

國 立 交 通 大 學

資訊工程系

碩 士 論 文

多領域同時性循序序列模式探勘

Multi-domain Simultaneous Sequential Pattern Mining

研 究 生：胡星垣

指導教授：彭文志 教授

中 華 民 國 九 十 四 年 八 月

多領域同時性循序序列模式探勘

Multi-domain Simultaneous Sequential Pattern Mining

研 究 生：胡星垣 Student：Hsing-Yuan Hu

指導教授：彭文志 Advisor：Wen-Chih Peng

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

August 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年八月

多領域同時性循序序列模式探勘

學生：胡星垣

指導教授：彭文志 教授

國立交通大學資訊工程系﹙研究所﹚碩士班

摘 要

循序序列模式探勘(Sequential pattern mining)是一個資料探勘研究中相當

重要的研究課題，循序序列模式探勘的問題在於:在循序序列資料庫中探勘頻繁

序列模式。先前關於循序序列探勘的研究，只探討關於一個領域(domain)的循序

序列模式，例如：找出購買習慣、網頁瀏覽行為或是頻繁移動模式。然在不同領

域的循序序列模式，如果發生在相同的時間，則這些循序序列模式可以形成一個

多 領 域 同 時 性 循 序 序 列 模 式 (Multi-domain simultaneous sequential

pattern)。相較於傳統的單一領域循序序列模式，多領域同時性循序序列模式可

以完整的反應出一個使用者的行為模式，因此，探勘多領域同時性循序序列模式

有其必要性。在本論文中，我們提出一個以模式傳遞(pattern-propagation)為

基礎的演算法 PropagatedMine，並利用該演算法有效率的探勘多領域同時性循

序序列模式。藉由起始領域(starting domain)開始傳遞循序序列模式發生的時

間到其它的領域，我們所提出的演算法可以明顯的降低探勘的空間，也因此大量

的減少探勘多領域同時性循序序列模式的成本。此外，執行 PropagatedMine 演

算法的成本和傳遞循序序列模式到不同領域的順序有很大的相關性，在本研究

中，我們進一步最佳化傳遞循序序列模式之順序。實驗結果顯示 PropagatedMine

演算法可以有效率的探勘多領域同時性循序序列模式，針對傳遞順序做最佳化的

PropagatedMine 演算法可以更進一步的提高資料探勘的效能。

Multi-domain Simultaneous Sequential Pattern Mining

student：Hsing-Yuan Hu

Advisors：Dr. Wen-Chih Peng

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT
 Sequential pattern mining has attracted a significant amount of research
efforts recently. The problem of sequential pattern mining is that discovering frequent
sequences with their occurrence counts being larger than or equal to the user-specified
number, min_support, among a set of sequences. Most of the previously sequential
pattern mining methods only explore mining sequential patterns in one domain, such
as buy behavior, Web browsing, and moving patterns. In reality, sequential patterns
may exist in multiple sequence databases and for these sequential patterns in each
sequence database, if the occurrences of these sequential patterns appear at the same
time, these sequential patterns are able to form a multi-domain simultaneous
sequential pattern. Note that mining multi-domain simultaneous sequential patterns is
very important in that simultaneous sequential patterns reflect the complete behavior
of users. In this paper, we propose a propagation-based approach (referred to as
algorithm PropogatedMine) for efficient mining of multi-domain sequential patterns.
By propagating patterns with their occurrences of time from one starting domain to
other domains, our proposed approach is able to significantly reduce the mining space,
which improves the performance of mining multi-domain sequential patterns. Note
that the cost of performing PropagatedMine is greatly affected by the propagation
order. Thus, in this paper, we further develop a novel method to determine the
optimized propagation order. A comprehensive performance study is conducted and
experimental results show that algorithm PropagatedMine is able to efficiently mine
multi-domain sequential patterns. Moreover, algorithm PropagatedMine with an
optimized propagation order is able to further improve the performance in mining
multi-domain sequential patterns and the performance of the optimized propagation
order determined by our proposed method is very close to that of the optimal one
resulted by selecting the minimal cost among all possible propagation orders.

 誌 謝

感謝兩年來指導教授彭文志老師在各方面的悉心指導和照顧，在這篇論文的

寫作過程中，帶領我走過完成一項研究所必經的過程。以及吳秀陽與李官陵老

師，不僅是我大學時代的老師，這次也遠從東華大學趕來當我的口試委員，並給

予我論文繼續發展的寶貴建議。

感謝張舜理學長，在這篇論文架構的初期，時常耐心的討論我所遭遇到的研

究瓶頸，這些討論使我得到許多啟發。並在研究後期的實驗階段也熱心的提供協

助，讓我能夠順利完成這篇論文。

感謝實驗室的伙伴們，我會記得大家一起在 621 實驗室熬夜準備考試，以及

一同歡樂的時光，特別感謝洪智傑同學無私地提供研究經驗的分享。

最後要感謝我的家人們對我完全的支持，使我能夠心無旁鶩的努力於研究。

僅將這篇論文獻給最親愛的他們。

Contents

1 Introduction 1

2 Preliminary 5
2.1 Basic Terminologies . 5
2.2 Problem Formulation . 7
2.3 Data Transformation . 10

3 Multi-domain Simultaneous Sequential Pattern Mining 12
3.1 IndividualMine . 12
3.2 PropagatedMine . 14

3.2.1 Sequential pattern Mining in the Starting Domain 15
3.2.2 Pattern Propagation . 17
3.2.3 Sequential Pattern Mining in the Propagated Domain 19

3.3 Optimized Propagation Order . 24
3.3.1 Selecting the Starting Domain and the First Propagated Domain 28
3.3.2 Continuously Selecting the Next Propagated Domain 40

4 Performance Study 45
4.1 Simulation Model . 45
4.2 Experimental Results . 46

5 Conclusions 51

1

List of Figures

1.1 An illustrative example for the usage of multi-domain sequential patterns . . . 2

2.1 An illustrative example of time related sequence database 7
2.2 Simultaneity of periods and time slots in different domains 8
2.3 Build time related sequence database by access log 11

3.1 Concept of IndividualMine . 14
3.2 Concept of PropagatedMine . 15
3.3 Illustrate the process of SSM in example 2 . 21
3.4 Simultaneous relation of sequential patterns in domain 1, 2, and 3 26
3.5 Illustrate PrefixSpan cost formula . 32
3.6 Average position of sequential pattern <a,b> in TRSDBex 33
3.7 Illustrate how to calculate scan space of step 1 in the PrefixSpan cost estimation

method . 34
3.8 Illustrate how to calculate scan space of the case 1 in step 2 of the PrefixSpan

cost estimation method . 35
3.9 Illustrate how to calculate scan space of the case 2 in step 2 of the PrefixSpan

cost estimation method . 37
3.10 Illustrate SSM cost estimation . 38
3.11 Illustrate the process of SSM cost estimation method 40
3.12 Destribution of representative sequential patterns in TRSDB1 42
3.13 Architecture of PropagatedMine with optimization method 44

4.1 Scalability over support threshold . 47
4.2 Scalability over number of domains . 48
4.3 Scalability over number of sequences . 48
4.4 Scalability over correlation . 49
4.5 Runtime decreasing trend as the process of two kninds of PropagatedMine . . 50
4.6 Difference of runtimes between optimized PropagatedMine and optimal runtime 50

2

List of Tables

2.1 TRSDB1 . 7
2.2 TRSDB2 . 8

3.1 An example of one projected database . 17
3.2 All sequential patterns found in TRSDB1 . 17
3.3 TRSDB2 and TRSDB2||<(a)(b,c)> . 19
3.4 Projected databases used in Example 2 . 22
3.5 Time related sequence databases used to explain propagation order determining 26
3.6 Synposis examples . 30
3.7 SSM cost tables of TRSDB3, TRSDB3, and TRSDB4 42
3.8 Updated SSM cost tables of TRSDB3 and TRSDB4 42

4.1 The papameters and measurements used in the simulation 46

3

Chapter 1

Introduction

Sequential pattern mining has attracted a significant amount of research efforts recently

[2][10][11][12][13]. The problem of sequential pattern mining is that discovering frequent se-

quences with their occurrence counts being larger than or equal to the user-specified number,

min_support, among a set of sequences. Sequential pattern mining can be applied on business

and marketing analysis, web page browsing behavior, symptomatic pattern of a disease, DNA

sequence, hacker invasion detecting, and so on. Due to the importance of sequential patterns

mining, many efficient sequential pattern mining methods have been proposed [3][4][5][9][15].

Traditional sequential pattern mining methods are mostly performed in only one domain

sequence database. For example, sequential patterns mining method is applied in a moving

log sequence database to find out user moving patterns or in a Web page browsing sequence

database to mine Web browsing behavior. In reality, sequential patterns may exist in mul-

tiple sequence databases. Mining simultaneous sequential patterns is very important in that

these simultaneous sequential patterns reflect the complete behavior of users. An illustrative

example of multi-domain sequential patterns is shown in Figure 1.1, where a mobile user can

obtain a variety of services via mobile devices. In Figure 1.1, there are three services available:

a location tracking service, a location dependent search service, and a credit payment service.

Each service has its own sequence database that records the access data and the corresponding

1

Mobile Environment

Internet

Sequence
database

Location tracking

Sequence
database

Search service

Sequence
databaseCredit

payment
Switch

Location tracking

Credit payment

t1 t2 t3

<(A) (B,C) (D) >

<(1,2) (3,4,5) (6,7)>

<(α,β) (Δ) (θ,δ)>

Patterns of a user which
happen in the same timeSearch service

Figure 1.1: An illustrative example for the usage of multi-domain sequential patterns

access time of each user. Note that each service is viewed as an individual "domain". In

the example, each row means a sequential pattern of a domain, e.g., p1: <(A)(B,C)(D)> is a

moving pattern of an user and this pattern happens in the same time with search pattern p2:

<(1,2),(3,4,5)(6,7)> and payment pattern p3: <(α, β)(∆)(θ, δ)> of that user. It can be seen

that patterns p1, p2, and p3 are able to form a multi-domain sequential patterns in that (A),

(1,2), and (α, β) are all frequent in time t1, (B,C), (3,4,5), and (∆) are taken place in time t2,

and (D), (6,7), and (θ, δ) are occurred in time t3.

Mining multi-domain sequential patterns is very useful in that the relations of these do-

mains can give us some information about user behavior. For example, the illustrative multi-

domain sequential pattern shown in Figure 1.1, reflects not only the moving pattern of the

user but also the search and buying behavior of this mobile user. Thus, multi-domain sequen-

tial patterns give us more useful and diversified information than only one domain sequential

patterns. In this paper, we address the problem of mining multi-domain sequential patterns.

Though many sequential pattern mining methods work well in one domain database, these

sequential methods suffer from poor performance when being applied in mining multi-domain

sequential patterns from multi-domain databases. Intuitively, we can mining sequential pat-

2

terns in each individual domain and composite multi-domain sequential patterns by examining

whether the occurrences of these sequential patterns occur in the same time. For example,

in Figure 1.1, mining moving patterns, search patterns, and payment patterns in the cor-

responding sequence databases. Then, for each pattern mined in these three domains, we

examine whether these patterns occur in the same time. As a result, we could obtain multiple

sequential patterns as well. However, this method unavoidably leads to the poor performance

in terms of efficiency and scalability. Notice that mining all sequential patterns individually

in every sequence database may waste efforts since these patterns may not be necessary to be

formed as multi-domain sequential patterns. In addition, the overhead of this native method

also includes the extra-effort to check whether these sequential patterns occur in the same

time or not.

To our best knowledge, mining multi-domain sequential patterns is a new research topic. In

this paper, we propose an efficient algorithm named as PropagatedMine to mine multi-domain

sequential patterns (to be referred to as MDSSP) efficiently. The concept of PropagatedMine

is to propagate patterns with their occurrences of time from the selected starting domain to

all the other domains with an optimized order, and therefore the mining space is significantly

reduced. Note that the cost of performing PropagatedMine may greatly different with differ-

ent propagation orders, so finding a good propagation order is important to PropagatedMine.

In this work a cost estimation method is also proposed in PropagatedMine to determine an

optimized propagation order. Our performance study shows that our proposed Propagated-

Mine is able to efficiently mine multi-domain sequential patterns. The contributions of this

paper are three folds: (1) Exploiting a novel and useful sequential patterns (i.e., multi-domain

sequential patterns), (2) devising algorithm PropagatedMine to efficiently mine multi-domain

sequential patterns, and (3) determining a optimized propagation order to further reduce the

multi-domain sequential pattern mining cost significantly.

