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Abstract

Recent advancements in Field Programmable Gate Array (FPGA) technology have
resulted in FPGA devices that support the implementation of a complete computer system on
a single FPGA chip. A soft-core processor is a central component of such a system. A
soft-core processor is a microprocessoridefined in software, which can be synthesized in
programmable hardware, such as.FPGAS!

8051 is the most popular microcontroller and hence is often used in applications where
low energy consumption is important. The 8051 soft-core processor from Intel Corporation is
studied and a Verilog netlist of the 8051 soft-core has been developed, called SA8051. The
SA8051 is a low-power asynchronous processor modeled by Balsa which is a CSP-based
asynchronous hardware description language and synthesis tool. A Verilog netlist for XST
(Xilinx Synthesis Tool) is generated by Balsa. We implement SA8051 in Xilinx FPGA
Spartan-11E 300 ft256. We compare SA8051 with the synchronous 8051 without gated clock.
The SA8051 shows a dynamic power advantage of a factor 3 compared to the synchronous
implementation.

In order to reduce area cost, we do not model ROM and RAM of the SA8051 by Balsa.
We use Block RAM in FPGA chip as program memory and data memory. The interface

between the synchronous memory and the asynchronous processor is designed.



Acknowledgements

| am very appreciative of:
Dr. Chang-Jiu Chen — the prime advisor on research and this thesis

The lab members: Mr. Huang, Mr. Zheng, Mr. Chang, Mr. Shen, Mr. Chen for their
encouragement and help.

My mother and father — the most important support to me.



Contents

BB B oo [
F A ST I 7\ O 1]
ACKNOWLEDGEMENTS ...ttt et e ettt e e e et e e s s e e s st e e e e baeeessabeeassbeeeeaabaeeeesssaneesssreneans 1]
(OO T\ I = A 1T v
LIST OF FIGURES. ... .ottt ettt e e ettt e e e et e s s b et e s e bt e e e s bt e e e s sab e e e s esbbesesabeeesssbbaessanteesesarens Vi
[ ISR IO L N = I R VI
CHAPTER L INTRODUCTION . ...ttt ettt e e s ettt et s e e s s et b e et s e s s sasabbbaeeseessasbbbaaseesssesanses 1
Y Lo NN [0 R 1
1-2 ASYNCHRONOUS DESIGN .....uuuvviiiiieiiiiiiiiiiieeesseiistbeti s e s s s s siabbabesssesssasbbabaessesssasb bbb aessesssabbbbaeesassssssbbbbbasassssssens 2
L1-3 BALSA SYNTHESIS TOOL ..cciieiuttiiiiie et ieiitieei e e e e s e iitbbae e e e e e s s st b et e e e s e et seab bbb eeeseessas bbb baeesesssas bbb baeeseessssbbbaaeseeesssstes 4
1-4 ORGANIZATION OF THIS THESIS t1vttieeiieiutttttieesieiisttettressssiissestsesesssasssssssssesssasssssesssesssasssresssessssissssesssessssisssns 7
CHAPTER 2 RELATED WORK . ...t sees e sa88 bttt e e estee e e saaeessestesesasteessssbasesssseseseseessssnrensesseeseanns 8
2-1 OVERVIEW OF BOD5L .. .uuuuiiiiiieeies Buss iiiissisnsnsnsssessosiinnsnssiiessaiienssseessesssasisssssssessssiosssssesssssisssssssessessinissssessesns 8

2 T I 1 3 £ 0ot 0] TS e S e S RO 8
2-1-2 SYNCHRONOUS ARCHITECTURE # it i o i i i it e aa e 11
2-2 Classification of ASYNCHIONOUS CIFGUITS civerriistitanstseereerresreresresieseeesiesssessessessessessessesssssssssessessesessessens 13

N = Y I N = 7N 2 = | 14
B 2 T (ol = (140 =) ) T T RS RRT 14
2-3-2 Handshake COMPONENES.........cciiiiiiieeeieiesteste et e s se et st e e s beste e e ese e ae st e besbestesreenaesrenteseenneas 17

2-4 CONCLUDING REMARKS ...ttt i iiiettttittte et iestttittsesssesbtbettsesssasabbattsaessa st beetsasssssasbbaseeasesssasbbebaeesesssasbbareeesessns 20
CHAPTER 3 DESIGN THE SABOSL........oo ittt ettt e ettt e et e et e e sbae e e s stbeeessabaesssnsaneessarenes 21
3-1 THE ARCHITECTURE OF SABOSL ..oviiiiiiiiiiiitiiiiee ettt ettt s e e s b bbb e e e e e s s e sab bbb e e e e e e s ssabbbbeeeeeeas 21
3-2 DESIGN THE FETCH_IR UNIT 1.iiiiiitiiit ittt skttt n et an et an e 24
B3 DESIGN THE ALU . e e e e e bbb e e e e e s s s b bbb e e e s e s s s b bbb e e e sesssaabbebaeeseeaas 24
3-3 DESIGN THE DECODER UNIT ...itttiiiiiiiiiiiitiiit ettt e s st e e e e e s s st b e et e e s s s s sabb b e b e e e s e s s sab bbb aeeseessaabbbbaeeseeaan 26
3-4 DEAL WITH BIT-OPERATION INSTRUCTIONS ...iieiiiittttiiiieesieiittettseessssitbeessessssssbbessessessssssbssssssesssssssesssesesss 30
3-5 HANDSHAKE INTERFACE TO THE IMEMORY .1viiiiiiiiiitiiiiiie e seiitbtie s e e s s s saibbats s e s s s s sabbbaba e e s e s s sabbaaaessesssnbbasaeeseeaas 31
3-6 BYPASSING THE BUS AND ALU .outiiiiiiii ittt ettt sttt e st a e e e s e s st bbb e e e s e e s s eabbabaeeseeaan 33
3-7 OPTIMIZATIONS IN CONTROL PATH ..ciiiiiieitiiii ettt ettt e e e e ettt s e e s s e st b e bt e e s e s s sabbbbaeesesssaabbabeeeseeaas 34
3-8 CONCLUDING REMARKS ...ttt i iiiittttittie et ieitbtreeesesssassbbbaessesssassbbbasesaessssabbaassasesssbbbabeeesesssasbbbaaeesesssabbabaeeseesas 36
CHAPTER 4 IMPLEMENTATION AND VERIFICATION ....ooiiitiie ettt eaea e 37



A-1 THE DESIGN FLOW ..oiiiiiiiittiiis ettt ettt e sttt e e e e e s eb bbb e e e s e et s bt bbb e e e e e s s s bbb e b e e e e e e s saabb b baeeseessaabbbenes 37

4-2 IMPLEMENTATION ISSUES ..vvviiiieiiiititiiiiie e s se ittt et e e e s e sttt e s e e s s e saab et e s e s e s s sabbebeeesesssabbabesasesssasbbtbaeesesssasrebeness 39
LAY = T = ToF N (0] N TR 40
4-3-1 BENAVIOT SIMUIALION .....cciviiiiiiieitiieceec ettt ettt e st e s st e s st e s st e e sab e s sabessbbessbassabesssbaesnbesens 40
4-3-2 TIMING SIMUIALION ...ttt bbbt sb ettt sb et et se et be et e b 42
4-3-3 BOArd LEVEI VEIfICATION ... .eeiiiieviie ittt e e et e e st e e e s saba e e s s bt e e s ssaae s e sares 43

-4 CONCLUDING REMARKS .. 0tttiiiiiiiiiiitiiit e et ss ittt e e st e it ae s e e e s st ib b b aa e e e s e st saab bbb e e e s e s s s st b et e e e sesssasbbebaeeseessaabbbenes 44
CHAPTER 5 SIMULATION RESULT ...ttt ettt s et e e s s sab e e s s satae s saban e s s sabeee s 45
L A T 0 ] ] Y 1Y N o =SSO 45
5-2 POWER CONSUMPTION L1tttiiiiiiiiettttiesteesieisssseessesssasssssasssesssaissssssssssssisstssssssssssisssssssessessimsssssssssessimsssssesseens 47
Lo AN =] =7 O 1 LSO 54
54 CONCLUDING REMARKS .. .ciiiiiiittttittie et ieiitteeesesssasbbbasssesssassbbbastsaesssiabbaassasssssabbbabaeesesssasbbbbaeesesssabbabseeseesas 54
CHAPTER 6 DISCUSSION ...ttt ettt e e s s e sttt e e e s s et b b e et s e esse st batesesesssabbbasasesssssasees 56
(SR = Y YN 0 L] S 56
6-2 XILINX SYNTHESIS TOOL 1oiiiiiiiitttiiiiie e i ittt ittt e e s s ettt ate s e s s s e sabb b e st s e e s s s sabb b e e s s asssssabbbabeeesesssaabbbbaeesesssasbbbbaeeseesas 56
6-3 IMPLEMENTATION ISSUES ON FPGA it it ettt ettt e s e st ar e e e s e e s st bbb e e e s e e s seabbaaaeeeeeaan 58
CHAPTER 7 CONCLUSION AND FUTURE WO RK i i ettt sttt svan e saaee s 59
T-L1 FUTURE WORK ...oiiiiiiititiieeeecsseomiatee e eeessshis 8 ihaaasansbissaesseesaaias s sesssasssesasssasssassssssssbasssesesssassbasssssesssassssssnssesss 60
REFERENGCE ... i i ettt a ettt ettt e e s et et e s sttt e e sttt e e sebaeee st beeesasbeesssabeeesansbesesans 61



