

國 立 交 通 大 學

資訊工程系

碩 士 論 文

使用泛送機制為車間通訊應用程式

設計與開發繞送協定

A Flooding-based Data Forwarding Protocol for
Inter-Vehicle Communication Applications

研 究 生：黃郁文

指導教授：王協源 教授

中 華 民 國 九 十 四 年 六 月

使用泛送機制為車間通訊應用程式設計與開發繞送協定

A Flooding-based Data Forwarding Protocol for

Inter-Vehicle Communication Applications

研 究 生：黃郁文 Student：Huang Yu-Wen

指導教授：王協源 Advisor：Wang Shie-Yuan

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 i

摘 要

智慧型運輸系統（Intelligent Transportation Systems，ITS）利用道路資料與

路況資訊的即時傳遞，來增進道路運輸與車輛移動的效率，進而改善交通擁擠的

程度 ,並提高行車安全以及促進相關的經濟活動。車間通訊 (Inter-Vehicle

Communication，IVC)為智慧型運輸系統發展的主流之一,其發展演進亦提供了許

多相關的應用。一個車間通訊網路可被視為一個行動隨意無線網路(Mobile

Ad-hoc Network，MANET)的特殊形式，現有的MANET相關技術可直接引用於

這類型的網路。然而，由於此類網路拓撲具有快速變化的特性，使得舊有的繞送

協定(如 AODV)不再適用。

我們應用泛送機制來發展新的繞送協定，本篇論文中具體的實驗及模擬結果

證實，應用泛送機制來繞送封包可以適應變化快速的網路。然而此機制先天上的

特性會導致重複傳送冗餘的封包及嚴重的封包脫序(Packets' out-of-ordering)問

題。我們嘗試在不影響行動效能的情況下，改善這些衍生的問題，並已獲得初步

的成果。

 ii

ABSTRACT

Inter-vehicle communication (IVC) provides useful applications in future

Intelligent Transportation Systems (ITS). An IVC network is a special case of

mobile ad hoc networks (MANET) with high node mobility. Although various

existent MANET technologies can be applied to an IVC network directly,

traditional routing protocols such as AODV can not adapt to this

rapidly-changing network. To address this problem, we designed and

implemented a flooding-based data forwarding protocol. The practical

experiments and simulation results in this thesis showed that the proposed

protocol is suitable for IVC networks. However, the derived problems such as

redundant and out-of-order packets affect the performances and efficiency of the

protocol greatly. This thesis also proposes several improvements for those

problems.

 iii

誌 謝

首先感謝王協源教授這兩年來的指導。在撰寫這篇論文的過程中，我學到了

許多研究學問的技巧和做人處事的方法；同時也要感謝我的口試委員賴威光教

授、吳曉光教授的建議，使整篇論文更加趨於完整。

此外，非常感謝實驗室學長們的意見與指導，尤其是林志哲學長，他在這方

面的深入研究，是這篇論文的基石。此外，特別感謝他在百忙之中，仍熱心為學

弟妹們審閱畢業論文。另外也要感謝陶奎志同學，他負責了 FloodingRD 架構的

實作及相關技術的支援。還有接下來進一步發展相關應用的林仕盈學弟。謝謝你

們所有的付出與努力。

謝謝好友玉雯及詩婷，感謝你們在期末考前仍抽空為我審閱英文修詞。感謝

男友奇峰，你對我毫不保留的支持，一直是我最大的鼓勵。

最後，感謝家人對我的鼓勵，在我面臨挫折時，能夠不斷的支持我，還有所

有關心我的朋友和實驗室的同窗們，因為有你們的關懷與支持，我找到了明確的

方向，也才能將所有的努力化為動力，付諸實行。

謹將這篇論文獻給老師、實驗室的學長和同學、我的朋友，以及我的家人。

 iv

Table of Contents

摘 要 ..i
ABSTRACT ... ii
誌 謝 ... iii
Table of Contents ..iv
Figure List ..vi
Table List ...vii
Chapter 1 Introduction ..1

1.1 Motivation ..1
1.2 Organization ...3

Chapter 2 Related Work ..4
2.1 Routing Protocols on MANET..4
2.2 Single-path Routing Protocols...4
2.3 Multi-path Routing Protocols ..6
2.4 Flooding Techniques ...6
2.5 Discussion...8

Chapter 3 Architecture ..9
3.1 A User-Level Routing Daemon ...9
3.2 Two Overlapping Network Domains ...10

Chapter 4 Design ..13
4.1 Reliability Enhancement ...13

4.1.1 Detail of Retransmission Queue Implementation15
4.1.2 Parameters ...18
4.1.3 Results ...19

4.2 Redundancy Reducing ..21
4.2.1 Detail of Forward-wait Queue Implementation...............................22
4.2.2 Parameters ...23
4.2.3 Results ...24

4.3 Reduction of Small Packets...26
4.4 Issues about Parameters ..27

4.4.1 Components Overview and Relationship between Parameters27
4.4.2 How to Decide the Value of a Parameter ..29
4.4.3 Recommended Value for Main Parameters29

4.5 Tuning Parameters Automatically..30
4.5.1 Introduction ...30
4.5.2 Appropriate Retransmission Waiting Time30
4.5.3 Reasonable Forward-delay time ...31

 v

4.5.4 Results ...33
Chapter 5 Implementation...38

5.1 Packet Filter..38
5.2 Limitations of Current NICs..39

Chapter 6 Performance Evaluation ..41
6.1 Performance Metrics ...41

6.1.1 Throughput ..41
6.1.2 End-to-End Latency ...42
6.1.3 Packet Loss Rate..42
6.1.4 Redundancy Degree ...43
6.1.5 End-to-End Re-ordering Degree ...43
6.1.6 Mobility...44

6.2 Experiment Environment ..44
6.2.1 Hardware and Software..44
6.2.2 Traffic Type ...45
6.2.3 FloodingRD Configuration...45

6.3 Real Experiments Result Analyses ..47
6.3.1 Throughput ..48
6.3.2 Packet Loss Rate..50
6.3.3 Latency ..51

6.4 Simulation...52
6.4.1 Simulations about Auto Tuning ..52
6.4.2 Integrated Simulation Result ..54
6.4.3 Road Topology Simulation ...56
6.4.4 Mobility Demonstration ...57

Chapter 7 Discussion ..59
7.1 Comparison with AODV...59
7.2 Lessons ...60

7.2.1 Verify Every New Mechanism..60
7.2.2 Prevent Unnecessary Costs...60

7.3 Future Works...61
7.3.1 Limit Flooding in Large Scale Network..61

Chapter 8 Conclusion..62
Bibliography ..63

 vi

Figure List

Figure 1. The processing flows in the source, the forwarder, and the
destination...9

Figure 2. The architectural view of packet processing at the source........... 11
Figure 3. The direction of packets ...16
Figure 4. The average TCP throughput in a chain network20
Figure 5. Average packet loss rate under greedy TCP traffic21
Figure 6. An example of inserting a packet into fwwQueue.......................23
Figure 7. Topology..25
Figure 8. UDP Throughput..26
Figure 9. UDP Redundancy ..26
Figure 10. The overall structural view inside FloodingRD.........................28
Figure 11. A simple topology to show different types of forwarders32
Figure 12. Average UDP throughput to compare functions of Auto Tuning35
Figure 13. Average Latency under one-way greedy UDP35
Figure 14. Average RTT time at the source under one-way greedy UDP....36
Figure 15. Average TCP throughput in a chain network.............................37
Figure 16. The scenario built up by net filters ...48
Figure 17. Average UDP Throughput by RF FloodingRD..........................49
Figure 18. Average UDP Throughput by AT FloodingRD..........................50
Figure 19. Packet loss rate under greedy UDP...51
Figure 20. Latency under greedy UDP traffic ..51
Figure 21. Average UDP throughput by simulation53
Figure 22. Latency under greedy UDP by simulation54
Figure 23. Average UDP throughput by RF FloodingRD (simulation)55
Figure 24. Average UDP throughput by AT FloodingRD (simulation)55
Figure 25. Topology of road simulation...56
Figure 26. Snapshot of TCP throughput in road simulation58
Figure 27. Route Recovery Time of AODV...59
Figure 28. The average UDP throughputs with AODV..............................60

 vii

Table List

Table 1. Parameters of retxQueue..19
Table 2. FloodingRD types used in TCP experiments20
Table 3. Parameters of fwwQueue...24
Table 4. Types of FloodingRD ..25
Table 5. Reference value of main parameters ..30
Table 6. Types of FloodingRD ..34
Table 7. The hardware and software used in experiments45
Table 8. FloodingRD with different configuration used in experiments46
Table 9. Settings of real experiments...48
Table 10. Settings of simulation for Auto Tuning experiments...................52
Table 11. Details of integrated simulations ..55
Table 12. Details of road simulations ..56
Table 13. Road simulation result with 10 nodes in 36 km/hr......................57
Table 14. Road simulation result with 10 nodes in 108 km/hr....................57
Table 15. Road simulation result with 40 nodes in 108 km/hr....................57

 1

Chapter 1 Introduction

1.1 Motivation

ITS (Intelligent Transportation System) aims to provide travelers with a safer,

more efficient, more comfortable trips. Its basic functions include instant traffic

congestion notification, road condition information broadcasting, as well as

emergency alert. Recently, ITS wants to provide network services to enable

inter-vehicle communications (referred to as IVC) for exchanging information,

sending/receiving emails and browsing web pages on the Internet, etc.

