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摘要 

 

 隨著製程的進步，FPGA (可規劃的邏輯陣列) 可以容納越來越多的邏輯閘，目前已

經可以將整個電腦系統實作在單一的 FPGA 晶片上，而 soft-core 的處理器正是系統的

核心，所謂的 soft-core 處理器是指用硬體描述語言設計，經過合成後可實作在可重複

規劃的設備中，例如：FPGA。 

 8051 是最流行的微控制器並且可被用在低耗電量的產品中，因此，我們以英特爾

8051 指令集的架構為基礎，設計一個低耗電量的非同步 8051 處理器，稱作 SA8051。 

我們使用 Balsa 工具來實作 SA8051，Balsa 是一個以 CSP (Communication Sequential 

Process)為基礎的非同步電路硬體描述語言並且可以合成非同步電路。Balsa 可以合成

適用於 Xilinx 合成器的 Verilog netlist。我們目前已經將 SA8051 實作於 Xilinx FPGA 

Spartan-IIE 300 ft256 。我們比較的對象是沒有使用 gated clock 的同步 8051，實驗

結果顯示，在動態耗電量方面，大約是同步版本的三分之一。 

 為了節省面積，我們不使用 Balsa 來合成記憶體，而是直接使用 FPGA 裡面的區塊

記憶體來做為 SA8051 的程式與資料記憶體，然而，FPGA 的區塊記憶體是同步電路而

SA8051 卻是非同步電路，因此，在記憶體與處理器間必須藉由一個交握的介面做溝通。 
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Abstract 

 Recent advancements in Field Programmable Gate Array (FPGA) technology have 

resulted in FPGA devices that support the implementation of a complete computer system on 

a single FPGA chip. A soft-core processor is a central component of such a system. A 

soft-core processor is a microprocessor defined in software, which can be synthesized in 

programmable hardware, such as FPGAs. 

8051 is the most popular microcontroller and hence is often used in applications where 

low energy consumption is important. The 8051 soft-core processor from Intel Corporation is 

studied and a Verilog netlist of the 8051 soft-core has been developed, called SA8051. The 

SA8051 is a low-power asynchronous processor modeled by Balsa which is a CSP-based 

asynchronous hardware description language and synthesis tool. A Verilog netlist for XST 

(Xilinx Synthesis Tool) is generated by Balsa. We implement SA8051 in Xilinx FPGA 

Spartan-IIE 300 ft256. We compare SA8051 with the synchronous 8051 without gated clock. 

The SA8051 shows a dynamic power advantage of a factor 3 compared to the synchronous 

implementation.   

 In order to reduce area cost, we do not model ROM and RAM of the SA8051 by Balsa. 

We use Block RAM in FPGA chip as program memory and data memory. The interface 

between the synchronous memory and the asynchronous processor is designed. 
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Chapter 1 Introduction 

 The goal of this thesis is to design and implement a low-power asynchronous 8051 

microcontroller. In this chapter, session 1 describes the motivation of the designed SA8051. 

Session 2 briefly discusses the advantages and disadvantages of the asynchronous processor 

design and its counterpart, the synchronous processor design. Section 3 briefly describes the 

Balsa synthesis tool. Section 4 describes the organization of this thesis. 

1-1 Motivations  

 Asynchronous design has a potential of solving many difficulties, such as clock skew 

and power consumption, which synchronous counterpart suffers with current and future VLSI 

technologies. Asynchronous processors do not rely on global clocks but achieve 

synchronization by means of localized synchronization protocols. These protocols typically 

have local request and acknowledge signals, which provide information regarding the validity 

of data signals. An example of such the protocol is the four-phase bundled data handshake 

synchronization protocol illustrated in figure 1. 

 

  
Figure 1: The Four-Phase Bundled Data Interface Protocol 

 

  Asynchronous circuits have the potential for low power consumption because the only 

dissipate when and where necessary. On the other hand, it is quite difficult to design these 

asynchronous circuits at the gate level. At Manchester University, a high-level language, 
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Balsa, was developed. A Balsa program can be compiled automatically into a gate-level netlist, 

using so-called handshake circuit as intermediate architecture [1]. Handshake circuits are 

composed from a set of about 40 basic components that use handshake signaling for 

communication. Tools provide feedback on the performance of the circuit on the handshake 

level, thus making a quick design cycle possible. 

  A soft-core processor is a microprocessor fully described in software, usually in an 

HDL, which can be synthesized in programmable hardware, such as FPGAs. A soft-core 

processor targeting FPGAs is flexible because its parameters can be changed at any time by 

reprogramming the device. Traditionally, systems have been built using general-purpose 

processors implemented as ASIC (Application Specific Integrated Circuits), placed on printed 

circuit boards that may have included FPGAs if flexible user logic was required. Using 

soft-core processor provides adequate performance. Recently, two commercial soft-core 

processors have become available : Nios from Altera Corporation [2], and MicroBlaze from 

Xilinx Inc [3].  

  The 8051 is the most popular microcontroller and hence is often used in applications 

where low energy consumption is important. Therefore, we design a low-power 8051 named 

SA8051 which is modeled by Balsa. SA8051 is a low-power soft-core processor. It is an 

asynchronous implementation. To compare our design with existing implementations of the 

8051, we implement SA8051 and synchronous 8051 in the same FPGA chip, Xilinx 

Spartan-IIE 300 ft256 [4] . We estimate power consumption by Xilinx XPower [5]. The 

SA8051 outperformed the synchronous 8051 by a factor 3 in dynamic power consumption. 

We also do timing simulation by Mentor Graphic ModelSim[6].  

1-2 Asynchronous Design 

 Most digital circuits designed and fabricated today are synchronous. They are based on 
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the two assumptions: all signals are binary and all components share a common and discrete 

notion of time. But asynchronous circuits assume there is no common and discrete time. 

Instead the circuits use handshaking between their components in order to perform the 

necessary synchronization [7] . 

 

Advantages Disadvantages 
Low power consumption Overhead (Area, Speed, Power) 

Average-case instead of worst-case 
performance 

Hard to design 

Elimination of clock skew problems Few CAD tools 
Component modularity and reuse Lack of tools for testing 

Low EMI  

Table 1: The advantages and disadvantages of asynchronous design 

 Table 1 is the advantages and disadvantages of asynchronous circuits. Clock skew is the 

difference in arrival time of clock signal at different parts of the circuit. As the systems 

become larger, it is not easy to solve the clock skew in synchronous design.  But in 

asynchronous design there is no global clock. So, asynchronous design solves the problem 

naturally. 

 In the synchronous design, the circuits must wait until all computations have completed 

before latching the results, yielding worst-case performance. But in the asynchronous design, 

operating speed is determined by actual local latencies rather than global worst-case latency. 

 In the synchronous design, the circuits have to toggle clock and possibly pre-charge and 

discharge signals in portions of unused circuits. For example, even though the arithmetic and 

logic unit might not be used in some instructions, the unit must be operated. But in 

asynchronous design, we can save power due to find-grain clock gating and zero standby 

power consumption.  

 In asynchronous design, we can have better composability and modularity because of the 
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simple handshake interfaces and the local timing. 

 The low, uncorrelated EMI (Electro-Magnetic Interference) generated by asynchronous 

circuits allow applications not possible in equivalent clocked design. In the Philips Myna 

pager, the low EMI produced by the asynchronous microcontroller allows the processor to be 

left active during the reception of radio traffic [8]. 