The remaining of the paper is organized as follows. In Chapter 2, problem description

3

and some preliminaries are presented. Algorithm PropagatedMine is developed in Chapter 3.

Performance studies are conducted in Chapter 4. This paper concludes with Chapter 5.

4

Chapter 2

Preliminary

2.1 Basic Terminologies

Let I = {x1, x2, ..., xn} be a set of all items. An itemset is a non-empty subset of I and is

denoted asX = (x1, x2, ..., xr), where xj is an item of I for every j, 1 ≤ j ≤ r. A sequence s is

an ordered list of itemsets, and is represented as s =< X1, X2, ...,Xl >, where Xj is an itemset

(i.e., Xj ⊆ I for 1 ≤ j ≤ l). For the brevity purpose, Xj is called an element of sequence s.

Note that an item can appear only once in one element but it can appear in different elements

of a sequence. Sequence sa =< a1, a2, ..., an > is contained in sequence sb =< b1, b2, ..., bm >,

denoted as sa v sb, if and only if there exists integers 1 ≤ i1 ≤ i2 ≤ ... ≤ in ≤ m such

that a1 ⊆ bi1 , a2 ⊆ bi2 , ..., an ⊆ bin. Sequence sa is a subsequence of sequence sb, and sb

is a super sequence of sa. For example, sequence <(3)(1,2)(5)> is contained in sequence

<(1,3)(1,2,4)(4,5)(3)> due to that (3)⊆(1,3), (1,2)⊆(1,2,4), and (5)⊆(4,5).

A period P is a section of time, and can be fully divided into several continuous, non-

overlapping, and equal range time slots. A period with n time slots is denoted as P |n =

{t1, t2, ..., tn}, where tj is a time slot and 1 ≤ j ≤ n. Since each time slot represents an interval

of time and time slots are non-overlapping, a total ordering t1 > t2 > ... > tn are specified

within a period. A time sequence ts = PID :< t1, t2, ..., tm > is an ordered list of time

5

slots in one period, where PID is an identifier used to indicate which period. In addition,

the ordering of time slots in time sequence ts must satisfies t1 > t2 > ... > tm, and n needs to

be greater than or equal to m. A time sequence tsa = PIDa :< t1, t2, ..., tn > is called a sub

time sequence of tsb = PIDb :< t1, t2, ..., tm > if PIDa equals to PIDb and < t1, t2, ..., tn > is

a sub sequence of < t1, t2, ..., tm > .

A time related sequence database denoted as TRSDB is comprised by a set of tuples,

where each tuple in the sequence database is a time related sequence. Table 2.1 shows an

illustrative example of a time related sequence database. SID is the identifier of every time

related sequence, TIME_SEQ is a time sequence while CONTEXT_SEQ is a sequence.

Note that for each time related sequence trs, the occurrence of time for each element Xi in

CONTEXT_SEQ is uniquely mapped to the time slot ti. The time related sequence database

in Table 2.1 can be illustrated by Figure 2.1. Time related sequence trsa is a sub time related

sequence of trsb if trsa.T IME_SEQ v trsb.T IME_SEQ and trsa.CONTEXT_SEQ v

trsb.CONTEXT_SEQ.

The support for a sequence s in a time related sequence database TRSDB is defined as

the number of time related sequences which contain s in their CONTEXT_SEQ. Formally

speaking, the support of sequence s is defined as Support(s) = |{x|x ∈ TRSDB, and s v

x.CONTEXE_SEQ}|. For example, assume that sequence s=<(a)(b,c)>. The support of

s in TRSDB1 shown in Table 2.1 is 3 since three time related sequences contain s in their

corresponding CONTEXT_SEQ. Note that the support of a sequence s in a time related

sequence database is the number of tuples that contain s in its CONTEXT_SEQ. Given a

minimum support threshold, min_support, and a time related sequence database TRSDB,

a sequence s is frequent if and only if Support(s) ≥ min_support.

Given sequence s =< X1, X2, ..., Xn > and a time related sequence trs = {PID :<

t1, t2, ..., tm >,< Y1, Y2, ..., Ym >} of time related sequence database TRSDB, if s v

trs.CONTEXE_SEQ is satisfied then we can find integers 1 ≤ i1 < i2 < ... < in ≤ m

6

SID TIME_SEQ CONTEXE_SEQ
1 1:<1,2,3,4> <(a)(b,c)(b,c,d)(e)>
2 2:<2,3,4> <(a,b)(b,c)(c,e)>
3 3:<1,2,3> <(a,e)(h)(g,j)>
4 4:<1,2,3,4> <(a,b,f)(d)(b,c)(e,f)>

Table 2.1: TRSDB1

Period 1

Time slot

1 2 3 4

(b,c)(a) (e) ([b,c,d) (a,e) (h)

Period 3

1

Period 2

Time slot

1 2 3 4

(a,b) (b,c) (c,e)

SID

1
2
3
4

TIME_SEQ CONTEXT_SEQ

1:< 1, 2, 3, 4 >
2:< 2, 3, 4 >

3:< 1, 2, 3 >
4:< 1, 2, 3, 4 >

< (a) (b,c) (e) (b,c,d) >
< (a,b) (b,c) (c,e) >

< (a,e) (h) (g,j) >
< (a,b,f) (d) (b,c) (e,f)>

TRSDB1

2TIME_SEQ

CONTEXT_SEQ

Figure 2.1: An illustrative example of time related sequence database

such that X1 ⊆ Yi1 ,X2 ⊆ Yi2 , ...,Xn ⊆ Yin and PID :< ti1, ti2 , ...tin > is called a time

instance of the sequence s. Note that a time related sequence trs can contain more than one

time instance of sequence s because s can appear more than once in trs.CONTEXT_SEQ.

Gathering all time instances of sequence s in TRSDB forms a time instance set represented

as TISTRSDB
s = {x|x is a time instance of s in TRSDB}. For example, in Table 2.1, there

are three time related sequences containing sequence <(a)(b,c)>. Accordingly, we could have

the time instance set of sequence <(a)(b,c)> to be {1:<1,2>, 1:<1,4>, 2:<2,3>, 4:<1,3>}.

2.2 Problem Formulation

We elaborate on the concept of multi-domain simultaneous sequential patterns and formulate

the problem of mining multi-domain simultaneous sequential pattern in this section. The term

simultaneous means that if the periods in all domains have the same PID, these periods

7

Period 2 of TRSDBd1

Period 2 of TRSDBd2

time line

time line

Time slot 3 of period 2

Time slot 3 of period 2

TRSDB1

TRSDB2

Period 3

Period 3

< (a,b) (b,c) (c,e) >

< (1,6)

< (a,e)

< (1,3) (2,4) (8) >

Figure 2.2: Simultaneity of periods and time slots in different domains

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4> <(1,2)(2,3)(6)(4,5)>
2 2:<2,3,4> <(1,3)(2,4)(8)>
3 3:<1,2,3> <(1,6)(5)(9,10)>
4 4:<1,2,3,4> <(1,2,5)(7)(2,3)(4,5,6)>

Table 2.2: TRSDB2

represent the simultaneous time. In Figure 2.2, the alignment of two period 2 indicates that

these two periods represent exactly the same time section in TRSDB1 and TRSDB2. Next,

we specify a section of time which is a time slot. Similar to periods in different domains, the

alignment of time slots in different domains represents they are same time sections.

Definition 1 (Simultaneous time instances) Based on the definition of time sequence,
a time instance is also a time sequence. Given time instances: ti1 = PID1 :< t11, t12, ..., t1l1 >
, ti2 = PID2 :< t21, t22, ..., t2l2 >, ..., tir = PIDr :< tr1, tr2, ..., trlr >, these time instances are
simultaneous if and only if PID1 = PID2 = ... = PIDr, and l1 = l2 = ... = lr = l, and for
every j, 1 ≤ j ≤ l, t1j = t2j = ... = trj.

Definition 2 (Simultaneous sequences) Given r sequences s1, s2, ..., sr in time related
sequences database TRSDB1, TRSDB2, ..., andTRSDBr respectively and their correspond-
ing time instance set TIS|TRSDB1

s1 , TIS|TRSDB2
s2 , ..., TIS|TRSDBr

sr . Sequence s1, s2, ..., and sr
are simultaneous if there exist time instances ti1, ti2, ..., tir such that ti1, ti2, ..., tir are simul-
taneous time instances, where tij is a time instance in TIS|TRSDBj

sj , 1 ≤ j ≤ r.

For example, sequences s1= <(a)(b,c,d)(e)> in Table 2.1 and s2=<(1)(6)(5)> in Ta-

ble 2.2 are simultaneous sequence because TISTRSDB1
s1

= {1:<1,3,4>} and TISTRSDB2
s2

=

{1:<1,3,4>}.

Definition 3 (Simultaneous sequential patterns) Given aminimum threshold,min_support,
and sequential patterns s1, s2, ..., sn in time related sequence database TRSDB1, TRSDB2, ..., TRSDBn

8

respectively and their corresponding time instance set TIS|TRSDB1
s1

, TIS|TRSDB2
s2

, ..., T IS|TRSDBr
sr .

Time instances (ti1, ti2, ..., tir) is called a match if ti1, ti2, ..., trsr are simultaneous, where
tij ∈ TIS|TRSDBj

sj , 1 ≤ j ≤ r. If (ti1, ti2, ..., tir) is a match, then PID1 = PID2 = ... =
PIDr must be true. Let Macthed_PID = PID1 = PID2 = ... = PIDr, and pat-
terns s1, s2, ..., sn are simultaneous if and only if the number of different Macthed_PID
in TIS|TRSDB1

s1
, TIS|TRSDB2

s2
, ..., T IS|TRSDBr

sr is equal to or larger than min_support.

For example, given support threshold min_support = 2 and two time related sequence

database TRSDB1, TRSDB2, sequence s1=<(a)(b,c)> and s2=<(1)(2,3)> are sequential

patterns in TRSDB1 and TRSDB2 respectively because both their support value larger than

min_support. Since TIS|TRSDB1
s1

={1:<1,2>, 1<1,3>, 2:<2,3>, 4:<1,3>} and TIS|TRSDB2
s2

={1:<1,2>,

4:<1,3>}, we can find twomatches (1:<1,2>, 1:<1,2>), and (4:<1,3>, 4:<1,3>) and these two

matches have two differentMactched_PID : 1 and 2. Therefore, <(a)(b,c)> and <(1)(2,3)>

are simultaneous sequential patterns. A counter example is <(a)(b,c,d)(e)> and <(1)(6)(5)>

in the example of definition 2. Since there is only one match (1:<1,3,4>, 1<1,3,4>) can

be found in time instance sets of <(a)(b,c)(e)> and <(1)(2,3)(5)>, sequences <(a)(b,c)(e)>

and <(1)(2,3)(5)> are not simultaneous sequential patterns, though they are simultaneous

sequences and also sequential patterns in TRSDB1 and TRSDB2 respectively.

If we have k time related sequence databases: TRSDB1, TRSDB2, ..., TRSDBk and each

related to one domain. AMulti-Domain Simultaneous Sequential Pattern (MDSSP) about

these k domains can be expressed by a matrix as:

MDSSP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 ... X1l

X21 X22 ... X2l

...

Xk1 Xk2 ... Xkl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Xij is the j − th element of sequence si =< Xi1, Xi2, ...,Xil >, where si is a sequential

pattern in TRSDBi. Each row in MDSSP is called a component pattern, i.e., for each

i, 1 ≤ i ≤ k, < Xi1,Xi2, ...,Xil > is a component pattern of MDSSP . Number k clarify

9

MDSSP related to k time related sequence database or said k domains, and l is the number

of columns in MDSSP .⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 ... X1l

X21 X22 ... X2l

...

Xk1 Xk2 ... Xkl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a multi-domain simultaneous sequential pattern of TRSDB1,

TRSDB2, ..., and TRSDBk, where (1) each component pattern is a sequential pattern: for

every i, 1 ≤ i ≤ k, the component pattern < Xi1, Xi2, ...,Xil > is a sequential pattern of

TRSDBi and (2) all component patterns are simultaneous sequential patterns (i.e., sequen-

tial patterns < X11,X12, ...,X1l >, < X21,X22, ..., X2l >,..., and < Xk1,Xk2, ..., Xkl > are

simultaneous sequential patterns).

