
Pergamon
Pattern Recognition, Vol. 30, No. 2, pp, 245-252, 1997

Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0031-3203/97 $17.00+.00

P I I : S - 0 0 3 1 - 3 2 0 3 (9 6) 0 0 0 8 0 - 5

A MACHINE LEARNING APPROACH FOR ACQUIRING
DESCRIPTIVE CLASSIFICATION RULES OF SHAPE CONTOURS 1

JUI-CHI HSU and SHU-YUEN HWANG*
Department of Computer Science and Information Engineering, National Chiao-Tung University,

Hsinchu, Taiwan, R.O.C.

(Received 28 September 1995)

Abstract--We devise a method to generate descriptive classification rules of shape contours by using inductive
learning. The classification rules are represented in the form of logic programs. We first transform input objects
from pixel representation into predicate representation. The transformation consists of preprocessing, feature
extraction and symbolic transformation. We then use FOIL which is an indictive logic programming system to
produce classification rules. Experiments on two sets of data were performed to justify our proposed method.
Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd.

Shape representation Classification
Inductive logic programming

Machine learning FOIL

1. INTRODUCTION

Shapes are important information for acquiring the
notion of objects. Much research that utilizes shape
information to perform tasks in computer vision has
been done. For example, Hogg expressed that shapes
can evoke a wide range of visual concepts relevant to
describing object geometric properties. (1~ Jovanovid (2~
used shape information to classify model tanks, air-
planes, helicopters, trucks and armored cars. Katzir
et al. (3) utilized shape information to recognize spoons.
Ueda and Suzuki (4) made use of shape information to
classify sedan, hatchback and wagon cars. Ansari (5>
adopted a landmark-based approach using shape in-
formation to recognize wrenches, needle-nose pliers,
wire cutters, and wire strippers. Medioni e t a / . (6'7)
designed a system to find features hidden in shapes for
pattern recognition.

One common requirement in these works, as in most
other object recogni t ion systems, is to construct
classification rules or models that can be used to
classify or compare with an input object. Without the
help of domain experts, machine learning techniques
have to be used to achieve this goal. In addition to works
mentioned above, Comlell and Brady (s) designed a
system that combines recognition and learning. The
system utilizes shape information and generates a
semantic network representation for an object. Hfittich
and Wandres (9) devised a system to construct 2D models
based on "learning by showing". Jovanovid (2) proposed
a learning algorithm based on/-classif ier to generate and

* Author to whom correspondence should be addressed. Tel.:
886-35-781366; fax: 886-35-724176; e-mail: syhwang@ci-
se.nctu.edu.tw.
1Research supported by National Science Council, R.O.C.,
under grant number NSC 84-0408-E-009-014.

modify the structure of a pattern class. Fichera et al. (1°)

used fuzzy logic and the INDUCE system to learn the
organs of human brains. Ueda and Suzuki (4) retained
perceptually relevant features in shapes to learn shape
models. These results show that machine learning
techniques really help the task of recognition patterns
well.

However, one drawback in existing research is that
the characteristics extracted and learned by these
systems are not easily understandable to humans. This
is also the gap that exists between machine vision and
human perception. Consider how people recognize
simple objects such as screws or spoons. Features in
these objects perceived by human are something like
that screws always have a hat and a rectangle, and
spoons have a long ladle. These characteristics can help
us easily to determine what an object is, but will be
missed if method in most previous research were to be
used. For this reason, we devise a method that discovers
knowledge from shape contours by using inductive
learning techniques. The discovered knowledge is
symbolic classif icat ion rules of two classes and
represented in the form of logic programs. Our goal is
to have the classification rules as descriptive as possible.

The structure of this paper is as follows. Section 2
describes the transformation of shape contours from
pixel level to symbolic representation. Section 3 de-
scribes the learning procedure. Experimental results are
shown in Section 4. Section 5 is the conclusion.

2. FROM PIXELS TO PREDICATES

This section describes how to transform the repre-
sentation of input objects from pixel level into predicate
level. We skip the image acquisition and boundary
extraction steps, and assume that the input are in the

245

246 JUI-CHI HSU and SHU-YUEN HWANG

form of boundary pixels, with possible noises. The
transformation consists of three steps: processing,
feature extraction, and symbolic transformation.

2.1. Preprocess ing

The goal of preprocessing is to eliminate the effect of
noises and geometric transformations, such as transla-
tion and rotation, on the results of later processings. In
our system, the step of preprocessing includes smooth-
ing and the Hotelling transform.

