

國 立 交 通 大 學

資訊工程學系

碩 士 論 文

MobiServNet – 普及運算中有效率之行動服務發現機制

MobiServNet - An Efficient Mobile Service Discovery for Ambient
Network

研 究 生：蕭志鵬

指導教授：彭文志 教授

中 華 民 國 九 十 四 年 十 月

MobiServNet – 普及運算中有效率之行動服務發現機制

MobiServNet - An Efficient Mobile Service Discovery for Ambient
Network

研 究 生：蕭志鵬 Student：Chih-Peng Hsiao

指導教授：彭文志 Advisor：Wen-Chih Peng

國 立 交 通 大 學
資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

October 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年十月

MobiServNet - 普及運算中有效率之行動服務發現機制

學生：蕭志鵬

指導教授：彭文志 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

由於無線通訊系統越來越普及化，我們被越來越多連接到他們個別網

路系統的行動服務裝置所環繞著。這樣的行動服裝置可能像是車輛、手機

與個人數位助理，甚至是各式各樣的行動感測裝置系統。在眾多重要的議

題之中，我們專注在如何找尋適當的行動服務。為了支援良好的擴充性和

有效率地服務找尋，設置和查詢大量具空間性且具時間性的服務資訊是必

需的。在這篇論文中，我們設計一個有效率的服務發現機制，這個機制中

使用具空間性且具時間性的服務資訊將資訊分組。這個被提出的機制(稱之

為 MobiServNet)探究一個雜湊技術和應用層的位置繞行綱要，用來有效率

地發現被要求的服務。此外，服務宣傳和詢問請求繞行方法也提出用來獲

得適當大概的服務資訊。實驗模擬結果驗證我們所提出的基於具空間性且

具時間性的服務資訊和網路技術可以顯著地改善效能。

MobiServNet –
An Efficient Mobile Service Discovery for Ambient Network

student：Chih-Peng Hsiao

Advisors：Dr. Wen-Chih Peng

Department﹙Institute﹚of Computer Science

National Chiao Tung University

ABSTRACT

Due to the growing popularity of wireless communication systems, we are sur-
rounded by increasingly mobile service devices that are connected to their own
wireless network systems. Such mobile devices as vehicles, cell phones, PDAs,
and mobile sensors are widely available to provide mobile services for users.
Note that one of the important issues is to search appropriate mobile services.
In order to support scalability well, and make the service discovery efficiently,
it is necessary to locate and query a large amount of spatial temporal service
information. In this paper, we devise an efficient service discovery mechanism
in which the workloads are balanced and spatial-temporal information is util-
ized for grouping. The proposed mechanism (referred to as MobiServNet)
explores a hashing technique and application-layer location routing scheme to
efficiently discover the services required. Furthermore, service advertisements
and queries routing methods are proposed to obtain appropriate approximated
services. Performance of the proposed mechanism is comparatively analyzed.
It is shown by our simulation results that by exploiting the technique of overlay
networks and spatial-temporal information of mobile servers, our proposed
mechanism can lead to significant performance improvement.

誌 謝

 在此要感謝很多人的教導，讓我在研究所兩年中學到許多

東西。非常感謝指導教授彭文志博士，兩年來對於我的教導和論

文上的指導，讓我受益良多。感謝口試委員：沈錳坤博士及黃俊

龍博士對於本論文的指教。感謝在研究所兩年中互相學習、提攜

的學長、同學和學弟們，提供給我獲得他們的經驗。另外，也謝

謝實驗室的同學和學弟們，給我快樂又充實的兩年。最後，謝謝

這多年來支持我的家人和朋友們，讓我無後顧之憂地唸完研究

所，沒有你們，我無法成功地完成研究工作。

Contents

1 Introduction 4

2 Preliminary 8

2.1 An Overview of MobiServNet . 8

2.2 Components of MobiServNet . 10

2.3 Query Semantics of MobiServNet . 12

3 Query Processing Mechanism of MobiServNet 14

3.1 Location Data Model . 14

3.2 Location Overlay Network . 18

3.3 Advertisement Routing . 20

3.4 Grouping Services . 22

3.5 Query Routing . 23

4 Experiments and Analysis 24

4.1 Simulation Model . 24

4.2 Performance Measurement . 25

4.3 Experiment Results . 27

5 Conclusions 30

List of Figures

1 Ambient network. The user might bring another mobile network moving among

the house network , train network, and other di erent wireless networks. . . . 5

2 A traditional mobile objects database. 9

3 An illustrative example of a traditional location range query, a two-dimensional

block represent one query, any nodes inside this scope will be reported. 9

4 Six mobile objects and the four feasible MBRs, a dash block represent a MBR. 10

5 The MobiServNet architecture. 11

6 Mobile services moving against time. 13

7 An example for region division. 17

8 An overlay network, where circles represent directories ad dashed line mark

the network logically boundary. Right part demostrates the zone code and

boundaries. 19

9 A visual example of the advertisement registering mechanism. 20

10 An example of routing advitisements. 22

11 An example that query is decomposed and routed to several places. 24

12 Experiment 1: Impact of scalability . 27

13 Experiment 2: Impact of update . 29

14 Experiment 2: Impact of update. 29

15 Experiment 3: Impact of directory storage . 30

16 Impact of retreival cost . 31

List of Tables

1 Query results returned for . 14

1 Introduction

Due to the growing popularity of wireless communication systems, we are surrounded by in-

creasingly mobile service devices that are connected to their own wireless network systems.

