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摘 要  

 

智慧型運輸系統（Intelligent Transportation Systems，ITS）利用道路資料與

路況資訊的即時傳遞，來增進道路運輸與車輛移動的效率，進而改善交通擁擠的

程度 ,並提高行車安全以及促進相關的經濟活動。車間通訊 (Inter-Vehicle 

Communication，IVC)為智慧型運輸系統發展的主流之一,其發展演進亦提供了許

多相關的應用。一個車間通訊網路可被視為一個行動隨意無線網路(Mobile 

Ad-hoc Network，MANET)的特殊形式，現有的MANET相關技術可直接引用於

這類型的網路。然而，由於此類網路拓撲具有快速變化的特性，使得舊有的繞送

協定(如 AODV)不再適用。 

 

我們應用泛送機制來發展新的繞送協定，本篇論文中具體的實驗及模擬結果

證實，應用泛送機制來繞送封包可以適應變化快速的網路。然而此機制先天上的

特性會導致重複傳送冗餘的封包及嚴重的封包脫序(Packets' out-of-ordering)問

題。我們嘗試在不影響行動效能的情況下，改善這些衍生的問題，並已獲得初步

的成果。 
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ABSTRACT 

 

Inter-vehicle communication (IVC) provides useful applications in future 

Intelligent Transportation Systems (ITS). An IVC network is a special case of 

mobile ad hoc networks (MANET) with high node mobility. Although various 

existent MANET technologies can be applied to an IVC network directly, 

traditional routing protocols such as AODV can not adapt to this 

rapidly-changing network. To address this problem, we designed and 

implemented a flooding-based data forwarding protocol. The practical 

experiments and simulation results in this thesis showed that the proposed 

protocol is suitable for IVC networks. However, the derived problems such as 

redundant and out-of-order packets affect the performances and efficiency of the 

protocol greatly. This thesis also proposes several improvements for those 

problems. 
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Chapter 1 Introduction 

1.1 Motivation 

ITS (Intelligent Transportation System) aims to provide travelers with a safer, 

more efficient, more comfortable trips. Its basic functions include instant traffic 

congestion notification, road condition information broadcasting, as well as 

emergency alert. Recently, ITS wants to provide network services to enable 

inter-vehicle communications (referred to as IVC) for exchanging information, 

sending/receiving emails and browsing web pages on the Internet, etc.  

IVC has become a popular topic in the ITS research community. It enables 

communications among vehicles without the support of an infrastructure network, 

such as the ones using 802.11 infrastructure-mode access points. Each vehicle is 

equipped with a wireless interface, and vehicles on roads dynamically form a Mobile 

Ad Hoc Network (MANET) with high mobility. In an IVC network each node 

(vehicle) may move at a wide range of speeds and in different directions. Therefore, 

an IVC network is featured as extremely high mobility, which introduces many 

challenges for designing a routing protocol.  

We have done lots of field trials with AODV (Ad-hoc On-demand Distance 

Vector Routing [1]) protocol on the highway and on the roads in downtown but found 

that such traditional routing protocols are not suitable for IVC networks. The topology 

of an IVC network changes rapidly so that the built paths in such a network are 

broken very easily. The results of these experiments exhibit that in a network with 
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universal mobility the available lifetime of a single-hop route is about 20 seconds, 

while that of a two-hop route is only around 4 seconds. As the result, the lifetime of 

routing paths in such a network is usually too short for data transmissions. Moreover, 

routes with three hops or more are almost not available in AODV.  

Traditional routing protocols repair broken routes based on the propagation of 

messages containing the correct, freshest routing information. However, when those 

messages are being propagated to reflect topology changes, the information they 

contain is very likely to be outdated due to the nature of the frequently changed 

network topology. To address this issue, we propose a new routing protocol to route 

packets based on the flooding technique. 

Flooding is featured as high reliability with minimized states so that it is suitable 

for high mobility networks. For this reason, we design and implement a new 

flooding-based data forwarding protocol to provide effective data transmission in IVC 

networks. 

Since audio and video applications are more and more popular, we characterized 

the demands and requirements of those two kinds of UDP-based applications, 

respectively, to provide them with the best services. Audio service applications 

generally need less bandwidth than video applications. However, the voice quality is 

very sensitive to the round trip times between the source and the destination nodes. 

On the other hand, video applications usually consume bandwidth of 40 KB/sec or 

more, but they may still generate acceptable video streams under a high packet loss 

rate. On the other hand, web services and text-mode communication services usually 

use TCP as the underlying transport layer protocol to protect their transferred data. 

Although TCP is sensitive to packet losses and thus its design is not suitable for the 
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wireless environment, using TCP for web accesses and text-mode services is still 

acceptable because the amount of transferred data in those applications is relatively 

small. FTP is another important network service, but transferring a large file in an 

IVC network is not a common case.  

To meet the requirements needed by these different applications, our proposed 

protocol has to provide bandwidths at least 50 KB for UDP. The maximum bandwidth 

achieved by our protocol is limited by that provided by the underlying network. 

Currently, we evaluate our protocol in field trials based on the IEEE 802.11b network, 

whose theoretical maximum bandwidth is 11 Mbps only. It is possible to increase the 

achievable bandwidth of our scheme by using more advanced wireless technology for 

the underlying network. For example, IEEE 802.11a/g networks provide 54Mbps 

bandwidths, which is much larger than that provided by IEEE 802.11b networks. 

1.2 Organization 

The remaining parts of this paper are organized as follows. We briefly introduce 

the famous routing protocols for MANET and the commonly used flooding 

techniques in Chapter 2. Chapter 3 depicts the architecture of the proposed 

flooding-based routing mechanism. Chapter 4 itemizes the detail of our protocol 

design. Chapter 5 discusses related issues about implementation. Chapter 6 presents 

the evaluation of the performances by both practical experiments and simulations. The 

discussions and future works are put in Chapter 7. Finally, Chapter 8 makes a short 

conclusion about our works. 
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Chapter 2 Related Work 

2.1 Routing Protocols on MANET 

Recently, numerous routing protocols have been proposed for MANET. Typically, 

they can be partitioned as two types: single-path routing and multi-path routing. 

Single-path routing protocols are divided into two groups, “table-driven” and 

“demand-driven” protocols. Besides, a multi-path routing protocol is normally a 

modification from one of single-path protocols. Moreover, there are some broadcast 

and multicast technologies used to deliver messages on a wireless environment. In 

this chapter, we discuss these related techniques and how they differ from our scheme. 

2.2 Single-path Routing Protocols 

Traditional routing protocols for MANET are generally categorized as 

“table-driven” or “demand-driven.” Table-driven routing protocols maintain routing 

information on each node and change messages to update these information 

periodically. On the contrary, demand-driven routing protocols keep no topology 

information on hosts until there is a requirement of communication. These kinds of 

protocols try to find a path only when a node wants to send packet out. Popular 

AODV (Ad Hoc On-Demand Distance Vector [1] ) routing protocol is one of typical 

demand-driven protocols. 

Table-driven (also called “proactive”) routing protocols are based on 

Bellman-ford’s shortest-path algorithm in substance. Each host in an Ad hoc network 



 5 

periodically changes messages, named hello messages, about their local information, 

e.g. the states of neighbors, the number of neighbors, and so forth. These messages 

occupy lots of limited bandwidth. DSDV (Destination-Sequenced Distance-Vector 

Routing Protocol [4] ) is the standard one of table-driven protocols. Famous 

table-driven routing protocols include DSDV and CGSR (Clusterhead Gateway 

Switch Routing), etc. 

CGSR derived form DSDV separates the whole network into two hierarchical 

architectures, the cluster head and the others. When a change occurs on a normal node 

or a gateway, there is no maintenance overhead. On the other hand, if a change 

happens on the cluster heads, the overhead will be higher then that of DSDV protocol. 

In IVC networks, because there is almost no fixed node and every vehicle can move 

out of scope of the network at any time, after applying CGSR to IVS network, it is 

hard to choose appropriate cluster heads. And CGSR is therefore not suitable for the 

IVC environments. 

Compare with table-driven protocols, demand-driven (also called “reactive”) 

routing protocols seem to adapt to speedy IVS network. They don’t need to maintain 

information about the whole network. The routing path is built only when there are 

packets waiting for routing. The overhead of a great deal of control packets is saved. 