The goal of smoothing is to reduce the influence of
noises on contours. We employed a modified Ganssian
kernel to smooth a contour. 01) The goal of the Hotelling
transform (12) is to align all objects along their principal
axes, so that the rotation of an object will not affect later
processings. The X and Y axes in the experimental data
(see Figs 4-10) are the principal axes found by the
Hotelling transform.

2.2. Feature extract ion

Feature extraction plays a key role in our system
because it decides the information that an object can
provide to the learning algorithm, and thus decides the
classification rules. The first step of feature extraction is
to divide the contour of a shape into segments. We
employ a modified k-curvature a lgori thm (13) in this
process. The algorithm can divide a contour by finding
some segmentation points based on local curvature of
segments. An "*" mark represents a segmentation point
in the experimental data (see Figs 4-10).

Once the segments of a shape contour have been
obtained, properties of segments are computed. The
properties need to include all important characteristics
of the shape, based on the segmented components. (~4)
The output of this step includes three sets S i for each
segment, and several AJs and P~s for entire contour, as
described below. We will omit the superscripts of these
sets.

S is the set that contains the information of individual
segments. S = (id, loc, ht, len, con, sym). The compo-
nents of S are defined below:

• id is the identification of the segment.
• Ioc indicates the location of the segment. We divide

an image into four quadrants based on the axes
found in the Hotelling transform. The assign
numbers 0-7 indicate the different start points
and end points of the segment.

• ht is the height of the segment, which the largest
distance from the segment to the straight line
formed by connecting the start point and the end
point of the segment.

• len is the length of the segment.
• con is the number used to indicate the segment is

convex or concave or straight.
• sym represents whether the segment is symmetric.

A is a set which represents the interrelations between
two adjacent segments. A = (id, idc, O}, as described
below:

• id is the identification number of a segment.
• idc is the identification number of the segment that

is clockwise adjacent to id.
• 0 is the angle between segments id and idc.

P is the set which represents the possible parallelity
of some segments, P = (i d l , i d 2 , ~) , as described
below

• idl is the identification number of a certain
segment.

• id2 is the identification number of another segment.
• ~b is the angle between segments idl and id2, and is

close to 0 ° or 180 °.

The set P is ad hoc compared to general information
provided by S and A, which are usually referred to in
literature of shape representation.

2.3. Symbol ic transformation

Eight types of predicates are used to represent
information extracted. Type 1 links a segment with a
contour. Type 2-6 correspond to S, type 6 is related to A,
and type 8 is for P.

1. Have (i , n) : This means that segment n

belongs to contour i .
2. T o k e n l (i d , l o c) : The first two elements

of A are extracted to become the parameters of the
predicate T o k e n 1. This predicate represents the
location of segment i d .

Car 1 Car 2 Car 3 Car 4

Car 5 Car 6 Car 7 Car 8

Car N Car 18 Cmr II Car 12

f-/f~
Oar 13 Car 14 Car 15 Car 16

Car 17 Car 18 Car 19 Car 20

Car 21 Car 22

Fig. i. Contour data of experiment I.

A machine learning approach to acquiring descriptive classification rule 247

3. Token2 (id. HT): Token2 is used to
show whether segment i d is sharp or smooth, the
parameter HT is a digitized result of ht. We assign 13
to HT if the corresponding h t is greater than the
medium of the set of all hts in S, otherwise 12 is
assigned.

4. T o k e n 3 (i d , L E N) : T o k e n 3 can deter-
mine whether segment i d is narrow or wide. Similar
to HT, the parameter LEN is set to 9 if the
corresponding fen is greater than the medium of the
set of all lens in S, otherwise it is set to 8.

5. T o k e n 4 (i d , CON): T o k e n 4 can show
what shape of the segment i d is. CON is 15 if
segment i d is concave, 16 if i d is nearly a straight
line, and 17 if segment i d is convex.

6. T o k e n 5 (i d , SYM) : T o k e n 5 can identify
whether segment i d is symmetric or not. If segment
i d is not symmetric, SYM is equal to 32 else SYM
is equal to 33.

7. Adj (nl ,n2, agl): This predicate is used to
represent the relationships of adjacent segments. The
parameters n 1 and n2 are formed by concatenating
the digit i with id and idc, respectively. Whereas the

third parameter a g l is a symbolic term that is
formed by first clustering all 0s into 64 groups and
then for each group assigning a symbolic term.

