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Abstract--We devise a method to generate descriptive classification rules of shape contours by using inductive 
learning. The classification rules are represented in the form of logic programs. We first transform input objects 
from pixel representation into predicate representation. The transformation consists of preprocessing, feature 
extraction and symbolic transformation. We then use FOIL which is an indictive logic programming system to 
produce classification rules. Experiments on two sets of data were performed to justify our proposed method. 
Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

Shapes are important information for acquiring the 
notion of objects. Much research that utilizes shape 
information to perform tasks in computer vision has 
been done. For example, Hogg expressed that shapes 
can evoke a wide range of visual concepts relevant to 
describing object geometric properties. (1~ Jovanovid (2~ 
used shape information to classify model tanks, air- 
planes, helicopters, trucks and armored cars. Katzir 
et al. (3) utilized shape information to recognize spoons. 
Ueda and Suzuki (4) made use of shape information to 
classify sedan, hatchback and wagon cars. Ansari (5> 
adopted a landmark-based approach using shape in- 
formation to recognize wrenches, needle-nose pliers, 
wire cutters, and wire strippers. Medioni e t a / .  (6'7) 
designed a system to find features hidden in shapes for 
pattern recognition. 

One common requirement in these works, as in most 
other  object  recogni t ion systems, is to construct  
classification rules or models that can be used to 
classify or compare with an input object. Without the 
help of domain experts, machine learning techniques 
have to be used to achieve this goal. In addition to works 
mentioned above, Comlell and Brady (s) designed a 
system that combines recognition and learning. The 
system utilizes shape information and generates a 
semantic network representation for an object. Hfittich 
and Wandres (9) devised a system to construct 2D models 
based on "learning by showing".  Jovanovid (2) proposed 
a learning algorithm based on/-classif ier  to generate and 
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modify the structure of a pattern class. Fichera et  al. (1°) 

used fuzzy logic and the INDUCE system to learn the 
organs of human brains. Ueda and Suzuki (4) retained 
perceptually relevant features in shapes to learn shape 
models. These results show that machine learning 
techniques really help the task of recognition patterns 
well. 

However, one drawback in existing research is that 
the characteristics extracted and learned by these 
systems are not easily understandable to humans. This 
is also the gap that exists between machine vision and 
human perception. Consider how people recognize 
simple objects such as screws or spoons. Features in 
these objects perceived by human are something like 
that screws always have a hat and a rectangle, and 
spoons have a long ladle. These characteristics can help 
us easily to determine what an object is, but will be 
missed if  method in most previous research were to be 
used. For this reason, we devise a method that discovers 
knowledge from shape contours by using inductive 
learning techniques. The discovered knowledge is 
symbolic  classif icat ion rules of two classes and 
represented in the form of logic programs. Our goal is 
to have the classification rules as descriptive as possible. 

The structure of this paper is as follows. Section 2 
describes the transformation of shape contours from 
pixel level to symbolic representation. Section 3 de- 
scribes the learning procedure. Experimental results are 
shown in Section 4. Section 5 is the conclusion. 

2. FROM PIXELS TO PREDICATES 

This section describes how to transform the repre- 
sentation of input objects from pixel level into predicate 
level. We skip the image acquisition and boundary 
extraction steps, and assume that the input are in the 
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form of boundary pixels, with possible noises. The 
transformation consists of three steps: processing, 
feature extraction, and symbolic transformation. 

2.1. Preprocess ing  

The goal of preprocessing is to eliminate the effect of 
noises and geometric transformations, such as transla- 
tion and rotation, on the results of later processings. In 
our system, the step of preprocessing includes smooth- 
ing and the Hotelling transform. 

The goal of smoothing is to reduce the influence of 
noises on contours. We employed a modified Ganssian 
kernel to smooth a contour. 01) The goal of the Hotelling 
transform (12) is to align all objects along their principal 
axes, so that the rotation of an object will not affect later 
processings. The X and Y axes in the experimental data 
(see Figs 4-10) are the principal axes found by the 
Hotelling transform. 

