ST P PR UG B R PSS 4 0

Multi-domain Simultaneous Sequential Pattern Mining

Moy o4l iER

R E A R

frz X gl e p1&F 7k

SAE LR AE R FES
Multi-domain Simultaneous Sequential Pattern Mining

FoyoA ik Student : Hsing-Yuan Hu

hERE I FR Advisor : Wen-Chih Peng

TOMOIOAR Lk
ML W

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science and Information Engineering

August 2005

Hsinchu, Taiwan, Republic of China

PR R e A

FARE P PRI IE R B S 4

B4 lern T EFRP s K

Rz d ~FFNA2 % (FF97) AL

3 £

1B B 7 s #F4 (Sequential patternmining) £ - B FAlF# A g ¥ #B$
& mpi WAL A ARG FER AR AN ARAE R THRE Y FRR
[Hst o R BT R B SFER T T 0 B AR M Y - B AR S (domain) hiE A
Hs—;\ c e DR YRR E A A ERERS RS RAT FAE
mﬁfnww*’w%%i&ﬁkﬁ%@’WEEﬁEEWﬁ%ﬂH%* i
AR R A B B ;Y (Multi-domain simultaneous sequential
pattern) ° 4p 3t @ SnH - AER A R AIRCGS SAER PR R BT
u*ﬁfm}; Bd— B -fﬂszfrj;%g_,{\ s FpL s FEHA S AP&*P&F&HVL}%}%)"HS—;

B &M o pigh> P o Apded - Bt @ik (pattern-propagation) &
zt'x@m@i”‘ﬁ i# PropagatedMine » I 1% 3% B 2 5 225 cnff b J AR e R 1L 1R
B B 7 HogN o %%FJ A4e AR B (starting domain) B 4 @R VR A B IR H 2 mﬂ*
AR H T g AP augy 27 P o MEh o oL FIP < £
S U EE AR R LR B B 7 HCE R & o gt fh s 347 PropagatedMine ﬁw’
PR SEN if\'frféi’fu%/ﬁﬁ% B 205N B 7 e AR B E"ﬁ“'fl}f?«'ﬁ frrxafp M LAFY
o E- HE R BIERA R AIRGN LA o F S5 % Kt PropagatedMine
R RV b gk K A?%PEEEL»FJL (Rl R A o St BV AU DENTE W R g
PropagatedMine i# & 2 7 12 18— e 3 TR %rﬁ* ZEEES T

7
2

A
B
B
b
5

Multi-domain Simultaneous Sequential Pattern Mining

student : Hsing-Yuan Hu Advisors : Dr. Wen-Chih Peng

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Sequential pattern mining has attracted a significant amount of research
efforts recently. The problem of sequential pattern mining is that discovering frequent
sequences with their occurrence counts being larger than or equal to the user-specified
number, min_support, among a set of sequences. Most of the previously sequential
pattern mining methods only explore mining sequential patterns in one domain, such
as buy behavior, Web browsing, and moving patterns. In reality, sequential patterns
may exist in multiple sequence databases and for these sequential patterns in each
sequence database, if the occurrences of these sequential patterns appear at the same
time, these sequential patterns are able to form a multi-domain simultaneous
sequential pattern. Note that mining multi-domain simultaneous sequential patterns is
very important in that simultaneous sequential patterns reflect the complete behavior
of users. In this paper, we propose a propagation-based approach (referred to as
algorithm PropogatedMine) for efficient mining of multi-domain sequential patterns.
By propagating patterns with their occurrences of time from one starting domain to
other domains, our proposed approach is able to significantly reduce the mining space,
which improves the performance of mining multi-domain sequential patterns. Note
that the cost of performing PropagatedMine is greatly affected by the propagation
order. Thus, in this paper, we further develop a novel method to determine the
optimized propagation order. A comprehensive performance study is conducted and
experimental results show that algorithm PropagatedMine is able to efficiently mine
multi-domain sequential patterns. Moreover, algorithm PropagatedMine with an
optimized propagation order is able to further improve the performance in mining
multi-domain sequential patterns and the performance of the optimized propagation
order determined by our proposed method is very close to that of the optimal one
resulted by selecting the minimal cost among all possible propagation orders.

R#D & Sdp $grg) 2 SEF L L2 R G o BoRIT 0 biEk
BOITHEARY > FAEA A FR S - Y AT mjﬁio MEEZAEEL
BF o A RN L ERENhER Y AL EAEALARE A hrEL R
A AGBT R REOFTEER

S

}Q;&T%E’éﬁ%‘.’{ D BT h h v 21 #mwﬁp » B F A et 3 A Al 18 P e
FARI R AW S ECE o AR W R IR B i
E’” P BAREN RN TR

“%?%z'kﬂw’ﬂg PR A h 621 A RER T 2
- Rk B SIE RT3 R R R A -

ﬁx"‘ﬂ}i 3;\%{7&& f,aa»i'ﬂ-;\;a’ iﬁqi;}_f)y i@ ;k,;‘;;:’,g,g_;a %fm"?:! *“Xz’ﬁ’{ o
Eﬁﬂz‘l’é%)E%d\ﬁ’»*mg l'b IFB o

Contents

1 Introduction

2 Preliminary
2.1 Basic Terminologies
2.2 Problem Formulation,
2.3 Data Transformation

3 Multi-domain Simultaneous Sequential Pattern Mining
3.1 IndividualMine
3.2 PropagatedMineo
3.2.1 Sequential pattern Mining in the Starting Domain
3.2.2 Pattern Propagation 0oL
3.2.3 Sequential Pattern Mining in the Propagated Domain
3.3 Optimized Propagation Order . . . v .. .«
3.3.1 Selecting the Starting Domain and the First Propagated Domain
3.3.2 Continuously Selecting the Next Propagated Domain

4 Performance Study
4.1 Simulation Model T L
4.2 Experimental Results oo Lo

5 Conclusions

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6

An illustrative example for the usage of multi-domain sequential patterns . . . 2
An illustrative example of time related sequence database 7
Simultaneity of periods and time slots in different domains 8
Build time related sequence database by accesslog 11
Concept of IndividualMine 14
Concept of PropagatedMine 15
Mlustrate the process of SSM in example 2 21
Simultaneous relation of sequential patterns in domain 1, 2, and 3 26
[Mustrate PrefixSpan cost formula 32
Average position of sequential pattern <a,b> in TRSDB., 33
[lustrate how to calculate scan space of step 1 in the PrefixSpan cost estimation

method L el e 34
Illustrate how to calculate scan space of the case 1 in step 2 of the PrefixSpan

cost estimation methodo oL Lo 35
Illustrate how to calculate scan space of the case 2 in step 2 of the PrefixSpan

cost estimation method oo oL Lo 37
Ilustrate SSM cost estimation .-. . . co0 . . . oL Lo 38
Illustrate the process of SSM cost estimation method 40
Destribution of representative sequential patterns in TRSDB; 42
Architecture of PropagatedMine with optimization method 44
Scalability over support threshold 47
Scalability over number of domains oo 48
Scalability over number of sequences L. 48
Scalability over correlation oL oL o 49
Runtime decreasing trend as the process of two kninds of PropagatedMine . . 50

Difference of runtimes between optimized PropagatedMine and optimal runtime 50

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

TRSDB1 e 7
TRSDBy . . . e 8
An example of one projected database 0L 17
All sequential patterns found in TRSDB; 17
TRSDBZ and TRSDB2||<(G)(1)’C)> 19
Projected databases used in Example 2o 22
Time related sequence databases used to explain propagation order determining 26
Synposis examples L L L 30
SSM cost tables of TRSDBs, TRSDBs, and TRSDBy 42
Updated SSM cost tables of TRSDBs and TRSDBy 42
The papameters and measurements used in the simulation 46

Chapter 1

Introduction

Sequential pattern mining has attracted a significant amount of research efforts recently
[2][10][11][12][13]. The problem of sequential pattern mining is that discovering frequent se-
quences with their occurrence counts being larger than or equal to the user-specified number,
min__support, among a set of sequences. Sequential pattern mining can be applied on business
and marketing analysis, web page browsing behavior, symptomatic pattern of a disease, DNA
sequence, hacker invasion detecting, and so on. Due to the importance of sequential patterns
mining, many efficient sequential pattern mining methods have been proposed [3][4][5][9][15].

Traditional sequential pattern mining methods are mostly performed in only one domain
sequence database. For example, sequential patterns mining method is applied in a moving
log sequence database to find out user moving patterns or in a Web page browsing sequence
database to mine Web browsing behavior. In reality, sequential patterns may exist in mul-
tiple sequence databases. Mining simultaneous sequential patterns is very important in that
these simultaneous sequential patterns reflect the complete behavior of users. An illustrative
example of multi-domain sequential patterns is shown in Figure 1.1, where a mobile user can
obtain a variety of services via mobile devices. In Figure 1.1, there are three services available:
a location tracking service, a location dependent search service, and a credit payment service.

Each service has its own sequence database that records the access data and the corresponding

Location tracking | <(A) (B,C) (D) >

- Patterns of a user which
Search service <(1,2) (3,4,5) (6,7)> happen in the same time
Credit payment <(a,B) | (A) (6,8)>

.. Mobile Environment A
4 J“'ll] $
R B

Figure 1.1: An illustrative example for the usage of multi-domain sequential patterns

—
Sequence
database i
Sear

access time of each user. Note that each service is viewed as an individual "domain". In
the example, each row means a sequential pattern of a domain, e.g., p;: <(A)(B,C)(D)> is a
moving pattern of an user and this pattern happens in the same time with search pattern p,:
<(1,2),(3,4,5)(6,7)> and payment pattern ps: <(a, 3)(A)(0,0)> of that user. It can be seen
that patterns py, po, and ps are able to form a multi-domain sequential patterns in that (A),
(1,2), and (v, B) are all frequent in time ¢4, (B,C), (3,4,5), and (A) are taken place in time o,
and (D), (6,7), and (0,0) are occurred in time t3.

Mining multi-domain sequential patterns is very useful in that the relations of these do-
mains can give us some information about user behavior. For example, the illustrative multi-
domain sequential pattern shown in Figure 1.1, reflects not only the moving pattern of the
user but also the search and buying behavior of this mobile user. Thus, multi-domain sequen-
tial patterns give us more useful and diversified information than only one domain sequential
patterns. In this paper, we address the problem of mining multi-domain sequential patterns.

Though many sequential pattern mining methods work well in one domain database, these
sequential methods suffer from poor performance when being applied in mining multi-domain

sequential patterns from multi-domain databases. Intuitively, we can mining sequential pat-

terns in each individual domain and composite multi-domain sequential patterns by examining
whether the occurrences of these sequential patterns occur in the same time. For example,
in Figure 1.1, mining moving patterns, search patterns, and payment patterns in the cor-
responding sequence databases. Then, for each pattern mined in these three domains, we
examine whether these patterns occur in the same time. As a result, we could obtain multiple
sequential patterns as well. However, this method unavoidably leads to the poor performance
in terms of efficiency and scalability. Notice that mining all sequential patterns individually
in every sequence database may waste efforts since these patterns may not be necessary to be
formed as multi-domain sequential patterns. In addition, the overhead of this native method
also includes the extra-effort to check whether these sequential patterns occur in the same
time or not.

To our best knowledge, mining multi-domain sequential patterns is a new research topic. In
this paper, we propose an efficient algorithm named as PropagatedMine to mine multi-domain
sequential patterns (to be referred to as MDSSP) efficiently. The concept of PropagatedMine
is to propagate patterns with their occurrences of time from the selected starting domain to
all the other domains with an optimized order, and therefore the mining space is significantly
reduced. Note that the cost of performing PropagatedMine may greatly different with differ-
ent propagation orders, so finding a good propagation order is important to PropagatedMine.
In this work a cost estimation method is also proposed in PropagatedMine to determine an
optimized propagation order. Our performance study shows that our proposed Propagated-
Mine is able to efficiently mine multi-domain sequential patterns. The contributions of this
paper are three folds: (1) Exploiting a novel and useful sequential patterns (i.e., multi-domain
sequential patterns), (2) devising algorithm PropagatedMine to efficiently mine multi-domain
sequential patterns, and (3) determining a optimized propagation order to further reduce the
multi-domain sequential pattern mining cost significantly.

