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ABSTRACT

Inter-vehicle communication (IVC) provides useful applications in future
Intelligent Transportation Systems (ITS). An IVC network is a special case of
mobile ad hoc networks (MANET) with high node mobility. Although various
existent MANET technologies can be applied to an IVC network directly,
traditional routing protocols such as AODV can not adapt to this
rapidly-changing network. To address this problem, we desgned and
implemented a flooding-based data forwarding protocol. The practical
experiments and simulation results inthis thess showed that the proposed
protocol is suitable for 1VC networks. However; the derived problems such as
redundant and out-of-order packetsaffect the perfor mances and efficiency of the
protocol greatly. This thesis also proposes several improvements for those

problems.
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Chapter 1 Introduction

1.1 Motivation

ITS (Intelligent Transportation System) aims to provide travelers with a safer,
more efficient, more comfortable trips. Its basic functions include instant traffic
congestion notification, road condition information broadcasting, as well as
emergency aert. Recently, ITS wants to provide network services to enable
inter-vehicle communications (referred to as IVC) for exchanging information,

sending/receiving emails and browsing web pages on the Internet, etc.

IVC has become a popular topic in,the.ITS research community. It enables
communications among vehicles without the support of an infrastructure network,
such as the ones using 802.11 infrastructure-mode access points. Each vehicle is
equipped with awireless interface, and vehicles on roads dynamically form a Mobile
Ad Hoc Network (MANET) with high mobility. In an IVC network each node
(vehicle) may move at a wide range of speeds and in different directions. Therefore,
an IVC network is featured as extremely high mobility, which introduces many

challenges for designing a routing protocol.

We have done lots of field trials with AODV (Ad-hoc On-demand Distance
Vector Routing [1]) protocol on the highway and on the roads in downtown but found
that such traditional routing protocols are not suitable for IVC networks. The topology
of an IVC network changes rapidly so that the built paths in such a network are

broken very easily. The results of these experiments exhibit that in a network with



universal mobility the available lifetime of a single-hop route is about 20 seconds,
while that of a two-hop route is only around 4 seconds. As the result, the lifetime of
routing paths in such a network is usually too short for data transmissions. Moreover,

routes with three hops or more are almost not available in AODV.

Traditional routing protocols repair broken routes based on the propagation of
messages containing the correct, freshest routing information. However, when those
messages are being propagated to reflect topology changes, the information they
contain is very likely to be outdated due to the nature of the frequently changed
network topology. To address this issue, we propose a new routing protocol to route

packets based on the flooding technique.

Flooding is featured as high reliability with'minimized states so that it is suitable
for high mobility networks. For this réason,” we -design and implement a new
flooding-based data forwarding protocol-to provide effective data transmission in IVC

networks.

Since audio and video applications are more and more popular, we characterized
the demands and requirements of those two kinds of UDP-based applications,
respectively, to provide them with the best services. Audio service applications
generally need less bandwidth than video applications. However, the voice quality is
very sensitive to the round trip times between the source and the destination nodes.
On the other hand, video applications usually consume bandwidth of 40 KB/sec or
more, but they may still generate acceptable video streams under a high packet loss
rate. On the other hand, web services and text-mode communication services usually
use TCP as the underlying transport layer protocol to protect their transferred data.

Although TCP is sensitive to packet losses and thus its design is not suitable for the

2



wireless environment, using TCP for web accesses and text-mode services is still
acceptable because the amount of transferred data in those applications is relatively
small. FTP is another important network service, but transferring a large file in an

IV C network is not acommon case.

To meet the requirements needed by these different applications, our proposed
protocol has to provide bandwidths at least 50 KB for UDP. The maximum bandwidth
achieved by our protocol is limited by that provided by the underlying network.
Currently, we evaluate our protocol in field trials based on the IEEE 802.11b network,
whose theoretical maximum bandwidth is 11 Mbps only. It is possible to increase the
achievable bandwidth of our scheme by using more advanced wireless technology for
the underlying network. For example, IEEE 802.11a/g networks provide 54Mbps

bandwidths, which is much larger than that-provided by IEEE 802.11b networks.

1.2 Organization

The remaining parts of this paper are organized as follows. We briefly introduce
the famous routing protocols for MANET and the commonly used flooding
techniques in Chapter 2. Chapter 3 depicts the architecture of the proposed
flooding-based routing mechanism. Chapter 4 itemizes the detail of our protocol
design. Chapter 5 discusses related issues about implementation. Chapter 6 presents
the evaluation of the performances by both practical experiments and simulations. The
discussions and future works are put in Chapter 7. Finally, Chapter 8 makes a short

conclusion about our works.



Chapter 2 Related Work

2.1 Routing Protocols on MANET

Recently, numerous routing protocols have been proposed for MANET. Typically,
they can be partitioned as two types. single-path routing and multi-path routing.
Single-path routing protocols are divided into two groups, “table-driven” and
“demand-driven” protocols. Besides, a multi-path routing protocol is normally a
modification from one of single-path protocols. Moreover, there are some broadcast
and multicast technologies used to deliver messages on a wireless environment. In

this chapter, we discuss these related techniques and how they differ from our scheme.

2.2 Single-path Routing Protocols

Traditional routing protocols for " MANET are generally categorized as
“table-driven” or “demand-driven.” Table-driven routing protocols maintain routing
information on each node and change messages to update these information
periodically. On the contrary, demand-driven routing protocols keep no topology
information on hosts until there is a requirement of communication. These kinds of
protocols try to find a path only when a node wants to send packet out. Popular
AODV (Ad Hoc On-Demand Distance Vector [1] ) routing protocol is one of typical

demand-driven protocols.

Table-driven (also called “proactive”) routing protocols are based on

Bellman-ford’s shortest-path algorithm in substance. Each host in an Ad hoc network



periodically changes messages, named hello messages, about their local information,
e.g. the states of neighbors, the number of neighbors, and so forth. These messages
occupy lots of limited bandwidth. DSDV (Destination-Sequenced Distance-Vector
Routing Protocol [4] ) is the standard one of table-driven protocols. Famous
table-driven routing protocols include DSDV and CGSR (Clusterhead Gateway

Switch Routing), etc.

CGSR derived form DSDV separates the whole network into two hierarchical
architectures, the cluster head and the others. When a change occurs on a normal node
or a gateway, there is no maintenance overhead. On the other hand, if a change
happens on the cluster heads, the overhead will be higher then that of DSDV protocol.
In IVC networks, because there is almost no fixed node and every vehicle can move
out of scope of the network at any:time, .after-applying CGSR to I1VS network, it is
hard to choose appropriate cluster heads. And CGSR:is therefore not suitable for the

IV C environments.

Compare with table-driven protocols, demand-driven (also called “reactive”)
routing protocols seem to adapt to speedy IVS network. They don’t need to maintain
information about the whole network. The routing path is built only when there are
packets waiting for routing. The overhead of a great deal of control packets is saved.
However, because the life time of a built path is too short to be useful, these protocols
are still not suitable for IVC networks. Famous demand-driven routing protocols

include AODV and DSR [5].



2.3 Multi-path Routing Protocols

A multi-path routing protocol, such as GeoTORA [6], discovers multiple routing
paths to forward data for higher reliability. Most of them are variations derived from
single-path routing protocols. For example, [7] [8] [9] [10] are extended from AODV,
[11] [12] are the extensions of DSR, and [13] is a variation that combines both to

achieve multi-path routing.

Although multi-path routing protocols are more adaptive than single-path routing
protocols in high mobility networks, they suffer from the same problems in high
mobility IVC networks, because the mechanisms behind them is similar to those

behind single-path routing protocols.

2.4 Flooding Techniques

Flooding techniques are usually used to the research area of broadcast and
multicast. While these studies focus on how to reach the most coverage by the least
number of duplicated packets, our design apply it to forward data packets to a

particular target.

