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Abstract

Silicon-based nanowire field effect transistors (FETs) are potentially next-generation
candidates for achieving high-performance targets of the International Roadmap for
Semiconductors due to their superior reduction of the short-channel effects and excellent
compatibility with planar complementary metal oxide semiconductor (CMOS) fabrication
process. In this work, we for the first time numerically explore the dc baseband and
high-frequency characteristics, and the design of the device aspect ratio (channel
length/channel thickness) for the silicon nanowire FET circuits by using a three-dimensional
device/circuit-coupled mixed-mode simulation technique. With the experimentally validated
simulation approach, the result shows the rather prolific dc baseband and high-frequency
properties of silicon-based nanowire FET devices as active components. In design of silicon
nanowire FETs, taking the nanowire’s radius and channel length as two crucial factors, the
demands of the device aspect ratio on dc characteristics are found to be inversely proportional
to the demands of the high-frequency characteristics. Therefore, to compromise both the dc
and high-frequency characteristics, the design margin of the device aspect ratio restricted, in
which the requirements of dc and high-frequency characteristics provide aspect ratio upper
and lower bounds, respectively. Moreover, the design margin will be more tightened for a
device with larger radius due to the weakened channel controllability. The extensive results
and analyses are presented for the promising devices for the design of high-frequency analog
applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

High-frequency and wide-bandwidth requirement of
complementary metal oxide semiconductor (CMOS)
transistors has become a bottleneck for advanced electronic
circuits and systems, such as wireless communication and
digital multimedia. Accordingly, nanoscale CMOS devices
with vertical channel structures, such as double-, triple- and
surrounding-gate fin-type field effect transistors (FinFETs),
are of great interest [1–27] because they inherently have good
suppression of short-channel effects, high transconductance
and ideal subthreshold swing (SS). The microwave small-

1 Author to whom any correspondence should be addressed.

signal characterization of a 50 nm gate FinFET measurement
has predicted the maximum oscillation frequency of 250 GHz
with an optimized fabrication process [22]. Among the
nanoscale multiple-gate devices, the silicon-based nanowire
FETs have the ultimate gate structures and become potential
candidates for next-generation high-speed and high-power
electronic devices [12–27]. Besides the perfect channel
controllability resulting from the nature of the gate-all-around
channel [19–21], the nanowire FETs may tolerate having
a thicker silicon fin, compared with double- and triple-
gate FinFETs according to the manufacturability point of
view [20, 21]. Various studies were performed on the dc
characteristics and their manufacturing techniques using
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silicon-based nanowire FETs in the device level [16, 22–27].
However, for the high-frequency characteristics of silicon
nanowire FETs, the analog circuit and its design consideration
have not been discussed yet.

In this work, we numerically provide an insight into the
dc baseband and high-frequency response of the nanoscale
silicon nanowire FET circuit. To provide a more physical
insight into the device and pursue high simulation accuracy,
we develop a device/circuit coupled mixed-mode simulation
technique [28–32] to explore the nanowire transistor circuit
behavior due to the lack of a well-established equivalent circuit
model of silicon nanowire FETs. The three-dimensional
(3D) device transport equations with quantum corrections
by the density gradient method [33–36] are directly coupled
with circuit conservation equations and simultaneously solved
on a parallel computing system [37–39]. We notice that
the 3D simulation has been advanced and calibrated with
experimentally measured results for both the planar and
nanowire devices in our recent investigations [1–3, 12, 19–21,
31, 39, 40]. The extensive results and analyses presented for
the promising devices for high-frequency analog application
show the promising high-frequency characteristics of the
nanowire FET circuit. Considering the radius (R) and gate
length (Lg) of the silicon nanowire FET, in the design of
silicon nanowire FETs, the aspect ratio (it is equal to the
channel length divided by the channel thickness, where the
channel thickness Tsi = 2R) is considered as a main factor
in determining both dc and high-frequency characteristics;
however, the demands of the aspect ratio on dc characteristics
are found to be inversely proportional to the demands of
the high-frequency characteristics according to the results of
this study. Thus, to properly compromise the dc and high-
frequency characteristics, the design margin of the aspect
ratio is more tightened than that found in the results reported
in [20, 21]. The requirements of dc and high-frequency
characteristics provide the upper and lower bounds of the
device aspect ratio, respectively. For example, to obtain a
device with a subthreshold swing smaller than 75 mV/dec
and a gain–bandwidth product larger than 3.5 × 1012, the
aspect ratio should be controlled between 2 and 3.5. Moreover,
the design margin is more tightened for a device with larger
radius. This theoretical study provides an insight into high-
frequency characteristics of the silicon nanowire FET circuit
and shows the design consideration of the nanowire FET. The
extensive results and analyses of this study are presented for
the promising devices for high-frequency analog applications.