The remaining of the paper is organized as follows. In Chapter 2, problem description

and some preliminaries are presented. Algorithm PropagatedMine is developed in Chapter 3.

Performance studies are conducted in Chapter 4. This paper concludes with Chapter 5.

Chapter 2

Preliminary

2.1 Basic Terminologies

Let [= {1, xs,...,x,} be a set of all items. An itemset is a non-empty subset of I and is
denoted as X = (21, 2, ..., z,), where z; is an item of [for every j, 1 < j < r. A sequence s is
an ordered list of itemsets, and is represented as s =< Xj, Xy, ..., X; >, where X is an itemset
(i.e., X; C I for 1 < j <I). For the brevity purpose, X; is called an element of sequence s.
Note that an item can appear only once in one element but it can appear in different elements
of a sequence. Sequence s, =< ay,as, ..., a, > is contained in sequence s, =< by, by, ..., b, >,
denoted as s, C sy, if and only if there exists integers 1 < i3 < 15 < ... < 4, < m such
that a; C b;,,a2 C b,,...,a, C b; . Sequence s, is a subsequence of sequence s,, and s,
is a super sequence of s,. For example, sequence <(3)(1,2)(5)> is contained in sequence
<(1,3)(1,2,4)(4,5)(3)> due to that (3)C(1,3), (1,2)C(1,2,4), and (5)C(4,5).

A period P is a section of time, and can be fully divided into several continuous, non-
overlapping, and equal range time slots. A period with n time slots is denoted as P|, =
{t1,1s, ..., t, }, where ¢, is a time slot and 1 < j < n. Since each time slot represents an interval
of time and time slots are non-overlapping, a total ordering ¢; > t5 > ... > t, are specified

within a period. A time sequence ts = PID :< ty,ts,...,t,, > is an ordered list of time

slots in one period, where PID is an identifier used to indicate which period. In addition,
the ordering of time slots in time sequence ts must satisfies t; >ty > ... > t,,,, and n needs to
be greater than or equal to m. A time sequence ts, = PID, :< ti,ts,...,t, > is called a sub
time sequence of ts, = PIDy :< ty,ts,....t,, > if PID, equals to PID, and < tq,ts,...,t, > is
a sub sequence of < tq,ts, ..., 1, > .

A time related sequence database denoted as TRS DB is comprised by a set of tuples,
where each tuple in the sequence database is a time related sequence. Table 2.1 shows an
illustrative example of a time related sequence database. SID is the identifier of every time
related sequence, TIMFE SEQ is a time sequence while CONTEXT SEQ is a sequence.
Note that for each time related sequence trs, the occurrence of time for each element X; in
CONTEXT SEQ is uniquely mapped to the time slot ¢;. The time related sequence database
in Table 2.1 can be illustrated by Figure 2.1. Time related sequence trs, is a sub time related
sequence of trsy if trs, TIME SEQ C trs,. TIME SEQ and trs, CONTEXT SEQLC
trs,. CONTEXT SEQ.

The support for a sequence s in a time related sequence database TRSDB is defined as
the number of time related sequences which contain s in their CONTEXT SE(). Formally
speaking, the support of sequence s is defined as Support(s) = |{z|z € TRSDB, and s C
x.CONTEXE SEQ}|. For example, assume that sequence s=<(a)(b,c)>. The support of
s in TRSDB; shown in Table 2.1 is 3 since three time related sequences contain s in their
corresponding CONTEXT SEQ. Note that the support of a sequence s in a time related
sequence database is the number of tuples that contain s in its CONTEXT SEQ. Given a
minimum support threshold, min_support, and a time related sequence database TRSDB,
a sequence s is frequent if and only if Support(s) > min__support.

Given sequence s =< X, Xs, ..., X, > and a time related sequence trs = {PID :<
t1,to, ooyt >, < Y1,Ya, ..., Y,, >} of time related sequence database TRSDB, if s C

trs. CONTEXE SEQ is satisfied then we can find integers 1 < i3 < is < ... < i, < m

SID | TIME SEQ | CONTEXE_ SEQ
1:<1,2,3,4> | <(a)(b,c)(b,c,d)(e)>
2:<2,34> <(a,b)(b,c)(c,e)>
3:<1,2,3> <(a,e)(h)(g,j)>

4:<1,2,3,4> | <(a,b,f)(d)(b,c)(e,f)>

=Wl N =

Table 2.1: TRSD B,

SID | TIME_SEQ CONTEXT_SEQ TRSDB
—QELEEE Halbdelbenl '

orT(2<2,3,4> k(ab) (o) (ce)>

3 3<1,2,3> Kk (ae)(h) (g, >

4 4:<1,2,3,4>K(abf (d) (be) (e,N>

Time slot l Time slot
1 ' 1 '

TIME_SEQ

<
<

CONTEXT_SEQ (@ (bc) (e) (bcd) (ab) (bc) (ce) (ae) (h

Figure 2.1: An illustrative example of time related sequence database

such that X; C YV;,, X C Y,,,... X, C Y, and PID :< t;,t;,...t;, > is called a time
instance of the sequence s. Note that a time related sequence trs can contain more than one
time instance of sequence s because s can appear more than once in trs. CONTEXT SEQ.
Gathering all time instances of sequence s in T RS DB forms a time instance set represented
as TISTESDBE — [x|x is a time instance of s in TRSDB}. For example, in Table 2.1, there

are three time related sequences containing sequence <(a)(b,c)>. Accordingly, we could have

the time instance set of sequence <(a)(b,c)> to be {1:<1,2>, 1:<1,4>, 2:<2,3>, 4:<1,3>}.

2.2 Problem Formulation

We elaborate on the concept of multi-domain simultaneous sequential patterns and formulate
the problem of mining multi-domain simultaneous sequential pattern in this section. The term

simultaneous means that if the periods in all domains have the same PID, these periods

Period 2 of TRSDB, Period 3

TRSDB
! Time slot 3 of period 2
. <@y | v | ceo> |< @, time line
Period 2 of TRSDB, Period 3
TRSDB
2 Time slot 3 of period 2
< i< L35 i (£4) i \8) = S (Ivsj‘ » time line

Figure 2.2: Simultaneity of periods and time slots in different domains

SID | TIME SEQ CONTEXT SEQ

1| 1<1,234> | <(1,2)(2,3)(6)(4,5)>
2 | 2:<234> <(1,3)2,4)(8)>

3 | 3:<1,23> <(1,6)(5)(9,10)>

1 [4<1.234> | <(1,25)(7)(2,3)(4,5,6)>

Table 2.2: TRSDB,

represent the simultaneous time. In Figure 2.2, the alignment of two period 2 indicates that
these two periods represent exactly the same time section in TRSDB; and TRSDB,. Next,
we specify a section of time which is'a time slot. Similar to periods in different domains, the
alignment of time slots in different domains represents they are same time sections.

Definition 1 (Simultaneous time instances) Based on the definition of time sequence,
a time instance is also a time sequence. Given time instances: ti; = PIDy :< t11,t19, ..., 11y, >
Jtis = PIDy < toy,tag, ..., tyy, >, ..., ti, = PID, :< t.q,t,...,t,, >, these time instances are
simultaneous if and only if PID; = PIDy = ... = PID,, and [; =l = ... = [, = [, and for
every J, 1 < j <[, t1; =ty = ... = 1.

Definition 2 (Simultaneous sequences) Given r sequences i, $a, ..., S, in time related
sequences database TRSDB,, TRSDBs, ...,andI'RS DB, respectively and their correspond-
ing time instance set TIS|IASPB TTS|TRSDE: | T[S|TRSPE: - Sequence s1, sa, ..., and s,
are simultaneous if there exist time instances tiq, tio, ..., t7, such that tiy, tio, ..., ti, are simul-

taneous time instances, where ¢i; is a time instance in 775 | TRSDB; , 1<,

For example, sequences s;= <(a)(b,c,d)(e)> in Table 2.1 and se=<(1)(6)(5)> in Ta-
ble 2.2 are simultaneous sequence because TISIFSPB = {1:<1,34>} and TISIHSPP =
{1:<1,3,4>}.

Definition 3 (Simultaneous sequential patterns) Given a minimum threshold, min__support,
and sequential patterns si, so, ..., S, in time related sequence database TRSDB,, TRSDBs, ..., TRSDB,,

respectively and their corresponding time instance set T1S|TH5PB T[S\ TRSDE: | [G|TRSDPE,
Time instances (tiq,ti, ..., ti,) is called a match if tiy, tis, ..., trs, are simultaneous, where

ti; € TIS|LPP 1 < j < r. If (tiy, tiy, ..., ti,) is a match, then PID; = PID, = ... =

PID, must be true. Let Macthed PID = PID, = PIDy, = ... = PID,, and pat-
terns sp, Sg,...,S, are simultaneous if and only if the number of different Macthed PID
in TTS|TRSPB TIS|LRSPE: | T[S|TRSPE: i5 equal to or larger than min_ support.

For example, given support threshold min_support = 2 and two time related sequence
database TRSDB,, TRSDB,, sequence s;=<(a)(b,c)> and sy=<(1)(2,3)> are sequential
patterns in TRSDB; and T' RS D B, respectively because both their support value larger than
min_support. Since TIS|TRSPB ={1:<1,2>,1<1,3>, 2:<2,3>, 4:<1,3>} and TIS|T9PP2 —={1:<1,2>,
4:<1,3>}, we can find two matches (1:<1,2>, 1:<1,2>), and (4:<1,3>, 4:<1,3>) and these two
matches have two different Mactched PID : 1 and 2. Therefore, <(a)(b,c)> and <(1)(2,3)>
are simultaneous sequential patterns. A counter example is <(a)(b,c,d)(e)> and <(1)(6)(5)>
in the example of definition 2. Since there is only one match (1:<1,3,4>, 1<1,3.4>) can
be found in time instance sets of <(a)(b,c)(e)> and <(1)(2,3)(5)>, sequences <(a)(b,c)(e)>
and <(1)(2,3)(5)> are not simultaneous sequential patterns, though they are simultaneous
sequences and also sequential patterns in TTRSDB; and T' RS D B, respectively.

If we have k time related sequence databases: TRSDB,, TRSDBs, ...,TRSDB), and each

related to one domain. A Multi-Domain Simultaneous Sequential Pattern (M DSSP) about

these k£ domains can be expressed by a matrix as:

MDSSP =

Xer Xpg oo X

X,j is the j — th element of sequence s; =< Xj1, Xjo, ..., Xy >, where s; is a sequential
pattern in TRSDB;. Each row in M DSSP is called a component pattern, i.e., for each

1, 1 <1 <k, < X, X,...,X; > is a component pattern of M DSSP. Number k clarify

M DSSP related to k time related sequence database or said k domains, and [is the number

of columns in M DSSP.
Xl]_ X12 oo Xll

is a multi-domain simultaneous sequential pattern of T'RSD By,

Xt Xk o X
TRSDB,, ..., and TRSDB;, where (1) each component pattern is a sequential pattern: for

every 7, 1 < ¢ < k, the component pattern < X;;, Xjo, ..., X;; > is a sequential pattern of
TRSDB; and (2) all component patterns are simultaneous sequential patterns (i.e., sequen-
tial patterns < X117X12>---7X1l >, < Xgl,ng,...,Xgl >, and < Xkl,XkQ,...,Xkl > are

simultaneous sequential patterns).

