

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

具目標認知符號執行模糊測試框架

A Target-Aware Symbolic Execution Framework

for Fuzz Testing

研 究 生：鍾 翔

指導教授：黃世昆 教授

中 華 民 國 一 百 零 三 年 五 月

I

具目標認知符號執行軟體測試框架

A Target-Aware Symbolic Execution Framework for Fuzz

Testing

研 究 生：鍾 翔 Student：Hsiang Chung

指導教授：黃世昆 Advisor：Dr. Shih-Kun Huang

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

June 2014

Hsinchu, Taiwan, Republic of China

i

具目標認知符號執行模糊測試框架

學生: 鍾 翔 指導教授: 黃世昆

國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所 碩 士 班

摘要

軟體設計不良所產生的漏洞，例如 buffer overflows、integer

overflows、uncontrolled format strings和 command injections

等，這些問題常被駭客操作使用、入侵使用者個人電腦或伺服器。

Windows和 Linux上的應用程式，或作業系統本身不時發布安全性更

新就是為了修補這樣的問題。

為了減少軟體的漏洞，有許多測試方法被提出來，其中最常使用

的是模糊測試（fuzz testing）。但傳統的模糊測試必須執行到程式

出現例外情況（如失控）才能發現該問題，導致覆蓋率不足時無法發

現受測程式的漏洞，忽略可能存在的安全威脅。

本篇論文提出使用 S2E 以 symbolic execution 為基礎的軟體測

試架構，能在程式正常執行到某些自訂的敏感函式，例如 malloc、

strcpy和 printf時，自動判斷此程式執行路徑在此位置是否可能造

成安全性的威脅，若是，則進一步產生 exploit 的概念驗證（proof

of concept），以及相對應的數學限制式。

我們運用此方法成功且有效地產生許多在 CVE 網站公開的漏洞，

並能協助開發者迅速找到問題所在，提升維護軟體品質的效率。

ii

A Target-Aware Symbolic Execution Framework

for Fuzz Testing

Student: Hsiang Chung Advisor：Dr. Shih-Kun Huang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

 Vulnerabilities caused by implementation bugs, such as buffer

overflows, integer overflows, uncontrolled format strings, and command

injections, are often exploited by hackers to intrude users’ personal

computer or servers. In order to reduce software bugs, many testing

techniques are proposed. The most frequently used technique is fuzz

testing. However, traditional fuzzers can only find bugs when program

exceptions, especially crashes, raised. That means some security threats

may pass these tests due to the insufficient code coverage.

 In this thesis, we introduce a software testing framework based on

symbolic execution using S2E, a whole system symbolic execution engine.

When a program executes some pre-defined sensitive functions, such as

malloc, strcpy or printf, our framework will initiate a triage process. It will

determine whether any related security vulnerabilities would possibly

occur in these functions automatically. If the answer is yes, a proof-of-

concept exploit and its corresponding math constraints will be generated.

 We successfully and efficiently reproduce some CVE vulnerabilities,

which means developers could locate bugs faster, and improve the

efficiency of software quality maintenance.

iii

誌謝

首先我要感謝我的指導教授黃世昆老師，黃老師從我進實驗室開

始就對我十分地照顧，不論在做研究、待人處事、還是生活態度上都

能給我很大的幫助，能當老師的學生是我大學生涯最幸運的事了。在

大學六年的生活中，各科教授、和我吃了六年導聚的林正中導師及美

麗的系辦姊姊們也是我成長的推手。

我十分感謝我的家人，他們總是默默地支持我，相信我，對我做

的任何決定都給予相當的肯定與尊重。住在新竹的姑姑和姑爹，每當

我有需要的時候總是能去尋求他們的幫助，在交大生活的這段日子裡

他們幫上我許多忙，非常感激他們。

SQLab 的同學們當然不能漏掉，尤其是翰霖學長，每次都能不厭

其煩地解決我難搞的問題。還有自我創立網路福利社就很照顧我的俊

憲學長，在實驗室和系計中都特別照顧我的 Jeff、linpc、韋翔、偉

明學長，陪我打暗黑打到三四點的俊維學長，幽默風趣的基傑學長和

在研究之路給我很多中肯建議的肇鈞和銘祥學長，常常被我煩的劉歡、

貓咪和 Lance，相當厲害的學弟 KY、達達、紹文和 Vince。

大學的同學們也是我努力動力的來源，感謝一起和我對抗 DVD的

csSula成員大兜、Kevin、大類、惟中和文莉，臭味相投的好友牛人

兼 skip 戰友邱渣和ㄒ牛，以及很照顧我的其他東京熱大伊姆拉拉、

大 RR 凱吉和阿禧，在這邊先預祝他們博士班畢業快樂。其他還有陪

我走過大風大浪的知已欣欣，資工系計中非常照顧我的團長大人、

hhyou、振全、巨龍、liuyh、柏明、乙澔、伯羽、游傑、changlp、

ywang、寬寬、孟儒、Jalen、ylin、天天、阿佩、易侁、笨雞、嘉駿、

Mars，相處數年的同學煥博、包子、賊魚、貓耳、Eric、賴聖帝君、

詩庭、子瑄、君君、溫溫，多次幫我校稿碩論和擔任司機的室友陳揚、

柏榕和沒事會請我喝酒的定宇。

謝謝你們以及其他因為寫不下沒列在裡面，陪伴我、幫助我的朋

友及師長，沒有你們就沒有今日的鍾翔。

https://www.facebook.com/chenchuan.lin?fref=pb&hc_location=friends_tab

iv

Table of Contents
摘要 .. i

Abstract ... ii

誌謝 .. iii

Table of Contents .. iv

Table of Tables ... v

Table of Figures ... vi

 INTRODUCTION .. 1

 OVERVIEW .. 6

 Symbolic Execution ... 6

 Symbolic Execution Optimization .. 8

 S2E .. 9

 Vulnerable Situations .. 11

 DLL Injection ... 13

 Method... 14

 Test Case Acquisition ... 15

 Target Searching .. 16

 Proof-of-Concept Generation .. 17

 Verification .. 20

 Example: XMail-1.21 ... 20

 Implementation .. 23

 EVALUATION ... 27

 Experiment Setup .. 28

 Hot Bytes Identification ... 29

 Adaptive-Input Technique Evaluation 31

 Null-Constraint Technique Evaluation 32

 Fuzzing Results .. 34

 Case Studies .. 35

 CONCLUSION .. 39

References ... 42

v

Table of Tables

TABLE 1: COMPARISON OF TRADITIONAL FUZZERS WITH CRAXFUZZER 23

TABLE 2: LIST OF DISCOVERED SENSITIVE FUNCTIONS... 24

TABLE 3: LIST OF TESTING APPLICATIONS .. 27

TABLE 4: HOT BYTES IDENTIFICATION RESULTS.. 28

TABLE 5: ADAPTIVE-INPUT TECHNIQUE RESULTS ... 32

TABLE 6: NULL-CONSTRAINT TECHNIQUE RESULTS .. 33

TABLE 7: CRAXFUZZER FUZZING RESULTS .. 34

vi

Table of Figures

FIGURE 1: SYMBOLIC EXECUTION PATH EXPLOSION EXAMPLE 3

FIGURE 2: SYMBOLIC EXECUTION TESTING PROGRAM .. 7

FIGURE 3: S2E ARCHITECTURE I ... 10

FIGURE 4: S2E ARCHITECTURE II .. 10

FIGURE 5: TRADITIONAL FUZZER ARCHITECTURE OVERVIEW 15

FIGURE 6: TARGET-AWARE SYMBOLIC EXECUTION FRAMEWORK OVERVIEW 15

FIGURE 7: TARGET SEARCHING OVERVIEW .. 17

FIGURE 8: TRANSFORMATION FUNCTION EXAMPLE ... 17

FIGURE 9: TRANSFORMATION RELATIONS IN PROGRAM EXECUTION 17

FIGURE 10: SAMPLE EMAIL WITH ENVELOPES FOR XMAIL 21

FIGURE 11: FUNCTION ADDRESSFROMATPTR IN SENDMAIL.CPP IN XMAIL 21

FIGURE 12: STRNCPY ARGUMENT EXPRESSIONS OF INPUT IN XMAIL 22

FIGURE 13: CRAXFUZZER ARCHITECTURE .. 23

FIGURE 14: CRAXFUZZER COMPONENT RELATIONS ... 26

FIGURE 15: HOT BYTES OF TIFF FILE I ... 30

FIGURE 16: HOT BYTES OF TIFF FILE II .. 31

FIGURE 17: HOT BYTES OF FILE USING FILETYPE.VIM ... 31

FIGURE 18: PARTS OF SUDO CODE .. 36

FIGURE 19: PARTS OF TIFF CODE ... 37

FIGURE 20: REPORT OF MALLOC OF TIFF EXECUTION .. 37

FIGURE 21: VULNERABILITY NOT RELATED TO FUNCTIONS EXAMPLE 41

1

 INTRODUCTION

Due to the rapid development of information technology and Internet, people

can easily install software and download files. However, defective programs may

contain security vulnerabilities such as buffer overflows, integer overflows,

uncontrolled format strings, and command injections. An attacker can exploit

these vulnerabilities by feeding properly designed input files and take control of

the victim's systems. Security patches are issued for applications on Windows,

Linux, or the operation system itself every day to solve these problems [2]. Thus,

information security has become an important issue for normal users and

enterprises.