List of Figures

FIGURE 1: THE FOUR-PHASE BUNDLED DATA INTERFACE PROTOCOL .......ccocoiviiiiiiericne e 1
FIGURE 2: THE BALSA DESIGN FLOW .....oooiiiiiiiii s 5
FIGURE 3: TWO-PLACE BUFFER. ...t 6
FIGURE 4: HANDSHAKE CIRCUIT OF ATWO-PLACE BUFFER .......cccceoiiiiieeeee e 7
FIGURE 4: THE 8051 ADDRESSING MODE ... 9
FIGURE 5: THE ARCHITECTURE OF THE SYNCHRONQOUS 8051 .......cccoiiiinieiinriene s 11
FIGURE 6: ACIRCUIT FRAGMENT WITH GATE AND WIRE DELAYS .......coiiiiiiiiieieee s 13

FIGURE 7: THE MULLER C-ELEMENT, (A) SYMBOL (B) TRUE TABLE (C) GATE-LEVEL
IMPLEMENTATION ...ttt et sttt r et r et nr e 15

FIGURE 8: THE NC2P-ELEMENT (A) SYMBOL (B) TRUE TABLE (C) GATE-LEVEL
IMPLEMENTATION ..ot BB 5 1t e 16

FIGURE 9: THE S-ELEMENT (A) SYMBOL (B)/GATE-LEVEL IMPLEMENTATION (C)
HANDSHAKING PROTOCOL ...... o essessssssteeetesessthotteesste -afheeseseessesssessesseessssssssessseesssssssssesssssssesssssesss 16

FIGURE 10: THE MULTIPLEXER (A) FUNETION BL OCK (B) TRUE TABLE (C) GATE LEVEL
IMPLEMENTATION ..ot i a8 ettt ettt et 17

FIGURE 11: THE DE-MULTIPLEXER (A) FUNCTION BLOCK (B) TRUE TABLE (C) GATE LEVEL
IMPLEMENTATION ..ot bbbt 17

FIGURE 12: THE FETCH COMPONENT (A) HANDSHAKE COMPONENT (B) GATE LEVEL
IMPLEMENTATION .ottt b bt b e e e bbb bt e e e e ar e 18

FIGURE 13: THE SEQUENCE COMPONENT (A) HANDSHAKE COMPONENT (B) GATE LEVEL
IMPLEMENTATION ...ttt et ettt r et b et r e e 18

FIGURE 14: THE CONCURRENT COMPONENT (A) HANDSHAKE COMPONENT (B) GATE
LEVEL IMPLEMENTATION ...ttt bbb 19

FIGURE 15: THE VARIABLE COMPONENT (A) HANDSHAKE COMPONENT (B) GATE LEVEL

IMPLEMENTATION .ottt et h bbb bbbt e nneer e 19
FIGURE 16: THE ARCHITECTURE OF SABOSL .......ccoiiiiiiii i 21
FIGURE 17: THE ARCHITECTURE OF CPU. ......ccoiiiiiiiieiicerreee s 22
FIGURE 18: BALSA PROGRAM FOR MAIN LOOP OF CPU ......ccciiiiiiiiicin s 23
FIGURE 19: BALSAPROGRAM FOR FETCH_IR.....cccciiiiiii s 24



FIGURE 20: THE BLOCK DIAGRAM OF ALU ..ottt 25

FIGURE 21: (A) BALSA SHARED FUNCTION FOR ADD AND SUB (B) OPERANDS ASSIGNMENT

USED IN ADDSUB FUNCTION......ccitiiiiiiciit e 26
FIGURE 22: THE JUDGE_REGULAR SHARED FUNCTION.........ccoiiiiiiii 29
FIGURE 23: THE STRUCTURE OF THE REGULAR PART ..ot 29

FIGURE 25: HANDSHAKE INTERFACE BETWEEN MEMORY AND CPU .......cccccoviiiiiiiiiiins 32

FIGURE 26: HANDSHAKE CIRCUIT FOR THE CASE-STATEMENT (A) NOT OPTIMIZED (B)

OPTIMIZED......co et b bt h Rt b e b e e bt s e e r e b e bt et e e e nnean e re e 35
FIGURE 27: THE BALSA AND FPGADESIGN FLOW .....cocoiiiiiiiiii s 38
FIGURE 28: SA8051 BEHAVIOR SIMULATION ENVIRONMENT ......cooiiiiie s 41

FIGURE 29: BALSA DESCRIPTION FOR MEMORY MODEL (A) ROM MODEL (B) RAM MODEL 41

FIGURE 30: SA8051 TIMING SIMULATION ENVIRONMENT .......cocviiiiiiiiiniecneesesnee s 43
FIGURE 31: BOARD LEVEL VERIEICATHON-ENVIRONMENT ........ccceiiiiiiiineneeeneeenreeeennns 44
FIGURE 32: SPEEDUP FOR SA8051 VERSUSH805L..........cc0 oo 46
FIGURE 33: TOTAL POWER CONSUMPTTON FOR TEST PROGRAMS ..o 49

FIGURE 35: THE DYNAMIC POWER CONSUMPTION OF THE ASYNCHRONOUS PROCESSOR
CORE VERSUS SYNCHRONOUS ........coooiiiii s 51

FIGURE 36: THE DETAILED DYNAMIC POWER CONSUMPTION (A) THE LEFT SIDE IS
ASYNCHRONOUS PROCESSOR (B) THE RIGHT SIDE IS SYNCHRONOUS PROCESSOR............... 52

FIGURE 37: THE DETAILED DYNAMIC POWER CONSUMPTION (A) THE LEFT SIDE IS
ASYNCHRONOUS PROCESSOR (B) THE RIGHT SIDE IS SYNCHRONOUS PROCESSOR............... 53

FIGURE 38: KEEP_HIERARCHY EXAMPLE ..o 57

FIGURE 39: PUSH AND PULL CHANNEL (A) THE LEFT HAND IS PULL CHANNEL (B) THE
RIGHT HAND IS PUSH CHANNEL ..ot 57

vii



List of Tables

TABLE 1: THE ADVANTAGES AND DISADVANTAGES OF ASYNCHRONOUS DESIGN ...cvvieiivieiieesiriesieeesineesnessineesneessnees 3
TABLE 2: THE 8051 INSTRUCTION SET. ALL MNEMONICS COPYRIGHTED INTEL CORPORATION 1980 ...........ccueeeee 10
TABLE 3: INSTRUCTION EXECUTION SCHEME .....0eiutteittteitteesirtessaeestseessseessseessaesssseesssesstssssssssssssesssssssssasssssssssessnsssns 13
TABLE 4: THE DESCRIPTION OF THE PORTS IN ALU ..uiiiiiiciiic ettt 25
TABLE 5: REGULAR (GRAY PART) AND IRREGULAR (WHITE PART) PART OF THE 8051 INSTRUCTION SET.....ccvcvruennes 28
TABLE 6: INSTRUCTIONS WITH BIT-ADDRESSING MODE ....cc.uviiiiieitiiesueesireesaeesineessseessseesssssssseesssssssssesssssssssesssnsssns 30
TABLE 7: THE OPPORTUNITY FOR BYPASSING THE BUS ... uvttitttesiueeiiriesineesiniessaeesiseessseesisessssssstsesssesssssssssnssssssesssnsssns 34
TABLE 8: THE AREA COST FOR THE SYNCHRONOUS AND ASYNCHRONOUS 8051........cciiiieiiieiiiesie e 54

viii



Chapter 1 Introduction

The goal of this thesis is to design and implement a low-power asynchronous 8051
microcontroller. In this chapter, session 1 describes the motivation of the designed SA8051.
Session 2 briefly discusses the advantages and disadvantages of the asynchronous processor
design and its counterpart, the synchronous processor design. Section 3 briefly describes the

Balsa synthesis tool. Section 4 describes the organization of this thesis.

1-1 Motivations

Asynchronous design has a potential of solving many difficulties, such as clock skew
and power consumption, which synchronous counterpart suffers with current and future VLSI
technologies. Asynchronous processors do not rely on global clocks but achieve
synchronization by means of localized synchronization protocols. These protocols typically
have local request and acknowledge signals, which provide information regarding the validity
of data signals. An example of such the protoeelis the four-phase bundled data handshake

synchronization protocol illustrated in figure 1.

Request

Req ﬂ § r"[
Acknowledge L
Sender Receiver Ack Sl g [

Data Data _ ~y

Figure 1: The Four-Phase Bundled Data Interface Protocol

Asynchronous circuits have the potential for low power consumption because the only
dissipate when and where necessary. On the other hand, it is quite difficult to design these

asynchronous circuits at the gate level. At Manchester University, a high-level language,



Balsa, was developed. A Balsa program can be compiled automatically into a gate-level netlist,
using so-called handshake circuit as intermediate architecture [1]. Handshake circuits are
composed from a set of about 40 basic components that use handshake signaling for
communication. Tools provide feedback on the performance of the circuit on the handshake
level, thus making a quick design cycle possible.

A soft-core processor is a microprocessor fully described in software, usually in an
HDL, which can be synthesized in programmable hardware, such as FPGAs. A soft-core
processor targeting FPGAs is flexible because its parameters can be changed at any time by
reprogramming the device. Traditionally, systems have been built using general-purpose
processors implemented as ASIC (Application Specific Integrated Circuits), placed on printed
circuit boards that may have included FPGAs if flexible user logic was required. Using
soft-core processor provides adequate performance. Recently, two commercial soft-core
processors have become available i Nios from Altera-Corporation [2], and MicroBlaze from
Xilinx Inc [3].

