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Abstract In the paper “Fault-free Mutually Independent Hamiltonian Cycles in
Hypercubes with Faulty Edges” (J. Comb. Optim. 13:153–162, 2007), the authors
claimed that an n-dimensional hypercube can be embedded with (n−1−f )-mutually
independent Hamiltonian cycles when f ≤ n−2 faulty edges may occur accidentally.
However, there are two mistakes in their proof. In this paper, we give examples to ex-
plain why the proof is deficient. Then we present a correct proof.
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1 Introduction

In many parallel computer systems, processors are connected on the basis of in-
terconnection networks such as hypercubes, star graphs, meshes, bubble-sort net-
works, etc. For the sake of simplicity, a network topology is usually represented by
a graph, in which vertices correspond to processors and edges correspond to con-
nections or communication links. Hence, we use the terms, graph and network, in-
terchangeably. Throughout this paper, we concentrate on loopless undirected graphs.
For the graph definitions and notations we follow the ones defined in (Bondy and
Murty 1980). A graph G consists of a set V (G) and a subset E(G) of {(u, v) |
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(u, v) is an unordered pair of V (G)}. The set V (G) is called the vertex set and E(G)

is called the edge set. Two vertices u and v of G are adjacent if (u, v) ∈ E(G).
A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a
nonempty subset of V (G). The subgraph induced by S is the subgraph of G with
its vertex set S and with its edge set which consists of those edges joining any two
vertices in S. We use G−S to denote the subgraph of G induced by V (G)−S. Anal-
ogously, let F be a nonempty subset of E(G). We use G − F to denote the subgraph
of G with vertex set V (G) and edge set E(G) − F . The degree of a vertex u in G

is the number of edges incident to u. A graph G is k-regular if all its vertices have
the same degree k. A graph G is bipartite if its vertex set can be partitioned into two
disjoint partite sets V0(G) and V1(G) such that every edge will join a vertex of V0(G)

and a vertex of V1(G).
A path P of length k from a vertex x to a vertex y in a graph G is a sequence of

distinct vertices 〈v1, v2, . . . , vk+1〉 such that x = v1, y = vk+1, and (vi, vi+1) ∈ E(G)

for every 1 ≤ i ≤ k. For convenience, we write P as 〈v1, . . . , vi,Q,vj , . . . , vk+1〉
where Q = 〈vi, vi+1, . . . , vj 〉. Note that we allow Q to be a path of length zero. The
i-th vertex of P is denoted by P(i); i.e., P(i) = vi . To emphasize the beginning
and ending vertices of P , we also write P as P [x, y]. A cycle is a path with at
least three vertices such that the last vertex is adjacent to the first one. For clarity,
a cycle of length k is represented by 〈v1, v2, . . . , vk, v1〉. A path of a graph G is
a Hamiltonian path if it spans G. Similarly, a cycle of a graph G is a Hamiltonian
cycle if it spans G. A bipartite graph is Hamiltonian laceable (Simmons 1978) if there
is a Hamiltonian path between any two vertices which are in different partite sets.
Moreover, a Hamiltonian laceable graph G is hyper Hamiltonian laceable (Lewinter
and Widulski 1997) if for any vertex v ∈ Vi(G) with i ∈ {0,1}, there is a Hamiltonian
path of G − {v} between any two vertices of V1−i (G).

The n-dimensional hypercube (or n-cube for short) is one of the most popular
topologies yet discovered for parallel computation (Leighton 1992). Thus, many
attractive properties of hypercubes have been studied in the literature (Akers and
Krishnameurthy 1989; Chang et al. 2004; Johnsson and Ho 1989; Leighton 1992;
Leu and Kuo 1999; Tsai et al. 2002; Yang et al. 1994). The formal definition of
an n-cube is given as follows. Let u = bn . . . bi . . . b1 be an n-bit binary string.
For 1 ≤ i ≤ n, we use (u)i to denote the binary string bn . . . b̄i . . . b1. Moreover,
we use (u)i to denote the i-th bit bi of u. The Hamming weight of u, denoted
by w(u), is |{i | (u)i = 1,1 ≤ i ≤ n}|. The n-cube Qn consists of all n-bit binary
strings representing its vertices. Two vertices u and v are adjacent if and only if
v = (u)i with some i and we call the edge (u, (u)i) an i-dimensional edge. Note that
Qn is a bipartite graph with partite sets V0(Qn) = {u ∈ V (Qn) | w(u) is even} and
V1(Qn) = {u ∈ V (Qn) | w(u) is odd}.