In order to reduce software bugs, many testing techniques are proposed. The

one most frequently used is fuzz testing, or called fuzzing [26], which has been

proven successful in finding bugs and security vulnerabilities in large software

applications. The idea behind fuzzing is very simple. First, we generate inputs fed

to the program to be tested. If exceptions are raised, which often result in a crash,

a potential security issue is detected. A great number of severe software

vulnerabilities have been revealed by fuzzing techniques and related researches

[40]. For example, the CVE (Common Vulnerabilities and Exposures) website1

lists massive vulnerabilities, and some are marked or found to be fuzzed easily.

1 http://cve.mitre.org/

http://cve.mitre.org/

2

TaintScope [42] used its checksum-aware technique to fix checksum fields on the

program input header and successfully identified many known and previously

unknown program vulnerabilities. Popular fuzzing tools include zzuf [17], a dumb

fuzzer which generates inputs randomly, and Peach [12], a format-aware fuzzing

platform that can model input data structures. M. Woo, et al [45] integrates many

existing scheduling algorithms and has good efficiency.

Since most applications are with unlimited input space, traditional fuzz testing

tools have an inherent limitation of low code coverage. This means that serious

security bugs may be missed because the code in which they exist is not even

executed. Many techniques are proposed to improve code coverage, one of which

is symbolic execution [19, 34], a constraint solving based system. It substitutes

symbolic values for program input bytes, gathering path and input constraints

while encountering a branch. By solving these gathered symbolic constraints, we

can generate new inputs for almost all the running program paths and thus a good

code coverage is reached. In recent years, researchers have found many new

security vulnerabilities by symbolic-execution-based fuzzers. SAGE [15] applied

their generational search algorithm to find many bugs in a variety of Windows

applications. EXE [28] has found many critical bugs from Linux ports, including

image viewers and media players. BitBlaze [27, 38] and S2E [8, 9] are two large-

scale symbolic testing platforms. BitBlaze uses TEMU [38], while S2E chooses

KLEE [5] as the symbolic execution engine. We build our framework based on

S2E.

3

1 input (int x)

2 while(x > 0)

3 { ... }

Figure 1: Symbolic Execution Path Explosion Example

Unfortunately, path explosion is a big problem of symbolic execution.

Although symbolic execution could cover most of the program paths, the number

of feasible paths in a program grows exponentially with an increase of program

size or with just a loop iteration [1]. Figure 1 shows an example of loop path

explosion. If the input variable x is symbolic, symbolic executor will try to list all

the possibility that satisfied “x > 0” and run the corresponding paths. Most parts

of this action are redundant.

To speed up symbolic execution, some solutions are proposed. One common

way is concolic testing [35], which combines concrete and symbolic execution.

Concolic execution gives the program an initial input, so it can follow the input

deeper in the code. CUTE [36] is an instance of concolic execution. Alternatively,

it is another possible way to improve path selection algorithms. Ma, K.-K., et al.

[23] proposed shortest-distance and call-chain-backward as two heuristics for

path-finding, while STrigger [22] used a weighted search algorithm based on the

control flow graph (CFG). Another approach is to control symbolic path space by

selecting input bytes [47]. Spat [46] applies their partial symbolic execution that

tracks only a prefix of the input data, which is related to this approach. Other

researchers choose to shorten execution time by paralleling running [39] or by

cutting paths to be explored into pieces [7].

We have discussed lots of software testing techniques. Please note that most of

4

them are performing passive testing, which means that they just generate a new

input, testing if it crashes, and then generate a new one again. There is no threating

target to be searched or a guideline to be followed. TaintScope [42, 43] uses taint-

like analysis [31] to mark every input bytes and see if some security-sensitive

points could affect these input bytes. Tainted input bytes are called hot bytes,

which means they can directly influence the context of security-sensitive

operations. Since TaintScope knows only which bytes are tainted, it has to run

symbolic execution additionally to generate crash inputs. Recently, many

symbolic execution tools are proposed to deal with some vulnerabilities. Splat [46]

defines a buffer overflow situation and Catchconv [29] defines an integer

conversion error situation, while IntScope [44] defines an integer overflow

situation and Saxena, P., et al. [33] defines a loop-extended situation. However,

they merely focus on one specific condition, and it is hard to generalize the

problems. BuzzFuzz [14] uses a directed dynamic taint-based white-box fuzzing

technique which requires to instrument an application’s source code. Caselden,

D., et al. [7], McCamant, S., et al. [25] and STrigger [22] introduced vulnerability-

condition-based, or trigger-condition-based test case generation methods

respectively, but no significant results have been revealed.

In this thesis, we proposed a target-aware symbolic execution framework for

fuzz testing. Our work can find bugs caused by specified library functions and

prove it in a short time. We generate a proof-of-concept exploit instead of only a

crash input. Unlike traditional fuzzers to generate crash input, we think crashes

are not necessary if we have enough information to produce exploits. We further

provide tips to reduce software testing and symbolic execution time. The primary

5

contributions to our work are described as following.

 We introduce a technique to hook target functions in standard libraries, such

as malloc, strcpy and printf. We define and generalize these sensitive points

and test whether there are possible vulnerabilities or not, and then generate

a prove-of-concept exploit by solving constraints further.

 We introduce a method to identify hot bytes of files and obtain their

relations to headers.

 We introduce a whole-system fuzzing framework that can analyze not only

applications but also libraries, drivers, or operating system (OS) itself without

source codes.

 We introduce techniques to speed up symbolic execution by dropping

unnecessary path constraints or using adaptive symbolic inputs.

 We evaluate the effectiveness of our method by applying our methods on

existing CVE vulnerable software. We also provide case studies to show the

profit of our work.

6

 OVERVIEW

In this chapter, we give a technical overview of symbolic execution, its

optimization and the symbolic engine we choose. We also introduce the method

to hook functions and provide some vulnerable situations as our fuzzing targets.

 Symbolic Execution

Symbolic execution is a dynamic software analysis technique that analyzes a

program path-by-path, which is an advantage over analyzing a program input-by-

input such as traditional fuzz testing methods. If two inputs take the same path

through the program, the testing by means of the path will save more time than

that by means of the inputs. When exploring paths, symbolic executor also gathers

corresponding constraints. We therefore know how to get to this path, and are able

to modify them to fit our requirement, a crash situation for example. In our

approach, we use symbolic execution to search for hooked functions and record

constraints between program inputs and function arguments.

Symbolic execution uses symbolic values instead of concrete data on program

inputs. An interpreter executes, assuming values rather than obtaining them from

actual inputs, unlike normal program executions. In this way, it learns relations in

terms of those symbols for expressions and variables when arriving the target

location, and the path constraints for reaching this position is also learned [34].

We can solve these constraints of each conditional branch by a decision procedure,

or a constraint solver, such as STP [13] or Z3 [11]. If a solution exists, we could

find a new program path.

