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具目標認知符號執行模糊測試框架 
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國 立 交 通 大 學   資 訊 科 學 與 工 程 研 究 所  碩 士 班 

 

 

摘要 

軟體設計不良所產生的漏洞，例如 buffer overflows、integer 

overflows、uncontrolled format strings和 command injections

等，這些問題常被駭客操作使用、入侵使用者個人電腦或伺服器。

Windows和 Linux上的應用程式，或作業系統本身不時發布安全性更

新就是為了修補這樣的問題。 

為了減少軟體的漏洞，有許多測試方法被提出來，其中最常使用

的是模糊測試（fuzz testing）。但傳統的模糊測試必須執行到程式

出現例外情況（如失控）才能發現該問題，導致覆蓋率不足時無法發

現受測程式的漏洞，忽略可能存在的安全威脅。 

本篇論文提出使用 S2E 以 symbolic execution 為基礎的軟體測

試架構，能在程式正常執行到某些自訂的敏感函式，例如 malloc、

strcpy和 printf時，自動判斷此程式執行路徑在此位置是否可能造

成安全性的威脅，若是，則進一步產生 exploit 的概念驗證（proof 

of concept），以及相對應的數學限制式。 

我們運用此方法成功且有效地產生許多在 CVE 網站公開的漏洞，

並能協助開發者迅速找到問題所在，提升維護軟體品質的效率。 
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A Target-Aware Symbolic Execution Framework 

for Fuzz Testing 

Student: Hsiang Chung    Advisor：Dr. Shih-Kun Huang 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

 Vulnerabilities caused by implementation bugs, such as buffer 

overflows, integer overflows, uncontrolled format strings, and command 

injections, are often exploited by hackers to intrude users’ personal 

computer or servers. In order to reduce software bugs, many testing 

techniques are proposed. The most frequently used technique is fuzz 

testing. However, traditional fuzzers can only find bugs when program 

exceptions, especially crashes, raised. That means some security threats 

may pass these tests due to the insufficient code coverage. 

 In this thesis, we introduce a software testing framework based on 

symbolic execution using S2E, a whole system symbolic execution engine. 

When a program executes some pre-defined sensitive functions, such as 

malloc, strcpy or printf, our framework will initiate a triage process. It will 

determine whether any related security vulnerabilities would possibly 

occur in these functions automatically. If the answer is yes, a proof-of-

concept exploit and its corresponding math constraints will be generated. 

 We successfully and efficiently reproduce some CVE vulnerabilities, 

which means developers could locate bugs faster, and improve the 

efficiency of software quality maintenance.  
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 INTRODUCTION 

Due to the rapid development of information technology and Internet, people 

can easily install software and download files. However, defective programs may 

contain security vulnerabilities such as buffer overflows, integer overflows, 

uncontrolled format strings, and command injections. An attacker can exploit 

these vulnerabilities by feeding properly designed input files and take control of 

the victim's systems. Security patches are issued for applications on Windows, 

Linux, or the operation system itself every day to solve these problems [2]. Thus, 

information security has become an important issue for normal users and 

enterprises. 

In order to reduce software bugs, many testing techniques are proposed. The 

one most frequently used is fuzz testing, or called fuzzing [26], which has been 

proven successful in finding bugs and security vulnerabilities in large software 

applications. The idea behind fuzzing is very simple. First, we generate inputs fed 

to the program to be tested. If exceptions are raised, which often result in a crash, 

a potential security issue is detected. A great number of severe software 

vulnerabilities have been revealed by fuzzing techniques and related researches 

[40]. For example, the CVE (Common Vulnerabilities and Exposures) website1 

lists massive vulnerabilities, and some are marked or found to be fuzzed easily. 

                                                

 

 

 
1 http://cve.mitre.org/ 

http://cve.mitre.org/
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TaintScope [42] used its checksum-aware technique to fix checksum fields on the 

program input header and successfully identified many known and previously 

unknown program vulnerabilities. Popular fuzzing tools include zzuf [17], a dumb 

fuzzer which generates inputs randomly, and Peach [12], a format-aware fuzzing 

platform that can model input data structures. M. Woo, et al [45] integrates many 

existing scheduling algorithms and has good efficiency. 

Since most applications are with unlimited input space, traditional fuzz testing 

tools have an inherent limitation of low code coverage. This means that serious 

security bugs may be missed because the code in which they exist is not even 

executed. Many techniques are proposed to improve code coverage, one of which 

is symbolic execution [19, 34], a constraint solving based system. It substitutes 

symbolic values for program input bytes, gathering path and input constraints 

while encountering a branch. By solving these gathered symbolic constraints, we 

can generate new inputs for almost all the running program paths and thus a good 

code coverage is reached. In recent years, researchers have found many new 

security vulnerabilities by symbolic-execution-based fuzzers. SAGE [15] applied 

their generational search algorithm to find many bugs in a variety of Windows 

applications. EXE [28] has found many critical bugs from Linux ports, including 

image viewers and media players. BitBlaze [27, 38] and S2E [8, 9] are two large-

scale symbolic testing platforms. BitBlaze uses TEMU [38], while S2E chooses 

KLEE [5] as the symbolic execution engine. We build our framework based on 

S2E. 
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1 input (int  x) 

2  while( x > 0 ) 

3  { ... } 
 

Figure 1: Symbolic Execution Path Explosion Example 

 

Unfortunately, path explosion is a big problem of symbolic execution. 

Although symbolic execution could cover most of the program paths, the number 

of feasible paths in a program grows exponentially with an increase of program 

size or with just a loop iteration [1]. Figure 1 shows an example of loop path 

explosion. If the input variable x is symbolic, symbolic executor will try to list all 

the possibility that satisfied “x > 0” and run the corresponding paths. Most parts 

of this action are redundant.  

To speed up symbolic execution, some solutions are proposed. One common 

way is concolic testing [35], which combines concrete and symbolic execution. 

Concolic execution gives the program an initial input, so it can follow the input 

deeper in the code. CUTE [36] is an instance of concolic execution. Alternatively, 

it is another possible way to improve path selection algorithms. Ma, K.-K., et al. 

[23] proposed shortest-distance and call-chain-backward as two heuristics for 

path-finding, while STrigger [22] used a weighted search algorithm based on the 

control flow graph (CFG). Another approach is to control symbolic path space by 

selecting input bytes [47]. Spat [46] applies their partial symbolic execution that 

tracks only a prefix of the input data, which is related to this approach. Other 

researchers choose to shorten execution time by paralleling running [39] or by 

cutting paths to be explored into pieces [7]. 