However, because the life time of a built path is too short to be useful, these protocols 

are still not suitable for IVC networks. Famous demand-driven routing protocols 

include AODV and DSR [5]. 
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2.3 Multi-path Routing Protocols 

A multi-path routing protocol, such as GeoTORA [6], discovers multiple routing 

paths to forward data for higher reliability. Most of them are variations derived from 

single-path routing protocols. For example, [7] [8] [9] [10] are extended from AODV, 

[11] [12] are the extensions of DSR, and [13] is a variation that combines both to 

achieve multi-path routing. 

Although multi-path routing protocols are more adaptive than single-path routing 

protocols in high mobility networks, they suffer from the same problems in high 

mobility IVC networks, because the mechanisms behind them is similar to those 

behind single-path routing protocols. 

2.4 Flooding Techniques 

Flooding techniques are usually used to the research area of broadcast and 

multicast. While these studies focus on how to reach the most coverage by the least 

number of duplicated packets, our design apply it to forward data packets to a 

particular target. 

Some flooding techniques that need to exchange local information by control 

messages will meet the same problems we have mentioned in last sections. Others that 

don’t need the knowledge of neighboring nodes can be categorized to 

probabilistic-based, counter-based, distance-based, location-based, and cluster-based 

approaches The first three schemes may discard flooded packets with random 

probability or some predefined thresholds and rules. They have tradeoffs of the 
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coverage of a broadcast and the number of duplicated packets by configurable 

parameters, such as the dropping probability, the maximum number of rebroadcasts, 

and the maximum hop counts for a broadcasted packet, etc. It is difficult to fine-tune 

these parameters in IVC networks due to greatly frequent topology changes. 

Location-based techniques usually assume that the location information of 

neighbors is available. Although GPS (Global Positioning System) can be used to 

provide local position information, it is still a difficult task to get location information 

of the destination and other forwarders before starting packet forwarding. Besides, the 

GPS support is not available all the time; it needs additional equipments and may be 

influenced by the weather. Therefore, we suggest that the location information can 

only be regarded as an additional aid while implementing a routing protocol for IVC 

networks.  

Cluster-based schemes divide nodes in a network into three types: cluster head, 

gateway, and ordinary nodes. A cluster head is responsible for community inside a 

cluster, while a gateway delivers packages between clusters. Nodes except for cluster 

heads and gateways are called ordinary nodes. According to the adopted approaches 

of constructing clusters, cluster-based schemes can be classified into two groups: 

active-clustering and passive-clustering. Due to greatly high mobility in IVC 

networks, the procedures of electing a cluster head may be performed very frequently. 

Therefore, the protocols may spend most bandwidth on maintaining clusters and 

generate great latencies for data forwarding. Passive clustering carries the 

cluster-related information in data packets and doesn’t need to exchange additional 

control packets to maintain clusters. This scheme minimizes control message 

overheads but leads to a new problem of cluster head failures (or disappearances). 
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This problem becomes worse when the mobility of a network increases. Therefore, 

cluster-base techniques are not suitable for IVC networks, either. 

2.5 Discussion 

Because of power-consumption and bandwidth waste, table-driven protocols are 

not satisfactory for IVC networks. Demand-driven protocols have longer latency and 

can save bandwidth waste but still do not satisfy the requirement of high mobility in 

IVC networks. Multi-path routing protocols based on similar mechanisms with 

single-path protocols encounter the same problems. Flooding techniques are normally 

applied to research area of broadcast and multicast. The related issues can provide 

some hints and ideas to our study. 

By analyses of these related technologies, we can conclude that: to develop a 

routing protocol for IVC networks, a researcher might give up techniques of 

traditional MANET routing protocols and should consider the extremely high 

mobility condition  
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Chapter 3 Architecture 

3.1 A User-Level Routing Daemon 

The first issue of implementing a flooding-based routing daemon is to broadcast 

a unicast packet. Intuitively, developers can modify the functions of the IP layer in the 

kernel to add a broadcast IP header in front of the original packets. However, a 

platform-dependent implementation is not suitable for an IVC environment. Consider 

that an IVC network is composed of a variety of vehicles and even pedestrians with 

hand-held devices. All of the devices in an IVC network may have quite different 

architectures and operating systems. Besides, a platform-dependent solution may 

cause developers to spend much time and effort deploying this protocol to all devices. 

Therefore, we decide to build FloodingRD at the user space. The advantages of this 

approach are platform-independent, easy to implement and easy to debug, etc.  

 
Figure 1. The processing flows in the source, the forwarder, and the destination 

To capture packets from applications and prevent applications from knowing the 

existence of FloodingRD, the net filter technology inside kernel is used to redirect 

packets from the user level to our daemon. Figure 1 shows the processing flows in the 

source, the forwarder, and the destination.  
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At the source, a packet is injected into the kernel by the application and then 

transferred to the daemon at the user level by the net filter. FloodingRD will append 

information needed by the protocol design to this packet. After that, this packet would 

be broadcasted out. An IP header with a broadcast address makes every host that can 

hear this packet accept it and deliver it to the FloodingRD. After receiving a packet, 

the daemon will exam whether this packet is for the local host or not. If it is, the 

original unicast packet will be extracted and then injected into the kernel. The net 

filter inside the kernel recognizes the packet as a local packet and brings it to the 

target application. Otherwise, if the packet is not a local packet, the daemon will 

decide whether to broadcast it again according to the protocol design with present 

status and information. 

3.2 Two Overlapping Network Domains 

To make the net filter recognize the source of incoming packets more easily, the 

concept of two overlapping network domains is introduced into our scheme. The first 

domain used by applications is the original domain, while the second domain is set for 

FloodingRD. The net filter redirects packets with the first domain IP address from 

applications to FloodingRD. On the other hand, after processing the packets, 

FloodingRD re-send them by the second domain IP address to let the net filter pass 

them through.  
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Figure 2. The architectural view of packet processing at the source. 

Figure 2 shows the processes of delivering a unicast packet at the source node in 

detail. 1) Firstly, a data section is sent from an application into the kernel. Without any 

additional configuration, applications will use the original network domain naturally. 

Consequently, the IP layer encapsulates this data section with unicast IP addresses of 

the first network domain. Secondly, according to predefined rules, 2) this packet will 

be captured by the net filter and redirected into FloodingRD. And then, 3) the daemon 

appends a FloodingRD-specific header to this unicast packet. After some processes in 

FloodingRD, 4) this packet will be sent out as a UDP broadcast packet with the second 

domain IP address that makes the net filter pass it through. 

The appended specific header contains all information needed by the protocol 

design, such as the sequence number, the hop count information and IP address of the 

host which is the last one to broadcast this data packet out. Here the last host is 

definitely the source. After the packet begins its traveling around the network, the last 

host will be the last forwarder. The sequence number cooperates with the source 

address recorded in the IP header is used to identify a packet. According to this 
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information, FloodingRD will not accept the same packet more than once. 

There is another advantage of two overlapping network domains. Because the 

packets of the second domain are not affected by the net filter, we can use existent 

tools, such as the ping program, with the second domain IP address to check network 

condition and avoid the influence of net filter. This additional functionality is helpful 

to detect the network condition during the practical experiments. 
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Chapter 4 Design 

As we mentioned early, a flooding-based routing protocol has its advantages, 

especially when the network topology changes rapidly. However, this kind of routing 

protocols has their constitutional drawbacks that the protocol designers must 

overcome. In this chapter, we list the main difficulties for designing such a 

flooding-based routing protocol and then propose our solutions. 

Before our discussion, we define some terms used in this article. We call a 

mobile node, which generates a packet, a “source node”. And a mobile node is a 

“destination node” if it is the destination of the packets generated by a source node. 

The other hosts in the network are called “forwarders.” A forwarder may not actually 

forward a packet every time. But it has the responsibility and the opportunity to 

forward packets. Finally, a node is called “sender” if it sends/forwards a packet out. 

Any other modes which hear this packet are called “listeners.” 

4.1 Reliability Enhancement 

The IEEE 802.11 wireless network provides the reliable transmissions with a 

simple positive acknowledgement mechanism. In the IEEE 802.11 wireless network, 

every unicast data frame must be acknowledged, or the frame is considered to be lost. 