7

1 x = read()

2 x = 2 * x

3 if (x > 6)

4 return 3 * x

5 else

6 return 0

Figure 2: Symbolic Execution Testing Program

 Consider the program shows in Figure 2, which reads a value and returns a

value of six times x if the input x is greater than 3, and returns 0 else. When a

symbolic executor runs this program, it does not have a concrete value for the

input value, i.e., the result read from line 1. Alternatively, the executor assigns

this program a symbol s to the concrete value. Then statement “x = read()” assigns

s to program variable x. And in line 2, the statement “x = 2 * x” assigns 2 * s to

x. The next statement in line 3 has two conditions: the true branch and the false

branch, which depend on our input value s. The executor associates the constraint

“2 * s > 6” with the true branch, which means that the program returns 3 * x if

and only if “2 * s > 6” is true. And it combines the constraints “NOT (2 * s > 6)”

with the false branch, which negates the true branch as a new path and make the

program return 0. Note that the returned value “3 * x” in line 4 was substituted by

symbolic value“3 * 2 * s”, which is known as the return argument expression, and

that “2 * s > 6” and “NOT (2 * s > 6)” are two different path constraints. Assume

we want “return 3 * x” in line 4 to be executed, we can use a constraint solver

mentioned above to determine a value to make “2 * s == 6” true. If we want the

program to return 24 further, we should also make expression “3 * 2 * s” to be 24,

to which a constraint “3 * 2 * s == 24” should be added. Combining two

8

constraints, we will get “2 * s > 6” and “3 * 2 * s == 24”. Solve the both and we

will get a value of input x to force this program to return 24, the result we want.

 Symbolic Execution Optimization

We use several techniques to optimize our symbolic execution. Some are

mentioned in the Introduction above and some will be proposed as follows.

 Adaptive-Input Symbolic Execution

Because program inputs which we make symbolic are often very large. For

example, a “.doc” document is an input file for Microsoft Word, and those

documents may be millions of bytes in size. In such a case, running a complete

symbolic execution may take hours or days, which is unacceptable.

To improve this situation, an adaptive input based method, which symbolizes

only parts of input space, has been proposed and verified [47]. However, which

part of the input is more important is a question. We believe that the header part

of an input may gain more benefits in term of execution efficiency due to the

influence of important data structures. We also found that it is more efficient to

split an input into segments than to test a whole input in the concept of divide-

and-conquer. We evaluate these in Section 4-C.

 Concolic Execution

The main idea of concolic execution is running the testing program

symbolically with a concrete input. It can follow this input going deeper into the

code. In some cases, we don’t want to be blocked by any integrity checking

functions and exit too early. A well-formed input, which usually produces a good

code coverage, could help us to stay in the deep code by extending this program

9

trace. The efficiency of this technique has been proved by those tools such as

KLEE [5].

 Null-Constraint Single-Path Concolic Execution

Sometimes, one well-formed input could provide enough information. We want

to avoid our concolic execution being lost in the code or stuck in a loop, so we

disable the forking process for producing new branches to focus on one program

trace. We name this skill single-path concolic execution.

In a single-path concolic execution, gathering path constraints is not necessary

anymore because only one concrete path will be executed. Assuming that we want

only symbolic expressions or a taint-like [31] functionality, these constraints

could be dropped. If we want to reduce testing input space, this technique is also

a good choice. We call this null-constraint single-path concolic execution. The

good efficiency of null-constraint will be shown in Section 4-D.

 S2E

S2E [8] is a whole-system symbolic-execution-based automated path explorer

with modular path analyzers. The explorer expands all the paths in which we are

interested, and the analyzer looks for bugs of each such path or simply collects

information.

Figure 3 and Figure 4 shows the S2E architecture in high-level and mid-level

respectively. The prototype of this platform reuses parts of the QEMU virtual

machine [4], the KLEE symbolic execution engine [5], and LLVM tool chain [20].

It can execute any gest OSs that runs on an x86 or ARM CPU.

10

QEMU

S2E Applications
Libraries
Kernel

Guest OS

Figure 3: S2E Architecture I

Guest OS

Execution

Engine

Dynamic

Binary

Translator

Guest Machine Code

Intermediate
Representation

Host
Machine Code

LLVM
Bitcode

Concrete
Execution

by Host CPU

Symbolic
Execution
by KLEE

Instructions Access
Symbolic Data

Instructions Access
Concrete Data

S2E

`

Figure 4: S2E Architecture II

S2E explores paths by running the target system image and selectively

executing small parts of it symbolically. Depending on which segment of code we

11

desired, the corresponding system’s machine instructions are dynamically

translated within the virtual machine into an intermediate representation suitable

for symbolic execution, while the rest are translated to host instruction set as

normal binary translation. Because all of the symbolic and concrete executions

are done outside the guest machine, a full system (OSs, libraries, applications, etc.)

testing for the guest system could be applied.

S2E is easy to use. It modified QEMU’s dynamic binary translator (DBT) to

translate the instructions that depend on symbolic data to LLVM, and dispatch

them to KLEE. In this way, users can test any binary codes that run in the guest

OS without any source. Due to the open source agreement of QEMU, developers

can easily modified S2E to fit their requirement. Thus we use S2E as our core

engine.

 Vulnerable Situations

There are hundreds of vulnerabilities. The Top 25 Most Dangerous Software

Errors [24] lists the most widespread and critical errors that can lead to serious

vulnerabilities in software. We pick up four cases which are often seen in C

programs as our fuzzing target situations.

 Buffer Overflow

 Buffer overflow is an important and persistent security problem and counts

for approximately half of all security vulnerabilities in recent years [10]. This

problem occurs when more data are written to a buffer than it can hold. The

excessive data is written to the adjacent memory, overwriting the contents

including returned addresses in the stack memory. Many memory-based

12

functions in the standard library are easy to cause buffer overflows. We will

discuss this later.

 Integer Overflow

 Integer overflow is a generic name of integer errors such as overflow,

underflow, and signed/unsigned conversion errors. CVE-2002-0639 about

OpenSSH and CVE-2010-2753 about Firefox are two serous integer

vulnerabilities. Many integer overflow vulnerabilities are closely related to

memory allocation functions [44]. If an integer input is used to restrict a memory

manipulation without exhaustive checks, memory violation errors could occur.

Take malloc as an example. If the size argument overflows, the operating system

will allocate less memory space than the program wants, than a heap overflow

would happen.

 Uncontrolled Format String

A format string is an ASCII string that contains text and format parameters.

When a format function, printf for example, evaluates the format string, it

accesses the extra parameters given to the function. However, there is a special

format parameter in ANSI C called ‘%n’, which can write the number of bytes

printed so far to the specific memory. Because parameters and other important

program data are all stored on the stack, if the format string can be controlled by

attackers, they can overwrite returned addresses or other data they want [30].

 Command Injection

 Like format string, if an uncontrolled input string is directly passed to an OS

execution system call or a shell execution function, attackers can easily execute

13

system commands by injecting malicious strings into the input.

 DLL Injection

DLL injection is a technique used for running code within the address space of

another process by forcing it to load a dynamic-link library (DLL) [37]. The

injected code can hook the system or library calls, such as system or malloc,

without modifying any existing programs. We could interrupt programs by the

injected code and analyze the symbolic relationship between arguments and

inputs. Besides standard libraries, we can also hook third-party libraries. The

functions we hook in this paper are shown in Table 2.

On Linux (or other Unix-like OS), arbitrary libraries can be linked to one’s

custom library by setting the LD_PRELOAD environment variable 1 . Such a

library can be created with GCC by compiling with -fPIC option2 and linked with

-shared option3. On Windows, there are multiple ways to do this, one of which is

the hooking call SetWindowsHookEx4. Our work focuses on Linux platform, but

is easy to extend.

1 http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
2 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#Code-Gen-Options
3 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Link-Options.html#Link-Options
4 http://msdn.microsoft.com/en-us/library/ms644990.aspx

http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#Code-Gen-Options
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Link-Options.html#Link-Options
http://msdn.microsoft.com/en-us/library/ms644990.aspx

14

 Method

Unlike traditional fuzzers generating crash inputs (shown in Figure 5), our

work CraxFuzzer generates proof-of-concept (POC) exploit instead. A program

crashes because its instruction pointer EIP is abnormal. Hackers want to find

crashes because if EIP is modified during program execution, they may have

chances to control the program by changing EIP to the shell code address. If we

have some ways to overwrite the returned address, i.e., EIP on the stack to control

the program, a crash situation is not necessary. For example, in an uncontrolled

format string case, the ability of generating a crash is still far easier than

generating an exploit. In a command injection or a SQL injection problem,

crashing a program is not even of our primary consideration. That is the concept

of POC generation, reducing the step of finding crashes and focusing on watching

sensitive functions that may directly or indirectly affect program execution.