This article is organized as follows. In section 2, we
state the investigated device structure and circuit configuration
including a brief of simulation methodology. In section 3, the
results of dc baseband and high-frequency characteristics of
the studied devices and circuits are compared and discussed.
Finally, we draw conclusions and suggest future work.

2. The nanowire FET circuit and simulation
methodology

To study the device geometry dependence on the dc and high-
frequency characteristics of the silicon nanowire FET with
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Figure 1. (a) Plot of studied silicon nanowire field effect transistors,
where the 100% surrounding-gate structure is assumed. (b) The
circuit topology used in the 3D mixed-mode simulation.

100% gate coverage, as shown in figure 1(a), the simulated
nanowire FETs with different channel radii, i.e. 4 and 6 nm,
corresponding to different gate lengths, i.e. 16, 32 and 45 nm,
respectively, are considered. We note that the aspect ratio
of silicon nanowire transistors could be larger than 0.5 or 1
due to different device specification [20, 21, 25]. Therefore,
according to the specified target of dc baseband characteristics,
the channel thickness is selected to keep the device aspect ratio
near 1 for maintaining an acceptable dc characteristics. The
channel doping concentration of the designed device is 2.3 ×
1017 cm−3 and the oxide thickness is 1.2 nm. Mid-gap gate
material, TiN, is used in the device. Outside the channel,
the level of source/drain doping is 3 × 1020 cm−3. Three-
dimensional drift–diffusion equations coupled with density-
gradient quantum correction [33–36] are numerically solved
to obtain the characteristics of the device [19–21] in the
established parallel computing system [37–39]. A carefully
calibrated density-gradient model [41, 42] has attracted more
and more attention, and successfully demonstrates its validity
for efficient modeling of the quantum mechanical effects
in a device simulation program using first-order quantum
corrections [33–36]. This simulation quantitatively predicts
the main tendency of electrical and physical properties for
the examined device structures. Full quantum mechanical
methodologies definitely will input more accurate estimation
on the characteristics, but it is believed that our simulation will
not be significantly altered. The density-gradient modeling
approach is computationally effective for incorporating the
quantum mechanical effect in a multidimensional nanodevice
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simulation. The developed device simulation prototype has
been calibrated and successfully validated in analyzing the
effect of grain boundary on surrounding-gate polysilicon thin
film transistors [39] and discrete impurity effect on a nanoscale
MOSFET [2, 39, 40]. We also have studied the geometry effect
in nanowire transistors [19, 20] in our recent work. For the
simulated silicon nanowire device in this study, the physical
model of the device has been calibrated with the measurement
results of 5 nm gate nanowire FETs [20, 21]. In exploring the
dc baseband and high-frequency characteristics of the silicon
nanowire FET circuit, a common-source amplifier circuit is
implemented as the tested circuit, as shown in figure 1(b). A
small signal input with 0.6 V offset voltage is used to explore
the high-frequency characteristics of the silicon nanowire FET
circuit. The 3D device transport equations with quantum
corrections by the density gradient method [33–36] are directly
coupled with circuit equations and simultaneously solved
[28–32] to provide the best accuracy.

3. Results and discussion

It has been well known that the gate length and the radius of the
silicon nanowire FET are the main factors in determining the
characteristics of a nanowire transistor. In this section, we first
discuss the geometry effect of silicon nanowire FETs on their
dc characteristics. Then, we investigate the high-frequency
response and design of the silicon nanowire FET circuit.

