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A Target-Aware Symbolic Execution Framework

for Fuzz Testing
Student: Hsiang Chung Advisor : Dr. Shih-Kun Huang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Vulnerabilities caused by implementation bugs, such as buffer
overflows, integer overflows, uncontrolled format strings, and command
Injections, are often exploited by hackers to intrude users’ personal
computer or servers. In.order to.reduce software bugs, many testing
techniques are proposed. The most frequently used technique is fuzz
testing. However, traditional fuzzers can only find bugs when program
exceptions, especially crashes, raised. That means some security threats
may pass these tests due to the insufficient code coverage.

In this thesis, we introduce a software testing framework based on
symbolic execution using S2E, a whole system symbolic execution engine.
When a program executes some pre-defined sensitive functions, such as
malloc, strcpy or printf, our framework will initiate a triage process. It will
determine whether any related security vulnerabilities would possibly
occur in these functions automatically. If the answer is yes, a proof-of-
concept exploit and its corresponding math constraints will be generated.

We successfully and efficiently reproduce some CVE vulnerabilities,
which means developers could locate bugs faster, and improve the

efficiency of software quality maintenance.
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CHAPTER 1 INTRODUCTION

Due to the rapid development of information technology and Internet, people
can easily install software and download files. However, defective programs may
contain security vulnerabilities such as buffer overflows, integer overflows,
uncontrolled format strings, and command injections. An attacker can exploit
these vulnerabilities by feeding properly designed input files and take control of
the victim's systems. Security patches are issued for applications on Windows,
Linux, or the operation system itself every day to solve these problems [2]. Thus,
information security has become an important issue for normal users and
enterprises.

In order to reduce software bugs, many testing techniques are proposed. The
one most frequently used is fuzz testing, or called fuzzing [26], which has been
proven successful in finding bugs and security vulnerabilities in large software
applications. The idea behind fuzzing is very simple. First, we generate inputs fed
to the program to be tested. If exceptions are raised, which often result in a crash,
a potential security issue is detected. A great number of severe software
vulnerabilities have been revealed by fuzzing techniques and related researches
[40]. For example, the CVE (Common Vulnerabilities and Exposures) website?

lists massive vulnerabilities, and some are marked or found to be fuzzed easily.

! http://cve.mitre.org/
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TaintScope [42] used its checksum-aware technique to fix checksum fields on the
program input header and successfully identified many known and previously
unknown program vulnerabilities. Popular fuzzing tools include zzuf [17], a dumb
fuzzer which generates inputs randomly, and Peach [12], a format-aware fuzzing
platform that can model input data structures. M. Woo, et al [45] integrates many
existing scheduling algorithms and has good efficiency.

Since most applications are with unlimited input space, traditional fuzz testing
tools have an inherent limitation of low code coverage. This means that serious
security bugs may be missed because the code in which they exist is not even
executed. Many techniques are proposed to improve code coverage, one of which
is symbolic execution [19, 34], a constraint solving based system. It substitutes
symbolic values for program input bytes, gathering path and input constraints
while encountering a branch. By solving these gathered symbolic constraints, we
can generate new inputs for almost all the running program paths and thus a good
code coverage is reached. In recent years, researchers have found many new
security vulnerabilities by symbolic-execution-based fuzzers. SAGE [15] applied
their generational search algorithm to find many bugs in a variety of Windows
applications. EXE [28] has found many critical bugs from Linux ports, including
image viewers and media players. BitBlaze [27, 38] and S2E [8, 9] are two large-
scale symbolic testing platforms. BitBlaze uses TEMU [38], while S2E chooses
KLEE [5] as the symbolic execution engine. We build our framework based on

S2E.



input (int x)
while( x > )

{ ... 1}

Figure 1: Symbolic Execution Path Explosion Example

Unfortunately, path explosion is a big problem of symbolic execution.
Although symbolic execution could cover most of the program paths, the number
of feasible paths in a program grows exponentially with an increase of program
size or with just a loop iteration [1]. Figure 1 shows an example of loop path
explosion. If the input variable x is symbolic, symbolic executor will try to list all
the possibility that satisfied “x-> 0” and run the corresponding paths. Most parts
of this action are redundant.

To speed up symbolic execution, some solutions are proposed. One common
way is concolic testing [35], which combines concrete and symbolic execution.
Concolic execution gives the program an initial input, so it can follow the input
deeper in the code. CUTE [36] is an instance of concolic execution. Alternatively,
it is another possible way to improve path selection algorithms. Ma, K.-K., et al.
[23] proposed shortest-distance and call-chain-backward as two heuristics for
path-finding, while STrigger [22] used a weighted search algorithm based on the
control flow graph (CFG). Another approach is to control symbolic path space by
selecting input bytes [47]. Spat [46] applies their partial symbolic execution that
tracks only a prefix of the input data, which is related to this approach. Other
researchers choose to shorten execution time by paralleling running [39] or by
cutting paths to be explored into pieces [7].

We have discussed lots of software testing techniques. Please note that most of

3



them are performing passive testing, which means that they just generate a new
input, testing if it crashes, and then generate a new one again. There is no threating
target to be searched or a guideline to be followed. TaintScope [42, 43] uses taint-
like analysis [31] to mark every input bytes and see if some security-sensitive
points could affect these input bytes. Tainted input bytes are called hot bytes,
which means they can directly influence the context of security-sensitive
operations. Since TaintScope knows only which bytes are tainted, it has to run
symbolic execution' additionally to generate crash inputs. Recently, many
symbolic execution tools are proposed to deal with some vulnerabilities. Splat [46]
defines a buffer overflow situation and Catchconv [29] defines an integer
conversion error situation, while IntScope [44] defines an integer overflow
situation and Saxena, P., et al. [33] defines a loop-extended situation. However,
they merely focus on one specific condition, and it is hard to generalize the
problems. BuzzFuzz [14] uses a directed dynamic taint-based white-box fuzzing
technique which requires to instrument an.application’s source code. Caselden,
D., etal. [7], McCamant, S,, et al. [25] and STrigger [22] introduced vulnerability-
condition-based, or trigger-condition-based test case generation methods
respectively, but no significant results have been revealed.

