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Object Tracking via the Level Set Method Integrated
with Prior Shape

student : Chin-Hsiang Hsu Advisor: Dr. Zen Chen

Department of Computer Science and Information Engineering

National Chiao Tung University
Abstract

Detecting and tracking moving objects.has a wide variety of applications in
computer vision such as computef-visionjvideo.surveillance, traffic monitoring, etc.
Additionally, it provides input to higher level vision tasks. This thesis presents an
approach to tracking a moving object-over-a-sequence of images. In particular, we
improve the Abdol-Reza’s model by coupling with shape prior knowledge for shape

perseverance in case of ambiguity.

In the model of Abdol-Reza, tracking is achieved by evolving the contour from
frame to frame by minimizing an energy functional evaluated by Bayesian theory.
There are three two favorable features in this model. First, no motion field or
parameters needed to be computed. Second, deformable shapes of the object are
allowed and the topology of the boundary is not constrained. Third, no assumption is
made on the strength of the edge gradient. However, it also suffers from the
constraints imposed on a degree of dissimilarity between the object and the
background. A background region similar to the object might corrupt the contour

evolution. We want to overcome this drawback by coupling with a shape prior in the
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associated energy functional. When the object is partially involved in a similar
background, the original tracking term in the functional will dominate the result in the
unambiguous background part, and the prior shape will guide the object movement in
the ambiguous part. If the object is entirely distinguishable from the background, the
weight of the shape prior is set low and thus allowing free deformation of the object.
Compared to other tracking methods embedded with shape priors, the presented
approach is more flexible, retaining the advantage of suffering little constraints on the

deformable shape of the tracked object in many cases.
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1.Introduction

1.1. Motivation

High level vision tasks for video processing require tracking of the complete
contour of the objects, such as in the applications of computer vision such as computer

vision, video surveillance, traffic monitoring, etc.

1.2. Object Tracking

Numerous approaches for tracking objects in an image sequence are proposed

and can be mainly classified in three categories:

1. Correspondence-based objeet tracking: Tracking is performed by establishing
correspondence of the objects in ¢onsecutive frames. These approaches rely on
the detection of temporal changes and employ+a thresholding technique over the
inter-frame difference. These methods can only be applied to images with static

backgrounds and they provide coarse object silhouettes.

2. Motion-based object tracking: Tracking is performed by estimating the motion of
objects in consecutive frames. Objects are represented by planar surfaces, such
as rectangle and ellipse, or their centroids. These methods are relatively fast but

have considerable difficulties in dealing with non-rigid movements and objects.

3. Model-based object tracking: Object representation includes rigid models and
non-rigid models, or deformable templates. Such models usually have a number
of parameters to control the shape and pose of the model. These methods suffer

from high computational costs for complex models due to the need for coping



with scaling, translation, rotation and deformation.

In correspondence-based object tracking, background subtraction is the most
popular detection method used in object trackers, where color observations of
individual pixels in a reference frame are statistically modeled. Detection is

performed by labeling the pixels that deviate from the static model.

In motion-based tracking, a statistical analysis is performed and is used to
provide the motion-based estimation. Motion models used are translation, scaling and
affine motion models. One of the most common motion based tracker is “template
matching”, where translation of an object template is computed by searching the
image for a similar template. Additionally, by assuming a smooth background, the
input frame can be used directly to provide an aecurate object tracking result. In [8],
the authors proposed a kernel-based tracker i which'color priors are computed using
weighted kernel density estimation. Mean=shift vector is then computed iteratively by
maximizing likelihood between the object color ptior and the model generated from

hypothesized object position.

There is a substantial use of flexible models or deformable templates in

model-based tracking. There are three broad classes of these models.

(1) Articulated models: Articulated models are built up from a number of rigid
components connected by sliding or rotating joints. This approach is only

applicable to a restricted class of variable shape problems.

(1) Statistical models of shape: The shape is represented by a set of boundary
points connected by arcs with a statistical model of relationships between

them, or a set of points with distributions related by a covariance matrix.

(ii1) Active contour models: There are two general types of active contour

2



models in the literature today: parametric active contours (snakes) [1] and
geometric active contours [2][4]. Parametric active contours, or snakes, can
be considered as parameterized models, or the parameters being spline
control points. The idea of fitting is minimization of an energy functional to
apply forces to the model. In recent years, it is popular to represent
parametric active contour by geometric active contours such as one of the

level sets in higher dimensional space.

This thesis presents an approach for contour tracking formulated as a calculus of
variations problem. The proposed energy functional contains two energy terms, the
image energy Er and the shape energy Es. Image energy, which is based on a
Bayesian framework [17], performs discriminate analysis on pixels. The shape energy,
motivated from the geodesic active contourmodel [2], is weighted by confidence of
the decrease of the image energy and resolve discriminate uncertainties. Tracking is
achieved by evolving the contour, which is‘represented using level sets, to a position
in the gradient descent direction of the energy functional. Also, invariance to
transformations of shape energy is achieved by minimize a pseudo distance [22]

between the evolving contour and the shape model.

1.3. Thesis Organization

This thesis is organized as follows. The following chapter contains a review of
related work. Chapter 3 describes the problem investigated in this thesis. In Chapter 4,
we introduce Abdol-Reza’s model for tracking and present its drawback. Level set
implementation issues are also briefly discussed. Then the shape prior solution is
described in chapter 5, together with extension of our method. Finally, the thesis ends

with several experimental results in chapter 6 followed by conclusions in chapter 7.



2.Related Work

2.1. Active Contour Models

Since active contour was introduced to the vision community by Kass et al.
(1988), extensive researches was done on “snakes” or parametric active contour
models for boundary detection. The classical approach is based on deforming an
initial contour towards the boundary of the object to be detected. The deformation is
obtained by trying to minimize a functional designed such that its minimum is
obtained at the boundary of the object! The enetgy functional is basically composed of
two components, one controls the smoothness of thecurve and another attracts the
curve towards the boundary. However, there are three'key difficulties with parametric
active contour algorithms. First, the initial contout must be close to the true boundary
or it will likely converge to the wrong result. Then, active contours have difficulties
progressing into boundary concavities. Finally, energy model is not capable of
handling changes in the topology of the evolving contour when direct
implementations are performed. An approach insensitive to initialization and the
ability to move into boundary concavities is proposed in [1]. The author present
external forces originate from an edge map of the image to provide larger capture

range. However, this parametric model cannot handles topology changes as well.

Recently, novel geometric models of active contours were proposed [2] [4].
These models are based on the theory of curve evolution and geometric flows, which
has received a large amount of attention in recent years. It allows automatic changes

in the topology when implemented using the level-sets based numerical algorithm
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[6][7]. Thereby, several objects can be detected simultaneously without previous
knowledge of their number in the scene and without using special tracking

procedures.