Because the components of a network may fail accidentally, it is demanded to
consider the fault-tolerance on a network. The faults in a network may take var-
ious forms such as hardware failures, software errors, or even missing of trans-
mitted packets. In this paper, faulty edges, one kind of hardware failures, are ad-
dressed. More precisely, a set F of faulty edges in a graph G contains those edges
which will be removed from G. When all faulty edges are removed, we investigate
the properties of the fault-free graph G − F . In particular, we concern the mutu-
ally independent Hamiltonian cycles, initially proposed by Sun et al. (2006), on a
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faulty n-cube. The mutually independent Hamiltonian cycles are defined as follows.
Let G be a graph with N vertices. A Hamiltonian cycle C of G is described by
〈u1, u2, . . . , uN ,u1〉 to emphasize the order of vertices on C. Accordingly, u1 is
referred to as the beginning vertex. Two Hamiltonian cycles of G beginning from
a given vertex s, namely C1 = 〈u1, u2, . . . , uN ,u1〉 and C2 = 〈v1, v2, . . . , vN , v1〉,
are independent if u1 = v1 = s and ui �= vi for 2 ≤ i ≤ N . Two Hamiltonian paths
of G, P1 = 〈u1, u2, . . . , uN 〉 and P2 = 〈v1, v2, . . . , vN 〉, are independent if u1 = v1,
uN = vN , and ui �= vi for every 1 < i < N ; P1 and P2 are fully independent if ui �= vi

for every 1 ≤ i ≤ N . We say a set of m Hamiltonian cycles {C1, . . . ,Cm} of G, begin-
ning from the same vertex, is m-mutually independent if Ci and Cj are independent
whenever i �= j . A set of m Hamiltonian paths {P1, . . . ,Pm} of G are m-mutually
independent (resp. m-mutually fully independent) if any two different Hamiltonian
paths in the set are independent (resp. fully independent). Moreover, the mutually
independent hamiltonicity of G, denoted by I H C(G), is defined as the maximum
integer m such that for any vertex u there exist m-mutually independent Hamiltonian
cycles of G beginning from u. The concept of mutually independent Hamiltonian cy-
cles can be applied in many different areas like those introduced in (Sun et al. 2006;
Hsieh and Yu 2007).

Suppose that Qn denotes an n-cube. Sun et al. (2006) proved that I H C(Qn) =
n − 1 if n ∈ {1,2,3} and I H C(Qn) = n if n ≥ 4. Later, Hsieh and Yu (2007) fur-
ther addressed this issue and claimed that Qn contains (n − 1 − f )-mutually inde-
pendent Hamiltonian cycles when f ≤ n − 2 faulty edges may occur accidentally.
However, there are two mistakes in (Hsieh and Yu 2007); one is related to the proof
of “Lemma 2” and the other is related to the proof of “Theorem 2”. In this paper,
we give counterexamples to indicate why their argument fails and then we present a
correct proof.

The rest of this paper is organized as follows. The basic properties of hypercubes
are given in Sect. 2. In Sect. 3, we explain why the proof in (Hsieh and Yu 2007) is
deficient. The correct proof is given in Sect. 4. Finally, the future work is discussed
in Sect. 5.

2 Preliminaries

By definition, an n-cube Qn is n-regular. It is well known that Qn has a recursive con-
struction; that is, it can be decomposed into two (n − 1)-dimensional subcubes. Let
Q

j
n be the subgraph of Qn induced by {u ∈ V (Qn) | (u)n = j} for j ∈ {0,1}. Obvi-

ously, Q
j
n is isomorphic to Qn−1. Then an n-partition of Qn partitions the Qn along

dimension n into {Q0
n,Q

1
n}. The set of crossing edges between Q0

n and Q1
n, denoted

by Ec = {(u, v) ∈ E(Qn) | u ∈ V (Q0
n), v ∈ V (Q1

n)}, consists of all n-dimensional
edges of Qn. It is also known that Qn is vertex-transitive and edge-transitive. For
convenience, we use e to denote the identity vertex 0n of Qn.

The following results are fault-tolerant properties on hypercubes.