8. P a r (p l , p 2 , p a l) : This predicate is a sym-
bolic counterpart of P. The parameters p 1 and p 2
are formed by concatenating the digit i with idl and
id2, respectively. The third parameter is set to " a " if
¢ < c , and " - a " if ¢ _> 1 8 0 - e .

Because we use a complete description on a shape
contour, it is not surprising that a shape contour may
result in a long list of predicates. For example, Fig. 2 is
a symbolic representation of a car 2 in Fig. 1.

3. LEARNING SYMBOLIC CLASSIFICATION RULES

As reviewed in Section l, machine techniques have
been used in learning various aspects of image shapes. A
theoretical analysis on learning visual concepts shows
the high computational complexity in learning visual
concepts in pixel level. (15) This is another reason that we
intend to perform learning on symbolic level (e.g. see
Fig. 2).

H a v e (2 a , 2 a 0) , H a v e (2 a , 2 a l) , H a v e (2 a , 2 a 2) , H a v e (2 a , 2 a 3) , H a v e (2 a , 2 a 4) ,
H a v e (2 a , 2 a 5) , H a v e (2 a , 2 a 6) , H a v e (2 a , 2 a 7) , H a v e (2 a , 2 a 8) , H a v e (2 a , 2 a 9) ,
H a v e (2 a , 2 a l 0) , H a v e (2 a , 2 a l l) , H a v e (2 a , 2 a l 2) , H a v e (2 a , 2 a l 3) , H a v e (2 a , 2 a l 4) ,
H a v e (2 a , 2 a l 5) , H a v e (2 a , 2 a l 6) , H a v e (2 a , 2 a l 7) ,
T o k e n l (2 a 0 , 1) , T o k e n l (2 a l , 1) , T o k e n l (2 a 2 , 1) , T o k e n l (2 a 3 , 0) , Tokenl(2a4,7),
Tokenl(2a5,7), T o k e n l (2 a 6 , 7) , Tokenl(2a7,Y), T o k e n l (2 a 8 , 6) , T o k e n l (2 a 9 , 5) ,
T o k e n l (2 a l 0 , 5) , T o k e n l (2 a l l , 5) , T o k e n l (2 a l 2 , 5) , T o k e n l (2 a l 3 , 4) ,
Tokenl(2al4,3),Tokenl(2al5,3), T o k e n l (2 a l t , 3) , Tokenl(2al7,2),
T o k e n 2 (2 a 0 , 1 2) , T o k e n 2 (2 a l , 1 2) , T o k e n 2 (2 a 2 , 1 3) , T o k e n 2 (2 a 3 , 1 3) ,
T o k e n 2 (2 a 4 , 1 3) , T o k e n 2 (2 a 5 , 1 3) , T o k e n 2 (2 a 6 , 1 3) , Token2(2a7,12),
T o k e n 2 (2 a 8 , 1 2) , T o k e n 2 (2 a g , 1 2) , T o k e n 2 (2 a l 0 , 1 2) , T o k e n 2 (2 a l l , 1 3) ,
T o k e n 2 (2 a l 2 , 1 2) , T o k e n 2 (2 a 1 3 , 1 3) , Token2 (2a14 ,13) , T o k e n 2 (2 a 1 5 , 1 2) ,
T o k e n 2 (2 a 1 6 , 1 2) , Token2(2a17,12),
Token3(2a0.8). Token3(2al.8). Token3(2a2.9). Token3(2a3.9). Token3(2a4.9).
Token3(2a5.9). Token3(2a6.9). Token3(2aY.8). Token3(2a8.8). Token3(2a9.8).
Token3(2al0.9). Token3(2a11.9). Token3(2al2.8). Token3(2a13.9). Token3(2a14.9)
TokenS(2al5.8). Token3(2al6.8). Token3(2ai7.8).
Token4(2a0.1Y). Token4(2al.17). Token4(2a2.15). Token4(2a3.1Y).
Token4(2a4.15). Token4(2a5.17). Token4(2a6.15). Token4(2a7.17).
Token4(2a8.15). Token4(2ag. I7). Token4(2al0.15). Token4(2all.i7).
Token4(2a12.15). Token4(2a13.17). Token4(2al4.15). Token4(2al5.17).
Token4(2a16.17). Token4(2al7.17).
T o k e n 5 (2 a 0 , 3 2) , T o k e n 5 (2 a l , 3 2) , T o k e n S (2 a 2 , 3 2) , T o k e n 5 (2 a 3 , 3 2) ,
T o k e n 5 (2 a 4 , 3 2) , T o k e n 5 (2 a 5 , 3 2) , T o k e n 5 (2 a 6 , 3 2) , T o k e n 5 (2 a 7 , 3 3) ,
T o k e n 5 (2 a 8 , 3 3) , T o k e n 5 (2 a 9 , 3 3) , T o k e n 5 (2 a 1 0 , 3 2) , T o k e n 5 (2 a l l , 3 2) ,
T o k e n 5 (2 a 1 2 , 3 2) , T o k e n 5 (2 a 1 3 , 3 2) , Token5 (2a14 ,32) , T o k e n 5 (2 a 1 5 , 3 2) ,
T o k e n 5 (2 a 1 6 , 3 2) , T o k e n 5 (2 a l Y , 3 2) ,
A d j (2 a l l , 2 a l 2 , 1 a n g l) , A d j (2 a Y , 2 a 8 , 1 a n g 2) , A d j (2 a 6 , 2 a Z , l a n g 3) ,
Adj(2a5,2aZ,lang3),
P a r (2 a 0 , 2 a 6 , - a) , P a r (2 a l , 2 a t , - a) , P a r (2 a 3 , 2 a l 2 , - a) , P a r (2 a 4 , 2 a 1 4 , - a) ,
P a r (2 a 7 , 2 a g , a) , Par(2aZ,2alO,a), Par(2a7,2all,a), P a r (2 a l 4 , 2 a 4 , - a) .

