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利用等位函數法結合形狀資訊做影像序列的物體追踪 

 
學生：徐錦祥                        指導教授：陳  稔 博士 

國立交通大學資訊工程學系 

摘要 

物體追踪在電腦視覺、監測系統、交通監測站等，都有很大的應用，並且提

供了高階影像處理的前置工作。本論文提出一個對影像序列的物體輪廓線追踪方

法。主要是結合物體形狀資訊來改進 Abdol-Reza Mansouri 的方法。 

在 Abdol-Reza 的方法中，追踪演算法主要是透過最小化一個由貝氏定理所

推導出的能量函數，來變動所要用來追踪的輪廓線，使其往目標物逼進。此方法

有三個優點。第一，不需要做物體運動估測。第二，物體允許任意變形，包括拓

樸的改變。第三，物體的輪廓梯度不需要很大。而它所面臨的缺點是，當物體的

附近有跟其相近的背景時，追踪的結果將會受到很大的影響。我們希望透過結合

物體的形狀資訊來改進這個缺點。當被追踪物體有部分跟背景相似時，明確的部

分由原來的方法追踪，並將其結果與形狀資訊對齊，接著由形狀資訊將不明確的

部分補足。如果物體本身就整個能與背景分開時，形狀資訊的權重將會自動被付

予很小的值，以保有物體允許隨意變形的特性。這樣的整合方式，也將使我們的

方法更具有彈性。

 i



 

Object Tracking via the Level Set Method Integrated 

with Prior Shape 

student：Chin-Hsiang Hsu                        Advisor：Dr. Zen Chen 

Department of Computer Science and Information Engineering 

National Chiao Tung University 

Abstract 

Detecting and tracking moving objects has a wide variety of applications in 

computer vision such as computer vision, video surveillance, traffic monitoring, etc. 

Additionally, it provides input to higher level vision tasks. This thesis presents an 

approach to tracking a moving object over a sequence of images. In particular, we 

improve the Abdol-Reza’s model by coupling with shape prior knowledge for shape 

perseverance in case of ambiguity. 

In the model of Abdol-Reza, tracking is achieved by evolving the contour from 

frame to frame by minimizing an energy functional evaluated by Bayesian theory. 

There are three two favorable features in this model. First, no motion field or 

parameters needed to be computed. Second, deformable shapes of the object are 

allowed and the topology of the boundary is not constrained. Third, no assumption is 

made on the strength of the edge gradient. However, it also suffers from the 

constraints imposed on a degree of dissimilarity between the object and the 

background. A background region similar to the object might corrupt the contour 

evolution. We want to overcome this drawback by coupling with a shape prior in the 
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associated energy functional. When the object is partially involved in a similar 

background, the original tracking term in the functional will dominate the result in the 

unambiguous background part, and the prior shape will guide the object movement in 

the ambiguous part. If the object is entirely distinguishable from the background, the 

weight of the shape prior is set low and thus allowing free deformation of the object. 

Compared to other tracking methods embedded with shape priors, the presented 

approach is more flexible, retaining the advantage of suffering little constraints on the 

deformable shape of the tracked object in many cases. 
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1. Introduction 

1.1. Motivation 
High level vision tasks for video processing require tracking of the complete 

contour of the objects, such as in the applications of computer vision such as computer 

vision, video surveillance, traffic monitoring, etc. 

1.2. Object Tracking 
Numerous approaches for tracking objects in an image sequence are proposed 

and can be mainly classified in three categories: 

1. Correspondence-based object tracking: Tracking is performed by establishing 

correspondence of the objects in consecutive frames. These approaches rely on 

the detection of temporal changes and employ a thresholding technique over the 

inter-frame difference. These methods can only be applied to images with static 

backgrounds and they provide coarse object silhouettes.  

2. Motion-based object tracking: Tracking is performed by estimating the motion of 

objects in consecutive frames. Objects are represented by planar surfaces, such 

as rectangle and ellipse, or their centroids. These methods are relatively fast but 

have considerable difficulties in dealing with non-rigid movements and objects.  

3. Model-based object tracking: Object representation includes rigid models and 

non-rigid models, or deformable templates. Such models usually have a number 

of parameters to control the shape and pose of the model. These methods suffer 

from high computational costs for complex models due to the need for coping 
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with scaling, translation, rotation and deformation.  

In correspondence-based object tracking, background subtraction is the most 

popular detection method used in object trackers, where color observations of 

individual pixels in a reference frame are statistically modeled. Detection is 

performed by labeling the pixels that deviate from the static model. 

In motion-based tracking, a statistical analysis is performed and is used to 

provide the motion-based estimation. Motion models used are translation, scaling and 

affine motion models. One of the most common motion based tracker is “template 

matching”, where translation of an object template is computed by searching the 

image for a similar template. Additionally, by assuming a smooth background, the 

input frame can be used directly to provide an accurate object tracking result. In [8], 

the authors proposed a kernel-based tracker in which color priors are computed using 

weighted kernel density estimation. Mean-shift vector is then computed iteratively by 

maximizing likelihood between the object color prior and the model generated from 

hypothesized object position. 

There is a substantial use of flexible models or deformable templates in 

model-based tracking. There are three broad classes of these models. 

(i) Articulated models: Articulated models are built up from a number of rigid 

components connected by sliding or rotating joints. This approach is only 

applicable to a restricted class of variable shape problems.  

(ii) Statistical models of shape: The shape is represented by a set of boundary 

points connected by arcs with a statistical model of relationships between 

them, or a set of points with distributions related by a covariance matrix.  

(iii) Active contour models: There are two general types of active contour 
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models in the literature today: parametric active contours (snakes) [1] and 

geometric active contours [2][4]. Parametric active contours, or snakes, can 

be considered as parameterized models, or the parameters being spline 

control points. The idea of fitting is minimization of an energy functional to 

apply forces to the model. In recent years, it is popular to represent 

parametric active contour by geometric active contours such as one of the 

level sets in higher dimensional space.  