Figures 2(a) and (b) show the ID–VG (drain current versus
gate voltage) characteristics for the studied nanowire FETs
with 4 and 6 nm radius, respectively, where the definitions
of the threshold voltage (Vth), on-state current (Ion), off-
state current (Ioff), drain-induced barrier lowering (DIBL)
and subthreshold swing (SS) are illustrated and defined in
the insets. In this study, the constraints of DIBL < 50 mV
and SS < 75 mV/dec are used for the selection of a device
with acceptable dc characteristics. We note that the selection
criteria defined in this study provide an example of a device
with a small acceptable short-channel effect. The selection
criteria can be defined by designer’s purpose in different
applications. The calculated dc characteristics are summarized
in table 1. Due to superior channel controllability of
nanowire devices with smaller radius, the 4 nm radius
nanowire transistor exhibits a satisfied short-channel effect
and a smoother threshold voltage roll-off than the 6 nm radius
nanowire transistor. Figures 3(a)–(c) show the maximum
transconductance (gm max), the output resistance (ro) and
the gate capacitance (Cg) of the studied silicon nanowire
devices, respectively. The device with a smaller radius
shows a smaller gm max, a larger ro and a smaller Cg, which
agree with the dependence of the derived characteristics on
device geometry, where gm max is quantitatively proportional to
(VGS − Vth)RLg

−1, ro is proportional to LgR−1(VGS − Vth)−2

[43] and Cg is proportional to Lg[ln(1 + toxR−1)]−1 [27]. For
the design of nanoscale nanowire FETs, in order to have
better controllability of the short-channel effect, the aspect
ratio should be carefully designed with respect to specified
device characteristics. Figure 4 shows the subthreshold
swing as a function of the aspect ratio, where the circles
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Figure 2. The ID–VG characteristics for the studied device with (a)
4 and (b) 6 nm radius, where the insets are the definitions of the
on-state current (Ion), off-state current (Ioff ), threshold voltage (Vth),
drain-induced barrier lowering (DIBL) and subthreshold swing (SS).

Table 1. The summarized dc characteristics of the silicon nanowire
FET with 100% surrounding gate. In this study, the constraints of
DIBL < 50 mV/V and SS < 75 mV/dec are used for the selection
of a device with acceptable dc characteristics. The channel doping
concentration of the designed device is 2.3 × 1017 cm−3, the gate
work function is 4.6 eV and the oxide thickness is 1.2 nm. Outside
the channel, the level of source/drain doping is 3 × 1020 cm−3.

R (nm) Lg (nm) Vth (V) Ion (A) Ioff (A)

4 16 0.383 1.65 × 10−5 1.36 × 10−12

4 32 0.456 1.30 × 10−5 4.81 × 10−15

4 45 0.464 1.16 × 10−5 3.29 × 10−15

6 16 0.287 2.76 × 10−5 1.38 × 10−10

6 32 0.420 2.09 × 10−5 2.59 × 10−14

6 45 0.441 1.76 × 10−5 8.06 × 10−15

R (nm) Lg (nm) Ion–Ioff ratio SS (mV/dec) DIBL (mV)

4 16 1.22 × 107 75.06 47.81
4 32 2.71 × 109 60.32 10.43
4 45 3.54 × 109 60.10 9.89
6 16 2.00 × 105 98.19 92.89
6 32 8.08 × 108 62.07 14.88
6 45 2.18 × 109 60.39 11.15

and squares denotes the nanowire devices with 4 and 6 nm
radii, respectively. Moreover, irrespective of the radii of the
devices, the device with a larger aspect ratio exhibits better dc
characteristics. We mentioned that one of the devices, namely
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Figure 3. (a) The maximum transconductance (gm max), (b) output resistance (ro) and (c) gate capacitance (Cg) of the studied silicon
nanowire FETs. The insets show the corresponding definitions.
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the one with R = 6 nm and Lg = 16 nm, does not fulfill the
criterion SS < 75 mV. Therefore, the discussion about this
device is dropped.

The device/circuit mixed-mode coupled simulation is
then used to further explore the dc baseband and high-
frequency characteristics of the silicon nanowire circuits.
Figures 5(a) and (b) show the slope of the voltage transfer
curve (VTC) [43] for the studied nanowire FET circuits shown
in figure 1(b). We note that, in dc mixed-mode simulation, the
influence of capacitance is ignored and the slope of the VCT
indicates the small signal amplification of the studied circuits.
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The offset voltage of the input signal in this study is 0.6 V and
the associated voltage amplifications are extracted as shown
in the insets of figures 5(a) and (b). The voltage amplifications
are then transferred into the dc circuit gain, as plotted in
figure 6, where the circle denotes the dropped device with
insufficient dc characteristics. As the device gate length is
scales down, the transconductance of the device is increased
and then increases the dc circuit gain. However, the device
with such radius and channel length possesses a small aspect
ratio which degrades the device performance. The high-
frequency responses of the 4 and 6 nm radius nanowire FET
circuits are explored as shown in figure 7; the high-frequency
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characteristics, such as high-frequency circuit gain, 3 dB
bandwidth and unity-gain bandwidth, are then investigated, as
shown in figures 8(a)–(c), respectively. The characteristic of
the high-frequency circuit gain for the studied nanowire FET
circuits, as shown in figure 8(a), is similar to the dc circuit
gain. The result shows that the nanowire device with larger
radius and smaller gate length may exhibit higher circuit gain
than those with small radius and large gate length. The 3 dB
bandwidth and the unity-gain bandwidth of the circuit are
proportional to [Cg(R1/ro)−1]−1 and gmCg