The 8051 is the most popular microcontroller and hence is often used in applications
where low energy consumption is important. Therefore, we design a low-power 8051 named
SA8051 which is modeled by Balsa. SA8051 is a low-power soft-core processor. It is an
asynchronous implementation. To compare our design with existing implementations of the
8051, we implement SA8051 and synchronous 8051 in the same FPGA chip, Xilinx
Spartan-11IE 300 ft256 [4] . We estimate power consumption by Xilinx XPower [5]. The
SA8051 outperformed the synchronous 8051 by a factor 3 in dynamic power consumption.

We also do timing simulation by Mentor Graphic ModelSim[6].

1-2 Asynchronous Design

Most digital circuits designed and fabricated today are synchronous. They are based on



the two assumptions: all signals are binary and all components share a common and discrete
notion of time. But asynchronous circuits assume there is no common and discrete time.
Instead the circuits use handshaking between their components in order to perform the

necessary synchronization [7] .

Advantages Disadvantages
Low power consumption Overhead (Area, Speed, Power)
Average-case instead of worst-case Hard to design
performance
Elimination of clock skew problems Few CAD tools
Component modularity and reuse Lack of tools for testing
Low EMI

Table 1: The advantages and disadvantages of asynchronous design

Table 1 is the advantages and:disadvantages of‘asynchronous circuits. Clock skew is the
difference in arrival time of clock signal at different parts of the circuit. As the systems
become larger, it is not easy to. solve the-clock skew in synchronous design. But in
asynchronous design there is no global clock.” So, asynchronous design solves the problem
naturally.

In the synchronous design, the circuits must wait until all computations have completed
before latching the results, yielding worst-case performance. But in the asynchronous design,
operating speed is determined by actual local latencies rather than global worst-case latency.

In the synchronous design, the circuits have to toggle clock and possibly pre-charge and
discharge signals in portions of unused circuits. For example, even though the arithmetic and
logic unit might not be used in some instructions, the unit must be operated. But in
asynchronous design, we can save power due to find-grain clock gating and zero standby
power consumption.

In asynchronous design, we can have better composability and modularity because of the



simple handshake interfaces and the local timing.

The low, uncorrelated EMI (Electro-Magnetic Interference) generated by asynchronous
circuits allow applications not possible in equivalent clocked design. In the Philips Myna
pager, the low EMI produced by the asynchronous microcontroller allows the processor to be
left active during the reception of radio traffic [8].

On the other hand there are also some drawbacks. In the asynchronous design, the
designer must pay a great deal of attention to the dynamic state of the circuit. Hazards must be
removed from the circuit to avoid incorrect results. For lager and more complex systems,
these issues become too difficult to handle. The asynchronous control logic that implements
the handshaking normally represents an overhead in terms of silicon area, circuit speed and
power consumption. Other obstacles are a lack of CAD tools and strategies and a lack of tools

for testing and test vector generator.

1-3 Balsa Synthesis Tool

Balsa is a framework for synthesis.asynchronous hardware systems and the language for
describing such systems [9] . The approach adopted is that of syntax-directed compilation into
communicating handshaking components and closely follows the Tangram [10] . It has been
demonstrated by synthesizing the DMA controller of Amulet3i as well as SPA, an AMULET
core for smartcard application. Balsa uses CSP-based constructs to express Register Transfer
Level descriptions in terms of channel communications, fine grain concurrent and sequential

process decomposition.



Balsa description Define refinement

A

(.balsa file)
A
2 + ‘balsa-c’ . ,
e Z brecze2ps
z - ‘breeze-cost’
v
Breeze description
(HC netlist)
Balsa behavioural
‘balsa-netlist’ simulation system
» Behaviour
h 4
Gate-level netlist Ciale=loned S lation » Functional
Commercial SI
or FPGA P&R
v
Layout /bitstream Layout simulation » Timing / Power

Figure 2: The Balsa Design Flow

An overview of the Balsa design flow is shown in figure 2. A Balsa description of a
circuit is compiled using balsa-c:to an intermediate breeze description. The breeze description
is a syntax-directed fashion with language constructs being mapped into networks of
parameterized instances of “handshake.components”. Each of “handshake components” has a
concrete gate level implementation [1] .

A number of tools are available to process the breeze handshake files. balsa-netlist
automatically generates CAD native netlist files, which can be fed into the commercial CAD
tools that further synthesize the netlist to the fabricable layout. Balsa support three
commercial CAD systems: Compass Design Automation tools from Avant, Xilinx FPGA
design tools and Cadence Design Framework I1.

Balsa supports three back-end protocols for use with each technology: bundle-data
scheme using a four-phase-broad/reduced-broad signaling protocol, a delay-insensitive
dual-rail encoding and a delay-insensitive one-of-four encoding. The bundled-data back end

should be faster and smaller, but needs more careful post-layout timing validation. The two



delay-insensitive schemes are larger and slower but should be more robust to layout
variations.

Balsa supports behavioral simulation by breeze-sim. This simulator allows source level
debugging, visualization of the channel activity at the handshake circuit level as well as

producing conventional waveform traces that can be viewed using the waveform viewer

gtkwave.
buffer2
1 » C » Q >
buffer buffer
import [balsa.types.basic’ 1)
type word is 16 bits 2)
procedure buffer (input i : word; output @ word) i§ [©))
variable x : word )
begin
loop -- infinite iteration
1->X -- 1Aput communication
; -- scduential operator
0<-X -2 olitput communication
end
end

procedure buffer? (input i : word; output.o : word) is
channel ¢ : word

begin
buffer (, ¢) Il -~ “I” vparallel operator
buffer (c,0)

end

(1) “import” statement includes the files with type declarations or library procedures
(2) “type” statement is the definition of the user defined data type

(3) “procedure” is the definition of a component. It has input and output ports.
(4) “variable” is the internal register

Figure 3: Two-place buffer

Figure 3 illustrates a simple Balsa modeling example of a two-place buffer.
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Figure 4: Handshake circuit of a two-place buffer

Figure 4 illustrate the handshake component of the two-place buffer generated by
breeze2ps. The left hand is a one-place;buffer: ;The right hand is a two-place buffer composed

of two one-place buffers.

1-4 Organization of thisthesis

In this thesis, we will illustrate the related work in chapter 2 including the overview of
the synchronous 8051, classification of asynchronous circuits and the basic cells in Balsa
synthesis system. In chapter 3 we will illustrate design of SA8051 modeled by Balsa. In
chapter 4 we will illustrate the implementation and verification of SA8051. In chapter 5 we
will illustrate the results of simulation. In chapter 6 we will discuss some design issues about
Balsa tool, Xilinx synthesis tool and implementation on FPGA. Finally, a brief conclusion and

future work are discussed in chapter 7.



Chapter 2 Related Work

This chapter is organized as follows. We first briefly introduce the architecture of the
synchronous 8051. We then describe the classification of asynchronous circuits according to
the delay assumptions. Finally, we describe several basic cells generated by Balsa synthesis

tool.

2-1 Overview of 8051

In this section we will describe the instruction set and the architecture of the Intel 8051.

2-1-1 Instruction Set

The 8051 is a complex instruction set computer (CISC). It has 255 variable-length
instructions from one to three bytes.and supports various addressing modes. The opcode of an
instruction is always encoded inthe first byte..The second and third bytes are operands. The
instruction set is divided among five functional groups: arithmetic, logical, data transfer,
Boolean variable and program branching. The 8051 is a Harvard architecture: instruction
memory and data memory are separate.

The instruction set provides eight addressing modes [11] as depicted in figure 4 : (a) in
register addressing, instructions are encoded using the three least-significant bits of the
instruction opcode (b) in direct addressing, the operand is specified by an 8-bit address field
in the instruction representing an address in the internal data RAM or a special-function
register (SFR) (c) in indirect addressing, the instruction specifies a register (RO or R1)
containing the address of the operand in data memory (d) in immediate addressing, the
constant operand value is part of the instruction (e) in relative addressing, a relative address
(or offset) is an 8-bit signed value, which is added to the program counter to form the address

of the next instruction executed. (f) in absolute addressing, these instructions allow branching



within the current 2K page of code memory by providing the 11 least-significant bits of the
destination address. (g) in long addressing, these instructions include a full 16-bit destination
address as bytes 2 and 3 of the instruction. (h) Indexed addressing uses a base register (either
the program counter or the data pointer) and an offset (the accumulator) in forming the

effective address for a JMP or MOVC instruction.