2.3 Data Transformation

Since our MDSSP is defined on time related sequence database, we need to transform access
log into a time related sequence database. As mentioned in Chapter 1, assume that the
access log contains both accessed data and accessed time information. Accessed data is an
itemset and accessed time could be time instant (e.g., 10:35 AM) or a time range (e.g.,
10:30AM™11:00AM). An example of access log is shown in Figure 2.3. Each accessed data in
an access log can be mapped to one or several time slots of a certain period according to the
accessed time of the accessed data (if the accessed time ¢; of a accessed data z; is an time
instant, z; belongs to one time slot; otherwise ¢; is a time range, and then x; may be mapped to
multiple time slots whose time ranges have overlap with the time range of ¢;.) After mapping,
we merge accessed data in a time slot into an element which is a minimum super set of these
accessed data. Elements in a period forms a CONTEXT SEQ, and time slots which have
been mapped in a period plus PID of the period forms a TIME SEQ. Therefore, combining

TIME SEQ and CONTEXT SEQ of a period becomes a time related sequence. The whole

10

access log of a domain

@b) > [t,]e > [t eh > []@bo) > [ts:]c > [t::|b.H) >

T H T T

l |
v T
<o === DI = == DI = == D) 1o m = Dl - == Dl === > Time line

i Time | Time | Time i Time | Time | Time
i slotl *slot2 ' slot3 islotl ‘slot2 ' slot3

P el » e e LT >
' Period 1 ' ' Period 2
<(a,b)(c,e,f)> <(a,b,c)(c)(b,c,f)>
sID TIME_SEQ CONTEXT_SEQ

1 1:<1,3> <(a,b)(c,e,f)>
2 2:<1,2,3> | <(a,b,c)(c)(b,c,)>

Time related
sequence
database

Figure 2.3: Build time related sequence database by access log

process of data transformation can be illustrated with Figure 2.3.

11

Chapter 3

Multi-domain Simultaneous Sequential

Pattern Mining

In this section, we first present the algorithm IndividualMine in Chapter 3.1 and then an
efficient algorithm, PropagatedMine, is proposed in Chapter 3.2. Furthermore, we develop a
solution procedure that can determine a propagation order for efficient multi-domain simul-

taneous sequential pattern mining in Chapter 3.3.

3.1 IndividualMine

MDSSPs can be found by mining sequential patterns in individual time related sequence
database and then check whether these patterns mined in each domain have overlapped time
or not. Figure 3.1 shows the flow of algorithm IndividualMine. In Figure 3.1, after performing
sequential pattern mining method on every domain, we get a set of sequential patterns which
contains all sequential patterns found in this domain, and then we compare the simultaneity
of patterns in different domain for mining multi-domain simultaneous sequential patterns.
Checking the simultaneity of patterns Checking the simultaneity of patterns is as follows.

First, we select two domains TRSDDB; and TRSDB;, 1 < 4,j < n and 7 # j, and for

12

each pattern o in TRSDDB; each pattern [in TRSDB;, we determine whether o and 3
are simultaneous by examining their time instance sets. If the time instance sets for these
two patterns are the same, patterns o and 3 is able to form a simultaneous pattern. After
forming finding MDSSPs of TRSDDB; and TRSDDB; , these MDSSPs are sent to the next
domain TRSDB;, to further form MDSSPs with three domains. Follow this procedure, we
could easily identify multi-domain simultaneous sequential patterns

Algorithm: IndividualMine

Input: Time related sequence databases: TRSDB,,TRSDB,,...,TRSDB,,
and the minimum support threshold min_ support.

Output: Simultaneous sequential patterns with the number of domains being n
(TRSDB,,TRSDBs,....,TRSDB,).

BEGIN
1. Apply PrefixSpan on each time related sequence database TRSDB;, 1 <i < n.
2. For each pattern p mined in TRSD By, call CheckSimultaneous(p, ds)

END

Subroutine: CheckSimultaneous(pattern,domainlD)
/* pattern is a candidate simultaneous sequential pattern, and domainl D

is an integer used to indicate which domain.*/
BEGIN

1. For every sequential pattern p/ in TRSDBiymainip, We examine if]]?)' is a

MDSSP of T'RS DB aomainip—1 and T'RS D Byomainrp by checking time instance sets
T[S]Z—VRSDBdamainlDfl and T[STRSDBdoma,inID
2 ’

2. IF domainI D # d,
CheckSimultaneous(Lz;,] ,domainID + 1).
ELSE
Output m is a MDSSP of TRSDB,, TRSDBs, ..., TRSDB,..
END

Although mining MDSSP by IndividualMine is a possible solution, IndividualMine is in-
efficient when the size of time related sequence database is large. IndividualMine needs to
find all sequential patterns in every time related sequence database, but many of these pat-
terns may not be simultaneous patterns, so the effort spent on mining these useless patterns
is a waste. In addition to mining many useless patterns, algorithm IndiwidualMine spends
expensive costs on comparing time instance sets to examine the simultaneity of patterns in

different domains. The wasted cost becomes even more serious when the size and the number

13

3 3 > 3
a 8 a g

Sequential pattern| |Sequential pattern| | Sequential pattern Sequential pattern
mining mining mining mining

Sequential Sequential Sequential Sequential
patterns patterns patterns patterns
A

Compare time instances of patterns
to check simultaneity

k.

MDSSPs

Figure 3.1: Concept of IndividualMine

of sequence databases increase.

3.2 PropagatedMine

By continuously propagating currently mined patterns and their time instance sets from cur-
rent domain (propagator domain) to the next domain (propagated domain), Propagat-
edMine is able to efficiently mine multi-domain sequential patterns. When propagating to
other domains, each pattern in the current domain will construct a propagated database in
the propagated domain. The propagated database constructed by pattern p in propagator
domain denoted by T'RSD B, pagator is built by matching time related sequences with the
time instance set of pattern p, T'1 SpT RSDBpropagator A ey constructing propagated databases,
we can find simultaneous sequential patterns in propagated databases by SSM (slot-by-slot
sequential pattern mining). We will define propagated database formally in Chapter 3.2.2 and
elaborate SSM in Chapter 3.2.3. The concept of PropagatedMine is illustrated in Figure 3.2.

PropagatedMine is more efficient than IndividualMine in that (1) propagated database

is usually much smaller than the original time related sequence database and (2) for each

14

T

4

propagate () propagate ()

T

4

T

s

propagate
—>

Sequential Simultaneous
pattern sequential
mining attern minin

mined pattern in the propagated database, we do not need to compare it with patterns of

the propagator domain to mine simultaneous patterns, because frequent patterns mined in

Sequential
patterns

imultaneou
sequential
patterns

Figure 3.2: Concept of PropagatedMine

Simultaneous
sequential
attern minin

Simultaneo
sequential
patterns

propagated database are exactly simultaneous patterns.

Given k time related sequence databases: TRSDB,,TRSDB,,...,TRSD B, suppose that
the propagation order is TRSDB, — TRSDBy — TRSDBs... — T RSD By, when performing
PropagatedMine, and then T'RSDB; is called the starting domain and T'RSDBs is called
first propagated domain and T'RS D Bs is called the second propagated domain. Note that the
propagation order is important in algorithm PropagatedMine. With a good propagation order,
the mining space is able to significantly reduced. The detail for the generation propagation

order will be elaborated in Chapter 3.3

propagate -

T

4

Simultaneous
sequential
pattern mining

3.2.1 Sequential pattern Mining in the Starting Domain

Sequential patterns in the starting domain (i.e., time related sequence database TRSDB;) is
able to be mined by performing PrefixSpan[9]. The illustrative example is given below.
Example 1. Given time related sequence database T'RS D B; in Table 3.1 and min__support
2, TRSDB; can be mined by PrefixSpan in the following steps.
1: Find frequent single-item sequences. By scanning T'RS D B; once, we can get all

frequent single-item sequences (i.e., <(a)>:4, <(b)>:3, <(c)>:3, <(d)>:2, and <(e)>:4, where

15

"< (item)>:count" represents the frequent single-item sequence and its associated support).

2: Divide search space and recursively find subsets of sequential patterns. Split
the complete pattern search space into five subsets, according to the five prefixes: <(a)>,
<(b)>, <(c)>, <(d)>, and <(e)>. Each subset is mined by constructing its corresponding
projected database and recursively mining it. A projected database contains postfix se-
quences and postfix time sequences. A postfix sequence consists of all those items that
follow the first appearance of a given prefix in any sequence in CONTEXT SEQ part of a
time related sequence database. If the first postfix item is in the same element as the last pre-
fix item, it is represented as (_item) in order to avoid ambiguity. A postfix time sequence
is a time sequence associated with a postfix sequence. Note that the projected database is a
time related sequence database, and a—projected database of time related sequence database
TRSDB; is denoted by TRSDB;|., where « is a prefix.

Consider an example with perfix <(a)>. In order to mine sequential patterns with prefix
<(a)>, TRSDB|<(q)> is constructed and shown in Table 3.1. After scanning TRSD B |<(q)>,
we find single-item frequent sequences which are <(b)>:3, <(c)>:3, <(d)>:2, <(e)>:3, and
<(_b)>:2. All sequential patterns having prefix <(a)> can be partitioned into five subsets:
(1) patterns prefixed with <(a)(b)>, (2) patterns prefixed with <(a)(c)>,.(3) patterns prefixed
with <(a)(d)>, (4) patterns prefixed with <(a)(e)>, and (5) patterns prefixed with <(a,b)>.
These subsets can be mined by constructing corresponding projected databases and finding
frequent item in each recursively.

After completing the processing of mining < (a)>-projected database, we can mine frequent
sequential patterns with prefix <(b)>, <(c)>, <(d)>, and <(e)> respectively by constructing
corresponding projected databases and recursively find frequent items on projected databases.
The complete set of all sequential patterns in T'RS D B; are constructed by collecting sequential
patterns found in <a>-, -, <c>-, <d>-, and <e>-projected databases. The sequential

patterns found in <a>-, -, <c>-, <d>-, and <e>-projected databases are shown in Table

16

(a)

SID | TIME SEQ CONTEXE SEQ SID | TIME SEQ CONTEXT SEQ
1 | 1:<1,2,34> | <(a)(b,c)(b,c,d)(e)> 1 1:<2,3,4> <(b,c)(e)(b,c,d)>
2 2:<2,3,4> <(a,b)(b,c)(c,e)> 2 2:<2,3,4> <(_Db)(b,c)(c,e)>
3 3:<1,2,3> <(a,e)(h)(g,j)> 3 3:<1,2,3> <(_e)(h)(g,j)>
4 | 4:<1,2,34> | <(a,b,f)(d)(b,c)(e,f)> 4 | 4:<1,2,3,4> | <(_b,f)(d)(b,c)(e,f)>
TRSDB; TRSDB| <o

Table 3.1: An example of one projected database

Prefix Sequential Patterns

<(a)> <(a)>:3, <(a)(b)>:3, <(a)(c)>:3, <(a)(d)>:2, <(a)(e)>:3,
<(ab)>:2, <(a)(bc)>,<(a)(b)(c)>, <(a)(b)(e)>, <(a)(b,c)(e)>
<(a)(c)(e)> 2, <(a)(c)(c)>:2, <(a,b)(b)>:2, <(a b)(b,c)>:2,

(a,b)(b,c)(e)>:2, <(a,b)(c)>:2, <(a,b)(c)(e)>:2, <(a,b)(e)>:2

<(b)> <(b)>:3, <(b,c)>:3, <(b)(e)>:3, <(b)(b)>:3, <(b)()>:3,
<(b)(d)>:2, <(b,c)(e)>:3, <(b,c)(c)>:2,<(b)(b,c)>:3,
<(b)(b,c)(e)> 2,<(b)(b)(e)>:2

<(c)> <(b)(c)(e)>:2, <(c)>:3, <(c)(e)>:3, <(c)(c)>:2

<(d)> | <(d)>:2

<(e)> | <(e)>4

Table 3.2: All sequential patterns found in T RS D B;

3.2 respectively.

3.2.2 Pattern Propagation

After mining patterns in a time related database, we propagate these patterns to other do-

mains. Since the only relationship between two time related sequence databases is TIME SEQ

attribute, not only patterns but also their corresponding time instance sets are propagated.
The time instance set of each pattern « in time related sequence database T'RS DB could

be found easily, if we have a set PI DIESPB for every a-projected database when performing

PrefixSpan. PIDI®5PB contains period identifiers when o occurs in TRSDB.

For example, given time related sequence database T'RSDB; in Table 3.1. It is easy to

obtain periods contain <(a)(b)> when constructing T"RS DB | (a)(

4 contain <(a)(b)

> P]DTRSDBI

<(a)(b)>

p)>. Since periods 1, 2, and

= {1,2,4} is generated. The time instance set of <(a)(b)>

is determined by scanning those time related sequences with period identifiers belonging to
PI DT?§ DB “and extracting time instances of <(a)(b)>. Time instances 1:<1,2> and 1:<1,3>
are found in the time related sequence with PID = 1 and its own CONTEXT SEQ having
(a)(b). In time related sequences with period identifiers being 1 and 2, we find time instance
2:<2,3> and 4:<1,3> respectively. Therefore, the complete time instance set of pattern
<(a)(b)> in TRSDB; equals to {1:<1,2>, 1:<1,3>, 2:<2,3>, 4:<1,3>}.