In this thesis, we proposed a target-aware symbolic execution framework for
fuzz testing. Our work can find bugs caused by specified library functions and
prove it in a short time. We generate a proof-of-concept exploit instead of only a
crash input. Unlike traditional fuzzers to generate crash input, we think crashes
are not necessary if we have enough information to produce exploits. We further

provide tips to reduce software testing and symbolic execution time. The primary



contributions to our work are described as following.

We introduce a technique to hook target functions in standard libraries, such
as malloc, strcpy and printf. We define and generalize these sensitive points
and test whether there are possible vulnerabilities or not, and then generate
a prove-of-concept exploit by solving constraints further.

We introduce a method to identify hot bytes of files and obtain their
relations to headers.

We introduce a whole-system fuzzing framework that can analyze not only
applications but also libraries, drivers, or operating system (OS) itself without
source codes.

We introduce techniques to speed up symbolic execution by dropping
unnecessary path constraints or using adaptive symbolic inputs.

We evaluate the effectiveness of our method by applying our methods on
existing CVE vulnerable software. We also provide case studies to show the

profit of our work.



CHAPTER 2 OVERVIEW

In this chapter, we give a technical overview of symbolic execution, its
optimization and the symbolic engine we choose. We also introduce the method

to hook functions and provide some vulnerable situations as our fuzzing targets.

A. Symbolic Execution

Symbolic execution is a dynamic software analysis technique that analyzes a
program path-by-path, which is an advantage over analyzing a program input-by-
input such as traditional fuzz testing methods. If two inputs take the same path
through the program, the testing by means of the path will save more time than
that by means of the inputs. When exploring paths, symbolic executor also gathers
corresponding constraints. We therefore know how to get to this path, and are able
to modify them to fit our requirement, a crash situation for example. In our
approach, we use symbolic execution to search for hooked functions and record
constraints between program inputs and function arguments.

Symbolic execution uses symbolic values instead of concrete data on program
inputs. An interpreter executes, assuming values rather than obtaining them from
actual inputs, unlike normal program executions. In this way;, it learns relations in
terms of those symbols for expressions and variables when arriving the target
location, and the path constraints for reaching this position is also learned [34].
We can solve these constraints of each conditional branch by a decision procedure,
or a constraint solver, such as STP [13] or Z3 [11]. If a solution exists, we could

find a new program path.



if ((x > )
return * x
else

return

Figure 2: Symbolic Execution Testing Program

Consider the program shows in Figure 2, which reads a value and returns a
value of six times x if the input x is greater than 3, and returns O else. When a
symbolic executor runs this program, it does not have a concrete value for the
input value, i.e., the result read from line 1. Alternatively, the executor assigns
this program a symbol s to the concrete value. Then statement “x = read()” assigns
s to program variable X. And in line 2, the statement “x = 2 * X assigns 2 * s t0
X. The next statement in line 3 has two conditions: the true branch and the false
branch, which depend on our input value s. The executor associates the constraint
“2 * s > 6” with the true branch, which means.that the program returns 3 * x if
and only if “2 * § > 6" 1s true. And it combines the constraints “NOT (2 * s > 6)”
with the false branch, which negates the true branch as a new path and make the
program return 0. Note that the returned value 3 * X” in'line 4 was substituted by
symbolic value“3 * 2 * s”, which is known as the return argument expression, and
that “2 * s > 6” and “NOT (2 * s > 6)” are two different path constraints. Assume
we want “return 3 * X in line 4 to be executed, we can use a constraint solver
mentioned above to determine a value to make “2 * s == 6” true. If we want the
program to return 24 further, we should also make expression “3 * 2 * s” to be 24,

to which a constraint “3 * 2 * s == 24” should be added. Combining two



constraints, we will get “2* s > 6" and “3 * 2 * s == 24”. Solve the both and we

will get a value of input x to force this program to return 24, the result we want.

B. Symbolic Execution Optimization

We use several techniques to optimize our symbolic execution. Some are

mentioned in the Introduction above and some will be proposed as follows.

I. Adaptive-Input Symbolic Execution

Because program inputs which we make symbolic are often very large. For
example, a “.doc” document is an input file for Microsoft Word, and those
documents may be millions of bytes in size. In such a case, running a complete
symbolic execution may take hours or days, which is unacceptable.

To improve this situation, an adaptive input based method, which symbolizes
only parts of input space, has been proposed and verified [47]. However, which
part of the input is more important is a question. We believe that the header part
of an input may gain more benefits in term of execution efficiency due to the
influence of important data structures. We also found that it is more efficient to
split an input into segments than to test a whole input in the concept of divide-

and-conquer. We evaluate these in Section 4-C.

II. Concolic Execution
The main idea of concolic execution is running the testing program
symbolically with a concrete input. It can follow this input going deeper into the
code. In some cases, we don’t want to be blocked by any integrity checking
functions and exit too early. A well-formed input, which usually produces a good

code coverage, could help us to stay in the deep code by extending this program
8



trace. The efficiency of this technique has been proved by those tools such as

KLEE [5].

I11. Null-Constraint Single-Path Concolic Execution

Sometimes, one well-formed input could provide enough information. We want
to avoid our concolic execution being lost in the code or stuck in a loop, so we
disable the forking process for producing new branches to focus on one program
trace. We name this skill single-path concolic execution.

In a single-path concolic execution, gathering path constraints is not necessary
anymore because only one concrete path will be executed. Assuming that we want
only symbalic expressions or a taint-like[31] functionality, these constraints
could be dropped. If we want to reduce testing input space, this technique is also
a good choice. We call this null-constraint single-path concolic execution. The

good efficiency of null-constraint will be shown in Section 4-D.

C. S2E

S2E [8] is a whole-system symbolic-execution-based automated path explorer
with modular path analyzers. The explorer expands all the paths in which we are
interested, and the analyzer looks for bugs of each such path or simply collects
information.

Figure 3 and Figure 4 shows the S2E architecture in high-level and mid-level
respectively. The prototype of this platform reuses parts of the QEMU virtual
machine [4], the KLEE symbolic execution engine [5], and LLVM tool chain [20].