Every time a data frame is supposed to be lost, the 802.11 MAC protocol will 

retransmit the data frame again. The maximum retransmitted count is four for large 

packets and seven for small packets because small packets may meet collisions in 

higher probabilities. Moreover, in the IEEE 802.11 MAC protocol broadcasted 

packets are not protected by the positive acknowledgement mechanism. 
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Even though the designers want to implement protection mechanism in high 

level, it’s still impossible the figure out who should take the responsibility of 

answering the acknowledgement. Moreover, if every listener sends ACKs back, in a 

high-density network it inevitably leads to an “ACK implosion” problem and a large 

number of ACK frames may spend much valuable bandwidth. Therefore, the original 

retransmission scheme with ACK packets cannot take effect any more. This may 

degrade performance of upper-layer sensitive protocols, such as TCP. TCP decreases 

the size of the congestion window at the sender to half if a packet loss is detected. 

Without transmission protection, the performance becomes worse. To improve error 

toleration and protect these sensitive protocols, retransmission of a lost packet is 

necessary. For this, a protocol designer must provide other mechanisms instead of the 

ACKs to confirm whether a packet is transmitted correctly. 

Our mechanism regards packet forwarding as a kind of responsibility delivery. 

We make use of the packets forwarded by next forwarders to make sure whether the 

transmission is correct. If a destination receives a packet, it should send a one-hop 

ACK back to announce that there is unnecessary to retransmit this packet or forward it 

further. 

This method needs no additional ACK packets. Its drawback is that a sender 

cannot be aware of the success of the transmission immediately and must wait until a 

forwarder finishes processing of this packet. This delayed time will affect UDP 

throughput performance. Details will be depicted later. 
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4.1.1 Detail of Retransmission Queue 

Implementation 

“RetxQueue” is a retransmission queue introduced into FloodingRD for higher 

reliability. This queue preserves packets which are going to be sent and packets which 

were already sent but not acknowledged. Each packet would be marked with a waiting 

time. This time counts down until FloodingRD can make sure the transmission is 

successful. Otherwise, if the time goes down to zero, this packet would be sent again. 

The queue length is limited; if one packet is inserted into retxQueue and makes the 

queue exceed its length, this packet would be discarded.  

While implement such a queue some issues must be taken. Firstly, this queue 

should be separated into sub-queues by packets’ destination address to prevent HOL 

problem (Head-of-Line problem). Secondly, there are lots of technologies to raise 

efficiency by speeding up the movement of the queues. Sliding window can help this. 

After introducing the sliding window into retxQueue, the designer can use 

fast-retransmission to accelerate it. 

Separated retxQueue by Destination Address  

After adding retransmission functionality into FloodingRD, we observe a 

particular phenomenon: when a packet is delivered in a right direction, it will be 

transmitted faster than in a wrong direction. Figure 3 shows this fact. It is because the 

movement rate of retxQueue would be affected by processing speed of next forwarder. 

After sending a packet out, the sender will preserve this outgoing packet in retxQueue 

and wait for acknowledgement from destination or next forwarders. If the listener is 
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the destination, it will answer an ACK quickly to let the sender process next packet in 

retxQueue. On the other hand, if the listener is a forwarder, it takes longer time to wait 

for this packet to be forwarded out. However, if there is no next listener, the 

retxQueue on the sender will be blocked until this packet time out. Depending on the 

configuration of retransmission waiting time, the one-way greedy UDP throughput 

can be down to 10%. 

 
Figure 3. The direction of packets 

This phenomenon can help to reduce unnecessary forwarding and decrease waste 

of bandwidth. However, in some situation this may cause HOL problem 

(Head-of-Line problem). While retxQueue is blocked by a packet on its wrong way, 

other packets which belong to different destination behind this blocked packet should 

not be delayed. Therefore, we changed our earlier design and divided retxQueue into 

sub-queues by destination address of packets. 

The Sliding-window 

In earlier design, each time after sending a packet out from retxQueue, the 

daemon will wait for the acknowledgement back to send the next one. Since this 

method has lower efficiency, we introduce the concept of “sliding window” into 

retxQueue. 

“Sliding window” is a kind of flow control algorithm especially for network data 
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transfers. Famous TCP protocol uses it to enhance performance. It overlaps the 

waiting of acknowledgements and the transmissions of the following packets by 

transmitting at most the window-size number of packets at a time. 

Fast-retransmit 

Because of high packet loss rate, after implementing sliding window algorithm in 

retxQueue, the performance was still not good enough. To improve efficiency, fast 

retransmission mechanism was also implemented to cooperate with the sliding 

window algorithm. 

If a packet or packet’s acknowledgement is lost, the original sliding window 

mechanism must wait for timeout to start retransmission. However, in some 

conditions even though the waiting time is not finished, once acknowledges of other 

packets in sliding window come back, it can be predicted that this packet may be lost 

and the retransmission should be launched. This design is called “fast retransmission.” 

It is also applied to TCP protocol. 

Maintain Packets’ Ordering  

Re-ordering is an important problem in a flooding network. In our 

implementation, there is a mechanism used to sort incoming packets at destination. 

Moreover, because there are lots of queues inside FloodingRD preserve packets for 

different purpose, FloodingRD decrease probability of re-ordering by maintaining 

packets’ sequence in these queues. 
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While inserting a packet into retxQueue, FloodingRD will seek an appropriate 

position for this packet instead of inserting it at the end of the queue directly.  

De-retransmission Control Message 

Sometimes, the reason for starting a retransmission is because the following 

forwarding packet encounters collision rather than the sent packet is lost. However, 

after being retransmitted, the sent packet will be discarded as an invalid packet at the 

forwarder. To prevent retxQueue on the sender from being blocked by a successfully 

transmitted packet, the forwarder should send a message to stop this retransmission on 

the sender. These controlled messages are called de-retransmission packets. 

For implementation, the packet and the de-retransmission message contain 

information to identify the sender. This can prevent de-retransmission message from 

influencing regular forwarding of this packet. 

4.1.2 Parameters 

Table 1 lists the names and the brief descriptions of main configurable 

parameters in retxQueue. RQ_LENGTH defines the maximum length of retxQueue. 

RQ_WINDOW_SIZE means the size of sliding-window. RQ_FAST_RETX_THRES 

is the threshold for fast-transmission. If the number of returned ACKs reaches the 

threshold, the head of retxQueue will be transmitted directly. 

These default values may be changed depending on different environment. For 

example, if the CPU and NIC speed is slow or the traffic is heavy, packet processing 

time would get longer and RQ_RETX_TIMEOUT should be increased to extend the 
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waiting time for ACK. Finally, the last one, RQ_RETX_MAX_COUNT, limits the 

maximum number of times to retransmit a packet. 

RetxQueue Parameters 
Name Description 
RQ_LENGTH Queue length 
RQ_WINDOW_SIZE Sliding window size 
RQ_FAST_RETX_THRES Threshold of fast retransmission 
RQ_RETX_TIMEOUT Max wait time for ACK 
RQ_RETX_MAX_COUNT Max Retransmit times 

Table 1. Parameters of retxQueue 

4.1.3 Results 

To make sure our retransmission mechanism really works, we conducted a 

simple experiment to show how retransmission influences packet loss rate and 

throughput. Because this mechanism was designed for sensitive protocols, we chose 

greedy TCP to demonstrate the performance. In this section, we only list variable 

factors of these experiments. Details of experiment environment are listed in section 

6.2. Definitions of measure metrics are depicted in section 6.1. 

For comparing all functionalities, there are a lot of FloodingRD with different 

configurations to be tested in this paper. Table 8 in section 6.2.3 lists features of these 

daemons. There are three daemons used in this experiment. Firstly, the Basic daemon 

is a version without retransmission. Secondly, “R1” means retransmit lost packet only 

once. Lastly, R2 FloodingRD will have two opportunities to retransmit a lost packet. 

The topology is a chain network with 2 nodes to 5 nodes. 

Symbol Describe 
Basic No Retransmission 
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R1 Retransmit once 
R2 Retransmit twice 

Table 2. FloodingRD types used in TCP experiments 

 
Figure 4. The average TCP throughput in a chain network 

Figure 4 shows the relationship between throughput and retransmission times. 

When the number of nodes is more than three, TCP throughput will drop to zero. 