2.2. Feature extract ion 

Feature extraction plays a key role in our system 
because it decides the information that an object can 
provide to the learning algorithm, and thus decides the 
classification rules. The first step of feature extraction is 
to divide the contour of a shape into segments. We 
employ a modified k-curvature a lgori thm (13) in this 
process. The algorithm can divide a contour by finding 
some segmentation points based on local curvature of 
segments. An "*"  mark represents a segmentation point 
in the experimental data (see Figs 4-10). 

Once the segments of a shape contour have been 
obtained, properties of segments are computed. The 
properties need to include all important characteristics 
of the shape, based on the segmented components. (~4) 
The output of this step includes three sets S i for each 
segment, and several AJs and P~s for entire contour, as 
described below. We will omit the superscripts of these 
sets. 

S is the set that contains the information of individual 
segments. S = (id, loc, ht, len, con, sym). The compo- 
nents of S are defined below: 

• id is the identification of the segment. 
• Ioc indicates the location of the segment. We divide 

an image into four quadrants based on the axes 
found in the Hotelling transform. The assign 
numbers 0-7 indicate the different start points 
and end points of the segment. 

• ht  is the height of the segment, which the largest 
distance from the segment to the straight line 
formed by connecting the start point and the end 
point of the segment. 

• len is the length of the segment. 
• con is the number used to indicate the segment is 

convex or concave or straight. 
• sym represents whether the segment is symmetric. 

A is a set which represents the interrelations between 
two adjacent segments. A = (id, idc, O}, as described 
below: 

• id is the identification number of a segment. 
• idc is the identification number of the segment that 

is clockwise adjacent to id. 
• 0 is the angle between segments id and idc. 

P is the set which represents the possible parallelity 
of  some segments, P = ( i d l , i d 2 , ~ ) ,  as described 
below 

• idl is the identification number of a certain 
segment. 

• id2 is the identification number of another segment. 
• ~b is the angle between segments idl and id2, and is 

close to 0 ° or 180 °. 

The set P is ad hoc compared to general information 
provided by S and A, which are usually referred to in 
literature of shape representation. 

2.3. Symbol ic  transformation 

Eight types of predicates are used to represent 
information extracted. Type 1 links a segment with a 
contour. Type 2-6 correspond to S, type 6 is related to A, 
and type 8 is for P. 

1. Have ( i , n ) :  This means that segment n 

belongs to contour i .  
2. T o k e n l  ( i d ,  l o c  ) :  The first two elements 

of A are extracted to become the parameters of the 
predicate T o k e n  1. This predicate represents the 
location of segment i d .  

Car 1 Car 2 Car 3 Car 4 

Car 5 Car 6 Car 7 Car 8 

Car N Car 18 Cmr II Car 12 

f-/f~ 
Oar 13 Car 14 Car 15 Car 16 

Car 17 Car 18 Car 19 Car 20 

Car 21 Car 22 

Fig. i. Contour data of experiment I. 
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3. Token2 (id. HT): Token2 is used to 
show whether segment i d  is sharp or smooth, the 
parameter HT is a digitized result of ht. We assign 13 
to HT if the corresponding h t  is greater than the 
medium of the set of all hts in S, otherwise 12 is 
assigned. 

4. T o k e n 3  ( i d ,  L E N ) :  T o k e n 3  can deter- 
mine whether segment i d  is narrow or wide. Similar 
to HT, the parameter LEN is set to 9 if the 
corresponding fen is greater than the medium of the 
set of all lens in S, otherwise it is set to 8. 

5. T o k e n 4  ( i d ,  CON):  T o k e n 4  can show 
what shape of the segment i d  is. CON is 15 if 
segment i d  is concave, 16 if i d  is nearly a straight 
line, and 17 if segment i d  is convex. 

6. T o k e n 5  ( i d ,  SYM) : T o k e n 5  can identify 
whether segment i d  is symmetric or not. If segment 
i d  is not symmetric, SYM is equal to 32 else SYM 
is equal to 33. 