 On the other hand there are also some drawbacks. In the asynchronous design, the 

designer must pay a great deal of attention to the dynamic state of the circuit. Hazards must be 

removed from the circuit to avoid incorrect results. For lager and more complex systems, 

these issues become too difficult to handle. The asynchronous control logic that implements 

the handshaking normally represents an overhead in terms of silicon area, circuit speed and 

power consumption. Other obstacles are a lack of CAD tools and strategies and a lack of tools 

for testing and test vector generator. 

1-3 Balsa Synthesis Tool 

 Balsa is a framework for synthesis asynchronous hardware systems and the language for 

describing such systems [9] . The approach adopted is that of syntax-directed compilation into 

communicating handshaking components and closely follows the Tangram [10] . It has been 

demonstrated by synthesizing the DMA controller of Amulet3i as well as SPA, an AMULET 

core for smartcard application. Balsa uses CSP-based constructs to express Register Transfer 

Level descriptions in terms of channel communications, fine grain concurrent and sequential 

process decomposition. 
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Figure 2: The Balsa Design Flow 

 An overview of the Balsa design flow is shown in figure 2. A Balsa description of a 

circuit is compiled using balsa-c to an intermediate breeze description. The breeze description 

is a syntax-directed fashion with language constructs being mapped into networks of 

parameterized instances of “handshake components”. Each of “handshake components” has a 

concrete gate level implementation [1] .  

 A number of tools are available to process the breeze handshake files. balsa-netlist 

automatically generates CAD native netlist files, which can be fed into the commercial CAD 

tools that further synthesize the netlist to the fabricable layout. Balsa support three 

commercial CAD systems: Compass Design Automation tools from Avant, Xilinx FPGA 

design tools and Cadence Design Framework II. 

 Balsa supports three back-end protocols for use with each technology: bundle-data 

scheme using a four-phase-broad/reduced-broad signaling protocol, a delay-insensitive 

dual-rail encoding and a delay-insensitive one-of-four encoding. The bundled-data back end 

should be faster and smaller, but needs more careful post-layout timing validation. The two 
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delay-insensitive schemes are larger and slower but should be more robust to layout 

variations.  

 Balsa supports behavioral simulation by breeze-sim. This simulator allows source level 

debugging, visualization of the channel activity at the handshake circuit level as well as 

producing conventional waveform traces that can be viewed using the waveform viewer 

gtkwave.  

 

Figure 3: Two-place buffer 

  

Figure 3 illustrates a simple Balsa modeling example of a two-place buffer. 
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 Figure 4: Handshake circuit of a two-place buffer 

 Figure 4 illustrate the handshake component of the two-place buffer generated by 

breeze2ps. The left hand is a one-place buffer. The right hand is a two-place buffer composed 

of two one-place buffers.  

1-4 Organization of this thesis 

In this thesis, we will illustrate the related work in chapter 2 including the overview of 

the synchronous 8051, classification of asynchronous circuits and the basic cells in Balsa 

synthesis system. In chapter 3 we will illustrate design of SA8051 modeled by Balsa. In 

chapter 4 we will illustrate the implementation and verification of SA8051. In chapter 5 we 

will illustrate the results of simulation. In chapter 6 we will discuss some design issues about 

Balsa tool, Xilinx synthesis tool and implementation on FPGA. Finally, a brief conclusion and 

future work are discussed in chapter 7.
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Chapter 2 Related Work 
 This chapter is organized as follows. We first briefly introduce the architecture of the 

synchronous 8051. We then describe the classification of asynchronous circuits according to 

the delay assumptions. Finally, we describe several basic cells generated by Balsa synthesis 

tool. 

2-1 Overview of 8051 

 In this section we will describe the instruction set and the architecture of the Intel 8051. 

2-1-1 Instruction Set 

 The 8051 is a complex instruction set computer (CISC). It has 255 variable-length 

instructions from one to three bytes and supports various addressing modes. The opcode of an 

instruction is always encoded in the first byte. The second and third bytes are operands. The 

instruction set is divided among five functional groups: arithmetic, logical, data transfer, 

Boolean variable and program branching. The 8051 is a Harvard architecture: instruction 

memory and data memory are separate. 

 The instruction set provides eight addressing modes [11] as depicted in figure 4 : (a) in 

register addressing, instructions are encoded using the three least-significant bits of the 

instruction opcode (b) in direct addressing, the operand is specified by an 8-bit address field 

in the instruction representing an address in the internal data RAM or a special-function 

register (SFR) (c) in indirect addressing, the instruction specifies a register (R0 or R1) 

containing the address of the operand in data memory (d) in immediate addressing, the 

constant operand value is part of the instruction (e) in relative addressing, a relative address 

(or offset) is an 8-bit signed value, which is added to the program counter to form the address 

of the next instruction executed. (f) in absolute addressing, these instructions allow branching 
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within the current 2K page of code memory by providing the 11 least-significant bits of the 

destination address. (g) in long addressing, these instructions include a full 16-bit destination 

address as bytes 2 and 3 of the instruction. (h) Indexed addressing uses a base register (either 

the program counter or the data pointer) and an offset (the accumulator) in forming the 

effective address for a JMP or MOVC instruction. 

(a) Register addressing (e.g. ADD A, R5)

(b) Direct addressing (e.g. ADD A,55H)

(c) Indirect addressing (e.g. ADD A,@R0)

(d) Immediate addressing (e.g. ADD A,#44H)

(e) Relative addressing (e.g.  SJMP AHEAD)

(f) Absolute addressing (e.g. AJMP BACK)

(g) Long addressing (e.g. LJMP FAR_AHEAD)

(h) Indexed addressing (e.g. MOVC A, @A+PC)

nOpcode

Opcode Direct address

Opcode i

Opcode Immediate data

Opcode Relative offset

OpcodeA10-A8 A7-A0

Opcode A15-A8 A7-A0

PC or DPTR ACC

Base Register

+

Offset

=

Effective address

 
 Figure 4: The 8051 addressing mode
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H 