Theorem 1 (Tsai et al. 2002) Let n ≥ 3. Suppose that F ⊆ E(Qn) is a set of at most
n − 2 faulty edges. Then Qn − F is Hamiltonian laceable.
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Theorem 2 (Tsai et al. 2002) Let n ≥ 3. Suppose that F ⊆ E(Qn) is a set of at most
n − 3 faulty edges. Then Qn − F is hyper Hamiltonian laceable.

Lemma 1 (Sun et al. 2006) Let n ≥ 4. Suppose that x and y are any two vertices
from different partite sets of Qn. Then Qn − {x, y} is Hamiltonian laceable.

3 Mistakes in the previous work

As Hsieh and Yu (2007) claimed, Qn can be embedded with (n − 1 − f )-mutually
independent Hamiltonian cycles when f ≤ n−2 faulty edges may occur accidentally.
Their proof is by induction on n and mainly relies on “Lemma 2” of (Hsieh and Yu
2007). However, there is a major mistake in their proof of “Lemma 2”. To be precise,
this mistake corresponds to the statements within lines 3–12 of p. 159 in (Hsieh and
Yu 2007):

We prove this Lemma by induction on n. The base case where n = 3
clearly holds. We now consider an n-cube for n ≥ 4. Let dl = |{(bi,wi) :
(bi,wi) be an edge of dimension l,1 ≤ i ≤ δ}|. Without loss of generality,
we assume that d1 ≥ d2 ≥ . . . ≥ dn. Obviously, dn = 0. We then execute
an n-partition of Qn to obtain Q0

n−1 and Q1
n−1. Note that each (bi,wi) is

in either Q0
n−1 or Q1

n−1. Let r0 = |{(bi,wi) ∈ E(Q0
n−1) : 1 ≤ i ≤ δ}| and

r1 = |{(bi,wi) ∈ E(Q1
n−1) : 1 ≤ i ≤ δ}|. Clearly, r0 + r1 = δ. Without loss

of generality, we assume that {(b1,w1), (b2,w2), . . . , (br0,wr0)} ⊂ E(Q0
n−1)

and {(br0+1,wr0+1), (br0+2,wr0+2), . . . , (bδ,wδ)} ⊂ E(Q1
n−1). Since |F0| ≤

|F | − 1 and r0 ≤ n − |F | − 1 ≤ (n − 1) − |F0| − 1, by the inductive
hypothesis, there exist r0-mutually fully independent Hamiltonian paths
P1[b1,w1],P2[b2,w2], . . ., Pr0[br0,wr0] in Q0

n−1 − F0.

Once an n-partition is executed on Qn, the proof provided by Hsieh and Yu (2007)
is merely fitted to the special case when both Q0

n and Q1
n contain n − 3 or less

faulty edges; i.e., the requirements |F0| ≤ |F | − 1 and |F1| ≤ |F | − 1 need to be
satisfied. In this case, Q0

n − F0 and Q1
n − F1 still contain (n − 1 − |F |)-mutually

fully independent Hamiltonian paths. For example, let F = {(00000,10000)} and
A = {(00011,00010), (00110,00100), (00101,00001)}. Obviously, F contains a 5-
dimensional edge. Moreover, the edges of A are 1-dimensional, 2-dimensional, and
3-dimensional, respectively. According to the proof of “Lemma 2” in (Hsieh and Yu
2007), we may partition Q5 into {Q0

5,Q
1
5} along dimension 5. Since the faulty edge

is 5-dimensional, both Q0
5 and Q1

5 are fault-free. Therefore, we have r0 = 3, r1 = 0,
and δ = n− 1 − |F | = n− 2 − |F0| = 3. Since Q0

5 is isomorphic to Q4, the inductive
hypothesis guarantees that Q0

5 has 3-mutually fully independent Hamiltonian paths,
namely P1[00011,00010],P2[00110,00100],P3[00101,00001].