It can execute any gest OSs that runs on an x86 or ARM CPU.
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Figure 3: S2E Architecture |
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Engine Execution Execution
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Figure 4: S2E Architecture 11

S2E explores paths by running the target system image and selectively

executing small parts of it symbolically. Depending on which segment of code we

10



desired, the corresponding system’s machine instructions are dynamically
translated within the virtual machine into an intermediate representation suitable
for symbolic execution, while the rest are translated to host instruction set as
normal binary translation. Because all of the symbolic and concrete executions
are done outside the guest machine, a full system (OSs, libraries, applications, etc.)
testing for the guest system could be applied.

S2E is easy to use. It modified QEMU’s dynamic binary translator (DBT) to
translate the instructions that depend on symbolic data to LLVM, and dispatch
them to KLEE. In this way, users can test any binary codes that run in the guest
OS without any source. Due to the open source agreement of QEMU, developers
can easily modified S2E to fit their requirement. Thus we use S2E as our core

engine.

D. Vulnerable Situations

There are hundreds of vulnerabilities. The Top 25 Most Dangerous Software
Errors [24] lists the most widespread and critical errors that can lead to serious
vulnerabilities in software. We pick up four cases which are often seen in C

programs as our fuzzing target situations.

I. Buffer Overflow

Buffer overflow is an important and persistent security problem and counts
for approximately half of all security vulnerabilities in recent years [10]. This
problem occurs when more data are written to a buffer than it can hold. The
excessive data is written to the adjacent memory, overwriting the contents

including returned addresses in the stack memory. Many memory-based

11



functions in the standard library are easy to cause buffer overflows. We will

discuss this later.

II. Integer Overflow

Integer overflow is a generic name of integer errors such as overflow,
underflow, and signed/unsigned conversion errors. CVE-2002-0639 about
OpenSSH and CVE-2010-2753 about Firefox are two serous integer
vulnerabilities. Many _integer overflow vulnerabilities are closely related to
memory allocation functions [44]. If an integer input is used to restrict a memory
manipulation without exhaustive checks, memory violation errors could occur.
Take malloc as an example. If the size argument overflows, the operating system
will allocate less memory space than the program wants, than a heap overflow

would happen.

I1I. Uncontrolled Format String

A format string is an ASCII string that contains text and format parameters.
When a format function, printf for example, evaluates the format string, it
accesses the extra parameters given to the function.. However, there is a special
format parameter in ANSI C called “%n’, which can write the number of bytes
printed so far to the specific memory. Because parameters and other important
program data are all stored on the stack, if the format string can be controlled by

attackers, they can overwrite returned addresses or other data they want [30].

IV. Command Injection
Like format string, if an uncontrolled input string is directly passed to an OS

execution system call or a shell execution function, attackers can easily execute

12



system commands by injecting malicious strings into the input.

E. DLL Injection

DLL injection is a technique used for running code within the address space of
another process by forcing it to load a dynamic-link library (DLL) [37]. The
injected code can hook the system or library calls, such as system or malloc,
without modifying any existing programs. We could interrupt programs by the
injected code and analyze the symbolic relationship between arguments and
inputs. Besides standard libraries, we can also hook third-party libraries. The
functions we hook In this paper are shown in Table 2.

On Linux (or other Unix-like OS), arbitrary libraries can be linked to one’s
custom library by setting the LD_PRELOAD environment variable!. Such a
library can be created with GCC by compiling with -fPIC option? and linked with
-shared option®. On Windows, there are multiple ways to do this, one of which is
the hooking call SetWindowsHookEx*. Qur work focuses on Linux platform, but

IS easy to extend.

! http://www.kernel.org/doc/man-pages/online/pages/man8/Id-linux.so.8.html

2 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#Code-Gen-Options

3 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Link-Options.html#Link-Options

4 http://msdn.microsoft.com/en-us/library/ms644990.aspx
13
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CHAPTER 3 Method

Unlike traditional fuzzers generating crash inputs (shown in Figure 5), our
work CraxFuzzer generates proof-of-concept (POC) exploit instead. A program
crashes because its instruction pointer EIP is abnormal. Hackers want to find
crashes because if EIP is modified during program execution, they may have
chances to control the program by changing EIP to the shell code address. If we
have some ways to overwrite the returned address, i.e., EIP on the stack to control
the program, a crash situation is not necessary. For example, in an uncontrolled
format string case, the ability of generating a crash is still far easier than
generating an exploit. In a command injection or a SQL injection problem,
crashing a program is not even of our primary consideration. That is the concept
of POC generation, reducing the step of finding crashes and focusing on watching
sensitive functions that may directly or indirectly affect program execution.

There are four stages in our fuzzing framework; test case acquisition, target
searching, proof-of-concept generation, and verification. The architecture
overview is shown in Figure 6. In test case acquisition, we acquire test cases from
traditional fuzzers, the Internet, specs of the program, or a path exploration which
will be merged to symbolic execution in the next stage. In target searching stage,
we use a null-constraint single-path concolic execution method to search for our
target functions. In POC generation, we generate inputs that would crash the
program or affect the sensitive arguments, and then run it again to verify in the
final step.

To make our proposed methods clear and easy to understand, we use an open-

source software XMail [21] to explain them in Section 3-E, and a detailed
14



comparison of traditional fuzzers with our work is provided. At the end of this
chapter, we will show the implementation details of how we build our target-
aware symbolic execution framework on S2E, including modules and

implemented sensitive functions.

Sample

Inputs

Generate One Execute from Clzelis
Input the Input UL oI
P _ P ~_Found

False: Generate Anothe

Figure 5: Traditional Fuzzer Architecture Overview
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Test Case Target POC
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Figure 6: Target-Aware Symbolic Execution Framework Overview

Now we are going to explain our methods step by step in detail as follows.

A. Test Case Acquisition

To test a program, a sample input is needed as a seed to induct the mutation.