Such mobile service devices as vehicles, cell phones, PDAs, and even mobile sensor base sta-

tions used to forecast weather. With the advance of recent technology, an increasing number

of users are requesting service information via various wireless communications. As shown in

Figure 1, at home or outdoors where wireless communications are di erent, users finding ser-

vice among di erent communications is unhandy and absence of collaboration. For example,

mobile users want to find some mobile services, but service directory 1 and service directory

2 might be independent so that they must really know how to request two systems respec-

tively. Therefore, to overcome the aforementioned defects, these communications must be

merged into an increasing ubiquitous network infrastructure referred to as ambient networks.

The ambient network is built to integrate the heterogeneity arising from di erent wired

and wireless network technologies such that it appears heterogeneously to the potential users

of the network services. The idea of ambient networks has two basic requirements that future

networks must satisfy: (1) provide everywhere connectivity of various form, coverage, capac-

ity such as supported by wireless LANs or mobile communication networks (GSM, GPRS,

bluetooth, UMTS), and (2), support the users with advanced query features. Once ambient

network can satisfy basic requirement, it then should o er an infrastructure of flexible service

registration and acquisition mechanisms. Because of the potential huge number mobile devices

connected to the ambient network, how to e ciently discover the appropriate location-based

data and mobile service providers is very important and needs to be concerned.

Mobile Service Network (referred to as MobiServNet) is a e cient service infrastructure for

discovering mobile services o ered by mobile service providers in ambient networks. MobiS-

ervNet receives advertisements containing location information from mobile service providers

4

House Network

Building network

PersonalAN

John

PersonalAN

John

PersonalAN

John

PersonalAN

John

M
o
v
e

a
n
d

jo
in

Train Network

City Network

Figure 1: Ambient network. The user might bring another mobile network moving among the
house network , train network, and other di erent wireless networks.

and queries for specified services within a specified zone and specified duration. For each

advertisement, MobiServNet adjusts its search structures for the incoming information. For

each query, MobiServNet finds the set of mobile services satisfying those given constraints.

When needs, MobiServNet also updates the set as mobile service providers move over time.

Advertisements contain location information as functions over time. Functions can allow com-

puting position between each two successive position records by mathematical interpolation

method. A service provider doesn’t have to update its advertisement with position function

until the function is no longer reflecting its position information.

In particular, the MobiServNet has the following challenges needed to conquer: (1) it

has huge storage cost since mobile service information is usually multidimensional data(i.e.,

service description data, time, location, etc.); (2) it has high update cost since mobile service

equipment might keep moving and have to update location information as time passes; (3)

it has high retrieval cost due to the large amount of data; (4) the data need to handle are

large-scale since these databases concerned to maintain temporal data (i.e., past, now and

predictive future).

A natural way to discover mobile services of interest will be to use spatial-temporal range

5

queries[3][7][13][12]. Spatial-temporal queries are typically solved in database systems us-

ing indexing techniques. The mostly indexing techniques is focused on centralized indices

in database systems[6][11], but distributed indexing techniques should be concerned for the

scalability.

To achieve scalability, advertisement and query processing in MobiServNet is distributed

to a set of directories on an overlay network. Each directory owns zones which dictates the

advertisements and queries for which the directories are responsible. MobiServNet directories

can be deployed alongside either wireless infrastructure(such as basestations, or gateways), or

wired infrastructure. MobiServNet directories function at the application layer, and can work

over any underlying physical infrastructure.

To reduce the retrieval cost, queries cannot only specify location and time constraints but

also service content constraints. For instance, a practical query with three kind of constraints,

find a taxi equipped with an LCD monitor on the Jhongsiao E. road in five minutes. Queries

with service content constraints can help users e ciently drill-down their retrieval cost.

To decrease the update cost, we introduce simple temporal and spatial grouping methods.

In reality, the moving behavior of mobile objects is usually regular and follows some moving

patterns. As some small groups of mobile objects, it can avoid large volume updates sent

to the directories . Therefore, we conclude some small behaviors to form groups among the

mobile service devices.

To lessen the storage cost, our location information representation di erently from tra-

ditional position functions is proposed. In traditional position functions, the position data

of mobile service devices was represented as a two dimensional geometric coordinate (x,y)

and provided by GPS. However, instead, we propose to reveal location information using

both administrative zone allocation and road organization combined in one dimensional space

that fits better the real-world human interpretation than traditional ones. For instance, if

a mobile service provider is moving on a road with a coordinate of latitude=25.047811 and

6

longitude=121.51264, it can be expressed as a set of fields according to an administrative

zone allocation such as city, road-name, road-block (e.g., Taipei City, Jhongsiao E. Rd., 1).

Furthermore, by converting the fields into a binary string that has e cient ways to process

queries, we also overcome the aforementioned scalability challenge of the ambient network.

To complete the query results, MobiServNet directories route advertisement and queries

among themselves. The routing protocols are designed to conserve processing overhead, which

can be significant if the protocols are poorly designed. Our work is similar to CAN[9] in

that both construct a region-division overlay network[14][5][10] above the underlying physical

network. Nevertheless, the two systems are very di erent in underlying details: the overlay

network represented by CAN is purely logical, while our approach is combined contemplation

with the under physical and logical topology.