[T T 1
Opcode n
[ [ |

(a) Register addressing (e.g. ADD A, R5)

[T T T 17 11 [T 1T T 17T 11
Opcode Direct address

I I Y Y

(b) Direct addressing (e.g. ADD A,55H)

[T 1T T 1771
Opcode
I I

(c) Indirect addressing (e.g:ADD, Ay@R0)

[T T T 17T T1 [T 1T T 1T 11
Opcode Immediate data

I I Y Y

(d) Immediate addressing (€.g.-ADD A #44H)

T T T 1T 17T T T T 1T 1T
Opcode Relative offset

I I I Y T I
(e) Relative addressing (e.g. SIMP AHEAD)

[T T 11 T T T 1T 7 T
A10-A8 | Opcode AT7-A0

L | [ [ I
(f) Absolute addressing (e.g. AJIMP BACK)

T T T 1T 1711 I I T T T 1171
Opcode Al15-A8 AT7-A0

[ I T [ I [ I

(9) Long addressing (e.g. LIMP FAR_AHEAD)

Base Register Offset Effective address

PC or DPTR + ACC -

(h) Indexed addressing (e.g. MOVC A, @A+PC)

Figure 4: The 8051 addressing mode



H PO P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF
L
RO NOP JBC JB JNB JC JNC Jz INZ SIMP MOV ORL ANL PUSH POP MOVX MOVX
bit,rel bit,rel bit,rel rel rel rel rel rel DPTR# C,/bit C,/bit dir dir A, @DPTR,
dara 16 @DPTR A
R1 | AJMP | ACALL | AJMP | ACALL AIMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL AJMP | ACALL AIMP ACALL
R2 LIMP | LCALL RET RETI ORL ANL XRL ORL ANL MOV MOV CPL CLR SETB MOVX MOVX
addrl6 | addrl6 dir,A dir,A dir,A C,bit C,bit bit,C C,bit bit bit bit A,@RO @RO,A
R3 RR RRC RL RLC ORL ANL XRL JMP MQVC MOVC INC CPL CLR SET MOVX MOVX
A A A A dir#data | dir#data | dir#data | @A+DPTR | A @A+PC A @A+DPTR DPTR C C C A,@R1 @R1,A
R4 INC DEC ADD ADDC ORL ANL XRL MOV DIV SUBB MUL CINEA, SWAP DA CLR CPL
A A Af#data | A#data | A#data | A#data | A#data A #data AB A#data AB #data, A A A A
rel
R5 INC DEC ADD ADDC ORL ANL XRL MOV MOV SUBB CINEA, XCH DJINZ MOV MOV
dir dir Adir Adir Adir Adir Adir dir,#data dir,dir Adir dir,rel Adir dir,rel Adir dirA
R67 INC DEC ADD ADDC ORL ANL XRL MOV MOV SUBB MOV CINE XCH XCHD MOV MOV
@Ri @Ri A@Ri | A@Ri A@Ri A @Ri A @RI @Ri #data dir @Ri A @RI @Ri,dir @Ri A@Ri | A@Ri A @Ri @Ri,A
Jdata
Jrel
R8F INC DEC ADD ADDC ORL ANL XRL MOV MOV SUBB MOV CINE XCH DINZ MOV MOV
Rn Rn ARn ARnN ARn ARnN ARnN Rn,#data dir,Rn ARnN Rn,dir Rn ARnN Rn,rel ARnN Rn,A
#data

Jrel

Table 2: The 8051 instruction set. All mnemonics copyrighted Intel Corporation 1980
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Table 2 is the complete instruction set of 8051. In this table the rows represent the four
least significant bits of the opcode while the columns represent the four most significant bits.
Thus, the instruction at entry PiRj has opcode ij in hexadecimal notation. Rows R8 to RF are
combined into one row because these instructions only differ in the last three bits which
specify a register. Rows R6 and R7 are also combined into one row because the last bit of
opcode indicates which register (RO or R1) will be used as indirect address. Note that only

one entry (PA R5) in this table does not contain an instruction.

2-1-2 Synchronous Architecture

Ir I

Port 0 Port 2
Drivers Drivers
L1k Car
| |
RAM Port 0 Port 2
Resios RAM Latch Latch ROM
I ] E 1 i
[ 1B w
Acc SP
T2 Tl —
PAR /q
ALU
ﬁ Buffer ﬁ
<
pC Iner [ &
ncr
Psle Timin SFR Space NV
— e PSW
& pc (=)
— Contro ‘ ‘
1 T3
N DPTR [—)
il 1L 1L -
Oscillator Port 1 Port 3
Latch Latch
Port 1 Port 3
Latch Latch

r I

Figure 5: The architecture of the synchronous 8051
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Figure 5 is the architecture of the synchronous 8051 [12]. It has three buses: IB, PB,
PARB bus. IB-bus acts as the communication channel between any two registers. PB-bus acts
the communication channel among PAR (Program Address Register), Buffer, PC Incrementer,
PC and DPTR. PAR sent out program address on PAR-bus. The width of the IB bus is 1 byte
while the PARB and PB are 2 bytes. The internal memory consists of on-chip ROM and
on-chip data RAM. The on-chip RAM contains a rich arrangement of general-purpose storage,
bit-addressable storage, register banks, and special function registers (SFR). The registers and
input/output ports are memory mapped and accessible like any other memory location and the
stack resides within the internal RAM rather than in external RAM. SFRs take care of the
communication between CPU and peripherals. There are four bidirectional ports (PO — P3) for
communication to and from the outside world.

The 8051 also includes bit operations;.which only affect single bit in a given registers.
Only some locations of the internal RAM are bit-accessible including address from 20H to
2FH and some SFRs. Internally,‘the bit operations are performed by reading the whole byte
from internal memory, modifying the single'bit; and then writing the value back in the same
operation cycle.

Table 3 is the instruction scheme of the synchronous 8051 [13]. Each instruction is
executed in one, two or four machine cycles. A machine cycle consists of a sequence of 6
states, numbered S1 through S6. Each state time lasts for two oscillator periods. Therefore,
with an internal clock frequency of 12 MHz the performance will be below 1 MIPS. In each
state of the execution scheme a specific action takes place. The one-cycle instructions execute
the first machine cycle C1, while the two-cycle instructions execute C1 and C2 consecutively.
The scheme results in many redundant cycles during execution because not all actions are
required in one machine cycle. For example, two program fetches are generated during each

machine cycle, even if the instruction being executed does not require it.
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S1 S2 S3 S4 S5 S6

C1l Access ACC ->T2 | Access Access OP->T1or T2 | ALU->dest.
ROM RAM ROM
S1 S2 S3 S4 S5 S6

C2 Access Calculate jump address | PC incr. OP->T1lorT2 | ALU->dest.
ROM

Table 3: Instruction execution scheme

When access for external memory, Port 0 has the data byte and the least significant byte
of the address multiplexed on it. Address Latch Enable (ALE) is used to signal external
circuitry to latch the address LSB before Port 0 switches to either reading or writing the data
byte. If a 16-bit address is used, Port 2 is used to output the high byte of the address. In this
mode, Port 2 also uses strong internal pull-ups to output the address MSB. Finally, pins 6 and
7 of Port 3 are used to signal a write or a read onthe bus respectively. However, for the

SA8051, all of the instructions are in internal-memory.

2-2 Classification of Asynchronous Circuits

B |
de
A
da
A
C
dc

Figure 6: A circuit fragment with gate and wire delays

At the gate level, asynchronous circuits can be classified as being delay-insensitive,
quasi-delay-insensitive, speed-independent, self-timed depending on the delay assumptions
that are made [4]. Figure 6 serves to illustrate the following discussion. In this figure there are
three gates (A, B, C) and three wires (W1, W2, W3). da, dg and dc represent the gate delay for

A, B and C respectively. dj, d; and d3 represent the wire delay of W,, W, and W3 respectively.
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(@)

(b)

(©)

(d)

Delay-Insensitive (DI): a circuit that operates correctly with positive, bounded but
unknown delays in wires and gates. Referring to figure 6 this means arbitrary da, dg, dc,
d;, d2 and ds.

Quasi-Delay-Insensitive (QDI): a QDI circuit is DI with the exception of some carefully
identified wire forks called “isochronic forks”. Referring to figure 6 this means arbitrary
da, ds, dc, d; but d; = ds.

Speed-Independent (SI): a Sl circuit is a circuit that operates correctly assuming positive,
bounded but unknown delays in gates and ideal zero-delay wires. Referring to figure 6
this means arbitrary da, dg, dc butd; =d, =d3=0.

Self-Timed (ST): a self-timed circuit contains a group of self-timed elements. Each
element is contained in an “equipotential region”, where wires have negligible or
well-bounded delay. An element itself;may be-an Sl circuit, or a circuit whose correct
operation relies on use of logal'timing assumptions. However, no timing assumptions are
made on the communication between regions. That is, communication between regions is

Dl.

2-3 Balsa Back-End

The Balsa back-end generates gate level netlist to import into target CAD systems in

order to produce circuit implementations [14]. In this section we will describe some basic

cells for Xilinx technology generated by Balsa such as Muller C element and S element. We

also describe some handshake components in Balsa synthesis system.

2-3-1 Basic Elements

The gate level netlist generated by Balsa for Xilinx technology only uses some basic

cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-type flip-flop),
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FDC and FDCE. Basic elements are composed of these cells.

i0 il |q
10—
| C q 0 0 |0
H 0 1 |nochange
(a) 1 0 |nochange
1 1 1
(b)

0 — >
i q
i : -

©

Figure 7: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation

Figure 7 shows the Muller-C-element. lt-is one of the most common additions to the
basic set of logic gates made in order'to make the implementation of asynchronous circuits
easier. It is a state-holding element like an asynchronous set-reset latch. When both inputs are
0, the output is set to 0. When both inputs are 1 the output is set to 1. For other input
combinations the output does not change. A Muller C-element is a fundamental component

that is extensively used in asynchronous circuits.
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Figure 8: The NC2P-element (a) symbol (b) true table (c) gate-level implementation
Figure 8 shows the NC2P element. When i0 is equal to 0, the output is 0. When i0 and il

are equal to 1, the output is 1. For other input combinations the output does not change. It is
much like inverter of C-element except that when i0 is equal to 0 and il is equal to 1, the

output is 1.

(a)

®)

Ar

Br

Ba

©

Figure 9: The S-element (a) symbol (b) gate-level implementation (c) handshaking
protocol

Figure 9 shows the S-element which is a circuit element commonly found in the
implementation of handshake components [1]. An S-element has 4 pins including 2

request/acknowledge handshake pairs — ‘Ar’/’Aa’ and ‘Br’/’Ba’. In Balsa system it replaces

16



the “inverter of C-element” with “nc2p”. Hence, it can reduce the number of gates because
“inverter of C-element” uses 3 AND gates, 1 OR gate and 1 Inverter but “nc2p” uses 2 AND

gates, 1 NOR gate and 1 Inverter.