Otherwise, it will cost too much to generate inputs from nothing. There are
15



multiple ways to acquire test cases. Downloading inputs from the Internet or
manufacturing a new one from the specs are straight-forward methods. If these
samples cannot satisfy the requirements, we can generate more of them by
traditional fuzzing or symbolic execution. According to our experiences, a regular
input is usually good enough to find serious bugs. We will demonstrate it in

Chapter 4.

B. Target Searching

We use symbolic execution to explore paths and search for our target functions.
A schematic diagram of this execution is shown in Figure 7. The method of null-
constraint single-path concolic execution has been introduced in Section 2-B. We
want to check whether there is any sensitive function whose arguments are also
symbolic or not by hooking the standard libraries. The techniques of how to hook
a function call has been discussed in Section 2-E. We check every function it
hooked and its arguments while executing the program. The hooked functions, or
the target functions, we chose are usually dangerous and may cause vulnerabilities.
If an argument, e.g. an input of a function, has been detected symbolic, luckily we
have found the fragile part of this program. The input bytes corresponding to the
symbolic argument are called hot bytes, which means these bytes can directly
influence this sensitive function and have a good chance to exploit. More
discussions of hot bytes will be made in Section 4-B. We can also print call stacks

of the program to help developers debugging.
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Figure 9: Transformation Relations in Program Execution

C. Proof-of-Concept Generation

The sensitive situation is a formula in terms of symbolic information. In a large
17



program, a value often undergoes a series of transformation between being read
as input and triggering a potential vulnerability. For example in Figure 8, the
argument malloc in line 3 has been passed to two transformation functions, f(x) =
X + 1 and f(x) = 2 * x. Once a sensitive situation has been confirmed, we can
generate the proof-of-concept (POC) exploit, which is an evidence that we already
have the ability to exploit this program. To find the input that makes the variable
to be a certain value, we need to solve the inverse of the transformation functions.

In Figure 9, we can set Transformation Function Fp3(x) to be a constant value C,
which we want the sensitive argument to be. Use a constraint-solver such as STP
[13] to solve equation Fp3(X) = C, e.q. find the results of Fg3-1(C). This is one of

functionalities of symbolic execution. Note that in the null-constraint symbolic
execution, we do not record any path constraints, which means the results may
not be feasible (but efficient). We will discuss about this in Section 3-D and in
Chapter 4.

According to the properties of each sensitive situation, we can classify the

problems into designated types as follows.

I. Formats in Format Functions
If a format argument in format functions, prinf and syslog for example, is
symbolic, which means it can be affected by input bytes, there is a high possibility
that a format string bug may exist in the testing program. If the developers have
not checked the conversion specification character “%” or restricted the length of
the inputs, attackers may exploit this program by a well-designed input that

contains shell codes and the conversion specifier “%n” [30].
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II. Commands in Execution Functions
Command arguments in execution functions such as system and exec are
sensitive too. If a command segment passes to these functions without being
checked, attackers could use “&&”, «;”, or “&” as conjunctions of normal and

malicious commands, or directly inject a malicious binary to hack this system.

I11. Sources in Memory Copy Functions

If the source argument in memory copy function can be affected by input bytes,
there is a chance for hackers to generate buffer overflows in our testing program
by increasing the length of our tainted input bytes. Although some memory
functions use a size argument to restrict size of buffers to be copied, developers
often forget to check the destination buffer size or the end of string character “\0”.
Lots of buffer overflow vulnerabilities have been revealed by CVE mentioned as
above, and we will demonstrate some of them in Chapter 4. Str(n)cpy, read, and

memset are three functions which belong to this type.

IV. Lengths in Memory Copy Functions
Similar to sources in memory functions, controlling the length of the function
IS more intuitive. Without proper checking, a buffer overflow is easy to happen if

the length argument and buffer size is inconsistent.

V. Sizes in Memory Allocation functions
If a size argument in memory allocation functions is symbolic, there may be an
integer overflow in our testing program. If we make the size (an integer) overflow,
the operating system will allocate less memory space than the program wants, and
it may use the memory out of the boundary in the heap, which causes a heap-
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based buffer overflow, e.g., malloc(OxFFFFFFFF).

D. Verification

After generating a new input without path constraints, we need to check if the
input is feasible. We do this by re-running the program with the new input and
checking whether the sensitive argument is rewritten or not. If the answer is yes,
we have almost confirmed that we can change the sensitive argument to an
arbitrary value including an exploit. We call the generated input a proof-of-
concept exploit because we have proved that there is a vulnerability and explained
how to manipulate it in this situation. If the answer is no, which means the input
may not be feasible due to the changing of the program’s running path, we need
to add some path constraints or change the previously used value to calculate a
new input. Once no input can be generated, we have to go back to the first step

acquiring-a new sample input.

E. Example: XMail-1.21

XMail [21] is a lightweight email server in comparison with traditional mail
servers. In 2005, a stack-based buffer overflow vulnerability in module sendmail
in XMail has been revealed and numbered CVE-2005-2943. In this bug, remote

attackers can execute arbitrary code via crafting the specific field in an email letter.
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From: hchung@cs.nctu.edu.tw

To: hchung@cs.nctu.edu.tw

This is an XMail test letter

Subject: A Target-Aware Symbolic Execution Framework for Fuzz Testing

Figure 10: Sample Email with Envelopes for XMail

In SendMail.cpp:

static char const *AddressFromAtPtr

(char const *pszAt, char const *pszBase, char *pszAddress)

char const *pszStart = pszAt;

char const *pszEnd = pszAt + 1;

int iAddrLength = (int) (pszEnd - pszStart);
strncpy (pszAddress, pszStart, iAddrLength) ;

pszAddress[iAddrLength] = "\0';

return (pszEnd);

}

Figure 11: Function AddressFromAtPtr in SendMail.cpp in XMail

Figure 10 shows a sample email we commonly used in our daily life. This

original email contains four fields, including sender, receiver, subject, and body,

which the mail transfer agent (MTA) actually delivers. We make this email

symbolic and pipe it into our testing program. In target searching stage, we found

a sensitive function strncpy has been hooked and its source-string argument is

symbolic. From tracking the symbolic information, this argument is directly

affected by bytes from 0x20 to 0x34, and the corresponding string Iis
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“hchung@cs.nctu.edu.tw”, the receiver’s email address which we marked gray in
Figure 10 and called hot bytes. We look into the source code in Figure 11 to
confirm our guest. In line 357, strncpy copies a string which is read from the letter
to a fixed size array (read the complete source code and you will know). Now we
know the receiver’s address will be copied to a certain buffer. That is a buffer
overflow suspect. We use the expressions (shown in Figure 12, which merely
extend byte to word) gathered before and our buffer overflow heuristics to decide
a long receiver’s address field. Then fill it back to the input and run it again. A

segmentation fault exception will be raised and that verifies our result.