Fig. 2. Symbolic representation of car 2.

248 JUI-CHI HSU and SHU-YUEN HWANG

Recent development in machine learning has been
focused on inductive logic programming (ILP), which
has gained success in many domains, and is adopted in
our system. We give a brief definition of ILP here. For
more details please refer to reference (16). The learning
agent of ILP is provided with background knowledge B,
positive examples E, negative examples N, and con-
strncts a hypothesis H. B, E, N, and H are logic
programs. A logic program is a set of definite clauses
each having the form

h ~ bl ,b2, . . .

where h is an atom, referred to as the head of the clause,
and bx, b2 is a set of atoms, referred to as the body of
the clause. Usually E and N contain only ground unit-
clauses with either head or body empty. The conditions
for construction of H are B A H F- E and B A H F/N, that
is to say, B and H together must logically imply E, but
must not imply N.

Many ILP-based systems have been developed, they
differ in the way to construct H. Our system employ
FOIL (17) as the learning agent since it has a good
performance in many aspects. The system FOIL uses a
top-down approach for constructing H. It constructs a
rule by appending predicates to the body of the rule
gradually. The selection of predicates is based on a
measure of information gain.

The action of FOIL is described below.
H i s empty. Select a new head literal x to learn, and let

a new Horn clause c be x.

1. Choose a literal y according to the conditions
described below.
(a) y and c must contain at least one common

variable.
(b) y has the maximum information gain correspond-

ing to c, i.e. it can contain the most positive
examples and the least negative examples.

2. Add y into the body of c.
3. If there are still negative tuples in this new clause, go

to 1, if not, add c into H.

Until H can explain all positive examples.
Once the input shapes have been transformed into the

form of logic rules, they are stored in a file. FOIL can
read the file and generate classification rules. Many
al ternat ive techniques in FOIL can improve the
performance of learning. For example, we can change
the type of each attribute in a predicate, the maximum
variable depth, etc. We can also permit whether to find
negated literals in a rule or not.

Moreover, the modification of the symbolic repre-
sentation can be made to meet the need of generating
more rules. For example, assume that uth contour and
vth contour belong to the same class, they can be
represented as S (u) and S (v) , or S (u , v) alone.
S (u) means that the uth contour belongs to the S
class. S (u , v) means that uth and vth contours are
the same class S. The former representation can make
FOIL run faster, but have few rules. The effect of the

latter representation is adverse. We will show this effect
in our experiment.

One limitation of the FOIL system is that when more
than one feature can tell positive examples from
negative ones, FOIL will only extract one of them. This
is because the design of FOIL is to classify two classes,
but not to describe their differences. To achieve our goal
for obtaining descriptive rules, we exclude those tuples
which coincide with the predicates that have been
learned again and again until all features are found. This
will also be shown in the next section.