After finding time instance set of every pattern in propagator domain, mined patterns
with their corresponding time instance sets are propagated to propagated domains so as to
construct propagated databases.

Definition 5 (propagated database) Let T'RS D B, be a time related sequence database,
and « is a sequential pattern in time related sequence database T'RS D B, with time instance
set TISTRSPBe —< ty tiy, ..., ti,, > . The propagated database constructed by a in TRSDB,
is denoted as TRSDB,||o = {strsi, strss, ..., strs,} where strs;;1 < i < n, is time related
sequence and n < m. TRSDB,||, is constructed as following: For each j, 1 < j < m,
if there exist a time related sequence trs in TRSDB, such that ti; C trs.TIME SEQ,
then we add sub time related sequence of trs {PID :< ty,ts,..ty >, < X1, Xs, ... X} >} to
TRSDB,||o where PID :< ty,ts,...;ty >= ti; and for each r, 1 <r <k, X, is the element in
trs. CONTEXT SEQ mapped by time slot t,.

When propagating o form TRSDB,, to TRSDB,,I'RSDB,, is referred to as a propagator
domain, and T RS DB, is view as a propagated domain, and « is the propagator pattern
of propagated database TRSDB,||a.

Assume that sequential pattern <(a)(b,c)> is in TRSDDB;. Given time related sequence
database TRSDB; in Table 3.1 with sequential pattern <(a)(b,c)> and TRSDDB, in Table
3.3, propagated database T'RS D Bs||<(a)@»,c)> is constructed as follows:

Since TISTSPOL is {1:<1,2>, 1:<1,3>, 2:<2,3>, 4:<1,3>}, for time instance 1:<1,2>
in TISTRS(i)gl we extract sub-time related sequence {1:<1,2>, <(1,2)(2,3)>} from TRSD By
and add it into TRSDBs||<(4)(b,c)>- Similarly, time related sequences {1:<1,3>, <(1,2)(6)>},
{2:<2,3>, <(1,3)(2,4)>}, and {4:<1,3>, <(1,2,5)(2,3)>} are added to TRSDDBs||<(a)(b,c)>-
The entire TRSD Bs||<(a)(b,)> is shown in Table 3.3.

Note that TIME SEQs in a propagated database may have repeated period identifiers,

18

(a)

SID | TIME SEQ CONTEXT SEQ SID | TIME SEQ | CONTEXT SEQ
1 | 1:<1,2,34> <(1,2)(2,3)(6)(4,5)> 1 1:<1,2> <(1,2)(2,3)>
2 2:<2,3,4> <(1,3)(2,4)(8)> 2 1:<1,3> <(1,2)(6)>
3 | 3:<1.2,3> <(1,6)(5)(9,10)> 3 2:<2,3> <(1,3)(2,4)>
4| 4<1234> | <(1,2,5)(7)(2,3)(4,5,6)> 4 4:<1,3> (1 2,5)(2,3)>
TRSDB, TRSDBs||<(a)(be)>

(b)

Table 3.3: TRSDB; and TRSDBs||<(a)(b,)>

because a propagator pattern can have multiple time instances in one period. For example,
propagator pattern <(a)(b,c)> has two time instances in period 1 (i.e., 1:<1,2> and 1:<1,3>).

Thus, in TRSDBs||<(a)»,c)>, We have SIDs 1 and 2 having the same period identifier.

3.2.3 Sequential Pattern Mining in the Propagated Domain

After constructing propagated databases in the propagated domain, we describe how to mine
simultaneous sequential patterns in the propagated databases. Observing a propagated data-
base T'RSDB,,,,, we find that: the numbers of time slots and elements in every time related
sequence are exactly the same with that of the propagator pattern of TRSDB,,,,. If a se-
quential pattern 8 in the propagated database and propagator pattern o are simultaneous,
[has the same number of elements as that in a. Accordingly, we propose a simultaneous
sequential pattern mining method referred to as SSM (standing for Slot-by-Slot sequential
pattern Mining). The concept of SSM is that since sequential pattern (3 has exactly the same
number of elements as propagator pattern «, we can collect elements that map to time slots
which have the same rank in TIME SEQs to form an element set and mining these element
sets step by step. If no frequent itemset is found, sequential pattern S and propagator pattern
« are not simultaneous. An example of mining simultaneous patterns by SSM is described as
follows.

Example 2 (SSM) Given min_sup = 2, « =<(a)(b,c)(e)>, which is a sequential pattern

19

in TRSDBywith TISTRSPBL —{1:<1,2 4>, 1:<1,3,4>, 2:<2,3,4>, 4:<1,3,4>} and propagated
database TRSDBs||, in Table 3.4, the process of SSM on TRSDBs||, is described as the
following steps.

Step 1. Mine frequent itemsets occurred in the first time slot: Extracting the
elements occurred in the first time slot of each TIME _SEQ in TRSDBs||, into one element
set, which can be treated as a transaction database, denoted by DBy 0. In this example,
DBig g0t of TRSDDBs||, is {1:(1,2), 1:(1,2), 2:(1,3), 4:(1,2,5)}, where the number before
an itemset indicates the period in which this itemset occurs. Then we can use traditional
frequent itemset mining method [1],[7],[14] to find frequent itemsets in DBy g0 Note that
the support of an itemset is counted one for the same period. Consequently, the supports of
(1), (2), and (1,2) in DBy ot are 3, 2, and 2, respectively.

Step 2. Divide search space: Tor every frequent itemset X found in DBy o,
we construct the <X>-projected database in TRSDBs||,. Projected databases in SSM
is somewhat different with that in PrefixSpan, because we have mined all frequent item-
sets in DBig si0t, and therefore items within the postfix and the first element is useless
for every CONTEXT SEQ in TRSDBs||,. Consequently, items within the postfix and
the first element are ignored when <X >-projected database is constructed. For example,
the <(1)>-projected database in T'RSDBsl|, should contain postfixes <(2)(2,3)(4,5)>,
<(_2)(6)(4,5)>, <(_3)(2,4)(8)>, and <(_2,5)(2,3)(4,5,6)>. After ignoring items, we get new
postfixes: <(2,3)(4,5)>, <(6)(4,5)>, <(2,4)(8)>, and <(2,3)(4,5,6)>. Projected database
(TRSDDBs||a)|<(1)> is shown in Table 3.4. Similarly, (ITRSDBs||a)|<(2)> and (TRSDBs||a)|<(1,2)>
are also constructed. We only list (TTRSDBs||a)|<(1,2)> in Table 3.4.

Step 3. Mine frequent itemsets in the 1st element set of split search space
recursively: For every projected database found in the previous step, we mine frequent item-
sets in currently DBy g0 and divide search space recursively. Consider (TTRSDB||a)|<(1,2)>

as an example. We extract the first element in every CONTEXT SEQ to form cur-

20

<(a) (bec) (e) > 23) [

—> <(45)>
<(12) (23) (45)> || p <(bc) (e)> <(456)>
! : G I T
<i(1,2 i (6 45)> g
E():() () <(23) (45)> {Frequentitemsetmining
<(13)i(24) (8)> <(6) (45)> .
<E-(-£L-'-2-';5---2': (23) (456)> <-(--2-£3----)- (456)> Frequent itemset: (4), (5), (4,5)
& i
[Frequent itemset mining Frequent itemset mining J ﬁ
i 8
Frequent itemset: (1), (2), (1,2) Frequent itemset: (2), (3), (2,3) —
3
<(bc) (e)> g
© b <E(2,3)E (45)>
Propagated <i(6) (45)>
I:] database i :

<(24) (8)>
Projected <i(23) (456)>
I:] database iy

Frequent itemset mining

! 1st_slot l
o Frequent itemset: (2), (3), (2,3)

@ L,

Figure 3.3: Illustrate the process of SSM in example 2

rent DBy got={1:(2,3), 2:(6), 4:(2,3)}. After performing frequent itemset mining method
on DBy ot of (TRSDB|a)|<(1,2), We can find frequent itemsets (2), (3) and (2,3) with
the support value to be 2. Therefore, (I'RSDBs||a)|<(1,2)2)>» (TRSDBsl|a)|<(1,2)3)>, and
(TRSDDBs||a)|<(1,2)(2,3> are constructed and frequent items are mined recursively. Since
there is no element in <(1,2)(2,3)(4)>-, <(1,2)(2,3)(5)>-, and <(1,2)(2,3)(5)>-projected
databases, the process of SSM on <(1,2)(2,3)>-projected database stops and returns three
sequential patterns: <(1,2)(2,3)(4)>, <(1,2)(2,3)(5)>, and <(1,2)(2,3)(4,5)>. Therefore,

we get three simultaneous sequential patterns for propagator pattern <(a)(b,c)(e)>, i.e.,

(@) () ()] | (@) (b (¢ (@) (be) (e)

(1,2) (2,3) 4| |(L2) (2,3) (5) (1,2) (2,3) (4,5)

Following the above procedure, we could mine all simultaneous patterns in divided space.
We use Figure 3.3 to illustrate the processing of SSM with the profile given in Example 2.
Note that in Figure 3.3, we omit TIMES SEQ part in propagated and projected databases

and focus on the operation performed in CONTEXT SEQ.

21

SID | TIME SEQ CONTEXE_ SEQ SID | TIME SEQ CONTEXT SEQ
1 | 1:<1,2,34> | <(a)(b,c)(b,c,d)(e)> 1 | 1:<1,2,34> <(1,2)(2,3)(6)(4,5)>
2 2:<2,3,4> <(a,b)(b,c)(c,e)> 2 2:<2,3,4> <(1,3)(2,4)(8)>
3 3:<1,2,3> <(a,e)(h)(g.j)> 3 3:<1,2,3> <(1,6)(5)(9,10)>
4 | 4<1,2,34> | <(ab,f)(d)(b,c)(e,f)> 4 [4<1,234> | <(1,2,5)(7)(2,3)(4,5,6)>

TRSDB; TRSD B>

SID | TIME SEQ | CONTEXT SEQ SID | TIME SEQ | CONTEXT SEQ
1 1:<1,24> <(1,2)(2,3)(4,5)> 1 1:<2,4> <(2,3)(4,5)>
2 1:<1,3,4> <(1,2)(6)(4,5)> 2 1:<3,4> <(6)(4,5)>
3 2:<2,34> <(1,3)(2,4)(8)> 3 2:<3,4> <(2,4)(8)>
4 4:<1,34> | <(1,2,5)(2,3)(4,5,6)> 4 4:<3,4> <(2,3)(4,5,6)>

TRSDBs||a (TRSDBs||a)l<(1)>
(a) (b)

SID | TIME SEQ | CONTEXT SEQ STD [TIME_SEQ | CONTEXT SEQ

1 1:<2,4> <(2,3)(4,5)>

1 1:<4> <(4,5)>
2 1:<3,4> <(6)(4,5)> Tis <{45.6)>
3 4:<3,4> <(2,3)(4,5,6)> : o

(TRSDBs|la)|<1,2)> (TRSDBsla)l<1,2)(2,3)>
(c) (d)

Table 3.4: Projected databases used in Example 2

Algorithm: Slot-by-slot simultaneous sequential pattern mining (SSM.)
Input: propagator pattern o and the propagated database TRSDB, ||«
and minimum support threshold min__support.
Output: The complete MDSSPs which can be found in TRSDB,||«.
1. call SSM(TRSDB,||a).
2. For every pattern p return from previous step, if the number of elements

in p equals to the number of elements in a, we output that {Z} is a MDSSP.