2.3 Data Transformation

Since our MDSSP is defined on time related sequence database, we need to transform access

log into a time related sequence database. As mentioned in Chapter 1, assume that the

access log contains both accessed data and accessed time information. Accessed data is an

itemset and accessed time could be time instant (e.g., 10:35 AM) or a time range (e.g.,

10:30AM~11:00AM). An example of access log is shown in Figure 2.3. Each accessed data in

an access log can be mapped to one or several time slots of a certain period according to the

accessed time of the accessed data (if the accessed time ti of a accessed data xi is an time

instant, xi belongs to one time slot; otherwise ti is a time range, and then xi may be mapped to

multiple time slots whose time ranges have overlap with the time range of ti.) After mapping,

we merge accessed data in a time slot into an element which is a minimum super set of these

accessed data. Elements in a period forms a CONTEXT_SEQ, and time slots which have

been mapped in a period plus PID of the period forms a TIME_SEQ. Therefore, combining

TIME_SEQ and CONTEXT_SEQ of a period becomes a time related sequence. The whole

10

access log of a domain

t1 : (a,b) t2 : c t3 : (e,f) t4 : (a,b,c) t5 : c t6 : (b,f)

Time line

Period 1

Time
slot 3

Time related
sequence
database

SID TIME_SEQ CONTEXT_SEQ

Time
slot 2

Time
slot 1

Period 2

Time
slot 3

Time
slot 2

Time
slot 1

<(a,b)(c,e,f)> <(a,b,c)(c)(b,c,f)>

<(a,b)(c,e,f)>
<(a,b,c)(c)(b,c,f)>

1:<1,3>
2:<1,2,3>

1
2

Figure 2.3: Build time related sequence database by access log

process of data transformation can be illustrated with Figure 2.3.

11

Chapter 3

Multi-domain Simultaneous Sequential

Pattern Mining

In this section, we first present the algorithm IndividualMine in Chapter 3.1 and then an

efficient algorithm, PropagatedMine, is proposed in Chapter 3.2. Furthermore, we develop a

solution procedure that can determine a propagation order for efficient multi-domain simul-

taneous sequential pattern mining in Chapter 3.3.

3.1 IndividualMine

MDSSPs can be found by mining sequential patterns in individual time related sequence

database and then check whether these patterns mined in each domain have overlapped time

or not. Figure 3.1 shows the flow of algorithm IndividualMine. In Figure 3.1, after performing

sequential pattern mining method on every domain, we get a set of sequential patterns which

contains all sequential patterns found in this domain, and then we compare the simultaneity

of patterns in different domain for mining multi-domain simultaneous sequential patterns.

Checking the simultaneity of patterns Checking the simultaneity of patterns is as follows.

First, we select two domains TRSDBi and TRSDBj, 1 ≤ i, j ≤ n and i 6= j, and for

12

each pattern α in TRSDBi each pattern β in TRSDBj, we determine whether α and β

are simultaneous by examining their time instance sets. If the time instance sets for these

two patterns are the same, patterns α and β is able to form a simultaneous pattern. After

forming finding MDSSPs of TRSDBi and TRSDBj , these MDSSPs are sent to the next

domain TRSDBk to further form MDSSPs with three domains. Follow this procedure, we

could easily identify multi-domain simultaneous sequential patterns

Algorithm: IndividualMine
Input: Time related sequence databases: TRSDB1, TRSDB2, ..., TRSDBn,

and the minimum support threshold min_support.
Output: Simultaneous sequential patterns with the number of domains being n

(TRSDB1, TRSDB2, ..., TRSDBn).
BEGIN

1. Apply PrefixSpan on each time related sequence database TRSDBi, 1 ≤ i ≤ n.
2. For each pattern p mined in TRSDB1, call CheckSimultaneous(p, d2)

END

Subroutine: CheckSimultaneous(pattern, domainID)
/* pattern is a candidate simultaneous sequential pattern, and domainID
is an integer used to indicate which domain.*/

BEGIN

1. For every sequential pattern p0 in TRSDBdomainID, we examine if
∙
p
p0

¸
is a

MDSSP of TRSDBdomainID−1 and TRSDBdomainID by checking time instance sets
TIS

TRSDBdomainID−1
p and TISTRSDBdomainID

p0 .
2. IF domainID 6= dn

CheckSimultaneous(

∙
p
p0

¸
, domainID + 1).

ELSE

Output
∙
p
p0

¸
is a MDSSP of TRSDB1, TRSDB2, ..., TRSDBn.

END

Although mining MDSSP by IndividualMine is a possible solution, IndividualMine is in-

efficient when the size of time related sequence database is large. IndividualMine needs to

find all sequential patterns in every time related sequence database, but many of these pat-

terns may not be simultaneous patterns, so the effort spent on mining these useless patterns

is a waste. In addition to mining many useless patterns, algorithm IndividualMine spends

expensive costs on comparing time instance sets to examine the simultaneity of patterns in

different domains. The wasted cost becomes even more serious when the size and the number

13

TRSDB1 TRSDB2 TRSDB3 TRSDBn

Sequential
patterns

Compare time instances of patterns
to check simultaneity

Sequential pattern
mining

MDSSPs

Sequential
patterns

Sequential
patterns

Sequential
patterns

Sequential pattern
mining

Sequential pattern
mining

Sequential pattern
mining

Figure 3.1: Concept of IndividualMine

of sequence databases increase.

3.2 PropagatedMine

By continuously propagating currently mined patterns and their time instance sets from cur-

rent domain (propagator domain) to the next domain (propagated domain), Propagat-

edMine is able to efficiently mine multi-domain sequential patterns. When propagating to

other domains, each pattern in the current domain will construct a propagated database in

the propagated domain. The propagated database constructed by pattern p in propagator

domain denoted by TRSDBpropagator is built by matching time related sequences with the

time instance set of pattern p, TISTRSDBpropagator
p . After constructing propagated databases,

we can find simultaneous sequential patterns in propagated databases by SSM (slot-by-slot

sequential pattern mining). We will define propagated database formally in Chapter 3.2.2 and

elaborate SSM in Chapter 3.2.3. The concept of PropagatedMine is illustrated in Figure 3.2.

PropagatedMine is more efficient than IndividualMine in that (1) propagated database

is usually much smaller than the original time related sequence database and (2) for each

14

TRSDB1 TRSDB2 TRSDB3 TRSDBn

Sequential
pattern
mining

Simultaneous
sequential
pattern mining

Simultaneous
sequential
pattern mining

Simultaneous
sequential
pattern mining

Sequential
patterns

Simultaneous
sequential
patterns

Simultaneous
sequential
patterns

MDSSPs

propagate propagate propagate propagate

Figure 3.2: Concept of PropagatedMine

mined pattern in the propagated database, we do not need to compare it with patterns of

the propagator domain to mine simultaneous patterns, because frequent patterns mined in

propagated database are exactly simultaneous patterns.

Given k time related sequence databases: TRSDB1, TRSDB2, ..., TRSDBk, suppose that

the propagation order is TRSDB1 → TRSDB2 → TRSDB3...→ TRSDBk when performing

PropagatedMine, and then TRSDB1 is called the starting domain and TRSDB2 is called

first propagated domain and TRSDB3 is called the second propagated domain. Note that the

propagation order is important in algorithm PropagatedMine. With a good propagation order,

the mining space is able to significantly reduced. The detail for the generation propagation

order will be elaborated in Chapter 3.3

3.2.1 Sequential pattern Mining in the Starting Domain

Sequential patterns in the starting domain (i.e., time related sequence database TRSDB1) is

able to be mined by performing PrefixSpan[9]. The illustrative example is given below.

Example 1. Given time related sequence database TRSDB1 in Table 3.1 andmin_support =

2, TRSDB1 can be mined by PrefixSpan in the following steps.

1: Find frequent single-item sequences. By scanning TRSDB1 once, we can get all

frequent single-item sequences (i.e., <(a)>:4, <(b)>:3, <(c)>:3, <(d)>:2, and<(e)>:4, where

15

"<(item)>:count" represents the frequent single-item sequence and its associated support).

2: Divide search space and recursively find subsets of sequential patterns. Split

the complete pattern search space into five subsets, according to the five prefixes: <(a)>,

<(b)>, <(c)>, <(d)>, and <(e)>. Each subset is mined by constructing its corresponding

projected database and recursively mining it. A projected database contains postfix se-

quences and postfix time sequences. A postfix sequence consists of all those items that

follow the first appearance of a given prefix in any sequence in CONTEXT_SEQ part of a

time related sequence database. If the first postfix item is in the same element as the last pre-

fix item, it is represented as (_item) in order to avoid ambiguity. A postfix time sequence

is a time sequence associated with a postfix sequence. Note that the projected database is a

time related sequence database, and α−projected database of time related sequence database

TRSDBi is denoted by TRSDBi|α, where α is a prefix.

Consider an example with perfix <(a)>. In order to mine sequential patterns with prefix

<(a)>, TRSDB1|<(a)> is constructed and shown in Table 3.1. After scanning TRSDB1|<(a)>,

we find single-item frequent sequences which are <(b)>:3, <(c)>:3, <(d)>:2, <(e)>:3, and

<(_b)>:2. All sequential patterns having prefix <(a)> can be partitioned into five subsets:

(1) patterns prefixed with<(a)(b)>, (2) patterns prefixed with<(a)(c)>,.(3) patterns prefixed

with <(a)(d)>, (4) patterns prefixed with <(a)(e)>, and (5) patterns prefixed with <(a,b)>.

These subsets can be mined by constructing corresponding projected databases and finding

frequent item in each recursively.

After completing the processing of mining<(a)>-projected database, we can mine frequent

sequential patterns with prefix <(b)>, <(c)>, <(d)>, and <(e)> respectively by constructing

corresponding projected databases and recursively find frequent items on projected databases.

The complete set of all sequential patterns in TRSDB1 are constructed by collecting sequential

patterns found in <a>-, -, <c>-, <d>-, and <e>-projected databases. The sequential

patterns found in <a>-, -, <c>-, <d>-, and <e>-projected databases are shown in Table

16

SID TIME_SEQ CONTEXE_SEQ
1 1:<1,2,3,4> <(a)(b,c)(b,c,d)(e)>
2 2:<2,3,4> <(a,b)(b,c)(c,e)>
3 3:<1,2,3> <(a,e)(h)(g,j)>
4 4:<1,2,3,4> <(a,b,f)(d)(b,c)(e,f)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<2,3,4> <(b,c)(e)(b,c,d)>
2 2:<2,3,4> <(_b)(b,c)(c,e)>
3 3:<1,2,3> <(_e)(h)(g,j)>
4 4:<1,2,3,4> <(_b,f)(d)(b,c)(e,f)>

TRSDB1 TRSDB1|<a>
(a)

Table 3.1: An example of one projected database

Prefix Sequential Patterns
<(a)> <(a)>:3, <(a)(b)>:3, <(a)(c)>:3, <(a)(d)>:2, <(a)(e)>:3,

<(ab)>:2, <(a)(bc)>,<(a)(b)(c)>, <(a)(b)(e)>, <(a)(b,c)(e)>
<(a)(c)(e)>:2, <(a)(c)(c)>:2, <(a,b)(b)>:2, <(a,b)(b,c)>:2,
<(a,b)(b,c)(e)>:2, <(a,b)(c)>:2, <(a,b)(c)(e)>:2, <(a,b)(e)>:2

<(b)> <(b)>:3, <(b,c)>:3, <(b)(e)>:3, <(b)(b)>:3, <(b)(c)>:3,
<(b)(d)>:2, <(b,c)(e)>:3, <(b,c)(c)>:2,<(b)(b,c)>:3,
<(b)(b,c)(e)>:2,<(b)(b)(e)>:2

<(c)> <(b)(c)(e)>:2, <(c)>:3, <(c)(e)>:3, <(c)(c)>:2
<(d)> <(d)>:2
<(e)> <(e)>:4

Table 3.2: All sequential patterns found in TRSDB1

3.2 respectively.

3.2.2 Pattern Propagation

After mining patterns in a time related database, we propagate these patterns to other do-

mains. Since the only relationship between two time related sequence databases is TIME_SEQ

attribute, not only patterns but also their corresponding time instance sets are propagated.