7. Adj (nl ,n2, agl): This predicate is used to 
represent the relationships of adjacent segments. The 
parameters n 1 and n2  are formed by concatenating 
the digit i with id and idc, respectively. Whereas the 

third parameter a g l  is a symbolic term that is 
formed by first clustering all 0s into 64 groups and 
then for each group assigning a symbolic term. 

8. P a r  ( p  l ,  p 2 ,  p a l ) :  This predicate is a sym- 
bolic counterpart of P. The parameters p 1 and p 2 
are formed by concatenating the digit i with idl and 
id2, respectively. The third parameter is set to " a "  if 
¢ < c ,  and " -  a "  if ¢ _> 1 8 0 - e .  

Because we use a complete description on a shape 
contour, it is not surprising that a shape contour may 
result in a long list of predicates. For example, Fig. 2 is 
a symbolic representation of a car 2 in Fig. 1. 

3. LEARNING SYMBOLIC CLASSIFICATION RULES 

As reviewed in Section l, machine techniques have 
been used in learning various aspects of image shapes. A 
theoretical analysis on learning visual concepts shows 
the high computational complexity in learning visual 
concepts in pixel level. (15) This is another reason that we 
intend to perform learning on symbolic level (e.g. see 
Fig. 2). 

H a v e ( 2 a , 2 a 0 ) ,  H a v e ( 2 a , 2 a l ) ,  H a v e ( 2 a , 2 a 2 ) ,  H a v e ( 2 a , 2 a 3 ) ,  H a v e ( 2 a , 2 a 4 ) ,  
H a v e ( 2 a , 2 a 5 ) ,  H a v e ( 2 a , 2 a 6 ) ,  H a v e ( 2 a , 2 a 7 ) ,  H a v e ( 2 a , 2 a 8 ) ,  H a v e ( 2 a , 2 a 9 ) ,  
H a v e ( 2 a , 2 a l 0 ) ,  H a v e ( 2 a , 2 a l l ) ,  H a v e ( 2 a , 2 a l 2 ) ,  H a v e ( 2 a , 2 a l 3 ) ,  H a v e ( 2 a , 2 a l 4 ) ,  
H a v e ( 2 a , 2 a l 5 ) ,  H a v e ( 2 a , 2 a l 6 ) ,  H a v e ( 2 a , 2 a l 7 ) ,  
T o k e n l ( 2 a 0 , 1 ) ,  T o k e n l ( 2 a l , 1 ) ,  T o k e n l ( 2 a 2 , 1 ) ,  T o k e n l ( 2 a 3 , 0 ) ,  Tokenl(2a4,7), 
Tokenl(2a5,7), T o k e n l ( 2 a 6 , 7 ) ,  Tokenl(2a7,Y), T o k e n l ( 2 a 8 , 6 ) ,  T o k e n l ( 2 a 9 , 5 ) ,  
T o k e n l ( 2 a l 0 , 5 ) ,  T o k e n l ( 2 a l l , 5 ) ,  T o k e n l ( 2 a l 2 , 5 ) ,  T o k e n l ( 2 a l 3 , 4 ) ,  
Tokenl(2al4,3),Tokenl(2al5,3),  T o k e n l ( 2 a l t , 3 ) ,  Tokenl(2al7,2), 
T o k e n 2 ( 2 a 0 , 1 2 ) ,  T o k e n 2 ( 2 a l , 1 2 ) ,  T o k e n 2 ( 2 a 2 , 1 3 ) ,  T o k e n 2 ( 2 a 3 , 1 3 ) ,  
T o k e n 2 ( 2 a 4 , 1 3 ) ,  T o k e n 2 ( 2 a 5 , 1 3 ) ,  T o k e n 2 ( 2 a 6 , 1 3 ) ,  Token2(2a7,12), 
T o k e n 2 ( 2 a 8 , 1 2 ) ,  T o k e n 2 ( 2 a g , 1 2 ) ,  T o k e n 2 ( 2 a l 0 , 1 2 ) ,  T o k e n 2 ( 2 a l l , 1 3 ) ,  
T o k e n 2 ( 2 a l 2 , 1 2 ) ,  T o k e n 2 ( 2 a 1 3 , 1 3 ) ,  Token2 (2a14 ,13 ) ,  T o k e n 2 ( 2 a 1 5 , 1 2 ) ,  