MUX 4

dl

dl

sel
sel q
(a)

do

©
Figure 10: The multiplexer (a) function block (b) true table (c) gate level implementation

S |01 Qo
Qo
. 0 i 0
! demux 1 0 i
O1
(b)

sel

(a) Sl } O1
O

Qo

(©

Figure 11: The de-multiplexer (a) function block (b) true table (c) gate level
implementation

Figure 10 and figure 11 are the multiplexer and de-multiplexer elements. They are used

in many elements such as Basla full adder and BrzCase.

2-3-2 Handshake Components

Balsa has about 40 components that use handshake signaling for communication. Each

of “handshake components” has a concrete gate level implementation. In the following we
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illustrate some handshake components [14] .

activate

[ activate_0r inp_0r>
BUF
[inp_Da out Or>
mp out BUF
out_Oa > activate_0a >
BUF
[inp_odGEroy)> ™~ {out_DdGETD)Y
() L0
(b)

Figure 12: The Fetch Component (a) handshake component (b) gate level
implementation

Figure 12 is the Fetch component. This component is the most common way of
controlling a datapath from a control tree. Transferrers are used to implement assignment,
input and output channel operations in Balsa by transferring a data value from a pull datapath

and pushing it towards a push datapath[14].

activateOut_Or

activate_()r [ activateOut_1a ALIAS N - T
S Ui
[&ctivateOLt_0a f Ba Br activateOUt_0r
activateOut_1 -

r activate_0a,

@ (b)

Figure 13: The Sequence Component (a) handshake component (b) gate level
implementation

Figure 14 and 15 are sequence and concurrent component respectively. They form a large
part of handshake circuit control trees [14]. They are used to activate a number of commands

under the control of activate handshake.
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activateOut_Or

. . —_— k ! \
activate_0 Lechete (¢ s [ p—un g wink la
r _ C2
[ actvaleOut 12 achvateOut Gay Ba S o
- s LA
activateOut_Ir achale0d rachiaOd o)

(a)
(b)
Figure 14: The Concurrent Component (a) handshake component (b) gate level
implementation

write Read[0]
(@)
Read[1]
ALIAS
| read Or a D@ II:D D@ wite 0a)
[ read 1r) NV v
(W B —————
D 0 ALIRS
read 1d
¢ read Oa
read 1a
(b)

Figure 15: The Variable Component (a) handshake component (b) gate level
implementation

Figure 15 is the variable component. It uses D-type flip-flop to store data. The source of
clock is the signal write_Or. When a piece of data is wanted to be stored, the signal write_Or is
set and then the signal is reset. When a piece of data is wanted to be read, the signal read_Or

or read_1r is set. It is natural to achieve the effect of gating clock.
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2-4 Concluding Remarks

In this chapter we introduce the synchronous 8051 architecture. 8051 is a complex
instruction set computer. It has variable-length instructions from one to three bytes. Each state
of a machine cycle uses the bus. Hence, it is not easy to overlap execution of instructions, i.e.
to implement pipelining. We then introduce the classification of the asynchronous circuits.
Asynchronous circuits can be classified as being SI, DI, QDI, ST depending on the delay
assumptions. Finally we illustrate the Balsa back-end. Balsa synthesis system is composed of
about 40 components. Each can be translated to gate level netlist. They use handshaking

protocol for communication.
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Chapter 3 Design the SA8051

This chapter is organized as follows. First, we describe the architecture of SA8051 and
model it in Balsa. We then describe the interface among the CPU, memory and external
environment. We then discuss the optimization in control path. Finally, we describe the

technique of bypassing the buses and ALU.

3-1 The Architecture of SA8051

activate_Or reset_0d

. | |

reset_Oa
reset_Or
rom_-addr_Or
rom_en rom_:addr_Oa
j rom_addr fom_addr-0d < Pl |
ROM rom data rom __data_Or
:‘ ) rom; data Oa
Rom_rfd 5 rom _data_0d
&
g
=
£ ss3 s9z| SIS &8 || =
Z Sles zlxz| £ 5% ss| | f
PO_out E TR 22| B9 SR ||
P1 out = i
_ou Eclf| Elgg| =8 £
P2_out =g =g gl d EE =
P3 out =

handshake interface

indata
outdata

ram en
ram addr

ram wr
Ram rfd

5|MHz

PO_inP1_in P2_in P3_in

s
2

Figure 16: The architecture of SA8051
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The global structure of the SA8051 consists of CPU, ROM, RAM, four inputs and four
outputs as depicted in figure 16. The CPU is activated when the signalactivate Or is set to 1. If
the CPU is not activated, it is in idle mode and consumes little energy. The CPU
communicates with RAM and ROM through handshaking interface. It has four output ports
including PO _out, P1 out, P2 out and P3 out. Each has one byte and is mapped to one
location of RAM. It has four input ports including PO_in, P1_in, P2_in and P3_in. They are
used to receive data from the environment. When we set the signal reset_0d, the CPU will

initialize the contents of all special function registers (SFRs).

I 1

! l
' |
I
| Port 0 Port 2 |
: Drivers Drivers :
| S Tl .
I | ‘ |
! |
RAM ! Port 0 Port 2 .
P R
ls\c]Zi[s)Er RAM Latch Latch ROM

SRR =0y 1 S

| 1B

dd

T3 T2 T1

j? PAR {—

ALU M Buffer M
<
N %
PC Incr — é

PSW
|result1 | |result2 | PC N—V
| L
DPTR

IR | L

I
: Port 3 Port 1 |
: Latch Latch I
o L L
| I
[ Port 3 Port 1 |
: Drivers Drivers :
I
| I

I

Figure 17: The architecture of CPU
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Figure 17 depicts the architecture of the CPU in SA8051. It is a little different from
synchronous architecture. The ALU (Arithmetic and Logic Unit) has three inputs (T1, T2 and
T3), two outputs (resultl and result2) and a PSW (Program Status Word). Most instructions
only use two inputs (T1 and T2) and one output (resultl). Few instructions use three inputs
and two outputs such as MUL, DIV and JMP. But some instructions do not use ALU such as
MOV. It can reduce power consumption and promote performance but need extra cost. The
registers T1, T2 and RAR (RAM Address Register) have an input and an output port in order
to support some instructions with bypassing technique. We will describe this technique in the
following section. The broken lines in this figure separate the processor core and the
peripheral of SA8051.

initial();

loop
reset -> then 1f(reset).then nitial() end end;
Fetchzir() ;

Execute()
end

Figure 18: Balsa program for main loop of CPU
The main loop of the Balsa program for the CPU takes the form as shown is figure 18.
Initially, SA8051 resets the contents of each SFR (Special Function Register) and PC
(Program Counter). In the loop, prior to executing an instruction there has to be a check to see
the reset has occurred. Then, fetch the first byte of the instruction and increment the PC. The
opcode is in the first byte of each instruction. Finally, the execution unit decodes the opcode

and executes the corresponding operations.
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3-2 Design the Fetch_ir Unit

Fetching an instruction involves sending an address to the program memory, receiving
the corresponding instruction opcode and incrementing the program counter as shown in
figure 19. par_b and p_b mean PAR bus and PB bus respectively as shown in figure 17. First,
pc assigns its value to par_b and par receives value from par_b. Then, par assigns its value to
p_b and p_b is sent out by the channel of rom_addr. Finally, the bus receives data from the
channel of rom_data and assigns its value to ir (instruction register).

par_ b:=pc;par:=par b;p_b:=par;
rom_addr <- p_b |l rom_data -> bus ; ir := bus Il increment_pc()

Figure 19: Balsa program for Fetch_ir

3-3 Design the ALU

Figure 20 shows the block-diagram of the ALU-in Balsa. The ALU has six input ports
and five output ports. We describe. the meaning of these ports in table 4 in detail. The port
alu_op decides which operation the ALU will'do. The two input flags src_cy and src_ac are
bit 6 and bit 7 respectively inside PSW. The ALU has three data input ports including src_1,
src_2 and src_3. Most instructions only use src_1 and src_2. Some instructions use src_3 like
MOVC and CIJNE. There are two data output ports in ALU including result_1 and result_2.
Most instructions only use result_1 but some instructions like MOVC and CINE use result_1

and result_2. Some operations will update the flags like ADD and SUB.
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src_1 result. 1 -
src_2

result 2 ————
src_3
src_cy result cy ———
src_ac result ac ————
alu_op result ov

Figure 20: The block diagram of ALU

1/0 Port Port Type Port Size Description
alu_op in 5 bits ALU Operation Code
src_1 in 8 bits ALU input data
src_2 in 8 bits ALU input data
src_3 in 8 bits ALU input data
src_cy in 1 bit Carry flag
src_ac In 1 bit Auxiliary Carry Flag
result 1 out 8 bits ALU Resultl
result_2 out 8 bits ALU Result2
result_cy out 1 bit Carry flag
result_ac out 1 bit Auxiliary Carry flag
result_ov out 1 bit Overflow flag

Table 4: The description of the ports in ALU

Balsa adopts the method of syntax-directed compilation. The transparent compilation of
a Balsa program into an asynchronous circuit implies that for each expression in the Balsa text
a separate piece of hardware is generated. We can reduce area by sharing some pieces of
hardware. For example, we combine the function of ADD and SUB. We use shared procedure

to implement it in Balsa

Figure 21 is an example for combing these functions of ADD and SUB. The shared
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procedure does add src_1, src_2 and ci or subtract src_2 and ci from src_1. If the shared
function does SUB, it adds src_1, inverter of the src_2 and inverter of the src_cy. The shared
function also updates the flags: carry, auxiliary and overflow flag. Similar shared functions

can be programmed for the bit-wise Boolean operations AND, OR and XOR.

shared AddSub is

local
channel addResult4 : addResult
channel addResult8 : addResult
variable a : 4 bits
variable b : 4 bits
variable ¢ : 4 bits
variable d : 4 bits

begin
a:= (#alu_1[3..0] as 4 bits) I b := (#alu_r [3..0] as 4 bits) ;
addResult4 <- ((addArg {ci, a} as 5,bits) + (addArg {ci,b} as 5 bits) as addResult)
Il select addResult4 then
alu_ac := addReSult4.co ;
¢ := (#alu_l [.4] as 4 bifs) [Fd := (Falur [7.4)as 4 bits) ;
addResult8 <= ((addArg {addResult4:c0, ¢}.as Sbits) + (addArg {addResult4.co, d} as 5 bits) as addResult)
II'select addResult8 then
alurresult] ;=/((#addResultdesult @ #addResultd.result) as byte) ;
alucy i= addReésult8.co’;
alu_ova= (#addResult8.result[3]) /= (alu_I[7] /= #alu_t[7]) /= addResult8.co
end
end
end

| ADD  then AddSub() Il c1 := src_cy
| SUB  then alu_r:=notsrc_1 Il ¢1 := not src_cy ; AddSub() ; alu_ac := not alu_ac Il alu_cy := not alu_cy

(b)

Figure 21: (a) Balsa shared function for ADD and SUB (b) operands assignment used in
AddSub function.