Some flooding techniques that need to exchange local information by control
messages will meet the same problems we have mentioned in last sections. Others that
don’t need the knowledge of neighboring nodes can be categorized to
probabilistic-based, counter-based, distance-based, location-based, and cluster-based
approaches The first three schemes may discard flooded packets with random

probability or some predefined thresholds and rules. They have tradeoffs of the



coverage of a broadcast and the number of duplicated packets by configurable
parameters, such as the dropping probability, the maximum number of rebroadcasts,
and the maximum hop counts for a broadcasted packet, etc. It is difficult to fine-tune

these parameters in IV C networks due to greatly frequent topology changes.

Location-based techniques usually assume that the location information of
neighbors is available. Although GPS (Global Positioning System) can be used to
provide local position information, it is still a difficult task to get location information
of the destination and other forwarders before starting packet forwarding. Besides, the
GPS support is not available all the time; it needs additional equipments and may be
influenced by the weather. Therefore, we suggest that the location information can
only be regarded as an additional aid while implementing a routing protocol for IVC

networks.

Cluster-based schemes divide nodes in-a network into three types. cluster head,
gateway, and ordinary nodes. A cluster head. is responsible for community inside a
cluster, while a gateway delivers packages between clusters. Nodes except for cluster
heads and gateways are called ordinary nodes. According to the adopted approaches
of constructing clusters, cluster-based schemes can be classified into two groups:
active-clustering and passive-clustering. Due to greatly high mobility in IVC
networks, the procedures of electing a cluster head may be performed very frequently.
Therefore, the protocols may spend most bandwidth on maintaining clusters and
generate great latencies for data forwarding. Passive clustering carries the
cluster-related information in data packets and doesn’t need to exchange additional
control packets to maintain clusters. This scheme minimizes control message

overheads but leads to a new problem of cluster head failures (or disappearances).



This problem becomes worse when the mobility of a network increases. Therefore,

cluster-base techniques are not suitable for 1V C networks, either.

2.5 Discussion

Because of power-consumption and bandwidth waste, table-driven protocols are
not satisfactory for 1VC networks. Demand-driven protocols have longer latency and
can save bandwidth waste but still do not satisfy the requirement of high mobility in
IVC networks. Multi-path routing protocols based on similar mechanisms with
single-path protocols encounter the same problems. Flooding techniques are normally
applied to research area of broadcast and multicast. The related issues can provide

some hints and ideas to our study.

By analyses of these related technologies, we can conclude that: to develop a
routing protocol for IVC networks; a researcher’ might give up techniques of
traditional MANET routing protocols ‘and: 'should consider the extremely high

mobility condition



Chapter 3 Architecture

3.1 A User-Level Routing Daemon

The first issue of implementing a flooding-based routing daemon is to broadcast
a unicast packet. Intuitively, developers can modify the functions of the IP layer in the
kernel to add a broadcast IP header in front of the original packets. However, a
platform-dependent implementation is not suitable for an IVC environment. Consider
that an IVC network is composed of a variety of vehicles and even pedestrians with
hand-held devices. All of the devices in an IVC network may have quite different
architectures and operating systems. Besides, a platform-dependent solution may
cause developers to spend much time and.effort deploying this protocol to all devices.
Therefore, we decide to build FloodingRD at the user space. The advantages of this

approach are platform-independent, easy. to.implement and easy to debug, etc.

* The source = The farwarder = The destinatian

FloodingRD @ FloodingRD FloodingRD @

L 1 L 1 L L

M etfilter M etfilter M etfilter

Kernel Space

Figure 1. The processing flows in the source, the forwarder, and the destination

To capture packets from applications and prevent applications from knowing the
existence of FloodingRD, the net filter technology inside kernel is used to redirect
packets from the user level to our daemon. Figure 1 shows the processing flows in the

source, the forwarder, and the destination.



At the source, a packet is injected into the kernel by the application and then
transferred to the daemon at the user level by the net filter. FloodingRD will append
information needed by the protocol design to this packet. After that, this packet would
be broadcasted out. An IP header with a broadcast address makes every host that can
hear this packet accept it and deliver it to the FloodingRD. After receiving a packet,
the daemon will exam whether this packet is for the local host or not. If it is, the
original unicast packet will be extracted and then injected into the kernel. The net
filter inside the kernel recognizes the packet as a local packet and brings it to the
target application. Otherwise, if the packet is not a local packet, the daemon will
decide whether to broadcast it again according to the protocol design with present

status and information.

3.2 Two Overlapping Network Domains

To make the net filter recognize the source of incoming packets more easily, the
concept of two overlapping network domains is introduced into our scheme. The first
domain used by applications is the original domain, while the second domain is set for
FloodingRD. The net filter redirects packets with the first domain IP address from
applications to FloodingRD. On the other hand, after processing the packets,
FloodingRD re-send them by the second domain IP address to let the net filter pass

them through.

10



3. 1.

[FH [IP_1 [DATA |
FloodingRD Applicatian User Space
2.
P_1[DATA ]

Kernel Space
TCFAR Protocaol Stacks

Metfilter

P 1 Device and Network

Figure 2. The architectural view of packet processing at the source.

Figure 2 shows the processes of delivering a unicast packet at the source nodein
detail. ¥ Firstly, a data section is sent frofi ahi:application into the kernel. Without any
additional configuration, applications will :use the ariginal network domain naturally.
Consequently, the IP layer encapsulates this data section with unicast |P addresses of
the first network domain. Secondly, according to predefined rules, 2 this packet will
be captured by the net filter and redirected into FloodingRD. And then, 2 the daemon
appends a FloodingRD-specific header to this unicast packet. After some processes in
FloodingRD, ¥ this packet will be sent out as a UDP broadcast packet with the second

domain IP address that makes the net filter pass it through.

The appended specific header contains all information needed by the protocol
design, such as the sequence number, the hop count information and |P address of the
host which is the last one to broadcast this data packet out. Here the last host is
definitely the source. After the packet begins its traveling around the network, the last
host will be the last forwarder. The sequence number cooperates with the source

address recorded in the IP header is used to identify a packet. According to this

11



information, FloodingRD will not accept the same packet more than once.

There is another advantage of two overlapping network domains. Because the
packets of the second domain are not affected by the net filter, we can use existent
tools, such as the ping program, with the second domain IP address to check network
condition and avoid the influence of net filter. This additional functionality is helpful

to detect the network condition during the practical experiments.

12



Chapter 4 Design

As we mentioned early, a flooding-based routing protocol has its advantages,
especially when the network topology changes rapidly. However, this kind of routing
protocols has their constitutional drawbacks that the protocol designers must
overcome. In this chapter, we list the main difficulties for designing such a

flooding-based routing protocol and then propose our solutions.

Before our discussion, we define some terms used in this article. We call a
mobile node, which generates a packet, a “source node”. And a mobile node is a
“destination node” if it is the destination of the packets generated by a source node.
The other hosts in the network are called:“forwarders.” A forwarder may not actually
forward a packet every time. But it has the responsibility and the opportunity to
forward packets. Finally, a node-is called “sender” If-it sends/forwards a packet out.

Any other modes which hear this packet are called “listeners.”

4.1 Reliability Enhancement

The IEEE 802.11 wireless network provides the reliable transmissions with a
simple positive acknowledgement mechanism. In the IEEE 802.11 wireless network,
every unicast data frame must be acknowledged, or the frame is considered to be lost.
Every time a data frame is supposed to be lost, the 802.11 MAC protocol will
retransmit the data frame again. The maximum retransmitted count is four for large
packets and seven for small packets because small packets may meet collisions in
higher probabilities. Moreover, in the |IEEE 802.11 MAC protocol broadcasted

packets are not protected by the positive acknowledgement mechanism.

13



Even though the designers want to implement protection mechanism in high
level, it’s still impossible the figure out who should take the responsibility of
answering the acknowledgement. Moreover, if every listener sends ACKs back, in a
high-density network it inevitably leads to an “ACK implosion” problem and a large
number of ACK frames may spend much valuable bandwidth. Therefore, the original
retransmission scheme with ACK packets cannot take effect any more. This may
degrade performance of upper-layer sensitive protocols, such as TCP. TCP decreases
the size of the congestion window at the sender to half if a packet loss is detected.
Without transmission protection, the performance becomes worse. To improve error
toleration and protect these sensitive protocols, retransmission of a lost packet is
necessary. For this, a protocol designer must provide other mechanisms instead of the

ACKsto confirm whether a packet is transmitted correctly.