We believe that MobiServNet will be an essential, but perhaps not necessarily the only,

distributed structure supporting e cient queries on overlay networks. The proposed solution

has more advantages: (1) Both average advertisement and query cost are e cient within

a N-directory network (scale as ()) . (2) Since location information is based on the

information of the administrative zone allocation, the results can be easily converted into

address formats easier for human users to interpret. (3) In the real world, most mobile service

equipment can only move following along the "roads". However, if one expresses location

information as geometric coordinates, one may include spaces where mobile service equipment

can never move into, so called dead space, incurring storage waste. (4) This solution can reduce

the storage cost and dimensions of index by revealing location information in one dimensional

space, instead of two dimensional space. Also, this results in the improved query processing.

This paper is organized as follows. MobiServNet components and query semantics are

represented in Section 2. Distributed processing algorithms developed for MobiServNet are

developed in Section 3. Experimental results are presented and analyzed in Section 4. This

paper concludes with Section 5.

7

2 Preliminary

2.1 An Overview of MobiServNet

One major di erence between mobile objects and static objects is that the location of moving

varies over time. In the database, if we want to store the exact location information of

objects, it is inevitable to employ a great volume updates to the database. Therefore, we

apply a "fuzzy" view: we do not update the location of objects in database unless it leaves

its original position very far.

There is an interesting fact that some uncertainty exists in the query result. In a simple

spatial-temporal query , given a query range , the result should include two parts:

some objects are definitely in the query range and some may or may not be and need further

validation. The uncertainty of the query result causes the idea less useful in cases when exact

answers are needed.

This observation supports our fuzzy view that we need not update every little while. In

order to solve the discovery problem e ciently, we apply the observation to design a new

system structure. Before we present our design, we first review some basic data structures

of the other methods. In the traditional structure, as shown in Figure 2, mobile objects

send their latest status (such as location, function, velocity etc.) directly to the centralized

database. The database then updates the corresponding records. Di erent index structures

(STR-tree[8], TPR-tree) are used in the database to accelerate the update procedures. All

queries are answered based on the information stored in database.

Traditional approaches representing any object’s location at some time is often given

by () = (1 () 2 () ()), where it is assumed that the times are not before the

current time so that the location information can be presented in -dimensional space at

. This position model is revealed as a linear function of time, which is specified by

two parameters. The first one is a specific point for the object at some specified time

8

Figure 2: A traditional mobile objects database.

R1 R2

R3 R4

(6, 4) (11, 3)

(6, 6)
(10, 9)

(4. 6)
(9, 10)

X

Y

s1

s2

s3

s4
s5

s6

R1 R2

R3 R4

(6, 4) (11, 3)

(6, 6)
(10, 9)

(4. 6)
(9, 10)

X

Y

s1

s2

s3

s4
s5

s6

Q

Figure 3: An illustrative example of a traditional location range query, a two-dimensional
block represent one query, any nodes inside this scope will be reported.

, (), which we term the reference position. The second parameter is a velocity vector

for the object, = (1 2) at . Thus, the linear time-position function is given by

() = () + ().

This position modeling of mobile objects represented as linear functions of time not only

enables us to make tentative future predictions easily, but also solves the problem of the

incessant updates that would otherwise be required to approximate continuous movement in a

traditional setting. For example, objects may report their positions and velocity vectors when

their actual positions deviate from what they have previously reported by some threshold. The

choice of the update frequency then depends on the type of movement, the desired accuracy,

9

R1 R2

R3 R4

(6, 4) (11, 3)

(6, 6)
(10, 9)

(4. 6)
(9, 10)

X

Y

s1

s2

s3

s4
s5

s6

R1 R2

R3 R4

(6, 4) (11, 3)

(6, 6)
(10, 9)

(4. 6)
(9, 10)

X

Y

s1

s2

s3

s4
s5

s6

Figure 4: Six mobile objects and the four feasible MBRs, a dash block represent a MBR.

and the technical limitations.

In this fashion, as will be illustrated in the following and explained later, the reference

position and the velocity are used not only when recording the future trajectories of moving

points, but also for representing the coordinates of the bounding rectangles in the index as

functions of time.

Consider an example in Figure 4. The diagram shows the positions and velocity vectors

of 7 point objects at time 0. The dash blocks show one possible assignment of the objects to

minimum bounding rectangles (MBRs) assuming a maximum of three objects per node. And

the indexing solution usually use R-tree[4][2] relevance techniques by taking MBRs as its leaf

nodes.

In this paper, we present a service discovery infrastructure (to be referred to as MobiS-

ervNet) in which we explore a hashing technique and application-layer location routing scheme

to e ciently discover the services required.

2.2 Components of MobiServNet

In MobiServNet, there are three types of major components: location directories that receive

both advertisements and queries, service providers that register advertisements, and clients

10

Location Overlay Network

Mobile Service Provider

Location Directory

Register & Acknowledge

Neighbor link

Client

Submit & Result

Figure 5: The MobiServNet architecture.

that submit queries.

Location Directories Location directories are located in the ambient network and receive

both advertisements and queries. Each one of these directories has at least a pair of a zone

code and a zone owner-prefix length. Consider a rectangle that represent a chosen region

on the specified plane. Intuitively, is the bounding rectangle that contains all directories

within the ambient network. We call a sub-rectangle of a zone. The zone code ()

is a 0-1 bit string of length (), and is defined as follows. If lies in the left half of

, the first (from the left) bit of () is 0, else 1. If lies in the bottom half of , the

second (from the bottom) bit of () is 0, else 1. The remaining bits of () are

then recursively defined on each of the four quadrants of . The zone code for the location of

a directory is called (). The zone owner-prefix length of a directory , (), is

defined to indicate the prefix length of the largest zone which primarily owns. More detail

content about zones will be discussed later.