(Concat w32 (Extract w8 24 NO:(SExt w32 N1:(Read w8 0x20 INPUT)))

(Concat w24 (Extract w8 16 NO) (Concat w16 (Extract w8 8 NO) N1)))
(Concat w32 (Extract w8 24 NO:(SExt w32 N1:(Read w8 0x21 INPUT)))

(Concat w24 (Extract w8 16 NO) (Concat w16 (Extract w8 8 NO) N1)))
(Concat w32 (Extract w8 24 NO:(SExt w32 N1:(Read w8 0x22 INPUT)))

(Concat w24 (Extract w8 16 NO) (Concat w16 (Extract w8 8 NO) N1)))

Figure 12: Strncpy Argument Expressions of INPUT in XMail

However, if we turn over this work to traditional fuzzers, they have to mutate
the input mail from byte to byte, which has a large time complexity of O(2"n).
Even if we know the format of the letter, which is hard to be formulized, we cannot
guarantee that the mutated inputs could cover the problematic code. The

comparison of traditional fuzzers with our work is listed in Table 1.
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Table 1: Comparison of Traditional Fuzzers with CraxFuzzer

Traditional Fuzzers Traditioqal Our Targ_et-Aware
Symbolic Fuzzers Symbolic Fuzzer
Targets Exceptions (crashes) Exceptions (crashes) Sensitive functions
How to Find Generate inputs Explore paths Hook functions
How to Verify Debugging tools Debugging tools Check hooked funcs.
Seed Inputs Existing inputs X Existing inputs
How to Generate Mutate seed inputs sl pa_th Only one input
New Inputs constraints

Hit Rate of an Input High (hooked funcs.

to Reach a Target very low Low are easier to find)
Result Types Crash inputs Crash inputs POC Exploits
How to Generate Solve path Solve constraints

Mutate seed inputs

Results constraints from expressions
Rtei?#;ts Generation Fast Slow Only one input
When to Generate BETEEXECoN After targets After targets

Results being found being found

. Not too high (confli- Not too low (ignored
Results Accuracy Ve il ctive constraints) path constraints)
Aware of Con_stralnts X 0 0
and Expressions
Guest OS
CraxFuzzer
S2E Testing
Programs
QEMU
[ | |

Figure 13: CraxFuzzer Architecture

F. Implementation

Our fuzz testing framework, CraxFuzzer (shown in Figure 13), is built on top

of S2E, which is discussed in Section 2-C. Identical to S2E, CraxFuzzer applies
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symbolic execution via a virtualizer, e.g. QEMU. We can test programs on
different systems by this virtualization technique. Testing programs, generated
sample inputs and system configurations will be sent to the guest OS after
CraxFuzzer starts. The biggest defect of this framework is the lack of support for

floating points due to the implementation of KLEE.

Table 2: List of Discovered Sensitive Functions

Sensitive Functions Sensitive Arguments Vulnerable Situations

fread Length Integer/Buffer Overflow

read Length Integer/Buffer Overflow
memset Length Integer/Buffer Overflow
memcpy. Source, length Integer/Buffer Overflow
strcpy Source Buffer Overflow

strncpy Source, length Integer/Buffer Overflow
syslog Format Format String

viprintf Format Format String

vsnprintf Format, length Format String, Integer/Buffer Overflow
sprintf Format Format String Buffer Overflow
fprintf Format Format String

system Command Command Injection

exec family Path (file) Command Injection

realloc Size Integer/Buffer Overflow
malloc Size Integer/Buffer Overflow

In guest OS, we implement a wrapper to inject our custom libraries and redirect
the program inputs of every testing object. The custom libraries are used to
overwrite sensitive functions in standard libraries. According to our experiences
and some researches [10, 30, 42, 44], we intercepted sensitive functions listed in
Table 2. In a hooked function call, we use custom CPU op code to check whether
an argument is symbolic, printing the expressions and call stacks. The input
redirection is used to symbolize inputs. For programs whose input is read from

standard input (stdin) or arguments, it is easy to symbolize parts of them or all of
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them. For programs whose input is read from files, we have to map files in the
hard drive to the memory first by system call mmap. However, files are often large
in size. We choose adaptive file segments described in Section 2-B-1 to symbolize
important data structures only.

In host OS, log parser, input generator and verifier are implemented. In the
hooked function call, we output symbolic expressions of the sensitive arguments.
The parser is used to analyze this output. It determines whether this sample input
is useful, generating new inputs based on constraints and heuristics described in
Section 3-C. After a possible exploit POC is generated, we re-run it symbolically
to verify due to the deduction of constraints discussed in Section 2-B-111.

We build the null-constraints-single-path-concolic-execution technique into
S2E plugins. These plugins contain the constraints reduction and loggers. The
coordinator of these components is also implemented in a plugin. Relations
between components are shown in Figure 14. There are two cycles in this figure.
The first one is about finding sensitive arguments and its corresponding sensitive
input bytes. The second one Is about generating POC. If any of these steps fails,
this framework is able to fall back and try again until there are no available sample

inputs anymore.
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CHAPTER 4 EVALUATION

In this chapter, we present four sets of experiments and our experiment
environment. In Section 4-B, we evaluate the value of hot bytes concept to reduce
testing space by observing the ratio of hot bytes to total input bytes. In Section 4-
C, we present the adaptive-input technique, which utilizes hot bytes, headers, or
other information to make part of input symbolic. In software testing, if we test
only the most important parts of the input, redundant testing could be omitted. In
Section 4-D, we introduce the results of null-constraint technique, which could
speed up symbolic execution in some specific situations. And in Section 4-E, we
show some vulnerabilities we detected in popular applications. At the end of this
chapter, we give some real-world case studies, including sudo and tiff, to

demonstrate the power of our work.