Actually, the situation is not so bad in three-node cases. TCP traffic has about 20 

Kbytes throughput at first 5 or 15 second. However, once the throughput drops, it will 

never rise again. With retransmission, the throughput sometimes falls; however, it will 

go up sooner or later.  

Figure 5 shows relationship between packet loss rate and retransmission times. 

According to these experiment results, retransmission indeed protects TCP traffic. 

Besides, increasing the maximum times of retransmission can’t reduce the packet loss 

rate more. 

The packet loss rate rises abnormally in three-node cases. This unnatural 

condition can be repeated in simulations. 
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Figure 5. Average packet loss rate under greedy TCP traffic 

4.2 Redundancy Reducing 

Because of inherent drawbacks of flooding mechanism, large number of 

redundant packets is always a serious problem. There are lots of technologies 

proposed for limiting flooding packets. Some of them have been discussed in Chapter 

2. However, almost all these technologies maintain status of other nodes and need 

additional control messages to exchange neighbor information such as related position 

or interval hop counts. Although additional information is really helpful for reducing 

redundant packets, our daemon that aims to reach high mobility should not depend on 

these mechanisms. Therefore, the designers have to solve this problem by another 

way.  

When a FloodingRD is going to forward a packet, it takes a randomized value 

within a predefined range as the extra delay time. During this extra delay time, the 

daemon cancels the forwarding of this packet if it perceives a duplicate by one of the 

neighboring nodes. Because the extra delay is a randomized value that is only 

performed on forwarding packets, the designers call this period a “forward-random 

delay.” 
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For implementation, we add a queue to FloodingRD for extra delay. The 

designers call this queue a “forward-wait queue”, referred to as fwwQueue. As we 

mentioned earlier, the destination will answer an ACK for terminating the forwarding 

of a packet. To prevent forwarders from sending unnecessary packets before receiving 

this ACK, FloodingRD will delay a forwarding packet for a fixed time to see if 

whether the destination received the same packet. This period, named “forward fixed 

delay”, is also carried out by fwwQueue.  

The details about implementing fwwQueue are put in next section. At the end of 

this portion, there are some experiment results about the performance of extra random 

delay. 

4.2.1 Detail of Forward-wait Queue Implementation 

Basic Scheme 

For intuition, fwwQueue can be implemented as an aging and sorted queue. Each 

forwarding packet associated with an extra delay time is inserted into sorted 

fwwQueue according to the value of the time tag. Every time unit, fwwQueue 

decreases each packet’s waiting time tag. Once a packet’s time is counted down to 

zero, FloodingRD takes this packet out for further processing. 

In Order Forwarding  

However, this intuitional method will generate lots of out-of-order packets. To 

keep the sequence of incoming packets but also make them have different delay time, 
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when a packet is inserted into the queue we let packets change their waiting time tag 

according to packet’ sequence number.  

Figure 6 gives a simple example. Packet No.5 with 7 ticks waiting time is 

inserted into fwwQueue. During the insertion, it meets packet No. 4 with remaining 8 

waiting ticks. After exchanging the waiting time tag with packet No. 4, packet No. 5 

has 8 waiting ticks and would be sent out after packet No. 4. And then, it meets packet 

No. 6. Packet No. 5 should be inserted between packet number 4 and packet number 6, 

because its waiting time is shorter than packet No. 6’s. There is no need to change 

wait time tags further.  

 
Figure 6. An example of inserting a packet into fwwQueue 

4.2.2 Parameters 

Because the extra delay time is an absolute protocol overhead, they should be 

minimized as much as possible. The parameters related to fwwQueue are listed in 

Table 3. FW_FIXED_DELAY is used to wait for ACK packets sent from destinations. 

FW_RANDOM_DELAY defines the range of random delay that is used by 
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forwarders to compete with each others. The total delay time can be computed as 

follows: 

Extra Delay Time =  
FW_FIXED_DELAY + random() % FW_RANDOM_DELAY 

FwwQueue Parameters 
Name Description 
FW_FIXED_DELAY For waiting ACK from destinations 
FW_RANDOM_DELAY For competing with other forwarders 

Table 3. Parameters of fwwQueue 

4.2.3 Results 

We designed a simple experiment to test the performance of forward-random 

delay. The topology is shown in Figure 7. There are three forwarders between the 

source and the destination. The traffic type is greedy UDP. Four daemons with 

different configuration are tested in this scenario. The briefs of these daemons are 

listed in Table 4. Configuration details are listed in section 6.2. 

The daemon Basic has been used in last experiment in section 4.1.3. The daemon 

F enables forward-random delay while the daemon RF enables both forward-random 

delay and retransmission mechanisms. The daemon AT is a FloodingRD with ability 

of turning parameters automatically. The name of this daemon means “Auto Tuning.” 

In this scenario, technology Auto Tuning lets the forwarders compete with each others. 

After one of them overtakes the others and takes the responsibility to forward packets, 

the other two forwarders will be silenced. Concept and design of “Auto Tuning” is 

described in section 4.5. Here readers can simply regard the daemon AT as a 

FloodingRD which has ability to reduce redundancy but without extra delay overhead.  
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Figure 7. Topology 

Symbol Describe 
Basic Disable all functionalities 
F Enable forward-random delay 
RF Enable forward-random delay and retransmission 
AT Turning parameters automatically 

Table 4. Types of FloodingRD 

Figure 8 illustrates comparison among these four daemons about UDP 

throughput while Figure 9 shows the condition of redundancy. Daemon F applied 

forward-random delay but doesn’t reduce the redundancy. Because the configuration 

was set for daemon RF, 40 ms as FW_RANDOM_DELAY for daemon F was not 

enough to cancel transmission on other forwarders.  

Although daemon RF can reduce redundancy, its UDP throughput was the lowest. 

Because of the high collision probability, UDP throughput suffered from 

retransmission mechanism. When the value of RQ_RETX_TIMEOUT got longer, 

FloodingRD should wait longer for a lost packet and the circumstance would become 

worse.  

Here we provide two related experiment result as contrasts to Figure 8. Daemon 

Basic can get average throughput of 177.60 Kbytes/s under the same environment 

without additional forwarders, while daemon AT can reach 226.65 Kbytes/s. 

According to these experiment results, we can conclude that Auto Tuning indeed 

reduce redundancy and the additional overhead. 
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Figure 8. UDP Throughput 
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Figure 9. UDP Redundancy  

4.3 Reduction of Small Packets 

In earlier research, we found that large number of control messages would 
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decrease throughput of whole system. To reduce the influence of these small packets, 

the designers merged these small packets with large data packets or combined them 

together into a large one.  

Although our early study proved its potency, to minimize variable factors during 

developing period, this functionality has been disabled for a long time. 

4.4 Issues about Parameters 

4.4.1 Components Overview and Relationship 

between Parameters 

Before discussing about the parameters, the overview of components and 

relativity among them should be given firstly. As shown in Figure 10, there are two 

kinds of data packets: the packets from other hosts are “forwarded packets,” while the 

others are called “local-out packets.” In addition to data packets, there are control 

messages transferred in our system. At present there are only two types of control 

message: de-retransmission message and ACK packets.  
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Figure 10. The overall structural view inside FloodingRD 

Forward-wait Queue delays forwarded packet for waiting ACK packets from 

destinations and preserves them for a random period for redundancy reduction. 

Because local-out packets need not be applied extra delay, they will be put into 

retxQueue immediately.  

RetxQueue is responsible for retransmitting lost data packets. Users can 

configure its length and the maximum retransmission times as well as the period for 

waiting ACK packets. This functionality is designed for sensitive protocols, such as 

TCP. However, throughput of greedy UDP will suffer from the waiting time of lost 

packets. Increase of retransmission times (RQ_RETX_TIMES) and extension of 

waiting period (RQ_RETX_TIMEOUT) influence greedy UDP throughput seriously. 

Fortunately, according to experiment results shown in section 4.1.3, retransmitting 

lost packet once is effective. Moreover, doubling retransmission times can not 

improve TCP performance further.  

The minimum valid value of RQ_RETX_TIMEOUT is mainly affected by 

processing time of the next host. The related factors are operating speed and other 

parameter configurations of FloodingRD. The operating time of a machine is 

influenced by CPU speed, NIC efficiency, and the traffic load as well. Parameters that 

influence how long FloodingRD would preserve a packet include forward-fixed delay, 

forward-random delay, length of retxQueue, size of sliding window and other 

retransmission configurations. Packet loss rate can also influence 

RQ_RETX_TIMEOUT. High packet loss rate will slow the movement of retxQueue, 

make the daemon keep a packet longer and indirectly affect the former hosts. 