The time instance set of each pattern α in time related sequence database TRSDB could

be found easily, if we have a set PIDTRSDB
α for every α-projected database when performing

PrefixSpan. PIDTRSDB
α contains period identifiers when α occurs in TRSDB.

For example, given time related sequence database TRSDB1 in Table 3.1. It is easy to

obtain periods contain <(a)(b)> when constructing TRSDB1|<(a)(b)>. Since periods 1, 2, and

4 contain <(a)(b)>, PIDTRSDB1
<(a)(b)> = {1, 2, 4} is generated. The time instance set of <(a)(b)>

17

is determined by scanning those time related sequences with period identifiers belonging to

PIDTRSDB1
<(a)(b)> , and extracting time instances of<(a)(b)>. Time instances 1:<1,2> and 1:<1,3>

are found in the time related sequence with PID = 1 and its own CONTEXT_SEQ having

(a)(b). In time related sequences with period identifiers being 1 and 2, we find time instance

2:<2,3> and 4:<1,3> respectively. Therefore, the complete time instance set of pattern

<(a)(b)> in TRSDB1 equals to {1:<1,2>, 1:<1,3>, 2:<2,3>, 4:<1,3>}.

After finding time instance set of every pattern in propagator domain, mined patterns

with their corresponding time instance sets are propagated to propagated domains so as to

construct propagated databases.

Definition 5 (propagated database) Let TRSDBu be a time related sequence database,
and α is a sequential pattern in time related sequence database TRSDBv with time instance
set TISTRSDBv

α =< ti1, ti2, ..., tim > . The propagated database constructed by α in TRSDBv

is denoted as TRSDBv||α = {strs1, strs2, ..., strsn} where strsi, 1 ≤ i ≤ n, is time related
sequence and n ≤ m. TRSDBv||α is constructed as following: For each j, 1 ≤ j ≤ m,
if there exist a time related sequence trs in TRSDBv such that tij ⊆ trs.TIME_SEQ,
then we add sub time related sequence of trs {PID :< t1, t2, ...tk >,< X1, X2, ...Xk >} to
TRSDBv||α where PID :< t1, t2, ..., tk >= tij and for each r, 1 ≤ r ≤ k, Xr is the element in
trs.CONTEXT_SEQ mapped by time slot tr.

When propagating α form TRSDBu to TRSDBv, TRSDBu is referred to as a propagator

domain, and TRSDBv is view as a propagated domain, and α is the propagator pattern

of propagated database TRSDBv||α.

Assume that sequential pattern <(a)(b,c)> is in TRSDB1. Given time related sequence

database TRSDB1 in Table 3.1 with sequential pattern <(a)(b,c)> and TRSDB2 in Table

3.3, propagated database TRSDB2||<(a)(b,c)> is constructed as follows:

Since TISTRSDB1
<(a)(b,c)> is {1:<1,2>, 1:<1,3>, 2:<2,3>, 4:<1,3>}, for time instance 1:<1,2>

in TISTRSDB1
<(a)(b,c)> we extract sub-time related sequence {1:<1,2>, <(1,2)(2,3)>} from TRSDB2

and add it into TRSDB2||<(a)(b,c)>. Similarly, time related sequences {1:<1,3>, <(1,2)(6)>},

{2:<2,3>, <(1,3)(2,4)>}, and {4:<1,3>, <(1,2,5)(2,3)>} are added to TRSDB2||<(a)(b,c)>.

The entire TRSDB2||<(a)(b,c)> is shown in Table 3.3.

Note that TIME_SEQs in a propagated database may have repeated period identifiers,

18

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4> <(1,2)(2,3)(6)(4,5)>
2 2:<2,3,4> <(1,3)(2,4)(8)>
3 3:<1,2,3> <(1,6)(5)(9,10)>
4 4:<1,2,3,4> <(1,2,5)(7)(2,3)(4,5,6)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2> <(1,2)(2,3)>
2 1:<1,3> <(1,2)(6)>
3 2:<2,3> <(1,3)(2,4)>
4 4:<1,3> <(1,2,5)(2,3)>

TRSDB2 TRSDB2||<(a)(b,c)>
(a) (b)

Table 3.3: TRSDB2 and TRSDB2||<(a)(b,c)>

because a propagator pattern can have multiple time instances in one period. For example,

propagator pattern <(a)(b,c)> has two time instances in period 1 (i.e., 1:<1,2> and 1:<1,3>).

Thus, in TRSDB2||<(a)(b,c)>, we have SIDs 1 and 2 having the same period identifier.

3.2.3 Sequential Pattern Mining in the Propagated Domain

After constructing propagated databases in the propagated domain, we describe how to mine

simultaneous sequential patterns in the propagated databases. Observing a propagated data-

base TRSDBprop, we find that: the numbers of time slots and elements in every time related

sequence are exactly the same with that of the propagator pattern of TRSDBprop. If a se-

quential pattern β in the propagated database and propagator pattern α are simultaneous,

β has the same number of elements as that in α. Accordingly, we propose a simultaneous

sequential pattern mining method referred to as SSM (standing for Slot-by-Slot sequential

patternMining). The concept of SSM is that since sequential pattern β has exactly the same

number of elements as propagator pattern α, we can collect elements that map to time slots

which have the same rank in TIME_SEQs to form an element set and mining these element

sets step by step. If no frequent itemset is found, sequential pattern β and propagator pattern

α are not simultaneous. An example of mining simultaneous patterns by SSM is described as

follows.

Example 2 (SSM) Givenmin_sup = 2, α =<(a)(b,c)(e)>, which is a sequential pattern

19

in TRSDB1with TISTRSDB1
α ={1:<1,2,4>, 1:<1,3,4>, 2:<2,3,4>, 4:<1,3,4>} and propagated

database TRSDB2||α in Table 3.4, the process of SSM on TRSDB2||α is described as the

following steps.

Step 1. Mine frequent itemsets occurred in the first time slot: Extracting the

elements occurred in the first time slot of each TIME_SEQ in TRSDB2||α into one element

set, which can be treated as a transaction database, denoted by DB1st_slot. In this example,

DB1st_slot of TRSDB2||α is {1:(1,2), 1:(1,2), 2:(1,3), 4:(1,2,5)}, where the number before

an itemset indicates the period in which this itemset occurs. Then we can use traditional

frequent itemset mining method [1],[7],[14] to find frequent itemsets in DB1st_slot. Note that

the support of an itemset is counted one for the same period. Consequently, the supports of

(1), (2), and (1,2) in DB1st_slot are 3, 2, and 2, respectively.

Step 2. Divide search space: For every frequent itemset X found in DB1st_slot,

we construct the <X>-projected database in TRSDB2||α. Projected databases in SSM

is somewhat different with that in PrefixSpan, because we have mined all frequent item-

sets in DB1st_slot, and therefore items within the postfix and the first element is useless

for every CONTEXT_SEQ in TRSDB2||α. Consequently, items within the postfix and

the first element are ignored when <X>-projected database is constructed. For example,

the <(1)>-projected database in TRSDB2||α should contain postfixes <(_2)(2,3)(4,5)>,

<(_2)(6)(4,5)>, <(_3)(2,4)(8)>, and<(_2,5)(2,3)(4,5,6)>. After ignoring items, we get new

postfixes: <(2,3)(4,5)>, <(6)(4,5)>, <(2,4)(8)>, and <(2,3)(4,5,6)>. Projected database

(TRSDB2||α)|<(1)> is shown in Table 3.4. Similarly, (TRSDB2||α)|<(2)> and (TRSDB2||α)|<(1,2)>

are also constructed. We only list (TRSDB2||α)|<(1,2)> in Table 3.4.

Step 3. Mine frequent itemsets in the 1st_element set of split search space

recursively: For every projected database found in the previous step, we mine frequent item-

sets in currently DB1st_slot and divide search space recursively. Consider (TRSDB||α)|<(1,2)>

as an example. We extract the first element in every CONTEXT_SEQ to form cur-

20

< (1,2) (2,3) (4.5) >

< (1,2) (6) (4,5) >
< (1,3) (2,4) (8) >

< (a) (b,c) (e) >

Frequent itemset: (1), (2), (1,2)

< (b,c) (e) >

Frequent itemset mining

< (1,2,5) (2,3) (4,5,6) >

< (2,3) (4.5) >
< (6) (4,5) >
< (2,4) (8) >

< (2,3) (4,5,6) >

< (4,5) >
< (4,5,6) >

< (e) >

Frequent itemset: (4), (5), (4,5)

< (b,c) (e) >

< (2,3) (4.5) >
< (6) (4,5) >
< (2,3) (4,5,6) >

(1)

(1,2)

(2)

(2,3)

Frequent itemset: (2), (3), (2,3)

(3)

Frequent itemset mining

Frequent itemset mining

Frequent itemset mining

(2)

Frequent itemset: (2), (3), (2,3)

Propagated
database

Projected
database

DB1st_slot

Figure 3.3: Illustrate the process of SSM in example 2

rent DB1st_slot={1:(2,3), 2:(6), 4:(2,3)}. After performing frequent itemset mining method

on DB1st_slot of (TRSDB||α)|<(1,2)>, we can find frequent itemsets (2), (3) and (2,3) with

the support value to be 2. Therefore, (TRSDB2||α)|<(1,2)(2)>, (TRSDB2||α)|<(1,2)(3)>, and

(TRSDB2||α)|<(1,2)(2,3)> are constructed and frequent items are mined recursively. Since

there is no element in <(1,2)(2,3)(4)>-, <(1,2)(2,3)(5)>-, and <(1,2)(2,3)(5)>-projected

databases, the process of SSM on <(1,2)(2,3)>-projected database stops and returns three

sequential patterns: <(1,2)(2,3)(4)>, <(1,2)(2,3)(5)>, and <(1,2)(2,3)(4,5)>. Therefore,

we get three simultaneous sequential patterns for propagator pattern <(a)(b,c)(e)>, i.e.,⎡⎢⎢⎣ (a) (b, c) (e)

(1, 2) (2, 3) (4)

⎤⎥⎥⎦,
⎡⎢⎢⎣ (a) (b, c) (e)

(1, 2) (2, 3) (5)

⎤⎥⎥⎦ , and
⎡⎢⎢⎣ (a) (b, c) (e)

(1, 2) (2, 3) (4, 5)

⎤⎥⎥⎦.
Following the above procedure, we could mine all simultaneous patterns in divided space.

We use Figure 3.3 to illustrate the processing of SSM with the profile given in Example 2.

Note that in Figure 3.3, we omit TIMES_SEQ part in propagated and projected databases

and focus on the operation performed in CONTEXT_SEQ.

21

SID TIME_SEQ CONTEXE_SEQ
1 1:<1,2,3,4> <(a)(b,c)(b,c,d)(e)>
2 2:<2,3,4> <(a,b)(b,c)(c,e)>
3 3:<1,2,3> <(a,e)(h)(g,j)>
4 4:<1,2,3,4> <(a,b,f)(d)(b,c)(e,f)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4> <(1,2)(2,3)(6)(4,5)>
2 2:<2,3,4> <(1,3)(2,4)(8)>
3 3:<1,2,3> <(1,6)(5)(9,10)>
4 4:<1,2,3,4> <(1,2,5)(7)(2,3)(4,5,6)>

TRSDB1 TRSDB2

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,4> <(1,2)(2,3)(4,5)>
2 1:<1,3,4> <(1,2)(6)(4,5)>
3 2:<2,3,4> <(1,3)(2,4)(8)>
4 4:<1,3,4> <(1,2,5)(2,3)(4,5,6)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<2,4> <(2,3)(4,5)>
2 1:<3,4> <(6)(4,5)>
3 2:<3,4> <(2,4)(8)>
4 4:<3,4> <(2,3)(4,5,6)>

TRSDB2||α (TRSDB2||α)|<(1)>
(a) (b)

SID TIME_SEQ CONTEXT_SEQ
1 1:<2,4> <(2,3)(4,5)>
2 1:<3,4> <(6)(4,5)>
3 4:<3,4> <(2,3)(4,5,6)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<4> <(4,5)>
2 4:<4> <(4,5,6)>

(TRSDB2||α)|<(1,2)> (TRSDB2||α)|<(1,2)(2,3)>
(c) (d)

Table 3.4: Projected databases used in Example 2

Algorithm: Slot-by-slot simultaneous sequential pattern mining (SSM.)
Input: propagator pattern α and the propagated database TRSDBv||α

and minimum support threshold min_support.
Output: The complete MDSSPs which can be found in TRSDBv||α.

