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ABSTRACT

The demand for computer-assisted game study in sports is growing dramatically. This paper presents a
practical video analysis system to facilitate semantic content understanding. A physics-based algorithm
is designed for ball tracking and 3D trajectory reconstruction in basketball videos and shooting location
statistics can be obtained. The 2D-to-3D inference is intrinsically a challenging problem due to the loss of
3D information in projection to 2D frames. One significant contribution of the proposed system lies in the
integrated scheme incorporating domain knowledge and physical characteristics of ball motion into
object tracking to overcome the problem of 2D-to-3D inference. With the 2D trajectory extracted and
the camera parameters calibrated, physical characteristics of ball motion are involved to reconstruct
the 3D trajectories and estimate the shooting locations. Our experiments on broadcast basketball videos
show promising results. We believe the proposed system will greatly assist intelligence collection and

Semantic analysis
Multimedia system
3D trajectory reconstruction

statistics analysis in basketball games.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The advances in video production technology and the consumer
demand have led to the ever-increasing volume of multimedia
information. The rapid evolution of digital equipments allows the
general users to archive multimedia data much easier. The urgent
requirements for multimedia applications therefore motivate the
researches in various aspects of video analysis. Sports videos, as
important multimedia contents, have been extensively studied,
and sports video analysis is receiving more and more attention
due to the potential commercial benefits and entertaining func-
tionalities. Major research issues of sports video analysis include:
shot classification, highlight extraction and object tracking.

In a sports game, the positions of cameras are usually fixed and
the rules of presenting the game progress are similar in different
channels. Exploiting these properties, many shot classification
methods are proposed. Duan et al. [1] employ a supervised learn-
ing scheme to perform a top-down shot classification based on
mid-level representations, including motion vector field model,
color tracking model and shot pace model. Lu and Tan [2] propose
a recursive peer-group filtering scheme to identify prototypical
shots for each dominant scene (e.g., wide angle-views of the court
and close-up views of the players), and examine time coverage of
these prototypical shots to decide the number of dominant scenes
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for each sports video. Mochizuki et al. [3] provide a baseball index-
ing method based on patternizing baseball scenes using a set of
rectangles with image features and the motion vector.

Due to broadcast requirement, highlight extraction attempts to
abstract a long game into a compact summary to provide the audi-
ence a quick browsing of the game. Assfalg et al. [4] present a sys-
tem for automatic annotation of highlights in soccer videos.
Domain knowledge is encoded into a set of finite state machines,
each of which models a specific highlight. The visual cues used
for highlight detection are ball motion, playfield zone, players’
positions and colors of uniforms. Gong et al. [5] classify baseball
highlights by integrating image, audio and speech cues based on
maximum entropy model (MEM) and hidden Markov model
(HMM). Cheng and Hsu [6] fuse visual motion information with
audio features, including zero crossing rate, pitch period and
Mel-frequency cepstral coefficients (MFCC), to extract baseball
highlight based on hidden Markov model (HMM). Xie et al. [7]
utilize dominant color ratio and motion intensity to model the
structure of soccer videos based on the syntax and content charac-
teristics of soccer videos.

Object tracking is widely used in sports analysis. Since signifi-
cant events are mainly caused by ball-player and player-player
interactions, balls and players are tracked most frequently. Yu
et al. [8] present a trajectory-based algorithm for ball detection
and tracking in soccer videos. The ball size is first proportionally
estimated from salient objects (goalmouth and ellipse) to detect
ball candidates. The true trajectory is extracted from potential tra-
jectories generated from ball candidates by a verification procedure
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based on Kalman filter. In our previous work [9-10], the physical
characteristics of the ball motion is utilized to extract the ball tra-
jectory in sports videos. Furthermore, the extracted ball trajectory
can be applied to volleyball set type recognition and baseball pitch
evaluation. Some works of 3D trajectory reconstruction are built
based on multiple cameras located on specific positions [11-14].
In addition, computer-assisted umpiring and tactics inference are
burgeoning research issues of sports video analysis [11-15]. How-
ever, these can be considered as advanced applications based on
ball and player tracking. Therefore, object tracking is an essential
and vital issue in sports video analysis.

In this paper, we work for the challenge of ball tracking and 3D
trajectory reconstruction in broadcast basketball videos in order to
automatically gather the game statistics of shooting locations—the
location where a player shoots the ball. Shooting location is one
of the important game statistics providing abundant information
about the shooting tendency of a basketball team. An example of
statistical graph for shooting locations is given in Fig. 1, where each
shooting location is marked as an O (score) or X (miss). The statis-
tical graph for shooting locations not only gives the audience a no-
vel insight into the game but also assists the coach in guiding the
defense strategy. With the statistical graph for shooting locations,
the coach is able to view the distribution of shooting locations at a
glance and to quickly comprehend where the players have higher
possibility of scoring by shooting. Thus, the coach can enhance
the defense strategy of the team by preventing the opponents from
shooting at the locations they stand a good chance of scoring.
Increasing basketball websites, such as NBA official website, pro-
vide text- and image-based web-casting, including game log,
match report, shooting location and other game statistics. How-
ever, these tasks are achieved by manual efforts. It is time-consum-
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Fig. 1. Statistical graph of shooting locations.
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ing and inefficient to watch a whole long video, take records and
gather statistics. Hence, we propose a physics-based ball tracking
system for 3D trajectory reconstruction so that automatic shooting
location estimation and statistics gathering can be achieved.
Whether the shooting scores or not can be derived from the change
of the scoreboard by close caption detection technique [16]. Thus,
the statistical graph of shooting locations, as Fig. 1, can be gener-
ated automatically.