Function SSM(TRSDB)
/*T'RSDB is a time related sequence database.™/
IF every CONTEXT SEQ in TRSDB is empty
RETURN
ELSE BEGIN
1. Collect every first element which is mapped by the
first time slot in every CONTEST SEQ of TRSDB
to form the transaction database DB siof-
2. Mine frequent itemset in DBy g0t
3. IF no frequent itemset can be found in DBis ot
RETURN
ELSE BEGIN
1. For every found frequent itemset X;, we construct
projected database TRSDB| x,.
2. For every TRSDB|x,~, we call SSM(TRSDB|x,~).
3. For every returned pattern p from previous step,
we insert itemset X; into p to form a new pattern p’

22

such that X; is the first element in p'.
4. RETURN every p'.
END
END

When performing SSM on propagated databases in propagated domain T'RS D B4, get, We
can ignore some propagated databases and do not need to apply SSM on them because of the
following property:

Properity 1 (Reducible Propagation) Assume that both a and (are propagator

patterns which are represented as [cl Co .. cm] and [c’l ¢y . O] respectively where

n
G isacolumninozandc;- is a column is f such that 1 <1 < m, 1 < j < n,n>m
and ¢; = d,c0 = ¢,y = . If no simultaneous sequential patterns can be found in

TRSD Biyaget||cv, also no simultaneous sequential patterns can be found in TRSD Byyqget|| 5.

Based on the property above, we can do simultaneous sequential pattern mining more
efficiently: first we perform SSM on propagated databases constructed by propagator patterns
having only one column. We record which propagator patterns can not find no simultaneous
sequential pattern in TRSDBy,4: and then prune propagator patterns which are prefixed
with these recorded propagator patterns. After doing propagation pruning, we perform SSM
on propagated databases constructed by propagator patterns having two columns, and then
similarly prune propagator patterns according to the result of performing SSM. Repeat this
process until all propagator patterns have been propagated or pruned.

Based on the above discussion, the algorithm of PropagatedMine is presented as follows:

Algorithm : PropagatedMine
Input: Time related sequence databases: TRSDB,,TRSDB,,...,TRSDB,,
and the minimum support threshold min_support.
Output: The complete MDSSPs of TRSDB,, TRSDBs,and TRSDB,,.
BEGIN
1. Perform PrefixSpan on TRSDB;.
2. Construct propagated database TRSDBs||a and call SSM(a, TRS D Bs||a)
for every mined sequential pattern « in step 1 if @ cannot be pruned.
3. For every MDSSP p returned form step 2, call Propagation(p, ds).
END

Subroutine: Propagation(propagator,domainlD)

/* propagator is the propagator pattern, and domainl D
is a identifier used to indicate which domain.*/
BEGIN

1. call SSM (propagator, T RS D Baomainip||propagator) if propagator

23

cannot be pruned.
2. IF domainl D equals to d, BEGIN

OUTPUT every MDSSP p returned from step 1 is a MDSSP of
TRSDB,,TRSDBs,....and TRSDB,,

END

ELSE BEGIN
call Propagation(p,domainID + 1) for every MDSSP p
returned from step 1.

END

END

3.3 Optimized Propagation Order

In the pervious section, algorithm PropagatedMine is performed with a propagation order
given. In fact, multi-domain simultaneous sequential patterns can be mined by Propagat-
edMine with a variety of propagation orders. These propagation orders will not have any
influences on the result of patterns mined.

Theorem: Given n time related sequence database (TRSDB;, TRSDB,, ..., TRSDB,,),
multi-domain simultaneous sequential patterns mined by PropagatedMine with different order
are exactly the same.

Proof: Every propagation order mines the same MDSSPs means that any MDSSP «
found with propagation order O; = (i1,13,...,4,) can ecactly maps to a MDSSP [found
with propagation O; = (ji, ja, ..., Jn) such that a equals to [, where i, and j; are domain
identifiers and 1 < 4%, ji < n. If not all propagation order find the same MDSSPs, then there
must exist a MDSSP « = [r;,, 74y, ..., 74,]7 which having no MDSSP to map, where r;, is a
component pattern,1 < k < n. Let TIS = T[S|ZL.?SDB” N T[S\ngDBiQ N...NTIS|} PP,
Since « is a MDSSP, the numebr of different period identifiers in T'1.S must be greater than
or equal to minimum support threshold. Therefore, if PropagatedMine is processed with

Oj, rj, can be mined in TRSDDBj,, because 115 |Z;11%SDBj1 C TIS and r;, can be mined

by propagating T'IS to TRSDBr;, since T1S |Zj?SDB“ C TIS. Similarly, propagate T'1S

to TRSDBr;,,TRSDDBrj,, ..., and TRSDBrj, one by one, and we can find simultaneous
sequential patterns 7,,7j,, ..., and r;,, repsectively. Accordingly, a = [rj,, 7, ...,7,] can be
mined by PropgatedMine with O;, showing a contradiction. Q.E.D.

Though different propagation order will not affect the mining result, the costs of apply-
ing PropagatedMine with different propagation orders are not the same. This phenomenon
is obvious shown in Figure 3.4. There are three rectangles that overlap with each other,

and these three rectangles represent sequential patterns contained in TRSDB;, TRSD B,

and T'RS D B3, respectively. The overlapped areas represent that patterns in the overlapping

24

area are simultaneous. Therefore, the overlapping area resulted by three rectangles contains
MDSSPs that are required in this paper. Based on PropagatedMine, the central overlapping
area can be mined by propagating patterns in overlapping area of TRSDB; and TRSD B; to
TRSDBs, or by propagating overlapping area of TRSD By and TRSDBs to TRSDB;. The
former propagation order is more expensive than the latter one because more patterns are
needed to be propagated in the former propagation order. Consider an illustrated example in
Table 3.5, where there are three time related sequence database: TRSDB;, TRSDBs,, and
TRSDB; shown in Table 3.5(a), 3.5(b), and 3.5(c) respectively. Two propagation orders:
01 = (1,2,3) and Oy = (3,2,1) are used in algorithm PropagatedMine. The result is listed
in Table 3.5(d), where "1st propagated domain" means simultaneous patterns mined in the
first propagated domain, and similarly "2nd propagated domain" means patterns mined in
the second propagated domain. By observing the result, propagation order O; has 48 se-
quential patterns in the starting domain and 111 simultaneous sequential patterns in the first
propagated domain, which means that if we pick O; as our propagation order, we will need
to perform 159 (48+111) times pattern propagation and SSM to find the final 6 MDSSPs.
However, if we select O, only 44 (25+19) times pattern propagation and algorithm SSM are
performed. Therefore, applying PropagatedMine with propagation order O, has smaller cost
than applying PropagatedMine with propagation order O;.

In addition to the number of simultaneous sequential patterns, the size of propagated
databases is taken into consideration when estimating the cost of algorithm PropagatedMine.
Given a propagation order O, O=(dy, ds, ..., d,), where d; is the identifier of a domain,

1 <@ < n, the cost of performing PropagatedMine can be formulated as:

25

TRSDB1

TRSDBZ

Simultaneous

TRSDB3

patterns of 1
domain 1,23 1

Figure 3.4: Simultaneous relation of sequential patterns in domain 1, 2, and 3

SID | TIME SEQ | CONTEXT SEQ
1 1:<1,2,34> | <(a,b)(k)(c,d)(e)>
2 | 2:<1234> | <(K)(ED]M)(L)>
3 3:<2,3,4> <(a,b)(c,d)(e)>
4 4:<1,2,3,4> | <(f)(m)(h)(i,j)>
5 5:<1,2,4> <(a,b)(c,d)(e)>
TRSDB;
(a)
SID | TIME SEQ | CONTEXT SEQ
1 1:<2,3,4> <(a)(B)(v,0)>
2 2:<1,2,3,4> | <(a)(B)(\,w)(7,0)>
3 [3<1234> | <(B)()(.p)(0)>
4 4:<1,2,34> | <(0)(0,5)(¢,8)(a,)>
5 5:<2,3,4> <(a,B)(p)(e,0)>
TRSDBs

Table 3.5: Time related sequence databases used to explain propagation order determining

SID | TIME SEQ | CONTEXT SEQ

1 1:<1,2,3,4> | <(1,2)(8)(3,5)(4,10)>

2 2:<1,2,34> | <(1,8)(5)(6,7)(9,10)>

3 3<234> | <(1,2)(3)(4)>

4 4:<1,3,4> <(5)(6,7)(9)>

5 5:<1,2,3,4> (1,2)(3)(11)(4)>

TRSDB,
(b)

\ | 01=(1,2,3) | O2=(

‘ Starting domain

‘ 48 patterns | 25 patterns

‘ 1st propagated domain ‘ 111 patterns | 19 patterns

| 2nd propagated domain | 6 patterns | 6 patterns

Patterns found by PropagatedMine with O; or Oq

26

(d)

Cost(PropagatedMine(O)) = Cost(PrefixSpan(TRSDBy,)) +
n |Pi—1]
> " Cost(SSM(TRSDBy,|

i=2 j=1

04141,]‘))

For each 7, 2 <4 < n, P;_; is the set which contains all simultaneous sequential patterns
found in time related sequence database T'RS D By, , with the propagation order: (dy, ds, ..., d;_1).
| P,_1| denotes the number of patterns in Pi-1. o;_; j represents a simultaneous sequential pat-
tern contained in P_y (i.e., a;_1; € P—y ,where 2 < i < nand 1 < j < |P_4]). The
cost of performing PrefixSpan or SSM on a time related sequence database includes frequent
items/itemsets mining, projected databases construction, and time instances search. Note
that the cost of PropagatedMine is mainly dependent on total amount of database scans.
Therefore, the number of database scans is viewed as the main cost of applying PrefixSpan or
SSM.

Since different propagation orders have different mining costs, a propagation order with
the minimal cost is desired. Unfortunately, estimating the costs of PrefixSpan and SSM are
difficult because patterns are not found in advance. Thus, an efficient method to approximately
estimate the costs of PrefixSpan and SSM is proposed.

We develop a greedy method to progressively generate the optimized propagation order so
as to improve the performance of PropagatedMine. Judiciously selecting the starting domain
and the propagated domain is able to reduce the amount of mining spaces required. Note
that instead of generating full propagation order once at a time, the optimized propagation
order selection is embedded in algorithm PropagatedMine and the cost estimation method
will determine how to efficiently select the next propagated domain when needing to perform
a propagation in algorithm PropagatedMine. Optimized propagation order method can be

divided into two phases: (1) the selections of the starting domain and the first propagated

27

domain and (2) the selection of the next propagated domain. These two phases will be

described in the following sections.

3.3.1 Selecting the Starting Domain and the First Propagated Do-
main

The starting domain and the first propagated domain can be determined as following: In the
beginning, we perform PrefixSpan cost estimation method to estimate the cost of PrefixSpan
in each domain TRSDB;, and pick the domain with the minimal PrefixSpan cost as the
starting domain (denoted by T'RS D By,). Furthermore, for every other domains TRSDB;,
1 <i < nand TRSDB; # TRSDBg,,;, we estimate the cost of performing SSM on all
propagated databases in T'RS D B;. Similarly, we select the domain with the minimum SSM

cost as our first propagated domain (denoted as TRSDB1s; propagated)-

Synopsises Construction

To evaluate the costs of PrefixSpan and SSM, we scan each time related sequence database
and compute some statistic data for every time related sequence database as follows.

(1). Average length of context sequences: the average length of context sequences
of a time related sequence database TRSDB (denoted as seq_lengthrrspp.) is defined as:

SOTESDBI 4.5, CONTEXT _SEQ)
ITRSDB|

seq_lengthrrspp =

|T RS DB| represents the number of time related sequences in TRSDB. trs; is a time related
sequence in TRSDB with trs;.SID =i, and |trs;, CONTEXT SEQ)| represents the length
of the associated context sequence trs;. CONTEXT SEQ, 1 < i <|T'RSDB]|. Consider an

example of a time related sequence database T RS DB, in Table 3.6(a), seq _lengthrrspp., =

28

THTH54+746
54746 — 6.4

(2). Average length of elements: the average length of elements of a time related

sequence database TRSDB (denoted as elem_lengthrrspp) is defined as:

|TRSDB| |trs;, CONTEXT SEQ|
=1 [trs;. TIME SEQ)|

ITRSDB]

elem_lengthrrspp =

Since time slots in trs;, CONTEXT SEQ and elements in trs, TIME SE() are one to
one mapped, the number of elements in trs;, CONTEXT SEQ equals to the length of

7,7,5,7,6
sTstataty

trs; TIME SEQ. For example in Table 3.6(a), elem_lengthrrspp,, = :

= 1.38.