However, because the flow may be slow to converge in practice, a constant term
is added to keep the curve moving in the desired direction. Kaleem et al. [10] modify
this term based on the gradient flow derived from a weighted area functional, with
image dependent weighting factor. Since this flow requires the computation of only
first order derivatives, it offers significant computational savings over the weighted

length minimizing flow.

Active contour models that rely on the edge-detector or image gradient can
detect only objects with edges defined'by gradient. In practice, the discrete gradients
are bounded and then the stopping function is never zero on the edges, and the curve
may pass through the boundary;Chan and Vese detailed a level set implementation of
the Mumford-Shah functional [9];#which is based ‘on the use of the Heaviside function
as an indicator function for the separate phases. The idea is to partition the given
image into two homogeneous regions, without a stopping edge-detector. The authors
also extend this binary image oriented method to segment images with more than two

regions by multiphase level sets [12].

To segment objects in textured background, Paragios and Deriche proposed a
region-based energy, where statistical models were used for textured object and
background regions [16]. They extended the region model to the mixture of Gaussians
for magnitude of Gabor filter responses. The texture segmentation is obtained by

unifying region and boundary-based information.

Tracking is another segmentation method by using the segmentation results in



the image frames history. If the contour is initialized with its previous position,
contour segmentation approaches become object trackers, and tracking is defined

based on motion information to evolve an initial object contour[4][14][17][18][19].

In [4], the evolution equation for contour is obtained by image differences, this
tracking algorithm can be applied only when an important degree of similarity among
the images and displacements involved are small. G. Tsechpenakis et al. proposed a
method handling the appearance of occlusions between different objects [19]. The use
of the object motion history and statistical measurements provide information for the
extraction of uncertainty regions. In [14], tracking is expressed as detection and
tracking of moving objects in image sequences. In the proposed algorithm, a detection
step forces a closed curve to converge towards moving areas of an image, while a
tracking step evolves the curve to'coincidewith:the'exact boundary of the moving
object. The tracking step is only an intensity-boundary detection algorithm using
active contours and implemented-using.levelsets. Since the tracking step relies on the
previous frame, the background is assumed to be stationary. The problem addressed in
[17] is that object tracking can be treated as two-class discriminate analysis of pixels,
where the classes correspond to the object and the background regions. Since his
approach compute for each pixel by brute-force search in a circular neighborhood,
there are two problems exist even when strong assumption on intensity boundaries.
First, the contour cannot capture the parts of the object near where existing a
background region with similar intensities to them. The second, the background
around the contour will be classified as the object if there exist some pixels with
similar intensities within the object. The classification criterion is extended in [18]. A
window of specified fixed size is defined for each pixel around the contour. The

contour will move in the direction that can equalize the numbers of pixels within the



window that belong to two classes (object and background). Also, shape priors are
used to recover the missing object regions during occlusion. Nevertheless, since the
shape prior takes effect only when the occlusions are detected, this approach still

suffers the problems as encountered by [17].

Our approach is the incorporation of knowledge about the shape with [2], to
control the difficult conditions of the image. However, different from[ 18], we improve

the tracking results of [17] instead of handling occlusions of the objects.

2.2. Shape Priors

In the substantial literature of deformable models, there are three main
mechanisms can be found to constraint the shape,of the curve during the evolution of

the deformable model:

1. Free-form approaches: These methods do not encode a default shape, but the
energy functional imposes smoothness and compactness of the boundary of the

surface. They can be seen as general, weak and local shape constraints.

2. Analytical parametric templates: The analytical shape constraints are defined by
the distribution of the admissible parameters. These methods are commonly used
when some prior information about the geometrical shape is available, which can

be encoded using a small number of parameters.

3. Prototype-based constraints: Shapes are represented by the mean shape of a
collection of individuals and their statistical variations. These methods require

either training or global shape modeling.

T. F. Cootes et al. propose a method that uses point distribution model (PDM)
[13] as the prototype-based constraints. It describes the average and characteristic
shape variations of a set of training samples, which are given in the form of a set of
points on the learning boundaries. In [21], the authors investigate the use of discrete

cosine transform (DCT) coefficients in describing object shape. The method starts



with local shape parameterization, then, the shape is converted into an implicit

representation using global shape parameters. As can be seen, incorporating prior
shape information in a deformable model, requires either training or global shape
modeling. Training involves manual interaction to accumulate information on the

shape variability of the

same object class. Global modeling can be characterized using only a few
parameters, and tend to be much more stable than local properties. The choice of a
certain shape representation determines to a great extent the flexibility, processing

speed, and amount of user interaction.

Leventon et al. [23] have incorporated statistical shape information into the
evolution of geodesic active contours. They compute a prior on shape variation given
a set of training instances. Each curve in the training dataset is embedded as the zero
level-set of three-dimensional surface, which is a signed distance function. Daniel
Cremers et al. [22] propose a closed-form, spline based solution for incorporating
invariance with respect to similarity transformations in the variational framework.
Dainiel Cremers and Stefano Soatto [20] integrate prior shape knowledge into level
set based segmentation methods and proposed dissimilarity measures for shapes

encoded by the signed distance function.

The proposed shape prior is a global shape model using the initial contour as the
shape prior but not the training set from the image history, therefore the number of
parameters involved can be reduced. It is motivated by modeling the flow field of the
shape forces as geodesic active contours [23], incorporating invariant transformation
by the pseudo distance measure [22] and alternatively computing the total energy and

the shape energy during the evolution of the curve.



3.0verview of the Proposed

Approach

Given an image sequence with a specified object and its boundary in the first
frame, the thesis is to identify the boundary in all the image sequence. We use level
set model to represent the curve that used to capture the object boundary. Two
favorable features of level set method are its automatically handling of topology
changes and easy implementation. The formula to propagate the curve is an
Euler-Lagrange equation derived fromi'an enetgy functional. One of two terms in the
energy functional is related with'the image information and the other is for shape
preserving. To solve the Euler-Eagrange equation means to minimize the energy
functional and to move the curve towards the object boundary. The idea is to classify
each pixel in the image as the member of the object or that of the background. If the
classification is uncertain, the shape preserving term will attempt to preserve the

shape of the curve and will lead the decision.