Our mechanism regards packet forwarding as akind of responsibility delivery.
We make use of the packets forwarded: by-next forwarders to make sure whether the
transmission is correct. If a destination receives a packet, it should send a one-hop
ACK back to announce that there is unnecessary to retransmit this packet or forward it

further.

This method needs no additional ACK packets. Its drawback is that a sender
cannot be aware of the success of the transmission immediately and must wait until a
forwarder finishes processing of this packet. This delayed time will affect UDP

throughput performance. Detailswill be depicted later.
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4.1.1 Detail of Retransmission Queue

Implementation

“RetxQueue” is a retransmission queue introduced into FloodingRD for higher
reliability. This queue preserves packets which are going to be sent and packets which
were already sent but not acknowledged. Each packet would be marked with awaiting
time. This time counts down until FloodingRD can make sure the transmission is
successful. Otherwise, if the time goes down to zero, this packet would be sent again.
The queue length is limited; if one packet is inserted into retxQueue and makes the

gueue exceed its length, this packet would be discarded.

While implement such a queue some issues must be taken. Firstly, this queue
should be separated into sub-quedes by packets’. destination address to prevent HOL
problem (Head-of-Line problem). Secondly, there are lots of technologies to raise
efficiency by speeding up the movement of the queues. Sliding window can help this.
After introducing the sliding window into retxQueue, the designer can use

fast-retransmission to accelerate it.

Separated retxQueue by Destination Address

After adding retransmission functionality into FloodingRD, we observe a
particular phenomenon: when a packet is delivered in a right direction, it will be
transmitted faster than in a wrong direction. Figure 3 shows this fact. It is because the
movement rate of retxQueue would be affected by processing speed of next forwarder.
After sending a packet out, the sender will preserve this outgoing packet in retxQueue

and wait for acknowledgement from destination or next forwarders. If the listener is
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the destination, it will answer an ACK quickly to let the sender process next packet in
retxQueue. On the other hand, if the listener is a forwarder, it takes longer time to wait
for this packet to be forwarded out. However, if there is no next listener, the
retxQueue on the sender will be blocked until this packet time out. Depending on the
configuration of retransmission waiting time, the one-way greedy UDP throughput

can be down to 10%.

In the right direction, the speed of
packets' transmission will he faster.

0O ® 06 O

In the wrong direction, the speed will
he slower.

Figure 3. The direction of packets

This phenomenon can help to reduce unnecessary forwarding and decrease waste
of bandwidth. However, in some situation this may cause HOL problem
(Head-of-Line problem). While retxQueue-is-blocked by a packet on its wrong way,
other packets which belong to different destination behind this blocked packet should
not be delayed. Therefore, we changed our earlier design and divided retxQueue into

sub-queues by destination address of packets.

The Sliding-window

In earlier design, each time after sending a packet out from retxQueue, the
daemon will wait for the acknowledgement back to send the next one. Since this
method has lower efficiency, we introduce the concept of “sliding window” into

retxQueue.

“Sliding window” is a kind of flow control algorithm especially for network data
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transfers. Famous TCP protocol uses it to enhance performance. It overlaps the
waiting of acknowledgements and the transmissions of the following packets by

transmitting at most the window-size number of packets at atime.

Fast-retransmit

Because of high packet loss rate, after implementing sliding window algorithm in
retxQueue, the performance was still not good enough. To improve efficiency, fast
retransmission mechanism was also implemented to cooperate with the sliding

window algorithm.

If a packet or packet’s acknowledgement is lost, the original sliding window
mechanism must wait for timeout to .start. retransmission. However, in some
conditions even though the waiting time is not finished, once acknowledges of other
packets in sliding window come back;- it can-be predicted that this packet may be lost
and the retransmission should be launched. Thisdesign is called “fast retransmission.”

It is also applied to TCP protocol.

Maintain Packets’ Ordering

Re-ordering is an important problem in a flooding network. In our
implementation, there is a mechanism used to sort incoming packets at destination.
Moreover, because there are lots of queues inside FloodingRD preserve packets for
different purpose, FloodingRD decrease probability of re-ordering by maintaining

packets’ sequence in these queues.
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While inserting a packet into retxQueue, FloodingRD will seek an appropriate

position for this packet instead of inserting it at the end of the queue directly.

De-retransmission Control Message

Sometimes, the reason for starting a retransmission is because the following
forwarding packet encounters collision rather than the sent packet is lost. However,
after being retransmitted, the sent packet will be discarded as an invalid packet at the
forwarder. To prevent retxQueue on the sender from being blocked by a successfully
transmitted packet, the forwarder should send a message to stop this retransmission on

the sender. These controlled messages are called de-retransmission packets.

For implementation, the packet and.the de-retransmission message contain
information to identify the sender. This can prevent de-retransmission message from

influencing regular forwarding of ‘thispacket.

4.1.2 Parameters

Table 1 lists the names and the brief descriptions of main configurable
parameters in retxQueue. RQ LENGTH defines the maximum length of retxQueue.
RQ_WINDOW_SIZE means the size of sliding-window. RQ_FAST RETX THRES
is the threshold for fast-transmission. If the number of returned ACKs reaches the

threshold, the head of retxQueue will be transmitted directly.

These default values may be changed depending on different environment. For
example, if the CPU and NIC speed is slow or the traffic is heavy, packet processing

time would get longer and RQ_RETX_TIMEOUT should be increased to extend the
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waiting time for ACK. Finally, the last one, RQ RETX_MAX_ COUNT, limits the

maximum number of times to retransmit a packet.

RetxQueue Parameters
Name Description
RQ_LENGTH Queue length
RQ _WINDOW_SIZE Sliding window size
RQ_FAST_RETX_THRES | Threshold of fast retransmission
RQ_RETX_TIMEOUT Max wait time for ACK
RQ_RETX_MAX_COUNT | Max Retransmit times

Table 1. Parameters of retxQueue

4.1.3 Results

To make sure our retransmission mechanism really works, we conducted a
simple experiment to show how,retransmission-.influences packet loss rate and
throughput. Because this mechanism was designed for sensitive protocols, we chose
greedy TCP to demonstrate the performance. In this section, we only list variable
factors of these experiments. Details of ‘experiment environment are listed in section

6.2. Definitions of measure metrics are depicted in section 6.1.

For comparing all functionalities, there are a lot of FloodingRD with different
configurations to be tested in this paper. Table 8 in section 6.2.3 lists features of these
daemons. There are three daemons used in this experiment. Firstly, the Basic daemon
isaversion without retransmission. Secondly, “R1” means retransmit lost packet only
once. Lastly, R2 FloodingRD will have two opportunities to retransmit a lost packet.

The topology is a chain network with 2 nodes to 5 nodes.

Symbol Describe
Basic No Retransmission
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R1 Retransmit once

R2 Retransmit twice
Table 2. FloodingRD types used in TCP experiments

TCP Throughput

140
= 100
g a0 !\ —+— Basic
E & —=—FE]
g 40 N R2
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2 3 4 3
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L 2

Figure 4. The average TCP throughput in a chain network

Figure 4 shows the relationship between throughput and retransmission times.
When the number of nodes is mare than_three, TCP throughput will drop to zero.
Actually, the situation is not so-bad in three-node cases. TCP traffic has about 20
Kbytes throughput at first 5 or 15-second. However; once the throughput drops, it will
never rise again. With retransmission, thethroughput sometimes falls; however, it will

goO up sooner or later.

Figure 5 shows relationship between packet loss rate and retransmission times.
According to these experiment results, retransmission indeed protects TCP traffic.
Besides, increasing the maximum times of retransmission can’t reduce the packet loss

rate more.