1. call SSM(TRSDBv||α).
2. For every pattern p return from previous step, if the number of elements

in p equals to the number of elements in α, we output that
∙
α
p

¸
is a MDSSP.

Function SSM(TRSDB)
/*TRSDB is a time related sequence database.*/
IF every CONTEXT_SEQ in TRSDB is empty

RETURN
ELSE BEGIN

1. Collect every first element which is mapped by the
first time slot in every CONTEST_SEQ of TRSDB
to form the transaction database DB1st_slot.

2. Mine frequent itemset in DB1st_slot.
3. IF no frequent itemset can be found in DB1st_slot

RETURN
ELSE BEGIN

1. For every found frequent itemset Xi, we construct
projected database TRSDB|<Xi>.

2. For every TRSDB|<Xi>, we call SSM(TRSDB|<Xi>).
3. For every returned pattern p from previous step,
we insert itemset Xi into p to form a new pattern p0

22

such that Xi is the first element in p0.
4. RETURN every p0.

END
END

When performing SSM on propagated databases in propagated domain TRSDBtarget, we

can ignore some propagated databases and do not need to apply SSM on them because of the

following property:

Properity 1 (Reducible Propagation) Assume that both α and β are propagator
patterns which are represented as

£
c1 c2 ... cm

¤
and

£
c01 c02 ... c0n

¤
respectively where

ci is a column in α and c0j is a column is β such that 1 ≤ i ≤ m, 1 ≤ j ≤ n, n > m
and c1 = c01, c2 = c02, ..., cm = c0m. If no simultaneous sequential patterns can be found in
TRSDBtraget||α, also no simultaneous sequential patterns can be found in TRSDBtraget||β.

Based on the property above, we can do simultaneous sequential pattern mining more

efficiently: first we perform SSM on propagated databases constructed by propagator patterns

having only one column. We record which propagator patterns can not find no simultaneous

sequential pattern in TRSDBtarget and then prune propagator patterns which are prefixed

with these recorded propagator patterns. After doing propagation pruning, we perform SSM

on propagated databases constructed by propagator patterns having two columns, and then

similarly prune propagator patterns according to the result of performing SSM. Repeat this

process until all propagator patterns have been propagated or pruned.

Based on the above discussion, the algorithm of PropagatedMine is presented as follows:

Algorithm : PropagatedMine
Input: Time related sequence databases: TRSDB1, TRSDB2, ..., TRSDBn,

and the minimum support threshold min_support.
Output: The complete MDSSPs of TRSDB1, TRSDB2, ...,and TRSDBn.
BEGIN

1. Perform PrefixSpan on TRSDB1.
2. Construct propagated database TRSDB2||α and call SSM(α, TRSDB2||α)
for every mined sequential pattern α in step 1 if α cannot be pruned.

3. For every MDSSP p returned form step 2, call Propagation(p, d3).
END

Subroutine: Propagation(propagator, domainID)
/* propagator is the propagator pattern, and domainID
is a identifier used to indicate which domain.*/
BEGIN

1. call SSM(propagator, TRSDBdomainID||propagator) if propagator

23

cannot be pruned.
2. IF domainID equals to dn BEGIN

OUTPUT every MDSSP p returned from step 1 is a MDSSP of
TRSDB1, TRSDB2, ...,and TRSDBn

END
ELSE BEGIN

call Propagation(p, domainID + 1) for every MDSSP p
returned from step 1.

END
END

3.3 Optimized Propagation Order

In the pervious section, algorithm PropagatedMine is performed with a propagation order

given. In fact, multi-domain simultaneous sequential patterns can be mined by Propagat-

edMine with a variety of propagation orders. These propagation orders will not have any

influences on the result of patterns mined.

Theorem: Given n time related sequence database (TRSDB1 ,TRSDB2 , ...,TRSDBn),
multi-domain simultaneous sequential patterns mined by PropagatedMine with different order
are exactly the same.
Proof: Every propagation order mines the same MDSSPs means that any MDSSP α

found with propagation order Oi = (i1, i2, ..., in) can ecactly maps to a MDSSP β found
with propagation Oj = (j1, j2, ..., jn) such that α equals to β, where ik and jk are domain
identifiers and 1 ≤ ik, jk ≤ n. If not all propagation order find the same MDSSPs, then there
must exist a MDSSP α = [ri1 , ri2 , ..., rin]

T which having no MDSSP to map, where rik is a
component pattern,1 ≤ k ≤ n. Let TIS = TIS|TRSDBi1

ri1
∩ TIS|TRSDBi2

ri2
∩ ... ∩ TIS|TRSDBin

rin .
Since α is a MDSSP, the numebr of different period identifiers in TIS must be greater than
or equal to minimum support threshold. Therefore, if PropagatedMine is processed with
Oj, rj1 can be mined in TRSDBj1, because TIS|TRSDBj1

rj1
⊆ TIS and rj2 can be mined

by propagating TIS to TRSDBrj2 since TIS|TRSDBj1
rj1

⊆ TIS. Similarly, propagate TIS
to TRSDBrj3 , TRSDBrj4 , ..., and TRSDBrjn one by one, and we can find simultaneous
sequential patterns rj3 , rj4, ..., and rjn, repsectively. Accordingly, α = [rj1 , rj2 , ..., rjn]

T can be
mined by PropgatedMine with Oj, showing a contradiction. Q.E.D.

Though different propagation order will not affect the mining result, the costs of apply-

ing PropagatedMine with different propagation orders are not the same. This phenomenon

is obvious shown in Figure 3.4. There are three rectangles that overlap with each other,

and these three rectangles represent sequential patterns contained in TRSDB1, TRSDB2,

and TRSDB3, respectively. The overlapped areas represent that patterns in the overlapping

24

area are simultaneous. Therefore, the overlapping area resulted by three rectangles contains

MDSSPs that are required in this paper. Based on PropagatedMine, the central overlapping

area can be mined by propagating patterns in overlapping area of TRSDB1 and TRSDB2 to

TRSDB3, or by propagating overlapping area of TRSDB2 and TRSDB3 to TRSDB1. The

former propagation order is more expensive than the latter one because more patterns are

needed to be propagated in the former propagation order. Consider an illustrated example in

Table 3.5, where there are three time related sequence database: TRSDB1, TRSDB2, and

TRSDB3 shown in Table 3.5(a), 3.5(b), and 3.5(c) respectively. Two propagation orders:

O1 = (1, 2, 3) and O2 = (3, 2, 1) are used in algorithm PropagatedMine. The result is listed

in Table 3.5(d), where "1st propagated domain" means simultaneous patterns mined in the

first propagated domain, and similarly "2nd propagated domain" means patterns mined in

the second propagated domain. By observing the result, propagation order O1 has 48 se-

quential patterns in the starting domain and 111 simultaneous sequential patterns in the first

propagated domain, which means that if we pick O1 as our propagation order, we will need

to perform 159 (48+111) times pattern propagation and SSM to find the final 6 MDSSPs.

However, if we select O2, only 44 (25+19) times pattern propagation and algorithm SSM are

performed. Therefore, applying PropagatedMine with propagation order O2 has smaller cost

than applying PropagatedMine with propagation order O1.

In addition to the number of simultaneous sequential patterns, the size of propagated

databases is taken into consideration when estimating the cost of algorithm PropagatedMine.

Given a propagation order O, O=(d1, d2, ..., dn), where di is the identifier of a domain,

1 ≤ i ≤ n, the cost of performing PropagatedMine can be formulated as:

25

Figure 3.4: Simultaneous relation of sequential patterns in domain 1, 2, and 3

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4> <(a,b)(k)(c,d)(e)>
2 2:<1,2,3,4> <(k)(f,d)](h)(i,j)>
3 3:<2,3,4> <(a,b)(c,d)(e)>
4 4:<1,2,3,4> <(f)(m)(h)(i,j)>
5 5:<1,2,4> <(a,b)(c,d)(e)>

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4> <(1,2)(8)(3,5)(4,10)>
2 2:<1,2,3,4> <(1,8)(5)(6,7)(9,10)>
3 3:<2,3,4> <(1,2)(3)(4)>
4 4:<1,3,4> <(5)(6,7)(9)>
5 5:<1,2,3,4> <(1,2)(3)(11)(4)>

TRSDB1 TRSDB2
(a) (b)

SID TIME_SEQ CONTEXT_SEQ
1 1:<2,3,4> <(α)(β)(γ, θ)>

2 2:<1,2,3,4> <(α)(β)(λ, ω)(γ, θ)>

3 3:<1,2,3,4> <(β)(α)(φ, ρ)(α)>

4 4:<1,2,3,4> <(δ)(θ, β)(φ, β)(α, ε)>

5 5:<2,3,4> <(α, β)(φ)(ε, θ)>

O1=(1,2,3) O2=(3,2,1)

Starting domain 48 patterns 25 patterns

1st propagated domain 111 patterns 19 patterns

2nd propagated domain 6 patterns 6 patterns

TRSDB3 Patterns found by PropagatedMine with O1 or O2
(c) (d)

Table 3.5: Time related sequence databases used to explain propagation order determining

26

Cost(PropagatedMine(O)) = Cost(PrefixSpan(TRSDBd1)) +

nX
i=2

|Pi−1|X
j=1

Cost(SSM(TRSDBdi||αi−1,j))

For each i, 2 ≤ i ≤ n, Pi−1 is the set which contains all simultaneous sequential patterns

found in time related sequence database TRSDBdi−1 with the propagation order: (d1, d2, ..., di−1).

|Pi−1| denotes the number of patterns in Pi−1. αi−1,j represents a simultaneous sequential pat-

tern contained in Pi−1 (i.e., αi−1,j ∈ Pi−1 ,where 2 ≤ i ≤ n and 1 ≤ j ≤ |Pi−1|). The

cost of performing PrefixSpan or SSM on a time related sequence database includes frequent

items/itemsets mining, projected databases construction, and time instances search. Note

that the cost of PropagatedMine is mainly dependent on total amount of database scans.

Therefore, the number of database scans is viewed as the main cost of applying PrefixSpan or

SSM.

Since different propagation orders have different mining costs, a propagation order with

the minimal cost is desired. Unfortunately, estimating the costs of PrefixSpan and SSM are

difficult because patterns are not found in advance. Thus, an efficient method to approximately

estimate the costs of PrefixSpan and SSM is proposed.

We develop a greedy method to progressively generate the optimized propagation order so

as to improve the performance of PropagatedMine. Judiciously selecting the starting domain

and the propagated domain is able to reduce the amount of mining spaces required. Note

that instead of generating full propagation order once at a time, the optimized propagation

order selection is embedded in algorithm PropagatedMine and the cost estimation method

will determine how to efficiently select the next propagated domain when needing to perform

a propagation in algorithm PropagatedMine. Optimized propagation order method can be

divided into two phases: (1) the selections of the starting domain and the first propagated

27

domain and (2) the selection of the next propagated domain. These two phases will be

described in the following sections.

3.3.1 Selecting the Starting Domain and the First Propagated Do-

main

The starting domain and the first propagated domain can be determined as following: In the

beginning, we perform PrefixSpan cost estimation method to estimate the cost of PrefixSpan

in each domain TRSDBi, and pick the domain with the minimal PrefixSpan cost as the

starting domain (denoted by TRSDBstart). Furthermore, for every other domains TRSDBi,

1 ≤ i ≤ n and TRSDBi 6= TRSDBstart, we estimate the cost of performing SSM on all

propagated databases in TRSDBi. Similarly, we select the domain with the minimum SSM

cost as our first propagated domain (denoted as TRSDB1st_propagated).

Synopsises Construction

To evaluate the costs of PrefixSpan and SSM, we scan each time related sequence database

and compute some statistic data for every time related sequence database as follows.

(1). Average length of context sequences: the average length of context sequences

of a time related sequence database TRSDB (denoted as seq_lengthTRSDB.) is defined as:

seq_lengthTRSDB =

P|TRSDB|
i=1 |trsi.CONTEXT_SEQ|

|TRSDB|

|TRSDB| represents the number of time related sequences in TRSDB. trsi is a time related

sequence in TRSDB with trsi.SID = i, and |trsi.CONTEXT_SEQ| represents the length

of the associated context sequence trsi.CONTEXT_SEQ, 1 ≤ i ≤ |TRSDB|. Consider an

example of a time related sequence database TRSDBex in Table 3.6(a), seq_lengthTRSDBex =

28

7+7+5+7+6
5

= 6.4 .