The tracking system is presented in the following flow chart:

Specify Image
Image object in . Sequ.ence
Video [ sequence | *|  the I® » Tracking —»{  with
frame object
contours

The detailed algorithm of the presented approach is showed in the following



flow chart:
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Start

A 4

Read in the 1* image and set it
as the current frame

v
Identify the object to be tracked and its contour
v

A 4

Read in the next image
v

Set the current image as the previous frame

and set the next image as the current frame
v

Construct the distance function of the contour in

the previous frame and set it as the initial contour
v

Generate the shape prior from the initial contour

v
Align the shape prior to the contour <
v

Propagate the contour to capture the object in the current

frame using the information in the previous frame and the

shape prior

Is the stop condition
satisfied?

Is there any other

image frame?

End
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Our approach combines three models:
1. Abdol-Reza’s model.
2. Geodesic active contour model.

3. Pseudo distance measure.
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4.The Tracking Method

This chapter takes an overview of Abdol-Reza’s model. Then we point out its
drawbacks in section 4.2. Finally, the implementation issues of level set method are

also presented.

4.1. Abdol-Reza Mansouri’'s Model

Object tracking can be treated as two-class discriminate analysis of pixels, where
the classes correspond to the object and the background regions. This is also the idea
of Abdol-Reza’s model. For each pixel X'in thé:current frame /" (i,j), search for the
most similar pixel y in a disk with 7" (2,j) as its centerin the previous frame. Ify is a
member of the object in the previous frame; then X is ¢lassified as the object,

otherwise, X is belonging to the background.

@ r ©y v

Fig 4.1 Idea of Abdol-Reza’s model

The shadow part is the search window.
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Why this classification method works properly in Abdol-Reza’s model is because
it uses level set representation for the contour model. Level set representation can
divide pixels into two classes by discriminate them as either inside or outside the
contour and processes only the pixels near the contour, neglecting those far away.
Without this mechanism, the classification result might be a collection of

discontinuous pixels, instead of an entire object.

We now go through the approach of Abdol-Reza’s model. Let /* be a sequence of

images with domain Q (an open subset of R?). Let R, < Q be aregion in the n-th

image (/") and R, < Q be the corresponding region in image 1" that we want to

estimate. And let 7 :[0,1] > R*,s5+> 7(s) be a closed curve, oriented

counterclockwise, that we estimate for:thé boundary OR, of R;. Given I, I'* and Ry,

the optimizing estimate R of R’ is found by minimizing the energy functional

In,InH,RO) —

E.(7
~ [ log P, (1" (x)
7
Os

i

The first two terms on the right hand side of the functional are the external forces

I",R)dx (4.1)

I", Ry)dx = log Py (%)

+ij01

introduced by the image information. The first term means, given I", Rypand X belongs
to R;, the probability that X has the observing intensity I"*’ (x) . Since we have the
prior of the object Ry in the previous frame, the probability is high if 7" (x) is similar
to the intensity of some y in Ry; and it is low if X is dissimilar to any pixel in Ry. In
other hand, the second term means, given In, Ry and X dose not belong to R, the
probability that X has the observing intensity I"** (x). The probability is high if /""" (x)
is dissimilar to any pixel in Ry, otherwise, the probability is low. Using these two

terms, we can determine the pixel around the contour should be included or excluded

14



by the contour. According to subtraction of these two terms, the evolving speed could
be either positive or negative which indicates shrinking or expanding of the contour at
that point. The other two terms are the internal force associated with the contour and
will cause the contour to be smoother. Finally, the definition of the probability

functions will be detailed later.

In order to minimize (1) we search for the gradient descent direction of (4.1),

which can be computed from its Euler-Lagrange equation:

dy(s) — n+ e n n+ e n —
LD =llog b, , (1 G Ry~ log By, (17 (VIR i) )
— A K, (s)n(s)
| wout J / .
/
T
@ r ®)

Fig 4.2 Discriminate analysis

The red parts represent the contour. P;, is color difference between x and y;, and P,,, is color difference

between X and y,,,. The subtraction between P;, and P,,, can determine X as which class.

Then, equation (4.2) can be solved numerically by discretizing the interval on

which 7 is defined, leading to an explicit representation of 7 . A better alternative is

to represent the curve 7 implicitly by the zero-level set of a function u:R> — R.

Two favorable properties of the implicit level set representation over explicit

15



contour representations are its independence of a particular parameterization, and the
fact that the topology of the boundary is not constrained, such that merging and

splitting of the contour during evolution is facilitated.

Since y obeys an evolution equation and the zero-level set of u is assumed to
coincide with y, u must evolve according to a certain evolution equation related to
that of 7 . We can thus embed u in a one-parameter family and construct the

evolution equation that the zero-level set of u satisfy the evolution equation of 7 .

4.2. Level Set Representation

If the evolution of y is described by the equation

dy(s,t)

i E(7(s,0)n(s,1)

where F is a function defined on |97 the corresponding evolution of u is given

by:

o oo au]_ oo vaco -
ot 8t} {ax ay} F(X)i(X)- Vu(x) = F(X)|Vu(x,1)|

) _dude ouiy [
ot Ox Ot Oy ot

Since 7(s,t) isavectorin R’ it can be represented by a point X in the domain

ofu,and F(y(s,t)) thus can be replaced by F(x) , leading the evolution of 7 to the

above equation. The condition of this correspondence is that all the points of the curve

7(s,t) must be on the same level set which is the zero-level set (the set with u = 0)

1n most cases.
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Fig 4.3 Level set representation

This figure is cut from [17]. The figure shows the equivalence between the evolution of curves 7.7, ,

and the evolution of function u.

Then, the level set evolution equation corresponding to the curve evolution (4.2)

for tracking is given by:

S0 _fiog (17" GO1". Ry) : 10”"ggm,x(1n+l(x) 1R vl 43)
- Ak, (s)||Vu|| | = w
where
~log P, (I"" (X)|I", Ry) ot U "X) = 1" (X +2))°
—log P, ,(I"™'(X)|I",R)~ inf (I"'(X)—1"(X+2))’

{z]z|<n,x+zeR§ }

2 2
Vu wu, —2uapu,, +u,u;

[Va] ~ W +u’)?”

K,=V-

4.3. Problems of the Abdol-Reza

Mansouri’'s Model

There are two problems in the model of Abdol-Reza. First, the contour cannot

capture the parts of the object near which existing a background region with similar
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intensities to them. The second, the background around the contour will be classified
as the object if there exist some pixels with similar intensities to them within the
object. These two problems exist even in cases that objects in the images have strong

intensity boundaries.