The packet loss rate rises abnormally in three-node cases. This unnatural

condition can be repeated in simulations.
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Figure 5. Average packet loss rate under greedy TCP traffic

4.2 Redundancy Reducing

Because of inherent drawbacks of flooding mechanism, large number of
redundant packets is always a serious problem. There are lots of technologies
proposed for limiting flooding packets. Some of them: have been discussed in Chapter
2. However, amost all these technologies-maintain: status of other nodes and need
additional control messages to exchange neighbor information such as related position
or interval hop counts. Although additional information is really helpful for reducing
redundant packets, our daemon that aims to reach high mobility should not depend on
these mechanisms. Therefore, the designers have to solve this problem by another

way.

When a FloodingRD is going to forward a packet, it takes a randomized value
within a predefined range as the extra delay time. During this extra delay time, the
daemon cancels the forwarding of this packet if it perceives a duplicate by one of the
neighboring nodes. Because the extra delay is a randomized value that is only
performed on forwarding packets, the designers call this period a “forward-random

delay.”
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For implementation, we add a queue to FloodingRD for extra delay. The
designers call this queue a “forward-wait queue”, referred to as fwwQueue. As we
mentioned earlier, the destination will answer an ACK for terminating the forwarding
of a packet. To prevent forwarders from sending unnecessary packets before receiving
this ACK, FloodingRD will delay a forwarding packet for a fixed time to see if
whether the destination received the same packet. This period, named “forward fixed

delay”, isalso carried out by fwwQueue.

The details about implementing fwwQueue are put in next section. At the end of
this portion, there are some experiment results about the performance of extrarandom

delay.

4.2.1 Detail of Forward-wait Queue Implementation

Basic Scheme

For intuition, fwwQueue can be implemented as an aging and sorted queue. Each
forwarding packet associated with an extra delay time is inserted into sorted
fwwQueue according to the value of the time tag. Every time unit, fwwQueue
decreases each packet’s waiting time tag. Once a packet’s time is counted down to

zero, FloodingRD takes this packet out for further processing.

In Order Forwarding

However, this intuitional method will generate lots of out-of-order packets. To

keep the sequence of incoming packets but also make them have different delay time,

22



when a packet is inserted into the queue we let packets change their waiting time tag

according to packet’ sequence number.

Figure 6 gives a simple example. Packet No.5 with 7 ticks waiting time is
inserted into fwwQueue. During the insertion, it meets packet No. 4 with remaining 8
waiting ticks. After exchanging the waiting time tag with packet No. 4, packet No. 5
has 8 waiting ticks and would be sent out after packet No. 4. And then, it meets packet
No. 6. Packet No. 5 should be inserted between packet number 4 and packet number 6,
because its waiting time is shorter than packet No. 6’s. There is no need to change

wait time tags further.

E
Drelany

ick="7
ingert
1 2 3 4 &
Last Last La=t Last Last
tick=3 tick=h tick=% tick=8# tick=2
fyvwueue

1 2 3 4 i [
Lact Lact Lact Lact Lact Lact
tick=3 tick=h tick=h tick=7 | tick=8 | tick=?
Hew fwwlueue

Figure 6. An example of inserting a packet into fwwQueue

4.2.2 Parameters

Because the extra delay time is an absolute protocol overhead, they should be
minimized as much as possible. The parameters related to fwwQueue are listed in
Table 3. FW_FIXED_DELAY isused to wait for ACK packets sent from destinations.

FW_RANDOM _DELAY defines the range of random delay that is used by
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forwarders to compete with each others. The total delay time can be computed as

follows:

Extra Delay Tinme =
FW FI XED DELAY + random() % FW RANDOM DELAY

FwwQueue Parameters
Name Description
FW_FIXED_DELAY For waiting ACK from destinations

FW_RANDOM_DELAY | For competing with other forwarders
Table 3. Parameters of fwwQueue

4.2.3 Results

We designed a simple experiment to test the performance of forward-random
delay. The topology is shown in Figure 7. There.are three forwarders between the
source and the dedtination. The traffic type'is greedy UDP. Four daemons with
different configuration are tested in thissscenario. The briefs of these daemons are

listed in Table 4. Configuration details are listed in section 6.2.

The daemon Basic has been used in last experiment in section 4.1.3. The daemon
F enables forward-random delay while the daemon RF enables both forward-random
delay and retransmission mechanisms. The daemon AT is a FloodingRD with ability
of turning parameters automatically. The name of this daemon means “Auto Tuning.”
In this scenario, technology Auto Tuning lets the forwarders compete with each others.
After one of them overtakes the others and takes the responsibility to forward packets,
the other two forwarders will be silenced. Concept and design of “Auto Tuning” is
described in section 4.5. Here readers can simply regard the daemon AT as a

FloodingRD which has ability to reduce redundancy but without extra delay overhead.
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Figure 7. Topology

Symbol Describe

Basic Disableall functionalities

F Enable forward-random delay

RF Enable forward-random delay and retransmission
AT Turning parameters automatically

Table 4. Types of FloodingRD

Figure 8 illustrates comparison among these four daemons about UDP
throughput while Figure 9 shows the condition of redundancy. Daemon F applied
forward-random delay but doesn’t reduce the redundancy. Because the configuration
was set for daemon RF, 40 ms as FW RANDOM _DELAY for daemon F was not

enough to cancel transmission on-other forwarders.

Although daemon RF can reduce redundancy; its UDP throughput was the lowest.
Because of the high collision probability, UDP throughput suffered from
retransmission mechanism. When the value of RQ_RETX_TIMEOUT got longer,
FloodingRD should wait longer for alost packet and the circumstance would become

WOorse.

Here we provide two related experiment result as contrasts to Figure 8. Daemon
Basic can get average throughput of 177.60 Kbytes/s under the same environment
without additional forwarders, while daemon AT can reach 226.65 Kbytes/s.
According to these experiment results, we can conclude that Auto Tuning indeed

reduce redundancy and the additional overhead.
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Figure 8. UDP Throughput
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Figure 9. UDP Redundancy

4.3 Reduction of Small Packets

In earlier research, we found that large nhumber of control messages would

26



decrease throughput of whole system. To reduce the influence of these small packets,
the designers merged these small packets with large data packets or combined them

together into alarge one.

Although our early study proved its potency, to minimize variable factors during

developing period, this functionality has been disabled for along time.

4.4 |Issues about Parameters

4.4.1 Components Overview and Relationship

between Parameters

Before discussing about the parameters, the-overview of components and
relativity among them should be given firstly. As shown in Figure 10, there are two
kinds of data packets: the packets from;ether. hosts are “forwarded packets,” while the
others are called “local-out packets.” In addition to data packets, there are control
messages transferred in our system. At present there are only two types of control

message: de-retransmission message and ACK packets.

Fonwarded

Local-out
Fackets

Caontral Forward-wait—+—— E#tra Random Delay
Wessages Queue 1 Sorting Packets by
(fwwQueue) Sequence MNumber
o 4 Sliding YWindow
RemanEmissIdn auede —+—— Fast Retransmission
{retxQueue) —+—— Separated by

e : Destination Address
Merger —— Merge Packets into a

betetett et e R - Large One
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Figure 10. The overall structural view inside FloodingRD

Forward-wait Queue delays forwarded packet for waiting ACK packets from
destinations and preserves them for a random period for redundancy reduction.
Because local-out packets need not be applied extra delay, they will be put into

retxQueue immediately.

RetxQueue is responsible for retransmitting lost data packets. Users can
configure its length and the maximum retransmission times as well as the period for
waiting ACK packets. This functionality is designed for sensitive protocols, such as
TCP. However, throughput of greedy UDP will suffer from the waiting time of lost
packets. Increase of retransmission times (RQ_RETX_TIMES) and extension of
waiting period (RQ_RETX_TIMEOUT) influence greedy UDP throughput seriously.
Fortunately, according to experiment results shown in section 4.1.3, retransmitting
lost packet once is effective. Moreover, doubling: retransmission times can not

improve TCP performance further.