The rest of this paper is organized as follows. Section 2 intro-
duces the overview of the proposed system. Sections 3-5 present
the processes of court shot retrieval, camera calibration and 2D
shooting trajectory extraction, respectively. Section 6 elaborates
on 3D trajectory mapping and shooting location estimation. Exper-
imental results and discussions are presented in Section 7. Finally,
Section 8 concludes this paper.

2. Overview of the proposed system

Object tracking is usually the medium to convert the low-level
features into high-level events in video processing. In spite of the
long research history, it is still an arduous problem. Especially, ball
tracking is a more challenging task due to the small size and fast
speed. It is almost impossible to distinguish the ball within a single
frame, so information over successive frames, e.g., motion informa-
tion, is required to facilitate the discrimination of the ball from
other objects.

To overcome the challenges of ball tracking and 3D shooting
trajectory reconstruction, an integrated system utilizing physical
characteristics of ball motion is proposed, as depicted in Fig. 2. Bas-
ketball videos contain several prototypical shots: close-up view,
medium view, court view and out-of-court view. The system starts
with court shot retrieval, because court shots can present complete
shooting trajectories. Then, 2D ball trajectory extraction is per-
formed on the retrieved court shots. To obtain 2D ball candidates
over frames, we detect ball candidates by visual features and ex-
plore potential trajectories among the ball candidates using veloc-
ity constraint. To reconstruct 3D trajectories from 2D ones, we set
up the motion equations with the parameters: velocities and initial
positions, to define the 3D trajectories based on physical character-
istics. The 3D ball positions over frames can be represented by
equations. Camera Calibration, which provides the geometric trans-
formation from 3D to 2D, is used to map the equation-represented
3D ball positions to 2D ball coordinates in frames. With the 2D ball
coordinates over frames being known, we can approximate the
parameters of the 3D motion equations. Finally, the 3D positions
and velocities of the ball can be derived. Having the reconstructed
3D information, the shooting locations can be estimated more
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Fig. 2. Flowchart of the proposed system for ball tracking and 3D trajectory reconstruction in basketball videos.
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accurately from 3D trajectories than from 2D trajectories, which
lack the z-coordinate (height) of ball.

The major contribution of this paper is that we reconstruct 3D
information from single view 2D video sequences based on the
integration of multimedia features, basketball domain knowledge
and the physical characteristics of ball motion. Besides, trajec-
tory-based high-level basketball video analysis is also provided.
The 3D ball trajectories facilitate the automatic collection of game
statistics about shooting locations in basketball, which greatly help
the coaches and professionals to infer the shooting tendency of a
team.

3. Court shot retrieval

To perform high-level analysis such as ball tracking and shoot-
ing location estimation, we should retrieve the court shots, which
contain most of the semantic events. Shot boundary detection is
usually the first step in video processing and has been extensively
studied [17-19]. For computational efficiency, we apply our previ-
ously proposed shot boundary detection algorithm [20-21] to seg-
ment the basketball video into shots.

To offer the proper presentation of a sports game, the camera
views may switch as different events occur when the game pro-
ceeds. Thus, the information of shot types conveys important
semantic cues. Motivated by this observation, basketball shots
are classified into three types: (1) court shots, (2) medium shots,
and (3) close-up or out-of-court shots (abbreviated to C/O shots).
A court shot displays the global view of the court, which can pres-
ent complete shooting trajectories, as shown in Fig. 3(a) and (b). A
medium shot, where the player carrying the ball is focused, is a
zoom-in view of a specific part of the court, as shown in Fig. 3(c)
and (d). Containing little portion of the court, a close-up shot shows
the above-waist view of the person(s), as shown in Fig. 3(e), and an
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out-of-court shot presents the audience, coach, or other places out
of the court, as shown in Fig. 3(f).

Shot class can be determined from a single key frame or a set of
representative frames. However, the selection of key frames or rep-
resentative frames is another challenging issue. For computational
simplicity, we classify every frame in a shot and assign the shot
class by majority voting, which also helps to eliminate instanta-
neous frame misclassification.

A basketball court has one distinct dominant color—the court
color. The spatial distribution of court-colored pixels and the ratio
of court-colored pixels in a frame, as defined in Eq. (1), would vary
in different view shots.

R = #court-colored pixels/#pixels in a frame M

To compute the court-colored pixel ratio R in each frame, we apply
the algorithm in [22], which learns the statistics of the court color,
adapts these statistics to changing imaging and then detects the
court-colored pixels. Intuitively, a high R value indicates a court
view, a low R value corresponds to a C/O view, and in between, a
medium view is inferred. The feature R is indeed sufficient to dis-
criminate C/O shots from others, but medium shots with high R va-
lue might be misclassified as court shots.

Thus, we propose a compute-easy, yet effective, algorithm to
discriminate between court shots and medium shots. As shown
in Fig. 4, we define the nine frame regions by employing Golden
Section spatial composition rule [23-24], which suggests dividing
up a frame in 3:5:3 proportion in both horizontal and vertical
directions. Fig. 4 displays the examples of the regions obtained
by golden section rule on medium and court views. To distinguish
medium views from court views, the feature Rs g defined in Eq. (2)
is utilized on the basis of the following observation.

Rsys : the R value in the union of region 5 and region 8 (2)

Fig. 4. Examples of Golden Section spatial composition. (a) Frame regions; (b) court view and (c) medium view.



H.-T. Chen et al./]. Vis. Commun. Image R. 20 (2009) 204-216 207

A medium view zooms in to focus on a specific player and usually
locates the player around the frame center. Since players are com-
posed of non-court-colored pixels, a medium view would have
low R values in the center regions (region 2, 5 and 8). A court view
aims at presenting the global viewing, so the payers are distributed
over the frames. Therefore, a court view would have higher R values
in the center regions (region 2, 5 and 8) than those of a medium
view. However, the upper section of a frame is usually occupied
by the audience or advertising boards, so region 2 is not taken into
consideration. Only the R values in region 5 and region 8 are consid-
ered for classification: court views have higher Rs g than that of
medium views.