−1, respectively, and
therefore the nanowire device with smaller radius may exhibit a
higher 3 dB bandwidth and unity-gain bandwidth than that with
larger radius as displayed in figures 8(b) and (c). The high-
frequency response of the nanowire FET with the largest unity-
gain bandwidth (4 nm radius and 16 nm gate) is compared
with that of an experimentally calibrated 16 nm gate planar
MOSFET [40], as shown in figure 9. To compare the device
characteristic with the same operation condition, both the
threshold voltages of the studied planar and nanowire devices
are carefully calibrated to 380 mV. The preliminary result
shows that for a well-designed 16 nm nanowire FET circuit,
the gain, the 3 dB bandwidth and the unity-gain bandwidth
are 20 dB, 210 GHz and 6.5 THz, respectively, which are 2.3,
8.2 and 203 times larger than those of the planar MOSFET
circuits. The simulation result confirms the excellent high-
frequency characteristics of the silicon nanowire FET circuit.

The bandwidth and gain–bandwidth product as a function
of the device aspect ratio are studied in figures 10(a) and
(b), respectively. It is found that, according to the computed
result, the aspect ratio of a device should be kept small
enough to obtain a wider 3 dB bandwidth and a larger
gain–bandwidth product, which is contrary to the demand
of aspect ratio for maintaining satisfied dc characteristics as
aforementioned in figure 4. Moreover, the devices with smaller
radii may exhibit a wider 3 dB bandwidth and a larger gain–
bandwidth product even if they have a similar aspect ratio, as
circled in figure 10(b). Therefore, to compromise both the
dc and high-frequency characteristics, the design margin of
the device aspect ratio should be restricted. Figure 11 plots
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the dependence of the device aspect ratio on dc and high-
frequency characteristics. If we are pursuing a device with
preferable immunity from the short-channel effect, such as
the subthreshold swing within 75 mV/dec, the aspect ratio of
the device should be larger than 2. However, if high gain–
bandwidth product is required, say larger than 3.5 × 1012,
the device aspect ratio should be smaller than 3.5.
Consequently, the requirements of dc and high-frequency
characteristics may result in upper and lower bounds of the
device aspect ratio, respectively. Moreover, the design margin
will be more tightened for a device with larger radius due to the
worse channel controllability-induced degradation of dc and
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high-frequency characteristics. From the manufacturability
point of view, the design of a silicon nanowire transistor is
more restricted and complex to meet the specification of dc
and high-frequency characteristics.

4. Conclusions

In this paper, the dc baseband and high-frequency
characteristics and the design of the nanoscale silicon nanowire
FET with 100% surrounding gate have been numerically
studied using a calibrated 3D device/circuit coupled mixed-
mode simulation. For a well-designed nanoscale nanowire
FET, the unity-gain bandwidth can be greater than 6.5 THz;
moreover, the high-frequency circuit gain, the 3 dB bandwidth
and the unity-gain bandwidth of the silicon nanowire circuit
are 2.3, 8.2 and 203 times larger than those of the planar
MOSFET circuits. In design of silicon nanowire FETs,
the demands of aspect ratio on dc and high-frequency
characteristics are inversely proportional, and therefore the
design margin of the device aspect ratio should be restricted
to compromise the dc and high-frequency characteristics.
A margin of the device aspect ratio from 2 to 3.5 has
been found in this work; with the degradation of channel
controllability for a device with larger radius, the design
margin is more tightened. This study has shown fascinating
dc baseband and high-frequency properties of silicon
nanowire FET devices as active components in microwave
circuits, compared with planar CMOS devices. Complete
derivation of the analytical expressions of the maximum
transconductance, the output resistance, the gate capacitance,
dc gain and high-frequency properties for the silicon nanowire
FET circuit should be investigated in future work.
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