This thesis presents an approach for contour tracking formulated as a calculus of 

variations problem. The proposed energy functional contains two energy terms, the 

image energy Er and the shape energy Es. Image energy, which is based on a 

Bayesian framework [17], performs discriminate analysis on pixels. The shape energy, 

motivated from the geodesic active contour model [2], is weighted by confidence of 

the decrease of the image energy and resolve discriminate uncertainties. Tracking is 

achieved by evolving the contour, which is represented using level sets, to a position 

in the gradient descent direction of the energy functional. Also, invariance to 

transformations of shape energy is achieved by minimize a pseudo distance [22] 

between the evolving contour and the shape model.  

1.3. Thesis Organization 
This thesis is organized as follows. The following chapter contains a review of 

related work. Chapter 3 describes the problem investigated in this thesis. In Chapter 4, 

we introduce Abdol-Reza’s model for tracking and present its drawback. Level set 

implementation issues are also briefly discussed. Then the shape prior solution is 

described in chapter 5, together with extension of our method. Finally, the thesis ends 

with several experimental results in chapter 6 followed by conclusions in chapter 7.   
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2. Related Work 

2.1. Active Contour Models 
Since active contour was introduced to the vision community by Kass et al. 

(1988), extensive researches was done on “snakes” or parametric active contour 

models for boundary detection. The classical approach is based on deforming an 

initial contour towards the boundary of the object to be detected. The deformation is 

obtained by trying to minimize a functional designed such that its minimum is 

obtained at the boundary of the object. The energy functional is basically composed of 

two components, one controls the smoothness of the curve and another attracts the 

curve towards the boundary. However, there are three key difficulties with parametric 

active contour algorithms. First, the initial contour must be close to the true boundary 

or it will likely converge to the wrong result. Then, active contours have difficulties 

progressing into boundary concavities. Finally, energy model is not capable of 

handling changes in the topology of the evolving contour when direct 

implementations are performed. An approach insensitive to initialization and the 

ability to move into boundary concavities is proposed in [1]. The author present 

external forces originate from an edge map of the image to provide larger capture 

range. However, this parametric model cannot handles topology changes as well. 

Recently, novel geometric models of active contours were proposed [2] [4]. 

These models are based on the theory of curve evolution and geometric flows, which 

has received a large amount of attention in recent years. It allows automatic changes 

in the topology when implemented using the level-sets based numerical algorithm 
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[6][7]. Thereby, several objects can be detected simultaneously without previous 

knowledge of their number in the scene and without using special tracking 

procedures.  

However, because the flow may be slow to converge in practice, a constant term 

is added to keep the curve moving in the desired direction. Kaleem et al. [10] modify 

this term based on the gradient flow derived from a weighted area functional, with 

image dependent weighting factor. Since this flow requires the computation of only 

first order derivatives, it offers significant computational savings over the weighted 

length minimizing flow. 

Active contour models that rely on the edge-detector or image gradient can 

detect only objects with edges defined by gradient. In practice, the discrete gradients 

are bounded and then the stopping function is never zero on the edges, and the curve 

may pass through the boundary. Chan and Vese detailed a level set implementation of 

the Mumford-Shah functional [9], which is based on the use of the Heaviside function 

as an indicator function for the separate phases. The idea is to partition the given 

image into two homogeneous regions, without a stopping edge-detector. The authors 

also extend this binary image oriented method to segment images with more than two 

regions by multiphase level sets [12]. 

To segment objects in textured background, Paragios and Deriche proposed a 

region-based energy, where statistical models were used for textured object and 

background regions [16]. They extended the region model to the mixture of Gaussians 

for magnitude of Gabor filter responses. The texture segmentation is obtained by 

unifying region and boundary-based information. 

Tracking is another segmentation method by using the segmentation results in 
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the image frames history. If the contour is initialized with its previous position, 

contour segmentation approaches become object trackers, and tracking is defined 

based on motion information to evolve an initial object contour[4][14][17][18][19]. 

In [4], the evolution equation for contour is obtained by image differences, this 

tracking algorithm can be applied only when an important degree of similarity among 

the images and displacements involved are small. G. Tsechpenakis et al. proposed a 

method handling the appearance of occlusions between different objects [19]. The use 

of the object motion history and statistical measurements provide information for the 

extraction of uncertainty regions. In [14], tracking is expressed as detection and 

tracking of moving objects in image sequences. In the proposed algorithm, a detection 

step forces a closed curve to converge towards moving areas of an image, while a 

tracking step evolves the curve to coincide with the exact boundary of the moving 

object. The tracking step is only an intensity boundary detection algorithm using 

active contours and implemented using level sets. Since the tracking step relies on the 

previous frame, the background is assumed to be stationary. The problem addressed in 

[17] is that object tracking can be treated as two-class discriminate analysis of pixels, 

where the classes correspond to the object and the background regions. Since his 

approach compute for each pixel by brute-force search in a circular neighborhood, 

there are two problems exist even when strong assumption on intensity boundaries. 

First, the contour cannot capture the parts of the object near where existing a 

background region with similar intensities to them. The second, the background 

around the contour will be classified as the object if there exist some pixels with 

similar intensities within the object. The classification criterion is extended in [18]. A 

window of specified fixed size is defined for each pixel around the contour. The 

contour will move in the direction that can equalize the numbers of pixels within the 
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window that belong to two classes (object and background). Also, shape priors are 

used to recover the missing object regions during occlusion. Nevertheless, since the 

shape prior takes effect only when the occlusions are detected, this approach still 

suffers the problems as encountered by [17]. 

Our approach is the incorporation of knowledge about the shape with [2], to 

control the difficult conditions of the image. However, different from[18], we improve 

the tracking results of [17] instead of handling occlusions of the objects. 

2.2. Shape Priors 
In the substantial literature of deformable models, there are three main 

mechanisms can be found to constraint the shape of the curve during the evolution of 

the deformable model:  

1. Free-form approaches: These methods do not encode a default shape, but the 
energy functional imposes smoothness and compactness of the boundary of the 
surface. They can be seen as general, weak and local shape constraints.  

2. Analytical parametric templates: The analytical shape constraints are defined by 
the distribution of the admissible parameters. These methods are commonly used 
when some prior information about the geometrical shape is available, which can 
be encoded using a small number of parameters.  

3. Prototype-based constraints: Shapes are represented by the mean shape of a 
collection of individuals and their statistical variations. These methods require 
either training or global shape modeling. 