T o k e n 2 ( 2 a 1 6 , 1 2 ) ,  Token2(2a17,12), 
Token3(2a0.8). Token3(2al.8). Token3(2a2.9). Token3(2a3.9). Token3(2a4.9). 
Token3(2a5.9). Token3(2a6.9). Token3(2aY.8). Token3(2a8.8). Token3(2a9.8). 
Token3(2al0.9). Token3(2a11.9). Token3(2al2.8). Token3(2a13.9). Token3(2a14.9) 
TokenS(2al5.8). Token3(2al6.8). Token3(2ai7.8). 
Token4(2a0.1Y). Token4(2al.17). Token4(2a2.15). Token4(2a3.1Y). 
Token4(2a4.15). Token4(2a5.17). Token4(2a6.15). Token4(2a7.17). 
Token4(2a8.15). Token4(2ag. I7). Token4(2al0.15). Token4(2all.i7). 
Token4(2a12.15). Token4(2a13.17). Token4(2al4.15). Token4(2al5.17). 
Token4(2a16.17). Token4(2al7.17). 
T o k e n 5 ( 2 a 0 , 3 2 ) ,  T o k e n 5 ( 2 a l , 3 2 ) ,  T o k e n S ( 2 a 2 , 3 2 ) ,  T o k e n 5 ( 2 a 3 , 3 2 ) ,  
T o k e n 5 ( 2 a 4 , 3 2 ) ,  T o k e n 5 ( 2 a 5 , 3 2 ) ,  T o k e n 5 ( 2 a 6 , 3 2 ) ,  T o k e n 5 ( 2 a 7 , 3 3 ) ,  
T o k e n 5 ( 2 a 8 , 3 3 ) ,  T o k e n 5 ( 2 a 9 , 3 3 ) ,  T o k e n 5 ( 2 a 1 0 , 3 2 ) ,  T o k e n 5 ( 2 a l l , 3 2 ) ,  
T o k e n 5 ( 2 a 1 2 , 3 2 ) ,  T o k e n 5 ( 2 a 1 3 , 3 2 ) ,  Token5 (2a14 ,32 ) ,  T o k e n 5 ( 2 a 1 5 , 3 2 ) ,  
T o k e n 5 ( 2 a 1 6 , 3 2 ) ,  T o k e n 5 ( 2 a l Y , 3 2 ) ,  
A d j ( 2 a l l , 2 a l 2 , 1 a n g l ) ,  A d j ( 2 a Y , 2 a 8 , 1 a n g 2 ) ,  A d j ( 2 a 6 , 2 a Z , l a n g 3 ) ,  
Adj(2a5,2aZ,lang3), 
P a r ( 2 a 0 , 2 a 6 , - a ) ,  P a r ( 2 a l , 2 a t , - a ) ,  P a r ( 2 a 3 , 2 a l 2 , - a ) ,  P a r ( 2 a 4 , 2 a 1 4 , - a ) ,  
P a r ( 2 a 7 , 2 a g , a ) ,  Par(2aZ,2alO,a), Par(2a7,2all,a),  P a r ( 2 a l 4 , 2 a 4 , - a ) .  

Fig. 2. Symbolic representation of car 2. 
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Recent development in machine learning has been 
focused on inductive logic programming (ILP), which 
has gained success in many domains, and is adopted in 
our system. We give a brief definition of ILP here. For 
more details please refer to reference (16). The learning 
agent of ILP is provided with background knowledge B, 
positive examples E, negative examples N, and con- 
strncts a hypothesis H. B, E, N, and H are logic 
programs. A logic program is a set of definite clauses 
each having the form 

h ~ bl ,b2, . . .  

where h is an atom, referred to as the head of the clause, 
and bx, b2 . . . .  is a set of atoms, referred to as the body of 
the clause. Usually E and N contain only ground unit- 
clauses with either head or body empty. The conditions 
for construction of H are B A H F- E and B A H F/N, that 
is to say, B and H together must logically imply E, but 
must not imply N. 