L 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF 

R0 NOP JBC 

bit,rel 

JB 

bit,rel 

JNB 

bit,rel 

JC 

rel 

JNC 

rel 

JZ 

rel 

JNZ 

rel 

SJMP 

rel 

MOV 

DPTR,# 

dara 16 

ORL 

C,/bit 

ANL 

C,/bit 

PUSH

dir 

POP 

dir 

MOVX

A, 

@DPTR

MOVX 

@DPTR, 

A 

R1 AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL 

R2 LJMP 

addr16 

LCALL

addr16

RET RETI ORL 

dir,A 

ANL 

dir,A 

XRL 

dir,A 

ORL 

C,bit 

ANL 

C,bit 

MOV 

bit,C 

MOV 

C,bit 

CPL 

bit 

CLR 

bit 

SETB 

bit 

MOVX

A,@R0

MOVX 

@R0,A 

R3 RR 

A 

RRC 

A 

RL 

A 

RLC 

A 

ORL 

dir,#data

ANL 

dir,#data

XRL 

dir,#data

JMP 

@A+DPTR

MOVC 

A,@A+PC

MOVC 

A,@A+DPTR 

INC 

DPTR 

CPL 

C 

CLR 

C 

SET 

C 

MOVX

A,@R1

MOVX 

@R1,A 

R4 INC 

A 

DEC 

A 

ADD 

A,#data 

ADDC 

A,#data 

ORL 

A,#data

ANL 

A,#data

XRL 

A,#data

MOV 

A,#data 

DIV 

AB 

SUBB 

A,#data 

MUL 

AB 

CJNE A,

#data, 

rel 

SWAP

A 

DA 

A 

CLR 

A 

CPL 

A 

R5 INC 

dir 

DEC 

dir 

ADD 

A,dir 

ADDC 

A,dir 

ORL 

A,dir 

ANL 

A,dir 

XRL 

A,dir 

MOV 

dir,#data 

MOV 

dir,dir 

SUBB 

A,dir 

 CJNE A,

dir,rel 

XCH 

A,dir

DJNZ 

dir,rel 

MOV 

A,dir 

MOV 

dir,A 

R67 INC 

@Ri 

DEC 

@Ri 

ADD 

A,@Ri 

ADDC 

A,@Ri 

ORL 

A,@Ri 

ANL 

A,@Ri 

XRL 

A,@Ri 

MOV 

@Ri,#data

MOV 

dir,@Ri 

SUBB 

A,@Ri 

MOV 

@Ri,dir

CJNE 

@Ri 

,#data 

,rel 

XCH 

A,@Ri

XCHD

A,@Ri

MOV 

A,@Ri 

MOV 

@Ri,A 

R8F INC 

Rn 

DEC 

Rn 

ADD 

A,Rn 

ADDC 

A,Rn 

ORL 

A,Rn 

ANL 

A,Rn 

XRL 

A,Rn 

MOV 

Rn,#data 

MOV 

dir,Rn 

SUBB 

A,Rn 

MOV 

Rn,dir

CJNE 

Rn 

,#data 

,rel 

XCH 

A,Rn

DJNZ 

Rn,rel 

MOV 

A,Rn 

MOV 

Rn,A 

Table 2: The 8051 instruction set. All mnemonics copyrighted Intel Corporation 1980
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Table 2 is the complete instruction set of 8051. In this table the rows represent the four 

least significant bits of the opcode while the columns represent the four most significant bits. 

Thus, the instruction at entry PiRj has opcode ij in hexadecimal notation. Rows R8 to RF are 

combined into one row because these instructions only differ in the last three bits which 

specify a register. Rows R6 and R7 are also combined into one row because the last bit of 

opcode indicates which register (R0 or R1) will be used as indirect address. Note that only 

one entry (PA R5) in this table does not contain an instruction. 

2-1-2 Synchronous Architecture 

 

 Figure 5: The architecture of the synchronous 8051 
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 Figure 5 is the architecture of the synchronous 8051 [12]. It has three buses: IB, PB, 

PARB bus. IB-bus acts as the communication channel between any two registers. PB-bus acts 

the communication channel among PAR (Program Address Register), Buffer, PC Incrementer, 

PC and DPTR. PAR sent out program address on PAR-bus. The width of the IB bus is 1 byte 

while the PARB and PB are 2 bytes. The internal memory consists of on-chip ROM and 

on-chip data RAM. The on-chip RAM contains a rich arrangement of general-purpose storage, 

bit-addressable storage, register banks, and special function registers (SFR). The registers and 

input/output ports are memory mapped and accessible like any other memory location and the 

stack resides within the internal RAM rather than in external RAM. SFRs take care of the 

communication between CPU and peripherals. There are four bidirectional ports (P0 – P3) for 

communication to and from the outside world. 

 The 8051 also includes bit operations, which only affect single bit in a given registers. 

Only some locations of the internal RAM are bit-accessible including address from 20H to 

2FH and some SFRs. Internally, the bit operations are performed by reading the whole byte 

from internal memory, modifying the single bit, and then writing the value back in the same 

operation cycle. 

 Table 3 is the instruction scheme of the synchronous 8051 [13]. Each instruction is 

executed in one, two or four machine cycles. A machine cycle consists of a sequence of 6 

states, numbered S1 through S6. Each state time lasts for two oscillator periods. Therefore, 

with an internal clock frequency of 12 MHz the performance will be below 1 MIPS. In each 

state of the execution scheme a specific action takes place. The one-cycle instructions execute 

the first machine cycle C1, while the two-cycle instructions execute C1 and C2 consecutively. 

The scheme results in many redundant cycles during execution because not all actions are 

required in one machine cycle. For example, two program fetches are generated during each 

machine cycle, even if the instruction being executed does not require it. 
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 S1 S2 S3 S4 S5 S6 
C1 Access 

ROM 
ACC -> T2 Access 

RAM 
Access 
ROM 

OP->T1 or T2 ALU->dest.

 

 S1 S2 S3 S4 S5 S6 
C2 Access 

ROM 
Calculate jump address PC incr. OP->T1 or T2 ALU->dest.

Table 3: Instruction execution scheme 

When access for external memory, Port 0 has the data byte and the least significant byte 

of the address multiplexed on it. Address Latch Enable (ALE) is used to signal external 

circuitry to latch the address LSB before Port 0 switches to either reading or writing the data 

byte. If a 16-bit address is used, Port 2 is used to output the high byte of the address. In this 

mode, Port 2 also uses strong internal pull-ups to output the address MSB. Finally, pins 6 and 

7 of Port 3 are used to signal a write or a read on the bus respectively. However, for the 

SA8051, all of the instructions are in internal memory. 

2-2 Classification of Asynchronous Circuits 

  
Figure 6: A circuit fragment with gate and wire delays 

 At the gate level, asynchronous circuits can be classified as being delay-insensitive, 

quasi-delay-insensitive, speed-independent, self-timed depending on the delay assumptions 

that are made [4]. Figure 6 serves to illustrate the following discussion. In this figure there are 

three gates (A, B, C) and three wires (W1, W2, W3). dA, dB and dC represent the gate delay for 

A, B and C respectively. d1, d2 and d3 represent the wire delay of W1, W2 and W3 respectively. 
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(a) Delay-Insensitive (DI): a circuit that operates correctly with positive, bounded but 

unknown delays in wires and gates. Referring to figure 6 this means arbitrary dA, dB, dC, 

d1, d2 and d3. 

(b) Quasi-Delay-Insensitive (QDI): a QDI circuit is DI with the exception of some carefully 

identified wire forks called “isochronic forks”. Referring to figure 6 this means arbitrary 

dA, dB, dC, d1 but d2 = d3. 

(c) Speed-Independent (SI): a SI circuit is a circuit that operates correctly assuming positive, 

bounded but unknown delays in gates and ideal zero-delay wires. Referring to figure 6 

this means arbitrary dA, dB, dC but d1 = d2 = d3 = 0. 

(d) Self-Timed (ST): a self-timed circuit contains a group of self-timed elements. Each 

element is contained in an “equipotential region”, where wires have negligible or 

well-bounded delay. An element itself may be an SI circuit, or a circuit whose correct 

operation relies on use of local timing assumptions. However, no timing assumptions are 

made on the communication between regions. That is, communication between regions is 

DI. 

2-3 Balsa Back-End 

 The Balsa back-end generates gate level netlist to import into target CAD systems in 

order to produce circuit implementations [14]. In this section we will describe some basic 

cells for Xilinx technology generated by Balsa such as Muller C element and S element. We 

also describe some handshake components in Balsa synthesis system. 

 

2-3-1 Basic Elements 

 The gate level netlist generated by Balsa for Xilinx technology only uses some basic 

cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-type flip-flop), 
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FDC and FDCE. Basic elements are composed of these cells. 