We have discussed lots of software testing techniques. Please note that most of 
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them are performing passive testing, which means that they just generate a new 

input, testing if it crashes, and then generate a new one again. There is no threating 

target to be searched or a guideline to be followed. TaintScope [42, 43] uses taint-

like analysis [31] to mark every input bytes and see if some security-sensitive 

points could affect these input bytes. Tainted input bytes are called hot bytes, 

which means they can directly influence the context of security-sensitive 

operations. Since TaintScope knows only which bytes are tainted, it has to run 

symbolic execution additionally to generate crash inputs. Recently, many 

symbolic execution tools are proposed to deal with some vulnerabilities. Splat [46] 

defines a buffer overflow situation and Catchconv [29] defines an integer 

conversion error situation, while IntScope [44] defines an integer overflow 

situation and Saxena, P., et al. [33] defines a loop-extended situation. However, 

they merely focus on one specific condition, and it is hard to generalize the 

problems. BuzzFuzz [14] uses a directed dynamic taint-based white-box fuzzing 

technique which requires to instrument an application’s source code. Caselden, 

D., et al. [7], McCamant, S., et al. [25] and STrigger [22] introduced vulnerability-

condition-based, or trigger-condition-based test case generation methods 

respectively, but no significant results have been revealed. 

In this thesis, we proposed a target-aware symbolic execution framework for 

fuzz testing. Our work can find bugs caused by specified library functions and 

prove it in a short time. We generate a proof-of-concept exploit instead of only a 

crash input. Unlike traditional fuzzers to generate crash input, we think crashes 

are not necessary if we have enough information to produce exploits. We further 

provide tips to reduce software testing and symbolic execution time. The primary 
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contributions to our work are described as following. 

 We introduce a technique to hook target functions in standard libraries, such 

as malloc, strcpy and printf. We define and generalize these sensitive points 

and test whether there are possible vulnerabilities or not, and then generate 

a prove-of-concept exploit by solving constraints further. 

 We introduce a method to identify hot bytes of files and obtain their 

relations to headers. 

 We introduce a whole-system fuzzing framework that can analyze not only 

applications but also libraries, drivers, or operating system (OS) itself without 

source codes. 

 We introduce techniques to speed up symbolic execution by dropping 

unnecessary path constraints or using adaptive symbolic inputs. 

 We evaluate the effectiveness of our method by applying our methods on 

existing CVE vulnerable software. We also provide case studies to show the 

profit of our work. 
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 OVERVIEW 

In this chapter, we give a technical overview of symbolic execution, its 

optimization and the symbolic engine we choose. We also introduce the method 

to hook functions and provide some vulnerable situations as our fuzzing targets. 

 Symbolic Execution 

Symbolic execution is a dynamic software analysis technique that analyzes a 

program path-by-path, which is an advantage over analyzing a program input-by-

input such as traditional fuzz testing methods. If two inputs take the same path 

through the program, the testing by means of the path will save more time than 

that by means of the inputs. When exploring paths, symbolic executor also gathers 

corresponding constraints. We therefore know how to get to this path, and are able 

to modify them to fit our requirement, a crash situation for example. In our 

approach, we use symbolic execution to search for hooked functions and record 

constraints between program inputs and function arguments.  

Symbolic execution uses symbolic values instead of concrete data on program 

inputs. An interpreter executes, assuming values rather than obtaining them from 

actual inputs, unlike normal program executions. In this way, it learns relations in 

terms of those symbols for expressions and variables when arriving the target 

location, and the path constraints for reaching this position is also learned [34]. 

We can solve these constraints of each conditional branch by a decision procedure, 

or a constraint solver, such as STP [13] or Z3 [11]. If a solution exists, we could 

find a new program path. 
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1 x = read() 

2 x = 2 * x 

3 if ( x > 6 ) 

4  return 3 * x 

5 else 

6  return 0 
 

Figure 2: Symbolic Execution Testing Program 

 

 Consider the program shows in Figure 2, which reads a value and returns a 

value of six times x if the input x is greater than 3, and returns 0 else. When a 

symbolic executor runs this program, it does not have a concrete value for the 

input value, i.e., the result read from line 1. Alternatively, the executor assigns 

this program a symbol s to the concrete value. Then statement “x = read()” assigns 

s to program variable x. And in line 2, the statement “x = 2 * x” assigns 2 * s to 

x. The next statement in line 3 has two conditions: the true branch and the false 

branch, which depend on our input value s. The executor associates the constraint 

“2 * s > 6” with the true branch, which means that the program returns 3 * x if 

and only if “2 * s > 6” is true. And it combines the constraints “NOT (2 * s > 6)” 

with the false branch, which negates the true branch as a new path and make the 

program return 0. Note that the returned value “3 * x” in line 4 was substituted by 

symbolic value“3 * 2 * s”, which is known as the return argument expression, and 

that “2 * s > 6” and “NOT (2 * s > 6)” are two different path constraints. Assume 

we want “return 3 * x” in line 4 to be executed, we can use a constraint solver 

mentioned above to determine a value to make “2 * s == 6” true. If we want the 

program to return 24 further, we should also make expression “3 * 2 * s” to be 24, 

to which a constraint “3 * 2 * s == 24” should be added. Combining two 
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constraints, we will get “2 * s > 6” and “3 * 2 * s == 24”. Solve the both and we 

will get a value of input x to force this program to return 24, the result we want. 

 Symbolic Execution Optimization 

We use several techniques to optimize our symbolic execution. Some are 

mentioned in the Introduction above and some will be proposed as follows. 

 Adaptive-Input Symbolic Execution 

Because program inputs which we make symbolic are often very large. For 

example, a “.doc” document is an input file for Microsoft Word, and those 

documents may be millions of bytes in size. In such a case, running a complete 

symbolic execution may take hours or days, which is unacceptable.  

To improve this situation, an adaptive input based method, which symbolizes 

only parts of input space, has been proposed and verified [47]. However, which 

part of the input is more important is a question. We believe that the header part 

of an input may gain more benefits in term of execution efficiency due to the 

influence of important data structures. We also found that it is more efficient to 

split an input into segments than to test a whole input in the concept of divide-

and-conquer. We evaluate these in Section 4-C. 

 Concolic Execution 

The main idea of concolic execution is running the testing program 

symbolically with a concrete input. It can follow this input going deeper into the 

code. In some cases, we don’t want to be blocked by any integrity checking 

functions and exit too early. A well-formed input, which usually produces a good 

code coverage, could help us to stay in the deep code by extending this program 
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trace. The efficiency of this technique has been proved by those tools such as 

KLEE [5].  