Fig 4.4 is derived from Abdol-Reza’s work [17] and shows the limits of his
approach. The image sequence is constructed by cutting out a disc-like shape from the
center of the image and pasting it so as to create apparent motion from the lower left
corner to the upper right corner of the image. The tracking is correct until in frame 4
of the sequence, the right side of the tracked region is strongly deformed. This is due
to the fact that the region and background textures are so similar there that the

probability estimates Pin and Pout are almost identical for most of those pixels.
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] i1

Fig 4.4 The camouflage synthetic sequence

This figure is derived from [17]. The tracked object is cut from the texture in the center of the image

and pasted to create animation from the lower left corner to the upper right corner of the image.

In Fig 4.5, the lower right corner of the object in frame (a) is pasted by a square
shape cut from the background around the object. Then frame (a) is duplicated to
create frame (b) and is applied by some noise to its background such that the
background in frame (b) is more similar to the square shape than the background in
frame (a). The contour is initialized in frame (a) to properly capture the object. After
evolution, the lower right corner of the contour sticks out and attempts to include the
background, as shown in frame (b). This is because that the background is so similar

to the square shape of the object that the probability estimates are almost identical for
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those pixels.

(a) (b)

Fig 4.5 Problem of Abdol-Reza’s model

The lower right part of the contour sticks out and tries to include the background (b), due to the

similarity between the background and the square shape in the object.

4.4. Implementation Issues of the

AL

Level Set Me{hg

The conversion from paramqtrlq neja&senfatlon.' gf a curve to level set

1896 |
-F'i."\l',_..__..u_ *\."

representation is exactly correct whsen th zero}eve’l set that representing the curve

_Jnfﬁ""

i

ST
a5

moves with a specified speed after updates of u. However, this is usually not true

since the update of u is just an estimation derived from the level set equation, making
some errors to the update. For example, consider an 1D curve represented by 2D level
sets u, as shown in Fig 4.6(a). A perfect expression of the curve to move right with a
speed F is to imaginarily move the level sets u to right with a distance FAz, that is, to
update each grid of u with the value below it after the imaginary movement, then each
level set must move right with a speed F, including the level set which indicates the
curve. However, this naive kind of update is almost impossible in the real world. The

update is actually an approximation derived by the level set equation, which is an

, as shown in Fig 4.6(b). We can see that this

20



estimation of update of u is not correct since the level set on the new u cannot reflect
the move with specified speed. And, if the function u(X) is a straight but not horizontal
line on the plot, the estimation is correct and will match the imaginary movement.

Also, this assumption is not useful in practice, except in very simple cases.

Fiu|[7u

i

L J
L J

Fig 4.6 Approximation of FA¢

To explain it more clearly, let us take an extfeme case as the example, the
numerical problem when derivatives are niot- defined on the points that are

discontinuous. Let u be a distance function with distance from the original, that is ,

||Vu|| = | everywhere except the original;as shown in Fig 4.7(a). Recall the level set

equation:
) | Va0 =0
Let
M x<a
F(x)= { M >N >0
N x>a

Then, at iteration 1, u becomes Fig 4.7(b). Since for all x, F(x) > 0, each grid

of u moves downward. Also, because M > N, the grids u(x < a) moves more
amount than the grids u(x > a), and there is a discontinuity & =u(a”)—u(a")

occurs at u(a).
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Fig 4.7 Numerical Problem

This problem is simulated by a Matlab:program.-Nete-the-difference between (a) and (b). In (b), u has
moved downward and the point u(a) is a discohtinuity. Then, (c) and (d) are iteration 2 and iteration 3

respectively.

Assume we use forward differencing

where the lower script denotes the grid index. Then,

Vu(a — Ax) = wa) —u(a = Ax) =1
Ax
Vu(a):u(aJrA)c)—u(a) :u(a)+Ax+5—u(a) :1+i
Ax Ax Ax

||Vu(a)|| > ||Vu(a - Ax)” >1

That is, from the level set equation, u(a) will move downwards more than

u(a — Ax) atiteration 2, as shown in Fig 4.7(c). If we compute iteratively in this
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manner, u(a) will touch the x-axis to become the member of the zero level set that

represents the curve and produce a “bubble effect”, as shown in Fig 4.8.

Fig 4.8 Bubble effect

This is the experimental result of level set method using forward differential scheme. The bubble effect

refers to the occurrence of unexpected bubbles during the propagation of the curve.

To overcome this phenomenon, the upwind differencing scheme is proposed by

[7].

uth =u', + A(=[max(F, ;,0)V:* + min(F, ;,0)V"])

i,j

where we lower script u and F by their grid indices, u, ; = u(i, j) and

i

F,, = F(i, j), and the upper script of u denotes the number of iteration and

1/2
b

V' = [meu((D;x,O)2 + min(D;)‘,O)2 +max(D;” ,0) + min(D; " ,0)2]

V' = [max(D;",0)* + min(D;",0)* + max(D;” 0)* +min(D,”,0)* |,
Dy =up; —uly

Dy* =uiy ; —u;,

Dy =u, —uj;

DY =u" u'

In 1D case it is
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u!"' =u + At(-[max(F,,0)V" + min(F,,0)V"])

where

v+ — [maX(Di—x ’0)2 + min(D;rx ,0)2]1/2’
/2

V= [max(Di” ,0)° + min(Dl._",O)z] ,

D™ =u' —u’

i i-1°

D+x _ un un

i i+l %

The value on each grid of the speed function is greater than zero, those u’s
located at troughs will not be updated. Therefore, the grid u(a) will not be updated

in iteration 3 and remains its value until it is equal to u(a — Ax) such that reduces the

trend to produce large discontinuities.

Notice that in iteration 2 u(a+Ax) is notatrough and, not like u(a), will be

updated in iteration 3 by the upwind differencing scheme. This leads to the fact that

u(a + Ax) might be updated with a lowet value than’ u(a) and u(a) will become

non-trough at iteration 3 such that is need to be updated in iteration 4. So, it seems

that upwind differencing scheme just lower down u(a) to touch the x-axis but u(a)
will eventually becomes a member of the zero level set. However, we will show that

this worry is unnecessary under the satisfaction of Courant-Friedriches-Lewy (CFL)

condition [7]. That is, u(a) is still a trough (u(a) < u(a + Ax)) at iteration 3 such

that it will not be updated at the next iteration if CFL condition is satisfied. Let the

discontinuity at iteration 2 be p =u(a + Ax) —u(a) . Note that p > 6 >0. The CFL

condition is, for each grid point

FAt < Ax

And without lost of generality, we can let Ax =1, therefore FAz<1.