Generally speaking, collision probability rises while the traffic becomes heavier. 
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Extending the length of retxQueue and the window size may adapt FloodingRD 

to high-variant traffic. But now there is no practice experiment result to certify this. 

Moreover, increasing these parameters will decrease greedy UDP throughput. 

At the bottom, there is a “Merger” used to merge small packets into a large one. 

This functionality is disabled for a long time. RQ_RETX_TIMEOUT must be 

extended for this functionality, because the merger will preserve packets for a short 

time. 

4.4.2 How to Decide the Value of a Parameter 

There are two methods to decide the value of a parameter. One is to evaluate it 

directly by practical experiments, and another is to deduce it by other related 

parameters’ values and the logical relationship between them. Although practical 

experiments can reach an accurate result, the perfect settings would lose efficacy after 

environment changed. Theoretical values can help developers to discover faults inside 

implementation. If there are conflicts between the practical results and the logical 

values, developers must examine the design and implementation carefully. 

4.4.3 Recommended Value for Main Parameters 

Table 5 lists proposed values of main parameters. Settings of fwwQueue are 

evaluated by practical experiments under greedy UDP traffic. Configuration of 

retxQueue considers both UDP traffic and TCP traffic. RQ_RETX_TIMEOUT is a 

logical value inferred by the setting of other parameters. The time unit is millisecond. 

Parameter Value Parameter Value 
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RQ_LENGTH 5 RQ_RETX_MAX_COUNT 1 
RQ_WINDOW_SIZE 3 FW_FIXED_DELAY 8 
RQ_FAST_RETX_THRES 2 FW_RANDOM_DELAY 40 
RQ_RETX_TIMEOUT 80  

Table 5. Reference value of main parameters 

4.5 Tuning Parameters Automatically 

4.5.1 Introduction 

As aforementioned, the performances of a network are influenced by many 

factors, including the hardware properties, the network load, as well as the values of 

various system parameters. Automatically adjusting system parameters according to 

the network conditions usually results in better performances than fixing values of 

those system parameters. Such a technique is called “Auto Tuning.” At present, Auto 

Tuning can tune the retransmission waiting time to an appropriate value dynamically 

and prevent unnecessary extra forward delays.  

4.5.2 Appropriate Retransmission Waiting Time 

FloodingRD makes use of forwarded packets from intermediate nodes and ACK 

control messages from destination nodes as acknowledgements of transmitted packets. 

If the next hop of a packet is the destination node for that packet, the RTT (Round 

Trip Time) will become smaller because the time to transmit an ACK message is 

shorter than that to send a data packet. Here RTT is defined as the time from the 

transmission of this packet to the arrival of its acknowledgement. The measured RTT 

for a packet is helpful to select an appropriate value for the system parameter, the 

retransmission waiting time. 
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According to the analyses of the experiment results, we select the double time of 

RTT as the basis of RQ_RETX_TIMEOUT. A small constant value is added to 

prevent from unnecessary retransmissions. For a node, the measured RTT of a packet 

is updated each time when its corresponding ACK returns. 

4.5.3 Reasonable Forward-delay time 

Section 4.2 describes how an extra forward delay helps reduce redundancy. The 

forward-fixed delay is used to prevent forwarders from sending unnecessary packets 

that can be canceled by ACK messages from the destination node. However, this 

delay time is purely an overhead for the forwarders far away from the destination 

node. Similarly, the forward-random delay is also unnecessary for forwarders that 

have no contenders aside them.  

Figure 11 shows a simple topology that depicts all kinds of situations for 

forwarders. The light-blue nodes marked with “S” or “D” stand for the source and the 

destination nodes, respectively. Other nodes marked with different numbers represent 

different types of forwarders. FloodingRD in a forwarding machine analyzes 

incoming packets and messages during a unit period (currently, the unit period is set 

to one second) to decide which type of forwarders it is. Note that a FloodingRD may 

play different types of forwarders for different connections that have different source 

and destination nodes, individually. As such, a forwarder is able to apply reasonable 

extra forwarded delays to packets that to be forwarded based on which forwarder type 

it is for a connection. 
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Figure 11. A simple topology to show different types of forwarders 

Type-1 nodes represent forwarders that are in the direction opposite to the 

destination node. There is a common feature among these nodes: the rate of the 

successful packet forwarding is less than other types of nodes. On these nodes, 

retxQueue would be blocked and therefore reduce the waste of bandwidth. More 

bandwidth can be further saved by extending FW_FIXED_DELAY to aggravate the 

blocking of retxQueue. Rather than cancel all transmissions on these forwarders, this 

method consumes little bandwidth but recovers regular functionality more quickly. 

A type-2 node stands for forwarders who should not apply any extra forward 

delay since the destination node is far away from it, and there is no other forwarder 

nearby.  

Type-3 forwarders can notice the existence of each other by receiving duplicate 

forwarded packets. If another nearby forwarder exists, these adjacent forwarders 

begin competing the forwarding of a packet. Firstly, each one selects 

FW_RANDOM_DELAY in a predefined range. Then, the forwarder with smallest 

random delay will cancel the forwarding of others and become the winner who takes 

the responsibility for forwarding the packets and sets the FW_RANDOM_DELAY to 

zero. Other forwarders have to cancel their forwarding after hearing the forwarding by 

the winning forwarder and maintain the FW_RANDOM_DELAY value until the 

situation changes. The response time after a change of the environment is about two 

to four seconds. 
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Type-4 nodes are the nodes that are next to the destination node. A type-4 node 

has to apply the fixed delay to wait for the acknowledgements of the forwarding 

packets. If it detects that the fixed delay is not long enough, the delay time should be 

extended. 

Because determining the forwarder type of a node must collect the required 

information during a unit period, the reaction time is not as instant as the former one. 

Besides, since the measurement of those RTTs require the transmissions of data 

packets and their acknowledgements, Auto Tuning mechanism may not work well 

when the network traffic load is low. However, under this situation the problem of 

redundant packets is not severe. 

4.5.4 Results 

We have shown how Auto Tuning changes parameter settings to adapt to the 

network conditions in the experiment results shown in section 4.2.3. The results 

presented in this section are the integral improvements of the performances, such as 

greedy UDP throughputs, TCP throughputs, and latencies.  

Table 6 lists FloodingRD with different configurations used in these experiments. 

The RF daemon is provided as a contrast, which enables all functionalities with fixed 

parameter settings. The AT_RTT daemon modifies RF to determine the waiting period 

for an ACK (by the parameter RQ_RETX_TIMEOUT) dynamically. AT_FFD 

determines the value of FW_FIXED_DELAY by the number of ACK packets from 

the destination node. The AT_FRD daemon extends the value of 

FW_RANDOM_DELAY by detecting the existence of other forwarders aside it. The 

AT daemon enables all functionalities described above. 
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Symbol Describe 
RF Enable forward-random delay and retransmission 
AT_RTT Decide the waiting period for an ACK dynamically 
AT_FFD Decide the value of FW_FIXED_DELAY automatically 
AT_FRD Decide the value of FW_RANDOM_DELAY automatically 
AT Enable all Auto Tuning functions 

Table 6. Types of FloodingRD 

Because Auto Tuning can change the value of RQ_RETX_TIMEOUT to fit the 

requirements of different network environments, the value of this parameter is 

reduced to be 40 instead of the original value 80. However, this value is similar to that 

used by AT_RTT, and the performances of daemon AT_RTT are therefore similar to 

those of daemon RF.  

Figure 12 presents the average throughput for greedy UDP connections in a 

chain network with 2 nodes to 5 nodes. In 2-node cases, only the AT_RTT and AT 

daemons raise the throughput performance. Because the extra forward delay 

mechanism only takes place on forwarders, it can not provide any improvements 

when no forwarders exist in 2-node cases. Generally, the reduction of the values for 

the FW_RANDOM_DELAY parameter can improve the average throughput more 

than that for the RW_FIXED_DELAY parameter. Besides, the AT daemon can double 

the average throughput in 3-node cases. These improvements become less and less 

significant while the number of nodes increases.  