Mobile Service Providers Providers notify MobiServNet of their location by registering

advertisements to a location directory in the ambient network. Advertisements contain an

unique identifier for a service (), the mobile service’s network address (()),

an expiration time (), location information function (), and service content ().

Advertisements s will be sent to a directory such that the providers resides in the directory’s

11

responsible zone. The detail how service advertisements find the correct directory as they

move throughout the chosen region will be shown in the following sections. The location

information takes time as a parameter and returns a pair of reference code and velocity.

The reference code () is represented as a binary string concatenated by transformed

triplet (). The velocity () is a vector for representing mobile service

moving status. Figure 6 shows an example of location information function for 4 mobile

providers, this diagram shows functions in one dimension plotted against time. For a mobile

service provider that registers an advertisement to any directory at time ,

sends a successive advertisement with new location information function when detects

that it has moved outside of () at any time : . Discontinuities in

Figure 6 indicate changes in the location information functions. If the location information

function does not change, will probably refresh the advertisement by registering a new one

at time , where is enough time for the advertisement to arrive at the target

directory before . The service content is a filter of a collection of the keyword

set that can express mobile service content.

Clients To query MobiServNet, clients submit queries to any attached directory in the

MobiServNet network. Each query has a rectangle, , the client’s network address

(), an expiration time , and searching content . Figure 6 shows a query ,

where the rectangle is only a one-dimensional range of values for a time interval. expires

at = 12. The query will revoke running after = 12. In the following section, we figure out

the semantics of the query result.

2.3 Query Semantics of MobiServNet

When a client submits query to any directory at time , the directories would work

together to find a set of matching mobile service providers in . The result set continually

12

10

20

30

40

50

60

70

pos

2 4 6 8 10 12 14 16
time

ms4
ms4

ms3

ms2

ms1

ms1

Q

Figure 6: Mobile services moving against time.

changes as these mobile service providers move in and out within . Consider in Figure

6, for example, where = 4. At beginning, ’s result set would contain query responses

for 2, 3, and 4. At = 12, the ’s result set should contain query responses for 2,

3.

As directories receive a new query at time + , directories find all cached ad-

vertisements ads such that () fits in for some : and

a matching with . The registration and query acquisition mechanisms we

introduce in next section guarantee that queries finds all matching advertisements.

Query Result A query answer contains a set of an unique identifier for a service

identifier (), a start time (), an expiration time (), the mobile service’s

network address (()), and location information function () from advertisements s

of location directories in accordance with and during

such that () resides in and = min(), where is

the smallest time when () no longer belongs .

The responsible directories return initial query results to the origin client and incessantly

answering the query over subsequent incoming advertisements. Consider an new advertisement

13

that arrives at the responsible directory where is running incessantly. If ’s

location information function and service summary match within the lifetime of the ,

the directory send a query response for ’s client. Again, routing ensures that all queries

find all matching services.

To show the overall query semantics, we refer to the example in Figure 6. To keep our

example simple, we assume that any ad transmitted at time arriving at a directory at

time t has an expiration time of +4 + 2min, where +4 . We also assume

that all ads are examined on even numbered minutes. Consider query , with = 4 and

= 12. Table 1 shows the query results generated for at every examining time.

3 Query Processing Mechanism of MobiServNet

In this section, we show how the MobiServNet architecture supports the above semantics in

a distributed environment.

3.1 Location Data Model

As practical respects, representing location of mobile objects as addresses is more intuitive

than representing as geographic coordinates. In reality, addresses are usually revealed as

multiple-attribute data such as administrative zone name, road name, and position on the

road. For example, the address of the National Chiao Tung University, Taiwan could be

represented as a triplet of (Hsinchu, Dasyue Rd, 1001). By adding more attributes, it is

Time Query Results ()
4 {ms2(4 6 + 43 0),ms3(4 6 + 28 1),m4(4 6 + 26 2)}
6 {ms2(6 8 + 43 0),ms3(6 8 + 30 1),m4(6 8 + 20 1)}
8 {ms2(8 10 + 43 0),ms3(8 10 + 32 1)}
10 {ms2(10 12 + 43 0),ms3(10 12 + 34 1)}

Table 1: Query results returned for .

14

trivial to extend the scheme to be able to support more general addresses. From here forward,

to keep the presentation simple, we only focus on the triplet scheme, (zone, road, position on

road), to represent addresses within a specific region.

By taking advantage of the addressing schema above, one can easily transform the location

of a mobile object into a one-dimensional binary string. The procedure to transform the

location of a mobile service device into a binary string consists of four steps as follows: (1)

transform the location of the mobile objects given by GPS into a address form (2) obtain

the address of the place at which the mobile object is located and represent it as a triplet,

(3) transform each attribute of the triplet into a binary string, and (4) concatenate the three

binary strings into a single binary string. We assume that the first step can be done by local

mechanisms such as administrative mapping. The second and fourth steps are trivial, and

thus we detail the third step.