C
i0

i1
q

i0      i1

0    0
0    1
1    0
1    1

0
no change
no change
1

q

i0

i1

i0
q

i1

(a)

(b)

(c)  
Figure 7: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation 

Figure 7 shows the Muller C-element. It is one of the most common additions to the 

basic set of logic gates made in order to make the implementation of asynchronous circuits 

easier. It is a state-holding element like an asynchronous set-reset latch. When both inputs are 

0, the output is set to 0. When both inputs are 1 the output is set to 1. For other input 

combinations the output does not change. A Muller C-element is a fundamental component 

that is extensively used in asynchronous circuits. 
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Figure 8: The NC2P-element (a) symbol (b) true table (c) gate-level implementation 

Figure 8 shows the NC2P element. When i0 is equal to 0, the output is 0. When i0 and i1 

are equal to 1, the output is 1. For other input combinations the output does not change. It is 

much like inverter of C-element except that when i0 is equal to 0 and i1 is equal to 1, the 

output is 1. 

 

 Figure 9: The S-element (a) symbol (b) gate-level implementation (c) handshaking 
protocol 

 Figure 9 shows the S-element which is a circuit element commonly found in the 

implementation of handshake components [1]. An S-element has 4 pins including 2 

request/acknowledge handshake pairs – ‘Ar’/’Aa’ and ‘Br’/’Ba’. In Balsa system it replaces 
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the “inverter of C-element” with “nc2p”. Hence, it can reduce the number of gates because 

“inverter of C-element” uses 3 AND gates, 1 OR gate and 1 Inverter but “nc2p” uses 2 AND 

gates, 1 NOR gate and 1 Inverter. 

 
Figure 10: The multiplexer (a) function block (b) true table (c) gate level implementation 

 

Figure 11: The de-multiplexer (a) function block (b) true table (c) gate level 
implementation 

Figure 10 and figure 11 are the multiplexer and de-multiplexer elements. They are used 

in many elements such as Basla full adder and BrzCase.  

2-3-2 Handshake Components 

 Balsa has about 40 components that use handshake signaling for communication. Each 

of “handshake components” has a concrete gate level implementation. In the following we 



 18

illustrate some handshake components [14] .  

 
Figure 12: The Fetch Component (a) handshake component (b) gate level 

implementation 

 Figure 12 is the Fetch component. This component is the most common way of 

controlling a datapath from a control tree. Transferrers are used to implement assignment, 

input and output channel operations in Balsa by transferring a data value from a pull datapath 

and pushing it towards a push datapath [14].  

 
 Figure 13: The Sequence Component (a) handshake component (b) gate level 

implementation 
  

 Figure 14 and 15 are sequence and concurrent component respectively. They form a large 

part of handshake circuit control trees [14]. They are used to activate a number of commands 

under the control of activate handshake. 
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Figure 14: The Concurrent Component (a) handshake component (b) gate level 

implementation 

 

Var
Read[0]

Read[1]

write
(a)

(b)  
Figure 15: The Variable Component (a) handshake component (b) gate level 

implementation 

 Figure 15 is the variable component. It uses D-type flip-flop to store data. The source of 

clock is the signal write_0r. When a piece of data is wanted to be stored, the signal write_0r is 

set and then the signal is reset. When a piece of data is wanted to be read, the signal read_0r 

or read_1r is set. It is natural to achieve the effect of gating clock. 
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2-4 Concluding Remarks 

In this chapter we introduce the synchronous 8051 architecture. 8051 is a complex 

instruction set computer. It has variable-length instructions from one to three bytes. Each state 

of a machine cycle uses the bus. Hence, it is not easy to overlap execution of instructions, i.e. 

to implement pipelining. We then introduce the classification of the asynchronous circuits. 

Asynchronous circuits can be classified as being SI, DI, QDI, ST depending on the delay 

assumptions. Finally we illustrate the Balsa back-end. Balsa synthesis system is composed of 

about 40 components. Each can be translated to gate level netlist. They use handshaking 

protocol for communication. 
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Chapter 3 Design the SA8051 

 This chapter is organized as follows. First, we describe the architecture of SA8051 and 

model it in Balsa. We then describe the interface among the CPU, memory and external 

environment. We then discuss the optimization in control path. Finally, we describe the 

technique of bypassing the buses and ALU.  

3-1 The Architecture of SA8051 

 
activate_0r reset_0d

P0_out
P1_out
P2_out
P3_out

P0_in P1_in P2_in P3_in

rom__addr_0r
rom__addr_0a
rom_addr_0d

rom_en
rom_addr

rom__data_0r
rom__data_0a
rom_data_0d

rom_data

Rom_rfd

reset_0r
reset_0a

handshake interface

5 MHz

 
Figure 16: The architecture of SA8051 
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 The global structure of the SA8051 consists of CPU, ROM, RAM, four inputs and four 

outputs as depicted in figure 16. The CPU is activated when the signalactivate_0r is set to 1. If 

the CPU is not activated, it is in idle mode and consumes little energy. The CPU 

communicates with RAM and ROM through handshaking interface. It has four output ports 

including P0_out, P1_out, P2_out and P3_out. Each has one byte and is mapped to one 

location of RAM. It has four input ports including P0_in, P1_in, P2_in and P3_in. They are 

used to receive data from the environment. When we set the signal reset_0d, the CPU will 

initialize the contents of all special function registers (SFRs).  

 

Figure 17: The architecture of CPU 
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Figure 17 depicts the architecture of the CPU in SA8051. It is a little different from 

synchronous architecture. The ALU (Arithmetic and Logic Unit) has three inputs (T1, T2 and 

T3), two outputs (result1 and result2) and a PSW (Program Status Word). Most instructions 

only use two inputs (T1 and T2) and one output (result1). Few instructions use three inputs 

and two outputs such as MUL, DIV and JMP. But some instructions do not use ALU such as 

MOV. It can reduce power consumption and promote performance but need extra cost. The 

registers T1, T2 and RAR (RAM Address Register) have an input and an output port in order 

to support some instructions with bypassing technique. We will describe this technique in the 

following section. The broken lines in this figure separate the processor core and the 

peripheral of SA8051.  

 
Figure 18: Balsa program for main loop of CPU 

 The main loop of the Balsa program for the CPU takes the form as shown is figure 18. 

Initially, SA8051 resets the contents of each SFR (Special Function Register) and PC 

(Program Counter). In the loop, prior to executing an instruction there has to be a check to see 

the reset has occurred. Then, fetch the first byte of the instruction and increment the PC. The 

opcode is in the first byte of each instruction. Finally, the execution unit decodes the opcode 

and executes the corresponding operations.  
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3-2 Design the Fetch_ir Unit 

 Fetching an instruction involves sending an address to the program memory, receiving 

the corresponding instruction opcode and incrementing the program counter as shown in 

figure 19. par_b and p_b mean PAR bus and PB bus respectively as shown in figure 17. First, 

pc assigns its value to par_b and par receives value from par_b. Then, par assigns its value to 

p_b and p_b is sent out by the channel of rom_addr. Finally, the bus receives data from the 

channel of rom_data and assigns its value to ir (instruction register).  

 
Figure 19: Balsa program for Fetch_ir 

 

3-3 Design the ALU 

 Figure 20 shows the block diagram of the ALU in Balsa. The ALU has six input ports 

and five output ports. We describe the meaning of these ports in table 4 in detail. The port 

alu_op decides which operation the ALU will do. The two input flags src_cy and src_ac are 

bit 6 and bit 7 respectively inside PSW. The ALU has three data input ports including src_1, 

src_2 and src_3. Most instructions only use src_1 and src_2. Some instructions use src_3 like 

MOVC and CJNE. There are two data output ports in ALU including result_1 and result_2. 