Table 3: List of Testing Applications

Application Version Operation Input Type Line of Code
XMail 1.21 Send email Stdin 31480
Sudo 1.8.0 Jsudo -D9 Arguments 25324
Exim 1.21 Jexim -bh ::%eth0 Arguments 64102
Socat 1.4 JAsocat —lyAAAA Arguments 13929
Ncompress 4.2.4 Incompress FILE Arguments 1432
Gif2png 253 Jgif2png FILE Arguments 1353
Iwconfig V26 Jiwconfig eth0 Arguments 5285
Tipxd 1.1.1 Jtipxd —fFILE Arguments 1066
Mcrypt 2.6.8 Decryption Files 5846
Tiff 3.6.1 View TIFF image Files 42077
Tiff 3.7.0 View TIFF image Files 43717
Mplayer 1.0rc2  Play VQF media Files 488618
Vim 1.7 Open file with filetype.vim Files 377767
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A. Experiment Setup

Although CraxFuzzer could test programs on different OSs, we are dedicated
to study software on Linux platform. We apply CraxFuzzer to a large number of
real-world applications. A list of these applications is summarized in Table 3. All
of them are popular open-source projects for Linux. The “Operation” column
shows what operations or what running arguments we take to test these
applications. Note that the inputs are common and easy to be retrieved from the
Internet or the manual pages. If further researchers want to focus on testing some
specific libraries such as OpenFlow Applications [6], PHP SQL libraries [48], or
even the CPU register EIP-[18], they could just extend this work by adding these
libraries to our sensitive function pool and defining the vulnerable situations they
want the program to be.

Our experiments are conducted on a virtual machine with Intel Xeon E3-
1230V?2 at 3.3 GHz and enough memory, running Ubuntu 12.04 64 bit. The guest
OS is running Debian 6.0.6 32 bit.

Table 4: Hot Bytes Identification Results

Application # Symbolic . # Detected Run Time
Bytes Hot Bytes

XMail 156 22 5s

368 40 6s
Tiff-3.6.1 18278 5 6s

46271 3 6s
Tiff-3.7.0 18278 158 8s

46271 130 10s
Vim 1437 258 113s
Mplayer 1024/120132 1024 100s
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B. Hot Bytes Identification

In this experiment, we measure the ratio of hot bytes to total input bytes and
the complete execution time. We feed common inputs, which are retrieved from
the Internet or the spec, to some input-file-based testing programs in. The hot
bytes are some segments of the input that directly affect the sensitive arguments
listed in Table 2.

Table 4 shows the results of four common open-source Linux applications.
XMail is an email tool, whose input is a plaintext letter. Tiff is a library that
manipulates TIFF files. Vim is a common editor, tested with one of its scripts
called filetype.vim. Mplayer is a media player that plays various kinds of media.
The “Operation” column represents what we do to test this application, the “#
Symbolic Bytes™ column represents how many bytes of the total input we make
symbolic and “# Hot Bytes” indicates how many bytes of the input are sensitive.
The total run time is shown in the last field “Run Time”.

Figure 15, Figure 16 and Figure 17, shows hot bytes distributions for tiff-3.7.0
tests and vim test respectively. The first TIFF file can be downloaded from here!
and the second file can be found here?. Character ‘H” denotes a hot byte and “dot”
denotes a non-hot-byte. As the results show, all hot bytes are centralized at the
beginning of the file or at the end of the file, which means they are probably
headers.

The ratio of hot bytes to total inputs is approximately in the range from 1% to

20%. That means if we want to find vulnerabilities in Table 2, we have to test

! http://www.fileformat.info/format/tiff/sample/3794038f08df403bb446a97f897c578d/download
2 http://www.fileformat.info/format/tiff/sample/e9898d47632440288d86553edf676007/download
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only 1% bytes over the whole input in the best case, which reduces the testing
input space from 8N to 8N1%, In the mplayer case, almost all bytes are hot bytes
and are hooked in memset functions. We think the reason is that while playing
media, the player will copy the input to buffers. We believe that if we reduce the
number of kinds of sensitive functions, memset in the mplayer case for example,
we can obtain a more accurate hot bytes distribution. In some cases, we do not
make all the input symbolic because we want to avoid bytes from involving
floating operations or the input space is too large. We use “Symbolic Bytes/Total
Bytes” to denote this situation. As we count the hot bytes in an acceptable running
time, this technigue can reduce a lot of execution time.

The related work to be compared with would be TaintScope. However, the
ImageMagick test picked from- TaintScope failed because of the KLEE floating
point issue. And.the rest results of TaintScope cannot be taken because they are

based on Windows platform, which is not supported.

Skipped 17700 dots

....... H HHHHHHHH HHHHHHHH HHHHHRRA HHHHAAAH HHHHHAHH HHHHAEHRH S HHHHHRHAE
HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHRAH HHHHHAHH - HHHHHHHH HHHHHHAH HHHHHHHH
HHHHHHHAH HHHHHHHH HHHHHHHH HHHHAHRH HRHAH. .. o o

Figure 15: Hot Bytes of TIFF File |
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Skipped 45700 dots

Figure 16: Hot Bytes of TIFF File 11
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HHHHHHHH. HH. .HHHH HHHEHHEEA HHHHHHEH HHHHHHHH HHHHHARH - HHHHHHHH. HHHHHHHH
HHHHHHHSSEHHHHH HEE————t Bl Bl .. SR . .. W™ . . ... ...

Figure 17: Hot Bytes of File Using Filetype.vim

C. Adaptive-Input Technique Evaluation

With header information retrieved from hot bytes technique and other
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documents of file format, we are able to locate the important part of input. For
files whose hot bytes can be easily identified, we can symbolize only the hot bytes
parts because hot bytes are the only inputs that affect sensitive functions. For files
in which hot bytes cannot work, we have to read documents to find the important
part, which is usually the header, additionally.