To complete third step, we first introduce how to produce the zones. For easier illustration,

consider an imaginary region with 2 countries (A, B) as a whole and 16 cities (0,1,...,9,a, b, ...,

f) in each country - a total of 32 zones to transform. The simplest transforming method is to

use their lexicographical orders (numbers letters). That is, by using 1 bits for county names

and 4 bits for city names, one can transform a zone into a 5-bit string whose first one bit

represent the lexicographical order of its county name and the remaining four bits represent

the lexicographical order of its city name. For example, one can express the zone "A county a

city" as "0 0110", the zone "A county b city" as "0 0111" and "B county a city" as "1 0110".

Although the simplest transforming scheme is simple to implement, it does not provide the

information about relative location of zones. For example, consider two mobile objects, one

located at the zone "0 0110" and the other at the zone "0 0111". Comparing these two binary

strings, one can deduce that the two objects be in the same county (A) but in di erent city

(a,b). These two binary strings, however, do not provide any clue as to the relative location

information of the two objects.

15

To overcome the limitation that transforming scheme does not provide the information

about relative location of zones, using a mapping technique based on space-filling curves is

proposed. A space-filling curve[1] is a dimension reduction technique that forms an one-

dimensional curve which visits every point within a multi-dimensional space. In order to

represent the relative locations of zones more e ciently, we choose bit-shu ing among various

space-filling curves and apply it to start region division from the lower left corner as the order

in the bit-shu ing. The detailed algorithm to transform the zones contained in a region is

given in Algorithm region division, and an illustrative example is shown in Figure 7.

A zone is defined by the following constructive procedure. Consider a rectangle that

represent a chosen region on the specified plane. Intuitively, is the bounding rectangle

jointly defined by all directories within the ambient network. We call a sub-rectangle of

a zone, if is obtained by dividing times, 0, using a procedure that satisfies the

following property:

After the -th division, 0 , is partitioned into 2 equal number rectangles. If is

an odd (even) number, the -th division is parallel to the y-axis (x-axis).

That’s, the bounding rectangle is first sub-divided into two zones at level 0 by a vertical

line that splits into two equal number of pieces, each of those sub-zones can be split into

two zones at level 1 by a horizontal line, and so on. We call the non-negative integer the

level of zone , i.e. () = .

Algorithm: region division
Input: a region , administrative information of all zones
Output: binary strings which zones transformed into, ()
1. Determine the centroid of each zone, set level = 0
2. If () 1
3. B () is the same with the number of the centroid of zones, because contains all
zones
4. then Divide the region into two sub-regions, west sub-region and east sub-region

5. () = () = () 2
6. -bit of () is 0, -bit of () is 1, and = + 1
7. If () 1
8. then Divide the region into two sub-regions, south sub-region and north

16

b

8

5

c

e

9

2

4

1

7

6

3

0

d

f

a

11

10

01

00

4

0

1

5 7

6

3

2

d f

c e

9 b

8 a

00 01 10 11

Figure 7: An example for region division.

sub-region
9. () = () = () 2
10. -bit of () is 0, -bit of () is 1, and = + 1
11. For each sub-region , , , and obtained from line 2 to line 10
12. do if () 1
13. then continue process from line 2 to line 10 to replace by .
14. If () 1
15. then result the final () of each zone .

Compared to the transforming method based on lexicographical orders, the proposed bit-

shu ing method produces more informative binary strings. Again, let us consider the two

mobile objects, one located at the zone "0 0110" and the other at the zone "0 0111". In

addition to the facts that the two objects are in the same county but are in di erent city, we

can attain more clues about the relative location of zones: (1) since the first three bits for city

part are both "011", the cities are located at west of southwest area of the county, and (2)

since the last bits for city part are di erent, the city where the first object is located is south

of the city where the second object is located.

There are a number of roads within a zone. The algorithm to transform the roads within a

zone is not much di erent from Algorithm region division. The changes needed to be made on

Algorithm region division are as follows: (1) every instance of word "zone" is to be replaced

with word "road", and (2) every instance of word "region" is to be replaced with word "zone".

17

Consider the last part of the location triplet and the way to transform the position on

road. We first divide the road into 2 1 units of the same size, and then represent each

boundary as an n-bit binary string. Finally, position of an object on road is chose as the

boundary nearest from the object and represented as the boundary binary string.

Intuitively, the suggested transforming scheme has the following characteristics: (1) a

location directory owning a set of zones can be represented by the range of binary strings.

For example, a directory owning county "A" is represented by the range [00000; 01111], and

(2) more shortly, the directory can be revealed by using the longest common prefix bits of the

given range.

3.2 Location Overlay Network

From description above, location information of each object can easily transform geographic

position into a binary string. Having these binary strings can construct a one-dimensional

space that we use to form the location overlay network for supporting the ambient network

function. Location overlay network is built atop of physical network layer that is an application

layer protocol. Now we describe how zones are mapped to directories.

The location space is logically divided into zones and each zones is assigned to location

directories, then it is easy to see that there exists a such that each directory maps into a

independent level- zone. In real world, the directory deployment are likely to be unnecessarily

regular (i.e., grid-like). Some zones may be empty and other zones might have more than one

directory situated within them. As applying a simply strategy, the empty zone associates the

nearest directory with it for some definition of nearest. In order to make overall acquisition

mechanism simpler, we allow directories in MobiSerNet to map to di erent-level zones.