There are four stages in our fuzzing framework; test case acquisition, target

searching, proof-of-concept generation, and verification. The architecture

overview is shown in Figure 6. In test case acquisition, we acquire test cases from

traditional fuzzers, the Internet, specs of the program, or a path exploration which

will be merged to symbolic execution in the next stage. In target searching stage,

we use a null-constraint single-path concolic execution method to search for our

target functions. In POC generation, we generate inputs that would crash the

program or affect the sensitive arguments, and then run it again to verify in the

final step.

To make our proposed methods clear and easy to understand, we use an open-

source software XMail [21] to explain them in Section 3-E, and a detailed

15

comparison of traditional fuzzers with our work is provided. At the end of this

chapter, we will show the implementation details of how we build our target-

aware symbolic execution framework on S2E, including modules and

implemented sensitive functions.

Sample
Inputs

Generate One
Input

Execute from
the Input

Test If It
Crashes

False: Generate Another

True
Crash-
Input
Found

Figure 5: Traditional Fuzzer Architecture Overview

Sample
Inputs

Hook Functions

Not Found

Found
Calculate POCs

from the
Expressions

Run Again to
Verify

False: Try Another Function

False: Try Another Solution

True
POC

Resuls

Test Case
Acquisition

Target
Searching

POC
Generation

Verification

Figure 6: Target-Aware Symbolic Execution Framework Overview

Now we are going to explain our methods step by step in detail as follows.

 Test Case Acquisition

To test a program, a sample input is needed as a seed to induct the mutation.

Otherwise, it will cost too much to generate inputs from nothing. There are

16

multiple ways to acquire test cases. Downloading inputs from the Internet or

manufacturing a new one from the specs are straight-forward methods. If these

samples cannot satisfy the requirements, we can generate more of them by

traditional fuzzing or symbolic execution. According to our experiences, a regular

input is usually good enough to find serious bugs. We will demonstrate it in

Chapter 4.

 Target Searching

We use symbolic execution to explore paths and search for our target functions.

A schematic diagram of this execution is shown in Figure 7. The method of null-

constraint single-path concolic execution has been introduced in Section 2-B. We

want to check whether there is any sensitive function whose arguments are also

symbolic or not by hooking the standard libraries. The techniques of how to hook

a function call has been discussed in Section 2-E. We check every function it

hooked and its arguments while executing the program. The hooked functions, or

the target functions, we chose are usually dangerous and may cause vulnerabilities.

If an argument, e.g. an input of a function, has been detected symbolic, luckily we

have found the fragile part of this program. The input bytes corresponding to the

symbolic argument are called hot bytes, which means these bytes can directly

influence this sensitive function and have a good chance to exploit. More

discussions of hot bytes will be made in Section 4-B. We can also print call stacks

of the program to help developers debugging.

17

Target Found

Complete
Program Trace

Single-Path

Concolic Execution

Figure 7: Target Searching Overview

1 x = read()

2 x = x + 1

3 malloc(2 * x)

Figure 8: Transformation Function Example

Program
Input

Tranfo.
Func. F01(x) Variable 1

Transformation
Function F12(x) Variable 2

Sensitive
Argument

Transformation
Function F23(x)

Transformation Function F03(x)

Inverse Transformation Function F03
-1(x)

Figure 9: Transformation Relations in Program Execution

 Proof-of-Concept Generation

The sensitive situation is a formula in terms of symbolic information. In a large

18

program, a value often undergoes a series of transformation between being read

as input and triggering a potential vulnerability. For example in Figure 8, the

argument malloc in line 3 has been passed to two transformation functions, f(x) =

x + 1 and f(x) = 2 * x. Once a sensitive situation has been confirmed, we can

generate the proof-of-concept (POC) exploit, which is an evidence that we already

have the ability to exploit this program. To find the input that makes the variable

to be a certain value, we need to solve the inverse of the transformation functions.

In Figure 9, we can set Transformation Function F03(x) to be a constant value C,

which we want the sensitive argument to be. Use a constraint-solver such as STP

[13] to solve equation F03(x) = C, e.g. find the results of F03-1(C). This is one of

functionalities of symbolic execution. Note that in the null-constraint symbolic

execution, we do not record any path constraints, which means the results may

not be feasible (but efficient). We will discuss about this in Section 3-D and in

Chapter 4.

According to the properties of each sensitive situation, we can classify the

problems into designated types as follows.

 Formats in Format Functions

If a format argument in format functions, prinf and syslog for example, is

symbolic, which means it can be affected by input bytes, there is a high possibility

that a format string bug may exist in the testing program. If the developers have

not checked the conversion specification character “%” or restricted the length of

the inputs, attackers may exploit this program by a well-designed input that

contains shell codes and the conversion specifier “%n” [30].

19

 Commands in Execution Functions

Command arguments in execution functions such as system and exec are

sensitive too. If a command segment passes to these functions without being

checked, attackers could use “&&”, “;”, or “&” as conjunctions of normal and

malicious commands, or directly inject a malicious binary to hack this system.

 Sources in Memory Copy Functions

If the source argument in memory copy function can be affected by input bytes,

there is a chance for hackers to generate buffer overflows in our testing program

by increasing the length of our tainted input bytes. Although some memory

functions use a size argument to restrict size of buffers to be copied, developers

often forget to check the destination buffer size or the end of string character “\0”.

Lots of buffer overflow vulnerabilities have been revealed by CVE mentioned as

above, and we will demonstrate some of them in Chapter 4. Str(n)cpy, read, and

memset are three functions which belong to this type.

 Lengths in Memory Copy Functions

Similar to sources in memory functions, controlling the length of the function

is more intuitive. Without proper checking, a buffer overflow is easy to happen if

the length argument and buffer size is inconsistent.

 Sizes in Memory Allocation functions

If a size argument in memory allocation functions is symbolic, there may be an

integer overflow in our testing program. If we make the size (an integer) overflow,

the operating system will allocate less memory space than the program wants, and

it may use the memory out of the boundary in the heap, which causes a heap-

20

based buffer overflow, e.g., malloc(0xFFFFFFFF).

 Verification

After generating a new input without path constraints, we need to check if the

input is feasible. We do this by re-running the program with the new input and

checking whether the sensitive argument is rewritten or not. If the answer is yes,

we have almost confirmed that we can change the sensitive argument to an

arbitrary value including an exploit. We call the generated input a proof-of-

concept exploit because we have proved that there is a vulnerability and explained

how to manipulate it in this situation. If the answer is no, which means the input

may not be feasible due to the changing of the program’s running path, we need

to add some path constraints or change the previously used value to calculate a

new input. Once no input can be generated, we have to go back to the first step

acquiring a new sample input.

 Example: XMail-1.21

XMail [21] is a lightweight email server in comparison with traditional mail

servers. In 2005, a stack-based buffer overflow vulnerability in module sendmail

in XMail has been revealed and numbered CVE-2005-2943. In this bug, remote

attackers can execute arbitrary code via crafting the specific field in an email letter.

21

1 From: hchung@cs.nctu.edu.tw

2 To: hchung@cs.nctu.edu.tw

3 Subject: A Target-Aware Symbolic Execution Framework for Fuzz Testing

4

5 This is an XMail test letter

6

Figure 10: Sample Email with Envelopes for XMail

In SendMail.cpp:

341 static char const *AddressFromAtPtr

(char const *pszAt, char const *pszBase, char *pszAddress)

342 {

344 char const *pszStart = pszAt;

351 char const *pszEnd = pszAt + 1;

…

355 int iAddrLength = (int) (pszEnd - pszStart);

357 strncpy(pszAddress, pszStart, iAddrLength);

358 pszAddress[iAddrLength] = '\0';

359

360 return (pszEnd);

362 }

Figure 11: Function AddressFromAtPtr in SendMail.cpp in XMail

Figure 10 shows a sample email we commonly used in our daily life. This

original email contains four fields, including sender, receiver, subject, and body,

which the mail transfer agent (MTA) actually delivers. We make this email

symbolic and pipe it into our testing program. In target searching stage, we found

a sensitive function strncpy has been hooked and its source-string argument is

symbolic. From tracking the symbolic information, this argument is directly

affected by bytes from 0x20 to 0x34, and the corresponding string is

22

“hchung@cs.nctu.edu.tw”, the receiver’s email address which we marked gray in

Figure 10 and called hot bytes. We look into the source code in Figure 11 to

confirm our guest. In line 357, strncpy copies a string which is read from the letter

to a fixed size array (read the complete source code and you will know). Now we

know the receiver’s address will be copied to a certain buffer. That is a buffer

overflow suspect. We use the expressions (shown in Figure 12, which merely

extend byte to word) gathered before and our buffer overflow heuristics to decide

a long receiver’s address field. Then fill it back to the input and run it again. A

segmentation fault exception will be raised and that verifies our result.