 Null-Constraint Single-Path Concolic Execution 

Sometimes, one well-formed input could provide enough information. We want 

to avoid our concolic execution being lost in the code or stuck in a loop, so we 

disable the forking process for producing new branches to focus on one program 

trace. We name this skill single-path concolic execution.  

In a single-path concolic execution, gathering path constraints is not necessary 

anymore because only one concrete path will be executed. Assuming that we want 

only symbolic expressions or a taint-like [31] functionality, these constraints 

could be dropped. If we want to reduce testing input space, this technique is also 

a good choice. We call this null-constraint single-path concolic execution. The 

good efficiency of null-constraint will be shown in Section 4-D. 

 S2E 

S2E [8] is a whole-system symbolic-execution-based automated path explorer 

with modular path analyzers. The explorer expands all the paths in which we are 

interested, and the analyzer looks for bugs of each such path or simply collects 

information.  

Figure 3 and Figure 4 shows the S2E architecture in high-level and mid-level 

respectively. The prototype of this platform reuses parts of the QEMU virtual 

machine [4], the KLEE symbolic execution engine [5], and LLVM tool chain [20]. 

It can execute any gest OSs that runs on an x86 or ARM CPU. 
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Figure 3: S2E Architecture I 
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Figure 4: S2E Architecture II 

 

S2E explores paths by running the target system image and selectively 

executing small parts of it symbolically. Depending on which segment of code we 
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desired, the corresponding system’s machine instructions are dynamically 

translated within the virtual machine into an intermediate representation suitable 

for symbolic execution, while the rest are translated to host instruction set as 

normal binary translation. Because all of the symbolic and concrete executions 

are done outside the guest machine, a full system (OSs, libraries, applications, etc.) 

testing for the guest system could be applied. 

S2E is easy to use. It modified QEMU’s dynamic binary translator (DBT) to 

translate the instructions that depend on symbolic data to LLVM, and dispatch 

them to KLEE. In this way, users can test any binary codes that run in the guest 

OS without any source. Due to the open source agreement of QEMU, developers 

can easily modified S2E to fit their requirement. Thus we use S2E as our core 

engine. 

 Vulnerable Situations  

There are hundreds of vulnerabilities. The Top 25 Most Dangerous Software 

Errors [24] lists the most widespread and critical errors that can lead to serious 

vulnerabilities in software. We pick up four cases which are often seen in C 

programs as our fuzzing target situations. 

 Buffer Overflow 

 Buffer overflow is an important and persistent security problem and counts 

for approximately half of all security vulnerabilities in recent years [10]. This 

problem occurs when more data are written to a buffer than it can hold. The 

excessive data is written to the adjacent memory, overwriting the contents 

including returned addresses in the stack memory. Many memory-based 
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functions in the standard library are easy to cause buffer overflows. We will 

discuss this later. 

 Integer Overflow 

 Integer overflow is a generic name of integer errors such as overflow, 

underflow, and signed/unsigned conversion errors. CVE-2002-0639 about 

OpenSSH and CVE-2010-2753 about Firefox are two serous integer 

vulnerabilities. Many integer overflow vulnerabilities are closely related to 

memory allocation functions [44]. If an integer input is used to restrict a memory 

manipulation without exhaustive checks, memory violation errors could occur. 

Take malloc as an example. If the size argument overflows, the operating system 

will allocate less memory space than the program wants, than a heap overflow 

would happen. 

 Uncontrolled Format String 

A format string is an ASCII string that contains text and format parameters. 

When a format function, printf for example, evaluates the format string, it 

accesses the extra parameters given to the function. However, there is a special 

format parameter in ANSI C called ‘%n’, which can write the number of bytes 

printed so far to the specific memory. Because parameters and other important 

program data are all stored on the stack, if the format string can be controlled by 

attackers, they can overwrite returned addresses or other data they want [30].  

 Command Injection 

 Like format string, if an uncontrolled input string is directly passed to an OS 

execution system call or a shell execution function, attackers can easily execute 
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system commands by injecting malicious strings into the input.  

 DLL Injection 

DLL injection is a technique used for running code within the address space of 

another process by forcing it to load a dynamic-link library (DLL) [37]. The 

injected code can hook the system or library calls, such as system or malloc, 

without modifying any existing programs. We could interrupt programs by the 

injected code and analyze the symbolic relationship between arguments and 

inputs. Besides standard libraries, we can also hook third-party libraries. The 

functions we hook in this paper are shown in Table 2. 

On Linux (or other Unix-like OS), arbitrary libraries can be linked to one’s 

custom library by setting the LD_PRELOAD environment variable 1 . Such a 

library can be created with GCC by compiling with -fPIC option2 and linked with 

-shared option3. On Windows, there are multiple ways to do this, one of which is 

the hooking call SetWindowsHookEx4. Our work focuses on Linux platform, but 

is easy to extend. 

 

  

                                                

 

 

 
1 http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html 
2 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#Code-Gen-Options 
3 http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Link-Options.html#Link-Options 
4 http://msdn.microsoft.com/en-us/library/ms644990.aspx 

http://www.kernel.org/doc/man-pages/online/pages/man8/ld-linux.so.8.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#Code-Gen-Options
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Link-Options.html#Link-Options
http://msdn.microsoft.com/en-us/library/ms644990.aspx
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 Method 

Unlike traditional fuzzers generating crash inputs (shown in Figure 5), our 

work CraxFuzzer generates proof-of-concept (POC) exploit instead. A program 

crashes because its instruction pointer EIP is abnormal. Hackers want to find 

crashes because if EIP is modified during program execution, they may have 

chances to control the program by changing EIP to the shell code address. If we 

have some ways to overwrite the returned address, i.e., EIP on the stack to control 

the program, a crash situation is not necessary. For example, in an uncontrolled 

format string case, the ability of generating a crash is still far easier than 

generating an exploit. In a command injection or a SQL injection problem, 

crashing a program is not even of our primary consideration. That is the concept 

of POC generation, reducing the step of finding crashes and focusing on watching 

sensitive functions that may directly or indirectly affect program execution. 

There are four stages in our fuzzing framework; test case acquisition, target 

searching, proof-of-concept generation, and verification. The architecture 

overview is shown in Figure 6. In test case acquisition, we acquire test cases from 

traditional fuzzers, the Internet, specs of the program, or a path exploration which 

will be merged to symbolic execution in the next stage. In target searching stage, 

we use a null-constraint single-path concolic execution method to search for our 

target functions. In POC generation, we generate inputs that would crash the 

program or affect the sensitive arguments, and then run it again to verify in the 

final step. 

