often split a complex vector v e Ctm up into its

magnitude llvll and its direction v v where we reserve
this notation exclusively for unit vectors, i.e., throughout
the paper every vector carrying a hat, v or V, denotes a
(deterministic or random, respectively) vector of unit length
v = V = 1. To be able to work with such direction
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vectors we shall need a differential entropy-like quantity for
random vectors that take value on the unit sphere in Cm: let A
denote the area measure on the unit sphere in Cm. If a random
vector V takes value in the unit sphere and has the density
p> (v) with respect to A, then we shall let

h (V)-AE [logP(V)] (2)

if the expectation is defined.
All rates specified in this paper are in nats per channel use,

i.e., log(.) denotes the natural logarithmic function.

II. THE CHANNEL MODEL

We consider a channel with nT transmit antennas and nR
receive antennas whose time-k output Yk C CnR is given by

Yk = lHkXk + Zk

where xk e C1'T denotes the time-k channel input vector;
the random matrix HIk C CInRXT denotes the time-k fading
matrix; and the random vector Zk C CnR denotes additive
noise. We assume that the random vectors {Zk} are spatially
and temporally white, zero-mean, circularly symmetric, com-
plex Gaussian random variables, i.e., Zk are independent and
identically distributed (IID) CJ(0, Ou21) for some or2 > 0.
Here denotes the identity matrix.
As for the multi-variate fading process {Hk1}, we shall only

assume that it is stationary, ergodic, of finite second moment
E [THIk I2] < oc (where F denotes the Frobenius norm),
and of finite differential entropy rate h({Hk}) > -oc (the
regularity assumption). Hence, we do not necessarily assume
a fading process that is Gaussian distributed. Furthermore, we
assume that the fading process {Hk} and the additive noise
process {Zk } are independent and of a joint law that does not
depend on the channel input {xk}.
As for the input, we consider two different constraints: a

peak-power constraint and an average-power constraint. We
use S to denote the maximal allowed instantaneous power in
the former case, and to denote the allowed average power in
the latter case. For both cases we set SNR A-S
The capacity C(SNR) of the channel (3) is given by

C(SNR) = lim -supI (XI;YI)no--oQ n1

The fading number X is now defined as in [3, Definition 4.6],
[5, Definition 6.13] by

X({hEk})-A {C(SNR) -loglog SNR}.
SNRTO

(8)

Prima facie the fading number depends on whether a peak-
power constraint (5) or an average-power constraint (6) is
imposed on the input. However, it will turn out that the MIMO
fading number with memory is identical for both cases.

III. PRELIMINARY RESULTS

The proof of the main result relies on some observations
that hold in more general context and are therefore interesting
by themselves. We state here two of these observations without
proof.

A. Capacity-Achieving Input Distributions and Stationarity

One of the main assumption about our channel model is that
the fading process and the additive noise are stationary. From
an intuitive point of view it is clear that a stationary channel
model should have a capacity-achieving input distribution
that is also stationary. Unfortunately, we are not aware of a
rigorous proof of this claim. However, we give here a slightly
less strong statement that basically says that capacity can
be approached up to an e > 0 by a distribution that looks
stationary apart from edge effects:
Theorem 1: Assume some general channel model with in-

put Xk e C1'T and output Yk C CnR. Let the channel
model be stationary, i.e., for every choice of n e N and
distribution Q e P(CTX 12) on X' the mutual information
I(Xjn; Yj) does not change when shifting the input block
over time. Assume an average-power constraint (6) and let the
channel model be such that a zero input yields a zero mutual
information: I (0; Yk) = 0.
Now fix some non-negative integer i and some power S

with corresponding SNR A/u2. Then for every fixed e >
O there corresponds some positive integer r1 r=(S,) and
some joint distributions Q(+ e P(C'T A (I+±)) such that for
a blocklength n sufficiently large there exists some input Xl'
satisfying the following:

1) The input X' nearly achieves capacity in the sense that

(4)

where the supremum is over the set of all probability distri-
butions on X' satisfying the constraints, i.e.,

llXkll2 < S, almost surely, k = 1,2, ... , n (5)

for a peak-power constraint, or

n

E E [ Xk 2] < (6)
k=1

for an average-power constraint.
From [3, Theorem 4.2], [5, Theorem 6.10] we have

liM {C(SNR)- log log SNR} < oo. (7)
SNRTO

(9)
I

I (Xn; yn) > C(F)1

2) For every integer ,u with 0 < p < i, every length-(,u+1)
block of adjacent vectors (X, ... , X+H,) taken from

xlp xl1+*., Xn-2±+2 (10)

has the same joint distribution QS+, where this distri-
bution Q"+' is given as corresponding marginal distri-
bution of Q'+ l.