Most instructions only use result_1 but some instructions like MOVC and CJNE use result_1 

and result_2. Some operations will update the flags like ADD and SUB.  
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Figure 20: The block diagram of ALU 

 
I/O Port Port Type Port Size Description 
alu_op in 5 bits ALU Operation Code 
src_1 in 8 bits ALU input data 
src_2 in 8 bits ALU input data 
src_3 in 8 bits ALU input data 
src_cy in 1 bit Carry flag 
src_ac In 1 bit Auxiliary Carry Flag 

result_1 out 8 bits ALU Result1 
result_2 out 8 bits ALU Result2 
result_cy out 1 bit Carry flag 
result_ac out 1 bit Auxiliary Carry flag 
result_ov out 1 bit Overflow flag 

 

Table 4: The description of the ports in ALU 

Balsa adopts the method of syntax-directed compilation. The transparent compilation of 

a Balsa program into an asynchronous circuit implies that for each expression in the Balsa text 

a separate piece of hardware is generated. We can reduce area by sharing some pieces of 

hardware. For example, we combine the function of ADD and SUB. We use shared procedure 

to implement it in Balsa   

 Figure 21 is an example for combing these functions of ADD and SUB. The shared 
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procedure does add src_1, src_2 and ci or subtract src_2 and ci from src_1. If the shared 

function does SUB, it adds src_1, inverter of the src_2 and inverter of the src_cy. The shared 

function also updates the flags: carry, auxiliary and overflow flag. Similar shared functions 

can be programmed for the bit-wise Boolean operations AND, OR and XOR.  

 

Figure 21: (a) Balsa shared function for ADD and SUB (b) operands assignment used in 
AddSub function.  

 

3-3 Design the Decoder Unit 

 After fetching the first byte of the instruction, the CPU decodes the instruction opcode in 

register ir, and executes the statements associated with that instruction. If we observe the 8051 
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instruction set in table 4, we can find the partial regularity of the instruction set. We can take 

this advantage to decode an instruction in order to reduce area cost. For example, in row R8 to 

RF each column has the same instruction only differing in the index of the operand Rn. 

Similar arguments go for rows 6 and 7. In this table, the regular part is gray and irregularity 

increases when going to the above. So, we can decode the instruction set in rows (least four 

significant bits) first and decode in columns (most four significant bits) to determine the 

instruction to execute.
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H 

L 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF 

R0 NOP JBC 

bit,rel 

JB 

bit,rel 

JNB 

bit,rel 

JC 

rel 

JNC 

rel 

JZ 

rel 

JNZ 

rel 

SJMP 

rel 

MOV 

DPTR,# 

dara 16 

ORL 

C,/bit 

ANL 

C,/bit 

PUSH

dir 

POP 

dir 

MOVX

A, 

@DPTR

MOVX 

@DPTR, 

A 

R1 AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL 

R2 LJMP 

addr16 

LCALL

addr16

RET RETI ORL 

dir,A 

ANL 

dir,A 

XRL 

dir,A 

ORL 

C,bit 

ANL 

C,bit 

MOV 

bit,C 

MOV 

C,bit 

CPL 

bit 

CLR 

bit 

SETB 

bit 

MOVX

A,@R0

MOVX 

@R0,A 

R3 RR 

A 

RRC 

A 

RL 

A 

RLC 

A 

ORL 

dir,#data

ANL 

dir,#data

XRL 

dir,#data

JMP 

@A+DPTR

MOVC 

A,@A+PC

MOVC 

A,@A+DPTR 

INC 

DPTR 

CPL 

C 

CLR 

C 

SET 

C 

MOVX

A,@R1

MOVX 

@R1,A 

R4 INC 

A 

DEC 

A 

ADD 

A,#data 

ADDC 

A,#data 

ORL 

A,#data

ANL 

A,#data

XRL 

A,#data

MOV 

A,#data 

DIV 

AB 

SUBB 

A,#data 

MUL 

AB 

CJNE A,

#data, 

rel 

SWAP

A 

DA 

A 

CLR 

A 

CPL 

A 

R5 INC 

dir 

DEC 

dir 

ADD 

A,dir 

ADDC 

A,dir 

ORL 

A,dir 

ANL 

A,dir 

XRL 

A,dir 

MOV 

dir,#data 

MOV 

dir,dir 

SUBB 

A,dir 

 CJNE A,

dir,rel 

XCH 

A,dir

DJNZ 

dir,rel 

MOV 

A,dir 

MOV 

dir,A 

R67 INC 

@Ri 

DEC 

@Ri 

ADD 

A,@Ri 

ADDC 

A,@Ri 

ORL 

A,@Ri 

ANL 

A,@Ri 

XRL 

A,@Ri 

MOV 

@Ri,#data

MOV 

dir,@Ri 

SUBB 

A,@Ri 

MOV 

@Ri,dir

CJNE 

@Ri 

#data 

,rel 

XCH 

A,@Ri

XCHD

A,@Ri

MOV 

A,@Ri 

MOV 

@Ri,A 

R8F INC 

Rn 

DEC 

Rn 

ADD 

A,Rn 

ADDC 

A,Rn 

ORL 

A,Rn 

ANL 

A,Rn 

XRL 

A,Rn 

MOV 

Rn,#data 

MOV 

dir,Rn 

SUBB 

A,Rn 

MOV 

Rn,dir

CJNE 

Rn 

#data 

,rel 

XCH 

A,Rn

DJNZ 

Rn,rel 

MOV 

A,Rn 

MOV 

Rn,A 

Table 5: Regular (gray part) and Irregular (white part) part of the 8051 instruction set 
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We need a decoder to judge whether the instruction opcode belongs to the regular or 

irregular part. The shared function judge_regular is described in figure 22. The L_ir is the 

least four significant bits of the instruction register and H_ir is the most four significant bits of 

the instruction register. If the instruction belongs to regular part, the register regular is set.  

 

 
Figure 22: The judge_regular shared function 

  

Most instructions in the regular part have the same characteristic as shown in figure 23. 

They get its first operand from ROM or RAM and store it in the register T1. Then, they may 

get the second operand from RAM and store it in the register T2. Finally, they execute the 

corresponding operation and store the result in the destination register.  

 
Figure 23: The structure of the regular part 
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3-4 Deal with Bit-Operation Instructions 

 The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H 

through 2FH, and the rest are in the special function registers. The instructions using 

bit-addressing mode can be classified into two kinds as shown in table 5. First, those 

instructions fetch a bit from the data memory and don’t modify it. Second, those instructions 

fetch a bit from data memory, modify it and write it back. 

  

 MNEMONIC DESCRIPTION 
JC rel Jump if Carry set 
JB bit, rel Jump if bit set 
JBC bit, rel Jump if bit set and clear bit 
JNB bit, rel Jump if bit not set 

First kind 

JNC rel Jump if Carry not set 
MOV C, bit Move bit variable 
ANL C, <src-bit> ANL bit with C, ANL NOT bit with C 
CLR bit Clear bit 
CPL bit Complement bit 

Second kind 

ORL C, <src-bit> OR bit with C , OR NOT bit with C 

Table 6: Instructions with bit-addressing mode 

 When a bit-addressable instruction is executed, the byte data containing this bit will be 

fetched from the data memory. We store this byte in register T1 and need a register bit_index 

to record which bit we want to read or modify. If an instruction wants to modify this bit, it 

will modify it in register T1 indexed by the register bit_index. Figure 24 depicts the Balsa 

program for dealing with bit-addressable instruction.  
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Figure 24: (a) Set the value of the rar and bit_data_index (b) Get byte from the data 
memory and store it in register T1 

 

3-5 Handshake Interface to the Memory  

 We add a handshake interface between the memory and the CPU due to the synchronous 

RAM and ROM. When the CPU wants to fetch an instruction from the ROM, it sets the both 

signals rom_addr_0r and rom_data_0r and sends out the address. A C-element is employed in 

order to check if rom_addr_0r and rom_data_0r are both set or reset. When the both are set, 

the ROM is enabled and after the latency 6 ns the Rom_rfd is set. After delaying about a clock 

cycle, the signals rom_addr_0a and rom_data_0a are set. The following is the return-to-zero 

portion of the handshake protocol. In order to make it quick, we employ an asynchronous 

CLR input in a D-type flip flop. The acknowledge signals of the CPU can be reset quickly 

when the signal Rom_rfd is reset. 