To make our proposed methods clear and easy to understand, we use an open-

source software XMail [21] to explain them in Section 3-E, and a detailed 
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comparison of traditional fuzzers with our work is provided. At the end of this 

chapter, we will show the implementation details of how we build our target-

aware symbolic execution framework on S2E, including modules and 

implemented sensitive functions. 
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Figure 5: Traditional Fuzzer Architecture Overview 
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Figure 6: Target-Aware Symbolic Execution Framework Overview 

 

Now we are going to explain our methods step by step in detail as follows. 

 Test Case Acquisition 

To test a program, a sample input is needed as a seed to induct the mutation. 

Otherwise, it will cost too much to generate inputs from nothing. There are 
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multiple ways to acquire test cases. Downloading inputs from the Internet or 

manufacturing a new one from the specs are straight-forward methods. If these 

samples cannot satisfy the requirements, we can generate more of them by 

traditional fuzzing or symbolic execution. According to our experiences, a regular 

input is usually good enough to find serious bugs. We will demonstrate it in 

Chapter 4. 

 Target Searching 

We use symbolic execution to explore paths and search for our target functions. 

A schematic diagram of this execution is shown in Figure 7. The method of null-

constraint single-path concolic execution has been introduced in Section 2-B. We 

want to check whether there is any sensitive function whose arguments are also 

symbolic or not by hooking the standard libraries. The techniques of how to hook 

a function call has been discussed in Section 2-E. We check every function it 

hooked and its arguments while executing the program. The hooked functions, or 

the target functions, we chose are usually dangerous and may cause vulnerabilities. 

If an argument, e.g. an input of a function, has been detected symbolic, luckily we 

have found the fragile part of this program. The input bytes corresponding to the 

symbolic argument are called hot bytes, which means these bytes can directly 

influence this sensitive function and have a good chance to exploit. More 

discussions of hot bytes will be made in Section 4-B. We can also print call stacks 

of the program to help developers debugging. 
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Figure 7: Target Searching Overview 

 

1 x = read() 

2 x = x + 1 

3 malloc( 2 * x ) 
 

Figure 8: Transformation Function Example 
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Figure 9: Transformation Relations in Program Execution 

 

 Proof-of-Concept Generation 

The sensitive situation is a formula in terms of symbolic information. In a large 
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program, a value often undergoes a series of transformation between being read 

as input and triggering a potential vulnerability. For example in Figure 8, the 

argument malloc in line 3 has been passed to two transformation functions, f(x) = 

x + 1 and f(x) = 2 * x. Once a sensitive situation has been confirmed, we can 

generate the proof-of-concept (POC) exploit, which is an evidence that we already 

have the ability to exploit this program. To find the input that makes the variable 

to be a certain value, we need to solve the inverse of the transformation functions. 

In Figure 9, we can set Transformation Function F03(x) to be a constant value C, 

which we want the sensitive argument to be. Use a constraint-solver such as STP 

[13] to solve equation F03(x) = C, e.g. find the results of F03-1(C). This is one of 

functionalities of symbolic execution. Note that in the null-constraint symbolic 

execution, we do not record any path constraints, which means the results may 

not be feasible (but efficient). We will discuss about this in Section 3-D and in 

Chapter 4. 

According to the properties of each sensitive situation, we can classify the 

problems into designated types as follows.  

 Formats in Format Functions 

If a format argument in format functions, prinf and syslog for example, is 

symbolic, which means it can be affected by input bytes, there is a high possibility 

that a format string bug may exist in the testing program. If the developers have 

not checked the conversion specification character “%” or restricted the length of 

the inputs, attackers may exploit this program by a well-designed input that 

contains shell codes and the conversion specifier “%n” [30].  
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 Commands in Execution Functions 

Command arguments in execution functions such as system and exec are 

sensitive too. If a command segment passes to these functions without being 

checked, attackers could use “&&”, “;”, or “&” as conjunctions of normal and 

malicious commands, or directly inject a malicious binary to hack this system. 

 Sources in Memory Copy Functions 

If the source argument in memory copy function can be affected by input bytes, 

there is a chance for hackers to generate buffer overflows in our testing program 

by increasing the length of our tainted input bytes. Although some memory 

functions use a size argument to restrict size of buffers to be copied, developers 

often forget to check the destination buffer size or the end of string character “\0”. 

Lots of buffer overflow vulnerabilities have been revealed by CVE mentioned as 

above, and we will demonstrate some of them in Chapter 4. Str(n)cpy, read, and 

memset are three functions which belong to this type. 

 Lengths in Memory Copy Functions 

Similar to sources in memory functions, controlling the length of the function 

is more intuitive. Without proper checking, a buffer overflow is easy to happen if 

the length argument and buffer size is inconsistent. 

 Sizes in Memory Allocation functions 

If a size argument in memory allocation functions is symbolic, there may be an 

integer overflow in our testing program. If we make the size (an integer) overflow, 

the operating system will allocate less memory space than the program wants, and 

it may use the memory out of the boundary in the heap, which causes a heap-
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based buffer overflow, e.g., malloc(0xFFFFFFFF). 

 Verification 

After generating a new input without path constraints, we need to check if the 

input is feasible. We do this by re-running the program with the new input and 

checking whether the sensitive argument is rewritten or not. If the answer is yes, 

we have almost confirmed that we can change the sensitive argument to an 

arbitrary value including an exploit. We call the generated input a proof-of-

concept exploit because we have proved that there is a vulnerability and explained 

how to manipulate it in this situation. If the answer is no, which means the input 

may not be feasible due to the changing of the program’s running path, we need 

to add some path constraints or change the previously used value to calculate a 

new input. Once no input can be generated, we have to go back to the first step 

acquiring a new sample input. 