T. F. Cootes et al. propose a method that uses point distribution model (PDM) 

[13] as the prototype-based constraints. It describes the average and characteristic 

shape variations of a set of training samples, which are given in the form of a set of 

points on the learning boundaries. In [21], the authors investigate the use of discrete 

cosine transform (DCT) coefficients in describing object shape. The method starts 
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with local shape parameterization, then, the shape is converted into an implicit 

representation using global shape parameters. As can be seen, incorporating prior 

shape information in a deformable model, requires either training or global shape 

modeling. Training involves manual interaction to accumulate information on the 

shape variability of the 

same object class. Global modeling can be characterized using only a few 

parameters, and tend to be much more stable than local properties. The choice of a 

certain shape representation determines to a great extent the flexibility, processing 

speed, and amount of user interaction. 

Leventon et al. [23] have incorporated statistical shape information into the 

evolution of geodesic active contours. They compute a prior on shape variation given 

a set of training instances. Each curve in the training dataset is embedded as the zero 

level-set of three-dimensional surface, which is a signed distance function. Daniel 

Cremers et al. [22] propose a closed-form, spline based solution for incorporating 

invariance with respect to similarity transformations in the variational framework. 

Dainiel Cremers and Stefano Soatto [20] integrate prior shape knowledge into level 

set based segmentation methods and proposed dissimilarity measures for shapes 

encoded by the signed distance function. 

The proposed shape prior is a global shape model using the initial contour as the 

shape prior but not the training set from the image history, therefore the number of 

parameters involved can be reduced. It is motivated by modeling the flow field of the 

shape forces as geodesic active contours [23], incorporating invariant transformation 

by the pseudo distance measure [22] and alternatively computing the total energy and 

the shape energy during the evolution of the curve.  
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3. Overview of the Proposed 

Approach 
Given an image sequence with a specified object and its boundary in the first 

frame, the thesis is to identify the boundary in all the image sequence. We use level 

set model to represent the curve that used to capture the object boundary. Two 

favorable features of level set method are its automatically handling of topology 

changes and easy implementation. The formula to propagate the curve is an 

Euler-Lagrange equation derived from an energy functional. One of two terms in the 

energy functional is related with the image information and the other is for shape 

preserving. To solve the Euler-Lagrange equation means to minimize the energy 

functional and to move the curve towards the object boundary. The idea is to classify 

each pixel in the image as the member of the object or that of the background. If the 

classification is uncertain, the shape preserving term will attempt to preserve the 

shape of the curve and will lead the decision. 

The tracking system is presented in the following flow chart: 

 

The detailed algorithm of the presented approach is showed in the following 

Specify 
object in 

the 1st 
frame 

Image 
sequence Tracking

Image 
sequence 

with 
object 

contours 
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flow chart: 
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Start 

Read in the 1st image and set it 
as the current frame  

Identify the object to be tracked and its contour

 

Construct the distance function of the contour in 
the previous frame and set it as the initial contour 

Generate the shape prior from the initial contour 

Align the shape prior to the contour 

Propagate the contour to capture the object in the current 
frame using the information in the previous frame and the 
shape prior 

Is the stop condition 
satisfied?

N 

Is there any other 
image frame?

Set the current image as the previous frame 
and set the next image as the current frame

Read in the next image

Y 

N

End
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Our approach combines three models: 

1. Abdol-Reza’s model. 

2. Geodesic active contour model. 

3. Pseudo distance measure.  
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4. The Tracking Method 
This chapter takes an overview of Abdol-Reza’s model. Then we point out its 

drawbacks in section 4.2. Finally, the implementation issues of level set method are 

also presented. 

4.1. Abdol-Reza Mansouri’s Model 
Object tracking can be treated as two-class discriminate analysis of pixels, where 

the classes correspond to the object and the background regions. This is also the idea 

of Abdol-Reza’s model. For each pixel x in the current frame In+1(i,j), search for the 

most similar pixel y in a disk with In(i,j) as its center in the previous frame. If y is a 

member of the object in the previous frame, then x is classified as the object, 

otherwise, x is belonging to the background.  

 

Fig 4.1 Idea of Abdol-Reza’s model 

The shadow part is the search window. 
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Why this classification method works properly in Abdol-Reza’s model is because 

it uses level set representation for the contour model. Level set representation can 

divide pixels into two classes by discriminate them as either inside or outside the 

contour and processes only the pixels near the contour, neglecting those far away. 

Without this mechanism, the classification result might be a collection of 

discontinuous pixels, instead of an entire object. 

We now go through the approach of Abdol-Reza’s model. Let Ik be a sequence of 

images with domain Ω (an open subset of R2). Let Ω⊂0R  be a region in the n-th 

image (In) and  be the corresponding region in image In+1 that we want to 

estimate. And let 

Ω⊂1R

)(,]1,0[: 2 ss γγ
r

a
r

ℜ→  be a closed curve, oriented 
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The first two terms on the right hand side of the functional are the external forces 

introduced by the image information. The first term means, given In, R0 and x belongs 

to R1, the probability that x has the observing intensity In+1 (x) . Since we have the 

prior of the object R0 in the previous frame, the probability is high if In+1 (x) is similar 

to the intensity of some y in R0; and it is low if x is dissimilar to any pixel in R0. In 

other hand, the second term means, given In, R0 and x dose not belong to R1, the 

probability that x has the observing intensity In+1 (x). The probability is high if In+1 (x) 

is dissimilar to any pixel in R0, otherwise, the probability is low. Using these two 

terms, we can determine the pixel around the contour should be included or excluded 
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by the contour. According to subtraction of these two terms, the evolving speed could 

be either positive or negative which indicates shrinking or expanding of the contour at 

that point. The other two terms are the internal force associated with the contour and 

will cause the contour to be smoother. Finally, the definition of the probability 

functions will be detailed later. 

In order to minimize (1) we search for the gradient descent direction of (4.1), 

which can be computed from its Euler-Lagrange equation: 
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 (4.2) 

 

Fig 4.2 Discriminate analysis 

The red parts represent the contour. Pin is color difference between x and yin and Pout is color difference 

between x and yout. The subtraction between Pin and Pout can determine x as which class. 