IVC has become a popular topic in the ITS research community. It enables

communications among vehicles without the support of an infrastructure network,

such as the ones using 802.11 infrastructure-mode access points. Each vehicle is

equipped with a wireless interface, and vehicles on roads dynamically form a Mobile

Ad Hoc Network (MANET) with high mobility. In an IVC network each node

(vehicle) may move at a wide range of speeds and in different directions. Therefore,

an IVC network is featured as extremely high mobility, which introduces many

challenges for designing a routing protocol.

We have done lots of field trials with AODV (Ad-hoc On-demand Distance

Vector Routing [1]) protocol on the highway and on the roads in downtown but found

that such traditional routing protocols are not suitable for IVC networks. The topology

of an IVC network changes rapidly so that the built paths in such a network are

broken very easily. The results of these experiments exhibit that in a network with

 2

universal mobility the available lifetime of a single-hop route is about 20 seconds,

while that of a two-hop route is only around 4 seconds. As the result, the lifetime of

routing paths in such a network is usually too short for data transmissions. Moreover,

routes with three hops or more are almost not available in AODV.

Traditional routing protocols repair broken routes based on the propagation of

messages containing the correct, freshest routing information. However, when those

messages are being propagated to reflect topology changes, the information they

contain is very likely to be outdated due to the nature of the frequently changed

network topology. To address this issue, we propose a new routing protocol to route

packets based on the flooding technique.

Flooding is featured as high reliability with minimized states so that it is suitable

for high mobility networks. For this reason, we design and implement a new

flooding-based data forwarding protocol to provide effective data transmission in IVC

networks.

Since audio and video applications are more and more popular, we characterized

the demands and requirements of those two kinds of UDP-based applications,

respectively, to provide them with the best services. Audio service applications

generally need less bandwidth than video applications. However, the voice quality is

very sensitive to the round trip times between the source and the destination nodes.

On the other hand, video applications usually consume bandwidth of 40 KB/sec or

more, but they may still generate acceptable video streams under a high packet loss

rate. On the other hand, web services and text-mode communication services usually

use TCP as the underlying transport layer protocol to protect their transferred data.

Although TCP is sensitive to packet losses and thus its design is not suitable for the

 3

wireless environment, using TCP for web accesses and text-mode services is still

acceptable because the amount of transferred data in those applications is relatively

small. FTP is another important network service, but transferring a large file in an

IVC network is not a common case.

To meet the requirements needed by these different applications, our proposed

protocol has to provide bandwidths at least 50 KB for UDP. The maximum bandwidth

achieved by our protocol is limited by that provided by the underlying network.

Currently, we evaluate our protocol in field trials based on the IEEE 802.11b network,

whose theoretical maximum bandwidth is 11 Mbps only. It is possible to increase the

achievable bandwidth of our scheme by using more advanced wireless technology for

the underlying network. For example, IEEE 802.11a/g networks provide 54Mbps

bandwidths, which is much larger than that provided by IEEE 802.11b networks.

1.2 Organization

The remaining parts of this paper are organized as follows. We briefly introduce

the famous routing protocols for MANET and the commonly used flooding

techniques in Chapter 2. Chapter 3 depicts the architecture of the proposed

flooding-based routing mechanism. Chapter 4 itemizes the detail of our protocol

design. Chapter 5 discusses related issues about implementation. Chapter 6 presents

the evaluation of the performances by both practical experiments and simulations. The

discussions and future works are put in Chapter 7. Finally, Chapter 8 makes a short

conclusion about our works.

 4

Chapter 2 Related Work

2.1 Routing Protocols on MANET

Recently, numerous routing protocols have been proposed for MANET. Typically,

they can be partitioned as two types: single-path routing and multi-path routing.

Single-path routing protocols are divided into two groups, “table-driven” and

“demand-driven” protocols. Besides, a multi-path routing protocol is normally a

modification from one of single-path protocols. Moreover, there are some broadcast

and multicast technologies used to deliver messages on a wireless environment. In

this chapter, we discuss these related techniques and how they differ from our scheme.

2.2 Single-path Routing Protocols

Traditional routing protocols for MANET are generally categorized as

“table-driven” or “demand-driven.” Table-driven routing protocols maintain routing

information on each node and change messages to update these information

periodically. On the contrary, demand-driven routing protocols keep no topology

information on hosts until there is a requirement of communication. These kinds of

protocols try to find a path only when a node wants to send packet out. Popular

AODV (Ad Hoc On-Demand Distance Vector [1]) routing protocol is one of typical

demand-driven protocols.

Table-driven (also called “proactive”) routing protocols are based on

Bellman-ford’s shortest-path algorithm in substance. Each host in an Ad hoc network

 5

periodically changes messages, named hello messages, about their local information,

e.g. the states of neighbors, the number of neighbors, and so forth. These messages

occupy lots of limited bandwidth. DSDV (Destination-Sequenced Distance-Vector

Routing Protocol [4]) is the standard one of table-driven protocols. Famous

table-driven routing protocols include DSDV and CGSR (Clusterhead Gateway

Switch Routing), etc.

CGSR derived form DSDV separates the whole network into two hierarchical

architectures, the cluster head and the others. When a change occurs on a normal node

or a gateway, there is no maintenance overhead. On the other hand, if a change

happens on the cluster heads, the overhead will be higher then that of DSDV protocol.

In IVC networks, because there is almost no fixed node and every vehicle can move

out of scope of the network at any time, after applying CGSR to IVS network, it is

hard to choose appropriate cluster heads. And CGSR is therefore not suitable for the

IVC environments.

Compare with table-driven protocols, demand-driven (also called “reactive”)

routing protocols seem to adapt to speedy IVS network. They don’t need to maintain

information about the whole network. The routing path is built only when there are

packets waiting for routing. The overhead of a great deal of control packets is saved.

However, because the life time of a built path is too short to be useful, these protocols

are still not suitable for IVC networks. Famous demand-driven routing protocols

include AODV and DSR [5].

 6

2.3 Multi-path Routing Protocols

A multi-path routing protocol, such as GeoTORA [6], discovers multiple routing

paths to forward data for higher reliability. Most of them are variations derived from

single-path routing protocols. For example, [7] [8] [9] [10] are extended from AODV,

[11] [12] are the extensions of DSR, and [13] is a variation that combines both to

achieve multi-path routing.

Although multi-path routing protocols are more adaptive than single-path routing

protocols in high mobility networks, they suffer from the same problems in high

mobility IVC networks, because the mechanisms behind them is similar to those

behind single-path routing protocols.

2.4 Flooding Techniques

Flooding techniques are usually used to the research area of broadcast and

multicast. While these studies focus on how to reach the most coverage by the least

number of duplicated packets, our design apply it to forward data packets to a

particular target.

Some flooding techniques that need to exchange local information by control

messages will meet the same problems we have mentioned in last sections. Others that

don’t need the knowledge of neighboring nodes can be categorized to

probabilistic-based, counter-based, distance-based, location-based, and cluster-based

approaches The first three schemes may discard flooded packets with random

probability or some predefined thresholds and rules. They have tradeoffs of the

 7

coverage of a broadcast and the number of duplicated packets by configurable

parameters, such as the dropping probability, the maximum number of rebroadcasts,

and the maximum hop counts for a broadcasted packet, etc. It is difficult to fine-tune

these parameters in IVC networks due to greatly frequent topology changes.

Location-based techniques usually assume that the location information of

neighbors is available. Although GPS (Global Positioning System) can be used to

provide local position information, it is still a difficult task to get location information

of the destination and other forwarders before starting packet forwarding. Besides, the

GPS support is not available all the time; it needs additional equipments and may be

influenced by the weather. Therefore, we suggest that the location information can

only be regarded as an additional aid while implementing a routing protocol for IVC

networks.

Cluster-based schemes divide nodes in a network into three types: cluster head,

gateway, and ordinary nodes. A cluster head is responsible for community inside a

cluster, while a gateway delivers packages between clusters. Nodes except for cluster

heads and gateways are called ordinary nodes. According to the adopted approaches

of constructing clusters, cluster-based schemes can be classified into two groups:

active-clustering and passive-clustering. Due to greatly high mobility in IVC

networks, the procedures of electing a cluster head may be performed very frequently.

Therefore, the protocols may spend most bandwidth on maintaining clusters and

generate great latencies for data forwarding. Passive clustering carries the

cluster-related information in data packets and doesn’t need to exchange additional

control packets to maintain clusters. This scheme minimizes control message

overheads but leads to a new problem of cluster head failures (or disappearances).

 8

This problem becomes worse when the mobility of a network increases. Therefore,

cluster-base techniques are not suitable for IVC networks, either.

2.5 Discussion

Because of power-consumption and bandwidth waste, table-driven protocols are

not satisfactory for IVC networks. Demand-driven protocols have longer latency and

can save bandwidth waste but still do not satisfy the requirement of high mobility in

IVC networks. Multi-path routing protocols based on similar mechanisms with

single-path protocols encounter the same problems. Flooding techniques are normally

applied to research area of broadcast and multicast. The related issues can provide

some hints and ideas to our study.

By analyses of these related technologies, we can conclude that: to develop a

routing protocol for IVC networks, a researcher might give up techniques of

traditional MANET routing protocols and should consider the extremely high

mobility condition

 9

Chapter 3 Architecture

3.1 A User-Level Routing Daemon

The first issue of implementing a flooding-based routing daemon is to broadcast

a unicast packet. Intuitively, developers can modify the functions of the IP layer in the

kernel to add a broadcast IP header in front of the original packets. However, a

platform-dependent implementation is not suitable for an IVC environment. Consider

that an IVC network is composed of a variety of vehicles and even pedestrians with

hand-held devices. All of the devices in an IVC network may have quite different

architectures and operating systems. Besides, a platform-dependent solution may

cause developers to spend much time and effort deploying this protocol to all devices.

Therefore, we decide to build FloodingRD at the user space. The advantages of this

approach are platform-independent, easy to implement and easy to debug, etc.