4. Camera calibration

Camera calibration is an essential task to provide geometric
transformation mapping the positions of the ball and players in
the video frames to real-world coordinates or vice versa [25-26].
However, the 2D-to-2D transformation with court model known
is not sufficient to reconstruct 3D trajectory due to the disregard
of height information. In addition to the feature points on the court
plane, some non-coplanar feature points are also taken into consid-
eration in our system to keep the height information.

The geometric transformation from 3D real world coordinate (x,
Y, z) to 2D image coordinate (u/,v’) can be represented as Eq. (3):

x /

C11 Ci2 Ci3 Cia u u' | where

Cy1 Cxp Cx3 C; = vi=|Viu=g (3)
z

C31 C33 (33 1 1 w 1(v= %

The eleven camera parameters c;; can be calculated from at least
six non-coplanar points whose positions are both known in the
court model and in the image. Since the detection of lines is more
robust than locating the accurate positions of specific points, the
intersections of lines are utilized to establish point-
correspondence.

Fig. 5 depicts the flowchart of camera calibration. In the process,
we make use of ideas in general camera calibration, such as white

Frame #1| White line Hough Court model
pixel detection transform fitting
T
v
Frame #2| White line Model
pixel detection "l tracking
T
v
Frame #3| White line -~ Model
: pixel detection "|  tracking

Fig. 5. Flowchart of camera calibration.

line pixel detection and line extraction [25]. We start with identi-
fying the white line pixels exploiting the constraints of color and
local texture. To extract feature lines, the Hough transform is ap-
plied to the detected white line pixels. Then, we compute the inter-
section points of court lines and end points of the backboard
border. With these corresponding points whose positions are both
known in 2D frame and in the court model, as shown in Fig. 6, the
3D-to-2D transformation can be computed and the camera param-
eters are then derived.

For the subsequent frames, we apply the model tracking mech-
anism [25], which predicts the camera parameters from the previ-
ous frame in spite of the camera motion, to improve the efficiency
since Hough transform and court model fitting need not be per-
formed again. For more detailed process, please refer to the paper
[25].

4.1. White line pixel detection

For visual clarity, the court lines and important markers are in
white color, as specified in the official game rules. However, there
may exist other white objects in the images such as advertisement
logos and the uniforms of the players. Hence, additional criteria are
needed to further constrain the set of white line pixels.

As illustrated in Fig. 7, each square represents one pixel and the
central one drawn in gray is a candidate pixel. Assuming that white
lines are typically no wider than 7 pixels (7 = 6 in our system), we
check the brightness of the four pixels, marked ‘®’ and ‘O’, at a dis-
tance of 7 pixels away from the candidate pixel on the four direc-
tions. The central candidate pixel is identified as a white line pixel
only if both pixels marked ‘@’ or both pixels marked ‘O’ are with
lower brightness than the candidate pixel. This process prevents
most of the pixels in white regions or white uniforms being de-
tected as white line pixels, as shown in Fig. 8(b).

To improve the accuracy and efficiency of the subsequent
Hough transform for line detection and court model fitting, we
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Fig. 7. Illustration of part of an image containing a white line.

Fig. 6. Point-correspondence between the 2D frame and the basketball court model. (a) Court image and (b) court model.
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Fig. 8. Sample results of white line pixel detection. (a) Original frame; (b) without line-structure constraint and (c) with line-structure constraint.

apply the line-structure constraint [25] to exclude the white pixels
in finely textured regions. The structure matrix S [27] computed
over a small window of size 2b + 1 (we use b = 2) around each can-
didate pixel (py, py), as defined in Eq. (4), is used to recognize tex-
ture regions.

pyth  Dytb
s= 2 2 VYWY “)
x=px—b y=py~b

Depending on the two eigenvalues of matrix S, called Z; and 4,
(41 = 72), the texture can be classified into textured (1, 4, are large),
linear (71 » 22) and flat (44, / are small). On the straight court lines,
the linear case will apply to retain the white pixels only if 4; > «—a/;
(=4 in our system). Fig. 8 demonstrates sample results of white
line pixel detection. The original frames are presented in Fig. 8(a).
In Fig. 8(b), although most of the white pixels in white regions or
white uniforms are discarded, there are still many false detections
of white line pixels occurring in the textured areas. With line-struc-
ture constraint, Fig. 8(c) shows that the number of false detections
is reduced and white line pixel candidates are retained only if the
pixel neighbor shows a linear structure.

4.2. Line extraction

To extract the court lines and the backboard border, we perform
a standard Hough transform on the detected white line pixels. The
parameter space (0, d) is used to represent the line: 0 is the angle
between the line normal and the horizontal axis, and d is the dis-
tance of the line to the origin. We construct an accumulator matrix
for all (0, d) and sample the accumulator matrix at a resolution of
one degree for 0 and one pixel for d. Since a line in (x, y) space cor-

a

responds to a point in (0, d) space, line candidates can be deter-
mined by extracting the local maxima in the accumulator matrix.
The court line intersections on the court plane can be obtained
by the algorithm of finding line-correspondences in [25], which
has good performance in 2D-to-2D court model mapping. A sample
result is presented in Fig. 9(a).