Then, equation (4.2) can be solved numerically by discretizing the interval on 

which γr is defined, leading to an explicit representation of γr . A better alternative is 

to represent the curve γr  implicitly by the zero-level set of a function . ℜ→ℜ2:u

Two favorable properties of the implicit level set representation over explicit 
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contour representations are its independence of a particular parameterization, and the 

fact that the topology of the boundary is not constrained, such that merging and 

splitting of the contour during evolution is facilitated. 

Since γr  obeys an evolution equation and the zero-level set of u is assumed to 

coincide with γr , u must evolve according to a certain evolution equation related to 

that of γr . We can thus embed u in a one-parameter family and construct the 

evolution equation that the zero-level set of u satisfy the evolution equation of γr .  

4.2. Level Set Representation 
If the evolution of γr  is described by the equation 

),()),((),( tsntsF
dt

tsd rr
r

γγ
=  

where F is a function defined on , the corresponding evolution of u is given 

by: 
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Since ),( tsγ
r  is a vector in , it can be represented by a point x in the domain 

of u, and 

2ℜ

)),(( tsF γ
r  thus can be replaced by F(x) , leading the evolution of γr  to the 

above equation. The condition of this correspondence is that all the points of the curve 

),( tsγ
r  must be on the same level set which is the zero-level set (the set with u = 0) 

in most cases.  
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Fig 4.3 Level set representation 

This figure is cut from [17]. The figure shows the equivalence between the evolution of curves 
21,γγ
rr , 

and the evolution of function u. 

Then, the level set evolution equation corresponding to the curve evolution (4.2) 

for tracking is given by: 
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4.3. Problems of the Abdol-Reza 

Mansouri’s Model 
There are two problems in the model of Abdol-Reza. First, the contour cannot 

capture the parts of the object near which existing a background region with similar 
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intensities to them. The second, the background around the contour will be classified 

as the object if there exist some pixels with similar intensities to them within the 

object. These two problems exist even in cases that objects in the images have strong 

intensity boundaries. 

Fig 4.4 is derived from Abdol-Reza’s work [17] and shows the limits of his 

approach. The image sequence is constructed by cutting out a disc-like shape from the 

center of the image and pasting it so as to create apparent motion from the lower left 

corner to the upper right corner of the image. The tracking is correct until in frame 4 

of the sequence, the right side of the tracked region is strongly deformed. This is due 

to the fact that the region and background textures are so similar there that the 

probability estimates Pin and Pout are almost identical for most of those pixels. 
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Fig 4.4 The camouflage synthetic sequence 

This figure is derived from [17]. The tracked object is cut from the texture in the center of the image 

and pasted to create animation from the lower left corner to the upper right corner of the image. 

In Fig 4.5, the lower right corner of the object in frame (a) is pasted by a square 

shape cut from the background around the object. Then frame (a) is duplicated to 

create frame (b) and is applied by some noise to its background such that the 

background in frame (b) is more similar to the square shape than the background in 

frame (a). The contour is initialized in frame (a) to properly capture the object. After 

evolution, the lower right corner of the contour sticks out and attempts to include the 

background, as shown in frame (b). This is because that the background is so similar 

to the square shape of the object that the probability estimates are almost identical for 
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those pixels. 

 

Fig 4.5 Problem of Abdol-Reza’s model  

The lower right part of the contour sticks out and tries to include the background (b), due to the 

similarity between the background and the square shape in the object. 

4.4. Implementation Issues of the 

Level Set Method 
The conversion from parametric representation of a curve to level set 

representation is exactly correct when the zero level set that representing the curve 

moves with a specified speed after updates of u. However, this is usually not true 

since the update of u is just an estimation derived from the level set equation, making 

some errors to the update. For example, consider an 1D curve represented by 2D level 

sets u, as shown in Fig 4.6(a). A perfect expression of the curve to move right with a 

speed F is to imaginarily move the level sets u to right with a distance , that is, to 

update each grid of u with the value below it after the imaginary movement, then each 

level set must move right with a speed F, including the level set which indicates the 

curve. However, this naïve kind of update is almost impossible in the real world. The 

update is actually an approximation derived by the level set equation, which is an 

increasing or decreasing amount

tF∆

utF ∇∆ , as shown in Fig 4.6(b). We can see that this 

  20



estimation of update of u is not correct since the level set on the new u cannot reflect 

the move with specified speed. And, if the function u(x) is a straight but not horizontal 

line on the plot, the estimation is correct and will match the imaginary movement. 

Also, this assumption is not useful in practice, except in very simple cases. 

 

Fig 4.6 Approximation of  tF∆

To explain it more clearly, let us take an extreme case as the example, the 

numerical problem when derivatives are not defined on the points that are 

discontinuous. Let u be a distance function with distance from the original, that is , 

1=∇u everywhere except the original, as shown in Fig 4.7(a). Recall the level set 

equation: 
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Then, at iteration 1, u becomes Fig 4.7(b). Since for all x, F(x)  > 0, each grid 

of u moves downward. Also, because M > N, the grids )( axu ≤  moves more 

amount than the grids , and there is a discontinuity  

occurs at u(a). 

)( axu > )()( −+ −= auauδ
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Fig 4.7 Numerical Problem 

This problem is simulated by a Matlab program. Note the difference between (a) and (b). In (b), u has 

moved downward and the point u(a) is a discontinuity. Then, (c) and (d) are iteration 2 and iteration 3 

respectively. 

Assume we use forward differencing 

x
uuu ii

∆
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where the lower script denotes the grid index. Then,  
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That is, from the level set equation,  will move downwards more than 

 at iteration 2, as shown in Fig 4.7(c). If we compute iteratively in this 

)(au

)( xau ∆−
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manner,  will touch the x-axis to become the member of the zero level set that 

represents the curve and produce a “bubble effect”, as shown in Fig 4.8. 

)(au

 

Fig 4.8 Bubble effect 

This is the experimental result of level set method using forward differential scheme. The bubble effect 

refers to the occurrence of unexpected bubbles during the propagation of the curve.  

To overcome this phenomenon, the upwind differencing scheme is proposed by 

[7].  
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The value on each grid of the speed function is greater than zero, those u’s 

located at troughs will not be updated. Therefore, the grid  will not be updated 

in iteration 3 and remains its value until it is equal to 

)(au

)( xau ∆−  such that reduces the 

trend to produce large discontinuities. 