Figure 1. The processing flows in the source, the forwarder, and the destination

To capture packets from applications and prevent applications from knowing the

existence of FloodingRD, the net filter technology inside kernel is used to redirect

packets from the user level to our daemon. Figure 1 shows the processing flows in the

source, the forwarder, and the destination.

 10

At the source, a packet is injected into the kernel by the application and then

transferred to the daemon at the user level by the net filter. FloodingRD will append

information needed by the protocol design to this packet. After that, this packet would

be broadcasted out. An IP header with a broadcast address makes every host that can

hear this packet accept it and deliver it to the FloodingRD. After receiving a packet,

the daemon will exam whether this packet is for the local host or not. If it is, the

original unicast packet will be extracted and then injected into the kernel. The net

filter inside the kernel recognizes the packet as a local packet and brings it to the

target application. Otherwise, if the packet is not a local packet, the daemon will

decide whether to broadcast it again according to the protocol design with present

status and information.

3.2 Two Overlapping Network Domains

To make the net filter recognize the source of incoming packets more easily, the

concept of two overlapping network domains is introduced into our scheme. The first

domain used by applications is the original domain, while the second domain is set for

FloodingRD. The net filter redirects packets with the first domain IP address from

applications to FloodingRD. On the other hand, after processing the packets,

FloodingRD re-send them by the second domain IP address to let the net filter pass

them through.

 11

Figure 2. The architectural view of packet processing at the source.

Figure 2 shows the processes of delivering a unicast packet at the source node in

detail. 1) Firstly, a data section is sent from an application into the kernel. Without any

additional configuration, applications will use the original network domain naturally.

Consequently, the IP layer encapsulates this data section with unicast IP addresses of

the first network domain. Secondly, according to predefined rules, 2) this packet will

be captured by the net filter and redirected into FloodingRD. And then, 3) the daemon

appends a FloodingRD-specific header to this unicast packet. After some processes in

FloodingRD, 4) this packet will be sent out as a UDP broadcast packet with the second

domain IP address that makes the net filter pass it through.

The appended specific header contains all information needed by the protocol

design, such as the sequence number, the hop count information and IP address of the

host which is the last one to broadcast this data packet out. Here the last host is

definitely the source. After the packet begins its traveling around the network, the last

host will be the last forwarder. The sequence number cooperates with the source

address recorded in the IP header is used to identify a packet. According to this

 12

information, FloodingRD will not accept the same packet more than once.

There is another advantage of two overlapping network domains. Because the

packets of the second domain are not affected by the net filter, we can use existent

tools, such as the ping program, with the second domain IP address to check network

condition and avoid the influence of net filter. This additional functionality is helpful

to detect the network condition during the practical experiments.

 13

Chapter 4 Design

As we mentioned early, a flooding-based routing protocol has its advantages,

especially when the network topology changes rapidly. However, this kind of routing

protocols has their constitutional drawbacks that the protocol designers must

overcome. In this chapter, we list the main difficulties for designing such a

flooding-based routing protocol and then propose our solutions.

Before our discussion, we define some terms used in this article. We call a

mobile node, which generates a packet, a “source node”. And a mobile node is a

“destination node” if it is the destination of the packets generated by a source node.

The other hosts in the network are called “forwarders.” A forwarder may not actually

forward a packet every time. But it has the responsibility and the opportunity to

forward packets. Finally, a node is called “sender” if it sends/forwards a packet out.

Any other modes which hear this packet are called “listeners.”

4.1 Reliability Enhancement

The IEEE 802.11 wireless network provides the reliable transmissions with a

simple positive acknowledgement mechanism. In the IEEE 802.11 wireless network,

every unicast data frame must be acknowledged, or the frame is considered to be lost.

Every time a data frame is supposed to be lost, the 802.11 MAC protocol will

retransmit the data frame again. The maximum retransmitted count is four for large

packets and seven for small packets because small packets may meet collisions in

higher probabilities. Moreover, in the IEEE 802.11 MAC protocol broadcasted

packets are not protected by the positive acknowledgement mechanism.

 14

Even though the designers want to implement protection mechanism in high

level, it’s still impossible the figure out who should take the responsibility of

answering the acknowledgement. Moreover, if every listener sends ACKs back, in a

high-density network it inevitably leads to an “ACK implosion” problem and a large

number of ACK frames may spend much valuable bandwidth. Therefore, the original

retransmission scheme with ACK packets cannot take effect any more. This may

degrade performance of upper-layer sensitive protocols, such as TCP. TCP decreases

the size of the congestion window at the sender to half if a packet loss is detected.

Without transmission protection, the performance becomes worse. To improve error

toleration and protect these sensitive protocols, retransmission of a lost packet is

necessary. For this, a protocol designer must provide other mechanisms instead of the

ACKs to confirm whether a packet is transmitted correctly.

Our mechanism regards packet forwarding as a kind of responsibility delivery.

We make use of the packets forwarded by next forwarders to make sure whether the

transmission is correct. If a destination receives a packet, it should send a one-hop

ACK back to announce that there is unnecessary to retransmit this packet or forward it

further.

This method needs no additional ACK packets. Its drawback is that a sender

cannot be aware of the success of the transmission immediately and must wait until a

forwarder finishes processing of this packet. This delayed time will affect UDP

throughput performance. Details will be depicted later.

 15

4.1.1 Detail of Retransmission Queue

Implementation

“RetxQueue” is a retransmission queue introduced into FloodingRD for higher

reliability. This queue preserves packets which are going to be sent and packets which

were already sent but not acknowledged. Each packet would be marked with a waiting

time. This time counts down until FloodingRD can make sure the transmission is

successful. Otherwise, if the time goes down to zero, this packet would be sent again.

The queue length is limited; if one packet is inserted into retxQueue and makes the

queue exceed its length, this packet would be discarded.

While implement such a queue some issues must be taken. Firstly, this queue

should be separated into sub-queues by packets’ destination address to prevent HOL

problem (Head-of-Line problem). Secondly, there are lots of technologies to raise

efficiency by speeding up the movement of the queues. Sliding window can help this.

After introducing the sliding window into retxQueue, the designer can use

fast-retransmission to accelerate it.

Separated retxQueue by Destination Address

After adding retransmission functionality into FloodingRD, we observe a

particular phenomenon: when a packet is delivered in a right direction, it will be

transmitted faster than in a wrong direction. Figure 3 shows this fact. It is because the

movement rate of retxQueue would be affected by processing speed of next forwarder.

After sending a packet out, the sender will preserve this outgoing packet in retxQueue

and wait for acknowledgement from destination or next forwarders. If the listener is

 16

the destination, it will answer an ACK quickly to let the sender process next packet in

retxQueue. On the other hand, if the listener is a forwarder, it takes longer time to wait

for this packet to be forwarded out. However, if there is no next listener, the

retxQueue on the sender will be blocked until this packet time out. Depending on the

configuration of retransmission waiting time, the one-way greedy UDP throughput

can be down to 10%.

Figure 3. The direction of packets

This phenomenon can help to reduce unnecessary forwarding and decrease waste

of bandwidth. However, in some situation this may cause HOL problem

(Head-of-Line problem). While retxQueue is blocked by a packet on its wrong way,

other packets which belong to different destination behind this blocked packet should

not be delayed. Therefore, we changed our earlier design and divided retxQueue into

sub-queues by destination address of packets.

The Sliding-window

In earlier design, each time after sending a packet out from retxQueue, the

daemon will wait for the acknowledgement back to send the next one. Since this

method has lower efficiency, we introduce the concept of “sliding window” into

retxQueue.

“Sliding window” is a kind of flow control algorithm especially for network data

 17

transfers. Famous TCP protocol uses it to enhance performance. It overlaps the

waiting of acknowledgements and the transmissions of the following packets by

transmitting at most the window-size number of packets at a time.

Fast-retransmit

Because of high packet loss rate, after implementing sliding window algorithm in

retxQueue, the performance was still not good enough. To improve efficiency, fast

retransmission mechanism was also implemented to cooperate with the sliding

window algorithm.

If a packet or packet’s acknowledgement is lost, the original sliding window

mechanism must wait for timeout to start retransmission. However, in some

conditions even though the waiting time is not finished, once acknowledges of other

packets in sliding window come back, it can be predicted that this packet may be lost

and the retransmission should be launched. This design is called “fast retransmission.”

It is also applied to TCP protocol.

Maintain Packets’ Ordering

Re-ordering is an important problem in a flooding network. In our

implementation, there is a mechanism used to sort incoming packets at destination.

Moreover, because there are lots of queues inside FloodingRD preserve packets for

different purpose, FloodingRD decrease probability of re-ordering by maintaining

packets’ sequence in these queues.

 18

While inserting a packet into retxQueue, FloodingRD will seek an appropriate

position for this packet instead of inserting it at the end of the queue directly.

De-retransmission Control Message

Sometimes, the reason for starting a retransmission is because the following

forwarding packet encounters collision rather than the sent packet is lost. However,

after being retransmitted, the sent packet will be discarded as an invalid packet at the

forwarder. To prevent retxQueue on the sender from being blocked by a successfully

transmitted packet, the forwarder should send a message to stop this retransmission on

the sender. These controlled messages are called de-retransmission packets.

For implementation, the packet and the de-retransmission message contain

information to identify the sender. This can prevent de-retransmission message from

influencing regular forwarding of this packet.

4.1.2 Parameters

Table 1 lists the names and the brief descriptions of main configurable

parameters in retxQueue. RQ_LENGTH defines the maximum length of retxQueue.

RQ_WINDOW_SIZE means the size of sliding-window. RQ_FAST_RETX_THRES

is the threshold for fast-transmission. If the number of returned ACKs reaches the

threshold, the head of retxQueue will be transmitted directly.