Many ILP-based systems have been developed, they 
differ in the way to construct H. Our system employ 
FOIL (17) as the learning agent since it has a good 
performance in many aspects. The system FOIL uses a 
top-down approach for constructing H. It constructs a 
rule by appending predicates to the body of the rule 
gradually. The selection of predicates is based on a 
measure of information gain. 

The action of FOIL is described below. 
H i s  empty. Select a new head literal x to learn, and let 

a new Horn clause c be x. 

1. Choose a literal y according to the conditions 
described below. 
(a) y and c must contain at least one common 

variable. 
(b) y has the maximum information gain correspond- 

ing to c, i.e. it can contain the most positive 
examples and the least negative examples. 

2. Add y into the body of c. 
3. If  there are still negative tuples in this new clause, go 

to 1, if  not, add c into H. 

Until H can explain all positive examples. 
Once the input shapes have been transformed into the 

form of logic rules, they are stored in a file. FOIL can 
read the file and generate classification rules. Many 
al ternat ive techniques  in FOIL can improve the 
performance of learning. For example, we can change 
the type of each attribute in a predicate, the maximum 
variable depth, etc. We can also permit whether to find 
negated literals in a rule or not. 

Moreover, the modification of the symbolic repre- 
sentation can be made to meet the need of generating 
more rules. For example, assume that uth contour and 
vth contour belong to the same class, they can be 
represented as S ( u ) and S ( v ) ,  or S ( u ,  v ) alone. 
S ( u )  means that the uth contour belongs to the S 
class. S ( u ,  v ) means that uth and vth contours are 
the same class S. The former representation can make 
FOIL run faster, but have few rules. The effect of the 

latter representation is adverse. We will show this effect 
in our experiment. 

One limitation of the FOIL system is that when more 
than one feature can tell positive examples from 
negative ones, FOIL will only extract one of them. This 
is because the design of FOIL is to classify two classes, 
but not to describe their differences. To achieve our goal 
for obtaining descriptive rules, we exclude those tuples 
which coincide with the predicates that have been 
learned again and again until all features are found. This 
will also be shown in the next section. 

4. EXPERIMENTAL RESULTS 

Our experiment includes two sets. The first set 
comprises 22 matchbox cars (see Fig. 1). These cars 
are divided into two classes. The second set includes 14 
spoons (see Fig. 3). The first eight spoons are western 
style, and the rest are Chinese style spoons. Both data 
are further divided into a training set and a test set. In 
both experiments, we first used training data to learn, 
then used testing data to verify whether the results are 
correct and complete. 

4.1. Experiment 1 

We divided 22 cars into two classes according to the 
size of their wheels intuitively: cars 1-14 are classified 
as class 1, and the remaining cars belong to class 2. Also 

Spoon 1 Spoon 2 

Spoon 3 Spoon 4 

f 

L , 

Spoon 5 Spoon 6 

Spoon 7 Spoon 8 

_ _ 3  i 

Spoon 9 Spoon i0 

( I . _ _ j  

Spoon 11 Spoon 12 

\ .  j 5 
Spoon 13 Spoon 14 

Fig. 3. Contour data of experiment 2. 
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cars 2, 4, 6, 7, 8, 17, 19, 20, and 21 were selected as the 
training set, and the rest are in the testing set. 

We are interested in the effect of different representa- 
tions on the learning result, therefore two different 
forms are used in our experiment. Form I represents an 
object using head C a r  1 ( A ) ,  it means that A belongs 
to class 1; also C a r 2  ( A )  means that A belongs to 
class 2. Form II uses C a r l  ( A , B )  to represent 
that A and B belong to the same class 1, and 
C a r 2 ( A , B )  means that A and B belong to the 
same class 2. 

The results using form I is shown below. Our iteration 
is a pass of the FOIL system. The time taken by each 
iteration is also shown. 

iteration 1 (0.6 s) : 
Car2(A):-not(Carl(A)). 
Carl(A):-not(Car2(A)). 

iteration 2 (0.6 s): 
Carl(A):- Have (A,B), 

Tokenl(B,7), 
adj(B,D,E). 

iteration 3 (0.5 s) : 
Carl(A) :- Have (A,B) , 

adj (B, C, langl) . 

iteration4 (34.5 s) : 
Carl (A) : - Have (A,B) , 

Adj ( B, C, fang2 ). 