(2). Average length of elements: the average length of elements of a time related

sequence database TRSDB (denoted as elem_lengthTRSDB) is defined as:

elem_lengthTRSDB =

P|TRSDB|
i=1

|trsi.CONTEXT_SEQ|
|trsi.T IME_SEQ|

|TRSDB|

Since time slots in trsi.CONTEXT_SEQ and elements in trsi.T IME_SEQ are one to

one mapped, the number of elements in trsi.CONTEXT_SEQ equals to the length of

trsi.T IME_SEQ. For example in Table 3.6(a), elem_lengthTRSDBex =
7
5
+ 7
5
+ 5
4
+ 7
4
+ 6
4

5
= 1.38.

(3). Period Synopsis structure: for every length one sequential pattern xi in time re-

lated sequence database TRSDB, we build a period synopsis structure denoted by PID_Synopsisxi.

Actually, PID_Synopsisxi is a table having two attributes: PID and COUNT, where PID

indicates item xi appeared in which periods and COUNT represents the number of counts,

where xi appears in that period. If PID_Synopsisxi has k tuples, they are expressed by

pst1,pst2, ..., pstk. For example, given a time related sequence database TRSDBex in Table

3.6(a), PID_Synopsisa for frequent item a of TRSDBex is shown in Table 3.6(b).

(4). Position Synopsis structure: we build a position synopsis structure denoted as

POS_Synopsisxi for every length one sequential patterns xi in TRSDB. POS_Synopsisxi

is a table with three attributes: RANK, POSITION, SUPPORT. Given a time related se-

quence database TRSDBex in Table 3.6(a), we can build POS_Synopsisa for frequent item

a of TRSDBex. POS_Synopsisa is shown in Table 3.6(b). The first tuple {RANK=1, PO-

SITION=1.8, SUPPORT=5} means that there are 5 periods (PID=1, 2, 3, 4, and 5) in

TRSDBex contain the first appearance of "a" (RANK=1) and the average position of these

five "a" is 1.8 because their positions in periods are element 2, 1, 2, 4, 1, respectively, and

thus, the average position is 1.8 (2+1+1+4+1
5

). Similarly, The second tuple {RANK=2, POSI-

TION=2, SUPPORT=3} means that there are 3 periods (with PID=2, 3, and 5) in TRSDBex

29

SID TIME_SEQ CONTEXT_SEQ
1 1:<1,2,3,4,5> <(c)(a)(e)(b,c)(g,h)>
2 2:<1,2,3,4,5> <(a,f)(a)(b)(f)(a,b)>
3 3:<2,3,4,5> <(a)(a)(e)(a,h)>
4 4:<1,2,3,4> <(c,f)(c)(f)(a,b,c)>
5 5:<1,3,4,5> <(a,c)(a)(g)(c,g)>

TRSDBex

(a)

PID COUNT
1 1
2 3
3 3
4 1
5 2

RANK POSITION SUPPORT
1 1.8 5
2 2 3
3 4.5 2

PID_Synopsisa POS_Synopsisa
(b) (c)

PID COUNT
1 1
2 3
3 3
5 2

RANK POSITION SUPPORT
1 1.25 4
2 2 3
3 4.5 2

Revised PID_Synopsisa Revised POS_Synopsisa
(d) (e)

Table 3.6: Synposis examples

contain the second appearance of "a" (RANK=2) and the average position of these "a" is 2,

since their position in period 2, 3, and 5 are 2, 2, 2,respectively. As a result, the average

position of the second appearance of "a" is 2 (2+2+2
3
). Assume that POS_Synopsisxi has k

tuples, and these tuples are denoted as sst1, sst2, sst3, ..., sstk.

Note that we can build PID_Synopsisxi and POS_Synopsisxi for every frequent item

xi in time related sequence database TRSDB by scanning TRSDB once. However we need

to scan TRSDB once more for revising every PID_Synopsisxi and POS_Synopsisxi. The

revising operation is to ignore positions which are far away from the average position and

the revising operation makes revised average position more representative. The revising op-

eration is presented as following: for every tuple sstj in POS_Synopsisxi , suppose that

sstj.RANK = k, we recompute the value of POSITION and SUPPORT by exclude those

30

k-th xi whose distance between xi and sstj.POSTION is larger than the standard deviation

of all k-th xi derived in the first disk scan. Then, PID_Synopsisxi is updated accordingly.

Also, if the revised value of SUPPORT in sstj is less than min_support, we remove sstj

from POS_Synopsisxi and PID_Synopsisxi. For example, the standard deviation of all

first "a" in TRSDBex equals to 1.166, and the first "a" in time related sequence with SID=4

satisfies that the distance between its position and the average position (|4 − 1.8| = 2.2) is

larger than the standard deviation 1.166. Therefore, we exclude this tuple. The final revised

PID_Synopsisa and POS_Synopsisa are in Table 3.6(d) and 3.6(e), respectively.

Cost of PrefixSpan

The total scan space of performing PrefixSpan on a time related sequence database TRSDB

can be calculated as:

Cost(PrefixSpan(TRSDB)) = Space(TRSDB) +
X

i
Space(TRSDB|αi)

where
P

i Space(TRSDB|αi) is the summation of space of projected databases constructed

by sequential pattern αi and function Space(TRSDB) =
P|TRSDB|

i=1 |trsi.CONTEXT_SEQ|.

Based on the definition of seq_lengthTRSDB, Space(TRSDB) equals to: Space(TRSDB) =

|TRSDB| × seq_lengthTRSDB. Therefore, the definition of PrefixSpan cost can be rewritten

as following:

Cost(PrefixSpan(TRSDB)) = seq_lengthTRSDB × |TRSDB|+X
i
(|(TRSDB|αi)| × seq_lengthTRSDB|αi) (3.1)

Formula (3.1) is illustrated in Figure 3.5. Every rectangle in the figure is a database whose

space can be evaluated by multiply the number of sequences with the average sequence length

of that database.

31

Number of
sequence

Average sequence length

Original time related
sequence database

Projected time related
sequence databases

• Space (database DB) = number of sequence in DB * average sequence length of DB

• Total scan space = ∑i Space (DBi)

Figure 3.5: Illustrate PrefixSpan cost formula

Based on formula (3.1), the method of PrefixSpan cost estimation can be designed by add

the scan space of every projected database constructed by some representative sequential

patterns together. The concept of representative sequential pattern proposed here helps

estimating cost efficiently, since representative sequential patterns have two properties: (1)

every element in the sequential pattern contains only one item, and (2) the sequential pattern

often occurs in similar time slots in different periods. Synopsises of a time related sequence

database are used to generate representative sequential patterns in PrefixSpan cost estimation

method.

To facilitate the presentation of this paper, some terminologies and functions are defined

as follows.

(1).Length() takes a real number r as its parameter, and Length(r) is defined as: Length(r) =

r, if r ≥ 1; Length(r) = 1, if r < 1.

(2) PIDTRSDB
α is a set that contains period identifiers. For each period identifier pid in

PIDTRSDB
α , it represents that there will be a time related sequence trs existing in TRSDB

such that trs.TIME_SEQ.PID = pid and trs.CONTEXT contains sequential pattern α.

(3) POSTRSDBα is a list used to record the average position of all first occurring α in

32

First occurrence of
sequential pattern <a,b>

pos<a,b>= (1.5 , 3.5)

Position
average

Position
average

1 2 3 4

TRSDBex

Figure 3.6: Average position of sequential pattern <a,b> in TRSDBex

time related sequence database TRSDB, where α is a sequential pattern in TRSDB. Figure

3.6 is used to illustrate POSTRSDBex
<a,b> in time related sequence database TRSDBex : there

are two context sequences having < a, b > in TRSDBex (i.e., context sequences with SID

equal to 1 and 2) and the average position of the first "a" and the first "b" in these two

sequence are 2+1
2
= 1.5 and 4+3

2
= 3.5. Given POSTRSDB

α and α =< a1, a2, .., ak >, function

pos(POSTRSDBα ,ai) will return the position of ai in POSTRSDB
α , where ai ∈ {a1, a2, .., ak}.

pos(POSTRSDBα) will return the last value in POSTRSDB
α .

The Cost Estimation Method of PrefixSpan

We use GSP[11] like method to generate candidate sequential patterns (i.e., length k se-

quential patterns are generated from length k− 1 sequential patterns), and utilize synopsises

to make sure whether a candidate sequential pattern is a representative sequential pattern

or not. We also use the synopsises to estimate the databases constructed by representative

sequential patterns. For conciseness, when saying sequential patterns in PrefixSpan cost esti-

mation method we indicate representative sequential patterns actually. The cost of performing

PrefixSpan on a domain can be estimated by the following two steps and we add all scan space

computed by these two steps together as the whole PrefixSpan cost.

Step 1. projected databases of length 1 representative sequential patterns:

33

seq_lengthTRSDB

|(TRSDB|xi)|

posfix_length

Scan space = the number of sequences * posfix_length

=|(TRSDB|xi)| * (seq_lengthTRSDB – prefix_lengthTRSDB)

=|(TRSDB|xi)| * (seq_lengthTRSDB – pos(POSxi)*elem_lengthTRSDB)

TRSDB

prefix_length

TRSDB

Figure 3.7: Illustrate how to calculate scan space of step 1 in the PrefixSpan cost estimation
method

In this step, we calculate scan space of projected databases constructed by length 1 se-

quential patterns. Suppose we have n length-1 sequential patterns, x1, x2, ..., xn, in TRSDB.

The number of sequences contained in projected database of xi is |(TRSDB|xi)|, 1 ≤ i ≤ n,

which will equal to |PIDTRSDB
xi

|. Moreover, we use Length(seq_lengthTRSDB−POSTRSDB
xi

×

elem_lengthTRSDB) to estimate seq_lengthTRSDB|xi . Therefore, according to scan space for-

mula, the scan space of projected database constructed by frequent item xi, 1 ≤ i ≤ n, is as

follows and illustrated in Figure 3.7.

|PIDTRSDB
<xi>

| × Length(seq_lengthTRSDB − pos(POSTRSDB
<xi>

)× elem_lengthTRSDB)

Selecting sst form POS_Synopsisxi with sst.RANK = 1, and then the formula above can

be computed by letting (1). |PIDTRSDB
xi

| = sst.SUPPORT and

(2). POSTRSDB
xi

= sst.POSITION.

Step 2. Projected databases of length k representative sequential patterns

where k above 1:

We generate length k sequential patterns from length k − 1 sequential patterns. Rules

of pattern generation and pruning are similar to those in GSP[11] (i.e., a candidate length k

sequential pattern p is generated by two length k−1 sequential patterns where their first k−2

34

seq_lengthTRSDB

|(TRSDB|xixi…xi)|

posfix_length

Scan space = number of sequence * posfix_length

=|(TRSDB|xixi…xi)| * (seq_lengthTRSDB – prefix_length)

=|(TRSDB|xi)| * (seq_lengthTRSDB – pos(POSxixi…xi)*elem_lengthTRSDB)

TRSDB

TRSDB|xixi..xi

prefix_length

TRSDB

Figure 3.8: Illustrate how to calculate scan space of the case 1 in step 2 of the PrefixSpan
cost estimation method

items are the same and every length k − 1 subsequence of p must be a sequential pattern).

Length k sequential patterns could be categorized into two kinds:

Case 1: (Homogeneous sequential patterns)

A length k sequential pattern of this kind will have the form like xixi...xi and |xixi...xi| = k,

1 ≤ i ≤ n. Scan space of the projected database constructed by xixi...xi is as follows and

illustrated in Figure3.8.

|PIDTRSDB
xixi...xi

| × Length(seq_lengthTRSDB − pos(POSTRSDB
xixi...xi

)× elem_lengthTRSDB)

If there exists a tuple sstj in POS_Synopsisxi such that sstj.RANK = k, then the for-

mula above can be computed by letting (1). |PIDTRSDB
xixi...xi

| = sstj.SUPPORT and (2).

pos(POSTRSDB
xixi...xi

) = sstj.POSITION

Though we can compute |PIDTRSDB
xixi...xi

| by POS_Synopsisxi directly, we still need to build

PIDxixi...xi which will be used in estimating scan space of projected databases constructed by

length k + 1 sequential patterns. PIDTRSDB
xixi...xi

can be obtained by scanning PID_Synopsisxi

once. When scanning PID_Synopsisxi , we add pstj.PID into PIDTRSDB
xixi...xi

if pstj.COUNT ≥

k.