4. EXPERIMENTAL RESULTS

Our experiment includes two sets. The first set
comprises 22 matchbox cars (see Fig. 1). These cars
are divided into two classes. The second set includes 14
spoons (see Fig. 3). The first eight spoons are western
style, and the rest are Chinese style spoons. Both data
are further divided into a training set and a test set. In
both experiments, we first used training data to learn,
then used testing data to verify whether the results are
correct and complete.

4.1. Experiment 1

We divided 22 cars into two classes according to the
size of their wheels intuitively: cars 1-14 are classified
as class 1, and the remaining cars belong to class 2. Also

Spoon 1 Spoon 2

Spoon 3 Spoon 4

f

L ,

Spoon 5 Spoon 6

Spoon 7 Spoon 8

_ _ 3 i

Spoon 9 Spoon i0

(I . _ _ j

Spoon 11 Spoon 12

\ . j 5
Spoon 13 Spoon 14

Fig. 3. Contour data of experiment 2.

A machine learning approach to acquiring descriptive classification ruIe 249

cars 2, 4, 6, 7, 8, 17, 19, 20, and 21 were selected as the
training set, and the rest are in the testing set.

We are interested in the effect of different representa-
tions on the learning result, therefore two different
forms are used in our experiment. Form I represents an
object using head C a r 1 (A) , it means that A belongs
to class 1; also C a r 2 (A) means that A belongs to
class 2. Form II uses C a r l (A , B) to represent
that A and B belong to the same class 1, and
C a r 2 (A , B) means that A and B belong to the
same class 2.

The results using form I is shown below. Our iteration
is a pass of the FOIL system. The time taken by each
iteration is also shown.

iteration 1 (0.6 s) :
Car2(A):-not(Carl(A)).
Carl(A):-not(Car2(A)).

iteration 2 (0.6 s):
Carl(A):- Have (A,B),

Tokenl(B,7),
adj(B,D,E).

iteration 3 (0.5 s) :
Carl(A) :- Have (A,B) ,

adj (B, C, langl) .

iteration4 (34.5 s) :
Carl (A) : - Have (A,B) ,

Adj (B, C, fang2).

After the first iteration, all predicates with form
C a r 2 (X) were removed from all rules in training
data, in order to find more classification characteristics.
The rule obtained in iteration 2 indicates that one
characteristic to tell class 1 from class 2 is a pair of
specific segments, as shown in Fig. 4. We delete
Token(X, 7) from training data. At the third
iteration, the characteristics found are shown in Fig. 5.
Similarly A d j (X , Y , l a n g 2) was deleted before
iteration 4. The characteristic found in the fourth
iteration is shown in Fig. 6. The learning algorithm is
not able to generate any rule after the fourth iteration. It
is obvious that the rules generated by FOIL are
consistent with our original classification based on the
sizes of wheels.

Y

>X

Fig. 5. One characteristic (in bold line) to classify class 1 and
class 2, discovered in the third iteration of learning in form I.

Y

I > X '\\ >

Fig. 6. One characteristic (in bold line) to classify class 1 and
class 2, discovered in the fourth iteration of learning in form I.

The result based on form II is

iteration 1 (0.8s):
CarI(A,B) .'-not(Car2(A,C)),

not(Car2(b,C)) .
Car2(A,B) :-not(Carl(A,C)),

not (Carl(B,C)) .

iteration 2 (56.7 s) :
CarI(A,B) :- Have(A,C),

Adj (C,D,E),
Have (B, F) ,
Adj (G,F,H) .

iteration 3 (30.5 s) :
Car2(A,A) :-Have(A,C) ,

Token2(C,13),
Tokenl (C,6).

iteration 4 (193.4s) •
Car2(A,B) :- Have(A,C) ,

Token3(C,9) ,
Adj (C,E, 0ang3) ,
Have (B,G) ,
Token2(G,9),
Adj (G, I, 0ang3) .

/ x

Fig. 4. One characteristic (in bold line) to classify class 1 and
class 2, discovered in the second iteration of learning in form I.

Similarly, some predicates were taken away after each
iteration in order to obtain more rules. Compared to
form I, the rules obtained in the second iteration have
already included all characteristics obtained using form
I. The third iteration did not generate any interesting
result and can be ignored. One more characteristic was
found in the fourth iteration, as shown in Fig. 7. As
indicated, learning using form II used much more time
than using form I.