After the first iteration, all predicates with form 
C a r 2  ( X )  were removed from all rules in training 
data, in order to find more classification characteristics. 
The rule obtained in iteration 2 indicates that one 
characteristic to tell class 1 from class 2 is a pair of 
specific segments, as shown in Fig. 4. We delete 
Token(X, 7) from training data. At the third 
iteration, the characteristics found are shown in Fig. 5. 
Similarly A d j  ( X ,  Y ,  l a n g 2  ) was deleted before 
iteration 4. The characteristic found in the fourth 
iteration is shown in Fig. 6. The learning algorithm is 
not able to generate any rule after the fourth iteration. It 
is obvious that the rules generated by FOIL are 
consistent with our original classification based on the 
sizes of wheels. 

Y 

>X 

Fig. 5. One characteristic (in bold line) to classify class 1 and 
class 2, discovered in the third iteration of learning in form I. 

Y 

I > X  '\\ > 

Fig. 6. One characteristic (in bold line) to classify class 1 and 
class 2, discovered in the fourth iteration of learning in form I. 

The result based on form II is 

iteration 1 (0.8s): 
CarI(A,B) .'-not(Car2(A,C)), 

not(Car2(b,C)) . 
Car2(A,B) :-not(Carl(A,C)), 

not (Carl(B,C)) . 

iteration 2 (56.7 s) : 
CarI(A,B) :- Have(A,C), 

Adj (C,D,E), 
Have (B, F) , 
Adj (G,F,H) . 

iteration 3 (30.5 s) : 
Car2(A,A) :-Have(A,C) , 

Token2(C,13), 
Tokenl (C,6). 

iteration 4 (193.4s) • 
Car2(A,B) :- Have(A,C) , 

Token3(C,9) , 
Adj (C,E, 0ang3) , 
Have (B,G) , 
Token2(G,9), 
Adj (G, I, 0ang3) . 

/ x 

Fig. 4. One characteristic (in bold line) to classify class 1 and 
class 2, discovered in the second iteration of learning in form I. 

Similarly, some predicates were taken away after each 
iteration in order to obtain more rules. Compared to 
form I, the rules obtained in the second iteration have 
already included all characteristics obtained using form 
I. The third iteration did not generate any interesting 
result and can be ignored. One more characteristic was 
found in the fourth iteration, as shown in Fig. 7. As 
indicated, learning using form II used much more time 
than using form I. 
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X 

f 

Fig. 7. One characteristic (in bold line) to classify class 1 and 
class 2, discovered in the fourth iteration of learning in form II. 

We then used the rules learned for classifying testing 
data, and the result was consistent. Another test is to 
perform the same learning but using the testing data. We 
found the consequent rules are the same as those 
generated by using the training data. 

4.2. Experiment 2 

We first split 14 spoons into a training set and a 
testing set. Spoons 1, 2, 3, 6, 9, 10, 14 are in the training 
set, and the rest are in the testing set. As in experiment 
1, two forms are used in this experiment. Form I is 
S I ( A )  and S 2 ( A ) ,  while f o r m I I i s  S l ( A , B )  
and S 2 ( A ,  B ) .  They have similar meanings as in 
Section 4.1. 

The result using form I is 

iteration i (0.2 s) : 
SI(A) :- not(S2(A)) . 
S2(A) :- not(Sl(h)) . 

iteration 2 ( 
SI(A):- 

0.4 s): 
Have(A,B), 
Tokenl(B,3). 

Y 

~ > X  

the western s~yle spoon 

Y 

>X 

the chinese style spoon 

Fig. 8. The corresponding features in counter of the learning 
result obtained in the 2ud iteration of experiment 2, form I. 

After the first iteration, predicates in the form 
S 2 ( X ) were taken away from all object's description. 
The second iteration generated a classification char- 
acteristic, as shown in Fig. 8. 