3) In particular, all vectors in (10) have the same marginal
Ql.

4) The marginal distribution Qsle gives rise to a second
moment 5:

E [llXV]l2] = 5, f = r, ...., n-2r1 + 2. (11)
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5) The first r 1- vectors and the last 2(r, -1) vectors
satisfy the power constraint possibly strictly:

E [llXe l2] < S, f C {1I . ., r1- }Un-2r1+3, ... ., n}.
(12)

Proof: The proof is based on a shift-and-mix argument
similar to a proof given in [6] using the fact that a deterministic
zero at the input yields zero information. U
Remark 2: Neglecting the edge-effects for the moment,

Theorem 1 basically says that, for every ,u < , every block
of ,u + 1 adjacent vectors has the same distribution indepen-
dent of the time shift. From this immediately follows that
the distribution of every subset of (not necessarily adjacent)
vectors of a ,u + 1 block does not change when the vectors are
shifted in time (simply marginalize those vectors out that are
not member of the subset). Hence, Theorem 1 almost proves
that the capacity-achieving input distribution is stationary: the
only problems are the edge effects and the fixed (but freely
selectable) value of K.2

B. Capacity-Achieving Input Distributions and Circular Sym-
metry

The second preliminary remark concerns circular symmetry.
We say that a a vector random process {Wk} is circularly
symmetric if

{Wk {Wke }' (13)

where stands for "equal in law" and where the process
{9)k} is IID - U ([0, 27]) and independent of{Wk}. Note
that this is not to be confused with isotropically distributed,
which means that a vector has equal probability to point in
every direction.
Remark 3: Note an important subtlety of this definition:

being circularly symmetric does not only imply that for every
time k the corresponding random vector Wk is circularly
symmetric, but also that from past vectors Wk-1 one cannot
gain any knowledge about the present phase, i.e., the phase is
IID.
Lemma 4: Assume a channel as given in (3). Then the

capacity-achieving input process can be assumed to be cir-
cularly symmetric, i.e., the input {Xk} can be replaced by
{Xkeiek}, where {9k} is IID - ([0, 27]) and independent
of every other random quantity.
Remark 5: The proof of Lemma 4 relies only on the fact

that the additive noise is assumed to be circularly symmetric.
Hence, for the lemma to hold the noise need not be Gaussian
distributed and may even have memory as long as it is
circularly symmetric.

IV. THE FADING NUMBER OF MIMO FADING CHANNELS
WITH MEMORY

Theorem 6: Consider a MIMO fading channel with mem-
ory (3) where the stationary and ergodic fading process {Hl}
takes value in CInR<'T and satisfies h({Hk}) > -oc and

2As a matter of fact one can choose i- arbitrarily large, however, note that
the size of the edges where the lemma does not hold depends on /,!

E [ lHIk l]2] < oc. Then, irrespective of whether a peak-power
constraint (5) or an average-power constraint (6) is imposed
on the input, the fading number x({Hk}) is given by

X({hE'k})

sup hA ( I00 H{ThIX } i
Q{X}-711kX0 E1Iexd
stationary
cire. sym.

+nRE [log |Hloxo 2] log 2

h(hIoXo {|hicX}If &oX° } (14)

where the maximization is over all stochastic unit-vector
processes {Xk} that are stationary and circularly symmetric.

Moreover, the fading number is achievable by a stationary
input that can be expressed as a product of two independent
processes:

Xk = Rk Xk, (15)

where {X}CCk2' is a stationary and circularly symmetric
unit-vector process with the probability distribution that max-
imizes (14), and where {Rk} e R+ is a scalar non-negative
IID random process such that

logR2 U ([log logF, log]) . (16)

Note that this input satisfies the peak-power constraint (5) (and
therefore also the average-power constraint (6)).