The minimum valid value of RQ_RETX_TIMEOUT is mainly affected by
processing time of the next host. The related factors are operating speed and other
parameter configurations of FloodingRD. The operating time of a machine is
influenced by CPU speed, NIC efficiency, and the traffic load as well. Parameters that
influence how long FloodingRD would preserve a packet include forward-fixed delay,
forward-random delay, length of retxQueue, size of sliding window and other
retransmission  configurations. Packet loss rate can also influence
RQ_RETX_TIMEOUT. High packet loss rate will slow the movement of retxQueue,
make the daemon keep a packet longer and indirectly affect the former hosts.

Generally speaking, collision probability rises while the traffic becomes heavier.
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Extending the length of retxQueue and the window size may adapt FloodingRD
to high-variant traffic. But now there is no practice experiment result to certify this.

Moreover, increasing these parameters will decrease greedy UDP throughput.

At the bottom, there is a “Merger” used to merge small packets into a large one.
This functionality is disabled for a long time. RQ_RETX_TIMEOUT must be
extended for this functionality, because the merger will preserve packets for a short

time.

4.4.2 How to Decide the Value of a Parameter

There are two methods to decide the value of a parameter. One is to evaluate it
directly by practical experiments, . and another.is to deduce it by other related
parameters’ values and the logical relationship between them. Although practical
experiments can reach an accurate result; the perfect settings would lose efficacy after
environment changed. Theoretical values can help developers to discover faults inside
implementation. If there are conflicts between the practical results and the logical

values, developers must examine the design and implementation carefully.

4.4.3 Recommended Value for Main Parameters

Table 5 lists proposed values of main parameters. Settings of fwwQueue are
evaluated by practical experiments under greedy UDP traffic. Configuration of
retxQueue considers both UDP traffic and TCP traffic. RQ_RETX _TIMEOUT is a

logical value inferred by the setting of other parameters. The time unit is millisecond.

Parameter Value Parameter Value
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RQ LENGTH 5 | RQ_ RETX_MAX COUNT | 1
RQ WINDOW_SIZE 3 | FW_FIXED DELAY

RQ FAST RETX_THRES| 2 |FW_RANDOM DELAY 40
RQ RETX_TIMEOUT 80

Table 5. Reference value of main parameters

4.5 Tuning Parameters Automatically

45.1 Introduction

As aforementioned, the performances of a network are influenced by many
factors, including the hardware properties, the network load, as well as the values of
various system parameters. Automatically adjusting system parameters according to
the network conditions usually results'in better performances than fixing values of
those system parameters. Such atechnigue is called “Auto Tuning.” At present, Auto
Tuning can tune the retransmission waiting time to an appropriate value dynamically

and prevent unnecessary extra forward delays.

4.5.2 Appropriate Retransmission Waiting Time

FloodingRD makes use of forwarded packets from intermediate nodes and ACK
control messages from destination nodes as acknowledgements of transmitted packets.
If the next hop of a packet is the destination node for that packet, the RTT (Round
Trip Time) will become smaller because the time to transmit an ACK message is
shorter than that to send a data packet. Here RTT is defined as the time from the
transmission of this packet to the arrival of its acknowledgement. The measured RTT
for a packet is helpful to select an appropriate value for the system parameter, the

retransmission waiting time.
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According to the analyses of the experiment results, we select the double time of
RTT as the basis of RQ_ RETX_TIMEOUT. A small constant value is added to
prevent from unnecessary retransmissions. For a node, the measured RTT of a packet

is updated each time when its corresponding ACK returns.

45.3 Reasonable Forward-delay time

Section 4.2 describes how an extra forward delay helps reduce redundancy. The
forward-fixed delay is used to prevent forwarders from sending unnecessary packets
that can be canceled by ACK messages from the destination node. However, this
delay time is purely an overhead for the forwarders far away from the destination
node. Similarly, the forward-random delay is also unnecessary for forwarders that

have no contenders aside them.

Figure 11 shows a simple topelogy. that depicts all kinds of situations for
forwarders. The light-blue nodes marked with “S* or “D” stand for the source and the
destination nodes, respectively. Other nodes marked with different numbers represent
different types of forwarders. FloodingRD in a forwarding machine analyzes
incoming packets and messages during a unit period (currently, the unit period is set
to one second) to decide which type of forwarders it is. Note that a FloodingRD may
play different types of forwarders for different connections that have different source
and destination nodes, individually. As such, a forwarder is able to apply reasonable
extra forwarded delays to packetsthat to be forwarded based on which forwarder type

it is for a connection.
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Figure 11. A simple topology to show different types of forwarders

Type-1 nodes represent forwarders that are in the direction opposite to the
destination node. There is a common feature among these nodes. the rate of the
successful packet forwarding is less than other types of nodes. On these nodes,
retxQueue would be blocked and therefore reduce the waste of bandwidth. More
bandwidth can be further saved by extending FW_FIXED_DELAY to aggravate the
blocking of retxQueue. Rather than cancel all transmissions on these forwarders, this

method consumes little bandwidth but recovers regular functionality more quickly.

A type-2 node stands for forwarders who should not apply any extra forward
delay since the destination node 1s far. away-from it, and there is no other forwarder

nearby.

Type-3 forwarders can notice the existence of each other by receiving duplicate
forwarded packets. If another nearby forwarder exists, these adjacent forwarders
begin competing the forwarding of a packet. Firstly, each one selects
FW_RANDOM_DELAY in a predefined range. Then, the forwarder with smallest
random delay will cancel the forwarding of others and become the winner who takes
the responsibility for forwarding the packets and sets the FW_RANDOM_DELAY to
zero. Other forwarders have to cancel their forwarding after hearing the forwarding by
the winning forwarder and maintain the FW_RANDOM_DELAY value until the
situation changes. The response time after a change of the environment is about two

to four seconds.

32



Type-4 nodes are the nodes that are next to the destination node. A type-4 node
has to apply the fixed delay to wait for the acknowledgements of the forwarding
packets. If it detects that the fixed delay is not long enough, the delay time should be

extended.

Because determining the forwarder type of a node must collect the required
information during a unit period, the reaction time is not as instant as the former one.
Besides, since the measurement of those RTTs require the transmissions of data
packets and their acknowledgements, Auto Tuning mechanism may not work well
when the network traffic load is low. However, under this situation the problem of

redundant packets is not severe.

45.4 Results

We have shown how Auto=Tuning changes parameter settings to adapt to the
network conditions in the experiment: results 'shown in section 4.2.3. The results
presented in this section are the integral improvements of the performances, such as

greedy UDP throughputs, TCP throughputs, and latencies.

Table 6 lists FloodingRD with different configurations used in these experiments.
The RF daemon is provided as a contrast, which enables all functionalities with fixed
parameter settings. The AT_RTT daemon modifies RF to determine the waiting period
for an ACK (by the parameter RQ _RETX_TIMEOUT) dynamically. AT_FFD
determines the value of FW_FIXED_DELAY by the number of ACK packets from
the destination node. The AT FRD daemon extends the value of
FW_RANDOM_DELAY by detecting the existence of other forwarders aside it. The

AT daemon enables all functionalities described above.
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Symbol Describe

RF Enable forward-random delay and retransmission

AT _RTT | Decidethe waiting period for an ACK dynamically
AT_FFD | Decide thevalue of FW_FIXED_DELAY automatically
AT_FRD | Decide the value of FW_RANDOM_DELAY automatically

AT Enable all Auto Tuning functions
Table 6. Types of FloodingRD

Because Auto Tuning can change the value of RQ_RETX_TIMEOUT to fit the
requirements of different network environments, the value of this parameter is
reduced to be 40 instead of the original value 80. However, this value is similar to that
used by AT_RTT, and the performances of daemon AT_RTT are therefore similar to

those of daemon RF.

Figure 12 presents the average throughput for greedy UDP connections in a
chain network with 2 nodes to 5 nodes. In 2-node, cases, only the AT _RTT and AT
daemons raise the throughput® performance. Because the extra forward delay
mechanism only takes place on-forwarders it can not provide any improvements
when no forwarders exist in 2-node cases: Generally, the reduction of the values for
the FW_RANDOM_DELAY parameter can improve the average throughput more
than that for the RW_FIXED_DELAY parameter. Besides, the AT daemon can double
the average throughput in 3-node cases. These improvements become less and less

significant while the number of nodes increases.