Notice that in iteration 2 )( xau ∆+  is not a trough and, not like , will be 

updated in iteration 3 by the upwind differencing scheme. This leads to the fact that 

might be updated with a lower value than  and  will become  

non-trough at iteration 3 such that is need to be updated in iteration 4. So, it seems 

that upwind differencing scheme just lower down  to touch the x-axis but  

will eventually becomes a member of the zero level set. However, we will show that 

this worry is unnecessary under the satisfaction of Courant-Friedriches-Lewy (CFL) 

condition [7]. That is,  is still a trough (

)(au

)( xau ∆+ )(au )(au

)(au )(au

)(au )()( xauau ∆+< ) at iteration 3 such 

that it will not be updated at the next iteration if CFL condition is satisfied. Let the 

discontinuity at iteration 2 be )()( auxau −∆+=ρ . Note that δρ > >0. The CFL 

condition is, for each grid point 

xtF ∆<∆  

And without lost of generality, we can let 1=∆x , therefore 1<∆tF . 

Now we will prove )()( xauau ∆+<  at iteration 3.  
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It is easy to derive a general form  by mathematical induction.  n
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5. Shape Prior 
In this chapter, we present how we combine the shape prior with Abdol-Reza’s 

model. The shape prior refers to knowledge of shape models which we have known 

that can be used to guide the propagation of the curve. The sections contain geodesic 

active contour model that is used to represent the shape prior and a distance measure 

for measuring the dissimilarity between the propagating curve and the shape prior. 

5.1. Geodesic Active Contour Model 
Let be a binary image with ones on the region R0, after rotated an angle θ 

and translated a distance δ, and zeros on the remaining domain. R0 is indeed the 

region of the object captured by the curve in the previous frame image In, and the 

binary image  containing R0 after the transformation is used to construct the 

shape prior for the current image In+1. During the curve 

1
,,0

+n
RJ

δθ

1
,,0

+n
RJ

δθ

γ  is propagating to capture 

the object in In+1, the binary image  for the shape prior is reconstructed each 

time before computing equation (5.1) in each iteration. The region R0 in the binary 

image only subjects to a rotation θ and a translation δ to align with the propagating 

curve

1
,,0

+n
RJ

δθ

γ , and never deforms its shape all the time (in processing In+1). Although the 

transformation is limited to rotation and translation in this thesis, it can be extended to 

combinations of several affine transforms such as scaling and shearing. Now we will 

define the energy functional 

),,(),,( 0
1 δθγ uERIIEE s

nn
r += +r  (5.1) 
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where the image energy Er is equation (4.1) used to perform discriminate 

analysis on each pixel and the shape energy Es is 

∫ ⋅⋅= +1

0

1
, ))(()(

,0
ds

ds
dJgEwE n

Rs
γγδθγ

r
r  (5.2) 

where w(Er) is a weighting function ,which means the shape prior is image 

energy dependent. For pixels that can clearly classified by Er, the weight is low. If the 

pixel lies in an uncertainty state, the weight is high and the shape prior will leads the 

classification. This novelty, different from most existing methods that the weights 

used to combine the terms of the energy functional are usually constant thresholds, 

offers more flexibility in the propagation of the contour. In particular, the shape prior 

will not constrain the deformability of the shape of the object in many cases. 

 

Fig 5.1 Image energy and Shape energy 

The energy for the curve c1, c2 and c3 is almost identical, but the energy for c2 is lowered than the 

others after plus the shape energy. 

Fig 5.1illustrates our basic idea. In Fig 5.1(b), the object is partially involved in 
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the background that is textured with similar appearance to it. Either the curve expands 

(c3) or shrinks (c1), the energy changes are difficult to distinguish. However, after 

plus the shape energy, we can eliminate this uncertainty and make a decision.  

Despite the weighting function, the term Es comes from the geodesic active 

contour model. g(I) stands for p
Î1

1

∇+
, where Î  is a smoothed version of I, 

computed using Gaussian filtering, and p = 1 or 2. means that to convert the binary 

image to an image with continuous numbers from zero to one. Also, if we view the 

image in 3-dimensional space, the valley will locate at the boundary of the object in 

the binary image . Fig 5.2 is the observing intensity of a binary image crossed by 

a scan line. In Fig 5.2(a) and (b), I and its smoothed version 

1
,,0

+n
RJ δθ

Î are presented. Fig 

5.2(c) shows  is valley on the boundary of I, and its gradient vectors direct to the 

middle of the boundary.  

)(⋅g

 

Fig 5.2 Gradient vector 

(a) The intensity signal on a scan line over the binary image. (b) The smoothed version of (a). (c) The 

derived function g. The evolving contour is attracted to the middle of the boundary by the forces 

created by . ug ∇⋅∇
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The integration (5.2) means the sum of ))(( 1
,,0
γδθ
r+n

RJg  over the locations 

occupied by the curveγ multiplied by its piece of length. Since the derived function 

 takes small values on positions corresponding to the boundary of the object in 

the binary image, we can expect that the minimum is obtained when the curve is 

aligned to the boundary of the object in the binary image. To minimize the integration, 

we search for its gradient descent direction, which is computed from the 

Euler-Lagrange equation 

)(⋅g
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t n

R
n
R

rrrr
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∂ ++ ))(())(()()( 1
,

1
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γκγγ
δθγδθγ  (5.3) 

The term )(⋅∇g attracts the movement of the curve towards the boundary of shape 

prior. An example is given in Fig 5.3. Let 1)( =γEw  to clarify the effect of the vector 

field.  

 

Fig 5.3 Shape and its forces field 

(a) A binary image J of size 20x20 containing a circle object. (b) The corresponding gradient 

vectors  represent the forces that attract the curve to the pointed direction. ug ∇⋅∇

Obviously, this is an explicit representation of curveγr , and we can embed it to 
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the level set representation as described in the previous chapter.  
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Combining (5.4) with (4.4) we can obtain 
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The weighting function is related to the reciprocal of the image energy, where α 

( > 0) and β ( > 1) are two user specified constants. When the uncertainty occurs, the 

weight will take a large value, and, on the other hand, the weight is low when the 

classification can be confirmed. The purpose of the shape prior is to lead the 

propagation when the classification is uncertain when the term is almost equal 

either the contour shrinks or expands.  