 Example: XMail-1.21 

XMail [21] is a lightweight email server in comparison with traditional mail 

servers. In 2005, a stack-based buffer overflow vulnerability in module sendmail 

in XMail has been revealed and numbered CVE-2005-2943. In this bug, remote 

attackers can execute arbitrary code via crafting the specific field in an email letter. 
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1 From: hchung@cs.nctu.edu.tw 

2 To: hchung@cs.nctu.edu.tw 

3 Subject: A Target-Aware Symbolic Execution Framework for Fuzz Testing 

4  

5 This is an XMail test letter 

6 
 

Figure 10: Sample Email with Envelopes for XMail 

In SendMail.cpp: 

341 static char const *AddressFromAtPtr 

(char const *pszAt, char const *pszBase, char *pszAddress) 

342 { 

344    char const *pszStart = pszAt; 

351    char const *pszEnd = pszAt + 1; 

… 

355    int iAddrLength = (int) (pszEnd - pszStart); 

357    strncpy(pszAddress, pszStart, iAddrLength);  

358    pszAddress[iAddrLength] = '\0'; 

359 

360    return (pszEnd); 

362 } 
 

Figure 11: Function AddressFromAtPtr in SendMail.cpp in XMail 

 

Figure 10 shows a sample email we commonly used in our daily life. This 

original email contains four fields, including sender, receiver, subject, and body, 

which the mail transfer agent (MTA) actually delivers. We make this email 

symbolic and pipe it into our testing program. In target searching stage, we found 

a sensitive function strncpy has been hooked and its source-string argument is 

symbolic. From tracking the symbolic information, this argument is directly 

affected by bytes from 0x20 to 0x34, and the corresponding string is 
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“hchung@cs.nctu.edu.tw”, the receiver’s email address which we marked gray in 

Figure 10 and called hot bytes. We look into the source code in Figure 11 to 

confirm our guest. In line 357, strncpy copies a string which is read from the letter 

to a fixed size array (read the complete source code and you will know). Now we 

know the receiver’s address will be copied to a certain buffer. That is a buffer 

overflow suspect. We use the expressions (shown in Figure 12, which merely 

extend byte to word) gathered before and our buffer overflow heuristics to decide 

a long receiver’s address field. Then fill it back to the input and run it again. A 

segmentation fault exception will be raised and that verifies our result. 

 

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x20 INPUT)))  

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1))) 

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x21 INPUT)))  

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1))) 

(Concat w32 (Extract w8 24 N0:(SExt w32 N1:(Read w8 0x22 INPUT)))  

(Concat w24 (Extract w8 16 N0) (Concat w16 (Extract w8 8 N0) N1))) 

…  

Figure 12: Strncpy Argument Expressions of INPUT in XMail 

 

However, if we turn over this work to traditional fuzzers, they have to mutate 

the input mail from byte to byte, which has a large time complexity of O(2^n). 

Even if we know the format of the letter, which is hard to be formulized, we cannot 

guarantee that the mutated inputs could cover the problematic code. The 

comparison of traditional fuzzers with our work is listed in Table 1. 
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Table 1: Comparison of Traditional Fuzzers with CraxFuzzer 

 Traditional Fuzzers 
Traditional 

Symbolic Fuzzers 

Our Target-Aware 

Symbolic Fuzzer 

Targets Exceptions (crashes) Exceptions (crashes) Sensitive functions 

How to Find Generate inputs Explore paths Hook functions 

How to Verify  Debugging tools Debugging tools Check hooked funcs. 

Seed Inputs Existing inputs X Existing inputs 

How to Generate  

New Inputs 
Mutate seed inputs 

Solve path 

constraints 
Only one input 

Hit Rate of an Input 

to Reach a Target 
Very low Low 

High (hooked funcs. 

are easier to find) 

Result Types Crash inputs Crash inputs POC Exploits 

How to Generate 

Results 
Mutate seed inputs 

Solve path 

constraints 

Solve constraints 

from expressions 

Results Generation 

time 
Fast Slow Only one input 

When to Generate 

Results 
Before execution 

After targets  

being found 

After targets  

being found 

Results Accuracy Very high 
Not too high (confli-

ctive constraints) 

Not too low (ignored 

path constraints) 

Aware of Constraints 

and Expressions 
X O O 

 

QEMU

S2E Testing
Programs

Guest OS
CraxFuzzer

 

Figure 13: CraxFuzzer Architecture 

 

 Implementation 

Our fuzz testing framework, CraxFuzzer (shown in Figure 13), is built on top 

of S2E, which is discussed in Section 2-C. Identical to S2E, CraxFuzzer applies 
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symbolic execution via a virtualizer, e.g. QEMU. We can test programs on 

different systems by this virtualization technique. Testing programs, generated 

sample inputs and system configurations will be sent to the guest OS after 

CraxFuzzer starts. The biggest defect of this framework is the lack of support for 

floating points due to the implementation of KLEE. 

 

Table 2: List of Discovered Sensitive Functions 

Sensitive Functions Sensitive Arguments Vulnerable Situations 

fread Length Integer/Buffer Overflow 

read Length Integer/Buffer Overflow 

memset Length Integer/Buffer Overflow 

memcpy Source, length Integer/Buffer Overflow 

strcpy Source Buffer Overflow 

strncpy Source, length Integer/Buffer Overflow 

syslog Format Format String 

vfprintf Format Format String 

vsnprintf Format, length Format String, Integer/Buffer Overflow 

sprintf Format Format String Buffer Overflow 

fprintf Format Format String 

system Command Command Injection 

exec family Path (file) Command Injection 

realloc Size Integer/Buffer Overflow 

malloc Size Integer/Buffer Overflow 

 

In guest OS, we implement a wrapper to inject our custom libraries and redirect 

the program inputs of every testing object. The custom libraries are used to 

overwrite sensitive functions in standard libraries. According to our experiences 

and some researches [10, 30, 42, 44], we intercepted sensitive functions listed in 

Table 2. In a hooked function call, we use custom CPU op code to check whether 

an argument is symbolic, printing the expressions and call stacks. The input 

redirection is used to symbolize inputs. For programs whose input is read from 

standard input (stdin) or arguments, it is easy to symbolize parts of them or all of 
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them. For programs whose input is read from files, we have to map files in the 

hard drive to the memory first by system call mmap. However, files are often large 

in size. We choose adaptive file segments described in Section 2-B-I to symbolize 

important data structures only. 

In host OS, log parser, input generator and verifier are implemented. In the 

hooked function call, we output symbolic expressions of the sensitive arguments. 

The parser is used to analyze this output. It determines whether this sample input 

is useful, generating new inputs based on constraints and heuristics described in 

Section 3-C. After a possible exploit POC is generated, we re-run it symbolically 

to verify due to the deduction of constraints discussed in Section 2-B-III.  

We build the null-constraints-single-path-concolic-execution technique into 

S2E plugins. These plugins contain the constraints reduction and loggers. The 

coordinator of these components is also implemented in a plugin. Relations 

between components are shown in Figure 14. There are two cycles in this figure. 