 The handshake interface between the CPU and the RAM is a little different from the 

ROM. If the CPU wants to read data from RAM, it set the signal ram_in_data_0r. If the CPU 

wants to store data in RAM, it set the signal ram_out_data_0r. So, an OR gate is employed to 

connect the both signals. The data is wrote or read according to the signal Ram_rNw_0d when 
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the signal Ram_en is set. After the latency 6 ns, the Ram_rfd is set and delaying about a clock 

cycle the acknowledge signals are set.  

 The worst case of memory access is delaying about 2 clock cycles due to the handshake 

interface. Hence, it is important to reduce the number of times of fetching the data from the 

ROM or RAM. For example, in the synchronous 8051 the machine cycle 1 of the execution 

scheme read data from the ROM two times. Not all instructions need to fetch two pieces of 

data from the ROM. We avoid this situation in the SA8051 in order to increase the 

performance. This can also reduce the energy dissipation for the memory.  

 
Figure 25: Handshake interface between Memory and CPU 
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3-6 Bypassing the Bus and ALU 

 There are three buses: I-Bus, P-Bus and PAR-Bus in the 8051 as shown in figure 17. It is 

possible to mimic the synchronous bus implementation by introducing the variables IB, PB 

and PARB in the Balsa syntax. Each communication between any two registers is finished by 

using the buses. The source register is copied to the bus first and then the destination register 

receives data from the bus. For example, if the content of the register PC wants to be copied 

to the register PAR, we write 

PBus := PC ; PAR := PBus 

 If we use the bus bypassing technique, the above statements can be rewritten as  

PAR := PC 

This can reduce the area cost due to the deleted sequencer component (;). But it introduces 

multiplexers (BreezeCall component) in the front of the destination register when more than 

one assignment to the register is happened. If the bus bypassing technique is not introduced, 

there is only one multiplexer on the writeport of the variable PBus and the PAR does not need 

a multiplexer.  

The less the number of times of data is accessed, the more energy is saved. So, it can 

save energy dissipation by introducing the bus bypassing technique on the frequently used 

communication paths. The table 6 shows the opportunities for bypassing the bus among the 

registers. 

 

Source Register Destination Register The bypassing bus 
PC (Program Counter) PAR (Program Address 

Register) 
PARB 

Result1 @ Result2 (ALU results) Buffer IB 
T1 RAR (RAM Address 

Register) 
IB 
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T1 T2 IB 
T2 RAR IB 

Table 7: The opportunity for bypassing the bus 

 In the 8051 not all instructions need the arithmetic or logic operations. In other words, 

some instructions don’t transfer the data to the ALU and wait for the operation completed in 

order to speed up and save energy dissipation. For example, the instruction MOV just moves 

the data between the registers and need not any arithmetic or logical operations. So, it does 

not do the ALU operations. In the asynchronous architecture we can achieve the bypassing 

ALU technique naturally.  

3-7 Optimizations in Control Path 

 As the previous descriptions in section 3-2 the transparent compilation of a Balsa 

program into an asynchronous circuit implies that for each statement in the Balsa text a 

separate piece of hardware is generated. We can optimize the control path in the Balsa text. 

For example, the 8051 CPU contains the following fragment of the program 

 

The signal isel is a bit data for selection. Each of these four statements (S0, S1, P0, P1) 

represents a piece of hardware. The corresponding handshake circuit generated by Balsa is 

shown in figure 26 (a).  
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Figure 26: handshake circuit for the case-statement (a) not optimized (b) optimized 
  

The case-statement can be rewritten as  

 

The corresponding handshake circuit generated by Balsa is shown in figure 26 (b). We 

can compare the two handshake circuits. In figure 26 (a) there are a case (labeled “@”), two 

sequencer (labeled “;”) and two call (labeled “|”) components. On the other hand, in figure 26 

(b) there are only a sequencer and a case component. It is better in terms of area, speed and 

power than the circuit in figure 26 (a). 
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3-8 Concluding Remarks 

 In this chapter we illustrate the architecture of the asynchronous 8051 and model it in 

Balsa language. We describe some techniques for optimizing the ALU and the decoder unit in 

the SA8051. We then describe the method to deal with bit-operation instructions. The 

handshake interface is design due to communicating with synchronous memory. The 

bypassing techniques are also introduced in order to reduce the power and area cost. Finally, 

we describe some optimizations in control path due to the syntax-direct compilation in Balsa.  
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Chapter 4 Implementation and 
Verification 

 This chapter is organized as follows. First, we illustrate a design flow for asynchronous 

implementation on a synchronous FPGA. Then we describe some implementation issues. 

Finally, we illustrate the verification methods.  

4-1 The Design Flow 

 The asynchronous 8051 core is modeled by Balsa language. Descriptions of the 8051 

core (.balsa file) are then translated (balsa-c) into implementations in a syntax 

directed-fashion with language constructs being mapped into networks of parameterized 

instances of “handshake components” (.breeze file) each of which has a concrete gate level 

implementation. balsa-netlist automatically generates Verilog netlist for Xilinx synthesis tool.  

 The following steps are design flow for FPGA. The Verilog netlist generated by 

balsa-netlist is converted into a netlist of basic gates in the synthesis step of the design flow. 

The netlist may be optimized using technology-independent logic minimization algorithms. 

However, we must avoid the logic minimization for hazard free circuits and buffers generated 

by balsa-netlist. We add the constraint “keep hierarchy” to avoid the logic minimization. Then 

the synthesized netlist is mapped to the target device using a technology-mapping algorithm. 

The placement algorithm maps logic blocks from the netlist to physical locations on an FPGA. 

On the placement has been done, the routing algorithm determines how to interconnect the 

logic blocks using the available routing. The final output of the design flow is the FPGA 

programming file, which is a bit stream determining the state of every programmable element 

inside an FPGA. The design flow is shown is figure 27. 
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Figure 27: The Balsa and FPGA design flow 
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4-2 Implementation Issues 

 Compilation from Balsa programs to Xilinx netlist proceeds in two steps. In first step, 

handshake circuits form the intermediate architectures. An important characteristic about this 

compilation is that it is transparent, which allows feedback about important performance 

characteristics such as performance, area, timing and testability to be generated at the 

handshake circuit level and to be presented to the VLSI programmer at the Balsa level. When 

the designer is satisfied with the performance of the Balsa program, the corresponding 

handshake circuit is expanded into a gate-level netlist. At this level the design can be 

simulated to obtain more accurate performance figures using commercial simulators. 