250 JUI-CHI HSU and SHU-YUEN HWANG

X

f

Fig. 7. One characteristic (in bold line) to classify class 1 and
class 2, discovered in the fourth iteration of learning in form II.

We then used the rules learned for classifying testing
data, and the result was consistent. Another test is to
perform the same learning but using the testing data. We
found the consequent rules are the same as those
generated by using the training data.

4.2. Experiment 2

We first split 14 spoons into a training set and a
testing set. Spoons 1, 2, 3, 6, 9, 10, 14 are in the training
set, and the rest are in the testing set. As in experiment
1, two forms are used in this experiment. Form I is
S I (A) and S 2 (A) , while f o r m I I i s S l (A , B)
and S 2 (A , B) . They have similar meanings as in
Section 4.1.

The result using form I is

iteration i (0.2 s) :
SI(A) :- not(S2(A)) .
S2(A) :- not(Sl(h)) .

iteration 2 (
SI(A):-

0.4 s):
Have(A,B),
Tokenl(B,3).

Y

~ > X

the western s~yle spoon

Y

>X

the chinese style spoon

Fig. 8. The corresponding features in counter of the learning
result obtained in the 2ud iteration of experiment 2, form I.

After the first iteration, predicates in the form
S 2 (X) were taken away from all object's description.
The second iteration generated a classification char-
acteristic, as shown in Fig. 8.

The results using form II is

iteration 1 (0.2 s) •
SI(A,B) :- not(S2(A,C)) ,

not(Sm(B,C)) .
S2(A,B) :- not(Sl(A,C)) ,

not(Sl(B,C)) .

iteration 2 (9.0 s) -
SI(A,B) :- Have (A,C) ,

Tokenl(C,3),
Have(B,E),
Tokenl(E, 3) .

iteration 3 (16.9s) :
SI(A,B) :- Have (A,C) ,

Token2(C,17) ,
Adj (C,I,J),
Have (B,E) ,
Token2(E,17),
Adj (E,G,H) :

iteration 4 (18.1s) :
SI(A,B) :- Have (A,C) ,

Have(B,D),
Tokenl (C, 7) ,
Adj (C,F,G),
idj (D,H,G).

iteration 5 (172 s) :

iteration 6 (19.7 s) :
S2(A,B) .- Have(A,C),

Tokenl(C,2) ,
hdj (I,C,J),
Have (B,E) ,
Tokenl (E, 2) ,
Adj(G,E,H) .

iteration 7 (20.1s) :
S2(A,B) :-Have (A,C) ,

Have (B,D) ,
Token3(C,9) ,
Adj(C,F,G),
Adj (D,H,G) .

S 2 (X , Y) was excluded from all descriptions after
iteration 1. The second iteration obtained the same result
as the second iteration using form I. After T o -
k e n 1 (X , 3) was deleted, the third iteration gener-
a t ed ru l e s tha t c o r r e s p o n d to F ig . 8, then
T o k e n 2 (X , 1 7) was removed. The fourth itera-
tion generated a rule as shown in upper spoon of
Fig. 10, then T o k e n l (X , 7) was deleted. Note
that no rule was generated in iteration 5, so we removed
one more predicate S 1 (X , Y), in order to obtain the
description of class 2. Iteration 6 generated character-
istics shown in Fig. 9, then T o k e n l (X , 2) was
taken away. Finally, iteration 7 generated characteristics
shown in the lower spoon of Fig. 10. Similarly, much

A machine learning approach to acquiring descriptive classification rule 251

Y

~ * * , ~ _ ~ >x

the western style spoon

Y

>X

the chinese style spoon

Fig. 9. The corresponding features in counter of the learning
result obtained in the 3rd iteration of experiment 2, form II.

Y

~ >X

the western style spoon

Y

>x

the chinese style spoon

Fig. 10. The corresponding features in counter of the learning
result obtained in the 3nd and 4th iterations of experiment 2,

form II.

more time was consumed compared to the learning in
form I.

We followed the same procedure used in the first
experiment to check the consistency of training data and
testing data. The experimental results show that the
consistency exists. That is, the obtained rules using the
training data are the same as those using the testing data.

5. CONCLUSIONS

Experimental results demonstrated the capability of
our method on knowledge extraction from shape
contours. The generated rules reflect the properties of
contours that tell one class from the other, and are easily
understandable to humans. Our approach is rotation
invariant and noisy resistant. Using the principal axes
transform makes contours located in a consistent co-
ordinates, no matter how contours rotate. The smoothing
method eliminates the effect of noisy data.