The first one is about finding sensitive arguments and its corresponding sensitive 

input bytes. The second one is about generating POC. If any of these steps fails, 

this framework is able to fall back and try again until there are no available sample 

inputs anymore. 
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Figure 14: CraxFuzzer Component Relations 
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 EVALUATION 

In this chapter, we present four sets of experiments and our experiment 

environment. In Section 4-B, we evaluate the value of hot bytes concept to reduce 

testing space by observing the ratio of hot bytes to total input bytes. In Section 4-

C, we present the adaptive-input technique, which utilizes hot bytes, headers, or 

other information to make part of input symbolic. In software testing, if we test 

only the most important parts of the input, redundant testing could be omitted. In 

Section 4-D, we introduce the results of null-constraint technique, which could 

speed up symbolic execution in some specific situations. And in Section 4-E, we 

show some vulnerabilities we detected in popular applications. At the end of this 

chapter, we give some real-world case studies, including sudo and tiff, to 

demonstrate the power of our work. 

Table 3: List of Testing Applications 

Application Version Operation Input Type Line of Code 

XMail 1.21 Send email Stdin 31480 

Sudo 1.8.0 ./sudo -D9 Arguments 25324 

Exim 1.21 ./exim -bh ::%eth0 Arguments 64102 

Socat 1.4 ./socat –lyAAAA Arguments 13929 

Ncompress 4.2.4 ./ncompress FILE Arguments 1432 

Gif2png 2.5.3 ./gif2png FILE Arguments 1353 

Iwconfig V26 ./iwconfig eth0 Arguments 5285 

Tipxd 1.1.1 ./tipxd –fFILE Arguments 1066 

Mcrypt 2.6.8 Decryption Files 5846 

Tiff 3.6.1 View TIFF image Files 42077 

Tiff 3.7.0 View TIFF image Files 43717 

Mplayer 1.0rc2 Play VQF media Files 488618 

Vim 1.7 Open file with filetype.vim Files 377767 
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 Experiment Setup 

Although CraxFuzzer could test programs on different OSs, we are dedicated 

to study software on Linux platform. We apply CraxFuzzer to a large number of 

real-world applications. A list of these applications is summarized in Table 3. All 

of them are popular open-source projects for Linux. The “Operation” column 

shows what operations or what running arguments we take to test these 

applications. Note that the inputs are common and easy to be retrieved from the 

Internet or the manual pages. If further researchers want to focus on testing some 

specific libraries such as OpenFlow Applications [6], PHP SQL libraries [48], or 

even the CPU register EIP [18], they could just extend this work by adding these 

libraries to our sensitive function pool and defining the vulnerable situations they 

want the program to be. 

Our experiments are conducted on a virtual machine with Intel Xeon E3-

1230V2 at 3.3 GHz and enough memory, running Ubuntu 12.04 64 bit. The guest 

OS is running Debian 6.0.6 32 bit. 

Table 4: Hot Bytes Identification Results 

Application # Symbolic 

  Bytes 

# Detected 

Hot Bytes 

Run Time 

XMail 156 22 5s 

368 40 6s 

Tiff-3.6.1 18278 5 6s 

46271 3 6s 

Tiff-3.7.0 18278 158 8s 

46271 130 10s 

Vim 1437 258 113s 

Mplayer 1024/120132 1024 100s 
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 Hot Bytes Identification 

In this experiment, we measure the ratio of hot bytes to total input bytes and 

the complete execution time. We feed common inputs, which are retrieved from 

the Internet or the spec, to some input-file-based testing programs in. The hot 

bytes are some segments of the input that directly affect the sensitive arguments 

listed in Table 2. 

Table 4 shows the results of four common open-source Linux applications. 

XMail is an email tool, whose input is a plaintext letter. Tiff is a library that 

manipulates TIFF files. Vim is a common editor, tested with one of its scripts 

called filetype.vim. Mplayer is a media player that plays various kinds of media. 

The “Operation” column represents what we do to test this application, the “# 

Symbolic Bytes” column represents how many bytes of the total input we make 

symbolic and “# Hot Bytes” indicates how many bytes of the input are sensitive. 

The total run time is shown in the last field “Run Time”.  

Figure 15, Figure 16 and Figure 17, shows hot bytes distributions for tiff-3.7.0 

tests and vim test respectively. The first TIFF file can be downloaded from here1 

and the second file can be found here2. Character ‘H” denotes a hot byte and “dot” 

denotes a non-hot-byte. As the results show, all hot bytes are centralized at the 

beginning of the file or at the end of the file, which means they are probably 

headers.  

The ratio of hot bytes to total inputs is approximately in the range from 1% to 

20%. That means if we want to find vulnerabilities in Table 2, we have to test 

                                                

 

 

 
1 http://www.fileformat.info/format/tiff/sample/3794038f08df403bb446a97f897c578d/download 
2 http://www.fileformat.info/format/tiff/sample/e9898d47632440288d86553edf676007/download 

http://www.fileformat.info/format/tiff/sample/3794038f08df403bb446a97f897c578d/download
http://www.fileformat.info/format/tiff/sample/e9898d47632440288d86553edf676007/download
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only 1% bytes over the whole input in the best case, which reduces the testing 

input space from 8N to 8N/100. In the mplayer case, almost all bytes are hot bytes 

and are hooked in memset functions. We think the reason is that while playing 

media, the player will copy the input to buffers. We believe that if we reduce the 

number of kinds of sensitive functions, memset in the mplayer case for example, 

we can obtain a more accurate hot bytes distribution. In some cases, we do not 

make all the input symbolic because we want to avoid bytes from involving 

floating operations or the input space is too large. We use “Symbolic Bytes/Total 

Bytes” to denote this situation. As we count the hot bytes in an acceptable running 

time, this technique can reduce a lot of execution time. 

The related work to be compared with would be TaintScope. However, the 

ImageMagick test picked from TaintScope failed because of the KLEE floating 

point issue. And the rest results of TaintScope cannot be taken because they are 

based on Windows platform, which is not supported. 
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Figure 15: Hot Bytes of TIFF File I 
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Figure 16: Hot Bytes of TIFF File II 
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Figure 17: Hot Bytes of File Using Filetype.vim 

 

 Adaptive-Input Technique Evaluation 

With header information retrieved from hot bytes technique and other 
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documents of file format, we are able to locate the important part of input. For 

files whose hot bytes can be easily identified, we can symbolize only the hot bytes 

parts because hot bytes are the only inputs that affect sensitive functions. For files 

in which hot bytes cannot work, we have to read documents to find the important 

part, which is usually the header, additionally.  