3-3 Design the Decoder Unit

After fetching the first byte of the instruction, the CPU decodes the instruction opcode in

register ir, and executes the statements associated with that instruction. If we observe the 8051
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instruction set in table 4, we can find the partial regularity of the instruction set. We can take
this advantage to decode an instruction in order to reduce area cost. For example, in row R8 to
RF each column has the same instruction only differing in the index of the operand Rn.
Similar arguments go for rows 6 and 7. In this table, the regular part is gray and irregularity
increases when going to the above. So, we can decode the instruction set in rows (least four
significant bits) first and decode in columns (most four significant bits) to determine the

instruction to execute.
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H PO P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF
L

RO NOP JBC JB JNB JC JNC JZ INZ SIMP MOV ORL ANL PUSH POP MOVX MOVX
bit,rel bit,rel bit,rel rel rel rel rel rel DPTR# C,/bit C,/bit dir dir A, @DPTR,

dara 16 @DPTR A
R1 | AJMP | ACALL | AJMP | ACALL AIMP ACALL AIMP ACALL AIMP ACALL AIJMP ACALL AJMP | ACALL | AJMP ACALL
R2 | LIJMP | LCALL RET RETI ORL ANL XRL ORL ANL MOV MOV CPL CLR SETB MOVX MOVX
addrl6 | addrl6 dir,A dir,A dir,A C,bit C,bit bit,C C,bit bit bit bit A,@RO @RO,A
R3 RR RRC RL RLC ORL ANL XRL JMP ViQVC MOVC INC CPL CLR SET MOVX MOVX
A A A A dir#data | dir#data | dir#data | @A+DP IA. DA+P A @A+DPTR DPTR C C C A@R1 @R1,A

R4

R5

R67

R8F

CINEA,

#data,

rel

CINEA,

dir,rel

Table 5: Regular (gray part) and Irregular (white part) part of the 8051 instruction set
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We need a decoder to judge whether the instruction opcode belongs to the regular or
irregular part. The shared function judge_regular is described in figure 22. The L_ir is the
least four significant bits of the instruction register and H_ir is the most four significant bits of

the instruction register. If the instruction belongs to regular part, the register regular is set.

shared judge_regular is

begin
case L_ir of
0,1,2,3 then regular := 0
| 4 then
case H_ir of
0,1,7,8,10,11,12,13,14,15 then regular :=0
else
regular := 1
end
5 then
case H_ir of
10,11  then regular :=0
else
regular := 1
end
6,7 then
case H_ir of
13 then regular :=0
else
regulari:= 1
end
else
regulart=11
end
end

Figure 22: The judge_regular shared function

Most instructions in the regular part have the same characteristic as shown in figure 23.
They get its first operand from ROM or RAM and store it in the register T1. Then, they may
get the second operand from RAM and store it in the register T2. Finally, they execute the

corresponding operation and store the result in the destination register.

Read_Operands() ;
Execute() ;
Write_Results()

Figure 23: The structure of the regular part
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3-4 Deal with Bit-Operation Instructions

The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H
through 2FH, and the rest are in the special function registers. The instructions using
bit-addressing mode can be classified into two kinds as shown in table 5. First, those

instructions fetch a bit from the data memory and don’t modify it. Second, those instructions

fetch a bit from data memory, modify it and write it back.

MNEMONIC DESCRIPTION
JC rel Jump if Carry set
JB bit, rel Jump if bit set

First kind JBC bhit, rel Jump if bit set and clear bit
JNB bit, rel Jump if bit not set
JNC rel Jump if Carry not set
MOV C, bit Move bit variable

ANL C, <src-hbit>

ANL bit with C, ANL NOT bit with C

Second kind CLR hit

Clear.bit

CPL bit

Complement bit

ORL C, <src-bit>

OR bit with C, OR NOT bit with C

Table 6: Instructions with bit-addressing mode

When a bit-addressable instruction is executed, the byte data containing this bit will be
fetched from the data memory. We store this byte in register T1 and need a register bit_index
to record which bit we want to read or modify. If an instruction wants to modify this bit, it

will modify it in register T1 indexed by the register bit_index. Figure 24 depicts the Balsa

program for dealing with bit-addressable instruction.
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shared Set_Bit_rar 1s

begin
if (#bus[7]) then
rar ;= (#C0_3 @ #bus[7..3] as byte)
else
rar := (#bus[3..6] @ {0,1,0,0} as byte)
end
[l bit_data_index := (#bus[2..0] as 3 bits)
end

(@

shared Get_Bit Ram_Data is
begin
Set_Bit_rar() ; Get_Ram_Data() Il incrementPC() ;
tmpl := bus
end

(b)

Figure 24: (a) Set the value of the rar and bit_data_index (b) Get byte from the data
memory and store it in register T1

3-5 Handshake Interface to the Memory

We add a handshake interface between the memory and the CPU due to the synchronous
RAM and ROM. When the CPU:wants.to-fetch an instruction from the ROM, it sets the both
signals rom_addr_Or and rom_data_‘Orand sends out the address. A C-element is employed in
order to check if rom_addr_Or and rom_data_Or are both set or reset. When the both are set,
the ROM is enabled and after the latency 6 ns the Rom_rfd is set. After delaying about a clock
cycle, the signals rom_addr_0Oa and rom_data_0Oa are set. The following is the return-to-zero
portion of the handshake protocol. In order to make it quick, we employ an asynchronous
CLR input in a D-type flip flop. The acknowledge signals of the CPU can be reset quickly
when the signal Rom_rfd is reset.

The handshake interface between the CPU and the RAM is a little different from the
ROM. If the CPU wants to read data from RAM, it set the signal ram_in_data_Or. If the CPU
wants to store data in RAM, it set the signal ram_out_data_Or. So, an OR gate is employed to

connect the both signals. The data is wrote or read according to the signal Ram_rNw_0d when
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the signal Ram_en is set. After the latency 6 ns, the Ram_rfd is set and delaying about a clock
cycle the acknowledge signals are set.

The worst case of memory access is delaying about 2 clock cycles due to the handshake
interface. Hence, it is important to reduce the number of times of fetching the data from the
ROM or RAM. For example, in the synchronous 8051 the machine cycle 1 of the execution
scheme read data from the ROM two times. Not all instructions need to fetch two pieces of
data from the ROM. We avoid this situation in the SA8051 in order to increase the

performance. This can also reduce the energy dissipation for the memory.

d q Rom_en
FDC N
clk v Addr
CLR q d
FDC ROM
clk Rom rfd
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Data
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5 x| &
< | 8
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£ ~ ‘ K
Ele FDC
~lE clk
Ram_addr_Or CLR

Ram_in_data Ur; : /
Ram_out_data_ Ram_data_Or

Ram—rNw—0r C \j& Ram_en

Ram_addr_0d addr
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Ram_rNw_0d rNw
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g FDC d Ram_rfd Out_data
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Ram addr 0Oa
Ram rNw_0a
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Ram_out_data_0Oa

Ram_in_data_0d

Figure 25: Handshake interface between Memory and CPU
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3-6 Bypassing the Bus and ALU

There are three buses: 1-Bus, P-Bus and PAR-Bus in the 8051 as shown in figure 17. It is
possible to mimic the synchronous bus implementation by introducing the variables IB, PB
and PARB in the Balsa syntax. Each communication between any two registers is finished by
using the buses. The source register is copied to the bus first and then the destination register
receives data from the bus. For example, if the content of the register PC wants to be copied
to the register PAR, we write

PBus := PC ; PAR = PBus
If we use the bus bypassing technique, the above statements can be rewritten as
PAR :=PC

This can reduce the area cost due to the deletedsequencer component (;). But it introduces
multiplexers (BreezeCall component) in the front-of the destination register when more than
one assignment to the register ischappened. If the bus bypassing technique is not introduced,
there is only one multiplexer on the‘writeport of the variable PBus and the PAR does not need
a multiplexer.