Now we will prove u(a) < u(a + Ax) at iteration 3.
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wF(a+Ax)>0
u3+Ax = u5+m + At(_Fa+AxV+)

=12, - AtF,,, [max(D;%,..0)> + min(D;,..0)* ]

-x 2 2 _
DY =u . —u, =p>6>0
+x 2 2 _
Da+Ax S Upoae ~ Ugpan =1

=12, - AtF,,, [max(p,0)” + min(1,0)*]”

2 2 2
= ua+Ax - AtFa+Axp > ua+Ax - p = ua

n+l

It is easy to derive a general form u,, >u, by mathematical induction.
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5.Shape Prior

In this chapter, we present how we combine the shape prior with Abdol-Reza’s
model. The shape prior refers to knowledge of shape models which we have known
that can be used to guide the propagation of the curve. The sections contain geodesic
active contour model that is used to represent the shape prior and a distance measure

for measuring the dissimilarity between the propagating curve and the shape prior.

5.1. Geodesic Active Contour Model

Let J ;:;ﬁ be a binary image with ones on.thetegion Ry, after rotated an angle 6
and translated a distance J, and.zeros on the temaining domain. Ry is indeed the
region of the object captured by the curve in‘the previous frame image I”, and the
binary image J ;:;d containing R, after the transformation is used to construct the
shape prior for the current image /", During the curve y is propagating to capture
the object in "™, the binary image J 1’;:;) for the shape prior is reconstructed each
time before computing equation (5.1) in each iteration. The region Rj in the binary

image only subjects to a rotation § and a translation ¢ to align with the propagating

curve 7, and never deforms its shape all the time (in processing I"*'). Although the
transformation is limited to rotation and translation in this thesis, it can be extended to
combinations of several affine transforms such as scaling and shearing. Now we will

define the energy functional
E= E},(f‘[”,]”“,RO) +E.(u,0,8) (5.1
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where the image energy Er is equation (4.1) used to perform discriminate

analysis on each pixel and the shape energy Es is

ds (5.2)

b= ot ool |2

where w(E,) is a weighting function ,which means the shape prior is image
energy dependent. For pixels that can clearly classified by Er, the weight is low. If the
pixel lies in an uncertainty state, the weight is high and the shape prior will leads the
classification. This novelty, different from most existing methods that the weights
used to combine the terms of the energy functional are usually constant thresholds,
offers more flexibility in the propagation of the contour. In particular, the shape prior
will not constrain the deformability of the shape of the object in many cases.

eNeT gy
2.5

OEF WAL

0.5

£ &2 £3 Clurve
(@) ik

Fig 5.1 Image energy and Shape energy

The energy for the curve c1, c2 and c3 is almost identical, but the energy for c2 is lowered than the

others after plus the shape energy.

Fig 5.1illustrates our basic idea. In Fig 5.1(b), the object is partially involved in
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the background that is textured with similar appearance to it. Either the curve expands
(c3) or shrinks (cl), the energy changes are difficult to distinguish. However, after

plus the shape energy, we can eliminate this uncertainty and make a decision.
Despite the weighting function, the term Es comes from the geodesic active

contour model. g(I) stands for —, where [ isa smoothed version of /,
1+|vi|

computed using Gaussian filtering, and p = 1 or 2. means that to convert the binary

image to an image with continuous numbers from zero to one. Also, if we view the

image in 3-dimensional space, the valley will locate at the boundary of the object in
the binary image J ;:i, s- Fig 5.2 is the observing intensity of a binary image crossed by
a scan line. In Fig 5.2(a) and (b), / and its smoothed version [ are presented. Fig
5.2(c) shows g(-) is valley on the boundary of , and its gradient vectors direct to the

middle of the boundary.

(a) x
(b

Fig 5.2 Gradient vector

(a) The intensity signal on a scan line over the binary image. (b) The smoothed version of (a). (c) The
derived function g. The evolving contour is attracted to the middle of the boundary by the forces

created by Vg - Vu.



n+l

The integration (5.2) means the sum of Hg(J R 0.6 (7))” over the locations
occupied by the curve y multiplied by its piece of length. Since the derived function
g(-) takes small values on positions corresponding to the boundary of the object in
the binary image, we can expect that the minimum is obtained when the curve is
aligned to the boundary of the object in the binary image. To minimize the integration,
we search for its gradient descent direction, which is computed from the

Euler-Lagrange equation

ayait) = w(E, g/ tos (PNKE; = Ve(Ti,5(7))- ifi (53)

The term Vg(-) attracts the movement of the curve towards the boundary of shape

prior. An example is given in Fig 5.3. Letw(E; ) =1 to clarify the effect of the vector

field.
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Fig 5.3 Shape and its forces field

(a) A binary image J of size 20x20 containing a circle object. (b) The corresponding gradient

vectors V@ - Vu  represent the forces that attract the curve to the pointed direction.

Obviously, this is an explicit representation of curve y , and we can embed it to
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the level set representation as described in the previous chapter.

6 + n+
a—z‘zw(Ey){g(J;O_;ﬁ)K —VE(Jihs): v |J||V“|| (5.4)

Combining (5.4) with (4.4) we can obtain

aua(:)':[l gP, (I"(x)I",R )—10gpom(1"“(X)‘l",RO)]|Vu||
(5.5)
—ﬂ'fu<x>||vull+w(E»{guz:;ﬁ(x»Ku—Vgu;z:_;ﬁ(x» v ||}nwn
where
WEy)= - (5.6)

logP, (I (x)I",R,)~log P, . (I"" (x)

m,x

1",

+p

The weighting function is related to the reciprocal of the image energy, where a
(>0)and B (> 1) are two user specified constants. When the uncertainty occurs, the
weight will take a large value, and; on the other hand, the weight is low when the

classification can be confirmed. The purpose of the shape prior is to lead the

propagation when the classification is uncertain when the term £, is almost equal

either the contour shrinks or expands.

Before computing equation (5.5), however, we need to reduce the involved
parameters, that is, to compute 6* and 6* which are the optimizing transform of the

shape prior to align with the contour. The final level set equation is (5.7).

1", R) |V - 2 x, )|V +

I",R,)~logP,, .(I""(x)

E,

in,y

8u(x) _ n+l
= ~llog, (1™ (x)

(5.7)
W(E,)| g(J 3 5o W), = VG (T 5o (1)) - ” ” [V

Es
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This is done by using a dissimilarity measurement between distance functions of

the curve and the shape prior. We will discuss this subject in the next section.

5.2. An Euclidean Invariant Shape

Prior

Computing §* and 6* separately eliminates translation and rotation from the

shape energy Es and no additional parameters entering the minimization. A commonly

alternative approach is to explicitly model a translation and an angle and minimize

with respect to these quantities (by gradient descent or other). In Daniel Cremers et

al.’s opinion [20], the explicitly model has several drawbacks:

The introduction of explicitpose parametets makes numerical minimization
more complicated— corresponding parameters to balance the gradient descent
must be chosen. In practice; this,is not only tedious, but it may cause numerical

instabilities if the corresponding step sizes are chosen too large.