 We choose four-phase bundled data protocol to implement the handshake circuit instead 

of dual-rail encoding in order to reduce the area cost. Handshake circuits are implemented 

only using standard cells such as AND, OR, Inverter gate and flip flop. We must pay attention 

to delay matching and the verification (after routing) of the timing assumptions that have been 

made. In order to minimize the verification effort, delay-matching is conserved. We add 

enough buffers on the all request signals on the push channel and the acknowledge signals on 

the pull channel. Because there are no asynchronous cells in FPGA, all handshake circuits are 

mapped onto standard cells. This results in the area overhead of the handshake circuits. 

 It is to be noted that the Xilinx synthesis tool could do logic minimization but it must be 

avoided. There are hazard-free circuits and buffers in asynchronous circuits. They can not be 

minimized. We can avoid this situation by adding the constraint “keep hierarchy” on the 

handshake modules.  

 RAM and ROM are not modeled by Balsa language. We implement them using the block 

RAM on FPGA in order to reduce area cost. We add a handshake interface between the 8051 

core and the memory. The signal rfd is employed in the RAM and ROM to provide 
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completion detection of reading or writing operations.  

 Until now all instructions can be executed except MUL, DIV and MOVX. The 

peripherals are not considered such as timers and UART. The design was realized in Xilinx 

FPGA SPARTAN IIE 300 ft256.  

 

4-3 Verification  

 In this section we illustrate the verification for the SA8051. There are three steps for 

verification. First, we do behaviour simulation in Balsa environment. Then, we do timing 

simulation in Xilinx environment. In this step we must check the timing validity on control 

circuits. Finally, we do verification on FPGA board.  

4-3-1 Behavior Simulation  

 The environment used to do behavior simulation for SA8051 is illustrated in figure 28.  

The memory model ROM and RAM are the two predefined procedures in Balas as shown in 

figure 29. We assign the address width and data width to determine their size. The ROM size 

is 4K bytes and the RAM size is 256 bytes. The contents of the ROM are loaded during 

initialization as 8-bit quantities in the hexadecimal format from a hexadecimal file. A 

hexadecimal file is translated from a C program by KEIL tool [15]. Whenever an addressing 

arrives at the ROM model from the ROM address channel, the ROM outputs the instruction 

code. When the processor wants to write data, it sets the signal rNw and sends out the address 

and the data. When the processor wants to read data from RAM, it resets the signal rNw and 

sends the address and the data.  

 The 8051 simulator executes the instructions in the hexadecimal file. The execution 

results are compared with the contents of the RAM. If the results are not equal, we must 

modify the code of the processor.  
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Figure 28: SA8051 behavior simulation environment 

 

 
Figure 29: Balsa description for memory model (a) ROM model (b) RAM model 
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4-3-2 Timing Simulation  

 When completing the behavior simulation in Balsa environment, the following step is to 

do timing simulation as shown in figure 30. The ROM model is automatically generated from 

a hexadecimal file by Xilinx CORE generator [16]. The RAM model is also generated by it. 

The memory model implemented by block RAM on FPGA is combined with the processor 

core netlist synthesized by balsa-netlist through handshake interface. Before synthesizing, the 

constraint file must be added. The content of the constraint file is the “keep hierarchy” 

constraint on some handshake modules. The constraint file is employed in order to satisfy 

timing constraints and avoid the logic minimization. When the constraint is added, the 

synthesis, map, placement and routing are preceded in order. A NCD file is generated after 

PAR (place & route). The NCD file may contain placement and routing information in 

varying degrees of completion. NetGen generates netlist that are compatible with Xilinx 

supported simulation such as ModelSim.  

 The result of timing simulation is compared with the result of the 8051 simulator. If the 

results are not equal, we must modify the processor netlist generated by balsa-netlist. For 

example, when the timing violation occurs on flip-flops in BrzVariable modules, we trace the 

write request signal and find out the corresponding write acknowledge signal. Then we add 

some buffers ahead of the write acknowledge signal.   
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Figure 30: SA8051 timing simulation environment 

 

4-3-3 Board Level Verification 

 After timing simulation, we do verification on Digilent D2-FT system board [17] with 

the device Xilinx FPGA SPARTAN IIE 300 ft256. There is a frequency divider circuit on the 

top module because of the 50 MHz clock on board. The two input ports Activate_0r and reset 

are connected to the Switch 1 and Switch 2 respectively. The signal reset is set when the 

frequency divider is enabled. If the signal Activate_0r is set, the CPU is activated. There are 4 

output ports connected to 4 seven segments and 16 LEDs respectively in order to display the 

results. The board level verification environment is shown in figure 31.  
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Figure 31: Board level verification environment  

4-4 Concluding Remarks 

 In this chapter we introduce the design flow for asynchronous circuit implementation in 

FPGA. Some implementation issues are described. We illustrate the flow of verification 

including the behavior, timing and board level.  
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Chapter 5 Simulation Result 

 This chapter is organized as follows. First, we compare the performance of SA8051 with 

the Intel 8051 under various clock rates. Then, we compare the power consumption of 

SA8051 with the synchronous 8051. Finally, we compare the area cost with the synchronous 

version. 

5-1 Performance  

 The performance of the SA8051 is compared with the Intel 8051, called I8051 developed 

by University of California [18]. The I8051 models the actual Intel implementation rather 

closely, e.g., it is 100% instruction compatible. It is written in synthesizable VHDL (at least 

by Synopsys and Xilinx). We modify it a little in order to compare the SA8051 with it fairly. 

Hence, we remove the MUL, DIV and MOVX operations from it.  

 The FPGA device Xilinx Spartan IIE 300 ft256 is chosen to estimate the performance. 

We do timing simulation by ModelSim. We run 6 test programs under different clock rates. 

There is a clock in the interface between the SA8051 and the memory. Figure 32 shows the 

speedup of SA8051 versus I8051. The SpeedUp is defined as  

  SpeedUp = Execution Time of I8051 / Execution Time of SA8051  

The maximum rate of I8051 is 12 MHz. The performance depends on the clock rate and 

the tested programs. In sort.c program the SA8051 runs faster than I8051 when the clock rate 

is less than 8 MHz. In other five programs the SA8051 runs faster than I8051 when the clock 

rate is less than 6 MHz.  

 When the clock rate is above 8 MHz, the SpeedUp is below 1 for these 6 tested programs. 

The bottleneck is the interface between the asynchronous processor and the synchronous 

memory. The worst case for fetching data from memory is 2 clock cycle delays. The same 
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situation occurs in writing data. 

 
Figure 32: SpeedUp for SA8051 versus I8051  
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5-2 Power Consumption 

 Power consumption is estimated by Xilinx XPower. It can analyze total device power, 

power per net, routed, partially routed or unrouted designs, all driven from a comprehensive 

graphic interface or command-line driven batch-mode. It reads VCD simulation data from the 

ModelSim family of HDL simulators to set estimate stimulus.  

 There are two main components to power consumption: static and dynamic. Static or 

quiescent power is mainly dominated by transistor leakage current. Dynamic or active power 

has components from both the switching power of the core of the FPGA and the I/O being 

switched. The dynamic power consumption is determined by the node capacitance, supply 

voltage, and switching frequency.  

 The 6 test programs are run for estimating the power consumption the same as in section 

5-1. Figure 33 depicts the total power consumption of the asynchronous and synchronous 

8051. The total power consumption consists of the energy dissipation of the processor core, 

the memory and the interface. We can compare them in the same performance. When the 

clock rate is 8 MHz, the SpeedUp for the sort.c program is 1. The asynchronous 8051 shows a 

total power advantage of a factor 2 compared to the synchronous implementation. The 

SpeedUp of the other 5 test program is 1 when the clock rate is 6 MHz. The asynchronous 

8051 shows a total power advantage of a factor 1.5 compared to the synchronous 

implementation. 