The less the number of times of data is accessed, the more energy is saved. So, it can
save energy dissipation by introducing the bus bypassing technique on the frequently used

communication paths. The table 6 shows the opportunities for bypassing the bus among the

registers.
Source Register Destination Register The bypassing bus
PC (Program Counter) PAR (Program Address | PARB
Register)
Resultl @ Result2 (ALU results) | Buffer IB
T1 RAR (RAM Address IB
Register)
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T1 T2 IB

T2 RAR IB

Table 7: The opportunity for bypassing the bus

In the 8051 not all instructions need the arithmetic or logic operations. In other words,
some instructions don’t transfer the data to the ALU and wait for the operation completed in
order to speed up and save energy dissipation. For example, the instruction MOV just moves
the data between the registers and need not any arithmetic or logical operations. So, it does
not do the ALU operations. In the asynchronous architecture we can achieve the bypassing

ALU technique naturally.

3-7 Optimizations in Control Path

As the previous descriptions insSéction'3-2 the transparent compilation of a Balsa
program into an asynchronous eircuit implies that for each statement in the Balsa text a
separate piece of hardware is generated. We can optimize the control path in the Balsa text.

For example, the 8051 CPU contams the following fragment of the program

case isel of
0b0  then SOQ); POO);S10
| Obl  then SOQ); P10;S10
end
The signal isel is a bit data for selection. Each of these four statements (SO, S1, PO, P1)

represents a piece of hardware. The corresponding handshake circuit generated by Balsa is

shown in figure 26 (a).
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®)

@

Figure 26: handshake circuit for the case-statement (a) not optimized (b) optimized

The case-statement can be rewritten,as

S00;
case isel of

ObO then POO
| Obl then P10
end ;

S10

The corresponding handshake circuit generated by Balsa is shown in figure 26 (b). We
can compare the two handshake circuits. In figure 26 (a) there are a case (labeled “@”), two
sequencer (labeled “;”) and two call (labeled “|”) components. On the other hand, in figure 26
(b) there are only a sequencer and a case component. It is better in terms of area, speed and

power than the circuit in figure 26 (a).
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3-8 Concluding Remarks

In this chapter we illustrate the architecture of the asynchronous 8051 and model it in
Balsa language. We describe some techniques for optimizing the ALU and the decoder unit in
the SA8051. We then describe the method to deal with bit-operation instructions. The
handshake interface is design due to communicating with synchronous memory. The
bypassing techniques are also introduced in order to reduce the power and area cost. Finally,

we describe some optimizations in control path due to the syntax-direct compilation in Balsa.

36



Chapter 4 Implementation and
Verification

This chapter is organized as follows. First, we illustrate a design flow for asynchronous
implementation on a synchronous FPGA. Then we describe some implementation issues.

Finally, we illustrate the verification methods.

4-1 The Design Flow

The asynchronous 8051 core is modeled by Balsa language. Descriptions of the 8051
core (.balsa file) are then translated (balsa-c) into implementations in a syntax
directed-fashion with language constructs being mapped into networks of parameterized
instances of “handshake components” (.breeze-file).each of which has a concrete gate level
implementation. balsa-netlist automatically generates Verilog netlist for Xilinx synthesis tool.

The following steps are design flow.‘for FPGA. The Verilog netlist generated by
balsa-netlist is converted into a netlist'of basic gates in the synthesis step of the design flow.
The netlist may be optimized using technology-independent logic minimization algorithms.
However, we must avoid the logic minimization for hazard free circuits and buffers generated
by balsa-netlist. We add the constraint “keep hierarchy” to avoid the logic minimization. Then
the synthesized netlist is mapped to the target device using a technology-mapping algorithm.
The placement algorithm maps logic blocks from the netlist to physical locations on an FPGA.
On the placement has been done, the routing algorithm determines how to interconnect the
logic blocks using the available routing. The final output of the design flow is the FPGA
programming file, which is a bit stream determining the state of every programmable element

inside an FPGA. The design flow is shown is figure 27.
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Figure 27: The Balsa and FPGA design flow
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4-2 Implementation Issues

Compilation from Balsa programs to Xilinx netlist proceeds in two steps. In first step,
handshake circuits form the intermediate architectures. An important characteristic about this
compilation is that it is transparent, which allows feedback about important performance
characteristics such as performance, area, timing and testability to be generated at the
handshake circuit level and to be presented to the VVLSI programmer at the Balsa level. When
the designer is satisfied with the performance of the Balsa program, the corresponding
handshake circuit is expanded into a gate-level netlist. At this level the design can be
simulated to obtain more accurate performance figures using commercial simulators.

We choose four-phase bundled data protocol to implement the handshake circuit instead
of dual-rail encoding in order to reduce the area.cost. Handshake circuits are implemented
only using standard cells such as;tAND, OR, Inverter gate and flip flop. We must pay attention
to delay matching and the verification.(after routing) of the timing assumptions that have been
made. In order to minimize the verification effort, delay-matching is conserved. We add
enough buffers on the all request signals on the push channel and the acknowledge signals on
the pull channel. Because there are no asynchronous cells in FPGA, all handshake circuits are
mapped onto standard cells. This results in the area overhead of the handshake circuits.

It is to be noted that the Xilinx synthesis tool could do logic minimization but it must be
avoided. There are hazard-free circuits and buffers in asynchronous circuits. They can not be
minimized. We can avoid this situation by adding the constraint “keep hierarchy” on the
handshake modules.

RAM and ROM are not modeled by Balsa language. We implement them using the block
RAM on FPGA in order to reduce area cost. We add a handshake interface between the 8051

core and the memory. The signal rfd is employed in the RAM and ROM to provide
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completion detection of reading or writing operations.
Until now all instructions can be executed except MUL, DIV and MOVX. The
peripherals are not considered such as timers and UART. The design was realized in Xilinx

FPGA SPARTAN IIE 300 ft256.

4-3 Verification

In this section we illustrate the verification for the SA8051. There are three steps for
verification. First, we do behaviour simulation in Balsa environment. Then, we do timing
simulation in Xilinx environment. In this step we must check the timing validity on control

circuits. Finally, we do verification on FPGA board.

4-3-1 Behavior Simulation

The environment used to do behavior simulation for SA8051 is illustrated in figure 28.
The memory model ROM and RAM are the two predefined procedures in Balas as shown in
figure 29. We assign the address width and data width to determine their size. The ROM size
is 4K bytes and the RAM size is 256 bytes. The contents of the ROM are loaded during
initialization as 8-bit quantities in the hexadecimal format from a hexadecimal file. A
hexadecimal file is translated from a C program by KEIL tool [15]. Whenever an addressing
arrives at the ROM model from the ROM address channel, the ROM outputs the instruction
code. When the processor wants to write data, it sets the signal rNw and sends out the address
and the data. When the processor wants to read data from RAM, it resets the signal rNw and
sends the address and the data.

The 8051 simulator executes the instructions in the hexadecimal file. The execution
results are compared with the contents of the RAM. If the results are not equal, we must

modify the code of the processor.
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Figure 28: SA8051 behavior simulation environment

BalsaMemoryROM ({12, --address width
8}, --data width
<- BalsaMemoryNew(), -- direct expression to port connection
ROM_addr, ROM_rNw, ROM write data, ROM read data)

@

BalsaMemoryRAM ({8, -- address width
8}, -- data width
<- BalsaMemoryNew() - direct expression to port connection
RAM addr, RAM rNw, RAM in data, RAM out data)

(b)
Figure 29: Balsa description for memory model (a) ROM model (b) RAM model
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4-3-2 Timing Simulation

When completing the behavior simulation in Balsa environment, the following step is to
do timing simulation as shown in figure 30. The ROM model is automatically generated from
a hexadecimal file by Xilinx CORE generator [16]. The RAM model is also generated by it.
The memory model implemented by block RAM on FPGA is combined with the processor
core netlist synthesized by balsa-netlist through handshake interface. Before synthesizing, the
constraint file must be added. The content of the constraint file is the “keep hierarchy”
constraint on some handshake modules. The constraint file is employed in order to satisfy
timing constraints and avoid the logic minimization. When the constraint is added, the
synthesis, map, placement and routing are preceded in order. A NCD file is generated after
PAR (place & route). The NCD file may contain placement and routing information in
varying degrees of completion..2NetGen generates' netlist that are compatible with Xilinx
supported simulation such as ModelSim.

The result of timing simulation.is.compared with the result of the 8051 simulator. If the
results are not equal, we must modify the processor netlist generated by balsa-netlist. For
example, when the timing violation occurs on flip-flops in BrzVariable modules, we trace the
write request signal and find out the corresponding write acknowledge signal. Then we add

some buffers ahead of the write acknowledge signal.
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Figure 30: SA8051 timing simulation environment

4-3-3 Board Level Verification

After timing simulation, we do verification on Digilent D2-FT system board [17] with
the device Xilinx FPGA SPARTAN IIE 300 ft256. There is a frequency divider circuit on the
top module because of the 50 MHz clock on board. The two input ports Activate_Or and reset
are connected to the Switch 1 and Switch 2 respectively. The signal reset is set when the
frequency divider is enabled. If the signal Activate Or is set, the CPU is activated. There are 4
output ports connected to 4 seven segments and 16 LEDs respectively in order to display the

results. The board level verification environment is shown in figure 31.
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Figure 31: Board level verification environment

4-4 Concluding Remarks

In this chapter we introduce the design flow for asynchronous circuit implementation in

FPGA. Some implementation issues. are described. We illustrate the flow of verification

including the behavior, timing and board level.

44



Chapter 5 Simulation Result

This chapter is organized as follows. First, we compare the performance of SA8051 with
the Intel 8051 under various clock rates. Then, we compare the power consumption of
SA8051 with the synchronous 8051. Finally, we compare the area cost with the synchronous

version.