To reconstruct 3D information of the ball movement, we need
two more points which are not on the court plane to calculate
the calibration parameters. The two endpoints of the backboard
top-border (p; and pg as shown in Fig. 6) are selected because the
light condition makes the white line pixels of the backboard top-
border easy to detect in frames. Fig. 9 presents the process of the
detection of backboard top-border. In 3D real world, the backboard
top-border is parallel with the court lines (p;, p3, ps) and (pz, P4, Ds)-
According to vanishing point theorem, parallel lines in 3D space
viewed in a 2D frame appear to meet at a point, called vanishing
point. Therefore, the lines (p;, p3, ps), (P2, P4, Ps) and the backboard
top- border in the fame will meet at the vanishing point. Utilizing
this characteristic, the vanishing point p, can be computed as the
intersection of the extracted court lines (p;, p3, ps) and (p2, P
Ds), as shown in Fig. 9(b). Besides, we also detect two vertical line
segments above the court line (p, p3, ps). Then, Hough transform is
performed on the area between the two vertical lines above the
court line (p;, ps3, ps). The detected line segment whose extension
passes the vanishing point is extracted as the backboard top-boar-
der, as shown in Fig. 9(c).

4.3. Computation of camera calibration parameters

Multiplying out the linear system in Eq. (3), we obtain two
equations, Egs. (5) and (6), for each corresponding point—the point

Fig. 9. Detection of backboard top-border. (a) Detected court lines; (b) computing vanishing point and (c) searching backboard top-border.
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whose coordinate is both known in the 3D court model (x, y, z) and
in the frame (v, v').

C11X + €12y + €132 + C1a = U (C31X + C32¥ + €332 + 1)
CnX 4 CnY + CnZ+ Coq = V(C311X + €Y + C332+ 1)

()
(6)

To compute the calibration parameters c;;, we set up a linear system
AC=B as Eq. (7) from Egs. (5) and (6).

(X1 y» 1 0 0 0 O —-ujxy -—-uyy,; -ujz1]
0 0 0 0 X yi & 1 —Vixy —-Viy; —-Viz
X2 ¥, 1.0 0 0 0 —ux, -uy, -uyz
0 0 0 0 x ¥y, 2o 1 —Vyxy —Voy, —Voz,
Xx yv zv 1 0 0 0 0 —upxy —UyYy —Up2Zn
10 0 0 0 xyv yv zv 1 —vXv —VAUn  —VAZN ] onen

N is the number of corresponding points. In our process, N = 8: six
are the court line intersections and two are the endpoints of the
backboard top-border. To solve C, we can over-determine A and find
a least squares fitting for C with a pseudo-inverse solution:

AC=B, A'AC=A"B, C=(A"A)'A'B (8)

Thus, the parameters of camera calibration can be derived to form
the matrix which transforms 3D real world coordinate to 2D image
coordinate.

5. 2D Shooting trajectory extraction

The ball is the most important focus of attention in basketball
either for the players or for the audience. It is a challenging task
to identify the ball in video frames due to its small size in court
views and its fast movement. In this section, we aim at extracting
the shooting trajectories in court shots. When a shooting event oc-
curs, one of the backboards should be captured in the frames.
Therefore, our system performs ball candidate detection and ball
tracking on the frames with a backboard detected in court shots.

5.1. Ball candidate detection

The detection of ball candidates, the basketball-colored moving
objects, requires extracting the pixels which are (1) moving and
(2) in basketball color. For moving pixel detection, frame difference
is a compute-easy and effective method. We extract the pixels with
significant luminance difference between consecutive frames as
moving pixels. Color is another important feature to extract ball
pixels. However, the color of the basketball in frames might vary
due to the different angles of view and lighting conditions. To ob-
tain the color distribution of the basketball in video frames, 30 ball
images are segmented manually from different basketball videos
to produce the color histograms including RGB, YCbCr and HSI col-
or spaces, as shown in Fig. 10. Due to the discriminability, the Hue
value in HSI space is selected as the color feature and the ball color
range [H,, Hp] is set. We compute the average H value for each
4 x 4 block in frames and discard the moving pixels in the blocks
of which the average H values are not within the ball color range
[Ha, Hp]. To remove noises and gaps, morphological operations
are performed on the remaining moving pixels, called ball pixels.
An example of ball pixel detection is shown in Fig. 11 and 11(a)
is the original frame and Fig. 11(b) shows the moving pixels de-
tected by frame difference. The extracted ball pixels after morpho-
logical operations are presented in Fig. 11(c).

209

With the extracted ball pixels, objects are formed in each frame
by region growing. To prune non-ball objects, we design two sieves
based on visual properties:

(1) Shape sieve: The ball in frames might have a shape different
from a circle, but the deformation is not so dramatic that its
aspect ratio should be within the range [1/R,, R;] in most

C11]
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C13
C1a

C31
C32

C33 ]

2Nx1

11x1

frames. We set R, = 3 since the object with aspect ratio > 3
or < 1/3 is far from a ball and should be eliminated.

(2) Size sieve: The in-frame ball diameter D, can be proportion-
ally estimated from the length between the court line inter-
sections by pinhole camera imaging principal, as Eq. (9):

(Djim/Dreat) = (d/D),  Djgm = Drea(d/D) 9

where D,.q is the diameter of a real basketball (~24 cm), d and D are
the in-frame length and the real-world length of a corresponding
line segment, respectively. To compute the ratio (d/D), we select
the two points closest to the frame center from the six court line
intersections and calculate the in-frame distance d of the selected
two points. Since the distance of the two points in real court D is
specified in the basketball rules, the ratio (d/D) can be computed
out. Thus, the planar ball size in the frame can be estimated as
7-(Djimf2)°. The size sieve filter out the objects of which the sizes
are not within the range [70-(Dsm/2)* — A, T-(Dpm/2)* + A], where
A is the extension for tolerance toward processing faults.