Results of this experiment are shown in Table 5. The “# Input Bytes” means
the number of total input bytes while “# Adaptive Symbolic Bytes” means the
number of the important bytes we believe to be. The “Regular Run Time” column
represents the time cost of running symbolic execution with all bytes symbolic
while the “Adaptive-Input Run Time” column represents running time using this
technique. We can see that the running time is improved if the same hot bytes are
found.

For cases which take a long time like mplayer, we may use the concept of
divide-and-conquer to run multiple tiny segments (1024 bytes in this case)

respectively and then combine the results.

Table 5: Adaptive-Input Technique Results

Application # Input # Adaptive Run Time Run Time
Bytes Symb. Bytes (Regular) (Adaptive-Input)
XMail 156 22 5s 4s
368 40 6s 5s
Tiff-3.7.0 18382 180 8s 5s
Vim 1437 583 113s 15s
Mplayer 120132 1024 X 100s

D. Null-Constraint Technique Evaluation

In this experiment, we compare the execution time with or without gathering
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path constraints. Results are shown in Table 6. The “Regular Run Time” column
represents the time cost of running symbolic execution with path constraints while
the “Null-Constraint Run Time” column represents running time using this
technique. The “# Symbolic Bytes” column shows number of bytes we symbolize.
The “# Symbolic Bytes” column in the “sudo” row is uncertain because it is
determined by user’s system. The number of bytes is approximated in a level of
ten to the first power.

After a possible malicious input is generated by our null-constraint technique,
we need to verify this input again due to the lack of path constraints. We can
choose any set of constraints-and put them back to constraint-solver for re-running.
In some cases like hot bytes identification, the path constraints are even useless at
all and does not have to be recorded. And of course it reduced the testing input
space.

We notice that there exists a significant difference between executing with or
without constraints in running time in some.applications. For large software with
complicated calculation such as mplayer and vim, we can have a great
improvement on it. However, for simple applications whose running time is short,

the efficiency enhancement is limited. These experiments affirm our hypothesis.

Table 6: Null-Constraint Technique Results

Application # Symbolic Run Time Run Time
Bytes (Regular) (Null-Constraint)

XMail 156 6s oS

368 10s 6s
Tiff 18278 75 6s
Sudo All arguments 10s 8s
Vim 1437 775s 113s
Mplayer 1024/120132  Over 500,000s 100s
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Table 7: CraxFuzzer Fuzzing Results

Application Advisory ID Vulnerability Hooked # Symbolic Run
Type Func. Bytes Time
XMail CVE-2005-2943 Buffer Overflow Strncpy 156 5s
Sudo CVE-2013-1775 Format String Viprintf  All args. 8s
Exim EDB-1D#796 Buffer Overflow Strncpy  All args. 5s
Socat CVE-2004-1484 Format String Syslog  All args. 5s
Ncompress CVE-2001-1413 Buffer Overflow Strcpy All args. 5s
Gif2png CVE-2010-4695 Buffer Overflow Strcpy  All args. 5s
Iwconfig CVE-2003-0947 Buffer Overflow Strcpy All args. 5s
Tipxd OSVDB-I1D#12346 Format String Syslog  All args. 5s
Mcrypt CVE-2012-4409 Buffer Overflow Fread All args. 6s
Tiff CVE-2004-1307 Integer Overflow Malloc 18278 5s
Mplayer CVE-2008-5616 Buffer Overflow Memcpy 1024 100s
Vim CVE-2008-2712 Command Injection Execvp 1437 113s

E. Fuzzing Results

Table 7 lists well-known vulnerabilities we have found yet and the execution
time is also provided. The “Advisory ID” column shows advisory identifier
information. CVE-YYY Y-0000 presents CVE identifiers while the eight digits are
year and series number of this vulnerability,-EDB-ID presents Exploit-DB*
identifiers and OSVDB-ID presents Open Sourced Vulnerability Database 2
identifiers. The “Vulnerability Type” shows the corresponding type introduced in
Section 2-D. The “Hooked Function’ columns shows which function call we have
hooked and found the corresponding vulnerability successfully in the standard

library. The “Run Tine” column shows the execution time to generate the exploit

L http://www.exploit-db.com/

2 http://osvdb.org/

34


http://www.exploit-db.com/
http://osvdb.org/

POC of this vulnerability.

First we discuss about the running time. Applications with less computation or
the less symbolic input have a short execution time. Five seconds is almost the set
up time of our framework with the time cost of booting images to the specific
snapshots. The running time of symbolic execution is short and can be ignored.
For large applications such as tiff, vim and mplayer, the execution time is also
acceptable. Compared with traditional fuzzers, which generate millions of test
cases and execute millions times, they may take days to find only crashes for these
applications and are not promised to be exploitable.

Many bugs we have found are very simple. They are often caused by the lack
of checking buffer boundaries of memory copy functions or escaped characters of
format string functions. Although some developers use strNcpy series functions
to restrict bytes to be copied, they forget to check source bytes and destination
bytes simultaneously. For vulnerabilities whose input is composed of readable
strings, the transformation. during program. execution IS usually linear
transformation, which is simple to exploit. The uncontrolled format string,
command injection and SQL injection cases belong to this type. For software with
complex structures and systematic quality testing, our proposed method can easily
outperform existing methods. Case studies in next section will introduce some

examples, one of which includes complicated transformations.

F. Case Studies

We introduce two real-world cases to demonstrate CraxFuzzer in this section.