5-1 Performance

The performance of the SA8051 is compared with the Intel 8051, called 18051 developed
by University of California [18]. The 18051 models the actual Intel implementation rather
closely, e.g., it is 100% instruction compatible. It is written in synthesizable VHDL (at least
by Synopsys and Xilinx). We modify it a little in‘order to compare the SA8051 with it fairly.
Hence, we remove the MUL, DIV and MOVX operations from it.

The FPGA device Xilinx Spartan'HE 300 ft256-is chosen to estimate the performance.
We do timing simulation by ModelSim. We run 6 test programs under different clock rates.
There is a clock in the interface between the SA8051 and the memory. Figure 32 shows the
speedup of SA8051 versus 18051. The SpeedUp is defined as

SpeedUp = Execution Time of 18051 / Execution Time of SA8051

The maximum rate of 18051 is 12 MHz. The performance depends on the clock rate and
the tested programs. In sort.c program the SA8051 runs faster than 18051 when the clock rate
is less than 8 MHz. In other five programs the SA8051 runs faster than 18051 when the clock
rate is less than 6 MHz.

When the clock rate is above 8 MHz, the SpeedUp is below 1 for these 6 tested programs.
The bottleneck is the interface between the asynchronous processor and the synchronous

memory. The worst case for fetching data from memory is 2 clock cycle delays. The same
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situation occurs in writing data.

Cast.c Program

Sort.c Program

SpeedUp

MHz

int2bin.c Program

Fibonacci.c Program

MHz

MHz

Negent.c Program

GCD.c Program

SpeedUp

Figure 32: SpeedUp for SA8051 versus 18051
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5-2 Power Consumption

Power consumption is estimated by Xilinx XPower. It can analyze total device power,
power per net, routed, partially routed or unrouted designs, all driven from a comprehensive
graphic interface or command-line driven batch-mode. It reads VCD simulation data from the
ModelSim family of HDL simulators to set estimate stimulus.

There are two main components to power consumption: static and dynamic. Static or
quiescent power is mainly dominated by transistor leakage current. Dynamic or active power
has components from both the switching power of the core of the FPGA and the I/O being
switched. The dynamic power consumption is determined by the node capacitance, supply
voltage, and switching frequency.

The 6 test programs are run for.estimating the.power consumption the same as in section
5-1. Figure 33 depicts the total:power consumption-of the asynchronous and synchronous
8051. The total power consumption consists of-the energy dissipation of the processor core,
the memory and the interface. We“can. compare ‘them in the same performance. When the
clock rate is 8 MHz, the SpeedUp for the sort.c program is 1. The asynchronous 8051 shows a
total power advantage of a factor 2 compared to the synchronous implementation. The
SpeedUp of the other 5 test program is 1 when the clock rate is 6 MHz. The asynchronous
8051 shows a total power advantage of a factor 1.5 compared to the synchronous
implementation.

The static power consumption of the FPGA is a significant portion for the total power
consumption. For example, the static power consumption is 28.2 mW for the FPGA device
Spartan I1E 300 ft256. Figure 34 shows the dynamic power consumption of the asynchronous
and synchronous 8051. The asynchronous 8051 shows a dynamic power advantage of a factor

3 compared to the synchronous implementation for the same performance. There are several
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reasons for the power saving. First, the asynchronous implementation does not have clock
power and can automatically turn off the unused portion of the circuit. Second, the handshake
interface also plays an important role because the memory is active only when the processor
wants to access it.

We can compare the core of asynchronous with synchronous 8051. Figure 35 shows the
results. The asynchronous 8051 shows a dynamic power advantage of a factor 2 compared to
the synchronous implementation for the same performance. The detailed energy dissipation is
depicted in figure 36 and 37. The asynchronous implementation needs less dynamic power
than the synchronous implementation because of no clock energy dissipation. Although the
asynchronous implementation does not need clock power, it needs extra signal power results

from the handshake implementation.
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Figure 33: Total Power Consumption for test programs
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Figure 34: Dynamic Power Consumption for test programs
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Figure 35: The dynamic power consumption of the asynchronous processor core versus
synchronous
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Figure 36: The detailed dynamic power consumption (a) The left side is asynchronous
processor (b) The right side is synchronous processor
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5-3 Area Cost

We remove the multiplier and the divider from the synchronous 8051 in order to
compare the cost fairly. The area cost is show in table 8. The results show the asynchronous
implementation is about 2 larger than the synchronous implementation. The area overhead
mainly comes from the handshake circuit in each handshake component. The hazard free
circuit is employed in order to assure the circuit validity. The circuits of the completion
detection on the control path which need large C element also result in the area overhead. The
extra buffers are added in order to assure the timing validity.

Another reason is due to the CAD tool. There are no commercial CAD tools for the
asynchronous circuits. The synchronous CAD tools can do some optimization techniques for
the speed and area such as logic minimization and.retiming. But, the asynchronous tool Balsa

just does transparent compilation:and doesnot do optimization on the asynchronous circuits.

Slices Gate Count (NAND)
Synchronous 990 13251
Implementation
Asynchronous 2245 23590 (no added buffers) 25780 (with added buffers)
Implementation

Table 8: The area cost for the synchronous and asynchronous 8051

5-4 Concluding Remarks

In this chapter we compared the asynchronous 8051 with synchronous 8051 in
performance, power consumption and area cost. The simulation results show the
asynchronous 8051 outperformed the synchronous 8051 by a factor 3 in dynamic power
consumption under the same performance. The performance depends on the executed

instructions which have different machine cycles. In the low clock rate the asynchronous
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implementation outperforms the synchronous because the SA8051 avoids the unnecessary
operations in the original machine cycles. The area cost of the asynchronous processor is

about 2 larger than the synchronous.
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Chapter 6 Discussion

This chapter is organized as follows. First, we describe some design issues for the Balsa
tool. Second, we discuss some design issues for the Xilinx synthesis tool. Finally, we discuss

the implementation issues on the FPGA.

6-1 Balsa Tool

The Balsa adopts syntax-directed compilation which implies that for each expression in
the Balsa text a separate piece of hardware is generated. However, the programmer must be
careful to see if there any repeated constructs that could either be moved to a common point in
the coed or replaced by shared procedures. For example, in section 3-2 the shared procedure
AddSub is designed for the ALU opérations ADD.and SUB. In section 3-7 we also provide a
method for optimizing the contral path. The'‘common procedure can be moved to the ahead or
the behind of the case description.

The performance analyzer on the handshake circuit-level gives the programmer feedback
related to the Balsa text itself. Transforming the Balsa program can result in a circuit with the

same functionality, but with different characteristics in area, speed and energy dissipation.

6-2 Xilinx Synthesis Tool

When the Verilog netlist is synthesized by Balsa tool, we use the Xilinx synthesis tool to
synthesize the \erilog netlist. However, the Xilinx synthesis tool is dedicated for the
synchronous circuits. It does many optimizations on the circuits such as removing redundant
logic and doing logic minimization. But we must avoid this situation occurring because the
hazard free circuits and the buffers may be removed. We use the constraint “KEEP

HIERARCHY” to avoid logic minimization on some handshake modules.
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KEEP_HIERARCHY is a synthesis and implementation constraint. If hierarchy is maintained
during synthesis, the implementation tools will use this constraint to preserve the hierarchy
throughout the implementation process and allow a simulation netlist to be created with the
desired hierarchy. In the figure 38, if KEEP_HIERARCHY is set to the entity or module 12,

the hierarchy of 12 will be in the final netlist, but its contents 13, 14 will be flattened inside 12.

10

12 KEEP_HIERARCHY

13 14

Figure 38: KEEP_HIERARCHY Example

We add this constraint on the handshake module BrzVariable, BrzConcurrent and
BrzSequence in our experience. The ‘buffers ‘are added on the signal request of the push
channel and the signal acknowledge of the pull channel. The push and pull channel are show

in figure 39.

req req

active input port active output port

Figure 39: Push and Pull channel (a) the left hand is pull channel (b) the right hand is
push channel
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6-3 Implementation Issues on FPGA

There are no dedicated asynchronous cells on the FPGA such as C element and S
element. The basic gates are used to implement these elements. It results in the overhead of

the area cost.
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Chapter 7 Conclusion and Future Work

The capabilities of FPGAs have increased to the level where it is possible to implement a
complete computer system on a single FPGA chip. The main component in such a system is a
soft-core processor. The asynchronous 8051 soft-core processor is intended for
implementation in Xilinx FPGA. In this thesis a Balsa implementation of the asynchronous
8051 has been developed, called SA8051. Performance of SA8051 has been investigated and
compared to that of the synchronous 8051. Performance analysis has shown that the SA8051
outperformed the synchronous 8051 by a factor 3 in dynamic power consumption.
The thesis offers the following contributions:
® The architecture of the asynchronous 8051 modeled by Balsa is described. Some design
issues for Balsa language is also described:
® The design flow for the asynchronous circuit implementation in FPGA is described. This
offers a method for implementing asynchronous circuit in synchronous FPGA chip.

® The verification flow is described.-The verification consists of the behavior, timing and
board-level simulation.

® A handshake interface between the asynchronous circuits and synchronous circuits is
described.

® The asynchronous 8051 shows a dynamic power advantage of a factor 3 compared to the
synchronous implementation for the same performance. This offers an opportunity for

the low-power SOC applications.
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7-1 Future Work

This thesis leaves a lot of room for future work. First, the instructions MUL, DIV and
MOVX could be implemented. Second, the peripheral timer and UART could be implemented
with synthesizable HDL and combined with the asynchronous 8051 in netlist level. More
research is needed on the possible pipeline organizations that may offer better performance.
Furthermore, the synthesized asynchronous circuits by Balsa could be optimized in order to

increase performance and decrease area cost.
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