Intuitively, these mechanisms only decrease the latencies; how can they improve
the greedy UDP throughput? It is because the processing time of the next-hop node
postpones the moving speed of the retxQueue and therefore influences the UDP
throughput. Besides, the UDPthroughput is also limited by the retransmission waiting

time for a lost packet or a missed per-hop ACK. After enabling all functionalities of



Auto Tuning, the RTT time will be decreased by taking off the extra unnecessary
forward delay overhead, and the retransmission timeouts can therefore be reduced

further and raises the UDP throughputs.
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Figure 12. Average UDP throughput-to-compare functions of Auto Tuning
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Figure 13. Average Latency under one-way greedy UDP

Figure 13 presents the measured latencies in the same experiment settings with
Figure 12. These results prove that Auto Tuning functionalities indeed reduce the

latencies. On the other hand, the results also provide an evidence of the relationship
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between latency and UDP throughput in our scheme. We can observe that the daemon,

which can reduce latency, can raise UDP throughput as well.

The average RTT time is measured on the source node. Figure 14 organizes these
datain the same experiment settings and provides another evidence of the relationship

between latency and UDP throughpuit.
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Figure 14. Average RTT time.at the source under one-way greedy UDP
Figure 15 illustrates the average TCP throughputs in the same topology. Unlike
UDP, the throughput of TCP is limited by the protocol design rather than our
retransmission scheme. Therefore, the reduction of latencies influences TCP

performance slightly.
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Figure 15. Average TCP throughput in a chain network
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Chapter 5 Implementation

Our system is built on Linux platform. Chapter 3 has described the architecture
of our scheme. The related issues and the existing technologies used for

implementation are given here.

5.1 Packet Filter

There are lots of existent net filter technologies for the packet redirection.
“Netfilter” in Linux and “divert socket” in FreeBSD are both famous tools to intercept
the desired packets. Generally, a net filter is used to build the internet firewalls or to
apply the translation of network address and port (NAT). We used netfilter and related
technologies such as iptables and:libipg library to intercept the packets passed by the

kernel.

Netfilter and iptables are building blocks of a framework inside the Linux 2.4.x
and 2.6.x kernel. Netfilter can be considered as a set of hooks inside the Linux kernel
that allows the kernel modules to register callback functions with the network stack.
| ptables provides a set of commands as an interface between user and netfilter. Users
can use iptables commands to tell netfilter what to do with the passing packets.
Netfilter may buffer packet a special queue, and libipg is a development library that

helps usersto get the packets from this queue.

These iptables rules should be configured carefully or the packets may be looped
between the kernel space and the user space. Therefore, the concept of two

overlapping network domains is introduced into our scheme to simply the settings.
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The following example is the configuration that we used on Linux for the field trials.

i ptables -N fl ood_buffer
iptables -A QUTPUT -d 1.0.1.0/24 -j flood_buffer
i ptables -A flood_buffer -d ! 1.0.1.n -j QUEUE

Our experiments took the subnet 1.0.1 (netmask Oxffffff00) as the original
network domain and added a new subnet 1.0.2 for FloodingRD. The number “n” isan
identified id of a host. The first rule defines a new queue named flood buffer. The
second rule lets all normal unicast packets be placed in flood_buffer queue. Finally,
the last rule inspects the packets in flooding_buffer queue. If a packet is for the local
host, it will be passed through to avoid infinite loops. Other packets will be collected
into a predefined queue provided by Netfilter, and FloodingRD can receive packets

from this queue by the functions defined in libipglibrary.

To make a NIC receive or-send packets with two different network subnets, a
common technology, “IP aliasing”,“is.used to configure the NIC with two IP addresses.
Typical uses of IP aliasing are virtual hosting of Web and FTP servers and
reorganizing servers without having to update any other machines. The following

commands can make a NIC simultaneously receive packets from 1.0.1.x and 1.0.2.x.

ifconfig wwanO inet 1.0.1.n netrmask OxffffffO0O
ifconfig wan0:0 inet 1.0.2.n netmask Oxffffff0O

5.2 Limitations of Current NICs

To be backward with earlier 802.11 products, the broadcast transmission rate is
fixed a 2Mbps rather than 11Mbps for unicast packets. This feature limits the

maximum throughput of our scheme. To enhance the transmission rate of broadcasts,

39



some modifications for the drivers of NICs are required. Fortunately, there are still
some NICs that provide the ability for configuring the transmission rate for broadcast.
Thanks to the existence of this kind of NICs, we can save efforts to modify the

drivers.
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Chapter 6 Performance Evaluation

Functionalities of FloodingRD and their efficacy have been demonstrated in
Chapter 4. However, these experiment results are generally for a specific purpose.
What we want to present in this chapter are the integral performances, such as the

maximum throughput, the latency and the packet loss rate for different traffic types.

At the beginning, an introduction of various performance metrics is given.
Section 6.2 briefs the environment of these experiments. Section 6.3 shows the
practical results. Because the circumstances of large scale networks are hard to get by
real experiments, simulation is used to help us observe the operation of our scheme in
large networks. The related results are/given, in section 6.4. At the end of the
simulation section, there is an evidence for the ability of FloodingRD to get adapt to

high mobility environments

6.1 Performance Metrics

While developing a routing protocol, how can we judge it is good or bad? What
are the important features of a good routing protocol? Here we define some
performance metrics by that we can quantify and measure the efficiency of a routing
daemon. These metrics include the average throughput, the packet loss rate, the

end-to-end latency as well as the redundancy degree, etc.

6.1.1 Throughput

The traffic generators normally record incoming throughput per second, and
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write these records into alog file. By analyzing these log files, we can get the average

throughput easily.

6.1.2 End-to-End Latency

Latency is defined as the period from the time a packet is sent out from the
source and the time it is received by the destination. A short latency is required by
video and audio communication services. The stg/rtg programs, a pair of traffic
generators, record the delay time of each received packet. However, this mechanism
needs to synchronize the system time on the source node and the destination node.
Even after correcting the system time on hosts by time services, the difference

between each host is still too large to provide accurate latency time.

We exchange the role of theitwo end hosts and record packet latencies twice. By

averaging these two recorded valtes, the{atency can be measured precisely.

6.1.3 Packet Loss Rate

Each packet passed by FloodingRD is marked with a sequence number. This

number can be used to calculate the packet loss rate:

($l ast Snum - $val i d_packet) * 100 / $l ast Snum

The $l ast Snummeans the sequence number of the last received packet, and the
$valid_packet is the total number of valid packets. A packet is a valid packet if it is
received for the first time; otherwise, this packet is regarded as a redundant packet.

When the packet loss rate gets extremely high, this approach becomes inaccurate.
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6.1.4 Redundancy Degree

The redundancy degree is defined as follow:

($packet _count - $valid packet) * 100 / $packet count)

The $val i d_packet isdefined in the last section. The $packet _count isthe
total number of received packets. Under an unfavorable condition, the redundancy

degree may exceed 100%.

6.1.5 End-to-End Re-ordering Degree

We record the end-to-end re-ordering degree by the processes as follow:

i f($c_snum < $snum ) {
$c_snum = $snum
} el sef
$difference = $c_snum - $snum

The $snumis the sequence number of each received packet, while the $¢_snum
stands for the current accepted sequence number. The $c_snum is updated by an
incoming packet that has a larger sequence number. Once a valid packet with a less
sequence number arrives, the difference between the $c_snumand the $snumwill be

recorded.

After collecting the difference values, the re-ordering degree can be calculated as

follow:
re-ordering degree = /( X( $difference )2 / $valid _count )
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The $val i d_packet isthe total number of valid packets.

6.1.6  Mobility

Unlike average throughput or end-to-end redundancy degree, mobility is hard to
be quantified. However, by analyzing the snapshot of TCP throughput under high
speed environment, we can still prove that FloodingRD has the ability to overcome

the topology which changes rapidly and frequently.

Section 6.4.4 demonstrates the TCP performance reached by FloodingRD under

a high speed environment.