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x20 INPUT)))

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1)))

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x21 INPUT)))

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1)))

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x22 INPUT)))

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1)))

…

Figure 12: Strncpy Argument Expressions of INPUT in XMail

However, if we turn over this work to traditional fuzzers, they have to mutate

the input mail from byte to byte, which has a large time complexity of O(2^n).

Even if we know the format of the letter, which is hard to be formulized, we cannot

guarantee that the mutated inputs could cover the problematic code. The

comparison of traditional fuzzers with our work is listed in Table 1.

23

Table 1: Comparison of Traditional Fuzzers with CraxFuzzer

 Traditional Fuzzers
Traditional

Symbolic Fuzzers

Our Target-Aware

Symbolic Fuzzer

Targets Exceptions (crashes) Exceptions (crashes) Sensitive functions

How to Find Generate inputs Explore paths Hook functions

How to Verify Debugging tools Debugging tools Check hooked funcs.

Seed Inputs Existing inputs X Existing inputs

How to Generate

New Inputs
Mutate seed inputs

Solve path

constraints
Only one input

Hit Rate of an Input

to Reach a Target
Very low Low

High (hooked funcs.

are easier to find)

Result Types Crash inputs Crash inputs POC Exploits

How to Generate

Results
Mutate seed inputs

Solve path

constraints

Solve constraints

from expressions

Results Generation

time
Fast Slow Only one input

When to Generate

Results
Before execution

After targets

being found

After targets

being found

Results Accuracy Very high
Not too high (confli-

ctive constraints)

Not too low (ignored

path constraints)

Aware of Constraints

and Expressions
X O O

QEMU

S2E Testing
Programs

Guest OS
CraxFuzzer

Figure 13: CraxFuzzer Architecture

 Implementation

Our fuzz testing framework, CraxFuzzer (shown in Figure 13), is built on top

of S2E, which is discussed in Section 2-C. Identical to S2E, CraxFuzzer applies

24

symbolic execution via a virtualizer, e.g. QEMU. We can test programs on

different systems by this virtualization technique. Testing programs, generated

sample inputs and system configurations will be sent to the guest OS after

CraxFuzzer starts. The biggest defect of this framework is the lack of support for

floating points due to the implementation of KLEE.

Table 2: List of Discovered Sensitive Functions

Sensitive Functions Sensitive Arguments Vulnerable Situations

fread Length Integer/Buffer Overflow

read Length Integer/Buffer Overflow

memset Length Integer/Buffer Overflow

memcpy Source, length Integer/Buffer Overflow

strcpy Source Buffer Overflow

strncpy Source, length Integer/Buffer Overflow

syslog Format Format String

vfprintf Format Format String

vsnprintf Format, length Format String, Integer/Buffer Overflow

sprintf Format Format String Buffer Overflow

fprintf Format Format String

system Command Command Injection

exec family Path (file) Command Injection

realloc Size Integer/Buffer Overflow

malloc Size Integer/Buffer Overflow

In guest OS, we implement a wrapper to inject our custom libraries and redirect

the program inputs of every testing object. The custom libraries are used to

overwrite sensitive functions in standard libraries. According to our experiences

and some researches [10, 30, 42, 44], we intercepted sensitive functions listed in

Table 2. In a hooked function call, we use custom CPU op code to check whether

an argument is symbolic, printing the expressions and call stacks. The input

redirection is used to symbolize inputs. For programs whose input is read from

standard input (stdin) or arguments, it is easy to symbolize parts of them or all of

25

them. For programs whose input is read from files, we have to map files in the

hard drive to the memory first by system call mmap. However, files are often large

in size. We choose adaptive file segments described in Section 2-B-I to symbolize

important data structures only.

In host OS, log parser, input generator and verifier are implemented. In the

hooked function call, we output symbolic expressions of the sensitive arguments.

The parser is used to analyze this output. It determines whether this sample input

is useful, generating new inputs based on constraints and heuristics described in

Section 3-C. After a possible exploit POC is generated, we re-run it symbolically

to verify due to the deduction of constraints discussed in Section 2-B-III.

We build the null-constraints-single-path-concolic-execution technique into

S2E plugins. These plugins contain the constraints reduction and loggers. The

coordinator of these components is also implemented in a plugin. Relations

between components are shown in Figure 14. There are two cycles in this figure.

The first one is about finding sensitive arguments and its corresponding sensitive

input bytes. The second one is about generating POC. If any of these steps fails,

this framework is able to fall back and try again until there are no available sample

inputs anymore.

26

Guest OS
(Debian Linux)

Host OS
(Ubuntu Linux)

Emulator
(S2E/QEMU)

Sample
Input

Concolic
Executor

POC
Generator

Exploit
POC

Testing
Program

Concolic
Executor

With Custom
Libraries

Log Parser &
Verifier

Output Custom
Logs

Failed Passed
Log Parser &

Verifier

Output Custom
Logs

Failed

Passed

Failed

Find Sensitive

Arguments

Exploit POC

Generation

Figure 14: CraxFuzzer Component Relations

27

 EVALUATION

In this chapter, we present four sets of experiments and our experiment

environment. In Section 4-B, we evaluate the value of hot bytes concept to reduce

testing space by observing the ratio of hot bytes to total input bytes. In Section 4-

C, we present the adaptive-input technique, which utilizes hot bytes, headers, or

other information to make part of input symbolic. In software testing, if we test

only the most important parts of the input, redundant testing could be omitted. In

Section 4-D, we introduce the results of null-constraint technique, which could

speed up symbolic execution in some specific situations. And in Section 4-E, we

show some vulnerabilities we detected in popular applications. At the end of this

chapter, we give some real-world case studies, including sudo and tiff, to

demonstrate the power of our work.

Table 3: List of Testing Applications

Application Version Operation Input Type Line of Code

XMail 1.21 Send email Stdin 31480

Sudo 1.8.0 ./sudo -D9 Arguments 25324

Exim 1.21 ./exim -bh ::%eth0 Arguments 64102

Socat 1.4 ./socat –lyAAAA Arguments 13929

Ncompress 4.2.4 ./ncompress FILE Arguments 1432

Gif2png 2.5.3 ./gif2png FILE Arguments 1353

Iwconfig V26 ./iwconfig eth0 Arguments 5285

Tipxd 1.1.1 ./tipxd –fFILE Arguments 1066

Mcrypt 2.6.8 Decryption Files 5846

Tiff 3.6.1 View TIFF image Files 42077

Tiff 3.7.0 View TIFF image Files 43717

Mplayer 1.0rc2 Play VQF media Files 488618

Vim 1.7 Open file with filetype.vim Files 377767

28

 Experiment Setup

Although CraxFuzzer could test programs on different OSs, we are dedicated

to study software on Linux platform. We apply CraxFuzzer to a large number of

real-world applications. A list of these applications is summarized in Table 3. All

of them are popular open-source projects for Linux. The “Operation” column

shows what operations or what running arguments we take to test these

applications. Note that the inputs are common and easy to be retrieved from the

Internet or the manual pages. If further researchers want to focus on testing some

specific libraries such as OpenFlow Applications [6], PHP SQL libraries [48], or

even the CPU register EIP [18], they could just extend this work by adding these

libraries to our sensitive function pool and defining the vulnerable situations they

want the program to be.

Our experiments are conducted on a virtual machine with Intel Xeon E3-

1230V2 at 3.3 GHz and enough memory, running Ubuntu 12.04 64 bit. The guest

OS is running Debian 6.0.6 32 bit.