The joint minimization of pose and shape parameters mixes the degrees of
freedom corresponding to translation and rotation with those corresponding to

shape deformation.

Potential local minima may be introduced by the additional pose parameters. In a
given application, this may prevent the convergence of the contour towards the

desired segmentation.

Therefore, to reduce the parameters in minimizing Es, we compute 6* and J* and

reconstruct the binary image before computing (5.7). The idea of evolution process

thus consists of two phases:

Aligning the shape prior with the curve (compute 6* and J%).

Evolving the curve, including propagating the certain parts toward the object and

attracting the uncertain parts to the shape prior (computing equation (5.7)).

31



~ Phase 1: Minimize Es
g (Equation 5.10)

N Y

A 4
Phase 2: Minimize Er+Es
(Equation 5.7)

Each iteration of the algorithm consists of the following steps:

Step 0. Manually draw the initial Contour of the object being tracked in the first frame
such that the contour points contain the desired object boundary. You may

exclude the shadow. Set the current frame number to 2.

Step 1. Use the contour obtained in the previous frame as the initial contour and the

prior shape of the current frame.

Step 2. Compute the rotation and translation parameters between the current contour

and the prior shape (see equation 5.10)

Step 3. Do for all contour points one at a time:

use equation 5.7 to compute E,, E, and W(E,). Then update the level set value

at the contour point.
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Step 4. After all the contour points are updated, check if the contour does not
converge or the number of iteration does not exceeds a specified upper bound;
if not, go to Step 2; otherwise, terminate with the contour as the final contour

of the current frame.

Step 5. Is the frame the final frame? If yes, stop; otherwise, increase the frame number

by 1 and go to Step 1.

The evolution process is performed iteratively to minimize the energy functional

(6). The idea is illustrated in Fig 5.4 and Fig 5.5.
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Fig 5.4 Shape prior illustration 1

Fig 5.4 presents that the contour (the red curve) will neglect the shape prior (the
blue equal signs curve) to capture the object (the rectangle) when it can distinguish
the object from the background (the circle). In Fig 5.4(a), a rectangular object staying
at the bottom is textured with marble appearance, and at the top locates a part of the
background that is also textured with marbles. A red curve is initialized to properly
capture the object. Then, the object moves upwards with a small distance in Fig 5.4
(b). The evolution process of the curve is shown in Fig 5.4(c) and Fig 5.4(d). Fig 5.4(¢c)
is the early phase of the computation, that is, to align the shape prior with the curve.
Since the curve is staying at its original location and suffered no deformation so far,
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the shape can completely align with the curve. In Fig 5.4(d), the computation enters
the 2™ phase and the curve starts to move according to the image information and the
attraction of the shape prior. However, because the curve can distinguish the object
from the background, which is white at this time, the curve just moves to capture the

object directly, ignoring the shape prior.
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Fig 5.5.Shape prior illustration 2

The object continuously moves upwards and, at this time, overlaps with the part of the background

that is similar to the object.

Fig 5.5 presents the idea of the shape prior to capture the object involved in the
background in this figure. Fig 5.5(a) is the capturing result of Fig 5.4 and also the
initialization of Fig 5.5, with the curve properly captured the object. Then the object
moves with a large step into the background in Fig 5.5(b). Now, the remaining figures

are trying to capture the object. Fig 5.5(c) is to align the shape prior with the curve. As
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in Fig 5.4(c), it is completely matched with the contour. However, in Fig 5.5(d), the
attraction of the shape prior takes effect. The bottom part of the curve, again, moves
freely to capture the bottom of the object since the curve knows where the object is,
but the top part of the curve is locked by the shape prior because it dose not known
the marbles above belongs to the object or belongs to the background. This is because
the marble at the bottom can only belongs to the object since no similar background is
around it, and the marble at the top has alternative choices. Continuously, the shape
prior is aligned with the curve in Fig 5.5(e). However, the size of the curve has
changed. To make the alignment possible, the best solution is to place the curve in the
center of the shape prior, as shown in the figure. After this arrangement, the curve can
continuously evolve in Fig 5.5(f). But opposed to Fig 5.5(d), the bottom part of the
curve stays at the same location but the top partcan take liberty to move upwards by
the attraction of the shape prior=Note that the top part of the curve is moving towards
the actual boundary of the object by the'leading.of the shape prior after its alignment,
and the certain parts of the curve can stay at its positions. In Fig 5.5(g) and Fig 5.4(h),
the evolving process repeats continuously in this way. The shape prior goes upwards
with a little step in Fig 5.4(g), and then the top part of the curve is attracted upwards.

After several iterations, the curve can capture the object with an allowable error.

Now we formulate the computation of 8* and 6* now. A dissimilarity measure is

calculated for two distance functions. Let R, (6, o) denotes the region after rotated an

angle 0 and translated a distance J. Let ¢ be the distance function ofoR, (6, ), the

boundary of R(8,9), over the domain (). Let ¢; be the distance function of the

propagating curve (the level set u = 0) over(). The dissimilarity measure between ¢

and ¢ is
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& ($(5,0.0).4:(0) = [ (4 (3.0.0) - 4 () WA g (s.5)

= f(8,8)=f(p)

where

H(¢)

H(¢>={1’ A ()
0, else j H(¢)dx

This distance measure is symmetric but merely a pseudo-distance [22]. The

2
minima of (5.8) occurs at W =0.Let p={60,0} be the pose parameters,
0

the optimization p* = {6*,5*} can be derived by calculating the gradient descent

d* ()
op

direction — and is given'by

—=—I(¢1 A AGET) 2 ¢°

¢0 (5.9)

; 1 0 1 0 0

where 6, (s)=H_(s)is delta function, which is chosen to have and infinite

support:

0, (s)—

71'6' +S

and
(=) = [ (=) (g )dx

Notice that the distance measure (5.8) is not an energy functional and (5.9) is

derived by computing its gradient descent direction but not derived from computing
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Euler-Lagrange equation. Then, equation (5.9) can be used to solve the optimal pose

parameters 0* and 0* iteratively.
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Proof of (5.9):
op _ ad’
o op

a¢0 B0 )
0

- _j(¢1 () +h(d)—

=—j(¢1—¢0>(h(m+h(¢o»%¢°d -y PP
o P op
g o, L0 H()
= i(@ AIHH) +h(h) 5 L = - 20 i pave
s h W H@ o) T

o¢, 1
=—\(d — &) (h(4)+ h(4))—=dx — 1= % H
i(¢ ¢ )( (¢ ) + (¢ )) 8o x 2 I(¢ ¢ J‘H (¢O)dx (J‘ (¢O)dx)