It would be a difficult task to detect and track the ball if there
is camera motion. There are two major problems we may con-
front. The first is that more moving pixels are detected due to
the camera motion and therefore more ball candidates might ex-

60
60

404
204 -

40

40
20

20

0 X— e
0 50 100 150 200 250

0

0 50 100 150 200 25C 0 50 100 150 200 250

Ch Cr
150 : 150 ok
1T po=r=s 100
s0f---- 50 ‘
0 0 b
0 &0 100 150 20

150
100
S0 -

0

et T y t
0 0204 06 08 0 50 100 150 200 250

Fig. 10. Color histograms of 30 manually segmented basketball images.
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Fig. 12. Left: detected ball candidates, marked as yellow circles. Right: motion history image to present the camera motion. (a) Fewer ball candidates produced if the camera

motion is small. (b) Fewer ball candidates produced if the camera motion is small.

ist. However, our analysis is focused on the shooting trajectories
in court shots. To capture and present the large portion of the
court, the camera is usually located at a distance from the court.
The camera motion is not so violent in court shots except for
the rapid camera transition from one half-court to the other,
and there are not too many ball candidates, as shown in Fig. 12,
where the left image shows the detected ball candidates, marked
as the yellow circles, and the right image presents the camera mo-
tion using motion history image (MHI, please refer to [28]), gener-
ated from 45 consecutive frames. When a shooting event occurs,
one of the backboards should be captured in the frames. During
the transition since no backboard shows on the screen, our system
need not perform ball candidate detection. That is, the perfor-
mance of ball candidate detection is not affected by the camera
moving from one half-court to the other. Second, it is possible
(although it is rare in practice) that the ball might have little mo-
tion or stay still on the screen when the camera attempts to fol-
low the ball. However, we observe in experiments that the ball
is hardly at exactly the same position in consecutive frames even
if the camera follows the ball. Although there are still some misses
in moving pixel detection in this case due to the mild motion of
the ball in frames, the pixels of the true ball can be correctly de-
tected in most frames. The missed ball candidate can be recovered
from the ball positions in the previous and the subsequent frames
by interpolation.

5.2. Ball tracking

Many non-ball objects might look like a ball in video frames and
it is difficult to recognize which is the true one. Therefore, we inte-
grate the physical characteristic of the ball motion into a dynamic
programming-based route detection mechanism to track the ball
candidates, generate potential trajectories and identify the true
ball trajectory.

Fig. 13. Diagram of a long shoot.
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For ball tracking, we need to compute the ball velocity con-
straint first. Since the displacement of the ball in a long shoot
would be larger than that in a short shoot, we take a long shoot
into consideration, as diagramed in Fig. 13. The time duration from
the ball leaving the hand to the ball reaching the peak in the trajec-
tory t; and the time duration of the ball moving from the peak to
the basket ¢, can be represented by Eqs. (10) and (11), respectively:

H+h=gt}/2, ti=[2(H+h)/g'"” (10)
H=gt/2, t;=(2H/g)" (11)

where g is the gravity acceleration (9.8 m/s?) and t is the time dura-
tion, H and h is the vertical distances from the basket to the trajec-
tory peak and to the position of ball leaving the hand, respectively.
Thus, the highest vertical velocity Vv of the ball in the trajectory
should be Vv =g t; and the horizontal velocity Vh can be calculated
as Vh =D|(t; + t5), where D is the distance from the shooter to the
basket center. With the vertical and horizontal velocities, the ball
velocity Vb can be derived as Eq. (12):

Vb = (Vh* + Vo?)'2 (12)

Vb value increases as D increases. Since our goal is to compute the
upper limit of the ball velocity, we consider the distance from the 3-
point line to the basket (6.25 m), which is almost the longest hori-
zontal distance from the shooter to the basket. To cover all cases, we
set D =7 m. Considering an | meter tall player, the height of the ball
leaving the hand should be higher than (I + 0.2) m. Thus, the value h
should be less than (3.05 — 0.2 — [) m. To cover most players, we set
I=1.65, that is, h < 1.2. Besides, there are few shooting trajectories
with the vertical distance H greater than 4 meters. Given different h
values (0, 0.3, 0.6, 0.9 and 1.2), the values of Vb computed using Egs.
(10)-(12) for H varying between 1 and 4 are plotted in Fig. 14,
showing the reasonable values of Vb. It can be observed that, when
H=4mand h = 1.2 m, we have the maximum value of Vb (~10.8 m/
s). Thus, we set the velocity constraint (upper limit) as Vb ~ 10.8 m/
s ~ 36 cm/frm. Finally, similar to Eq. (9), the in-frame velocity con-
straint Vc can be proportionally estimated by applying pinhole cam-
era imaging principle as Eq. (13):

(Vc/Vb) = (d/D), Vc = Vb(d/D) (13)

The goal of ball velocity constraint is to determine the search
range for ball tracking. To avoid missing in ball tracking, what
we want to derive is the upper limit of in-frame ball velocity.
Hence, although there may be deviation of in-frame ball velocity
due to the different relationship between the angle of camera
shooting and the angle of player’s shooting, the derived upper limit
of ball velocity still significantly improves the computational effi-
ciency and accuracy for ball tracking by setting an appropriate
search range.

Fig 15 illustrates the ball tracking process. The X and Y axes rep-
resent the in-frame coordinates of ball candidates, and the hori-
zontal axis indicates the frame number. The nodes C1, C2, C3 and

105 |-
1 -
3
(meter/s)95 |-
9 -
85}
1 2 3 4
H (meter)

Fig. 14. Relation between Vb and H.

»
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Fig. 15. Illustration of ball tracking process.

f(x)= a-x>+b-x+c¢

Fig. 16. Illustration of the best-fitting function.