Table 4: Hot Bytes Identification Results

Application # Symbolic

 Bytes

Detected

Hot Bytes

Run Time

XMail 156 22 5s

368 40 6s

Tiff-3.6.1 18278 5 6s

46271 3 6s

Tiff-3.7.0 18278 158 8s

46271 130 10s

Vim 1437 258 113s

Mplayer 1024/120132 1024 100s

29

 Hot Bytes Identification

In this experiment, we measure the ratio of hot bytes to total input bytes and

the complete execution time. We feed common inputs, which are retrieved from

the Internet or the spec, to some input-file-based testing programs in. The hot

bytes are some segments of the input that directly affect the sensitive arguments

listed in Table 2.

Table 4 shows the results of four common open-source Linux applications.

XMail is an email tool, whose input is a plaintext letter. Tiff is a library that

manipulates TIFF files. Vim is a common editor, tested with one of its scripts

called filetype.vim. Mplayer is a media player that plays various kinds of media.

The “Operation” column represents what we do to test this application, the “#

Symbolic Bytes” column represents how many bytes of the total input we make

symbolic and “# Hot Bytes” indicates how many bytes of the input are sensitive.

The total run time is shown in the last field “Run Time”.

Figure 15, Figure 16 and Figure 17, shows hot bytes distributions for tiff-3.7.0

tests and vim test respectively. The first TIFF file can be downloaded from here1

and the second file can be found here2. Character ‘H” denotes a hot byte and “dot”

denotes a non-hot-byte. As the results show, all hot bytes are centralized at the

beginning of the file or at the end of the file, which means they are probably

headers.

The ratio of hot bytes to total inputs is approximately in the range from 1% to

20%. That means if we want to find vulnerabilities in Table 2, we have to test

1 http://www.fileformat.info/format/tiff/sample/3794038f08df403bb446a97f897c578d/download
2 http://www.fileformat.info/format/tiff/sample/e9898d47632440288d86553edf676007/download

http://www.fileformat.info/format/tiff/sample/3794038f08df403bb446a97f897c578d/download
http://www.fileformat.info/format/tiff/sample/e9898d47632440288d86553edf676007/download

30

only 1% bytes over the whole input in the best case, which reduces the testing

input space from 8N to 8N/100. In the mplayer case, almost all bytes are hot bytes

and are hooked in memset functions. We think the reason is that while playing

media, the player will copy the input to buffers. We believe that if we reduce the

number of kinds of sensitive functions, memset in the mplayer case for example,

we can obtain a more accurate hot bytes distribution. In some cases, we do not

make all the input symbolic because we want to avoid bytes from involving

floating operations or the input space is too large. We use “Symbolic Bytes/Total

Bytes” to denote this situation. As we count the hot bytes in an acceptable running

time, this technique can reduce a lot of execution time.

The related work to be compared with would be TaintScope. However, the

ImageMagick test picked from TaintScope failed because of the KLEE floating

point issue. And the rest results of TaintScope cannot be taken because they are

based on Windows platform, which is not supported.

Skipped 17700 dots

........

........

........

........

........

........

.......H HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHH...

........

........

Figure 15: Hot Bytes of TIFF File I

31

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH

H.......

........

........

........

........

........

........

Skipped 45700 dots

Figure 16: Hot Bytes of TIFF File II

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH
HHHHHHHH .HHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH
HHHHHHHH HH..HHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH
HHHHHHHH HHHHHHHH HHHH....
........
........
........
........
......H.HHHHHH HHHHHHHH HHHHHHHH HHHHHHHH H.......
........
........HH.H. .H.....H H....H..H..H..
.H...H.. H..H..H. .H...H.. ..H.....
........
........
........
........
........
........
........
........
........
........
........

Figure 17: Hot Bytes of File Using Filetype.vim

 Adaptive-Input Technique Evaluation

With header information retrieved from hot bytes technique and other

32

documents of file format, we are able to locate the important part of input. For

files whose hot bytes can be easily identified, we can symbolize only the hot bytes

parts because hot bytes are the only inputs that affect sensitive functions. For files

in which hot bytes cannot work, we have to read documents to find the important

part, which is usually the header, additionally.

Results of this experiment are shown in Table 5. The “# Input Bytes” means

the number of total input bytes while “# Adaptive Symbolic Bytes” means the

number of the important bytes we believe to be. The “Regular Run Time” column

represents the time cost of running symbolic execution with all bytes symbolic

while the “Adaptive-Input Run Time” column represents running time using this

technique. We can see that the running time is improved if the same hot bytes are

found.

 For cases which take a long time like mplayer, we may use the concept of

divide-and-conquer to run multiple tiny segments (1024 bytes in this case)

respectively and then combine the results.

Table 5: Adaptive-Input Technique Results

Application # Input

Bytes

Adaptive

Symb. Bytes

Run Time

(Regular)

Run Time

(Adaptive-Input)

XMail 156 22 5s 4s

368 40 6s 5s

Tiff-3.7.0 18382 180 8s 5s

Vim 1437 583 113s 15s

Mplayer 120132 1024 X 100s

 Null-Constraint Technique Evaluation

In this experiment, we compare the execution time with or without gathering

33

path constraints. Results are shown in Table 6. The “Regular Run Time” column

represents the time cost of running symbolic execution with path constraints while

the “Null-Constraint Run Time” column represents running time using this

technique. The “# Symbolic Bytes” column shows number of bytes we symbolize.

The “# Symbolic Bytes” column in the “sudo” row is uncertain because it is

determined by user’s system. The number of bytes is approximated in a level of

ten to the first power.

After a possible malicious input is generated by our null-constraint technique,

we need to verify this input again due to the lack of path constraints. We can

choose any set of constraints and put them back to constraint-solver for re-running.

In some cases like hot bytes identification, the path constraints are even useless at

all and does not have to be recorded. And of course it reduced the testing input

space.

We notice that there exists a significant difference between executing with or

without constraints in running time in some applications. For large software with

complicated calculation such as mplayer and vim, we can have a great

improvement on it. However, for simple applications whose running time is short,

the efficiency enhancement is limited. These experiments affirm our hypothesis.

Table 6: Null-Constraint Technique Results

Application # Symbolic

Bytes

Run Time

(Regular)

Run Time

(Null-Constraint)

XMail 156 6s 5s

368 10s 6s

Tiff 18278 7s 6s

Sudo All arguments 10s 8s

Vim 1437 775s 113s

Mplayer 1024/120132 Over 500,000s 100s

34

Table 7: CraxFuzzer Fuzzing Results

Application Advisory ID Vulnerability

Type

Hooked

Func.

Symbolic

Bytes

Run

Time

XMail CVE-2005-2943 Buffer Overflow Strncpy 156 5s

Sudo CVE-2013-1775 Format String Vfprintf All args. 8s

Exim EDB-ID#796 Buffer Overflow Strncpy All args. 5s

Socat CVE-2004-1484 Format String Syslog All args. 5s

Ncompress CVE-2001-1413 Buffer Overflow Strcpy All args. 5s

Gif2png CVE-2010-4695 Buffer Overflow Strcpy All args. 5s

Iwconfig CVE-2003-0947 Buffer Overflow Strcpy All args. 5s

Tipxd OSVDB-ID#12346 Format String Syslog All args. 5s

Mcrypt CVE-2012-4409 Buffer Overflow Fread All args. 6s

Tiff CVE-2004-1307 Integer Overflow Malloc 18278 5s

Mplayer CVE-2008-5616 Buffer Overflow Memcpy 1024 100s

Vim CVE-2008-2712 Command Injection Execvp 1437 113s

 Fuzzing Results

Table 7 lists well-known vulnerabilities we have found yet and the execution

time is also provided. The “Advisory ID” column shows advisory identifier

information. CVE-YYYY-0000 presents CVE identifiers while the eight digits are

year and series number of this vulnerability, EDB-ID presents Exploit-DB 1

identifiers and OSVDB-ID presents Open Sourced Vulnerability Database 2

identifiers. The “Vulnerability Type” shows the corresponding type introduced in

Section 2-D. The “Hooked Function” columns shows which function call we have

hooked and found the corresponding vulnerability successfully in the standard

library. The “Run Tine” column shows the execution time to generate the exploit

1 http://www.exploit-db.com/
2 http://osvdb.org/

http://www.exploit-db.com/
http://osvdb.org/

35

POC of this vulnerability.