Intuitively, these mechanisms only decrease the latencies; how can they improve 

the greedy UDP throughput? It is because the processing time of the next-hop node 

postpones the moving speed of the retxQueue and therefore influences the UDP 

throughput. Besides, the UDP throughput is also limited by the retransmission waiting 

time for a lost packet or a missed per-hop ACK. After enabling all functionalities of 
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Auto Tuning, the RTT time will be decreased by taking off the extra unnecessary 

forward delay overhead, and the retransmission timeouts can therefore be reduced 

further and raises the UDP throughputs. 
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Figure 12. Average UDP throughput to compare functions of Auto Tuning 
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Figure 13. Average Latency under one-way greedy UDP 

Figure 13 presents the measured latencies in the same experiment settings with 

Figure 12. These results prove that Auto Tuning functionalities indeed reduce the 

latencies. On the other hand, the results also provide an evidence of the relationship 
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between latency and UDP throughput in our scheme. We can observe that the daemon, 

which can reduce latency, can raise UDP throughput as well. 

The average RTT time is measured on the source node. Figure 14 organizes these 

data in the same experiment settings and provides another evidence of the relationship 

between latency and UDP throughput. 
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Figure 14. Average RTT time at the source under one-way greedy UDP 

Figure 15 illustrates the average TCP throughputs in the same topology. Unlike 

UDP, the throughput of TCP is limited by the protocol design rather than our 

retransmission scheme. Therefore, the reduction of latencies influences TCP 

performance slightly. 
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Figure 15. Average TCP throughput in a chain network 



 38 

Chapter 5 Implementation 

Our system is built on Linux platform. Chapter 3 has described the architecture 

of our scheme. The related issues and the existing technologies used for 

implementation are given here.  

5.1 Packet Filter 

There are lots of existent net filter technologies for the packet redirection. 

“Netfilter” in Linux and “divert socket” in FreeBSD are both famous tools to intercept 

the desired packets. Generally, a net filter is used to build the internet firewalls or to 

apply the translation of network address and port (NAT). We used netfilter and related 

technologies such as iptables and libipq library to intercept the packets passed by the 

kernel.  

Netfilter and iptables are building blocks of a framework inside the Linux 2.4.x 

and 2.6.x kernel. Netfilter can be considered as a set of hooks inside the Linux kernel 

that allows the kernel modules to register callback functions with the network stack. 

Iptables provides a set of commands as an interface between user and netfilter. Users 

can use iptables commands to tell netfilter what to do with the passing packets. 

Netfilter may buffer packet a special queue, and libipq is a development library that 

helps users to get the packets from this queue. 

These iptables rules should be configured carefully or the packets may be looped 

between the kernel space and the user space. Therefore, the concept of two 

overlapping network domains is introduced into our scheme to simply the settings. 
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The following example is the configuration that we used on Linux for the field trials.  

iptables -N flood_buffer 
iptables -A OUTPUT -d 1.0.1.0/24 -j flood_buffer 
iptables -A flood_buffer -d ! 1.0.1.n -j QUEUE 

Our experiments took the subnet 1.0.1 (netmask 0xffffff00) as the original 

network domain and added a new subnet 1.0.2 for FloodingRD. The number “n” is an 

identified id of a host. The first rule defines a new queue named flood_buffer. The 

second rule lets all normal unicast packets be placed in flood_buffer queue. Finally, 

the last rule inspects the packets in flooding_buffer queue. If a packet is for the local 

host, it will be passed through to avoid infinite loops. Other packets will be collected 

into a predefined queue provided by Netfilter, and FloodingRD can receive packets 

from this queue by the functions defined in libipq library. 

To make a NIC receive or send packets with two different network subnets, a 

common technology, “IP aliasing”, is used to configure the NIC with two IP addresses. 

Typical uses of IP aliasing are virtual hosting of Web and FTP servers and 

reorganizing servers without having to update any other machines. The following 

commands can make a NIC simultaneously receive packets from 1.0.1.x and 1.0.2.x. 

ifconfig wlan0 inet 1.0.1.n netmask 0xffffff00 
ifconfig wlan0:0 inet 1.0.2.n netmask 0xffffff00 

5.2 Limitations of Current NICs 

To be backward with earlier 802.11 products, the broadcast transmission rate is 

fixed at 2Mbps rather than 11Mbps for unicast packets. This feature limits the 

maximum throughput of our scheme. To enhance the transmission rate of broadcasts, 
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some modifications for the drivers of NICs are required. Fortunately, there are still 

some NICs that provide the ability for configuring the transmission rate for broadcast. 

Thanks to the existence of this kind of NICs, we can save efforts to modify the 

drivers. 
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Chapter 6 Performance Evaluation 

Functionalities of FloodingRD and their efficacy have been demonstrated in 

Chapter 4. However, these experiment results are generally for a specific purpose. 

What we want to present in this chapter are the integral performances, such as the 

maximum throughput, the latency and the packet loss rate for different traffic types.  

At the beginning, an introduction of various performance metrics is given. 

Section 6.2 briefs the environment of these experiments. Section 6.3 shows the 

practical results. Because the circumstances of large scale networks are hard to get by 

real experiments, simulation is used to help us observe the operation of our scheme in 

large networks. The related results are given in section 6.4. At the end of the 

simulation section, there is an evidence for the ability of FloodingRD to get adapt to 

high mobility environments 

6.1 Performance Metrics 

While developing a routing protocol, how can we judge it is good or bad? What 

are the important features of a good routing protocol? Here we define some 

performance metrics by that we can quantify and measure the efficiency of a routing 

daemon. These metrics include the average throughput, the packet loss rate, the 

end-to-end latency as well as the redundancy degree, etc.  

6.1.1 Throughput 

The traffic generators normally record incoming throughput per second, and 



 42 

write these records into a log file. By analyzing these log files, we can get the average 

throughput easily.  

6.1.2 End-to-End Latency 

Latency is defined as the period from the time a packet is sent out from the 

source and the time it is received by the destination. A short latency is required by 

video and audio communication services. The stg/rtg programs, a pair of traffic 

generators, record the delay time of each received packet. However, this mechanism 

needs to synchronize the system time on the source node and the destination node. 

Even after correcting the system time on hosts by time services, the difference 

between each host is still too large to provide accurate latency time.  

We exchange the role of the two end hosts and record packet latencies twice. By 

averaging these two recorded values, the latency can be measured precisely. 

6.1.3 Packet Loss Rate 

Each packet passed by FloodingRD is marked with a sequence number. This 

number can be used to calculate the packet loss rate: 

($lastSnum - $valid_packet) * 100 / $lastSnum) 

The $lastSnum means the sequence number of the last received packet, and the 

$valid_packet is the total number of valid packets. A packet is a valid packet if it is 

received for the first time; otherwise, this packet is regarded as a redundant packet. 

When the packet loss rate gets extremely high, this approach becomes inaccurate. 
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6.1.4 Redundancy Degree 

The redundancy degree is defined as follow: 

($packet_count - $valid_packet) * 100 / $packet_count) 

The $valid_packet is defined in the last section. The $packet_count is the 

total number of received packets. Under an unfavorable condition, the redundancy 

degree may exceed 100%. 

6.1.5 End-to-End Re-ordering Degree 

We record the end-to-end re-ordering degree by the processes as follow: 

if($c_snum < $snum ){ 
 $c_snum = $snum; 
}else{ 
 $difference = $c_snum - $snum; 
} 

The $snum is the sequence number of each received packet, while the $c_snum 

stands for the current accepted sequence number. The $c_snum is updated by an 

incoming packet that has a larger sequence number. Once a valid packet with a less 

sequence number arrives, the difference between the $c_snum and the $snum will be 

recorded.  

After collecting the difference values, the re-ordering degree can be calculated as 

follow:  

re-ordering degree = √( Σ( $difference )2 / $valid_count ) 
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The $valid_packet is the total number of valid packets. 

6.1.6 Mobility 

Unlike average throughput or end-to-end redundancy degree, mobility is hard to 

be quantified. However, by analyzing the snapshot of TCP throughput under high 

speed environment, we can still prove that FloodingRD has the ability to overcome 

the topology which changes rapidly and frequently.  

Section 6.4.4 demonstrates the TCP performance reached by FloodingRD under 

a high speed environment. 