C4 represent the ball candidates. Initially, for the first frame of a
court shot, each ball candidate is considered as the root of a trajec-
tory. For the subsequent frames, we check if any ball candidate can
be added to one of the existing trajectories based on the velocity
property. The in-frame ball velocity can be computed by Eq. (14):

V& = %)+ 0 - 9,

tl;j

Velocity; ; = (14)
where i and j are frame indexes, (x; y;) and (x;, y;) are the coordi-
nates of the ball candidates in frame i and frame j, respectively,
and t; _, ; is the time duration. Trajectories grow by adding the ball
candidates in the subsequent frames which satisfy the velocity con-
straint. Although it is possible that no ball candidate is detected in
some frames, the trajectory growing process does not terminate un-
til no ball candidate is added to the trajectory for Ty consecutive
frames (we use Ty=5). The missed ball position(s) can be estimated
from the ball positions in the previous and the subsequent frames
by interpolation.

To extract the shooting trajectory, we exploit the characteristic
that the ball trajectories are near parabolic (or ballistic) due to the
gravity, even though the trajectories are not actually parabolic
curves because of the effect of the air friction, ball spin, etc. As
illustrated in Fig. 16, we compute the best-fitting quadratic func-
tion f(x) for each route using the least-squares-fitting technique
of regression analysis and determine the distortion as the average
of the distances from ball candidate positions to the parabolic
curve. A shooting trajectory is then verified according to its length
and the distortion. Although the passing trajectories are often more
linear in nature, still some passing trajectories in the form of par-
abolic (or ballistic) curves are verified as shooting trajectories.
We can further identify a shooting trajectory by examining if it ap-
proaches the backboard. Thus, the passing trajectories can be dis-
carded even though they may be parabolic (or ballistic).

6. 3D trajectory mapping and shooting location estimation

With the 2D trajectory extracted and the camera parameters
calibrated, now we are able to employ the physical characteristics
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of ball motion in real world for 3D trajectory reconstruction. The
relationship between each pair of corresponding points in the 2D
space (v, v') and 3D space (X, Y. Zc) is given in Eq. (3). Further-
more, the ball motion should fit the physical properties, so we
can model the 3D trajectory as:

Xe=Xo + Vit

Ye=yo+Vyt (15)
Zo =20+ V,t +gt?/2

where (X, Y., Z.) is the 3D real world coordinate, (xq, yo, Zo) is the
initial 3D coordinate of the ball in the trajectory, (Vy, V), V) is the

3D ball velocity, g is the gravity acceleration and t is the time inter-
val. Substituting X,, Y. and Z. in Eq. (3) by Eq. (15), we obtain:

Xo + Uxt
€11 Ci2 C13 Cua u u’' 71 where
Yo + Uyt N
Ca1 Cxp (23 (o4 R vi=|v|Uu=5
Z0+ vt + 58t o
C31 (32 (33 w 1]v=_
(16)

Multiplying out the equation with u=u'w and v=v'w, we get two
equations for each ball candidate:

C11Xo0 + C11 Vit + C1oYg + C12Vyt + €320 + i3Vt + €138t2 /2 + €14
= U (C31X0 + €31 Vit + C32Y + €32Vt
+ €3320 + C33V, b + C338t% /2 + 1) (17)
C21X0 + Co Vit + €Yo + €2Vt + 320 + C3V t + 2382 /2 + Coa
= V'(C31X0 + €31Vt + C32¥ + C32Vyt
+ €3320 + C33V, b + C338t% /2 + 1) (18)

Since the eleven camera calibration parameters ¢; and the time of
each ball candidate on the trajectory are known, we set up a lin-
ear system Dynxs Eex1 = Fanxi, as Eq. (19), from Eq. (17) and Eq.
(18) to compute the six unknowns (xo, Vi, yo, V), zo, V) of the
parabolic (or ballistic trajectory), where N is the number of ball
candidates on the trajectory and (u/, #/) are the 2D coordinates
of the candidates. Similar to Eq. (8), we can over-determine D
with three or more ball candidates on the 2D trajectory and find
a least squares fitting for E by pseudo-inverse. Finally, the 3D tra-
jectory can be reconstructed from the six physical parameters (xo,
va Yo, Vy' 20, VZ)'

Uy (3382 /2 + 1) — (C138t%/2 + C1a)
V}J(C33gt§/2 +1) - (Czsgtﬁ/z + C24)

The definition of shooting location should be the location of the
player shooting the ball. However, the starting position of the tra-
jectory is almost the position of the ball leaving the hand. Thus, we
can estimate the shooting location on the court model as (xo, Yo, 0)
via projecting the starting position of the trajectory onto the court
plane. Moreover, the occurring time of a shooting action can also
be recorded for event indexing and retrieval.

7. Experimental results and discussions

The framework elaborated in the previous sections supports
shot classification, ball tracking, 3D trajectory reconstruction and
shooting location estimation. For performance evaluation the
proposed system has been tested on broadcast basketball video se-
quences: (1) the Olympics gold medal game: USA vs. Spain, (2) the
Olympics game: USA vs. China, (3) one Taiwan high-school basket-
ball league (HBL) game and (4) one Korea basketball game. The
replay shots can be eliminated in advance by previous researches
of replay detection [17,29]. In the following, the parameter setting
and experimental results are presented.