First we discuss about the running time. Applications with less computation or

the less symbolic input have a short execution time. Five seconds is almost the set

up time of our framework with the time cost of booting images to the specific

snapshots. The running time of symbolic execution is short and can be ignored.

For large applications such as tiff, vim and mplayer, the execution time is also

acceptable. Compared with traditional fuzzers, which generate millions of test

cases and execute millions times, they may take days to find only crashes for these

applications and are not promised to be exploitable.

Many bugs we have found are very simple. They are often caused by the lack

of checking buffer boundaries of memory copy functions or escaped characters of

format string functions. Although some developers use strNcpy series functions

to restrict bytes to be copied, they forget to check source bytes and destination

bytes simultaneously. For vulnerabilities whose input is composed of readable

strings, the transformation during program execution is usually linear

transformation, which is simple to exploit. The uncontrolled format string,

command injection and SQL injection cases belong to this type. For software with

complex structures and systematic quality testing, our proposed method can easily

outperform existing methods. Case studies in next section will introduce some

examples, one of which includes complicated transformations.

 Case Studies

We introduce two real-world cases to demonstrate CraxFuzzer in this section.

Both of them are well-known applications and contain serious security issues.

36

In sudo.c:

1097 void

1098 sudo_debug(int level, const char *fmt, ...)

1099 {

1100 va_list ap;

1101 char *fmt2;

1102

1103 if (level > debug_level)

1104 return;

1105

1107 easprintf(&fmt2, "%s: %s\n", getprogname(), fmt);

1108 va_start(ap, fmt);

1109 vfprintf(stderr, fmt2, ap);

1110 va_end(ap);

1111 efree(fmt2);

1112 }

Figure 18: Parts of Sudo Code

 Sudo-1.8.0

Sudo is a commonly used system utility that can execute a command as another

user, especially administrator. Therefore, security issues of sudo are deeply

concerned about. In line 1107 and line 1109 in Figure 18, there is a format string

function which takes its program name as format argument, which is an

uncontrolled format string problem. As program name is one of the program

execution arguments, which is also program inputs, symbolic information can be

intercepted in vfprintf with proper sample inputs. These sample inputs can be

derived from the manual page, -D flag for example. This vulnerability is

announced in CVE website with a CVE-2013-1775 identifier.

37

In tif_dirread.c: (Simpilified)

cp = (char*)malloc(nstrips * sizeof (uint32))

Figure 19: Parts of Tiff code

SymbExpression malloc_size –

(Shl w32 (Extract w32 0 (UDiv w64 (ZExt w64 (Add w32 (w32 0xffffffff)

(Add w32 N0:(ReadLSB w32 0x72 v0_file_0)(ReadLSB w32 0x2a v0_file_0))))

(ZExt w64 N0)))(w32 0x2))

SymbExpression malloc_size - Value: 0xc

Figure 20: Report of Malloc of Tiff Execution

 Ttiff-3.6.1

Integer overflow in the TIFFFetchStripThing function in tif_dirread.c for libtiff

3.6.1 allows remote attackers to execute arbitrary code via a TIFF file with the

STRIPOFFSETS flag and a large number of strips, which causes a zero byte or a

small bytes buffer to be allocated and leads to a heap-based buffer overflow. This

vulnerability is registered as CVE-2004-1307.

The sensitive function malloc we have found is shown in Figure 19. Variable

nstrips denotes the number of strips of the TIFF file. We want to make expression

“nstrips * sizeof(uint32)” to overflow as zero or a small value. There are many

transformations from program start to the target function. However, the

transformation functions of nstrips variable are too hard to be found out by eyes.

We can use CraxFuzzer to do this. The report is shown in Figure 20. This report

shows the results of executing TIFF library by feeding the 18 KB file we have

downloaded from the Internet and introduced before. The results can be simplified

38

to this equation

SIZE = (A+B-1)/B*4

where A is INPUT[0x2A] and B is INPUT[0x72].

That means the 0x2Ath byte and 0x72th byte of our input can make this malloc’s

size argument be the value of 0xC. If we set this size argument to be zero or a

small value and solve a set of integer overflow answer of A and B, a heap overflow

problem may occur. We get the answer that A equals to 0x40000000 and B equals

to 0x1 by solving equation “(A+B-1)/B*4=0”. We then overwrite them to the

original input and run it again to verify. It crashes and the value of size argument

has been changed. This proves that we can find a way to control the heap overflow

of tiff-3.6.1 to cause the program buffer overflow by feeding a normal input

downloaded from the Internet.

39

 CONCLUSION

In this thesis, we present CraxFuzzer, a target-aware directed whole-system

symbolic fuzzing framework. By using libraries hooking and hot bytes

identification techniques, CraxFuzzer can locate sensitive parts of the program

after being fed a regular input, and generate the corresponding POC exploit

efficiently. CraxFuzzer can dramatically reduce the testing space compared with

traditional fuzzers and find conditions they are not able to reach, helping

developers to find the security vulnerabilities and to fix them in a short time. For

cases whose source codes are available, it is also possible to use debug

information to print out the call stack and other information. We have applied

CraxFuzzer to 17 previously known issues of different security types.

Experimental results show that it can accurately locate the sensitive parts and

greatly improve the effectiveness of fuzz testing.

TaintScope [42], which inspires us, provided the concept of finding hot bytes

by dynamic taint analysis. However, our methods are easier and more

straightforward by taking advantages of the property of symbolic execution. Splat

[46] defines a buffer overflow situation and Catchconv [29] defines an integer

conversion error situation, while IntScope [44] defines an integer overflow

situation and Saxena, P., et al. [33] defines a loop-extended situation. At the

application level, NICE [6] models OpenFlow applications to find network bugs.

In spite of that, all of them merely focus on one specific condition, and it is hard

to generalize the targets. Caselden, D., et al. [7], McCamant, S., et al. [25] and

STrigger [22] introduced vulnerability-condition-based, or trigger-condition-

based test case generation methods respectively. Nevertheless, because of the

40

different symbolic engines and heuristics they use, source code is needed and the

testing tools are not platform-independent and whole-system.

If researchers want to modify our framework to create real exploits, it is easy

to implement by replacing POC with shell code. Shell code is machine or OS

dependent and more complicated to be generated automatically, and that’s why

our work delegate this step to other tools. CRAX [18, 47, 48], AEG [3] and other

researches [6, 7, 16] are dedicated to this field.

However, there are several limitations in the current implementation of

CraxFuzzer. First, the lack of floating support of KLEE is a big problem to test

programs with floating point operations. It will terminate S2E if countering this

situation. We can use adaptive-input technique to strategically avoid this

implementation problem. Second, due to the complex path constraints and the

natural property of hash functions, checksum, cryptographic operation or digital

signature, which are designed to protect against data alteration, are not

recommended being tested by our work. TaintScope [42] has a great success on

checksum reconstruction. It is possible to combine these modules. Third, our

searching mechanism is based on hooking functions. If we want to find a

vulnerability that is not related to functions (Figure 21, for example), the DLL

injection framework does not work anymore. Some new mechanisms must be

found to generalize this situation. However, with vulnerabilities that are related to

functions, such as PHP SQL libraries [48], CraxFuzzer works pretty well. It is

also possible to hook CPU register EIP [18] to find the condition of crash. Forth,

path constraints selection is also a challenge. What path constraints to pick is a

Satisfiability (SAT) problem, which is very hard [41]. It would take great efforts

41

to do it well. The last weak point is how to retrieve a sample input that can lead

us to the bug. In most cases, regular inputs cannot be executed into the problematic

code due to the imperfect of unit test cases. We must generate such inputs

ourselves. Control flow graph (CFG) and call graph are good mediums for use

[44]. We can use shortest-path algorithms to find a path to the sensitive function

and generate the corresponding input like STrigger [22]. There are also lots of test

case generation researches to help us creating inputs [32].

1 while(n--)

2 str[n] = 0;

Figure 21: Vulnerability Not Related to Functions Example

42

References

[1] S. Anand, P. Godefroid, and N. Tillmann, "Demand-driven compositional

symbolic execution," in Tools and Algorithms for the Construction and

Analysis of Systems, ed: Springer, 2008, pp. 367-381.