Proof: The proof is rather long and technical. We will
give here only an outline. The proof consists of two parts: in
a first part we derive an upper bound on the fading number
assuming an average-power constraint (6) on the channel input.
In a second part we then derive a lower bound on the fading
number by assuming one particular input distribution that
satisfies the peak-power constraint (5). We then show that
both bounds coincide. Since a peak-power constraint is more
restrictive than the corresponding average-power constraint the
theorem follows.

a) Outline of Upper Bound: Similarly to the proof of the
SIMO fading number [6], [5] we use the chain rule to write

-I (Xl;Yn)121
InX:,TI(Xln; y,c yk- l
k=l

(17)

and then split each term on the RHS of the above into terms
that are memoryless and terms that take care of the memory:

IT(Xln; yk| -1)
/<( kI1

THkXk IE1IX~
< I(Xk;Yk)-I .

I

~ ~ ~ ThkXkf IEIXd ,

(18)

Note that in the situation of multiple-antennas at both trans-
mitter and receiver it is not possible to gain full knowledge
about all fading coefficients even if both X and Y are known!
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Note further that, in order to be able to discard the noise,
we rely on the observation that the capacity-achieving input
distribution escapes to infinity [6], [5].

In a next step we now could use the bounding techniques
known from [3], [5] to get a bound on the memoryless MIMO
fading channel. Unfortunately, it turns out that this will lead
to a non-tight bound. Instead we split the term I (Xk; Yk) up
into magnitude term and a term that takes care of the direction:

I(Xk;Yk) < I(Xk; Yk|) +I (Xk; jYkj Yk ) (19)

and show that

~~ ThI~~~kXk~IX;y 1IYk)<I 0Xk,k TIXk /
(20)

The first term in (19) now (almost) looks like a MISO fading
channel where we can fix the fact that the output is non-
negative by multiplying llYkll by a independent circularly
symmetric phase (note that this does not change the mutual
information).

In order to have a bound that is independent of the unknown
capacity-achieving input distribution, in a final step we maxi-
mize the bound over all input distributions. Here we can rely
on Theorem 1 which says that we can restrict ourselves to
stationary input distributions.

Hence, the upper bound basically looks like

X({THIk}) < XMISO,IID HIHX + Z ei)

+I (Hkxkl, Xk; 'rX )

I ( Xk kl\Hk Xk

+IISkXk -IEkX1)f (2)

Here the first term corresponds to an expression that is similar
to the memoryless fading number, the second term takes care
of the contribution of the direction of the input, and the last
two terms take care of the contribution of the memory.

Note that we have skipped over a lot of problems like, e.g.,
the edge effects of Theorem 1, the order of the limits of n >

oc and S -> oc, the fact that the escaping-to-infinity property
only comes into play in the limit when S tends to infinity, or
the care that is needed when dealing with the "almost MISO
fading number."

b) Outline of Lower Bound: To derive a lower bound
we choose a specific input distribution which naturally yields
a lower bound to channel capacity. Let {Xk} be of the form

Xk = Rk X. (22)

Here {Xk} is a sequence of random unit-vectors forming
a stochastic process that is stationary, circularly symmetric,
and of a distribution that achieves the maximum in (14). The
random variables Rk e R+ are IID and satisfy (16). Finally
we assume that {Rk}L {Xk}.

We then again start using the chain rule to write

1 I (Xn;Yn)
n12

In
E TI(X,; yn Xk-1 ),n1 2
k=l

(23)

and then treat each term separately:

I(Xk;Yi X 1) >I(Xk;Yk yk± 1 X 1)

+ I(Xk;Y + 1 ,x 1) (24)

Note that the first term basically is the memoryless situation
based on the side-information of past and future terms. To
simplify the notation let's call this side-information Sk:

A (Y1n Yk-1 jk-1).Sk = tk+D: 1 1 J (25)

Contrary to the derivation of the upper bound that has been
based on the memoryless MISO case, we will base the
derivation of the lower bound on memoryless SIMO, i.e., we
split the first term in (24) into two parts:

I (Xk; Yk Sk) = I (Xk; Yk Sk) + I (Rk; Yk Xk, Sk) .
(26)

Now we have the problem that the second term does not
correspond exactly to the SIMO situation since the input of
the channel is real instead of complex. This is fixed by various
arithmetic changes which at the end yield the following bound:

I(Xk;Yk Sk)
.I(Rkei®k;Ykeik |Xk,Sk)
+ h, (Ysk Sk) -hA(Yke®k Xxks, Sk). (27)