7.1. Parameter setting

Although the basketball courts are similar in different games,
they would be captured in different lighting conditions and the
quality of video would be different. Hence, the thresholds should
be determined adaptively. For court shot retrieval, two thresholds
Teo and Teoure are used. A frame with the dominant color ratio
R < T, is assigned as a C/O view. When R > T, the frame is clas-
sified as a court view (Rsug> Teour) Or a medium view
(Rsug < Teoure)- The thresholds are automatically learned as ex-
plained in the following. Some court shots can be first located
using shot length since the shots with long lengths are mostly
court shots. This can be verified by the statistical data of the shot
lengths for different shot classes, as shown in Fig. 17, which is con-
structed from 120 shots with shot classes already known. Starting
with roughly initialized threshold (T, = average R in all frames),
each shot with long length (>600 frames) and high court-colored
pixel ratio (R>T,) is classified as a court shot. We construct the
Rs g histogram of those shots passing the shot length and R con-
straints. Teoyure iS determined in such a way that the percentage of
the frames with Rs_g > Tcoure cOntained in the qualified shots should

[Cii—wicsr City —uicity Cio —UiC3p  Cioby — WiCxpty €13 — UiC33 Cisty — W33ty o
Cy —Vic31 Coty —Vicaity € — ViC3p  Cply — ViCnly €3 — V(€33 Csty — ViC33ly Xo
Cii —uycz Culy —UyC3ity  Cip —USC3n  Cipby —UYCaply  Ci3 — UHC33  Cisly — UHCssly Vi
Cor —vye3r Gty — ViCorly  Cop — V€3 Coply — ViCaply  Co3 — VoC33 Casly — VoCasly Yo

vy
: Z
Ci1 —upc3y Gty —upCaity  Cip — UGy Cioby — UNCpty €13 — UGz Ci3ty — UCasty v,
Co1 — VG311 Gty — VyC31ty Cop — VpC32 Coaly — VyCaaly €3 — VG Casly — ViCasty LE |6
| D 4 2nx6
(U, (Cagt2/2 + 1) — (C138t2/2 + C14) |
V! (C338t2 /2 4+ 1) — (Co38t2 /2 + Coa)
Uy (C338t7/2 + 1) — (C13gt5/2 + C14)
Vy(C338t3/2 4+ 1) — (C238t3/2 + Ca)

(19)

F

4 2Nx1
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# of shots

500 1,000 1,500
Shot Length (in frm#)

=== Court view (total: 43 shots)

= Medium view (total: 24 shots)

** Close-up or out-of-court view
(total: 53 shots)

Fig. 17. Statistical data of the shot lengths for different shot classes.

be >70%. Then, T, is re-adjusted to the average R of the frames
excluding the frames of court shots.

For ball candidate detection, the ball color range [Ha, Hb] is deter-
mined statistically. With the Hue histogram constructed from 30 ball
images manually segmented out of different basketball sequences,
as shown in Fig. 10, the range [Ha, Hb] is selected to cover 80% of
the pixels of the 30 ball images. An alternative way to determine
the ball color range is that the system provides frames of court shots
for the user to locate the ball and then computes [Ha, Hb].

7.2. Performance of shot boundary detection and court shot retrieval
In sports videos, gradual transitions usually accompany replay

shots. The shot boundaries are almost cut-type after replay shot
elimination. Thus, we achieve good performance of overall

Table 1
Performance of shot boundary detection.

Olympics1 Olympics2 HBL Korea Overall
Correct 159 103 98 66 426
Miss 4 3 6 3 16
False positive 12 10 10 7 39
Recall (%) 97.55 97.17 94.23 95.65 96.38
Precision (%) 92.98 91.15 90.74 90.41 91.61
Table 2
Performance of court shot retrieval.

Olympics1 Olympics2 HBL Korea Overall
Correct 52 35 32 21 140
Miss 1 0 0 1 2
False positive 3 2 2 1 8
Recall (%) 98.11 100 100 95.45 98.59
Precision (%) 94.55 94.59 94.12 95.45 94.59

96.38% recall rate and 91.51% precision rate in shot boundary
detection, as reported in Table 1. The misses are mainly caused
by the strong correlation of the court color between shots, while
special effects, high camera motion and the drastic action of the
players in close-up view lead to false alarms.

Since our final applications are ball tracking and shooting loca-
tion estimation, we favor court shots over other shots. The results
of court shots retrieval are presented in Table 2 (only the correctly
segmented shots are used). We achieve high recall rate (98.59%) so
that few shooting events are missed. The results of shot boundary
detection and court shot retrieval are quite satisfactory, which al-
lows the proposed system to perform the subsequent high-level
analysis of basketball videos.

7.3. Results of court line and backboard top-border detection

The proposed systems detect the court lines and the backboard
top-border reliably. Fig. 18 demonstrates some example results,
where the corresponding points are marked with yellow circles.
Since the camera motion in a shot is continuous, the coordinates
of corresponding points should not change dramatically in succes-
sive frames. Hence, though there might be errors in court line
detection caused by the occlusion of players in some frames, the
incorrect coordinates of the corresponding points can be recovered
by interpolation.

7.4. Performance of ball tracking and shooting location estimation

The performance study of ball tracking and shooting location
estimation are focused on the shooting trajectory. The ground truth
boundaries of shooting segments and ground truth ball positions
are determined manually. A ball is said to be detected correctly if
the system can conclude the correct position of the ball on the tra-
jectory. The experimental results of ball tracking are presented in

L aamaLma

Fig. 18. Detection of court lines and corresponding points (marked with yellow circles).
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Table 3
Performance of ball tracking.
Olympics1 Olympics2 HBL Korea Total

Ball frame 1509 794 643 459 3405
Correct 1421 740 598 402 3161
False alarm 57 29 32 34 152
Recall (%) 94.17 93.2 93 87.58 92.83
Precision (%) 96.14 96.23 94.92 92.2 95.41

—

( miss ) current ball position

Fig. 19. Example of a shooting trajectory being separated. For legibility, not all of
the ball candidates are drawn.

Table 4
Performance of shooting location estimation.