Results of this experiment are shown in Table 5. The “# Input Bytes” means 

the number of total input bytes while “# Adaptive Symbolic Bytes” means the 

number of the important bytes we believe to be. The “Regular Run Time” column 

represents the time cost of running symbolic execution with all bytes symbolic 

while the “Adaptive-Input Run Time” column represents running time using this 

technique. We can see that the running time is improved if the same hot bytes are 

found. 

 For cases which take a long time like mplayer, we may use the concept of 

divide-and-conquer to run multiple tiny segments (1024 bytes in this case) 

respectively and then combine the results. 

 

Table 5: Adaptive-Input Technique Results 

Application # Input  

Bytes 

# Adaptive  

Symb. Bytes 

Run Time  

(Regular)  

Run Time  

(Adaptive-Input)  

XMail 156 22 5s 4s 

368 40 6s 5s 

Tiff-3.7.0 18382 180 8s 5s 

Vim 1437 583 113s 15s 

Mplayer 120132 1024 X 100s 

 

 Null-Constraint Technique Evaluation 

In this experiment, we compare the execution time with or without gathering 
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path constraints. Results are shown in Table 6. The “Regular Run Time” column 

represents the time cost of running symbolic execution with path constraints while 

the “Null-Constraint Run Time” column represents running time using this 

technique. The “# Symbolic Bytes” column shows number of bytes we symbolize. 

The “# Symbolic Bytes” column in the “sudo” row is uncertain because it is 

determined by user’s system. The number of bytes is approximated in a level of 

ten to the first power. 

After a possible malicious input is generated by our null-constraint technique, 

we need to verify this input again due to the lack of path constraints. We can 

choose any set of constraints and put them back to constraint-solver for re-running. 

In some cases like hot bytes identification, the path constraints are even useless at 

all and does not have to be recorded. And of course it reduced the testing input 

space. 

We notice that there exists a significant difference between executing with or 

without constraints in running time in some applications. For large software with 

complicated calculation such as mplayer and vim, we can have a great 

improvement on it. However, for simple applications whose running time is short, 

the efficiency enhancement is limited. These experiments affirm our hypothesis. 

 

Table 6: Null-Constraint Technique Results 

Application # Symbolic 

Bytes 

Run Time  

(Regular)  

Run Time  

(Null-Constraint)  

XMail 156 6s 5s 

368 10s 6s 

Tiff 18278 7s 6s 

Sudo All arguments 10s 8s 

Vim 1437 775s 113s 

Mplayer 1024/120132 Over 500,000s 100s 
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Table 7: CraxFuzzer Fuzzing Results 

Application Advisory ID Vulnerability  

Type 

Hooked 

Func. 

# Symbolic  

Bytes 

Run 

Time 

XMail CVE-2005-2943 Buffer Overflow Strncpy 156 5s 

Sudo CVE-2013-1775 Format String Vfprintf All args. 8s 

Exim EDB-ID#796 Buffer Overflow Strncpy All args. 5s 

Socat CVE-2004-1484 Format String Syslog All args. 5s 

Ncompress CVE-2001-1413 Buffer Overflow Strcpy All args. 5s 

Gif2png CVE-2010-4695 Buffer Overflow Strcpy All args. 5s 

Iwconfig CVE-2003-0947 Buffer Overflow Strcpy All args. 5s 

Tipxd OSVDB-ID#12346 Format String Syslog All args. 5s 

Mcrypt CVE-2012-4409 Buffer Overflow Fread All args. 6s 

Tiff CVE-2004-1307 Integer Overflow Malloc 18278 5s 

Mplayer CVE-2008-5616 Buffer Overflow Memcpy 1024 100s 

Vim CVE-2008-2712 Command Injection Execvp 1437 113s 

 

 Fuzzing Results 

Table 7 lists well-known vulnerabilities we have found yet and the execution 

time is also provided. The “Advisory ID” column shows advisory identifier 

information. CVE-YYYY-0000 presents CVE identifiers while the eight digits are 

year and series number of this vulnerability, EDB-ID presents Exploit-DB 1 

identifiers and OSVDB-ID presents Open Sourced Vulnerability Database 2 

identifiers. The “Vulnerability Type” shows the corresponding type introduced in 

Section 2-D. The “Hooked Function” columns shows which function call we have 

hooked and found the corresponding vulnerability successfully in the standard 

library. The “Run Tine” column shows the execution time to generate the exploit 

                                                

 

 

 
1 http://www.exploit-db.com/ 
2 http://osvdb.org/ 

http://www.exploit-db.com/
http://osvdb.org/
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POC of this vulnerability. 

First we discuss about the running time. Applications with less computation or 

the less symbolic input have a short execution time. Five seconds is almost the set 

up time of our framework with the time cost of booting images to the specific 

snapshots. The running time of symbolic execution is short and can be ignored. 

For large applications such as tiff, vim and mplayer, the execution time is also 

acceptable. Compared with traditional fuzzers, which generate millions of test 

cases and execute millions times, they may take days to find only crashes for these 

applications and are not promised to be exploitable. 

Many bugs we have found are very simple. They are often caused by the lack 

of checking buffer boundaries of memory copy functions or escaped characters of 

format string functions. Although some developers use strNcpy series functions 

to restrict bytes to be copied, they forget to check source bytes and destination 

bytes simultaneously. For vulnerabilities whose input is composed of readable 

strings, the transformation during program execution is usually linear 

transformation, which is simple to exploit. The uncontrolled format string, 

command injection and SQL injection cases belong to this type. For software with 

complex structures and systematic quality testing, our proposed method can easily 

outperform existing methods. Case studies in next section will introduce some 

examples, one of which includes complicated transformations.  

 Case Studies 

We introduce two real-world cases to demonstrate CraxFuzzer in this section. 

Both of them are well-known applications and contain serious security issues. 
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In sudo.c: 

1097 void 

1098 sudo_debug(int level, const char *fmt, ...) 