(3). Period Synopsis structure: for every length one sequential pattern x; in time re-
lated sequence database T'RS D B, we build a period synopsis structure denoted by PID _Synopsis,,.
Actually, PID Synopsis,, is a table having two attributes: PID and COUNT, where PID
indicates item x; appeared in which periods and COUNT represents the number of counts,
where z; appears in that period. If PID_Synopsis,, has k tuples, they are expressed by
psty psta, ..., psty. For example, given a time related sequence database T'RSDB,, in Table
3.6(a), PID Synopsis, for frequent item a of TRSDB,, is shown in Table 3.6(b).

(4). Position Synopsis structure: we build a position synopsis structure denoted as
POS _Synopsis,, for every length one sequential patterns z; in TRSDB. POS _Synopsis,,
is a table with three attributes: RANK, POSITION, SUPPORT. Given a time related se-
quence database TRSDB,, in Table 3.6(a), we can build POS _Synopsis, for frequent item
a of TRSDB,,. POS _Synopsis, is shown in Table 3.6(b). The first tuple {RANK=1, PO-
SITION=1.8, SUPPORT=5} means that there are 5 periods (PID=1, 2, 3, 4, and 5) in
TRSDB,, contain the first appearance of "a" (RANK=1) and the average position of these
five "a" is 1.8 because their positions in periods are element 2, 1, 2, 4, 1, respectively, and

thus, the average position is 1.8 (3+£1). Similarly, The second tuple {RANK=2, POSI-

TION=2, SUPPORT=3} means that there are 3 periods (with PID=2, 3, and 5) in TRSDB,,

29

SID | TIME SEQ | CONTEXT SEQ
1 1:<1,2,3,4,5> | <(c)(a)(e)(b,c)(g,h)>
2 2:<1,2,3,4,5> | <(a,f)(a)(b)(f)(a,b)>
3 3:<2,3.4,5> | <(a)(a)(e)(a,h)>
4 4:<1,2,34> | <(cf)(c)(f)(a,b,c)>
5 5:<1,3,4,5> | <(a,c)(a)(g)(c,g)>
TRSDBe,
(a)
PID | COUNT
1 1 RANK | POSITION | SUPPORT
2 3 1 1.8)
3 3 2 2 3
4 1 3 4.5 2
5 2
PID Synopsis, POS Synopsis,
(b) (c)
PID | COUNT RANK | POSITION | SUPPORT
1 1
1 1.25 4
2 3
3 3 2 2 3
3 5 3 4.5 2
Revised PID _Synopsis, Revised POS _Synopsis,

(d) ()

Table 3.6: Synposis examples

contain the second appearance of "a" (RANK=2) and the average position of these "a" is 2,

since their position in period 2, 3, and 5 are 2, 2, 2,respectively. As a result, the average
position of the second appearance of "a" is 2 (2:2+2). Assume that POS_ Synopsis,, has k
tuples, and these tuples are denoted as sstq, ssta, Ssts, ..., SSt.

Note that we can build PID _Synopsis,, and POS _Synopsis,, for every frequent item
x; in time related sequence database TTRSDB by scanning T'RS DB once. However we need
to scan T'"RS DB once more for revising every PID _Synopsis,, and POS _Synopsis,,. The
revising operation is to ignore positions which are far away from the average position and
the revising operation makes revised average position more representative. The revising op-

eration is presented as following: for every tuple sst; in POS_Synopsis,,, suppose that

sst;. RANK = k, we recompute the value of POSITION and SUPPORT by exclude those

30

k-th z; whose distance between z; and sst;. POSTION is larger than the standard deviation
of all k-th x; derived in the first disk scan. Then, PID Synopsis,, is updated accordingly.
Also, if the revised value of SUPPORT in sst; is less than min_ support, we remove sst;
from POS _Synopsis,, and PID _Synopsis,,. For example, the standard deviation of all
first "a" in TRSDB,, equals to 1.166, and the first "a" in time related sequence with SID=4
satisfies that the distance between its position and the average position (|4 — 1.8 = 2.2) is
larger than the standard deviation 1.166. Therefore, we exclude this tuple. The final revised

PID Synopsis, and POS _Synopsis, are in Table 3.6(d) and 3.6(e), respectively.

Cost of PrefixSpan

The total scan space of performing PrefixSpan on a time related sequence database TRSDB

can be calculated as:
Cost(PrefizSpan(TRSDB)) = Space(TRSDB) + Z Space(TRSDB|,,)

where > . Space(TRSDB|,,) is the summation of space of projected databases constructed
by sequential pattern «; and function Space(TRSDB) = ZLZ?SDH [trs;, CONTEXT SEQ)|.
Based on the definition of seq lengthrrspp, Space(TRSDB) equals to: Space(TRSDB) =
|ITRSDB| x seq_lengthrrspp. Therefore, the definition of PrefixSpan cost can be rewritten

as following:

Cost(PrefixSpan(TRSDB)) = seq lengthrrsps X |TRSDB| +

Z ((TRSDB|a,)| x seq_lengthrrspp,,) (3.1)

7

Formula (3.1) is illustrated in Figure 3.5. Every rectangle in the figure is a database whose
space can be evaluated by multiply the number of sequences with the average sequence length

of that database.

31

« Space (database DB) = number of sequence in DB * average sequence length of DB

» Total scan space = Y; Space (DB;) P = @

= 1
g Number of A\ ﬁ e \ @
sequence — ﬁ [I ;
= =1
Average sequence length) \f,ij \ éi
N(T) =
AR Y- S

Original time related Projected time related
sequence database sequence databases

Figure 3.5: Illustrate PrefixSpan cost formula

Based on formula (3.1), the method of PrefixSpan cost estimation can be designed by add
the scan space of every projected database constructed by some representative sequential
patterns together. The concept of representative sequential pattern proposed here helps
estimating cost efficiently, since representative sequential patterns have two properties: (1)
every element in the sequential pattern contains only one item, and (2) the sequential pattern
often occurs in similar time slots in different periods. Synopsises of a time related sequence
database are used to generate representative sequential patterns in PrefixSpan cost estimation
method.

To facilitate the presentation of this paper, some terminologies and functions are defined
as follows.

(1).Length() takes a real number r as its parameter, and Length(r) is defined as: Length(r) =
r,if r > 1; Length(r) =1, if r < 1.

(2) PIDIRSPB 5 g set that contains period identifiers. For each period identifier pid in
PIDTESDB it represents that there will be a time related sequence trs existing in TRSDB
such that trs TIME SFEQ.PID = pid and trs. CONTEX'T contains sequential pattern «.

(3) POSIRSPE g 4 list used to record the average position of all first occurring o in

32

First occurrence of
i <a,b>
TRSDB,, sequential pattern <a,b

SID | TIME_SEQ | CONTEXT SEQ

1 [1:<1,2,34,5> | <(c)@Ne)(b)e)(g.h)>
2 |2:<1,234,5> | <@0@O)(H(a,b)>
3 3:<2,34,5> | <(a)(a)(e)(a,h)>
4 4<1,2,3.4> | <{c.D(c){f)(a,b,c)>
5 5:<1,34.5> |<(a,c (a)Qg (c,g)>
1.2 3[4
Position Position
average l average

POS,p-=(1.5, 3.5)

Figure 3.6: Average position of sequential pattern <a,b> in TRSDB,,

time related sequence database TRS DB, where « is a sequential pattern in TRSDB. Figure
3.6 is used to illustrate POSZ&EE Bea in time related sequence database TRSDB,, : there
are two context sequences having < a,b > in TRSDB,, (i.e., context sequences with SID
equal to 1 and 2) and the average position of the first "a" and the first "b" in these two
sequence are 23 = 1.5 and #2 = 3.5, Given POST"PP and o =< a4, as, .., a, >, function

2

pos(POSERSDB, a,

;) will return the position of a; in POSTEIPE where a; € {ay,as, .., ax}.

pos(POST®PB) will return the last value in POSTRSPE,

The Cost Estimation Method of PrefixSpan

We use GSP[11] like method to generate candidate sequential patterns (i.e., length & se-
quential patterns are generated from length k£ — 1 sequential patterns), and utilize synopsises
to make sure whether a candidate sequential pattern is a representative sequential pattern
or not. We also use the synopsises to estimate the databases constructed by representative
sequential patterns. For conciseness, when saying sequential patterns in PrefixSpan cost esti-
mation method we indicate representative sequential patterns actually. The cost of performing
PrefixSpan on a domain can be estimated by the following two steps and we add all scan space
computed by these two steps together as the whole PrefixSpan cost.

Step 1. projected databases of length 1 representative sequential patterns:

33

v

prefix_lengt posfix_length

v (fI(TRSDBY,)|
h

v

A 4

N seq_lengthrrspg j

TRSDB

Scan space = the number of sequences * posfix_length
=|(TRSDBI,;)| * (seq_lengthrggpg — prefix_length gspg)
=|(TRSDB]|,))| * (seq_length;rgpg — POS(POSRSPEY*elem_lengthrrspg)

Figure 3.7: Illustrate how to calculate scan space of step 1 in the PrefixSpan cost estimation
method

In this step, we calculate scan space of projected databases constructed by length 1 se-
quential patterns. Suppose we have n length-1 sequential patterns, x1, s, ..., z,, in TRSDB.
The number of sequences contained in projected database of x; is (TRSDB|,,)|, 1 <i <mn,
which will equal to |PIDI#5PE| Moreover, we use Length(seq_lengthrrsps — POSERIPE x
elem_lengthrrspp) to estimate seq_ lengthrrsp Bl Therefore, according to scan space for-
mula, the scan space of projected database constructed by frequent item z;,1 <7 < n, is as

follows and illustrated in Figure 3.7.

|PIDZ§£DB| x Length(seq lengthrrsps — pos(POSZﬁiDB) x elem__lengthrrspp)

Selecting sst form POS _Synopsis,, with sst. RANK = 1, and then the formula above can
be computed by letting (1). [PIDIR5PB| = s5t. SUPPORT and

(2). POSZ;RSDB = sst.POSITION.

Step 2. Projected databases of length k representative sequential patterns
where k above 1:

We generate length k sequential patterns from length k& — 1 sequential patterns. Rules
of pattern generation and pruning are similar to those in GSP[11] (i.e., a candidate length k

sequential pattern p is generated by two length k£ — 1 sequential patterns where their first k£ —2

34

TRSDleixi..xi

/ (I(TRSDleixi...xi)|

) prefix_length i posfix_length

_ seq_length;rsps /*
TRSDB

Scan space = number of sequence * posfix_length
=|(TRSDBlyi...xi)| * (seq_lengthrrspg — prefix_length)
=|(TRSDB|,)| * (seq_lengthrgrsps — Pos(POS,i3°5¢) *elem_length zspg)

Figure 3.8: Ilustrate how to calculate scan space of the case 1 in step 2 of the PrefixSpan
cost estimation method

items are the same and every length & — 1 subsequence of p must be a sequential pattern).
Length k sequential patterns could be categorized into two kinds:

Case 1: (Homogeneous sequential patterns)

A length k sequential pattern of this kind will have the form like x;z;...z; and |x;x;...x;| = k,
1 <4 < n. Scan space of the projected database constructed by x;z;...x; is as follows and

illustrated in Figure3.8.

|PIDIESPB| x Length(seq_lengthrrsps — pos(POSLEPE) x elem _lengthrrspi)

If there exists a tuple sst; in POS _Synopsis,, such that sst;, RANK = k, then the for-
mula above can be computed by letting (1). |PIDIHSPB| — g5, SUPPORT and (2).
pos(POSTESDBY — sst; POSITION

Though we can compute | PIDIESPB| by POS _ Synopsis,, directly, we still need to build
PID,,,,. ., which will be used in estimating scan space of projected databases constructed by

length k + 1 sequential patterns. PIDIH5PB

can be obtained by scanning PID _Synopsis,,
once. When scanning PID _Synopsis,,, we add pst;. PI1D into PIDIRSPB if pst;, COUNT >
k.