[2] W. A. Arbaugh, W. L. Fithen, and J. McHugh, "Windows of vulnerability: A

case study analysis," Computer, vol. 33, pp. 52-59, 2000.

[3] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, "AEG: Automatic Exploit

Generation," in NDSS, 2011, pp. 59-66.

[4] F. Bellard, "QEMU, a Fast and Portable Dynamic Translator," in USENIX

Annual Technical Conference, FREENIX Track, 2005, pp. 41-46.

[5] C. Cadar, D. Dunbar, and D. R. Engler, "KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs," in

OSDI, 2008, pp. 209-224.

[6] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, "A NICE way to

test OpenFlow applications," NSDI, Apr, 2012.

[7] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant, and D.

Song, "Transformation-aware exploit generation using a HI-CFG,"

University of California, Berkeley, Tech. Rep. UCB/EECS-2013-85, 2013.

[8] V. Chipounov, V. Kuznetsov, and G. Candea, "S2E: A platform for in-vivo

multi-path analysis of software systems," ACM SIGARCH Computer

Architecture News, vol. 39, pp. 265-278, 2011.

[9] V. Chipounov, V. Kuznetsov, and G. Candea, "The s2e platform: Design,

implementation, and applications," ACM Transactions on Computer

Systems (TOCS), vol. 30, p. 2, 2012.

[10] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, "Buffer overflows:

Attacks and defenses for the vulnerability of the decade," in DARPA

Information Survivability Conference and Exposition, 2000. DISCEX'00.

Proceedings, 2000, pp. 119-129.

[11] L. De Moura and N. Bjørner, "Z3: An efficient SMT solver," in Tools and

Algorithms for the Construction and Analysis of Systems, ed: Springer, 2008,

pp. 337-340.

[12] M. Eddington. (2011). Peach fuzzing platform. Available:

http://peachfuzzer.com/

[13] V. Ganesh and D. L. Dill, "A decision procedure for bit-vectors and arrays,"

in Computer Aided Verification, 2007, pp. 519-531.

[14] V. Ganesh, T. Leek, and M. Rinard, "Taint-based directed whitebox fuzzing,"

http://peachfuzzer.com/

43

in Software Engineering, 2009. ICSE 2009. IEEE 31st International

Conference on, 2009, pp. 474-484.

[15] P. Godefroid, M. Y. Levin, and D. A. Molnar, "Automated Whitebox Fuzz

Testing," in NDSS, 2008, pp. 151-166.

[16] S. Heelan, "Automatic generation of control flow hijacking exploits for

software vulnerabilities," University of Oxford, MSc Computer Science

Dissertation, 2009.

[17] S. Hocevar. (2011). zzuf—multi-purpose fuzzer. Available:

http://caca.zoy.org/wiki/zzuf

[18] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and W.-M. Leong,

"CRAX: Software Crash Analysis for Automatic Exploit Generation by

Modeling Attacks as Symbolic Continuations," in Software Security and

Reliability (SERE), 2012 IEEE Sixth International Conference on, 2012, pp.

78-87.

[19] J. C. King, "Symbolic execution and program testing," Communications of

the ACM, vol. 19, pp. 385-394, 1976.

[20] C. Lattner and V. Adve, "LLVM: A compilation framework for lifelong

program analysis & transformation," in Code Generation and Optimization,

2004. CGO 2004. International Symposium on, 2004, pp. 75-86.

[21] D. Libenzi. XMail. Available: http://www.xmailserver.org/

[22] J. Liu, Q. Wei, Q.-x. Wang, and T. Guo, "Trigger condition based test

generation for finding security bugs," in Systems and Informatics (ICSAI),

2012 International Conference on, 2012, pp. 1106-1110.

[23] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, "Directed symbolic

execution," in Static Analysis, ed: Springer, 2011, pp. 95-111.

[24] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, "2011 CWE/SANS

Top 25 Most Dangerous Software Errors," Common Weakness

Enumeration, vol. 7515, 2011.

[25] S. McCamant, M. Payer, D. Caselden, A. Bazhanyuk, and D. Song,

"Transformationaware symbolic execution for system test generation,"

Tech. Rep. UCB/EECS-2013-125, University of California, Berkeley (Jun

2013)2013.

[26] B. P. Miller, L. Fredriksen, and B. So, "An empirical study of the reliability of

UNIX utilities," Communications of the ACM, vol. 33, pp. 32-44, 1990.

[27] C. Miller, J. Caballero, N. M. Johnson, M. G. Kang, S. McCamant, P.

Poosankam, et al., "Crash analysis with BitBlaze," at BlackHat USA, 2010.

[28] D. Molnar, X. C. Li, and D. A. Wagner, "Dynamic test generation to find

integer bugs in x86 binary linux programs," in Proceedings of the 18th

http://caca.zoy.org/wiki/zzuf
http://www.xmailserver.org/

44

conference on USENIX security symposium, 2009, pp. 67-82.

[29] D. A. Molnar and D. Wagner, "Catchconv: Symbolic execution and run-time

type inference for integer conversion errors," UC Berkeley EECS, 2007.

[30] T. Newsham, "Format string attacks," ed, 2000.

[31] J. Newsome and D. Song, "Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software,"

2005.

[32] J. Röβler, G. Fraser, A. Zeller, and A. Orso, "Isolating failure causes through

test case generation," in Proceedings of the 2012 International Symposium

on Software Testing and Analysis, 2012, pp. 309-319.

[33] P. Saxena, P. Poosankam, S. McCamant, and D. Song, "Loop-extended

symbolic execution on binary programs," in Proceedings of the eighteenth

international symposium on Software testing and analysis, 2009, pp. 225-

236.

[34] E. J. Schwartz, T. Avgerinos, and D. Brumley, "All you ever wanted to know

about dynamic taint analysis and forward symbolic execution (but might

have been afraid to ask)," in Security and Privacy (SP), 2010 IEEE

Symposium on, 2010, pp. 317-331.

[35] K. Sen, "Concolic testing," in Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, 2007, pp.

571-572.

[36] K. Sen, D. Marinov, and G. Agha, CUTE: a concolic unit testing engine for C

vol. 30: ACM, 2005.

[37] J. Shewmaker, "Analyzing dll injection," GSM Presentation, 2006.

[38] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, et al., "BitBlaze:

A new approach to computer security via binary analysis," in Information

systems security, ed: Springer, 2008, pp. 1-25.

[39] M. Staats and C. Pǎsǎreanu, "Parallel symbolic execution for structural test

generation," in Proceedings of the 19th international symposium on

Software testing and analysis, 2010, pp. 183-194.

[40] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability

discovery: Pearson Education, 2007.

[41] J. Vanegue, S. Heelan, and R. Rolles, "SMT Solvers in Software Security," in

WOOT, 2012, pp. 85-96.

[42] T. Wang, T. Wei, G. Gu, and W. Zou, "TaintScope: A checksum-aware

directed fuzzing tool for automatic software vulnerability detection," in

Security and Privacy (SP), 2010 IEEE Symposium on, 2010, pp. 497-512.

[43] T. Wang, T. Wei, G. Gu, and W. Zou, "Checksum-aware fuzzing combined

45

with dynamic taint analysis and symbolic execution," ACM Transactions on

Information and System Security (TISSEC), vol. 14, p. 15, 2011.

[44] T. Wang, T. Wei, Z. Lin, and W. Zou, "IntScope: Automatically Detecting

Integer Overflow Vulnerability in X86 Binary Using Symbolic Execution," in

NDSS, 2009.

[45] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, "Scheduling black-box

mutational fuzzing," in Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security, 2013, pp. 511-522.

[46] R.-G. Xu, P. Godefroid, and R. Majumdar, "Testing for buffer overflows with

length abstraction," in Proceedings of the 2008 international symposium

on Software testing and analysis, 2008, pp. 27-38.

[47] 黃世昆, 黃銘祥, 黃博彥, 賴俊維, and 呂翰霖, "自動脅迫產生器發展

現況與威脅分析," 資訊安全通訊, vol. 18, pp. 88-100, 2012.

[48] 劉歡, "跨平台 Web 程式測試與攻擊產生系統," 碩士, 資訊科學與工

程研究所, 國立交通大學, 2013.