γE

Before computing equation (5.5), however, we need to reduce the involved 

parameters, that is, to compute θ* and δ* which are the optimizing transform of the 

shape prior to align with the contour. The final level set equation is (5.7). 
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This is done by using a dissimilarity measurement between distance functions of 

the curve and the shape prior. We will discuss this subject in the next section.  

5.2. An Euclidean Invariant Shape 

Prior 
Computing θ* and δ* separately eliminates translation and rotation from the 

shape energy Es and no additional parameters entering the minimization. A commonly 

alternative approach is to explicitly model a translation and an angle and minimize 

with respect to these quantities (by gradient descent or other). In Daniel Cremers et 

al.’s opinion [20], the explicitly model has several drawbacks: 

1. The introduction of explicit pose parameters makes numerical minimization 
more complicated— corresponding parameters to balance the gradient descent 
must be chosen. In practice, this is not only tedious, but it may cause numerical 
instabilities if the corresponding step sizes are chosen too large. 

2. The joint minimization of pose and shape parameters mixes the degrees of 
freedom corresponding to translation and rotation with those corresponding to 
shape deformation. 

3. Potential local minima may be introduced by the additional pose parameters. In a 
given application, this may prevent the convergence of the contour towards the 
desired segmentation. 

Therefore, to reduce the parameters in minimizing Es, we compute θ* and δ* and 

reconstruct the binary image before computing (5.7). The idea of evolution process 

thus consists of two phases:  

1. Aligning the shape prior with the curve (compute θ* and δ*). 

2. Evolving the curve, including propagating the certain parts toward the object and 

attracting the uncertain parts to the shape prior (computing equation (5.7)).  
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Phase 1: Minimize Es
(Equation 5.10) 

 

Each iteration of the algorithm consists of the following steps: 

Step 0. Manually draw the initial contour of the object being tracked in the first frame 

such that the contour points contain the desired object boundary. You may 

exclude the shadow. Set the current frame number to 2. 

Step 1. Use the contour obtained in the previous frame as the initial contour and the 

prior shape of the current frame.  

Step 2. Compute the rotation and translation parameters between the current contour 

and the prior shape (see equation 5.10)  

Step 3. Do for all contour points one at a time:  

use equation 5.7 to compute Er, Es, and W(Er). Then update the level set value 

at the contour point. 

Phase 2: Minimize Er+Es
(Equation 5.7) 

Stop? 

Stop? 

N

N Y

Y
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Step 4. After all the contour points are updated, check if the contour does not 

converge or the number of iteration does not exceeds a specified upper bound; 

if not, go to Step 2; otherwise, terminate with the contour as the final contour 

of the current frame.  

Step 5. Is the frame the final frame? If yes, stop; otherwise, increase the frame number 

by 1 and go to Step 1. 

The evolution process is performed iteratively to minimize the energy functional 

(6). The idea is illustrated in Fig 5.4 and Fig 5.5. 

 

Fig 5.4 Shape prior illustration 1 

Fig 5.4 presents that the contour (the red curve) will neglect the shape prior (the 

blue equal signs curve) to capture the object (the rectangle) when it can distinguish 

the object from the background (the circle). In Fig 5.4(a), a rectangular object staying 

at the bottom is textured with marble appearance, and at the top locates a part of the 

background that is also textured with marbles. A red curve is initialized to properly 

capture the object. Then, the object moves upwards with a small distance in Fig 5.4 

(b). The evolution process of the curve is shown in Fig 5.4(c) and Fig 5.4(d). Fig 5.4(c) 

is the early phase of the computation, that is, to align the shape prior with the curve. 

Since the curve is staying at its original location and suffered no deformation so far, 
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the shape can completely align with the curve. In Fig 5.4(d), the computation enters 

the 2nd phase and the curve starts to move according to the image information and the 

attraction of the shape prior. However, because the curve can distinguish the object 

from the background, which is white at this time, the curve just moves to capture the 

object directly, ignoring the shape prior.  

 

Fig 5.5.Shape prior illustration 2 

 The object continuously moves upwards and, at this time, overlaps with the part of the background 

that is simil  object. 

Fig 5 sents the idea hape prior to capture the object involved in the 

background in this figure. Fig 

initialization of Fig 5.5, with t

moves with a large step into th

are trying to capture the object

 

of the s
ar to the

.5 pre
5.5(a) is the capturing result of Fig 5.4 and also the 

he curve properly captured the object. Then the object 

e background in Fig 5.5(b). Now, the remaining figures 

. Fig 5.5(c) is to align the shape prior with the curve. As 
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in Fig 5.4(c), it is completely matched with the contour. However, in Fig 5.5(d), the 

attraction of the shape prior takes effect. The bottom part of the curve, again, moves 

freely to capture the bottom of the object since the curve knows where the object is, 

but the top part of the curve is locked by the shape prior because it dose not known 

the marbles above belongs to the object or belongs to the background. This is because 

the marble at the bottom can only belongs to the object since no similar background is 

around it, and the marble at the top has alternative choices. Continuously, the shape 

prior is aligned with the curve in Fig 5.5(e). However, the size of the curve has 

changed. To make the alignment possible, the best solution is to place the curve in the 

center of the shape prior, as shown in the figure. After this arrangement, the curve can 

continuously evolve in Fig 5.5(f). But opposed to Fig 5.5(d), the bottom part of the 

curve stays at the same location but the top part can take liberty to move upwards by 

the attraction of the shape prior. Note that the top part of the curve is moving towards 

the actual boundary of the object by the leading of the shape prior after its alignment, 

and the certain parts of the curve can stay at its positions. In Fig 5.5(g) and Fig 5.4(h), 

the evolving process repeats continuously in this way. The shape prior goes upwards 

with a little step in Fig 5.4(g), and then the top part of the curve is attracted upwards. 

After several iterations, the curve can capture the object with an allowable error.  