Case 2: (Heterogeneous sequential patterns)

35

Given a candidate length k sequential pattern o = ajas...ax, a; € {x1,x9,...,2,} for 1 <
1 < k and « is a homogeneous sequence, « is a sequential pattern in TRSDB if « satisfies

two conditions: (Condition 1) pos(POSTESDPB Y 05(POSTESPE) > 1 and (Condition 2)

a1a2,...ax a1a2,...ag—1

|PIDTESDB| > ymin support.

ajaz...ap

(1) Condition 1: Examining POS Synopsis,, to see if there exist a tuple sst in

POS _Synopsis,,, such that sst. POSITION — pos(POSIEPE) > 1. If condition 1 can

a1az,...ag

be satisfied, then POSLESPE equals to POSTRSPE 4 55t POSITION, where "+" means

ajag...ap ai1az,...a

append sst. POSITION to POSTESPE — guch that sst.POSITION is the minimal value

a102,...ak—1

satisfying condition 1 in POS _Synopsis,,. Note that POSTESPB hag already been com-

a1a2,...a5_1

puted in the generation of length k£ — 1 sequential patterns.

(2) Condition 2: [PIDI%PB| can be estimated as follows. Suppose variable rank

equals to sst. RANK where sst is the synopsis tuple we found in condition 1. We can

build PIDIESPE by scanning PID_ Synopsisa,. When scanning PID Synopsis,,, we

rank _th_ag

add pst. PID into PIDI 3Pl if pst. COUNT > rank. After PID! 3PP has been built,

rank _th_ a rank th a

PIDTESDE goyals to PIDIESDB — npIDIEIDE “and then we can check if | P DIESDE| >

ajas...ag a1ag,...a_1 rank th_ap’ ajas...ag
min__support. Note that since o = ajas...a; is a candidate sequential pattern, ajas, ...ax_1

TRSDB

must be a sequential pattern. Therefore, PID, .~

has already been built when generating
length k& — 1 sequential patterns.

If @« = ayas...a; satisfies condition 1 and 2, then scan space of the projected database

constructed by a can be formulated as following and illustrated with Figure 3.9.

|PIDTESDB | o Length(seq lengthrrsps — pos(POSTESPEY s clem lengthrrsps)

aiaz...ap ajaz...ap

TRSDB TRSDB
ajaz...ap | and pOS(POSalag...ak>

The formula above can be computed by substituting the value of | P1 D

which can be found in judging condition 1 and condition 2.

36

. Cond. 1: pos(POS,,.., 4)-POS(POS, > a1)>1
J— Cond. 2: |PID,;,, | 2Min_sup

4 t s
pos(POSIEPE.) the number of sequence
alap...ak-
dos(posreoe v A | posfclength ypepe
N | TRSDBlatap...akc1
\ seq_lengthrrspg TRSDB ':

Scan space = number of sequence * posfix_length

=|(TRSDB|, 142 a0l * (seq_lengthtrspg — prefix_length)

=|(TRSDB|a142.. 40| * (Seq_lengthrrsps — POS(POS,1hy ok)*elem_length rspe)

Figure 3.9: Illustrate how to calculate scan space of the case 2 in step 2 of the PrefixSpan
cost estimation method

Cost of SSM

The cost of performing SSM on the propagated domain is estimated by finding out the scan
space of propagated databases in the propagated domain. As illustrated in Figure 3.10, SSM
is performed in propagated databases constructed by frequent patterns in TRSDB,,.

Given a pair (I'RSDB,,TRSDB,), where TRSDB,, is the propagator domain having n
length 1 sequential patterns (i.e., {z1,2,...,2,}), and TRSDB, is the propagated domain
having m length 1 sequential patterns (i.e., {y1,%2,...,ym}), we will use PIDIFSPBu and
POSTESDBu {6 estimate scan space of performing SSM on T'RSD B, ||, for each representative
sequential pattern o = ajas...ay, found in TRSD B, ,where a; € {1, zs,...,x,} and 1 <i < k.

The cost of performing SSM in propagated database TRSDB, ||, can be estimated as:

Cost(SSM(TRSDB,||.)) = |(TRSDB,||a)| x elem_lengthrrsps, +

ssm(TRSDB,||a, prefiz,c) (3.2)

37

Propagator domain: Target domain
TRSDB, Propagate TRSDB,

Sequential patterns @D TIME_SEQ CONTEXT_SEQ
|
<(a)(b,c)(e)> \

<(b)(e.H>
<(ab)((c,d)>

Number of
sequence

Construct

Propagated database

Figure 3.10: Illustrate SSM cost estimation

where ssm(TRSDB,||a, prefix,c) is defined as:

ssm(TRSDBy||a, prefiz,c) = > |PID£BlSt*SZOt| x elem_lengthrrspp, +
g

sSm(TRSDBy||a, prefiz +yj,c+ 1) (3.3)

DBy o represents the first element set of (TTRSDDBy||a)|prefiz- prefiz is a representative
sequential pattern in TRSDB,, and it is a empty sequence initially. According to formula
(3.3), every time we append a frequent item y; found in current DBy 0t to prefiz and call
ssm/() recursively. Parameter c is a variable used to count the projection depth where ¢ equals

to 1 in the beginning.

The Cost Estimation Method of SSM

If & = ayas...a; is a length k sequential pattern in TRSDB,, we can compute the total
scan space of performing SSM on TRSDB, ||, by formulas (3.2) and (3.3). Since the former
half in formula (3.2) is a constant (i.e., [(TRSDB,||a)| X elem_lengthrrsps,), we focus on

explain the later half which is defined in formula (3.3). Formula (3.3) can divide into non-

38

DBlst7 slot

recursive and recursive parts, so we first compute non-recursive part, > |PID,, | x
J
: . DBist stot| - .
elem_lengthrrspg,, in every ssm() function call. Y |PID,, “-"*| is estimated by the
J

following steps:

Step 1. find all possible frequent item y;:

We scan POS_ Spnopsis,, for each frequent item y; in TRSDB, (y; € {y1,¥2, - Ym}). If
there exist a tuple sst in POS_ Spnopsis,, such that |sst. POSITION —pos(POSERSPB q.)| <
1, then y; is a possible frequent item in DBy 0. Note that ¢ is the projection depth counter
and ¢ equals to 1 in initial ssm() function call.

Step 2. prune y;:

We further examine whether pre fix +y; is a representative sequential pattern of TRSDB,
(i.e. prefix + y; must equals to one of sequential patterns found in estimating PrefixSpan
cost of TRSDB,.) If prefiz + y; is not a sequential pattern of TRSDB,, we prune y;. Note

that prefix equals to empty sequence in initial ssm() function call.

Step 3. compute > |P[D£B1“*SM|:
J
For every found possible frequent item y;, if |PI DLt > min_ support we add these
J Yj —
[PID;,"** " together and get Y2 [PIDy,"" |, [PID,,"*"""| equals to |[PID} PP
J

P]Dg;%?gB” | (or |P[Dg]i‘zD5j“ NPIDIESPBu| in the initial ssm() function call) where P[D;f}qu”

has been known in previous ssm() function call and Pl D,?i*z’i) fj = {pst.PID|pst € PID _Synopsis,,
,pst. COUNT = k} where k equals to the RANK value of the position synopsis tuple sst
found in Step 1. In other words, k equals to sst. RANK where sst € PID_Synopsis,, and

|sst. POSITION — pos(POSTESDBu g)| < 1.

After computing the non-recursive part in ssm() function call, we further compute the re-

cursive part by calling ssm(T' RSDB, ||, prefiz+y;, c+1) for each y; satistying | P DiBlst*S“’t | >

min__support which can be found in Step 3. Note that the set PI DiBISUZOt we found in step

DTRSDBU

refin | il the next ssm() function call whose projected database

3 currently will become PI

is prefixed with current prefixz appended with y;. We use Figure 3.11 to illustrate the process

39

Propagator pattern a: < al, a2, a3 >

¢ ——m—mmmm e

1
1
. . 1
Mining frequent item
y; in every DB ::,\>

1st_slot

DBlSt_S|;)t
PID,, |

1
- :
! 1
|
b 1PB1st_slot | i | oB ot)
IpID st_sio 1 N ——th;sital
7 ¢« =TT TTT] N e ==
1 |
1 1

/

_ _D_B_lst__s_lot_ _ Projected database

Projected databases

Propagated database

Figure 3.11: Illustrate the process of SSM cost estimation method

of SSM cost estimation method.

3.3.2 Continuously Selecting the Next Propagated Domain

As mentioned above, instead of finding the optimized propagation order at once, our method
is able to progressively generate the propagation order. After the starting and the first propa-
gated domains have been selected (e.g., TRSDBgiary and TRSD B propagated, respectively),
we will perform PrefixSpan on TRSD B+ and then propagate all mined sequential patterns
to TRSDBist propagated and apply SSM on propagated databases to find out all MDSSPs
among T'RSD B and TRSDB1g propagated-

After MDSSPs of TRSD B4, and TRSD B propagated have mined, we need to select
the next propagated domain from remaining domains. However, instead of recomputing the
SSM costs for remaining domains, the costs of SSM is able to incrementally computed. The
incremental update of these costs can be done if information, {(propagator pattern, : costy),

(propagator _patterns : costy), ...}, are recorded in each domain when estimating the cost

40

of SSM for selecting the first propagated domain. The update can be done by subtract-
ing scan space of propagator patterns which are not component patterns of MDSSPs found in
TRSDDB1st propagatea after performing SSM and mined MDSSPs of TRSDBis; propagated- Once
the cost costs of SSM are updated, we select the domain having the minimal updated cost as
our next propagated domain (i.e., second propagated domain TRSDBsyq propagated)- Similarly,
if wanting to select the third propagated domain, we update SSM cost table for every remaining
domains by subtracting (propagator _pattern;, cost;) from cost table if propagator _pattern; is
not a component patterns of any MDSSPs found in T"RS D Bayng_ propagated- For example, in Fig-
ure 3.12, there are four time related sequence databases TRSDB;, TRSDB,, TRSD Bs, and
TRSDB,, and suppose that {a,b,c,...,1} are representative sequential patterns in TRSD B;.
If TRSDB; is selected as starting domain, we can build a SSM cost table shown in Ta-
ble 3.7 after estimating the cost of performing SSM on TRSDBs, TRSD B3, and T RSD B,.
Since T'RSDBs has the minimal SSM cost, TRSDBs is chosen as the first propagated do-
main. Similarly, after mining MDSSPs of TTRS DB, and T'RS D B,, we update SSM cost table
of TRSDB3 and TRSDBy by subtracting tuple (propagator pattern; : cost;) from SSM
cost table, where propagator pattern; is not a component pattern of MDSSPs of T'RS D B,
and TRSDB,. Assume that all representative patterns {a,b,c,e,d,k,j} in SSM cost table of
TRSD B, are component patterns of MDSSPs, and then the SSM cost table of TRSD B3 and
TRSDB, can be updated accordingly. The updated SSM cost tables are in Table 3.8.

Optimized PropagatedMine algorithm is listed below and the whole architecture is shown
in Figure 3.13.
Algorithm : Optimized PropagatedMine
Input: Time related sequence databases: TRSDB,, TRSDBs, ..., TRSDB,,

and the minimum support threshold min_ support.
Output: The complete MDSSPs of TRSDB,, TRSDBs,and TRSDB,,.
BEGIN
1. Perform PrefixSpan cost estimation on each TRSDB;, 1 < i < n, and

select the domain with minimum cost as the starting domain denoted as
TRSD Bgiars-

2. Apply SSM cost estimation on each TRSDB;, 1 < i < n and

41

..........................

Figure 3.12: Destribution of representative sequential patterns in T'RSD B,

propagator | cost propagator | cost propagator | cost
a 5 a 10 a 15
b 10 b) b 5
c 5 c 10 d 15
d 10 h 20 e 20
e 10 i 10 h 15
k 10 1 15 f 5
j 5 g 10

| Total cost | 55 | | Total " cost | 70 | | Total cost | 85

TRSDBs TRSDBs3 TRSDBy
(a) (b) (c)

Table 3.7: SSM cost tables of TRSD B3, TRSDB3, and TRSD B,

propagator | cost propagator | cost
a 10 a 15
b) b)
c 10 d 15

e 20

‘ Total cost | 25

‘ ‘ Total cost ‘ 95 ‘

TRSDDBs3

(a)

TRSDDBy

(b)

Table 3.8: Updated SSM cost tables of TRSDB; and TRSDB,

42

TRSDB; # TRSD By Select the domain has minimum cost as
the first propagated domain denoted as TRSD DB propagated-
3. call PrefixSpan(T RS D Bgart)-
. Construct propagated database TRSDBig propagated||o and call SSM (o, TRSDBig propagated|a)
for each mined sequential pattern « in step 3 if & cannot be pruned.