These default values may be changed depending on different environment. For

example, if the CPU and NIC speed is slow or the traffic is heavy, packet processing

time would get longer and RQ_RETX_TIMEOUT should be increased to extend the

 19

waiting time for ACK. Finally, the last one, RQ_RETX_MAX_COUNT, limits the

maximum number of times to retransmit a packet.

RetxQueue Parameters
Name Description
RQ_LENGTH Queue length
RQ_WINDOW_SIZE Sliding window size
RQ_FAST_RETX_THRES Threshold of fast retransmission
RQ_RETX_TIMEOUT Max wait time for ACK
RQ_RETX_MAX_COUNT Max Retransmit times

Table 1. Parameters of retxQueue

4.1.3 Results

To make sure our retransmission mechanism really works, we conducted a

simple experiment to show how retransmission influences packet loss rate and

throughput. Because this mechanism was designed for sensitive protocols, we chose

greedy TCP to demonstrate the performance. In this section, we only list variable

factors of these experiments. Details of experiment environment are listed in section

6.2. Definitions of measure metrics are depicted in section 6.1.

For comparing all functionalities, there are a lot of FloodingRD with different

configurations to be tested in this paper. Table 8 in section 6.2.3 lists features of these

daemons. There are three daemons used in this experiment. Firstly, the Basic daemon

is a version without retransmission. Secondly, “R1” means retransmit lost packet only

once. Lastly, R2 FloodingRD will have two opportunities to retransmit a lost packet.

The topology is a chain network with 2 nodes to 5 nodes.

Symbol Describe
Basic No Retransmission

 20

R1 Retransmit once
R2 Retransmit twice

Table 2. FloodingRD types used in TCP experiments

Figure 4. The average TCP throughput in a chain network

Figure 4 shows the relationship between throughput and retransmission times.

When the number of nodes is more than three, TCP throughput will drop to zero.

Actually, the situation is not so bad in three-node cases. TCP traffic has about 20

Kbytes throughput at first 5 or 15 second. However, once the throughput drops, it will

never rise again. With retransmission, the throughput sometimes falls; however, it will

go up sooner or later.

Figure 5 shows relationship between packet loss rate and retransmission times.

According to these experiment results, retransmission indeed protects TCP traffic.

Besides, increasing the maximum times of retransmission can’t reduce the packet loss

rate more.

The packet loss rate rises abnormally in three-node cases. This unnatural

condition can be repeated in simulations.

 21

Figure 5. Average packet loss rate under greedy TCP traffic

4.2 Redundancy Reducing

Because of inherent drawbacks of flooding mechanism, large number of

redundant packets is always a serious problem. There are lots of technologies

proposed for limiting flooding packets. Some of them have been discussed in Chapter

2. However, almost all these technologies maintain status of other nodes and need

additional control messages to exchange neighbor information such as related position

or interval hop counts. Although additional information is really helpful for reducing

redundant packets, our daemon that aims to reach high mobility should not depend on

these mechanisms. Therefore, the designers have to solve this problem by another

way.

When a FloodingRD is going to forward a packet, it takes a randomized value

within a predefined range as the extra delay time. During this extra delay time, the

daemon cancels the forwarding of this packet if it perceives a duplicate by one of the

neighboring nodes. Because the extra delay is a randomized value that is only

performed on forwarding packets, the designers call this period a “forward-random

delay.”

 22

For implementation, we add a queue to FloodingRD for extra delay. The

designers call this queue a “forward-wait queue”, referred to as fwwQueue. As we

mentioned earlier, the destination will answer an ACK for terminating the forwarding

of a packet. To prevent forwarders from sending unnecessary packets before receiving

this ACK, FloodingRD will delay a forwarding packet for a fixed time to see if

whether the destination received the same packet. This period, named “forward fixed

delay”, is also carried out by fwwQueue.

The details about implementing fwwQueue are put in next section. At the end of

this portion, there are some experiment results about the performance of extra random

delay.

4.2.1 Detail of Forward-wait Queue Implementation

Basic Scheme

For intuition, fwwQueue can be implemented as an aging and sorted queue. Each

forwarding packet associated with an extra delay time is inserted into sorted

fwwQueue according to the value of the time tag. Every time unit, fwwQueue

decreases each packet’s waiting time tag. Once a packet’s time is counted down to

zero, FloodingRD takes this packet out for further processing.

In Order Forwarding

However, this intuitional method will generate lots of out-of-order packets. To

keep the sequence of incoming packets but also make them have different delay time,

 23

when a packet is inserted into the queue we let packets change their waiting time tag

according to packet’ sequence number.

Figure 6 gives a simple example. Packet No.5 with 7 ticks waiting time is

inserted into fwwQueue. During the insertion, it meets packet No. 4 with remaining 8

waiting ticks. After exchanging the waiting time tag with packet No. 4, packet No. 5

has 8 waiting ticks and would be sent out after packet No. 4. And then, it meets packet

No. 6. Packet No. 5 should be inserted between packet number 4 and packet number 6,

because its waiting time is shorter than packet No. 6’s. There is no need to change

wait time tags further.

Figure 6. An example of inserting a packet into fwwQueue

4.2.2 Parameters

Because the extra delay time is an absolute protocol overhead, they should be

minimized as much as possible. The parameters related to fwwQueue are listed in

Table 3. FW_FIXED_DELAY is used to wait for ACK packets sent from destinations.

FW_RANDOM_DELAY defines the range of random delay that is used by

 24

forwarders to compete with each others. The total delay time can be computed as

follows:

Extra Delay Time =
FW_FIXED_DELAY + random() % FW_RANDOM_DELAY

FwwQueue Parameters
Name Description
FW_FIXED_DELAY For waiting ACK from destinations
FW_RANDOM_DELAY For competing with other forwarders

Table 3. Parameters of fwwQueue

4.2.3 Results

We designed a simple experiment to test the performance of forward-random

delay. The topology is shown in Figure 7. There are three forwarders between the

source and the destination. The traffic type is greedy UDP. Four daemons with

different configuration are tested in this scenario. The briefs of these daemons are

listed in Table 4. Configuration details are listed in section 6.2.

The daemon Basic has been used in last experiment in section 4.1.3. The daemon

F enables forward-random delay while the daemon RF enables both forward-random

delay and retransmission mechanisms. The daemon AT is a FloodingRD with ability

of turning parameters automatically. The name of this daemon means “Auto Tuning.”

In this scenario, technology Auto Tuning lets the forwarders compete with each others.

After one of them overtakes the others and takes the responsibility to forward packets,

the other two forwarders will be silenced. Concept and design of “Auto Tuning” is

described in section 4.5. Here readers can simply regard the daemon AT as a

FloodingRD which has ability to reduce redundancy but without extra delay overhead.

 25

Figure 7. Topology

Symbol Describe
Basic Disable all functionalities
F Enable forward-random delay
RF Enable forward-random delay and retransmission
AT Turning parameters automatically

Table 4. Types of FloodingRD

Figure 8 illustrates comparison among these four daemons about UDP

throughput while Figure 9 shows the condition of redundancy. Daemon F applied

forward-random delay but doesn’t reduce the redundancy. Because the configuration

was set for daemon RF, 40 ms as FW_RANDOM_DELAY for daemon F was not

enough to cancel transmission on other forwarders.

Although daemon RF can reduce redundancy, its UDP throughput was the lowest.

Because of the high collision probability, UDP throughput suffered from

retransmission mechanism. When the value of RQ_RETX_TIMEOUT got longer,

FloodingRD should wait longer for a lost packet and the circumstance would become

worse.

Here we provide two related experiment result as contrasts to Figure 8. Daemon

Basic can get average throughput of 177.60 Kbytes/s under the same environment

without additional forwarders, while daemon AT can reach 226.65 Kbytes/s.

According to these experiment results, we can conclude that Auto Tuning indeed

reduce redundancy and the additional overhead.

 26

UDP Throughput

148.44
159.05

125.75

230.68

0.00

50.00

100.00

150.00

200.00

250.00

Basic F RF AT

Type of FloodingRD

T
hr

ou
gh

pu
t(

K
by

te
/s

)

Figure 8. UDP Throughput

Redundancy

33.55 32.53

25.78

11.55

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Basic F RF AT

Number of Nodes

R
ed

un
da

nc
y(

%
)

Figure 9. UDP Redundancy

4.3 Reduction of Small Packets

In earlier research, we found that large number of control messages would

 27

decrease throughput of whole system. To reduce the influence of these small packets,

the designers merged these small packets with large data packets or combined them

together into a large one.

Although our early study proved its potency, to minimize variable factors during

developing period, this functionality has been disabled for a long time.

4.4 Issues about Parameters

4.4.1 Components Overview and Relationship

between Parameters

Before discussing about the parameters, the overview of components and

relativity among them should be given firstly. As shown in Figure 10, there are two

kinds of data packets: the packets from other hosts are “forwarded packets,” while the

others are called “local-out packets.” In addition to data packets, there are control

messages transferred in our system. At present there are only two types of control

message: de-retransmission message and ACK packets.

 28

Figure 10. The overall structural view inside FloodingRD

Forward-wait Queue delays forwarded packet for waiting ACK packets from

destinations and preserves them for a random period for redundancy reduction.

Because local-out packets need not be applied extra delay, they will be put into

retxQueue immediately.

RetxQueue is responsible for retransmitting lost data packets. Users can

configure its length and the maximum retransmission times as well as the period for

waiting ACK packets. This functionality is designed for sensitive protocols, such as

TCP. However, throughput of greedy UDP will suffer from the waiting time of lost

packets. Increase of retransmission times (RQ_RETX_TIMES) and extension of

waiting period (RQ_RETX_TIMEOUT) influence greedy UDP throughput seriously.