Both of them are well-known applications and contain serious security iSsues.
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In sudo.c:

void
sudo_debug(int level, const char *fmt, ...)
{

va list ap;

char *fmt2;

if (level > debug level)

return;

easprintf (&fmt2, "%s: %s\n", getprogname (), fmt) ;
va_start(ap, fmt);

viprintf (stderr, fmt2, ap);

va_end(ap) ;

efree (fmt2) ;

Figure 18: Parts of Sudo Code

I. Sudo-1.8.0

Sudo is a commonly used system utility that can execute a command as another
user, especially administrator. Therefore, security issues of sudo are deeply
concerned about. In line 1107 and line 1109 in Figure 18, there is a format string
function which takes its program name as format argument, which is an
uncontrolled format string problem. As program name is one of the program
execution arguments, which is also program inputs, symbolic information can be
intercepted in vfprintf with proper sample inputs. These sample inputs can be
derived from the manual page, -D flag for example. This vulnerability is

announced in CVE website with a CVE-2013-1775 identifier.
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In tif dirread.c: (Simpilified)

cp = (char*)malloc(nstrips * sizeof (uint32))

Figure 19: Parts of Tiff code

SymbExpression malloc size -
(Shl w32 (Extract w32 0 (UDiv w64 (ZExt w64 (Add w32 (w32 Oxffffffff)
(Add w32 NO: (ReadLSB w32 0x72 v0 file 0) (ReadLSB w32 0x2a v0 file 0))))

(ZExt w64 NO))) (w32 0x2))

SymbExpression malloc _size - Value: 0xcC

Figure 20: Report of Malloc of Tiff Execution

1. Ttiff-3.6.1

Integer overflow in the TIFFFetchStripThing function in tif_dirread.c for libtiff
3.6.1 allows remote attackers to execute arbitrary code via a TIFF file with the
STRIPOFFSETS flag and a large number of strips, which causes a zero byte or a
small bytes buffer to be allocated and leads to a heap-based buffer overflow. This
vulnerability is registered as CVE-2004-1307.

The sensitive function malloc we have found is shown in Figure 19. Variable
nstrips denotes the number of strips of the TIFF file. We want to make expression
“nstrips * sizeof(uint32)” to overflow as zero or a small value. There are many
transformations from program start to the target function. However, the
transformation functions of nstrips variable are too hard to be found out by eyes.
We can use CraxFuzzer to do this. The report is shown in Figure 20. This report
shows the results of executing TIFF library by feeding the 18 KB file we have

downloaded from the Internet and introduced before. The results can be simplified
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to this equation

SIZE = (A+B-1)/B*4
where A is INPUT[0x2A] and B is INPUT[0x72].

That means the 0x2A™ byte and 0x72™ byte of our input can make this malloc’s
size argument be the value of OxC. If we set this size argument to be zero or a
small value and solve a set of integer overflow answer of A and B, a heap overflow
problem may occur. We get the answer that A equals to 0x40000000 and B equals
to Ox1 by solving equation “(A+B-1)/B*4=0". \We then overwrite them to the
original input and run it again to verify. It crashes and the value of size argument
has been changed. This proves that we can find a way to control the heap overflow
of tiff-3.6.1 to cause the program buffer overflow by feeding a normal input

downloaded from the Internet.
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CHAPTER 5 CONCLUSION

In this thesis, we present CraxFuzzer, a target-aware directed whole-system
symbolic fuzzing framework. By using libraries hooking and hot bytes
identification techniques, CraxFuzzer can locate sensitive parts of the program
after being fed a regular input, and generate the corresponding POC exploit
efficiently. CraxFuzzer can dramatically reduce the testing space compared with
traditional fuzzers and find conditions they are not able to reach, helping
developers to find the security vulnerabilities and to fix them in a short time. For
cases whose source codes are available, it is also possible to use debug
information to print out the call stack and other information. We have applied
CraxFuzzer to 17 previously known issues of different security types.
Experimental results show that it can accurately locate the sensitive parts and
greatly improve the effectiveness of fuzz testing.

TaintScope [42], which inspires us, provided the concept of finding hot bytes
by dynamic taint analysis. However, our methods are easier and more
straightforward by taking advantages of the property of symbolic execution. Splat
[46] defines a buffer overflow situation and Catchconv [29] defines an integer
conversion error situation, while "IntScope [44] defines an integer overflow
situation and Saxena, P., et al. [33] defines a loop-extended situation. At the
application level, NICE [6] models OpenFlow applications to find network bugs.
In spite of that, all of them merely focus on one specific condition, and it is hard
to generalize the targets. Caselden, D., et al. [7], McCamant, S., et al. [25] and
STrigger [22] introduced vulnerability-condition-based, or trigger-condition-

based test case generation methods respectively. Nevertheless, because of the
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different symbolic engines and heuristics they use, source code is needed and the
testing tools are not platform-independent and whole-system.

If researchers want to modify our framework to create real exploits, it is easy
to implement by replacing POC with shell code. Shell code is machine or OS
dependent and more complicated to be generated automatically, and that’s why
our work delegate this step to other tools. CRAX [18, 47, 48], AEG [3] and other
researches [6, 7, 16] are dedicated to this field.

However, there are several limitations in the current implementation of
CraxFuzzer. First, the lack of floating support of KLEE is a big problem to test
programs with floating point-operations. It will terminate S2E if countering this
situation. We can use adaptive-input technique to- strategically avoid this
implementation problem. Second, due to the complex path constraints and the
natural property of hash functions, checksum, cryptographic operation or digital
signature, which are designed to protect against data alteration, are not
recommended being tested by our work. TaintScope [42] has a great success on
checksum reconstruction. It is possible to combine these modules. Third, our
searching mechanism is based on hooking functions. If we want to find a
vulnerability that is not related to functions (Figure 21, for example), the DLL
injection framework does not work anymore. Some new mechanisms must be
found to generalize this situation. However, with vulnerabilities that are related to
functions, such as PHP SQL libraries [48], CraxFuzzer works pretty well. It is
also possible to hook CPU register EIP [18] to find the condition of crash. Forth,
path constraints selection is also a challenge. What path constraints to pick is a

Satisfiability (SAT) problem, which is very hard [41]. It would take great efforts
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to do it well. The last weak point is how to retrieve a sample input that can lead
us to the bug. In most cases, regular inputs cannot be executed into the problematic
code due to the imperfect of unit test cases. We must generate such inputs
ourselves. Control flow graph (CFG) and call graph are good mediums for use
[44]. We can use shortest-path algorithms to find a path to the sensitive function
and generate the corresponding input like STrigger [22]. There are also lots of test

case generation researches to help us creating inputs [32].

while (n--)

str[n] =

Figure 21: Vulnerability Not Related to Functions Example
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