6.2 Experiment Environment

6.2.1 Hardware and Software

Table 7 lists hardware and software used in real experiments and simulations.
These 802.11b NICs can be configured to broadcast packets at transmission rate of 11
Mbps. Because the performance results about large scale topology are hard to get by
practical experiments, we therefore use NCTUns network simulator [22] to observe

the behavior of our protocol in large networks.

Hardware
Machine IBM ThinkPad laptops A30/A31
NIC 802.11b NIC
Software
Operation System Linux with kernel version 2.6.7/2.6.9
Traffic Generator (1) stg/rtg (A pairs of traffic generators
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packaged with NCTUns)
(2) ttep

Routing Daemon FloodingRD

Simulator NCTUns 2.0

Table 7. The hardware and software used in experiments

6.2.2 Traffic Type

We chose one-way greedy UDP, two-way greedy UDP, and greedy TCP traffics
to validate the performance of FloodingRD. Because the TCP traffic is naturally a

kind of two-way traffic, it is not necessary to test our daemon with two TCP traffics.

The two-way UDP traffic type lets two nodes in the network send packets to each
other. By observing the behavior of the two-way UDP, we can look into the traffic
condition of the TCP links. Because TCP is a sensitive and complicated protocol, to
detect error with the TCP traffic is ahard work: If some mistakes damage the two-way
UDP traffic, we can conclude why the TCPtraffic can’t work in the same environment

and then try to solve the problem.

6.2.3 FloodingRD Configuration

The parameter settings of FloodingRD are almost the same with Table 5. The
only difference is that the RQ_RETX_TIMEOUT is changed to 40. Because Auto
Tuning can modify this parameter according to the circumstance of network
environment, we need not choose a large waiting time that damages the UDP

performance.

Besides, for observing how the performance is influenced by different

functionality, there are lots of FloodingRD with different configuration used in
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various experiments and simulations. Table 8 lists the details and differences among

them.

The first column of Table 8 is the name of each FloodingRD, and the
functionalities are listed at the top of the table. “FFD” means the value of
FW_FIXED_DELAY, while “FRD” means the value of FW_RANDOM_DELAY.
“Retx Times” is the configured maximum retransmission times. Functionality
“AT_RTT” enables a daemon with the ability to change retransmission waiting time
dynamically. Function “AT_FFD” and “AT_FRD” adjust the value of

FW_FIXED_DELAY and FW_RANDOM_DELAY respectively.

Functionalities

Name FFD Retx Times FRD AT _RTT | AT FFD | AT_FRD
Basic 8 0 0

R1 8 1 0

R2 8 2 0

F 8 0 40

RF 8 1 40
AT _RTT 8 1 40 On
AT_FFD 8 1 40 On
AT_FRD 8 1 40 On
AT 8 1 40 On On On

Table 8. FloodingRD with different configuration used in experiments

The Basic daemon that has no additional functionality but the overhead of
forward-fixed delay is provided as a contrast. The daemon R1 and R2 was used to
prove how retransmission protects TCP traffic in section 4.2.3, while the daemon F
was used to show the efficiency of forward-random delay in section 4.3.3. The
daemon RF includes all basic functionalities and it also acts as a contrary to Auto
Tuning related daemons. A series of daemons enable each independent Auto Tuning

mechanism. Finally, the daemon AT enables all functions of Auto Tuning.

46



6.3 Real Experiments Result Analyses

We have seen some experiment results in earlier chapters, what we want to
present here are the overall performance, such as the maximum throughput, the

condition of latency and the packet loss rate under different type traffic.

These performance results are influenced by many factors. For example, the
longer distance between each host raises the packet loss rate. Besides, physical
barriers and invisible interference also affect the result. To minimize these external
variable factors, we put experimental machines together and then divide them by
iptables commands. Net filters only allow specific packets pass through and other
packets are discarded at |IP layer. By these comimands, the developers can design and
build different network scenarios to |test each mechanism of FloodingRD just like
what we have done in Chapter 4. The network scenario for the experiments in this

chapter isillustrated in Figure 16.

Although iptables commands benefit the processes of protocol improvement, the
resulted environment differs from the same topology of real world. Because the
packets are filtered at |P layer, the behavior of physical layer is completely different.
Besides, after taking away the obstacles and shorting the distance between hosts, the
evaluated performance will be better than what we can get from the real world.

Therefore, the results presents here can only be regarded as reference values.

47



® ® ®

Figure 16. The scenario built up by net filters

Table 9 lists detaills of experiment settings. The topology built by iptables
commands can be seen as a chain network. One-way greedy UDP, two-way greedy

UDP as well as greedy TCP are tested in this scenario.

Experiment Settings
Number of Nodes 2 nedesto 5 nodes
Topology A chain.network
Traffic Greedy UDP,:2-way Greedy UDP
Greedy TCP
FloodingRD Type RF, AT

Table 9. Settings of rea-experiments

6.3.1 Throughput

Figure 17 and Figure 18 illustrate the average throughput performance of the RF
and AT daemons respectively under one-way and two-way greedy UDP. The result of
two-way UDP throughput is the sum at both end hosts. Normally, the two UDP link
share the bandwidth equally, and the total throughput should be the same with
one-way throughput that engages whole obtainable bandwidth. However, what shown

in Figure 17 differs from this.
In experiments with the daemon RF, the one-way UDP throughput is less than
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two-way UDP traffic. Because in these cases the UDP throughput is mainly limited by
retransmission mechanism, and the long retransmission waiting time makes the
retxQueue being constantly blocked by lost packets. We can imagine that these queues
are like narrow tubes that limit the number of passed packets. Because the retxQueue
is divided according to packets’ destination, adding one more UDP link will produce a
new sub-queue that enlarge the capacity of the virtual tube and then raise the total

throughput at least.

On the other hand, serials Auto Tuning techniques shorten the retransmission
waiting time and therefore enlarge the virtual tube. One-way UDP throughput is no

longer limited by retransmission and then reaches the deserved performance with the

daemon AT.
UDP Throughput by RF FloodingRD
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Figure 17. Average UDP Throughput by RF FloodingRD
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UDP Throughput by AT FloodingRD
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Figure 18. Average UDP Throughput by AT FloodingRD

According these experiment results, the throughput of greedy UDP traffics
can reach about 100 Kbytes in 5-node cases. Besides, the performance of greedy TCP
traffic is given in Figure 15. The maximum TCP throughput is slightly more than 20

Kbytes.

6.3.2 Packet Loss.Rate

Packet loss rate is influenced by the variation of traffic load. Probability of
transmission collision rises in a busy network with higher total throughput and
therefore leads to higher packet loss rate. The experiment results shown in Figure 19
are collected under greedy UDP traffic. Under a normal network condition, the packet

loss rate will be lower than data presented here.

It seems reasonable that packet loss rate increases under two-way UDP traffic
than that under one-way traffic, but we can’t explain the phenomenon precisely. The
AT daemon leads to higher packet loss rate might because of better performance of
throughput. Similar to what we observed in Figure 5, the packet loss rate rises

abnormally in 3-node cases.
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Figure 19. Packet loss rate under greedy UDP

6.3.3 Latency
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Figure 20. Latency under greedy UDP traffic
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6.4 Simulation

Simulation environment can be thought as another platform. It is not necessary to
repeat real experiment results in simulation environment. However, by comparison
between simulation results and practical experiment results, we can observe the
difference between simulation and real world environment. This information can help

us to imagine the real condition by transferring the simulation results.

The advantages of simulation are easy to control, repeatable and the ability to
build large scale networks, etc. Besides, in simulation environment, the topology

shown in Figure 16 can be built with iptables commands.

At the beginning of this section, the eomparisons between simulation results and
practical result are given. And then, there is a'large scale road simulation presented in

section 6.4.3. Finally, section 6.4.4 representsthe mobility of FloodingRD.

6.4.1 Simulations about Auto Tuning

This section shows simulation results with the same setting and environment in
section 4.5.4. Table 10 lists the details about these smulation experiments. Figure 21

and Figure 22 are relative to Figure 12 and Figure 13 respectively.