Fortunately, according to experiment results shown in section 4.1.3, retransmitting

lost packet once is effective. Moreover, doubling retransmission times can not

improve TCP performance further.

The minimum valid value of RQ_RETX_TIMEOUT is mainly affected by

processing time of the next host. The related factors are operating speed and other

parameter configurations of FloodingRD. The operating time of a machine is

influenced by CPU speed, NIC efficiency, and the traffic load as well. Parameters that

influence how long FloodingRD would preserve a packet include forward-fixed delay,

forward-random delay, length of retxQueue, size of sliding window and other

retransmission configurations. Packet loss rate can also influence

RQ_RETX_TIMEOUT. High packet loss rate will slow the movement of retxQueue,

make the daemon keep a packet longer and indirectly affect the former hosts.

Generally speaking, collision probability rises while the traffic becomes heavier.

 29

Extending the length of retxQueue and the window size may adapt FloodingRD

to high-variant traffic. But now there is no practice experiment result to certify this.

Moreover, increasing these parameters will decrease greedy UDP throughput.

At the bottom, there is a “Merger” used to merge small packets into a large one.

This functionality is disabled for a long time. RQ_RETX_TIMEOUT must be

extended for this functionality, because the merger will preserve packets for a short

time.

4.4.2 How to Decide the Value of a Parameter

There are two methods to decide the value of a parameter. One is to evaluate it

directly by practical experiments, and another is to deduce it by other related

parameters’ values and the logical relationship between them. Although practical

experiments can reach an accurate result, the perfect settings would lose efficacy after

environment changed. Theoretical values can help developers to discover faults inside

implementation. If there are conflicts between the practical results and the logical

values, developers must examine the design and implementation carefully.

4.4.3 Recommended Value for Main Parameters

Table 5 lists proposed values of main parameters. Settings of fwwQueue are

evaluated by practical experiments under greedy UDP traffic. Configuration of

retxQueue considers both UDP traffic and TCP traffic. RQ_RETX_TIMEOUT is a

logical value inferred by the setting of other parameters. The time unit is millisecond.

Parameter Value Parameter Value

 30

RQ_LENGTH 5 RQ_RETX_MAX_COUNT 1
RQ_WINDOW_SIZE 3 FW_FIXED_DELAY 8
RQ_FAST_RETX_THRES 2 FW_RANDOM_DELAY 40
RQ_RETX_TIMEOUT 80

Table 5. Reference value of main parameters

4.5 Tuning Parameters Automatically

4.5.1 Introduction

As aforementioned, the performances of a network are influenced by many

factors, including the hardware properties, the network load, as well as the values of

various system parameters. Automatically adjusting system parameters according to

the network conditions usually results in better performances than fixing values of

those system parameters. Such a technique is called “Auto Tuning.” At present, Auto

Tuning can tune the retransmission waiting time to an appropriate value dynamically

and prevent unnecessary extra forward delays.

4.5.2 Appropriate Retransmission Waiting Time

FloodingRD makes use of forwarded packets from intermediate nodes and ACK

control messages from destination nodes as acknowledgements of transmitted packets.

If the next hop of a packet is the destination node for that packet, the RTT (Round

Trip Time) will become smaller because the time to transmit an ACK message is

shorter than that to send a data packet. Here RTT is defined as the time from the

transmission of this packet to the arrival of its acknowledgement. The measured RTT

for a packet is helpful to select an appropriate value for the system parameter, the

retransmission waiting time.

 31

According to the analyses of the experiment results, we select the double time of

RTT as the basis of RQ_RETX_TIMEOUT. A small constant value is added to

prevent from unnecessary retransmissions. For a node, the measured RTT of a packet

is updated each time when its corresponding ACK returns.

4.5.3 Reasonable Forward-delay time

Section 4.2 describes how an extra forward delay helps reduce redundancy. The

forward-fixed delay is used to prevent forwarders from sending unnecessary packets

that can be canceled by ACK messages from the destination node. However, this

delay time is purely an overhead for the forwarders far away from the destination

node. Similarly, the forward-random delay is also unnecessary for forwarders that

have no contenders aside them.

Figure 11 shows a simple topology that depicts all kinds of situations for

forwarders. The light-blue nodes marked with “S” or “D” stand for the source and the

destination nodes, respectively. Other nodes marked with different numbers represent

different types of forwarders. FloodingRD in a forwarding machine analyzes

incoming packets and messages during a unit period (currently, the unit period is set

to one second) to decide which type of forwarders it is. Note that a FloodingRD may

play different types of forwarders for different connections that have different source

and destination nodes, individually. As such, a forwarder is able to apply reasonable

extra forwarded delays to packets that to be forwarded based on which forwarder type

it is for a connection.

 32

Figure 11. A simple topology to show different types of forwarders

Type-1 nodes represent forwarders that are in the direction opposite to the

destination node. There is a common feature among these nodes: the rate of the

successful packet forwarding is less than other types of nodes. On these nodes,

retxQueue would be blocked and therefore reduce the waste of bandwidth. More

bandwidth can be further saved by extending FW_FIXED_DELAY to aggravate the

blocking of retxQueue. Rather than cancel all transmissions on these forwarders, this

method consumes little bandwidth but recovers regular functionality more quickly.

A type-2 node stands for forwarders who should not apply any extra forward

delay since the destination node is far away from it, and there is no other forwarder

nearby.

Type-3 forwarders can notice the existence of each other by receiving duplicate

forwarded packets. If another nearby forwarder exists, these adjacent forwarders

begin competing the forwarding of a packet. Firstly, each one selects

FW_RANDOM_DELAY in a predefined range. Then, the forwarder with smallest

random delay will cancel the forwarding of others and become the winner who takes

the responsibility for forwarding the packets and sets the FW_RANDOM_DELAY to

zero. Other forwarders have to cancel their forwarding after hearing the forwarding by

the winning forwarder and maintain the FW_RANDOM_DELAY value until the

situation changes. The response time after a change of the environment is about two

to four seconds.

 33

Type-4 nodes are the nodes that are next to the destination node. A type-4 node

has to apply the fixed delay to wait for the acknowledgements of the forwarding

packets. If it detects that the fixed delay is not long enough, the delay time should be

extended.

Because determining the forwarder type of a node must collect the required

information during a unit period, the reaction time is not as instant as the former one.

Besides, since the measurement of those RTTs require the transmissions of data

packets and their acknowledgements, Auto Tuning mechanism may not work well

when the network traffic load is low. However, under this situation the problem of

redundant packets is not severe.

4.5.4 Results

We have shown how Auto Tuning changes parameter settings to adapt to the

network conditions in the experiment results shown in section 4.2.3. The results

presented in this section are the integral improvements of the performances, such as

greedy UDP throughputs, TCP throughputs, and latencies.

Table 6 lists FloodingRD with different configurations used in these experiments.

The RF daemon is provided as a contrast, which enables all functionalities with fixed

parameter settings. The AT_RTT daemon modifies RF to determine the waiting period

for an ACK (by the parameter RQ_RETX_TIMEOUT) dynamically. AT_FFD

determines the value of FW_FIXED_DELAY by the number of ACK packets from

the destination node. The AT_FRD daemon extends the value of

FW_RANDOM_DELAY by detecting the existence of other forwarders aside it. The

AT daemon enables all functionalities described above.

 34

Symbol Describe
RF Enable forward-random delay and retransmission
AT_RTT Decide the waiting period for an ACK dynamically
AT_FFD Decide the value of FW_FIXED_DELAY automatically
AT_FRD Decide the value of FW_RANDOM_DELAY automatically
AT Enable all Auto Tuning functions

Table 6. Types of FloodingRD

Because Auto Tuning can change the value of RQ_RETX_TIMEOUT to fit the

requirements of different network environments, the value of this parameter is

reduced to be 40 instead of the original value 80. However, this value is similar to that

used by AT_RTT, and the performances of daemon AT_RTT are therefore similar to

those of daemon RF.

Figure 12 presents the average throughput for greedy UDP connections in a

chain network with 2 nodes to 5 nodes. In 2-node cases, only the AT_RTT and AT

daemons raise the throughput performance. Because the extra forward delay

mechanism only takes place on forwarders, it can not provide any improvements

when no forwarders exist in 2-node cases. Generally, the reduction of the values for

the FW_RANDOM_DELAY parameter can improve the average throughput more

than that for the RW_FIXED_DELAY parameter. Besides, the AT daemon can double

the average throughput in 3-node cases. These improvements become less and less

significant while the number of nodes increases.

Intuitively, these mechanisms only decrease the latencies; how can they improve

the greedy UDP throughput? It is because the processing time of the next-hop node

postpones the moving speed of the retxQueue and therefore influences the UDP

throughput. Besides, the UDP throughput is also limited by the retransmission waiting

time for a lost packet or a missed per-hop ACK. After enabling all functionalities of

 35

Auto Tuning, the RTT time will be decreased by taking off the extra unnecessary

forward delay overhead, and the retransmission timeouts can therefore be reduced

further and raises the UDP throughputs.

UDP Throughput

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

2 3 4 5
Number of Nodes

U
D

P
 T

hr
ou

gh
pu

t (
K

by
te

/s
)

RF

AT_RTT

AT_FFD

AT_FRD

AT

Figure 12. Average UDP throughput to compare functions of Auto Tuning

UDP Throughput

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

2 3 4 5
Number of Nodes

U
D

P
 T

hr
ou

gh
pu

t (
K

by
te

/s
)

RF

AT_RTT

AT_FFD

AT_FRD

AT

Figure 13. Average Latency under one-way greedy UDP

Figure 13 presents the measured latencies in the same experiment settings with

Figure 12. These results prove that Auto Tuning functionalities indeed reduce the

latencies. On the other hand, the results also provide an evidence of the relationship

 36

between latency and UDP throughput in our scheme. We can observe that the daemon,

which can reduce latency, can raise UDP throughput as well.