5(¢0)a¢° h(%)jé(%)%dx

| H(¢0)dx [H(4)dx

J6-w [5@0)‘3% h<¢O)J5<¢o)ff°dx}dx

— (a4 _ 9 g Mfiy -
= im BIH) +h(6h)) 5 5@ -a)

= [ + ) T - 2jH(¢

1
2[ Higy)

5¢o

==+ P~ j[m 8 5 S~ (4 - 47 o) a¢°dx}

a¢0 dx — 6¢0

= —I(¢1 ¢)(h(g) + h(¢0))

j[(«ﬁl 0006 S0 2 [0 ) h(%)dx}x

2JH<¢0
[l -4 = [ - )b a¢°d

[ —%)(h(qﬁhh(%))%d - 2IH<¢ :

(o -0 -G -ar b a%dx

a¢o
=—| (& —4)(h(4) + h(4, dx —
j<¢ AI() + hh) 2 sz(¢)
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6.Experiments

There are three experiments. Experiment 1 explores the characteristics of the tracking
method. Experiment 2 presents the mechanism of the shape prior. Finally we use real

image sequences in experiment 3.
6.1. Synthetic Image Sequences

This experiment is to explore characteristics of the tracking method.

(a) Small Displacement

There are three cases in this experiment. Case 1 is an object with homogeneous
color moving from left to right and‘approaching atbackground texture that is similar to
the object. In case 2, an object with.a small part of.it 1s pasted by the background
texture. The object is moving from left to.right-in a homogeneous background. Finally
in case 3 is a combination of case 1 and.case 2:/An object with a small part similar to
the background is moving approaching a background texture that is similar to that
object. The image sequence is of size 80x100 each. Since the move takes 6 pixels, we

set the size of the searching window 1 = 7. Number of iterations = 40.

Both two methods can capture the object correctly. In figure 3 and figure 4, the
nearest distance between the background-like texture within the object and its
boundary is 14 pixels. In figure 5 and figure 6, the least distance between the object
and the object-like background is 8 pixels. The size of searching window is 7 pixels.

Therefore, each pixel is under certainty and we can get good results.
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(1) (2) )

4 (5)

Fig 6.1 Abdol-Reza’s model

2)

4) () (6)

Fig 6.2 Abdol-Reza’s model + shape prior
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Fig 6.3 Abdol-Reza’s model

(N (2) 3

4 5 (6)

Fig 6.4 Abdol-Reza’s model + shape prior
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Fig 6.5 Abdol-Reza’s model

(2) (3)

4 (5) (6)

Fig 6.6 Abdol-Reza’s model + Shape prior

(b) Large Displacement

This experiment is similar to experiment 1, but with a large move distance. We
take frame 1, 3, 6 from each case in experiment 1 and compare the two approaches.
The move distance is 18 pixels. We set the size of searching window 1 = 20 and the

number of iterations is 80.



Abdol-Reza’s model’s model failed. In frame 2 of figure 1, the distance between
the pixels around the corrupted contour and the background-like part in frame 1 is at
most 14 pixels. However, since the search range is 20 pixels, we cannot determine the

pixels left to the object as the object or background.

In figure, since the right part of the contour can correctly capture the object, it
drags the shape to right and make the alignment. Then the left part of the contour is

compensated by the shape prior and we can get the good result.

Similarly, in figure 4 the right part of the contour is determined by shape prior

which is pushed by the left of the contour.

In figure 5 and figure 6, both methods failed. The right and left part of the

he shape cannot be attracted to right

| registration and removal before

(1 (2)

Fig 6.7 Abdol-Reza’s model.

M 2

Fig 6.8 Abdol-Reza’s model + Shape prior.
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(N (2) (3)

Fig 6.9 Abdol-Reza’s model.

(1) (2) (3)

Fig 6.11 Abdol-Reza’s model.

(1) (2)

Fig 6.12 Abdol-Reza’s model + Shape prior.

(3)
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(N (2) 3

Fig 6.13 Abdol-Reza’s model + Shape prior + Background removal.
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6.2. Digital Camera Photos

This experiment presents an image sequence that is composed of digital photos
that are captured by a digital camera. The object is manually outlined in frame (a)
then transforms gradually in later frames. We will present how the shape prior works
when the object is partially involved in the background. We have set ) = 10 pixels,

and the number of iteration is &0.

Fig 6.14 presents Abdol-Reza’s model. In frame (b), when the object rotates a

small angle, its bottom-right corner is near a similar background and the contour

shrinks there. The shrinking contingy ss in frame | ).and frame (d). Finally in frame (e),
after the object moves away fro ' ¢ lar backgr ound, the contour cannot recover

und in frame (d) and that part will

(a) (b) (c)
(d) (e)

Fig 6.14. Abdol-Reza’s model.on digital camera photos
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Fig 6.15 illustrates our approach. In frame (b) the bottom-right corner of the
contour is prevented from shrinking by the shape prior. In frame (c), the left part of
the object is certain and can used to align the shape correctly. After the shape
alignment, the involved part of the object can be preserved by the shape. As the same
reason, the object can be captured correctly in the later frames. We will present how

the shape works in the next figure.

(a) (b)
(d) (e)

Fig 6.15. Abdol-Reza’s model + shape prior on digital camera photos

Fig 6.16 shows how the shape prior works. Figure (a) is previous frame and
figure (b) from figure (i) are current frames (To clarify that Fig 6.16 is not an image
sequence but the process during contour propagation, we use the term figure (.) or
simply (.) instead of frame (.). ) The red curve is the propagating contour and the blue
curve is the shape prior. The contour and the shape prior are initialized as the result of
the previous frame (which is manually outlined in (a) in this illustration). Then the
object rotates clockwise with an angle. In (b)(c), the left part of the contour is far from
the similar background, which will be excluded by the searching window, is under
certainty and goes along with the boundary of the object. And the right part of it
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moves slowly down. The shape then rotates with a small angle clockwise to
accompany with the contour. In (d), the top-right part of the contour has completely
shrunk to the object. Also, the direction of the shape prior goes along with that of the
object. Translation starts. The right part of the contour is uncertain and is attracted by
the forces generated by the shape prior. After the evolution of the contour, alignment
is updated in (e). The shape prior moves a little along with its direction and the
contour gradually moves toward the shape prior. Continuously, from (f) to (i), the
contour gradually matches with the shape prior, which is almost equal to the boundary

of the object.

Fig 6.16 Mechanism of shape prior

In the following experiments, the mechanism of the shape prior will work similar

to what illustrated in this experiment.