To precisely understand the associations between zones and directories, we give the notion

of zone ownership. Consider a location directory , let to be the largest zone that includes

only one directory . Then, we say that owns . Unfortunately, that ownership decision

18

Figure 8: An overlay network, where circles represent directories ad dashed line mark the
network logically boundary. Right part demostrates the zone code and boundaries.

might result in some zones may be empty (no owners associated with them). For example,

in Figure 8, the zone 001 does not contain any directories and would not have an owner. To

resolve this, for any empty zone , we take an definition of () and define

the owner of to be the owner of (). In the example figure, the directory

owns 0001 would also own the empty zone 001. For convenience, we still use two dimension

representation in our example.

Having defined the relationship between zones and directories, the next problem we address

is: how do we develop such a distributed algorithm that enables each directory to determine

which zones it owns, knowing only the overall boundary of overlay network? In principle, this

should be relatively straightforward, since each directory can simply determine the location

of its neighbors, and apply simple methods to determine the largest zone around it such that

no other directory resides in that zone.

The proposed distributed zone construction algorithm defers the decision of such zones

until when either a query is initiated, or when a advertisement is registered. The basic ideal

behind the algorithm is that each directory tentatively builds up an idea of zone it resides in

just by negotiating with its neighbors.

Algorithm: zone ownership construction

19

2n0

2n

Zone

Current Directory

Target Directory

Trie link

Neighbor link

Nearest link

Trie insertion

Figure 9: A visual example of the advertisement registering mechanism.

Input: directory codes and zone owner prefixes of a location directory owns, and newly
discover neighbor directory of
Output: updated zone owner-prefix length () and ()
1. () XOR ()
2. if = 0
3. then if () ()
4. then () (), treat as slave directory
5. else () (), treat as slave directory
6. else if () ()
7. then for () to ()
8. do if [()] = 0
9. then left shift 1 bit
10. + 1
11. ()
12. else for () to ()
13. do if [()] = 0
14. then left shift 1 bit
15. + 1
16. ()

3.3 Advertisement Routing

In this section, we describe how advertisements are registered into MobiServNet. There are

two algorithms of interest: a hashing technique for mapping an advertisement to a zone, and

a routing algorithm for storing the advertisement at the directory of the appropriate zone.

Consider a mobile service provider that wants to send an advertisement to MobiServNet.

20

Firstly, the should be calculated the service summary including the reference code it belongs

to. After transforming advertisement , to route , the attached directory first check

whether the location information of is within the zones owns. If owns the zone which

is located and four direction neighbors is determined, store the advertisement at the

directory . If not, check all neighbors of to determine the nearest neighbor from ,

and then forwarding the to . Continuing the process above, directory will attempt

to route the to its owner.

More precisely, an advertisements includes an unique identifier for the mobile service

(), the mobile service’s network address (()), an expiration time (), a

velocity (), and a service summary that contains a reference code () that the

provider belongs to and a hashing binary string of service content. The reference code

apply the producing method that had discussed in section 4.1. The hashing binary string

of service content apply the bloom filter to be produced based on its keywords. The aim

of transforming an advertisement to a service summary is to store the advertisement at the

directory that owns the zone advertisement belongs to.

Attached directory checks the service summary by comparing the same length prefix

of zone code () with (). If the two are identical, directory store the

by its locally Patricia tries structure ,as shown in Figure 9. If not, forwards to the

destination-closest neighbor directory . Destination-closest neighbor directory is de-

cided by applying right-hand rule that is clockwise first. For example, as shown in Figure 10,

an advertisement with () "0110" has arrived zone "10". The first two bits between

"10" and "0110" is di erent so that zone "10" directory forwards to its destination-closest

neighbor directory which owns zone "110". Repeatedly, the first three bits between "110" and

"0110" is di erent so that zone "110" directory forwards to its destination-closest neighbor

directory which owns zone "0110". Finally, both four bits are identical, and four direction

neighbors of zone "0110" is determined so that the directory which owns zone "0110" will

21

Figure 10: An example of routing advitisements.

store the to its local structure.

When the advertisement has already arrived the correspondence directory that owns

it, the directory will store the as a data node of its search structure. Patricia tries that we

propose is the search structure resided in the directory. Each data node is represented with

last two parts of the (), road and position on road.

3.4 Grouping Services

In reality, the moving behavior of mobile objects is usually regular and follows some moving

patterns. Grouping services refers to the situation where some common mobile objects tend to

have moving together. For example, a group of visitors with the same guide usually has similar

movement behavior, the same as the situation that cars on roads with the same direction, near

position, and close speed. Although a number of research works have been elaborated upon

the impact of group mobility. But they are all designed for ad-hoc networks. In our proposed

method, we can easily group these mobile services on the road in a simple way.

1. on the same road , near position, close velocity, is a group

2. the group should be the same direction temporally

3. group can be easily change among roads, zones totally.

22

3.5 Query Routing

In this section, we describe how queries acquire query answers from MobiServNet. To query

MobiServNet, clients submit queries to any attached directory in the MobiServNet network.

Consider a client that wants to send an new query to MobiServNet. Firstly, the should

be calculated the query summary including the zone code of zones it wants to acquire. After

transforming query , to route , the attached directory first check whether the location

information of is within the zones owns. If owns the zone which is requested and four

direction neighbors is determined, retrieve the matching advertisement s at the directory

and produce a query answer of the s. If not, check all neighbors of to determine the

nearest neighbor from , and then forwarding the to . Continuing the process above,

directory will attempt to route the to its consulters.