The average RTT time is measured on the source node. Figure 14 organizes these

data in the same experiment settings and provides another evidence of the relationship

between latency and UDP throughput.

Average RTT Time

0.00

10.00

20.00

30.00

40.00

50.00

2 3 4 5
Number of Nodes

A
ve

ra
ge

 R
T

T
 T

im
e

(m
s)

RF

AT_RTT

AT_FFD

AT_FRD

AT

Figure 14. Average RTT time at the source under one-way greedy UDP

Figure 15 illustrates the average TCP throughputs in the same topology. Unlike

UDP, the throughput of TCP is limited by the protocol design rather than our

retransmission scheme. Therefore, the reduction of latencies influences TCP

performance slightly.

 37

Figure 15. Average TCP throughput in a chain network

 38

Chapter 5 Implementation

Our system is built on Linux platform. Chapter 3 has described the architecture

of our scheme. The related issues and the existing technologies used for

implementation are given here.

5.1 Packet Filter

There are lots of existent net filter technologies for the packet redirection.

“Netfilter” in Linux and “divert socket” in FreeBSD are both famous tools to intercept

the desired packets. Generally, a net filter is used to build the internet firewalls or to

apply the translation of network address and port (NAT). We used netfilter and related

technologies such as iptables and libipq library to intercept the packets passed by the

kernel.

Netfilter and iptables are building blocks of a framework inside the Linux 2.4.x

and 2.6.x kernel. Netfilter can be considered as a set of hooks inside the Linux kernel

that allows the kernel modules to register callback functions with the network stack.

Iptables provides a set of commands as an interface between user and netfilter. Users

can use iptables commands to tell netfilter what to do with the passing packets.

Netfilter may buffer packet a special queue, and libipq is a development library that

helps users to get the packets from this queue.

These iptables rules should be configured carefully or the packets may be looped

between the kernel space and the user space. Therefore, the concept of two

overlapping network domains is introduced into our scheme to simply the settings.

 39

The following example is the configuration that we used on Linux for the field trials.

iptables -N flood_buffer
iptables -A OUTPUT -d 1.0.1.0/24 -j flood_buffer
iptables -A flood_buffer -d ! 1.0.1.n -j QUEUE

Our experiments took the subnet 1.0.1 (netmask 0xffffff00) as the original

network domain and added a new subnet 1.0.2 for FloodingRD. The number “n” is an

identified id of a host. The first rule defines a new queue named flood_buffer. The

second rule lets all normal unicast packets be placed in flood_buffer queue. Finally,

the last rule inspects the packets in flooding_buffer queue. If a packet is for the local

host, it will be passed through to avoid infinite loops. Other packets will be collected

into a predefined queue provided by Netfilter, and FloodingRD can receive packets

from this queue by the functions defined in libipq library.

To make a NIC receive or send packets with two different network subnets, a

common technology, “IP aliasing”, is used to configure the NIC with two IP addresses.

Typical uses of IP aliasing are virtual hosting of Web and FTP servers and

reorganizing servers without having to update any other machines. The following

commands can make a NIC simultaneously receive packets from 1.0.1.x and 1.0.2.x.

ifconfig wlan0 inet 1.0.1.n netmask 0xffffff00
ifconfig wlan0:0 inet 1.0.2.n netmask 0xffffff00

5.2 Limitations of Current NICs

To be backward with earlier 802.11 products, the broadcast transmission rate is

fixed at 2Mbps rather than 11Mbps for unicast packets. This feature limits the

maximum throughput of our scheme. To enhance the transmission rate of broadcasts,

 40

some modifications for the drivers of NICs are required. Fortunately, there are still

some NICs that provide the ability for configuring the transmission rate for broadcast.

Thanks to the existence of this kind of NICs, we can save efforts to modify the

drivers.

 41

Chapter 6 Performance Evaluation

Functionalities of FloodingRD and their efficacy have been demonstrated in

Chapter 4. However, these experiment results are generally for a specific purpose.

What we want to present in this chapter are the integral performances, such as the

maximum throughput, the latency and the packet loss rate for different traffic types.

At the beginning, an introduction of various performance metrics is given.

Section 6.2 briefs the environment of these experiments. Section 6.3 shows the

practical results. Because the circumstances of large scale networks are hard to get by

real experiments, simulation is used to help us observe the operation of our scheme in

large networks. The related results are given in section 6.4. At the end of the

simulation section, there is an evidence for the ability of FloodingRD to get adapt to

high mobility environments

6.1 Performance Metrics

While developing a routing protocol, how can we judge it is good or bad? What

are the important features of a good routing protocol? Here we define some

performance metrics by that we can quantify and measure the efficiency of a routing

daemon. These metrics include the average throughput, the packet loss rate, the

end-to-end latency as well as the redundancy degree, etc.

6.1.1 Throughput

The traffic generators normally record incoming throughput per second, and

 42

write these records into a log file. By analyzing these log files, we can get the average

throughput easily.

6.1.2 End-to-End Latency

Latency is defined as the period from the time a packet is sent out from the

source and the time it is received by the destination. A short latency is required by

video and audio communication services. The stg/rtg programs, a pair of traffic

generators, record the delay time of each received packet. However, this mechanism

needs to synchronize the system time on the source node and the destination node.

Even after correcting the system time on hosts by time services, the difference

between each host is still too large to provide accurate latency time.

We exchange the role of the two end hosts and record packet latencies twice. By

averaging these two recorded values, the latency can be measured precisely.

6.1.3 Packet Loss Rate

Each packet passed by FloodingRD is marked with a sequence number. This

number can be used to calculate the packet loss rate:

($lastSnum - $valid_packet) * 100 / $lastSnum)

The $lastSnum means the sequence number of the last received packet, and the

$valid_packet is the total number of valid packets. A packet is a valid packet if it is

received for the first time; otherwise, this packet is regarded as a redundant packet.

When the packet loss rate gets extremely high, this approach becomes inaccurate.

 43

6.1.4 Redundancy Degree

The redundancy degree is defined as follow:

($packet_count - $valid_packet) * 100 / $packet_count)

The $valid_packet is defined in the last section. The $packet_count is the

total number of received packets. Under an unfavorable condition, the redundancy

degree may exceed 100%.

6.1.5 End-to-End Re-ordering Degree

We record the end-to-end re-ordering degree by the processes as follow:

if($c_snum < $snum){
 $c_snum = $snum;
}else{
 $difference = $c_snum - $snum;
}

The $snum is the sequence number of each received packet, while the $c_snum

stands for the current accepted sequence number. The $c_snum is updated by an

incoming packet that has a larger sequence number. Once a valid packet with a less

sequence number arrives, the difference between the $c_snum and the $snum will be

recorded.

After collecting the difference values, the re-ordering degree can be calculated as

follow:

re-ordering degree = √(Σ($difference)2 / $valid_count)

 44

The $valid_packet is the total number of valid packets.

6.1.6 Mobility

Unlike average throughput or end-to-end redundancy degree, mobility is hard to

be quantified. However, by analyzing the snapshot of TCP throughput under high

speed environment, we can still prove that FloodingRD has the ability to overcome

the topology which changes rapidly and frequently.

Section 6.4.4 demonstrates the TCP performance reached by FloodingRD under

a high speed environment.

6.2 Experiment Environment

6.2.1 Hardware and Software

Table 7 lists hardware and software used in real experiments and simulations.

These 802.11b NICs can be configured to broadcast packets at transmission rate of 11

Mbps. Because the performance results about large scale topology are hard to get by

practical experiments, we therefore use NCTUns network simulator [22] to observe

the behavior of our protocol in large networks.

Hardware
Machine IBM ThinkPad laptops A30/A31
NIC 802.11b NIC

Software
Operation System Linux with kernel version 2.6.7/2.6.9
Traffic Generator (1) stg/rtg (A pairs of traffic generators

 45

packaged with NCTUns)
(2) ttcp

Routing Daemon FloodingRD
Simulator NCTUns 2.0

Table 7. The hardware and software used in experiments

6.2.2 Traffic Type

We chose one-way greedy UDP, two-way greedy UDP, and greedy TCP traffics

to validate the performance of FloodingRD. Because the TCP traffic is naturally a

kind of two-way traffic, it is not necessary to test our daemon with two TCP traffics.

The two-way UDP traffic type lets two nodes in the network send packets to each

other. By observing the behavior of the two-way UDP, we can look into the traffic

condition of the TCP links. Because TCP is a sensitive and complicated protocol, to

detect error with the TCP traffic is a hard work. If some mistakes damage the two-way

UDP traffic, we can conclude why the TCP traffic can’t work in the same environment

and then try to solve the problem.

6.2.3 FloodingRD Configuration

The parameter settings of FloodingRD are almost the same with Table 5. The

only difference is that the RQ_RETX_TIMEOUT is changed to 40. Because Auto

Tuning can modify this parameter according to the circumstance of network

environment, we need not choose a large waiting time that damages the UDP

performance.

Besides, for observing how the performance is influenced by different

functionality, there are lots of FloodingRD with different configuration used in

 46

various experiments and simulations. Table 8 lists the details and differences among

them.

The first column of Table 8 is the name of each FloodingRD, and the

functionalities are listed at the top of the table. “FFD” means the value of

FW_FIXED_DELAY, while “FRD” means the value of FW_RANDOM_DELAY.