6.2 Experiment Environment 

6.2.1 Hardware and Software 

Table 7 lists hardware and software used in real experiments and simulations. 

These 802.11b NICs can be configured to broadcast packets at transmission rate of 11 

Mbps. Because the performance results about large scale topology are hard to get by 

practical experiments, we therefore use NCTUns network simulator [22] to observe 

the behavior of our protocol in large networks.  

Hardware 
Machine IBM ThinkPad laptops A30/A31 
NIC 802.11b NIC 

Software 
Operation System Linux with kernel version 2.6.7/2.6.9 
Traffic Generator (1) stg/rtg (A pairs of traffic generators 
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packaged with NCTUns) 
(2) ttcp 

Routing Daemon FloodingRD 
Simulator NCTUns 2.0 

Table 7. The hardware and software used in experiments 

6.2.2 Traffic Type 

We chose one-way greedy UDP, two-way greedy UDP, and greedy TCP traffics 

to validate the performance of FloodingRD. Because the TCP traffic is naturally a 

kind of two-way traffic, it is not necessary to test our daemon with two TCP traffics.  

The two-way UDP traffic type lets two nodes in the network send packets to each 

other. By observing the behavior of the two-way UDP, we can look into the traffic 

condition of the TCP links. Because TCP is a sensitive and complicated protocol, to 

detect error with the TCP traffic is a hard work. If some mistakes damage the two-way 

UDP traffic, we can conclude why the TCP traffic can’t work in the same environment 

and then try to solve the problem. 

6.2.3 FloodingRD Configuration 

The parameter settings of FloodingRD are almost the same with Table 5. The 

only difference is that the RQ_RETX_TIMEOUT is changed to 40. Because Auto 

Tuning can modify this parameter according to the circumstance of network 

environment, we need not choose a large waiting time that damages the UDP 

performance.  

Besides, for observing how the performance is influenced by different 

functionality, there are lots of FloodingRD with different configuration used in 
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various experiments and simulations. Table 8 lists the details and differences among 

them. 

The first column of Table 8 is the name of each FloodingRD, and the 

functionalities are listed at the top of the table. “FFD” means the value of 

FW_FIXED_DELAY, while “FRD” means the value of FW_RANDOM_DELAY. 

“Retx Times” is the configured maximum retransmission times. Functionality 

“AT_RTT” enables a daemon with the ability to change retransmission waiting time 

dynamically. Function “AT_FFD” and “AT_FRD” adjust the value of 

FW_FIXED_DELAY and FW_RANDOM_DELAY respectively. 

Functionalities 
Name 

FFD Retx Times FRD AT_RTT AT_FFD AT_FRD 
Basic 8 0 0    

R1 8 1 0    
R2 8 2 0    
F 8 0 40    

RF 8 1 40    
AT_RTT 8 1 40 On   
AT_FFD 8 1 40  On  
AT_FRD 8 1 40   On 

AT 8 1 40 On On On 
Table 8. FloodingRD with different configuration used in experiments 

 The Basic daemon that has no additional functionality but the overhead of 

forward-fixed delay is provided as a contrast. The daemon R1 and R2 was used to 

prove how retransmission protects TCP traffic in section 4.2.3, while the daemon F 

was used to show the efficiency of forward-random delay in section 4.3.3. The 

daemon RF includes all basic functionalities and it also acts as a contrary to Auto 

Tuning related daemons. A series of daemons enable each independent Auto Tuning 

mechanism. Finally, the daemon AT enables all functions of Auto Tuning. 
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6.3 Real Experiments Result Analyses 

We have seen some experiment results in earlier chapters, what we want to 

present here are the overall performance, such as the maximum throughput, the 

condition of latency and the packet loss rate under different type traffic. 

These performance results are influenced by many factors. For example, the 

longer distance between each host raises the packet loss rate. Besides, physical 

barriers and invisible interference also affect the result. To minimize these external 

variable factors, we put experimental machines together and then divide them by 

iptables commands. Net filters only allow specific packets pass through and other 

packets are discarded at IP layer. By these commands, the developers can design and 

build different network scenarios to test each mechanism of FloodingRD just like 

what we have done in Chapter 4. The network scenario for the experiments in this 

chapter is illustrated in Figure 16. 

Although iptables commands benefit the processes of protocol improvement, the 

resulted environment differs from the same topology of real world. Because the 

packets are filtered at IP layer, the behavior of physical layer is completely different. 

Besides, after taking away the obstacles and shorting the distance between hosts, the 

evaluated performance will be better than what we can get from the real world. 

Therefore, the results presents here can only be regarded as reference values. 
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Figure 16. The scenario built up by net filters 

Table 9 lists details of experiment settings. The topology built by iptables 

commands can be seen as a chain network. One-way greedy UDP, two-way greedy 

UDP as well as greedy TCP are tested in this scenario.  

Experiment Settings 
Number of Nodes 2 nodes to 5 nodes 
Topology A chain network 
Traffic  Greedy UDP, 2-way Greedy UDP 

Greedy TCP 
FloodingRD Type RF, AT 

Table 9. Settings of real experiments 

6.3.1 Throughput 

Figure 17 and Figure 18 illustrate the average throughput performance of the RF 

and AT daemons respectively under one-way and two-way greedy UDP. The result of 

two-way UDP throughput is the sum at both end hosts. Normally, the two UDP link 

share the bandwidth equally, and the total throughput should be the same with 

one-way throughput that engages whole obtainable bandwidth. However, what shown 

in Figure 17 differs from this. 

In experiments with the daemon RF, the one-way UDP throughput is less than 
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two-way UDP traffic. Because in these cases the UDP throughput is mainly limited by 

retransmission mechanism, and the long retransmission waiting time makes the 

retxQueue being constantly blocked by lost packets. We can imagine that these queues 

are like narrow tubes that limit the number of passed packets. Because the retxQueue 

is divided according to packets’ destination, adding one more UDP link will produce a 

new sub-queue that enlarge the capacity of the virtual tube and then raise the total 

throughput at least. 

On the other hand, serials Auto Tuning techniques shorten the retransmission 

waiting time and therefore enlarge the virtual tube. One-way UDP throughput is no 

longer limited by retransmission and then reaches the deserved performance with the 

daemon AT.  

 
Figure 17. Average UDP Throughput by RF FloodingRD 
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Figure 18. Average UDP Throughput by AT FloodingRD 

 According these experiment results, the throughput of greedy UDP traffics 

can reach about 100 Kbytes in 5-node cases. Besides, the performance of greedy TCP 

traffic is given in Figure 15. The maximum TCP throughput is slightly more than 20 

Kbytes.  

6.3.2 Packet Loss Rate 

Packet loss rate is influenced by the variation of traffic load. Probability of 

transmission collision rises in a busy network with higher total throughput and 

therefore leads to higher packet loss rate. The experiment results shown in Figure 19 

are collected under greedy UDP traffic. Under a normal network condition, the packet 

loss rate will be lower than data presented here.  

It seems reasonable that packet loss rate increases under two-way UDP traffic 

than that under one-way traffic, but we can’t explain the phenomenon precisely. The 

AT daemon leads to higher packet loss rate might because of better performance of 

throughput. Similar to what we observed in Figure 5, the packet loss rate rises 

abnormally in 3-node cases. 
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Figure 19. Packet loss rate under greedy UDP 

6.3.3 Latency 

Because of retransmission mechanism, latency is another value easily affected by 

the traffic load. The experiment results below shows that the latency can be reduced to 

about 0.8 second even under greedy UDP in 5-node cases.  
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Figure 20. Latency under greedy UDP traffic 
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6.4 Simulation 

Simulation environment can be thought as another platform. It is not necessary to 

repeat real experiment results in simulation environment. However, by comparison 

between simulation results and practical experiment results, we can observe the 

difference between simulation and real world environment. This information can help 

us to imagine the real condition by transferring the simulation results.  

The advantages of simulation are easy to control, repeatable and the ability to 

build large scale networks, etc. Besides, in simulation environment, the topology 

shown in Figure 16 can be built with iptables commands.  

At the beginning of this section, the comparisons between simulation results and 

practical result are given. And then, there is a large scale road simulation presented in 

section 6.4.3. Finally, section 6.4.4 represents the mobility of FloodingRD. 