Case 2: (Heterogeneous sequential patterns)

35

Given a candidate length k sequential pattern α = a1a2...ak, ai ∈ {x1, x2, ..., xn} for 1 ≤

i ≤ k and α is a homogeneous sequence, α is a sequential pattern in TRSDB if α satisfies

two conditions: (Condition 1) pos(POSTRSDB
a1a2,...ak

)− pos(POSTRSDB
a1a2,...ak−1

) ≥ 1 and (Condition 2)

|PIDTRSDB
a1a2...ak

| ≥ min_support.

(1) Condition 1: Examining POS_Synopsisak to see if there exist a tuple sst in

POS_Synopsisak such that sst.POSITION − pos(POSTRSDB
a1a2,...ak−1

) ≥ 1. If condition 1 can

be satisfied, then POSTRSDB
a1a2...ak

equals to POSTRSDB
a1a2,...ak−1

+ sst.POSITION, where "+" means

append sst.POSITION to POSTRSDB
a1a2,...ak−1

such that sst.POSITION is the minimal value

satisfying condition 1 in POS_Synopsisak . Note that POS
TRSDB
a1a2,...ak−1

has already been com-

puted in the generation of length k − 1 sequential patterns.

(2) Condition 2: |PIDTRSDB
a1a2...ak

| can be estimated as follows. Suppose variable rank

equals to sst.RANK where sst is the synopsis tuple we found in condition 1. We can

build PIDTRSDB
rank_th_ak by scanning PID_Synopsisak . When scanning PID_Synopsisak , we

add pst.PID into PIDTRSDK
rank_th_ak if pst.COUNT ≥ rank. After PIDTRSDB

rank_th_ak has been built,

PIDTRSDB
a1a2...ak

equals to PIDTRSDB
a1a2,...ak−1

∩PIDTRSDB
rank_th_ak , and then we can check if |PID

TRSDB
a1a2...ak

| ≥

min_support. Note that since α = a1a2...ak is a candidate sequential pattern, a1a2, ...ak−1

must be a sequential pattern. Therefore, PIDTRSDB
a1a2,...ak−1

has already been built when generating

length k − 1 sequential patterns.

If α = a1a2...ak satisfies condition 1 and 2, then scan space of the projected database

constructed by α can be formulated as following and illustrated with Figure 3.9.

|PIDTRSDB
a1a2...ak

| × Length(seq_lengthTRSDB − pos(POSTRSDB
a1a2...ak

)× elem_lengthTRSDB)

The formula above can be computed by substituting the value of |PIDTRSDB
a1a2...ak

| and pos(POSTRSDB
a1a2...ak

)

which can be found in judging condition 1 and condition 2.

36

the number of sequence

posfix_length

seq_lengthTRSDB

pos(POSa1a2…ak)TRSDB

pos(POSa1a2…ak-1)TRSDB

TRSDB

TRSDB|a1a2…ak-1

TRSDB|a1a2…ak

Scan space = number of sequence * posfix_length

=|(TRSDB|a1a2…ak)| * (seq_lengthTRSDB – prefix_length)

=|(TRSDB|a1a2…ak)| * (seq_lengthTRSDB – pos(POSa1a2..ak)*elem_lengthTRSDB)TRSDB

Cond. 1: pos(POSa1a2..ak)-pos(POSa1a2..ak-1)≥1

Cond. 2: |PIDa1a2..ak | ≥min_sup

Figure 3.9: Illustrate how to calculate scan space of the case 2 in step 2 of the PrefixSpan
cost estimation method

Cost of SSM

The cost of performing SSM on the propagated domain is estimated by finding out the scan

space of propagated databases in the propagated domain. As illustrated in Figure 3.10, SSM

is performed in propagated databases constructed by frequent patterns in TRSDBu.

Given a pair (TRSDBu, TRSDBv), where TRSDBu is the propagator domain having n

length 1 sequential patterns (i.e., {x1, x2, ..., xn}), and TRSDBv is the propagated domain

having m length 1 sequential patterns (i.e., {y1, y2, ..., ym}), we will use PIDTRSDBu
α and

POSTRSDBu
α to estimate scan space of performing SSM on TRSDBv||α for each representative

sequential pattern α = a1a2...ak found in TRSDBu,where ai ∈ {x1, x2, ..., xn} and 1 ≤ i ≤ k.

The cost of performing SSM in propagated database TRSDBv||α can be estimated as:

Cost(SSM(TRSDBv||α)) = |(TRSDBv||α)| × elem_lengthTRSDBv +

ssm(TRSDBv||α, prefix, c) (3.2)

37

Propagator domain:
TRSDBu Propagate

Target domain
TRSDBv

Sequential patterns

<(a)(b,c)(e)>
<(b)(e,f)>
<(a,b)(f)(c,d)> Number of

sequence
Average sequence length

SID TIME_SEQ CONTEXT_SEQ

Propagated database

SSM Construct

Figure 3.10: Illustrate SSM cost estimation

where ssm(TRSDBv||α, prefix, c) is defined as:

ssm(TRSDBv||α, prefix, c) =
P
j

|PIDDB1st_slot
yj | × elem_lengthTRSDBv +

ssm(TRSDBv||α, prefix+ yj , c+ 1) (3.3)

DB1st_slot represents the first element set of (TRSDBv||α)|prefix. prefix is a representative

sequential pattern in TRSDBv, and it is a empty sequence initially. According to formula

(3.3), every time we append a frequent item yj found in current DB1st_slot to prefix and call

ssm() recursively. Parameter c is a variable used to count the projection depth where c equals

to 1 in the beginning.

The Cost Estimation Method of SSM

If α = a1a2...ak is a length k sequential pattern in TRSDBu, we can compute the total

scan space of performing SSM on TRSDBv||α by formulas (3.2) and (3.3). Since the former

half in formula (3.2) is a constant (i.e., |(TRSDBv||α)| × elem_lengthTRSDBv), we focus on

explain the later half which is defined in formula (3.3). Formula (3.3) can divide into non-

38

recursive and recursive parts, so we first compute non-recursive part,
P
j

|PIDDB1st_slot
yj | ×

elem_lengthTRSDBv , in every ssm() function call.
P
j

|PIDDB1st_slot
yj | is estimated by the

following steps:

Step 1. find all possible frequent item yj:

We scan POS_Spnopsisyj for each frequent item yj in TRSDBv (yj ∈ {y1, y2, ..., ym}). If

there exist a tuple sst in POS_Spnopsisyj such that |sst.POSITION−pos(POSTRSDBu
α , ac)| <

1, then yj is a possible frequent item in DB1st_slot. Note that c is the projection depth counter

and c equals to 1 in initial ssm() function call.

Step 2. prune yj:

We further examine whether prefix+yj is a representative sequential pattern of TRSDBv

(i.e. prefix + yj must equals to one of sequential patterns found in estimating PrefixSpan

cost of TRSDBv.) If prefix+ yj is not a sequential pattern of TRSDBv, we prune yj. Note

that prefix equals to empty sequence in initial ssm() function call.

Step 3. compute
P
j

|PIDDB1st_slot
yj |:

For every found possible frequent item yj, if |PID
DB1st_slot
yj | ≥ min_support we add these

|PIDDB1st_slot
yj | together and get

P
j

|PIDDB1st_slot
yj |. |PIDDB1st_slot

yj | equals to |PIDTRSDBv
k_th_yj ∩

PIDTRSDBv
prefix | (or |PIDTRSDBv

k_th_yj ∩PID
TRSDBu
α | in the initial ssm() function call) where PIDTRSDBv

prefix

has been known in previous ssm() function call and PIDTRSDBv
k_th_yj = {pst.PID|pst ∈ PID_Synopsisyj

, pst.COUNT = k} where k equals to the RANK value of the position synopsis tuple sst

found in Step 1. In other words, k equals to sst.RANK where sst ∈ PID_Synopsisyj and

|sst.POSITION − pos(POSTRSDBu
a , ac)| < 1.

After computing the non-recursive part in ssm() function call, we further compute the re-

cursive part by calling ssm(TRSDBv||α, prefix+yj, c+1) for each yj satisfying |PID
DB1st_slot
yj | ≥

min_support which can be found in Step 3. Note that the set PID
DB1st_slot
yj we found in step

3 currently will become PIDTRSDBv
prefix in the next ssm() function call whose projected database

is prefixed with current prefix appended with yj.We use Figure 3.11 to illustrate the process

39

Propagated database

Projected databases

Projected database

Propagator pattern α: < a1, a2, a3 >

DB1st_slot DB1st_slot

Mining frequent item
yj in every DB1st_slot

DB1st_slot

y1

y2

PIDy2
DB1st_slotPIDy2
DB1st_slot

PIDα
DB1st_slotPIDα
DB1st_slot DB1st_slot DB1st_slot

Figure 3.11: Illustrate the process of SSM cost estimation method

of SSM cost estimation method.

3.3.2 Continuously Selecting the Next Propagated Domain

As mentioned above, instead of finding the optimized propagation order at once, our method

is able to progressively generate the propagation order. After the starting and the first propa-

gated domains have been selected (e.g., TRSDBstart and TRSDB1st_propagated, respectively),

we will perform PrefixSpan on TRSDBstart and then propagate all mined sequential patterns

to TRSDB1st_propagated and apply SSM on propagated databases to find out all MDSSPs

among TRSDBstart and TRSDB1st_propagated.

After MDSSPs of TRSDBstart and TRSDB1st_propagated have mined, we need to select

the next propagated domain from remaining domains. However, instead of recomputing the

SSM costs for remaining domains, the costs of SSM is able to incrementally computed. The

incremental update of these costs can be done if information, {(propagator_pattern1 : cost1),

(propagator_pattern2 : cost2), ...}, are recorded in each domain when estimating the cost

40

of SSM for selecting the first propagated domain. The update can be done by subtract-

ing scan space of propagator patterns which are not component patterns of MDSSPs found in

TRSDB1st_propagated after performing SSM and mined MDSSPs of TRSDB1st_propagated. Once

the cost costs of SSM are updated, we select the domain having the minimal updated cost as

our next propagated domain (i.e., second propagated domain TRSDB2nd_propagated). Similarly,

if wanting to select the third propagated domain, we update SSM cost table for every remaining

domains by subtracting (propagator_patterni, costi) from cost table if propagator_patterni is

not a component patterns of any MDSSPs found in TRSDB2nd_propagated. For example, in Fig-

ure 3.12, there are four time related sequence databases TRSDB1, TRSDB2, TRSDB3, and

TRSDB4, and suppose that {a,b,c,...,l} are representative sequential patterns in TRSDB1.

If TRSDB1 is selected as starting domain, we can build a SSM cost table shown in Ta-

ble 3.7 after estimating the cost of performing SSM on TRSDB2, TRSDB3, and TRSDB4.

Since TRSDB2 has the minimal SSM cost, TRSDB2 is chosen as the first propagated do-

main. Similarly, after mining MDSSPs of TRSDB1 and TRSDB2, we update SSM cost table

of TRSDB3 and TRSDB4 by subtracting tuple (propagator_patterni : costi) from SSM

cost table, where propagator_patterni is not a component pattern of MDSSPs of TRSDB1

and TRSDB2. Assume that all representative patterns {a,b,c,e,d,k,j} in SSM cost table of

TRSDB2 are component patterns of MDSSPs, and then the SSM cost table of TRSDB3 and

TRSDB4 can be updated accordingly. The updated SSM cost tables are in Table 3.8.

Optimized PropagatedMine algorithm is listed below and the whole architecture is shown

in Figure 3.13.

Algorithm : Optimized PropagatedMine
Input: Time related sequence databases: TRSDB1, TRSDB2, ..., TRSDBn,

and the minimum support threshold min_support.
Output: The complete MDSSPs of TRSDB1, TRSDB2, ...,and TRSDBn.
BEGIN

1. Perform PrefixSpan cost estimation on each TRSDBi, 1 ≤ i ≤ n, and
select the domain with minimum cost as the starting domain denoted as
TRSDBstart.