“Retx Times” is the configured maximum retransmission times. Functionality

“AT_RTT” enables a daemon with the ability to change retransmission waiting time

dynamically. Function “AT_FFD” and “AT_FRD” adjust the value of

FW_FIXED_DELAY and FW_RANDOM_DELAY respectively.

Functionalities
Name

FFD Retx Times FRD AT_RTT AT_FFD AT_FRD
Basic 8 0 0

R1 8 1 0
R2 8 2 0
F 8 0 40

RF 8 1 40
AT_RTT 8 1 40 On
AT_FFD 8 1 40 On
AT_FRD 8 1 40 On

AT 8 1 40 On On On
Table 8. FloodingRD with different configuration used in experiments

 The Basic daemon that has no additional functionality but the overhead of

forward-fixed delay is provided as a contrast. The daemon R1 and R2 was used to

prove how retransmission protects TCP traffic in section 4.2.3, while the daemon F

was used to show the efficiency of forward-random delay in section 4.3.3. The

daemon RF includes all basic functionalities and it also acts as a contrary to Auto

Tuning related daemons. A series of daemons enable each independent Auto Tuning

mechanism. Finally, the daemon AT enables all functions of Auto Tuning.

 47

6.3 Real Experiments Result Analyses

We have seen some experiment results in earlier chapters, what we want to

present here are the overall performance, such as the maximum throughput, the

condition of latency and the packet loss rate under different type traffic.

These performance results are influenced by many factors. For example, the

longer distance between each host raises the packet loss rate. Besides, physical

barriers and invisible interference also affect the result. To minimize these external

variable factors, we put experimental machines together and then divide them by

iptables commands. Net filters only allow specific packets pass through and other

packets are discarded at IP layer. By these commands, the developers can design and

build different network scenarios to test each mechanism of FloodingRD just like

what we have done in Chapter 4. The network scenario for the experiments in this

chapter is illustrated in Figure 16.

Although iptables commands benefit the processes of protocol improvement, the

resulted environment differs from the same topology of real world. Because the

packets are filtered at IP layer, the behavior of physical layer is completely different.

Besides, after taking away the obstacles and shorting the distance between hosts, the

evaluated performance will be better than what we can get from the real world.

Therefore, the results presents here can only be regarded as reference values.

 48

Figure 16. The scenario built up by net filters

Table 9 lists details of experiment settings. The topology built by iptables

commands can be seen as a chain network. One-way greedy UDP, two-way greedy

UDP as well as greedy TCP are tested in this scenario.

Experiment Settings
Number of Nodes 2 nodes to 5 nodes
Topology A chain network
Traffic Greedy UDP, 2-way Greedy UDP

Greedy TCP
FloodingRD Type RF, AT

Table 9. Settings of real experiments

6.3.1 Throughput

Figure 17 and Figure 18 illustrate the average throughput performance of the RF

and AT daemons respectively under one-way and two-way greedy UDP. The result of

two-way UDP throughput is the sum at both end hosts. Normally, the two UDP link

share the bandwidth equally, and the total throughput should be the same with

one-way throughput that engages whole obtainable bandwidth. However, what shown

in Figure 17 differs from this.

In experiments with the daemon RF, the one-way UDP throughput is less than

 49

two-way UDP traffic. Because in these cases the UDP throughput is mainly limited by

retransmission mechanism, and the long retransmission waiting time makes the

retxQueue being constantly blocked by lost packets. We can imagine that these queues

are like narrow tubes that limit the number of passed packets. Because the retxQueue

is divided according to packets’ destination, adding one more UDP link will produce a

new sub-queue that enlarge the capacity of the virtual tube and then raise the total

throughput at least.

On the other hand, serials Auto Tuning techniques shorten the retransmission

waiting time and therefore enlarge the virtual tube. One-way UDP throughput is no

longer limited by retransmission and then reaches the deserved performance with the

daemon AT.

Figure 17. Average UDP Throughput by RF FloodingRD

 50

Figure 18. Average UDP Throughput by AT FloodingRD

 According these experiment results, the throughput of greedy UDP traffics

can reach about 100 Kbytes in 5-node cases. Besides, the performance of greedy TCP

traffic is given in Figure 15. The maximum TCP throughput is slightly more than 20

Kbytes.

6.3.2 Packet Loss Rate

Packet loss rate is influenced by the variation of traffic load. Probability of

transmission collision rises in a busy network with higher total throughput and

therefore leads to higher packet loss rate. The experiment results shown in Figure 19

are collected under greedy UDP traffic. Under a normal network condition, the packet

loss rate will be lower than data presented here.

It seems reasonable that packet loss rate increases under two-way UDP traffic

than that under one-way traffic, but we can’t explain the phenomenon precisely. The

AT daemon leads to higher packet loss rate might because of better performance of

throughput. Similar to what we observed in Figure 5, the packet loss rate rises

abnormally in 3-node cases.

 51

Packet Loss Rate

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 3 4 5

Number of Nodes

D
ro

p
R

at
e(

%
)

RF_UDP

RF_2UDP

AT_UDP

AT_2UDP

Figure 19. Packet loss rate under greedy UDP

6.3.3 Latency

Because of retransmission mechanism, latency is another value easily affected by

the traffic load. The experiment results below shows that the latency can be reduced to

about 0.8 second even under greedy UDP in 5-node cases.

Latency

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

2 3 4 5
Number of Nodes

L
at

en
cy

 (
m

s)

RF

AT

Figure 20. Latency under greedy UDP traffic

 52

6.4 Simulation

Simulation environment can be thought as another platform. It is not necessary to

repeat real experiment results in simulation environment. However, by comparison

between simulation results and practical experiment results, we can observe the

difference between simulation and real world environment. This information can help

us to imagine the real condition by transferring the simulation results.

The advantages of simulation are easy to control, repeatable and the ability to

build large scale networks, etc. Besides, in simulation environment, the topology

shown in Figure 16 can be built with iptables commands.

At the beginning of this section, the comparisons between simulation results and

practical result are given. And then, there is a large scale road simulation presented in

section 6.4.3. Finally, section 6.4.4 represents the mobility of FloodingRD.

6.4.1 Simulations about Auto Tuning

This section shows simulation results with the same setting and environment in

section 4.5.4. Table 10 lists the details about these simulation experiments. Figure 21

and Figure 22 are relative to Figure 12 and Figure 13 respectively.

Simulation Settings
Number of Nodes 2 nodes to 5 nodes
Topology A chain network
Traffic Greedy UDP
FloodingRD Type RF, AT_RTT, AT_FFD, AT_FRD, AT

Table 10. Settings of simulation for Auto Tuning experiments

 53

The improvements made by Auto Tuning are not such significant in simulation

environment. However, by comparing Figure 21 with Figure 12, we can still discover

some common features between simulation results and real experiment results. For

example, only daemon AT_RTT and daemon AT raise the throughput in 2-node cases.

Besides, the reduction of FW_RANDOM_DELAY can provide more improvement

than RW_FIXED_DELAY. Moreover, just like what we observed in real experiments,

although the AT daemon doubles the average UDP throughput in 3-node cases, the

improvement decreases while the number of nodes increases.

UDP Throughput (Simulation)

0

100

200

300

400

500

600

2 3 4 5
Number of Nodes

T
hr

ou
gh

pu
t(

K
by

te
s)

RF

AT_RTT

AT_FFD

AT_FRD

AT

Figure 21. Average UDP throughput by simulation

 54

Latency

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

2 3 4 5

Number of Nodes

L
at

en
cy

 (
m

s) RF

AT_RTT

AT_FFD

AT_FRD

AT

Figure 22. Latency under greedy UDP by simulation

Figure 22 seems not similar to Figure 13. Comparing with the daemon RF, the

daemon AT_RTT increases the latency of packets. This is because the default

RQ_RETX_TIMEOUT is too short for this environment. Although this inappropriate

setting may increase redundancy degree, it speeds up the movement of retxQueue and

therefore reduces the latency. After enabling the function of tuning retransmission

timeout automatically, the delay time for ACK packets extends and affects the latency.

6.4.2 Integrated Simulation Result

This section provides integrated simulation results with the same setting and

environment in section 6.3. Table 11 lists the details about the simulation experiments.

Figure 23 and Figure 24 are relative to Figure 17 and Figure 18 respectively.

Simulation Settings
Number of Nodes 2 nodes to 5 nodes
Topology A chain network
Traffic Greedy UDP, 2-way Greedy UDP,

Greedy TCP

 55

FloodingRD Type RF, AT
Table 11. Details of integrated simulations

Because of high packet loss rate under simulation environment, the two-way

UDP traffic seems abnormal with the RF daemon, especially in 3-node cases.

Figure 23. Average UDP throughput by RF FloodingRD (simulation)

However, the condition of simulations with the AF daemon is almost the same

with real experiments. The one-way greedy UDP gains the same throughput as

two-way greedy UDP traffic.

Figure 24. Average UDP throughput by AT FloodingRD (simulation)

 56

6.4.3 Road Topology Simulation

Because large scale network performance is hard to get from practical

experiments, network simulator is used to help us to get the idea of the performance

of our daemon. The topology is illustrated in Figure 25. There are lots of nodes spread

randomly inside a rectangle. The speed of a node is configured as 36km/hr or

108km/hr to simulate a car that moves in the downtown or on a highway.

Simulation Settings
Number of Nodes 10 nodes

40 nodes
Topology As shown in Figure 17, with nodes

move in random directions
Traffic Greedy UDP

2-way Greedy UDP
Greedy TCP

Speed 10m/s (36km/hr)
30m/s (108 km/hr)

FloodingRD Type AT
Table 12. Details of road simulations

Figure 25. Topology of road simulation

Table 13 and Table 14 lists experiments result of 10 nodes in 36 km/hr and 108

km/hr respectively while Table 15 list result of 40 nodes in 108 km/hr. According to

the comparison between Table 13 and Table 14, the increase of moving speed will not

influence the performance obviously. On the other hand, after multiplying the number

of nodes, the packet loss rate and the re-ordering degree increase significantly.