Limitation of our approach are discussed below. First,
our method is not scale invariant. Second, if the features
used to discriminate different classes of objects are only
small sharp protrusions or indentations on contours,
these features might be filtered by the smoothing
method. Third, the kScurvature algorithm may not
segment the curvature faithfully. Lastly, while using
FOIL to learn, we have to assign some parameters to
FOIL. These parameters can change the type of each
attribute in a predicate, the maximum variable depth,
the appearance of a negated literal, the minimum
accuracy of any rule, e tc . In FOIL learning, these
parameters affect performance greatly. The values of
these parameters are assigned basing on our present
experience.

R E F E R E N C E S

1. D.S. Hogg, Shape in machine vision, Image and Vision
Computing 6(11), 309-316 (1993).

2. L. Jovanovid, Learning algorithm based on modified
structure of pattern classes, Proc. l l th IAPR Int. Conf.
Pattern Recognition, 487-490, (1992).

3. N. Katzir, M. Lindenbaum and M. Porat, Curve
segmentation under partial occlusion, IEEE Trans. Pattern
Anal. Mach. Intell. PAMI 16(5), 513-519 (1994).

4. N. Ueda and S. Suzuki, Learning visual models from
shape contours using multiscale convex/concave structure
matching, 1EEE Trans. Pattern Anal. Mach. lntell. PAMI
14(4), 337-352 (1993).

5. N. Ansari, Shape recognition: A landmark-based approach,
UMI Dissertation Services (1988).

6. P. Saint-Marc, H. Rom and G. Medioni, B-spline contour
representation and symmetry detection, IEEE Trans.
Pattern Anal Mach. Intell. PAMI 15(11), 1191-1197
(1993).

7. H. Rom and G. Medioni, Hierarchical decomposition and
axial shape decomposition, IEEE Trans. Pattern Anal.
Mach. Intell. PAMI 15(10), 973-981 (1993).

8. J.H. Connel and M. Brady, Generating and generalizing
models of visual objects, Artificial Intell. 3, 159-183
(1987).

9. H~ittich, W. H. Wandres, Automatic learning of structural
models for workpiece recognition systems, IEEE Trans.
Pattern Anal. Mach. Intell. PAMI 12(3), 279-281 (1990).

10. O. Fichera, R Pellegretti, E Roli and S. B. Serpico,
Automatic acquisition of visual models for image recogni-
tion, Proc. l l th IAPR Int. Conf. Pattern Recognition,
95-99 (September 1992).

1l. E Mokhtarian and A. Mackworth, Scale-based
description and recognition of planar curves and two-
dimensional shapes, IEEE Trans. Pattern Anal. Mach.
Intell. PAMI 8(1), 34-43 (1986).

12. R. C. Gonzalez and R. E. Woods, Digital Image
Processing, Addison-Wesley, Reading, MA (1992).

13. A. Rosenfeld and E. Johnston, Angle detection on digital
curves, IEEE Trans. Computers 22, 875-878 (1973).

14. E. Sannd, Identifying salient circular arcs on curves,
Computer Vision Graphics Image Process. 58(3), 327-337
(1993).

15. H. Shvaytser, Learnable and nonlearnable visual concepts,
IEEE Trans. Pattern Anal. Mach. Intell. PAMI 12(5),
459-466 (1990).

16. S. Muggleton, Inductive logic programming: derivations,
successes and shortcomings, SIGART Bulletin 5(1), 5-11
(1994).

17. R.M. Cameron-Jones and J. R. Quinlan, Efficient top-
down induction of logic programs, SIGART Bulletin 5(1),
33-42 (1994).

252 JUI-CHI HSU and SHU-YUEN HWANG

About the Au t ho r - - JUI -C HI HSU received a B.S. from Department of Computer Science and Information
Engineering, National Taiwan University in 1990, an M.S. from the Department of Computer Science and
Information Engineering, National Chiao Tung University in 1995. His research interests include Pattern
Recognition and Machine Learning.

About the Author - - SHU-YUEN HWANG is a Professor in the Department of Computer Science and
Information Engineering, National Chiao Tung University. He received B.S. and M.S. degrees in Electrical
Engineering from National Taiwan University in 1981 and 1983; and a Ph.D. degree in Computer Science from
the University of Washington in 1989. His current research interests include Artificial Intelligence, Computer
Simulation and Mobile Computing.