The query summary calculation is almost the same with advertisement summary calcu-

lation. Di erently, a query may have a range rectangle specified consulting not only one

directory. Therefore, when first attached directory receives such a query with range rec-

tangle , it will also calculate the common root directories s that might several parts

composed for query . For example, as shown in Figure 11, a query range rectangle can

transform to virtual root zones "011" and "11". When the first matching directories receive

the sub-queries, they could infer that they should transfer the sub-queries to other responsible

directories which has not been received queries.

When the query has already been received by the correspondence directories within

the query range, the directory will examine its own search structure. Patricia tries that we

propose is the search structure resided in the directory. Each data node is represented with

last two parts of the (), road and position on road. Intuitively, examine the Patricia

tries and match the service content.

23

0101 0111 1111

0100 0110

110

1110

0001 0011 1011

0000 0010

100

1010

Q Q

Q

Q

Q

Q

Figure 11: An example that query is decomposed and routed to several places.

4 Experiments and Analysis

In Section 4.1, we describe our simulation model. In Section 4.2, an analytic performance

measurements are presented. Section 4.3 is devoted to experimental results.

4.1 Simulation Model

The dataset consists of mobile objects in whole location space which is a unit space [0 1] .

We use the Java programming language in our experiments due to its strong thread process

support. The most other methods are impossible to handle huge number of mobile objects

since they index the history information of each object. So it is unfair to compare our method

with them. Using this implementation, we conducted a fairly evaluation of MobiServNet and

flooding. For all our experiments, we use uniformly directory placement with location network

sizes ranging from 50 directories to 300 directories. Each location directory owns a zone. We

have conducted experiments at other node densities; they are in agreement with the results

presented here.

In all our experiments, each directory initially generates 400 advertisements on average

(more precisely, for a topology of size N, we have 400N advertisements, and each directories is

equally likely to generate an advertisement). We have conducted experiments for di erent ad-

24

vertisement distributions. (1) the uniform advertisement distribution generates 2-dimentional

locations and, for each dimension, every attribute value is equally likely. (2) the normal adver-

tisement distribution generates 2-dimensional locations and, for each dimension, the attribute

value is normally distributed with a mean corresponding to the mid-point of the attribute

value range. The normal advertisement distribution represents a skewed data set.

Having generated the dataset, for each simulation we generate queries such that, on av-

erage, each directory generates 2 queries. The query sizes are determined using the three

size distributions we discussed earlier: uniform, bounded-uniform, and exponential. Once a

query size has been determined, the location of the query is uniformly distributed. The later

analysis will gives us some insight into the asymptotic behavior of various distributions for

our primary metrics.

4.2 Performance Measurement

Our performance measurement are described as follows:

Average Advertisement Cost measures the average number of messages required to

send the advertisement to the responsible directory. In a -directory network, the average

advertisement cost is proportional to .

Average Query Cost measures the average number of messages required to route the

query to the relevant directories. The query cost depends upon the range size specified in the

query. Consider that our query routing mechanism is careful about splitting a query into sub-

queries, doing so only when the query nears the zone that intersects the query range. Thus,

the query cost is composed of two components. The first part, which is proportional to ,

is the cost to near the intersecting zone. If the query range can be split into directories,

the second part of query cost is proportional to . Again, the average query cost depends

upon the distribution of query range sizes. Now, suppose that query range sizes follow some

density function (), then the average query cost can be approximated by
R
1

() .

25

Consider several di erent distribution forms: the uniform distribution, the bounded uniform

distribution, and the exponential distribution. In all the analysis, we make the simplifying

assumption that the size of a query is proportional to the number of directories that can

answer that query.

For the uniform distribution () for some constant . Thus, the average query cost of

uniformly distributed queries is (). For uniformly distributed queries, the performance is

comparable to that of flooding. However, for the application we envisage, where the directories

are responsible to the advertisements of mobile objects, the uniform distribution is highly

unrealistic.

More realistically, all query range sizes are bounded by a constant . In this case, the

average query cost is approximated by
R
1

() = (). Thus, the average cost of

limited queries is ().

Finally, for the exponential distribution, () = for some constant , and the average

cost is (1) for large enough . Asymptotically, the cost of the exponentially distributed

query is dominated by the first part ().

Thus, we see that if the queries follow either the bounded uniform distribution or the

exponential distribution, the query cost scales as the average advertisement cost.

It does not measure the number of answered messages; this number depends upon the

precise data distribution and is at worst the same with the query cost.

Storage Costmeasures the total size of stored service summary data. At first the collected

data are stored in 3-d R-tree as a triplet (x-coordinate, y-coordinate, timestamp) and then

stored in binary Patricia tries as a pair (binary string representation of location, timestamp).

Storage cost of data stored in 3-d R-tree is 2 () + (), and the

storage cost of binary Patricia tries is at worst the same with = (dlg(#_ _)e)+

(dlg(#_ _)e) + (dlg(_ _)e) + ().

26

Figure 12: Experiment 1: Impact of scalability

4.3 Experiment Results

Experiment 1: Impact of Scalability

In this section, we use simulation to compare MobiServNet against flooding. Although we

have examined almost all the combinations of factors described above, we discuss only the

most salient ones here, for lack of space. As shown in Figure 12, the left diagram plots the aver-

age advertisement costs for MobiServNet (for flooding, of course, the insertion costs are zero).