 The static power consumption of the FPGA is a significant portion for the total power 

consumption. For example, the static power consumption is 28.2 mW for the FPGA device 

Spartan IIE 300 ft256. Figure 34 shows the dynamic power consumption of the asynchronous 

and synchronous 8051. The asynchronous 8051 shows a dynamic power advantage of a factor 

3 compared to the synchronous implementation for the same performance. There are several 
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reasons for the power saving. First, the asynchronous implementation does not have clock 

power and can automatically turn off the unused portion of the circuit. Second, the handshake 

interface also plays an important role because the memory is active only when the processor 

wants to access it.  

 We can compare the core of asynchronous with synchronous 8051. Figure 35 shows the 

results. The asynchronous 8051 shows a dynamic power advantage of a factor 2 compared to 

the synchronous implementation for the same performance. The detailed energy dissipation is 

depicted in figure 36 and 37. The asynchronous implementation needs less dynamic power 

than the synchronous implementation because of no clock energy dissipation. Although the 

asynchronous implementation does not need clock power, it needs extra signal power results 

from the handshake implementation. 
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Figure 33: Total Power Consumption for test programs 
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Figure 34: Dynamic Power Consumption for test programs 
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Figure 35: The dynamic power consumption of the asynchronous processor core versus 

synchronous 
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Figure 36: The detailed dynamic power consumption (a) The left side is asynchronous 
processor (b) The right side is synchronous processor 
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Figure 37: The detailed dynamic power consumption (a) The left side is asynchronous 

processor (b) The right side is synchronous processor 
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5-3 Area Cost 

 We remove the multiplier and the divider from the synchronous 8051 in order to 

compare the cost fairly. The area cost is show in table 8. The results show the asynchronous 

implementation is about 2 larger than the synchronous implementation. The area overhead 

mainly comes from the handshake circuit in each handshake component. The hazard free 

circuit is employed in order to assure the circuit validity. The circuits of the completion 

detection on the control path which need large C element also result in the area overhead. The 

extra buffers are added in order to assure the timing validity.  

Another reason is due to the CAD tool. There are no commercial CAD tools for the 

asynchronous circuits. The synchronous CAD tools can do some optimization techniques for 

the speed and area such as logic minimization and retiming. But, the asynchronous tool Balsa 

just does transparent compilation and does not do optimization on the asynchronous circuits.  

 

 Slices Gate Count (NAND) 
Synchronous 
Implementation 

990 13251 

Asynchronous 
Implementation 

2245 23590 (no added buffers) 25780 (with added buffers) 

Table 8: The area cost for the synchronous and asynchronous 8051 

5-4 Concluding Remarks 

 In this chapter we compared the asynchronous 8051 with synchronous 8051 in 

performance, power consumption and area cost. The simulation results show the 

asynchronous 8051 outperformed the synchronous 8051 by a factor 3 in dynamic power 

consumption under the same performance. The performance depends on the executed 

instructions which have different machine cycles. In the low clock rate the asynchronous 
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implementation outperforms the synchronous because the SA8051 avoids the unnecessary 

operations in the original machine cycles. The area cost of the asynchronous processor is 

about 2 larger than the synchronous.  
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Chapter 6 Discussion 

 This chapter is organized as follows. First, we describe some design issues for the Balsa 

tool. Second, we discuss some design issues for the Xilinx synthesis tool. Finally, we discuss 

the implementation issues on the FPGA.  

6-1 Balsa Tool 

 The Balsa adopts syntax-directed compilation which implies that for each expression in 

the Balsa text a separate piece of hardware is generated. However, the programmer must be 

careful to see if there any repeated constructs that could either be moved to a common point in 

the coed or replaced by shared procedures. For example, in section 3-2 the shared procedure 

AddSub is designed for the ALU operations ADD and SUB. In section 3-7 we also provide a 

method for optimizing the control path. The common procedure can be moved to the ahead or 

the behind of the case description.  

 The performance analyzer on the handshake circuit-level gives the programmer feedback 

related to the Balsa text itself. Transforming the Balsa program can result in a circuit with the 

same functionality, but with different characteristics in area, speed and energy dissipation.  

 

6-2 Xilinx Synthesis Tool 

 When the Verilog netlist is synthesized by Balsa tool, we use the Xilinx synthesis tool to 

synthesize the Verilog netlist. However, the Xilinx synthesis tool is dedicated for the 

synchronous circuits. It does many optimizations on the circuits such as removing redundant 

logic and doing logic minimization. But we must avoid this situation occurring because the 

hazard free circuits and the buffers may be removed. We use the constraint “KEEP 

HIERARCHY” to avoid logic minimization on some handshake modules. 



 57

KEEP_HIERARCHY is a synthesis and implementation constraint. If hierarchy is maintained 

during synthesis, the implementation tools will use this constraint to preserve the hierarchy 

throughout the implementation process and allow a simulation netlist to be created with the 

desired hierarchy. In the figure 38, if KEEP_HIERARCHY is set to the entity or module I2, 

the hierarchy of I2 will be in the final netlist, but its contents I3, I4 will be flattened inside I2. 

I0

I1

I2

I3 I4

KEEP_HIERARCHY

 
Figure 38: KEEP_HIERARCHY Example 

We add this constraint on the handshake module BrzVariable, BrzConcurrent and 

BrzSequence in our experience. The buffers are added on the signal request of the push 

channel and the signal acknowledge of the pull channel. The push and pull channel are show 

in figure 39. 

 

Figure 39: Push and Pull channel (a) the left hand is pull channel (b) the right hand is 
push channel 
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6-3 Implementation Issues on FPGA 

 There are no dedicated asynchronous cells on the FPGA such as C element and S 

element. The basic gates are used to implement these elements. It results in the overhead of 

the area cost. 
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Chapter 7 Conclusion and Future Work 

 The capabilities of FPGAs have increased to the level where it is possible to implement a 

complete computer system on a single FPGA chip. The main component in such a system is a 

soft-core processor. The asynchronous 8051 soft-core processor is intended for 

implementation in Xilinx FPGA. In this thesis a Balsa implementation of the asynchronous 

8051 has been developed, called SA8051. Performance of SA8051 has been investigated and 

compared to that of the synchronous 8051. Performance analysis has shown that the SA8051 

outperformed the synchronous 8051 by a factor 3 in dynamic power consumption.   

 The thesis offers the following contributions: 

 The architecture of the asynchronous 8051 modeled by Balsa is described. Some design 

issues for Balsa language is also described.  

 The design flow for the asynchronous circuit implementation in FPGA is described. This 

offers a method for implementing asynchronous circuit in synchronous FPGA chip.  

 The verification flow is described. The verification consists of the behavior, timing and 

board-level simulation. 

 A handshake interface between the asynchronous circuits and synchronous circuits is 

described.  

 The asynchronous 8051 shows a dynamic power advantage of a factor 3 compared to the 

synchronous implementation for the same performance. This offers an opportunity for 

the low-power SOC applications.  
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7-1 Future Work 

 This thesis leaves a lot of room for future work. First, the instructions MUL, DIV and 

MOVX could be implemented. Second, the peripheral timer and UART could be implemented 

with synthesizable HDL and combined with the asynchronous 8051 in netlist level. More 

research is needed on the possible pipeline organizations that may offer better performance. 

Furthermore, the synthesized asynchronous circuits by Balsa could be optimized in order to 

increase performance and decrease area cost. 
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