Note that our choice of Rk guarantees that RkeiCk achieves
the fading number of memoryless SIMO fading with side-
information. Hence, we get

X({THk})
> XIID (HOXO XO, SO) + hA (YO SO)
-hA (Yoe®oie° Xo, SO) +I (Xo;Y1 Y -'X )

IrOO XO, So) + nRE 00
-log 2 -h(hoXo Xo, So) + hA (Yo So)
-hA(Yoe®odE| XO, So) + I(Xo;Y1 Y_1 , X )

(28)

In this outline we have again simplified things considerably,
e.g., we have interchanged the order of the limits of n -> oo
and S -> oc, and we have neglected the influence of the noise
in various places.
The result now follows by showing that the lower bound

is equivalent to the upper bound. This follows from some
arithmetic changes and from stationarity. U
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V. SOME SPECIAL CASES

A. MISO Fading With Memory

Next we are going to study the fading number of MISO
fading with memory which has been unknown so far. If we
specialize Theorem 6 to the situation of only one antenna at
the receiver we get the following:

Corollary 7: Consider a MISO fading channel with mem-
ory where the stationary and ergodic fading process {Hk}
takes value in C(T and satisfies h({Hk}) > -oc and
E [ lHki2] < oc. Then, irrespective of whether a peak-power
constraint (5) or an average-power constraint (6) is imposed
on the input, the fading number x({H }) is given by

X(fHT) =sup { log 7 + E [log IHTXo2]
stationary

-h(HXo {HXH}f X°O)}(29)

where the maximization is over all stochastic unit-vector
processes {Xk } that are stationary.
Remark 8: Note that in contrast to the situation without

memory where the optimal input is a beam-forming input
using a deterministic direction that maximizes the fading
number, here beam-forming is in general not optimal anymore.

B. Spatially IID Gaussian MIMO Fading Channels with Tem-
poral Memory

Assume a fading process HIk = D + TIk where all compo-
nents of the matrix process {ThIk} are independent and iden-
tically distributed zero-mean, unit-variance Gaussian random
processes with spectral distribution function F(.), i.e., the fad-
ing components are spatially IID, but have temporal memory.
Note that for some constant unitary nR x nR matrix U and some
constant unitary nT x nT matrix V the law of UHIkV is identical
to the law of 1Tk. Therefore, without loss of generality, we may
restrict ourselves to matrices D that are "diagonal" with the
singular values of D, |di > d2 > ... > dmin{nR,nT} > O°
on its diagonal.

Proposition 9: The fading number of a spatially IID Gaus-
sian MIMO fading channel with temporal memory is upper-
bounded as follows:

X({HIk }) < min{rnR,t} logm.1 Ru+/lRlmingRnR, nT}I
+ nR log nR-nR -l 10 F(nR)

nR log Epred

where

62 ((d 2.dmn{---} 2) 1/ minf{nR,nT}

(i + d 2 .. +dRn) (31)

and where c2 denotes the prediction error when predictingpred
the value of one component of lHo after having observed the
infinite past.

VI. DISCUSSION & CONCLUSION

We have derived the fading number in the most general
situation of MIMO fading with memory where the fading
process is not limited to a Gaussian distribution, but may
be any stationary, ergodic, and regular distribution of finite
energy. In particular we allow both temporal and spatial
memory. The MIMO fading number is achievable by an input
process that can be written as product of two independent
processes: an IID non-negative "magnitude" process and a
stationary and circularly symmetric "direction" process. The
former has the same logarithmically uniform distribution (16)
that has been used in previous publications about the fading
number [3], [5], [6]. The "direction" process depends on the
particular law of the fading process, i.e., it needs to be chosen
such as to maximize the fading number. The expression of the
fading number is therefore not given in a completely closed
form but still contains a maximization. However, one has to be
aware that we have not specified the fading process in closed
form either, i.e., we do not believe it possible to further simply
(14) without making more detailed assumptions about {Hk}.
We are still working on a fully closed-form expression for the
important special situation of Gaussian fading processes.
The proof of the main result is strongly based on a new

theorem showing that the capacity-achieving input distribution
of a stationary channel model can (almost) be assumed to be
stationary. Even though this result is very intuitive, we are not
aware of any proof in the literature. We believe this result to
be of importance also in many other situations.
We also have specialized the result to MISO fading with

memory and shown that in contrast to the memoryless situation
this fading number is in general not achieved by beam-
forming.
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