MobiServNet incurs less per event overhead in registering advertisements. The right diagram

plots the average query cost for flooding, the bounded uniform query size distribution, and the

exponential distribution. For this graph we use a uniform advertisement distribution, since

the advertisement distribution does not a ect the query delivery cost. For this simulation,

the bound of the bounded uniform distribution was 1
4

the size of the largest possible query.

MobiServNet-U is MobiServNet with uniform advertisement distribution. MobiServNet-BU

and MobiServNet-E mean MobiServNet with bounded uniform and exponential query range

distribution respectively. Even for this generous query range size, MobiServNet perform quite

well (almost a third the cost of flooding when N=300). The average query size for the ex-

27

ponential distribution was set to be 1

16
the largest possible query. The superior scaling of

MobiServNet is evident in these graphs. Clearly, this is the vision that might expect MobiS-

ervNet to perform best, when most of the queries are small and relatively rare queries are

large.

Experiment 2: Impact of Update

In this experiment, we study the performance under di erent average speed of all objects

.

When the temporal and spatial groups are formed, the group representative will cache

the information of recently member positions. The group member does not perform recently

update to the responsible directory if streams of updates still belong to the same group range

(we referred as a group hit). In fact, streams of updates will belong to the same group with

high probability. But the simulation use an approach based on the random waypoint mobility

model[15]. Surely, the implementation of the latter one is more easier than the former one.

Mobile object update their advertisements with positions every 125 milliseconds. A posi-

tion consists of two attributes: an x-coordinate and a y-coordinate. This simulation runs for

300 seconds. The positions of mobile objects vary within [0,1]24 virtual space. As shown in

the Figure 13, we see that this update mechanism significantly keeps good hit ratio within

the groups (by up to 95% with 12,000 nodes). In the Figure 14, MobiServNet-R means Mo-

biServNet whose updates are produced when positions are changed. MobiServNet-G means

MobiServNet whose updates are produced when group memberships are changed or position

of the group representative changed. Significantly, we see that this group update mechanism

reduces the total number of updates to the responsible directories (by up to 45% with 12,000

nodes, compare MobiServNet-G to MobiServNet-R).

Experiment 3: Impact of Directory Storage

While increasing the number of mobile objects from 2,000 to 12,000 (varies number of

directories from 50 to 300), we measure the storage size of the 3-d R-tree and binary Patricia

28

Figure 13: Experiment 2: Impact of update

Figure 14: Experiment 2: Impact of update.

29

Figure 15: Experiment 3: Impact of directory storage

tries. As shown in Figure 15, the binary Patricia tries (BPT) which stores the locations in

binary string representation consumes about 56% of the storage space spent by the 3-d R-tree.

Therefore, the reduction ratio of storage space was approximately 44%.

Experiment 4: Impact of Retrieval Cost

Figure 16 plots the number of query results received for di erent query range sizes. It

appears that we received fewer results than expected since the reason we have explained in

the analysis. MobiServNet-NK is MobiServNet without keyword constraints, and another one

with keyword constraints.

5 Conclusions

In this paper, we devised an e ective service infrastructure for discovering mobile services.

Our location data model captures mobile objects as binary strings in one dimensional space

instead of conventional (x, y) geographic coordinates in two dimensional space that are in-

dexed by R-tree relevance techniques, and thus can reduce storage cost while improving query

processing. Our temporal and spatial grouping method provides a better update mechanism

30

Figure 16: Impact of retreival cost

and improves the query performance. Our appropriate approximated query results provides

the query performance better than all possible results. The design of MobiServNet is fully

distributed and more scalable. The simulation studies confirm all above declarations. We also

have planed to conduct larger scale experiments in the future.

References

[1] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves and their
use in the design of geometric data structures. Theoretical Computer Science, 181(1):3—15,
1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an e cient and
robust access method for points and rectangles. SIGMOD Rec., 19(2):322—331, 1990.

[3] J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Comput.
Surv., 11(4):397—409, 1979.

[4] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD ’84:
Proceedings of the 1984 ACM SIGMOD international conference on Management of data,
pages 47—57, New York, NY, USA, 1984. ACM Press.

[5] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex queries
in dht-based peer-to-peer networks, 2002.

[6] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In PODS,
pages 261—272. ACM Press, 1999.

[7] H. P. Kriegel, M. Schiwietz, R. Schneider, and B. Seeger. Performance comparison of point
and spatial access methods. In SSD ’90: Proceedings of the first symposium on Design
and implementation of large spatial databases, pages 89—114, New York, NY, USA, 1990.
Springer-Verlag New York, Inc.

31

[8] D. Pfoser. Indexing the trajectories of moving objects. IEEE Data Eng. Bull., 25(2):3—9,
2002.

[9] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In SIGCOMM, pages 161—172, 2001.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Lecture Notes in Computer Science, 2218:329—??,
2001.

[11] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors,
SIGMOD Conference, pages 331—342. ACM, 2000.

[12] H. Samet. The design and analysis of spatial data structures. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[13] B. Seeger and H.-P. Kriegel. Techniques for design and implementation of e cient spatial
access methods. In VLDB ’88: Proceedings of the 14th International Conference on Very
Large Data Bases, pages 360—371, San Francisco, CA, USA, 1988. Morgan Kaufmann
Publishers Inc.

[14] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM, pages 149—
160, 2001.

[15] K. Wang and B. Li. Group mobility and partition prediction in wireless ad-hoc ntworks,
2002.

32