2. Apply SSM cost estimation on each TRSDBi, 1 ≤ i ≤ n and

41

Figure 3.12: Destribution of representative sequential patterns in TRSDB1

propagator cost

a 5
b 10
c 5
d 10
e 10
k 10
j 5

Total_cost 55

propagator cost

a 10
b 5
c 10
h 20
i 10
l 15

Total_cost 70

propagator cost

a 15
b 5
d 15
e 20
h 15
f 5
g 10

Total_cost 85

TRSDB2 TRSDB3 TRSDB4
(a) (b) (c)

Table 3.7: SSM cost tables of TRSDB3, TRSDB3, and TRSDB4

propagator cost

a 10
b 5
c 10

Total_cost 25

propagator cost

a 15
b 5
d 15
e 20

Total_cost 55

TRSDB3 TRSDB4
(a) (b)

Table 3.8: Updated SSM cost tables of TRSDB3 and TRSDB4

42

TRSDBi 6= TRSDBstart. Select the domain has minimum cost as
the first propagated domain denoted as TRSDB1st_propagated.

3. call PrefixSpan(TRSDBstart).
4. Construct propagated database TRSDB1st_propagated||α and call SSM(α, TRSDB1st_propagated||α)
for each mined sequential pattern α in step 3 if α cannot be pruned.

5. For every MDSSP p returned form step 4, call Propagation(p).
END

Subroutine: Propagation(propagator)
/* propagator is the propagator pattern.*/
BEGIN

1. Update SSM cost table for each remaining domain, and select the domain with
minimum SSM cost as the next propagated domain denoted as TRSDBk_th_propagated.

2. IF propagator cannot be pruned BEGIN
call SSM(propagator, TRSDBk_th_target||propagator)

END
3. IF exist no remaining domain BEGIN

OUTPUT every MDSSP p returned from step 2 is a MDSSP of
TRSDB1, TRSDB2, ...,and TRSDBn

END
ELSE BEGIN

call Propagation(p) for every MDSSP p returned from step 2.
END

END

43

PrefixSpan cost
estimation

SSM cost estimation

PrefixSpan

SSM

Remaining domains

Starting domain

Propagated
domain

If exist any
remaining
domain

Propagator
patterns

Update

MDSSPs of k
domains

TRSDBs of different domains

Figure 3.13: Architecture of PropagatedMine with optimization method

44

Chapter 4

Performance Study

To evaluate the effectiveness and efficiency of algorithm PropagatedMine, we performed an

extensive performance study on synthetic data sets with various kinds of sizes and data dis-

tributions. The simulation model is described in Chapter 4.1. Chapter 4.2 is devoted to

experimental results and comparison of three algorithms: IndividualMine, PropagatedMine

and Optimized PropagatedMine.

4.1 Simulation Model

Our experiments were run on a 1.8GHz Athlon PC with 1 gigabyte main memory, and all

methods are implemented using J2SE (version 1.4.2). The synthetic datasets used for our

experiments were generated by modifying the source code of "Synthetic Data Generation Code

for Associations and Sequential Patterns" which follows the standard procedure described in

[2]. This data generator has been used in most studies on sequential pattern mining, like

[3][4][6][8][9][11].

Due to the restriction of space, most experimental results we reported are using dataset

C10T8S8I8. In this dataset, the number of items is set to 1,000, there are 10,000 sequences

in the data set, the average number of items within elements is set to 8, the average number

45

Notation Description value
min_sup minimum support threshold various value used
|D| Number of domains various value used
|C| Number of sequences in thousands various value used
corr Correlation of given domains various value used

Table 4.1: The papameters and measurements used in the simulation

of elements in a sequence is set to 8, and the average length of sequential patterns is set to 8.

Performance of three algorithms: IndividualMine, PropagatedMine, and optimized Prop-

agatedMine is comparatively analyzed. Sensitivity analysis on several parameters, including

the number of domains, the number of sequences in TRSDBs, the support threshold, and the

correlation of given domains is conducted. Table 4.1 shows the notations of some primary

parameters in our model. Assume that there are domains: TRSDB1, TRSDB2, ..., TRSDBk.

Then, the correlation corr of these k domains equals to:

corr =

P
i,j

Corr(TRSDBi, TRSDBj)

Ck
2

, where 1 ≤ i, j ≤ k and i 6= j

Furthermore, suppose that TRSDBi hasm items and TRSDBj has n items. Corr(TRSDBi, TRSDBj)

is formulated as r,s
Corr(xr, ys)

m×n , where for each r, 1 ≤ r ≤ m, xr is an item of domain TRSDBi,

and for each s, 1 ≤ s ≤ n, ys is an item of domain TRSDBj. Corr(xr, ys) is defined as
|xr∩ys|
|xr|×|ys| ,

where |xr| and |ys| means the number of slots having item xr and ys in domain TRSDBi and

TRSDBj, respectively, and |xr ∩ ys| represents the number of slots having xr and ys.

4.2 Experimental Results

The experimental results of scalability with various support thresholds are shown in Figure

4.1. The number of domains |D| is set to 5 and the dataset of each domain is C10T8S8I8,

and the value of corr for these five domains is 1.523. It can be seen in Figure 4.1 that when

the support threshold is high there are only a limited number of sequential patterns, and the

46

0

5000

10000

15000

20000

25000

30000

35000

40000

2.50 5.00 7.50 10.00

Support threshold (%)

R
u
n
tim

e
(m

s)

IndividualMine

PropagatedMine

PropagatedMine(OPT)

Figure 4.1: Scalability over support threshold

runtime of three method is close. As the support threshold decreases, the gaps become larger.

Both PropagatedMine and optimized PropagatedMine are more efficient than IndividualMine,

due to that the cost of performing PrefixSpan increases rapidly when the support threshold

becomes low and IndividualMine needs to apply PrefixSpan on each domain.

The scalability of these algorithms over the number of domains is next investigated. The

dataset of each domain is C10T8S8I8, min_sup is set to 2.5%, and the value of corr is 1.532.

the performance is shown in Figure 4.2, two kinds of PropagatedMine show good scalability.

From Figure 4.2 both PropagatedMine and optimized PropagatedMine outperform Individ-

ualMine since the number of patterns and the size of propagated database usually decrease.

However, IndividualMine needs to mine the whole size of each time related sequence database.

Figure 4.2 shows the good scalability of PropagatedMine and optimized PropagatedMine.

The impact of increasing the number of sequences is shown in Figure 4.3. The number of

domains |D| is set to 5, min_sup equals to 2.5% and correlation parameter corr of domains is

1.532. Datasets used in this experiment are C1T8S8I8, C4T8S8I8, C7T8S8I8, and C10T8S8I8.

As can be seen in Figure 4.3, optimized PropagatedMine has the best scalability among three

algorithms, showing the advantage of good propagated orders generated.

47

0

5000

10000

15000

20000

25000

30000

35000

40000

2 3 4 5

Number of domains

R
un

tim
e(

m
s)

IndivdiualMine

PropagatedMine

PropagatedMine(OPT)

Figure 4.2: Scalability over number of domains

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 4000 7000 10000

Number of sequences

R
un

tim
e

(m
s)

IndividualMine

PropagatedMine

PropagatedMine(OPT)

Figure 4.3: Scalability over number of sequences

48

0

50000

100000

150000

200000

1.00 1.50 2.00 2.50

correlation

R
un

ti
m

e
(m

s)

ImdividualMine

PropagatedMine

PropagatedMine(OPT)

Figure 4.4: Scalability over correlation

Figure 4.4 shows the scalability of methods over correlation. We set |D| = 5, min_sup =

2.5%, and datasets in each domain is C10T8S8I8. The correlation is varying form 1.00 to 2.5.

In our experiments, runtime of mining multi-domain sequential patterns is sensitive to the

correlation values. As the value of the correlation increase, the run times of these algorithms

increase. This is due to that more simultaneous sequential patterns can be generated.

By exploring the feature of propagating, both algorithms PropagatedMine and optimized

PropagatedMine outperform IndividualMine. Now, we shall thus focus on comparing the

performance of PropagatedMine with optimized PropagatedMine. As shown in Figure 4.5,

the process time in each domain of optimized PropagatedMine decreases more rapidly than

PropagatedMine since optimized PropagatedMine will choose the propagated domain with

the minimal cost for propagation.

In order to investigate how good optimized PropagatedMine can achieve, we compare

the runtime of optimized PropagatedMine with the optimal runtime. Note that the optimal

runtime is obtained by performing PropagatedMine with all kinds of propagation order and

choose the minimum. We set |D| = 5,min_sup = 2.5%, the correlation parameter corr=1.532

and the numbers of sequences are 1000, 4000, 7000, and 10000. Figure 4.6 shows that the

49

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5

Propagation times

R
un

tim
e

(m
s)

PropagatedMine

PropagatedMine(OPT)

Figure 4.5: Runtime decreasing trend as the process of two kninds of PropagatedMine

0

5000

10000

15000

20000

25000

30000

1000 4000 7000 10000

Number of sequences

R
u
nt

im
e

(m
s)

PropagatedMine

PropagatedMine(Optimezed)

PropagatedMine(Optimal)

Figure 4.6: Difference of runtimes between optimized PropagatedMine and optimal runtime

runtime of optimized PropagatedMine is very close to the optimal one under different numbers

of sequences.

50

Chapter 5

Conclusions

Multi-domain simultaneous sequential patterns, which are composed of simultaneous sequen-

tial patterns in each individual, are of interesting and useful in practice since these patterns

clearly reflect the relations of domains hidden in user behavior. In this paper, we proposed a

propagation-based approach, algorithm PropagatedMine for efficient mining of multi-domain

sequential patterns. By propagating patterns with their occurrences of time from one starting

domain to other domains, our proposed approach is able to significantly reduce the mining

space, which improves the performance of mining multi-domain sequential patterns. Note that

the cost of performing PropagatedMine is greatly affected by the propagation order. Thus,

in this paper, we further developed a novel method to determine the optimized propagation

order. Performance of the proposed algorithms is comparatively analyzed. Sensitivity analy-

sis on several parameters, including the number of domains, the sizes of sequence databases,

and the values of correlations among domains, was conducted. It was shown in our simula-

tion results that by exploiting the feature of propagating, algorithm PropagatedMine is able

to efficiently mine multi-domain sequential patterns. Moreover, algorithm PropagatedMine

with an optimized propagation order is able to further improve the performance in mining

multi-domain sequential patterns and the performance of the optimized propagation order de-

termined by our proposed method is very close to that of the optimal one resulted by selecting

51

the minimal cost among all possible propagation orders.

52

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of
the 20th International Conference Very Large Data Bases, VLDB, pages 487—499. Morgan
Kaufmann, 12—15 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of IEEE eleventh
International Conference on Data Engineering, pages 3—14, Taipei, Taiwan, 1995. IEEE
Computer Society Press.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of ACM SIGKDD, pages 429—435, 2002.

[4] A. L. P. C. Ding-Ying Chiu, Yi-Hung Wu. An efficient algorithm for mining frequent
sequences by a new strategy without support counting. In Proceedings of the 20th Inter-
national Conference on Data Engineering, pages 375—386, Boston, MA, USA, 2004.

[5] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with
regular expression constraints. In The VLDB Journal, pages 223—234, 1999.

[6] J. Han, J. Pei, and B. Mortazavi-Asl. Freespan: Frequent pattern-projected sequen-
tial pattern mining. In Proceedings of the 6th International Conference on Knowledge
Discovery and Data Mining, pages 20—23, 2000.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pages
1—12. ACM Press, 05 2000.

[8] J. H. Hong Cheng, Xifeng Yan. Incspan: incremental mining of sequential patterns in
large database. In Proceedings of the 2004 ACM SIGKDD international conference on
Knowledge discovery and data mining, Seattle, WA, USA, 2004.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan
mining sequential patterns efficiently by prefix projected pattern growth. In Proceedings
of 2001 International Conference on Data Engineering, pages 215—226.

[10] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently from
web logs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
396—407, 2000.

[11] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of 5th International Conference Extending Database Tech-
nology, EDBT, volume 1057, pages 3—17. Springer-Verlag, 25—29 1996.

[12] K. Wang. Discovering patterns from large and dynamic sequential data. Journal of
Intelligent Information Systems, 9(1):33—56, 1997.

[13] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of
International Conference on Data Engineering, 2002.

[14] M. J. Zaki. Scalable algorithms for association mining. Knowledge and Data Engineering,
12(2):372—390, 2000.

53

[15] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1/2):31—60, 2001.

54

	論文前言部份2.pdf
	Multi-domain Simultaneous Sequential Pattern Mining
	Multi-domain Simultaneous Sequential Pattern Mining
	

	mdssp_final_without_abstract.pdf