Olympics1 Olympics2 HBL Korea Total
#Shoot 48 26 26 16 116
#Correct 42 23 22 13 100
Accuracy (%) 87.5 88.46 84.62 81.25 86.21

Table 3, where “ball frame” represents the number of frames con-
taining the ball belonging to a shooting trajectory. On average, the
recall and precision are up to 92.83% and 95.41%, respectively. On

inspection, we find that the false alarms of ball tracking are mainly
from the case when there is a ball-like object located on the exten-
sion of the ball trajectory. Tracking misses happen when the ball
flies over the top boundary of the frame, as the example shown
in Fig. 19. In this case, an actual shooting trajectory is separated
into two potential trajectories and the system retains only the
one approaching the backboard as shooting trajectory. The other
trajectory will be eliminated, which leads to the misses of the ball
candidates on it. Besides, this case (trajectory split) is also one
main cause of the mistakes in shooting location estimation.

Table 4 reports the performance of shooting location estima-
tion. The shooting locations estimated are judged as correct or
not by an experienced basketball player and the proposed system
achieves an accuracy of 86.21%. Some demonstrations of shooting
location estimation are presented in Fig. 20. In each image, the blue
circles are the ball positions over frames and the green circle rep-
resents the estimated shooting location, which is obtained by pro-
jecting the starting position of the trajectory onto the court plane.
To presenting the camera motion, we also mark the positions of
corresponding points over frames with red squares.

In addition to the case of trajectory split (as mentioned above),
misdetection of the court lines or the backboard top-border is an-
other cause of the mistakes in shooting location estimation. Fig. 21
presents an example. As shown in Fig. 21(a), the backboard top
border is occluded by the superimposed caption and can not be de-
tected. The incorrect calibration parameters lead to the deviation
in shooting location estimation, as shown in Fig. 21(b). However,
the court lines and the backboard top-border are detected appro-
priately in most frames and overall, we achieve quite encouraging
results.

7.5. Comparison and discussion

For performance comparison, we implement another ball track-
ing algorithm based on Kalman filter, which is widely used in mov-
ing object tracking [8,11]. To compare the effectiveness and
efficiency of the Kalman filter-based algorithm (KF) with those of

Fig. 20. Demonstration of shooting location estimation. In each image, the blue circles are the ball positions over frames, the green circle represents the estimated shooting
location and the red squares show the movement of corresponding points due to the camera motion.
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Fig. 21. Deviation of shooting location estimation caused by the misdetection of backboard top-border. (a) Corresponding points extraction (b) shooting location estimation.

Table 5
Comparison between the proposed physics-based method and the Kalman filer-based
method. (#PT: number of potential trajectories).

Ball tracking Proposed PB method Comparative KF method

Recall (%) Precision (%) #PT Recall (%) Precision (%) #PT
Olympics1 94.17 96.14 286 9231 92.12 346
Olympics2 93.20 96.23 153  91.68 93.33 183
HBL 93.00 94.92 164 90.51 91.65 212
Korea 87.58 92.20 94 8736 90.51 133

the proposed physics-based algorithm (PB), we use the precision,
recall and the number of potential trajectories (#PT) as criteria.
As reported in Table 5, KF algorithm has a similar recall with PB
algorithm but lower precision, which reveals that PB algorithm
performs better in eliminating the false alarms. Besides, PB algo-
rithm produces less potential trajectories because most of the tra-
jectories which do not fit the physical motion characteristics would
be discarded. Therefore, fewer potential trajectories need be fur-
ther processed in PB algorithm, which leads to high efficiency.
Overall, the proposed PB algorithm outperforms KF algorithm in
both effectiveness and efficiency.

As to shooting location estimation, strictly speaking, there may
be some deviation between the actual shooting location and the
estimated one, due to the effects of the physical factors we do
not involve, such as air friction, ball spin rate and spin axis, etc.
However, owing to the consideration of 3D information in camera
calibration, the automatic generated statistics of shooting locations
provide strong support for the coach and players to comprehend
the scoring distribution and even the general offense strategy.
Compared to the plane-to-plane (2D-to-2D) mapping in [25], our
system has the advantage of the 2D-to-3D inference retaining the

player

Con

vertical information, so the shooting location can be estimated
much more precisely. An example for comparing the estimated
shooting locations with/without vertical (height) information is
presented in Fig. 22. Without the vertical information, the esti-
mated shooting locations in Fig. 22(c) is far from the actual ones
as in Fig. 22(a). That is, our system greatly reduces the deviation
of shooting location estimation due to the reconstructed 3D infor-
mation. Overall, the experiments show encouraging results and we
believe that the proposed system would highly assist the statistics
gathering and strategy inference in basketball games.

8. Conclusions

The more you know the opponents, the better chance of win-
ning you stand. Thus, game study in advance of the play is an
essential task for the coach and players. It is a growing trend to as-
sist game study for intelligence collection in sports with computer
technology. To cater for this, we design a physics-based ball track-
ing system for 3D trajectory reconstruction and shooting location
estimation.

Some key ideas and contributions in our system are as below.
The first is to utilize the domain knowledge of court specification
for camera calibration. This enables the computation of 3D-to-2D
transformation from single-view video sequences. The second is
the development of physics-based trajectory extraction mecha-
nism. Exploiting the physical characteristics of ball motion assists
eliminating the non-parabolic (or non-ballistic) trajectories and
improves the efficiency and effectiveness of trajectory extraction.
Moreover, it allows the 3D information lost in projection to 2D
images to be reconstructed. The technical ideas presented in this
paper can also be applied to other sports, such as volleyball,
baseball, etc. To the best of our knowledge, the trajectory-based

\
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Fig. 22. Comparison of shooting location estimation with/without vertical (height) information: (a) original shooting location in the frame; (b) estimated shooting location
with vertical information and (c) estimated shooting location without vertical information.
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application of shooting location estimation in basketball is first
proposed in our paper. The experiments show encouraging results
on broadcast basketball videos.

Currently, we are exploring appropriate physical motion models
for 3D ball trajectory reconstruction in other sports. It is our belief
that the preliminary work presented in this paper will lead to sat-
isfactory solutions for automatic intelligence collection in various
kinds of sports games.
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