5. For every MDSSP p returned form step 4, call Propagation(p).
END

N

Subroutine: Propagation(propagator)
/* propagator is the propagator pattern.*/
BEGIN
1. Update SSM cost table for each remaining domain, and select the domain with
minimum SSM cost as the next propagated domain denoted as TRSD DBy, 1, propagated-
2. IF propagator cannot be pruned BEGIN
call SSM (propagator, TRSDBy; i target||propagator)
END
3. IF exist no remaining domain BEGIN
OUTPUT every MDSSP p returned from step 2 is a MDSSP of
TRSDB,,TRSDBs,....and TRSDB,,
END
ELSE BEGIN
call Propagation(p) for every MDSSP p returned from step 2.
END
END

43

TRSDBs of different domains

v

PrefixSpan cost
estimation

Remaining domains

v

Starting domain) ;
g SSM cost estlmatloZd—

\ 4
. Propagated
PrefixSpan i
Update
I ‘

SSM

Propagator
patterns

remaining
domain

MDSSPs of k
domains
Figure 3.13: Architecture of PropagatedMine with optimization method

44

Chapter 4

Performance Study

To evaluate the effectiveness and efficiency of algorithm PropagatedMine, we performed an
extensive performance study on synthetic data sets with various kinds of sizes and data dis-
tributions. The simulation model is deseribed in Chapter 4.1. Chapter 4.2 is devoted to
experimental results and comparison of three algorithms: IndividualMine, PropagatedMine

and Optimized PropagatedMine.

4.1 Simulation Model

Our experiments were run on a 1.8GHz Athlon PC with 1 gigabyte main memory, and all
methods are implemented using J2SE (version 1.4.2). The synthetic datasets used for our
experiments were generated by modifying the source code of "Synthetic Data Generation Code
for Associations and Sequential Patterns" which follows the standard procedure described in
[2]. This data generator has been used in most studies on sequential pattern mining, like
SJl6](8][9] 11,

Due to the restriction of space, most experimental results we reported are using dataset
C10T8S8I8. In this dataset, the number of items is set to 1,000, there are 10,000 sequences

in the data set, the average number of items within elements is set to 8, the average number

45

Notation | Description value

man_ sup | minimum support threshold various value used
|D| Number of domains various value used
|C| Number of sequences in thousands | various value used
corr Correlation of given domains various value used

Table 4.1: The papameters and measurements used in the simulation

of elements in a sequence is set to 8, and the average length of sequential patterns is set to 8.

Performance of three algorithms: IndividualMine, PropagatedMine, and optimized Prop-
agatedMine is comparatively analyzed. Sensitivity analysis on several parameters, including
the number of domains, the number of sequences in TRSDBs, the support threshold, and the
correlation of given domains is conducted. Table 4.1 shows the notations of some primary
parameters in our model. Assume that there are domains: TRSDB,TRSDB,, ..., TRSDB4..

Then, the correlation corr of these k domains equals to:

> Corr(TRSDB;, TRSDB;)

1:7j

corr = , where 1 <i,j <kandi#j

Cs

Furthermore, suppose that 7'RS D B; has m items and T'RS D B; has n items. Corr(TTRSDB;, TRSDB;)
S~ Corr(zr, ys)

is formulated as ~——————, where for each r, 1 < r < m, x, is an item of domain TRSDB;,
and for each s, 1 < s < n, y; is an item of domain TRSDB;. Corr(z,, ys) is defined as ‘Lﬁzz"’yh,

where |z,| and |ys| means the number of slots having item z, and ys in domain TRSDB; and

TRSDB;, respectively, and |z, N y,| represents the number of slots having z, and y;.

4.2 Experimental Results

The experimental results of scalability with various support thresholds are shown in Figure
4.1. The number of domains |D] is set to 5 and the dataset of each domain is C10T8S8IS,
and the value of corr for these five domains is 1.523. It can be seen in Figure 4.1 that when

the support threshold is high there are only a limited number of sequential patterns, and the

46

40000

35000 r o _
—o— IndividualMine
_ 30000 —0— PropagatedMine
£ 25000 ¢ —t— PropagatedMine(OPT)
£ 20000 |
2 15000 |
10000 -
5000 -
O = E—A |
2.50 5.00 7.50 10.00
Support threshold (%)

Figure 4.1: Scalability over support threshold

runtime of three method is close. As the support threshold decreases, the gaps become larger.
Both PropagatedMine and optimized PropagatedMine are more efficient than IndividualMine,
due to that the cost of performing PrefixSpan increases rapidly when the support threshold
becomes low and IndividualMine needs to apply PrefixSpan on each domain.

The scalability of these algorithms over the number of domains is next investigated. The
dataset of each domain is C10T8S8I8, min_ sup is set to 2.5%, and the value of corr is 1.532.
the performance is shown in Figure 4.2, two kinds of PropagatedMine show good scalability.
From Figure 4.2 both PropagatedMine and optimized PropagatedMine outperform Individ-
ualMine since the number of patterns and the size of propagated database usually decrease.
However, IndividualMine needs to mine the whole size of each time related sequence database.
Figure 4.2 shows the good scalability of PropagatedMine and optimized PropagatedMine.

The impact of increasing the number of sequences is shown in Figure 4.3. The number of
domains | D] is set to 5, min_sup equals to 2.5% and correlation parameter corr of domains is
1.532. Datasets used in this experiment are C1T8S8I8, C4AT8SS8I8, C7T8S8IK, and C10T8SSIS.
As can be seen in Figure 4.3, optimized PropagatedMine has the best scalability among three

algorithms, showing the advantage of good propagated orders generated.

47

Runtime(ms)

Runtime (ms)

40000
35000

30000 r
25000

20000
15000
10000

5000

—o— IndivdiualMine
—+— PropagatedMine
—&— PropagatedMine(OPT)

3 4

Number of domains

Figure 4.2: Scalability over number of domains

45000

40000
35000 [

30000
25000
20000
15000
10000

5000

—o— IndividualMine
—0— PropagatedMine
—2— PropagatedMine(OPT)

1000 4000 7000

Number of sequences

10000

Figure 4.3: Scalability over number of sequences

48

200000

—o— ImdividualMine

~—~ 150000 r ———PropagatedMine
% —2— PropagatedMine(OPT)
£ 100000 ~
g
50000 -
0

1.00 1.50 2.00 2.50

correlation

Figure 4.4: Scalability over correlation

Figure 4.4 shows the scalability of methods over correlation. We set |D| = 5, min_ sup =
2.5%, and datasets in each domain is C10T8S8I8. The correlation is varying form 1.00 to 2.5.
In our experiments, runtime of mining multi-domain sequential patterns is sensitive to the
correlation values. As the value of the correlation increase, the run times of these algorithms
increase. This is due to that more simultaneous sequential patterns can be generated.

By exploring the feature of propagating, both algorithms PropagatedMine and optimized
PropagatedMine outperform IndividualMine. Now, we shall thus focus on comparing the
performance of PropagatedMine with optimized PropagatedMine. As shown in Figure 4.5,
the process time in each domain of optimized PropagatedMine decreases more rapidly than
PropagatedMine since optimized PropagatedMine will choose the propagated domain with
the minimal cost for propagation.

In order to investigate how good optimized PropagatedMine can achieve, we compare
the runtime of optimized PropagatedMine with the optimal runtime. Note that the optimal
runtime is obtained by performing PropagatedMine with all kinds of propagation order and
choose the minimum. We set |D| = 5, min_sup = 2.5%, the correlation parameter corr=1.532

and the numbers of sequences are 1000, 4000, 7000, and 10000. Figure 4.6 shows that the

49

70000
60000 |-
50000 r
40000 r
30000 |-
20000 r
10000 -

—— PropagatedMine

—2— PropagatedMine(OPT)

Runtime (ms)

Propagation times

Figure 4.5: Runtime decreasing trend as the process of two kninds of PropagatedMine

30000

—o— PropagatedMine
25000

—0— PropagatedMine(Optimezed)

2
0000 —— PropagatedMine(Optimal)

15000 r

Runtime (ms)

10000 [
5000 r

1000 4000 7000 10000

Number of sequences

Figure 4.6: Difference of runtimes between optimized PropagatedMine and optimal runtime

runtime of optimized PropagatedMine is very close to the optimal one under different numbers

of sequences.

50

Chapter 5

Conclusions

Multi-domain simultaneous sequential patterns, which are composed of simultaneous sequen-
tial patterns in each individual, are of interesting and useful in practice since these patterns
clearly reflect the relations of domains hidden in user behavior. In this paper, we proposed a
propagation-based approach, algorithm PropagatedMine for efficient mining of multi-domain
sequential patterns. By propagating patterns with their occurrences of time from one starting
domain to other domains, our proposed approach is able to significantly reduce the mining
space, which improves the performance of mining multi-domain sequential patterns. Note that
the cost of performing PropagatedMine is greatly affected by the propagation order. Thus,
in this paper, we further developed a novel method to determine the optimized propagation
order. Performance of the proposed algorithms is comparatively analyzed. Sensitivity analy-
sis on several parameters, including the number of domains, the sizes of sequence databases,
and the values of correlations among domains, was conducted. It was shown in our simula-
tion results that by exploiting the feature of propagating, algorithm PropagatedMine is able
to efficiently mine multi-domain sequential patterns. Moreover, algorithm PropagatedMine
with an optimized propagation order is able to further improve the performance in mining
multi-domain sequential patterns and the performance of the optimized propagation order de-

termined by our proposed method is very close to that of the optimal one resulted by selecting

ol

the minimal cost among all possible propagation orders.

02

Bibliography

1]

[10]

[11]

[12]
[13]

[14]

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of
the 20th International Conference Very Large Data Bases, VLDB, pages 487-499. Morgan
Kaufmann, 12-15 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of IEEFE eleventh
International Conference on Data Engineering, pages 3—14, Taipei, Taiwan, 1995. IEEE
Computer Society Press.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of ACM SIGKDD, pages 429-435, 2002.

A. L. P. C. Ding-Ying Chiu, Yi-Hung Wu. An efficient algorithm for mining frequent
sequences by a new strategy without support counting. In Proceedings of the 20th Inter-
national Conference on Data Engineering, pages 375-386, Boston, MA, USA, 2004.

M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with
regular expression constraints. In The VLDB Journal, pages 223-234, 1999.

J. Han, J. Pei, and B. Mortazavi-Asl. ~Freespan: Frequent pattern-projected sequen-
tial pattern mining. In Proceedings of the 6th International Conference on Knowledge
Discovery and Data Mining, pages 20-23, 2000.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pages
1-12. ACM Press, 05 2000.

J. H. Hong Cheng, Xifeng Yan. Incspan: incremental mining of sequential patterns in
large database. In Proceedings of the 2004 ACM SIGKDD international conference on
Knowledge discovery and data mining, Seattle, WA, USA, 2004.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan
mining sequential patterns efficiently by prefix projected pattern growth. In Proceedings
of 2001 International Conference on Data Engineering, pages 215-226.

J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently from

web logs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
396—407, 2000.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of 5th International Conference Extending Database Tech-
nology, EDBT, volume 1057, pages 3-17. Springer-Verlag, 25-29 1996.

K. Wang. Discovering patterns from large and dynamic sequential data. Journal of
Intelligent Information Systems, 9(1):33-56, 1997.

X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of
International Conference on Data Engineering, 2002.

M. J. Zaki. Scalable algorithms for association mining. Knowledge and Data Engineering,
12(2):372-390, 2000.

23

[15] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1/2):31-60, 2001.

o4

	論文前言部份2.pdf
	Multi-domain Simultaneous Sequential Pattern Mining
	Multi-domain Simultaneous Sequential Pattern Mining
	

	mdssp_final_without_abstract.pdf