6.4.1 Simulations about Auto Tuning 

This section shows simulation results with the same setting and environment in 

section 4.5.4. Table 10 lists the details about these simulation experiments. Figure 21 

and Figure 22 are relative to Figure 12 and Figure 13 respectively.  

Simulation Settings 
Number of Nodes 2 nodes to 5 nodes 
Topology A chain network 
Traffic  Greedy UDP 
FloodingRD Type RF, AT_RTT, AT_FFD, AT_FRD, AT 

Table 10. Settings of simulation for Auto Tuning experiments 
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The improvements made by Auto Tuning are not such significant in simulation 

environment. However, by comparing Figure 21 with Figure 12, we can still discover 

some common features between simulation results and real experiment results. For 

example, only daemon AT_RTT and daemon AT raise the throughput in 2-node cases. 

Besides, the reduction of FW_RANDOM_DELAY can provide more improvement 

than RW_FIXED_DELAY. Moreover, just like what we observed in real experiments, 

although the AT daemon doubles the average UDP throughput in 3-node cases, the 

improvement decreases while the number of nodes increases.  
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Figure 21. Average UDP throughput by simulation 
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Figure 22. Latency under greedy UDP by simulation 

Figure 22 seems not similar to Figure 13. Comparing with the daemon RF, the 

daemon AT_RTT increases the latency of packets. This is because the default 

RQ_RETX_TIMEOUT is too short for this environment. Although this inappropriate 

setting may increase redundancy degree, it speeds up the movement of retxQueue and 

therefore reduces the latency. After enabling the function of tuning retransmission 

timeout automatically, the delay time for ACK packets extends and affects the latency. 

6.4.2 Integrated Simulation Result 

This section provides integrated simulation results with the same setting and 

environment in section 6.3. Table 11 lists the details about the simulation experiments. 

Figure 23 and Figure 24 are relative to Figure 17 and Figure 18 respectively. 

Simulation Settings 
Number of Nodes 2 nodes to 5 nodes 
Topology A chain network 
Traffic  Greedy UDP, 2-way Greedy UDP,  

Greedy TCP 
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FloodingRD Type RF, AT 
Table 11. Details of integrated simulations 

Because of high packet loss rate under simulation environment, the two-way 

UDP traffic seems abnormal with the RF daemon, especially in 3-node cases. 

 
Figure 23. Average UDP throughput by RF FloodingRD (simulation) 

However, the condition of simulations with the AF daemon is almost the same 

with real experiments. The one-way greedy UDP gains the same throughput as 

two-way greedy UDP traffic. 

 
Figure 24. Average UDP throughput by AT FloodingRD (simulation) 
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6.4.3 Road Topology Simulation 

Because large scale network performance is hard to get from practical 

experiments, network simulator is used to help us to get the idea of the performance 

of our daemon. The topology is illustrated in Figure 25. There are lots of nodes spread 

randomly inside a rectangle. The speed of a node is configured as 36km/hr or 

108km/hr to simulate a car that moves in the downtown or on a highway. 

Simulation Settings 
Number of Nodes 10 nodes 

40 nodes 
Topology As shown in Figure 17, with nodes 

move in random directions 
Traffic  Greedy UDP 

2-way Greedy UDP 
Greedy TCP 

Speed 10m/s (36km/hr) 
30m/s (108 km/hr) 

FloodingRD Type AT 
Table 12. Details of road simulations 

 
Figure 25. Topology of road simulation 

Table 13 and Table 14 lists experiments result of 10 nodes in 36 km/hr and 108 

km/hr respectively while Table 15 list result of 40 nodes in 108 km/hr. According to 

the comparison between Table 13 and Table 14, the increase of moving speed will not 

influence the performance obviously. On the other hand, after multiplying the number 

of nodes, the packet loss rate and the re-ordering degree increase significantly.  

These simulation results reveal problems of redundant packets and high 

re-ordering degree in a large scale network. However, by the TCP performance, these 
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simulations also proved that our daemon can adapt to high mobility environment. 

10 nodes, 36 km/hr 
 Throughput Packet loss Re-ordering Redundancy Hop count 

UDP 134.19 6.35% 2.61 67.97% 1.338 
2-way UDP 164.46 16.90% 0.79 61.48% 1.326 

TCP 108.80 1.38% 0.26 37.61% 1.170 
Table 13. Road simulation result with 10 nodes in 36 km/hr 

 
10 nodes, 108 km/hr 

 Throughput Packet loss Re-ordering Redundancy Hop count 
UDP 191.11 3.48% 0.95 52.08% 1.296 

2-way UDP 159.66 18.33% 0.57 64.31% 1.343 

TCP 113.63 1.41% 0.33 32.05% 1.207 
Table 14. Road simulation result with 10 nodes in 108 km/hr 

 
40 nodes, 108 km/hr 

 Throughput Packet loss Re-ordering Redundancy Hop count 
UDP 22.70 56.09% 93.74 86.87% 3.367 

2-way UDP 25.93 74.56% 61.75 87.92% 3.206 

TCP 13.24 11.43% 0.06 60.27% 2.238 
Table 15. Road simulation result with 40 nodes in 108 km/hr 

6.4.4 Mobility Demonstration 

Figure 26 shows TCP throughputs in road simulation described in last section 

with 40 nodes in 108 km/hr. The dark blue line is the average throughput in every 

second, while the pink line represents the average throughput during 3 seconds. 

Unlike AODV protocol, our design need not waste time to maintain or re-build a route. 

Although the TCP throughput is not stable, it never dropped to zero for a long time.  
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Figure 26. Snapshot of TCP throughput in road simulation
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Chapter 7 Discussion 

7.1 Comparison with AODV 

We have conducted a series of field trials with AODV protocol on a highway and 

on the roads in downtown. The bad results forced us to develop flooding-based 

routing protocol. The related results are presented in this section.  

Figure 27 shows the route recovery time when a broken route is detected by 

AODV. The average recovery time is 8.92 sec, and the average recovery time except 

the worst two cases is about 3.84 sec. The results indicates that if an IVC system uses 

AODV as the underlying routing protocol, the system cannot provide high quality 

services due to long route recovery time. 
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Figure 27. Route Recovery Time of AODV 
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Figure 28. The average UDP throughputs with AODV 

Figure 28 shows the average UDP throughput with AODV. When the hop count 

is one, the average throughput is only about 160 Kbytes/s which is muss less than our 

scheme in 2-node cases. According to these results, we can assert that FloodingRD is 

more adaptive than AODV in high mobility environment. 

7.2 Lessons 

7.2.1 Verify Every New Mechanism 

In our early design, the value of FW_RANDOM_DELAY is only 13 

milliseconds. However, at that time, we didn’t verify the functionality of this new 

mechanism. Actually, this value can not have any effect and becomes a pure overhead.  

7.2.2 Prevent Unnecessary Costs 

The relationship between packet latencies and UDP throughput was not 

discovered until we implemented Auto Tuning functions. For intuition, these 

mechanisms can only decrease the packet latencies, but they improved the average 
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UDP throughput at least. After that, we tried to get the reason of how latency 

reduction affects the UDP throughput. The detail was described in section 4.5.4. 

From this experience, we understand that while developing a system, a designer 

should minimum every cost as possible. Because no one can’t fully understand what 

will be affected by these additional cost.  

7.3 Future Works 

7.3.1 Limit Flooding in Large Scale Network 

The simulation results reveal problems of redundant packets and high re-ordering 

degree in a large scale network. However, it is hard to improve the performance of a 

high mobility network that has no special features. Moreover, because our daemon is 

designed for IVC networks, we should put out effort in road simulation firstly.
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Chapter 8 Conclusion 

We designed and implemented a flooding-based routing protocol that can adapt 

to an IVC network which features extremely high mobility. We also implemented a 

retransmission mechanism to better service TCP and an extra delay mechanism to 

reduce the number of redundant packet forwarding. Furthermore, we observed the 

relationship between UDP throughputs and packet latencies in our scheme. Therefore, 

we implemented a series of functionalities to reduce unnecessary latency overheads 

by tuning parameters dynamically according to the network environment. 

Finally, the simulation results indicate that the number of redundant packets 

increases while the number of nodes increases. In the future, we will improve our 

FloodingRD on the NCTUns simulation platform under some given road condition 

models. 
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