Now we formulate the computation of θ* and δ* now. A dissimilarity measure is 

calculated for two distance functions. Let ),(0 δθR denotes the region after rotated an 

angle θ and translated a distance δ. Let φ0 be the distance function of ),(0 δθR∂ , the 

boundary of ),(0 δθR , over the domain Ω. Let φ1 be the distance function of the 

propagating curve (the level set u = 0) overΩ. The dissimilarity measure between φ0 

and φ1 is 
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where )()( sHs εεδ ′= is delta function, which is chosen to have and infinite 

support: 
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Notice that the distance measure (5.8) is not an energy functional and (5.9) is 

derived by computing its gradient descent direction but not derived from computing 
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Euler-Lagrange equation. Then, equation (5.9) can be used to solve the optimal pose 

parameters θ* and δ* iteratively.  
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6. Experiments 
There are three experiments. Experiment 1 explores the characteristics of the tracking 
method. Experiment 2 presents the mechanism of the shape prior. Finally we use real 
image sequences in experiment 3. 

6.1. Synthetic Image Sequences 
This experiment is to explore characteristics of the tracking method.  

(a) Small Displacement 

There are three cases in this experiment. Case 1 is an object with homogeneous 

color moving from left to right and approaching a background texture that is similar to 

the object. In case 2, an object with a small part of it is pasted by the background 

texture. The object is moving from left to right in a homogeneous background. Finally 

in case 3 is a combination of case 1 and case 2. An object with a small part similar to 

the background is moving approaching a background texture that is similar to that 

object. The image sequence is of size 80x100 each. Since the move takes 6 pixels, we 

set the size of the searching window η = 7. Number of iterations = 40. 

Both two methods can capture the object correctly. In figure 3 and figure 4, the 

nearest distance between the background-like texture within the object and its 

boundary is 14 pixels. In figure 5 and figure 6, the least distance between the object 

and the object-like background is 8 pixels. The size of searching window is 7 pixels. 

Therefore, each pixel is under certainty and we can get good results.  
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Fig 6.1 Abdol-Reza’s model 

 

Fig 6.2 Abdol-Reza’s model + shape prior 
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Fig 6.3 Abdol-Reza’s model 

 

Fig 6.4 Abdol-Reza’s model + shape prior 
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Fig 6.5 Abdol-Reza’s model 

 

Fig 6.6 Abdol-Reza’s model + Shape prior 

(b) Large Displacement 

This experiment is similar to experiment 1, but with a large move distance. We 

take frame 1, 3, 6 from each case in experiment 1 and compare the two approaches. 

The move distance is 18 pixels. We set the size of searching window η = 20 and the 

number of iterations is 80.  
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Abdol-Reza’s model’s model failed. In frame 2 of figure 1, the distance between 

the pixels around the corrupted contour and the background-like part in frame 1 is at 

most 14 pixels. However, since the search range is 20 pixels, we cannot determine the 

pixels left to the object as the object or background. 

In figure, since the right part of the contour can correctly capture the object, it 

drags the shape to right and make the alignment. Then the left part of the contour is 

compensated by the shape prior and we can get the good result.  

Similarly, in figure 4 the right part of the contour is determined by shape prior 

which is pushed by the left of the contour.  

In figure 5 and figure 6, both methods failed. The right and left part of the 

contour cannot certainly to align the shape, thus the shape cannot be attracted to right 

position. This case can be handled by background registration and removal before 

contour propagation. The result is in figure 7. 

 

Fig 6.7 Abdol-Reza’s model. 

 

Fig 6.8 Abdol-Reza’s model + Shape prior. 
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Fig 6.9 Abdol-Reza’s model. 

 

Fig 6.10 Abdol-Reza’s model + Shape prior. 

 

Fig 6.11 Abdol-Reza’s model. 

 

Fig 6.12 Abdol-Reza’s model + Shape prior. 
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Fig 6.13 Abdol-Reza’s model + Shape prior + Background removal. 
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6.2. Digital Camera Photos 

This experiment presents an image sequence that is composed of digital photos 

that are captured by a digital camera. The object is manually outlined in frame (a) 

then transforms gradually in later frames. We will present how the shape prior works 

when the object is partially involved in the background. We have set η = 10 pixels, 

and the number of iteration is 80.  

Fig 6.14 presents Abdol-Reza’s model. In frame (b), when the object rotates a 

small angle, its bottom-right corner is near a similar background and the contour 

shrinks there. The shrinking continues in frame (c) and frame (d). Finally in frame (e), 

after the object moves away from the similar background, the contour cannot recover 

since some part of the object is regarded as background in frame (d) and that part will 

result in misclassification in the next frame.  

  

 

Fig 6.14. Abdol-Reza’s model.on digital camera photos  
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Fig 6.15 illustrates our approach. In frame (b) the bottom-right corner of the 

contour is prevented from shrinking by the shape prior. In frame (c), the left part of 

the object is certain and can used to align the shape correctly. After the shape 

alignment, the involved part of the object can be preserved by the shape. As the same 

reason, the object can be captured correctly in the later frames. We will present how 

the shape works in the next figure. 

 

 

Fig 6.15. Abdol-Reza’s model + shape prior on digital camera photos 

 

Fig 6.16 shows how the shape prior works. Figure (a) is previous frame and 

figure (b) from figure (i) are current frames (To clarify that Fig 6.16 is not an image 

sequence but the process during contour propagation, we use the term figure (.) or 

simply (.) instead of frame (.). ) The red curve is the propagating contour and the blue 

curve is the shape prior. The contour and the shape prior are initialized as the result of 

the previous frame (which is manually outlined in (a) in this illustration). Then the 

object rotates clockwise with an angle. In (b)(c), the left part of the contour is far from 

the similar background, which will be excluded by the searching window, is under 

certainty and goes along with the boundary of the object. And the right part of it 
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moves slowly down. The shape then rotates with a small angle clockwise to 

accompany with the contour. In (d), the top-right part of the contour has completely 

shrunk to the object. Also, the direction of the shape prior goes along with that of the 

object. Translation starts. The right part of the contour is uncertain and is attracted by 

the forces generated by the shape prior. After the evolution of the contour, alignment 

is updated in (e). The shape prior moves a little along with its direction and the 

contour gradually moves toward the shape prior. Continuously, from (f) to (i), the 

contour gradually matches with the shape prior, which is almost equal to the boundary 

of the object.  