The results using form II is 

iteration 1 (0.2 s) • 
SI(A,B) :- not(S2(A,C)) , 

not(Sm(B,C)) . 
S2(A,B) :- not(Sl(A,C)) , 

not(Sl(B,C) ) . 

iteration 2 (9.0 s) - 
SI(A,B) :- Have (A,C) , 

Tokenl(C,3), 
Have(B,E), 
Tokenl(E, 3) . 

iteration 3 (16.9s) : 
SI(A,B) :- Have (A,C) , 

Token2(C,17) , 
Adj (C,I,J), 
Have (B,E) , 
Token2(E,17), 
Adj (E,G,H) : 

iteration 4 (18.1s) : 
SI(A,B) :- Have (A,C) , 

Have(B,D), 
Tokenl (C, 7) , 
Adj (C,F,G), 
idj (D,H,G). 

iteration 5 (172 s) : 

iteration 6 (19.7 s) : 
S2(A,B) .- Have(A,C), 

Tokenl(C,2) , 
hdj (I,C,J), 
Have (B,E) , 
Tokenl (E, 2) , 
Adj(G,E,H) . 

iteration 7 (20.1s) : 
S2(A,B) :-Have (A,C) , 

Have (B,D) , 
Token3(C,9) , 
Adj(C,F,G), 
Adj (D,H,G) . 

S 2 ( X ,  Y ) was excluded from all descriptions after 
iteration 1. The second iteration obtained the same result 
as the second iteration using form I. After T o -  
k e n 1 ( X ,  3 ) was deleted, the third iteration gener- 
a t ed  ru l e s  tha t  c o r r e s p o n d  to F ig .  8, then  
T o k e n 2  ( X ,  1 7  ) was removed. The fourth itera- 
tion generated a rule as shown in upper spoon of 
Fig. 10, then T o k e n l  ( X ,  7 ) was deleted. Note 
that no rule was generated in iteration 5, so we removed 
one more predicate S 1 ( X ,  Y ),  in order to obtain the 
description of class 2. Iteration 6 generated character- 
istics shown in Fig. 9, then T o k e n l  ( X ,  2 ) was 
taken away. Finally, iteration 7 generated characteristics 
shown in the lower spoon of Fig. 10. Similarly, much 
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Y 

~ * * , ~ _ ~  >x 

the western style spoon 

Y 

>X 

the chinese style spoon 

Fig. 9. The corresponding features in counter of the learning 
result obtained in the 3rd iteration of experiment 2, form II. 

Y 

~ >X 

the western style spoon 

Y 

>x 

the chinese style spoon 

Fig. 10. The corresponding features in counter of the learning 
result obtained in the 3nd and 4th iterations of experiment 2, 

form II. 

more time was consumed compared to the learning in 
form I. 

We followed the same procedure used in the first 
experiment to check the consistency of training data and 
testing data. The experimental results show that the 
consistency exists. That  is, the obtained rules using the 
training data are the same as those using the testing data. 

5. CONCLUSIONS 

Experimental results demonstrated the capability of 
our method on knowledge extraction from shape 
contours. The generated rules reflect the properties of 
contours that tell one class from the other, and are easily 
understandable to humans. Our approach is rotation 
invariant and noisy resistant. Using the principal axes 
transform makes contours located in a consistent co- 
ordinates, no matter how contours rotate. The smoothing 
method eliminates the effect of noisy data. 

Limitation of our approach are discussed below. First, 
our method is not scale invariant. Second, if  the features 
used to discriminate different classes of objects are only 
small sharp protrusions or indentations on contours, 
these features might  be filtered by the smoothing 
method. Third, the kScurvature algorithm may not 
segment the curvature faithfully. Lastly, while using 
FOIL to learn, we have to assign some parameters to 
FOIL. These parameters can change the type of each 
attribute in a predicate, the maximum variable depth, 
the appearance of a negated literal, the minimum 
accuracy of any rule, e tc .  In FOIL learning, these 
parameters affect performance greatly. The values of 
these parameters are assigned basing on our present 
experience. 
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