These simulation results reveal problems of redundant packets and high

re-ordering degree in a large scale network. However, by the TCP performance, these

 57

simulations also proved that our daemon can adapt to high mobility environment.

10 nodes, 36 km/hr
 Throughput Packet loss Re-ordering Redundancy Hop count

UDP 134.19 6.35% 2.61 67.97% 1.338
2-way UDP 164.46 16.90% 0.79 61.48% 1.326

TCP 108.80 1.38% 0.26 37.61% 1.170
Table 13. Road simulation result with 10 nodes in 36 km/hr

10 nodes, 108 km/hr

 Throughput Packet loss Re-ordering Redundancy Hop count
UDP 191.11 3.48% 0.95 52.08% 1.296

2-way UDP 159.66 18.33% 0.57 64.31% 1.343

TCP 113.63 1.41% 0.33 32.05% 1.207
Table 14. Road simulation result with 10 nodes in 108 km/hr

40 nodes, 108 km/hr

 Throughput Packet loss Re-ordering Redundancy Hop count
UDP 22.70 56.09% 93.74 86.87% 3.367

2-way UDP 25.93 74.56% 61.75 87.92% 3.206

TCP 13.24 11.43% 0.06 60.27% 2.238
Table 15. Road simulation result with 40 nodes in 108 km/hr

6.4.4 Mobility Demonstration

Figure 26 shows TCP throughputs in road simulation described in last section

with 40 nodes in 108 km/hr. The dark blue line is the average throughput in every

second, while the pink line represents the average throughput during 3 seconds.

Unlike AODV protocol, our design need not waste time to maintain or re-build a route.

Although the TCP throughput is not stable, it never dropped to zero for a long time.

 58

Figure 26. Snapshot of TCP throughput in road simulation

 59

Chapter 7 Discussion

7.1 Comparison with AODV

We have conducted a series of field trials with AODV protocol on a highway and

on the roads in downtown. The bad results forced us to develop flooding-based

routing protocol. The related results are presented in this section.

Figure 27 shows the route recovery time when a broken route is detected by

AODV. The average recovery time is 8.92 sec, and the average recovery time except

the worst two cases is about 3.84 sec. The results indicates that if an IVC system uses

AODV as the underlying routing protocol, the system cannot provide high quality

services due to long route recovery time.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25

Route Recovery Events

Time (sec)
Recovery Time

AVG Recovery Time

AVG Recovery Time 2

Figure 27. Route Recovery Time of AODV

 60

UDP Thoughput

40.91

159.13

0

50

100

150

200

1 2Hop Counts

kbytes/sec

Figure 28. The average UDP throughputs with AODV

Figure 28 shows the average UDP throughput with AODV. When the hop count

is one, the average throughput is only about 160 Kbytes/s which is muss less than our

scheme in 2-node cases. According to these results, we can assert that FloodingRD is

more adaptive than AODV in high mobility environment.

7.2 Lessons

7.2.1 Verify Every New Mechanism

In our early design, the value of FW_RANDOM_DELAY is only 13

milliseconds. However, at that time, we didn’t verify the functionality of this new

mechanism. Actually, this value can not have any effect and becomes a pure overhead.

7.2.2 Prevent Unnecessary Costs

The relationship between packet latencies and UDP throughput was not

discovered until we implemented Auto Tuning functions. For intuition, these

mechanisms can only decrease the packet latencies, but they improved the average

 61

UDP throughput at least. After that, we tried to get the reason of how latency

reduction affects the UDP throughput. The detail was described in section 4.5.4.

From this experience, we understand that while developing a system, a designer

should minimum every cost as possible. Because no one can’t fully understand what

will be affected by these additional cost.

7.3 Future Works

7.3.1 Limit Flooding in Large Scale Network

The simulation results reveal problems of redundant packets and high re-ordering

degree in a large scale network. However, it is hard to improve the performance of a

high mobility network that has no special features. Moreover, because our daemon is

designed for IVC networks, we should put out effort in road simulation firstly.

 62

Chapter 8 Conclusion

We designed and implemented a flooding-based routing protocol that can adapt

to an IVC network which features extremely high mobility. We also implemented a

retransmission mechanism to better service TCP and an extra delay mechanism to

reduce the number of redundant packet forwarding. Furthermore, we observed the

relationship between UDP throughputs and packet latencies in our scheme. Therefore,

we implemented a series of functionalities to reduce unnecessary latency overheads

by tuning parameters dynamically according to the network environment.

Finally, the simulation results indicate that the number of redundant packets

increases while the number of nodes increases. In the future, we will improve our

FloodingRD on the NCTUns simulation platform under some given road condition

models.

 63

Bibliography

[1] C.E. Perkins and E.M. Royer, “Ad-hoc On-Demand Distance Vector Routing,”

Proceedings 2nd IEEE Workshop, Mobile Computing Systems and Applications,

25-26 Feb. 1999, pp. 90 – 100.

[2] E.M. Royer and C.K. Toh, "A Review of Current Routing Protocols for Ad

Hoc Mobile Wireless Networks," IEEE Personal Communications, 1999.

[3] S.Y. Wang, “On the Intermittence of Routing Paths in Vehicle-Formed Mobile

Ad Hoc Networks on Highways,” IEEE ITSC 2004.

[4] C.E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers,” ACM SIGCOMM

Computer Communication Review Volume 24, Issue 4, October 1994, pp. 234 – 244.

[5] D. Johnson and D.A. Maltz, “Dynamic source routing in ad hoc wireless

networks,” in Mobile Computing (T. lmielinski and H.F. Korth, eds.), ch. 5, pp.

153-181, Dordrecht, The Netherlands: Kluwer Acdemic Publishers, Feb. 1996.

[6] Y.B. Ko and Vaidya, N.H, “GeoTORA: A Protocol for Geocasting in Mobile

Ad Hoc Networks,” Network Protocols, 2000. Proceedings, 2000 International

Conference, Osaka Japan, 14-17 Nov. 2000, pp. 240 – 250.

[7] S. J. Lee and M. Gerla, “AODV-BR: Backup Routing in Ad Hoc Networks,”

Wireless Communications and Networking Conference, Chicago, USA, 2000, WCNC.

2000 IEEE, Vol. 3, 23-28 Sept. 2000, pp. 1311 – 1316.

[8] M. Jiang and R. Jan, “An Efficient Multiple Paths Routing Protocol for

Ad-Hoc Networks,” Information Networking, 2001, Proceedings, 15th International

Conference, Beppu City, Oita Japan, 31 Jan.-2 Feb. 2001, pp. 544 – 549.

 64

[9] S. R. Das et al., “On-demand Multipath Distance Vector Routing for Ad Hoc

Networks,” IEEE ICNP 2001, Nov, 2001.

[10] Ye, Z., Krishnamurthy, S.V., Tripathi, S.K., “A Framework for Reliable

Routing in Mobile Ad Hoc Networks,” INFOCOM 2003, Vol. 1, 30 March-3 April

2003, pp. 270 – 280.

[11] A. Nasipuri, R.Castaneda, and R.R. Das, “Perforamance of Multipath Routing

for On-Demand Protocols in Mobile Ad Hoc Networks,” Mobile Networks and

Applications, pp. 339 – 349, Aug. 2001

[12] S.J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint

Paths in Ad hoc Networks,” ICC 2001, Helsinki Finland, pp. 3201 – 3205, vol. 10.

[13] Y. Sakurai and J. Katto, “AODV Multipath Extension using Source Route Lists

with Optimized Route Establishment,” IWWAN 2004, University of Oulu, Finland,

31 May- 3 June.

[14] K. Obraczka and K. Viswanath, “Flooding for Reliable Multicast in Multi-hop

Ad Hoc Networks,” Wireless Networks vol. 7 issue 6, pp. 627 – 634, 2001.

[15] V. Dheap, M. A. Munawar, S. Naik, and Paul A.S. Ward, “Parameterized

Neighborhood-based Flooding for Ad Hoc Wireless Networks,” MILCOM 2003,

13-16 Oct. 2003, pp. 1048 - 1053 vol. 2.

[16] S. Leng, L. Zhang, L. W. Yu, and C. H. Tan, “An Efficient Broadcast Relay

Scheme for MANETs,” accepted by Computer Communications 2004, article in press.

[17] R. Chandra, V. Ramasubramanian, K. P. Birman, “Anonymous Gossip:

Improving Multicast Reliability in Mobile Ad-Hoc Networks,” Distributed

Computing Systems, 2001. 21st International Conference, Mesa, AZ USA, 16-19

 65

April 2001, pp 275 – 283.

[18] Y. Yi and M. Gerla, “Efficient Flooding in Ad hoc Networks: a Comparative

Performance Study,” ICC 2003, 28 - 30 May, Seattle Washington, USA, pp.

1059-1063 vol.2.

[19] C.S. Hsu and Y.C. Tseng, “An Efficient Relaible Broadcasting Protocol for Ad

Hoc Networks,” IASTED Networks, Parallel and Distributed Processing, and

Applications (NPDPA), 2002, Japan, pp. 93 – 98.

[20] B. Williams and T. Camp, “Comparison of Broadcasting Techniques for

Mobile Ad Hoc Networks,” proceedings of MOBIHOC 2002, Lausanne, Switzerland,

pp 194 – 205.

[21] The netfilter/iptables project web site, available at http://www.netfilter.org/

[22] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and

C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network Simulator”,

Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197.

http://www.netfilter.org/