 

Fig 6.16 Mechanism of shape prior 

In the following experiments, the mechanism of the shape prior will work similar 

to what illustrated in this experiment. 
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6.3. Real Image Sequences 

This challenging figure is processed by Abdol-Reza’s model. The car is 

neighboring the curb which is similar to its color. In frame 2, the contour becomes 

like ellipse due to the curvature smooth term. Because the gray road is something like 

the glasses of the car which might be gray somewhere, the uncertainty part is guided 

by the curvature term. In frame 3 depending on their similarity the background is 

regarded as the object. Even though the contour is attracted to the car again in frame 4, 

the error is larger and larger in following frames. 

 

Fig 6.17 Abdol-Reza’s model  
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In our method, the top of the car is uncertain and the shape guided the 

classification. The contour is determined by the head and the tail of the car. Then the 

shape prior is aligned by these certain parts. Hence we can use it to get a correct 

capture. The right wheel of the car is included gradually from frame 6 to end. This 

might because there are some parts of the car like the wheel texture. When the car 

moves, the wheel is initially included in the next frame but not correctly excluded 

later. 

 

 
Fig 6.18 Abdol-Reza’s model + shape prior 

 

Fig 6.19 presents the result of applying shape prior model on one of the crossing 

hands. The two hands move toward each other to cross together then leave away. In 

frame (6), the top-left part of the contour does not capture the arm. This is because the 
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top part of the arm becomes darker due to the light. However, the shape fail to 

compensate this uncertain part since the top part of the arm also becomes thicker and 

thicker. In Fig 6.19 (14), the left part to the fist is in fact under uncertainty, which is 

shown in Fig 6.20 (14), and will let the contour to stay its position. Therefore, the 

weight of the shape is high on this part and will dominate the tracking behavior. 

Comparing to Abdol-Reza’s model, the shape prevents the contour from sticking out 

and produces a better result. Similar phenomenon occurs in frame (26). The right part 

of the fist is not perfectly captured. Again, the shape solves the bad condition. Finally 

in frame (30), we can see the captured contour is almost identical to the appearance of 

the arm. 

 

 

Fig 6.19 Two hands, with shape prior model 
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Fig 6.20 Two hands, Abdol-Reza’s model  

The number of iteration is set to 100 steps in all experiments. In figure 1, the 

interframe displacement is about 8 pixels. We have therefore set η = 12. Figure 3 is a 

bus moving backwards with rotation. The yellow part is the key gaudiness for shape 

alignment. Finally in figure 4, an image sequence on human body is illustrated. Even 

with large deformation of the object, the tracking can correctly capture the object. In 

this case, the shape prior takes no effect because the object is obvious apart from the 

background. Notice the auto changes of the topology handled by level set method.  

 
Fig 6.21 presents the image sequence in which the object appearance is complex. As 
long as the colors are different from the background, we can easily handle this kind of 
case. 
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Fig 6.21 A bus with complex appearance 

 
In Fig 6.22, the bus is moving backwards. In frame (50) to (55), the top right corner of 
the bus is concave. This is because the transparent glass of the bus looks very close to 
the zebra crossing and the weight of the shape is not strong enough. If we increase the 
weight of the shape prior, some part of the contour might be over attracted by the 
shape prior due to their uncertainty.   
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Fig 6.22 A bus 
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Fig 6.23 Human tracking 
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6.4. Parameter Settings 

Weight of Shape Prior 

This experiment presents the influence of the shape prior under different 

weighting function. Red lines are propagating contours and blue lines are shape priors. 

The number within the parenthesis below each figure is the number of iterations. We 

have set λ = 0 and β = 1for all figures in this section. Notice that the shape is 

transformed to align with the contour during the propagation.  

Although the weight ))(( sw γ  of the shape prior is automatically calculated 

from pixel to pixel, it is indeed embedded a threshold α. α can be considered as the 

average weighting of the shape prior and ))(( sw γ  can be considered as α multiplied 

by a scalar which is corresponding to the discriminate analysis of Abdol-Reza’s model. 

When α is larger and larger, the average weighting of the shape prior becomes higher 

and higher and more and more parts of the contour will be attracted by the shape prior. 

To insure that deterministic parts of the contour to dominate the tracking, a reasonable, 

or not too large, α is needed. In this case, α = 0 ~ 1000 is a good choice. 
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 The previous frame 

(Red contour is the final contour  

of the result) 

 

The current frame 

(the red contour is its initial contour  

obtained from the previous frame). 

 

Fig 6.24 Initial contour 
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Fig 6.25 α = 500 

The intermediate results of the tracking process with weights α = 500, and β =1.  

The last diagram indicates the final contour in red.  
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Fig 6.26 α = 1000 
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Fig 6.27 α = 1500 
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Fig 6.28 α = 2000 

  62



  

  

  

Fig 6.29 α = 2500 
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Fig 6.30 α = 3000 
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Fig 6.31 α = 3500 
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Fig 6.32 α = 4000 
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The Curvature Term 

This experiment presents the effect of the curvature term. We adjust λ from 0.01 

to 0.13 and have set α = 0 and β = 1 for all figures. The initialization of the contour is 

the same as previous sub experiment. The purpose of the curvature term is to smooth 

the contour. We can see that when λ =0.13, the hole of the contour between two legs is 

dominated by the curvature term and cannot capture correctly anymore. Also, several 

other parts are over smoothed such that the contour cannot deep to the detailed 

concave part of the object. 
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Fig 6.33 λ =0.01 
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Fig 6.34 λ =0.03 
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Fig 6.35 λ =0.05 
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Fig 6.36 λ =0.07 
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Fig 6.37 λ =0.09 
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Fig 6.38 λ =0.11 
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Fig 6.39 λ =0.13 
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7. Conclusions and Future Work 

7.1. Conclusions 
We present a tracking method for object contour tracking in image sequence. The 

presented approach is combined Abdol-Reza’s model with a shape prior. The shape 

prior is based on geodesic active contour model and will align with the contour during 

propagation process. When the object being tracked canno be partially discriminated, 

the shape prior. 

7.2. Future Work 
1. The shape prior can use a statistical training data set and be implemented as 

multiple shape priors. 

2. The stop condition can be checked automatically by energy criterion instead of a 

specified number of iterations.  

3. We believe a region based discriminate analysis is expected to perform better 

than pixel-wise based algorithms. 
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