6.3. Real Image Sequences

This challenging figure is processed by Abdol-Reza’s model. The car is
neighboring the curb which is similar to its color. In frame 2, the contour becomes
like ellipse due to the curvature smooth term. Because the gray road is something like
the glasses of the car which might be gray somewhere, the uncertainty part is guided
by the curvature term. In frame 3 depending on their similarity the background is
regarded as the object. Even though the contour is attracted to the car again in frame 4,

the error is larger and larger in following frames.

el O

Fig 6.17 Abdol-Reza’s model
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In our method, the top of the car is uncertain and the shape guided the
classification. The contour is determined by the head and the tail of the car. Then the
shape prior is aligned by these certain parts. Hence we can use it to get a correct
capture. The right wheel of the car is included gradually from frame 6 to end. This
might because there are some parts of the car like the wheel texture. When the car
moves, the wheel is initially included in the next frame but not correctly excluded

later.

Fig 6.18 Abdol-Reza’s model + shape prior

Fig 6.19 presents the result of applying shape prior model on one of the crossing
hands. The two hands move toward each other to cross together then leave away. In

frame (6), the top-left part of the contour does not capture the arm. This is because the
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top part of the arm becomes darker due to the light. However, the shape fail to
compensate this uncertain part since the top part of the arm also becomes thicker and
thicker. In Fig 6.19 (14), the left part to the fist is in fact under uncertainty, which is
shown in Fig 6.20 (14), and will let the contour to stay its position. Therefore, the
weight of the shape is high on this part and will dominate the tracking behavior.
Comparing to Abdol-Reza’s model, the shape prevents the contour from sticking out
and produces a better result. Similar phenomenon occurs in frame (26). The right part
of the fist is not perfectly captured. Again, the shape solves the bad condition. Finally
in frame (30), we can see the captured contour is almost identical to the appearance of

the arm.

(22)

Fig 6.19 Two hands, with shape prior model
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Fig 6.20 Two hands, Abdol-Reza’s mol;-il'e;{ -
The number of iteration is set t;) .100 steps m all experiments. In figure 1, the
interframe displacement is about 8 pixels. We have therefore set = 12. Figure 3 is a
bus moving backwards with rotation. The yellow part is the key gaudiness for shape
alignment. Finally in figure 4, an image sequence on human body is illustrated. Even
with large deformation of the object, the tracking can correctly capture the object. In
this case, the shape prior takes no effect because the object is obvious apart from the

background. Notice the auto changes of the topology handled by level set method.

Fig 6.21 presents the image sequence in which the object appearance is complex. As
long as the colors are different from the background, we can easily handle this kind of

casc.
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{13)

-
Fig 6.21 A bus with complex appeararib¢

|
. "
'.i'" 5

In Fig 6.22, the bus is moving back" ‘ards In framf:"(SO) to (55), the top right corner of
the bus is concave. This is because the transp'arent glass of the bus looks very close to

the zebra crossing and the weight of the shape is not strong enough. If we increase the
weight of the shape prior, some part of the contour might be over attracted by the

shape prior due to their uncertainty.
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(a5) 50 o)

Fig 6.22 A bus
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Fig 6.23 Human tracking
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6.4. Parameter Settings

Weight of Shape Prior

This experiment presents the influence of the shape prior under different
weighting function. Red lines are propagating contours and blue lines are shape priors.
The number within the parenthesis below each figure is the number of iterations. We
have set A = 0 and § = 1for all figures in this section. Notice that the shape is

transformed to align with the contour during the propagation.

Although the weight w(y(s)) of the shape prior is automatically calculated
from pixel to pixel, it is indeed embedded a.threshold a. a can be considered as the
average weighting of the shape prior and=w(y(s)) ‘can be considered as o multiplied
by a scalar which is corresponding'to the discriminate analysis of Abdol-Reza’s model.
When a is larger and larger, the average weighting of the shape prior becomes higher
and higher and more and more parts of‘the contour will be attracted by the shape prior.
To insure that deterministic parts of the contour to dominate the tracking, a reasonable,

or not too large, a is needed. In this case, a = 0 ~ 1000 is a good choice.
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The previous frame The current frame

(Red contour is the final contour (the red contour is its initial contour

of the result) obtained from the previous frame).

Fig 6.24 Initial contour
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(114)

(394)

Fig 6.25 . =500

The intermediate results of the tracking process with weights o = 500, and § =1.

The last diagram indicates the final contour in red.

(28)

(68)
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(108) (148)

(188) (228)

(268) (308)

Fig 6.26 o= 1000
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(21) (61)

(101) (141)

(181) (221)
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(261) (381)

(461) (541)

(B81) (1381)

Fig 6.27 a = 1500
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(15)

(175)

(575)

(975)

(1415)

Fig 6.28 o= 2000
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9)

(209)

(1009)

(1409)

Fig 6.29 o= 2500

63




2)

(202)

(1002)

(1402)

Fig 6.30 o =3000
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(41)

(241)

Fig 6.31 o =3500
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(41)

(241)

(1001)

(1401)

Fig 6.32 a.=4000
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The Curvature Term

This experiment presents the effect of the curvature term. We adjust A from 0.01
to 0.13 and have set a = 0 and B = 1 for all figures. The initialization of the contour is
the same as previous sub experiment. The purpose of the curvature term is to smooth
the contour. We can see that when A =0.13, the hole of the contour between two legs is
dominated by the curvature term and cannot capture correctly anymore. Also, several
other parts are over smoothed such that the contour cannot deep to the detailed

concave part of the object.

(10) (14)
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(18)

(22)

(96)

(144)

Fig 6.33 A =0.01
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3)

(18)

(63)

(72)

Fig 6.34 A =0.03
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4)

(24)

(84)

(96)

Fig 6.35 %.=0.05




4)

(24)

(84)

(96)

Fig 6.36 A =0.07




(6)

(38)

(126)

(144)

Fig 6.37 A =0.09




7)

(42)

(147)

(168)

Fig 6.38 A =0.11




(8)

(48)

(168)

(192)

Fig 6.39 A =0.13




7.Conclusions and Future Work

7.1. Conclusions

We present a tracking method for object contour tracking in image sequence. The
presented approach is combined Abdol-Reza’s model with a shape prior. The shape
prior is based on geodesic active contour model and will align with the contour during
propagation process. When the object being tracked canno be partially discriminated,

the shape prior.

7.2. Future Work

1. The shape prior can use a statistical trainifig data set and be implemented as
multiple shape priors.

2. The stop condition can be checked automatically by energy criterion instead of a
specified number of iterations.

3. We believe a region based discriminate analysis is expected to perform better

than pixel-wise based algorithms.
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