1099 { 

1100     va_list ap; 

1101     char *fmt2; 

1102 

1103     if (level > debug_level) 

1104    return; 

1105 

1107     easprintf(&fmt2, "%s: %s\n", getprogname(), fmt); 

1108     va_start(ap, fmt); 

1109     vfprintf(stderr, fmt2, ap); 

1110     va_end(ap); 

1111     efree(fmt2); 

1112 } 

 
 

Figure 18: Parts of Sudo Code 

 

 Sudo-1.8.0 

Sudo is a commonly used system utility that can execute a command as another 

user, especially administrator. Therefore, security issues of sudo are deeply 

concerned about. In line 1107 and line 1109 in Figure 18, there is a format string 

function which takes its program name as format argument, which is an 

uncontrolled format string problem. As program name is one of the program 

execution arguments, which is also program inputs, symbolic information can be 

intercepted in vfprintf with proper sample inputs. These sample inputs can be 

derived from the manual page, -D flag for example. This vulnerability is 

announced in CVE website with a CVE-2013-1775 identifier. 
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In tif_dirread.c: (Simpilified) 

cp = (char*)malloc(nstrips * sizeof (uint32))  
 

Figure 19: Parts of Tiff code 

 

SymbExpression malloc_size –  

(Shl w32 (Extract w32 0 (UDiv w64 (ZExt w64 (Add w32 (w32 0xffffffff) 

(Add w32 N0:(ReadLSB w32 0x72 v0_file_0)(ReadLSB w32 0x2a v0_file_0)))) 

(ZExt w64 N0)))(w32 0x2)) 

SymbExpression malloc_size - Value: 0xc  

Figure 20: Report of Malloc of Tiff Execution 

 

 Ttiff-3.6.1 

Integer overflow in the TIFFFetchStripThing function in tif_dirread.c for libtiff 

3.6.1 allows remote attackers to execute arbitrary code via a TIFF file with the 

STRIPOFFSETS flag and a large number of strips, which causes a zero byte or a 

small bytes buffer to be allocated and leads to a heap-based buffer overflow. This 

vulnerability is registered as CVE-2004-1307.  

The sensitive function malloc we have found is shown in Figure 19. Variable 

nstrips denotes the number of strips of the TIFF file. We want to make expression 

“nstrips * sizeof(uint32)” to overflow as zero or a small value. There are many 

transformations from program start to the target function. However, the 

transformation functions of nstrips variable are too hard to be found out by eyes. 

We can use CraxFuzzer to do this. The report is shown in Figure 20. This report 

shows the results of executing TIFF library by feeding the 18 KB file we have 

downloaded from the Internet and introduced before. The results can be simplified 
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to this equation 

SIZE = (A+B-1)/B*4  

where A is INPUT[0x2A] and B is INPUT[0x72]. 

That means the 0x2Ath byte and 0x72th byte of our input can make this malloc’s 

size argument be the value of 0xC. If we set this size argument to be zero or a 

small value and solve a set of integer overflow answer of A and B, a heap overflow 

problem may occur. We get the answer that A equals to 0x40000000 and B equals 

to 0x1 by solving equation “(A+B-1)/B*4=0”. We then overwrite them to the 

original input and run it again to verify. It crashes and the value of size argument 

has been changed. This proves that we can find a way to control the heap overflow 

of tiff-3.6.1 to cause the program buffer overflow by feeding a normal input 

downloaded from the Internet. 
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 CONCLUSION 

In this thesis, we present CraxFuzzer, a target-aware directed whole-system 

symbolic fuzzing framework. By using libraries hooking and hot bytes 

identification techniques, CraxFuzzer can locate sensitive parts of the program 

after being fed a regular input, and generate the corresponding POC exploit 

efficiently. CraxFuzzer can dramatically reduce the testing space compared with 

traditional fuzzers and find conditions they are not able to reach, helping 

developers to find the security vulnerabilities and to fix them in a short time. For 

cases whose source codes are available, it is also possible to use debug 

information to print out the call stack and other information. We have applied 

CraxFuzzer to 17 previously known issues of different security types. 

Experimental results show that it can accurately locate the sensitive parts and 

greatly improve the effectiveness of fuzz testing. 

TaintScope [42], which inspires us, provided the concept of finding hot bytes 

by dynamic taint analysis. However, our methods are easier and more 

straightforward by taking advantages of the property of symbolic execution. Splat 

[46] defines a buffer overflow situation and Catchconv [29] defines an integer 

conversion error situation, while IntScope [44] defines an integer overflow 

situation and Saxena, P., et al. [33] defines a loop-extended situation. At the 

application level, NICE [6] models OpenFlow applications to find network bugs. 

In spite of that, all of them merely focus on one specific condition, and it is hard 

to generalize the targets. Caselden, D., et al. [7], McCamant, S., et al. [25] and 

STrigger [22] introduced vulnerability-condition-based, or trigger-condition-

based test case generation methods respectively. Nevertheless, because of the 
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different symbolic engines and heuristics they use, source code is needed and the 

testing tools are not platform-independent and whole-system. 

If researchers want to modify our framework to create real exploits, it is easy 

to implement by replacing POC with shell code. Shell code is machine or OS 

dependent and more complicated to be generated automatically, and that’s why 

our work delegate this step to other tools. CRAX [18, 47, 48], AEG [3] and other 

researches [6, 7, 16] are dedicated to this field. 

However, there are several limitations in the current implementation of 

CraxFuzzer. First, the lack of floating support of KLEE is a big problem to test 

programs with floating point operations. It will terminate S2E if countering this 

situation. We can use adaptive-input technique to strategically avoid this 

implementation problem. Second, due to the complex path constraints and the 

natural property of hash functions, checksum, cryptographic operation or digital 

signature, which are designed to protect against data alteration, are not 

recommended being tested by our work. TaintScope [42] has a great success on 

checksum reconstruction. It is possible to combine these modules. Third, our 

searching mechanism is based on hooking functions. If we want to find a 

vulnerability that is not related to functions (Figure 21, for example), the DLL 

injection framework does not work anymore. Some new mechanisms must be 

found to generalize this situation. However, with vulnerabilities that are related to 

functions, such as PHP SQL libraries [48], CraxFuzzer works pretty well. It is 

also possible to hook CPU register EIP [18] to find the condition of crash. Forth, 

path constraints selection is also a challenge. What path constraints to pick is a 

Satisfiability (SAT) problem, which is very hard [41]. It would take great efforts 
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to do it well. The last weak point is how to retrieve a sample input that can lead 

us to the bug. In most cases, regular inputs cannot be executed into the problematic 

code due to the imperfect of unit test cases. We must generate such inputs 

ourselves. Control flow graph (CFG) and call graph are good mediums for use 

[44]. We can use shortest-path algorithms to find a path to the sensitive function 

and generate the corresponding input like STrigger [22]. There are also lots of test 

case generation researches to help us creating inputs [32]. 

 

1 while(n--) 

2   str[n] = 0; 
 

Figure 21: Vulnerability Not Related to Functions Example 
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