Simulation Settings
Number of Nodes 2 nodes to 5 nodes
Topology A chain network
Traffic Greedy UDP
FloodingRD Type RF, AT _RTT, AT_FFD, AT_FRD, AT

Table 10. Settings of simulation for Auto Tuning experiments
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The improvements made by Auto Tuning are not such significant in simulation
environment. However, by comparing Figure 21 with Figure 12, we can till discover
some common features between simulation results and real experiment results. For
example, only daemon AT_RTT and daemon AT raise the throughput in 2-node cases.
Besides, the reduction of FW_RANDOM_DELAY can provide more improvement
than RW_FIXED_DELAY. Moreover, just like what we observed in real experiments,
although the AT daemon doubles the average UDP throughput in 3-node cases, the

improvement decreases while the number of nodes increases.

UDP Throughput (Simulation)
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500 &

400 \\ —e—RF
—=— AT RTT
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\\\\ —<— AT_FRD
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o \V%

Number of Nodes
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Figure 21. Average UDP throughput by simulation
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Figure 22. Latency under greedy UDP by simulation
Figure 22 seems not similar to Figure 13. Comparing with the daemon RF, the
daemon AT _RTT increases the latency of packets. This is because the default
RQ_RETX_TIMEOUT istoo short.for this environment. Although this inappropriate
setting may increase redundancy -degree, it speeds up the movement of retxQueue and
therefore reduces the latency. After enabling-the function of tuning retransmission

timeout automatically, the delay timefor ACK-packets extends and affects the latency.

6.4.2 Integrated Simulation Result

This section provides integrated simulation results with the same setting and

environment in section 6.3. Table 11 lists the detail s about the simulation experiments.

Figure 23 and Figure 24 are relative to Figure 17 and Figure 18 respectively.

Simulation Settings

Number of Nodes

2 nodes to 5 nodes

Topology

A chain network

Traffic

Greedy TCP

Greedy UDP, 2-way Greedy UDP,




FloodingRD Type RF, AT
Table 11. Details of integrated simulations

Because of high packet loss rate under simulation environment, the two-way

UDP traffic seems abnormal with the RF daemon, especially in 3-node cases.

UDP Throughput by RF FloodingRD (Simulation)
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Figure 23. Average UDP throughput by:RF FloodingRD (simulation)
However, the condition of simulationswith the AF daemon is almost the same
with real experiments. The one-way greedy. UDP gains the same throughput as

two-way greedy UDP traffic.

UDP Throughput by AT FloodingRD (Simulation)
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Figure 24. Average UDP throughput by AT FloodingRD (simulation)
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6.4.3 Road Topology Simulation

Because large scale network performance is hard to get from practical
experiments, network ssimulator is used to help us to get the idea of the performance
of our daemon. The topology is illustrated in Figure 25. There are lots of nodes spread
randomly inside a rectangle. The speed of a node is configured as 36km/hr or

108km/hr to simulate a car that moves in the downtown or on a highway.

Simulation Settings
Number of Nodes 10 nodes
40 nodes
Topology Asshown in Figure 17, with nodes
move in random directions
Traffic Greedy UDP
2-way Greedy UDP
Greedy TCP
Speed 10m/s (36km/hr)
30m/s (108 km/hr)
FloodingRD Type AT

Table 12. Details of road simulations

e ® o ]
Figure 25. Topology of road simulation

Table 13 and Table 14 lists experiments result of 10 nodes in 36 km/hr and 108
km/hr respectively while Table 15 list result of 40 nodes in 108 km/hr. According to
the comparison between Table 13 and Table 14, the increase of moving speed will not
influence the performance obviously. On the other hand, after multiplying the number

of nodes, the packet loss rate and the re-ordering degree increase significantly.

These simulation results reveal problems of redundant packets and high
re-ordering degree in a large scale network. However, by the TCP performance, these
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simulations also proved that our daemon can adapt to high mobility environment.

10 nodes, 36 km/hr

Throughput | Packet loss | Re-ordering | Redundancy | Hop count
UDP 134.19 6.35% 2.61 67.97% 1.338
2-way UDP 164.46 16.90% 0.79 61.48% 1.326
TCP 108.80 1.38% 0.26 37.61% 1.170
Table 13. Road simulation result with 10 nodes in 36 km/hr
10 nodes, 108 km/hr
Throughput | Packet loss | Re-ordering | Redundancy | Hop count
UDP 191.11 3.48% 0.95 52.08% 1.296
2-way UDP 159.66 18.33% 0.57 64.31% 1.343
TCP 113.63 1.41% 0.33 32.05% 1.207
Table 14. Road simulation result with 10 nodes in 108 km/hr
40 nodes, 108 km/hr
Throughput | Packet loss | Re-ordering | Redundancy | Hop count
UDP 22.70 56.09% 93.74 86.87% 3.367
2-way UDP 25.93 74.56% 61.75 87.92% 3.206
TCP 13.24 11.43% 0.06 60.27% 2.238
Table 15. Road simulation result with 40 nodes in 108 km/hr
6.4.4 Mobility Demonstration

Figure 26 shows TCP throughputs in road simulation described in last section
with 40 nodes in 108 km/hr. The dark blue line is the average throughput in every
second, while the pink line represents the average throughput during 3 seconds.
Unlike AODV protocol, our design need not waste time to maintain or re-build a route.

Although the TCP throughput is not stable, it never dropped to zero for along time.
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Figure 26. Snapshot of TCP throughput in road simulation
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Chapter 7 Discussion

7.1 Comparison with AODV

We have conducted a series of field trials with AODV protocol on a highway and
on the roads in downtown. The bad results forced us to develop flooding-based

routing protocol. The related results are presented in this section.

Figure 27 shows the route recovery time when a broken route is detected by
AODV. The average recovery time is 8.92 sec, and the average recovery time except
the worst two cases is about 3.84 sec. The results indicates that if an 1V C system uses
AODV as the underlying routing protocol, the system cannot provide high quality

services due to long route recovery time.
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Figure 27. Route Recovery Time of AODV
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Figure 28. The average UDP throughputs with AODV

Figure 28 shows the average UDP throughput with AODV. When the hop count
is one, the average throughput is only about 160 Kbytes/s which is muss less than our
scheme in 2-node cases. According to these results, we can assert that FloodingRD is

more adaptive than AODV in high mobility environment.

7.2 Lessons

7.2.1 Verify Every New Mechanism

In our early design, the value of FW_RANDOM_DELAY is only 13
milliseconds. However, at that time, we didn’t verify the functionality of this new

mechanism. Actually, this value can not have any effect and becomes a pure overhead.

7.2.2 Prevent Unnecessary Costs

The relationship between packet latencies and UDP throughput was not
discovered until we implemented Auto Tuning functions. For intuition, these

mechanisms can only decrease the packet latencies, but they improved the average
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UDP throughput at least. After that, we tried to get the reason of how latency

reduction affects the UDP throughput. The detail was described in section 4.5.4.

From this experience, we understand that while developing a system, a designer
should minimum every cost as possible. Because no one can’t fully understand what

will be affected by these additional cost.

7.3 Future Works

7.3.1 Limit Flooding in Large Scale Network

The simulation results reveal problems of redundant packets and high re-ordering
degree in a large scale network. However,-it-Is hard'to improve the performance of a
high mobility network that has no special features. Moreover, because our daemon is

designed for 1V C networks, we should put out effort'in road smulation firstly.
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Chapter 8 Conclusion

We designed and implemented a flooding-based routing protocol that can adapt
to an IVC network which features extremely high mobility. We also implemented a
retransmission mechanism to better service TCP and an extra delay mechanism to
reduce the number of redundant packet forwarding. Furthermore, we observed the
relationship between UDP throughputs and packet latencies in our scheme. Therefore,
we implemented a series of functionalities to reduce unnecessary latency overheads

by tuning parameters dynamically according to the network environment.

Finally, the simulation results indicate that the number of redundant packets
increases while the number of nodes increases. In the future, we will improve our
FloodingRD on the NCTUns simulation platform tinder some given road condition

models.
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