However, one should notice that the faulty edges may occur accidentally. For ex-
ample, we suppose the faulty edge is 1-dimensional rather than a 5-dimensional edge.
Then either Q0

5 or Q1
5 is no longer fault-free, so the final result cannot be directly de-

rived from the inductive hypothesis. For clarity, we give a counterexample against the
argument given in (Hsieh and Yu 2007).
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Example 1 Let F = {(00000,00001)} consist of a 1-dimensional faulty edge in Q5
and let A = {(00011,00010), (00110,00100), (00101,00001)}. Obviously, the edges
of A are 1-dimensional, 2-dimensional, and 3-dimensional, respectively. Accord-
ing to the proof of “Lemma 2” in (Hsieh and Yu 2007), we may partition Q5 into
{Q0

5,Q
1
5} along dimension 5. Then we have F ∪A ⊂ E(Q0

5); that is, we have F0 = F ,
δ = r0 = 3, and r1 = 0. Since Q0

5 is isomorphic to Q4, Q0
5 − F0 has at most 2, not 3,

mutually fully independent Hamiltonian paths by the inductive hypothesis. Indeed,
no matter which dimension is used to partition Q5, the inductive argument proposed
in (Hsieh and Yu 2007) always fails.

In summary, Hsieh and Yu (2007) did not ever consider the case when all faulty
edges are unfortunately located in the same (n − 1)-dimensional subcube of Qn. In
this case, the final result cannot be derived directly from the inductive hypothesis
since Q0

n − F0 has at most r0 − 1, instead of r0, mutually fully independent Hamil-
tonian paths. More generally, we give the next example to show this deficiency.

Example 2 Let n be a multiple of 5. Suppose that F = {(0n,0n−i10i−1) | 1 ≤ i ≤ n
5 }

consists of n
5 faulty edges in Qn. Moreover, suppose that wi = 0n−1−i110i−1 and

bi = 0n−1−i10i for 1 ≤ i ≤ 4n
5 − 2. Besides, let w 4n

5 −1 = 0
n
5 +110

4n
5 −31 and b 4n

5 −1 =
0n−11. Then A = {(wi, bi) | 1 ≤ i ≤ 4n

5 − 1} is a set of 4n
5 − 1 edges with no shared

endpoints. Obviously, the edges of A are over dimensions 1,2, . . . , ( 4n
5 − 1), respec-

tively. According to the proof of “Lemma 2” in (Hsieh and Yu 2007), we may parti-
tion Qn into {Q0

n,Q
1
n} along dimension n. Then we have F ∪A ⊂ E(Q0

n); that is, we
have F0 = F , δ = r0 = 4n

5 − 1, and r1 = 0. By the inductive hypothesis, Q0
n − F0 has

at most ( 4n
5 − 2), instead of ( 4n

5 − 1), mutually fully independent Hamiltonian paths.

In addition to this mistake, another minor one corresponds to the proof of “The-
orem 2” in (Hsieh and Yu 2007). From line 10 to line 13 of page 160, the authors
claimed that there exist δ edges (Ci(t),Ci(t + 1(mod 2n−1))) for all 1 ≤ i ≤ δ such
that (Ci(t), (Ci(t))

d) and (Ci(t + 1(mod 2n−1)), (Ci(t + 1(mod 2n−1)))d) are fault-
free. They further mentioned that if these edges do not exist, then |F | ≥ |Fc| ≥
2n−2 > n − 2 for n > 3. However, this argument is wrong because every faulty edge
of Fc repeats δ times. In contrast, it should be argued that if such edges do not exist,
we will have δ|Fc| ≥ 2n−2; that is, |Fc| ≥ 2n−2/δ > |F | will lead to an immediate
contradiction for n ≥ 3.

4 Fault-free mutually independent Hamiltonian cycles of faulty Qn

To derive the main theorem of this paper, we need the following results.

Lemma 2 (Sun et al. 2006) Let Qn be an n-cube for n ≥ 2. Suppose that {(wi, bi) ∈
E(Qn) | wi ∈ V0(Qn), bi ∈ V1(Qn),1 ≤ i ≤ n − 1} consists of n − 1 distinct edges
with no shared endpoints. Then Qn contains (n − 1)-mutually fully independent
Hamiltonian paths P1[w1, b1], . . . ,Pn−1[wn−1, bn−1].



J Comb Optim (2009) 17: 312–322 317

Theorem 3 (Sun et al. 2006) I H C(Qn) = n − 1 if n ∈ {1,2,3} and I H C(Qn) = n

if n ≥ 4.

Let F be a set of faulty edges of Qn. Suppose that Qn is partitioned along dimen-
sion n into {Q0

n,Q
1
n} and Ec is the set of crossing edges between Q0

n and Q1
n. Then

we define F0 = F ∩ E(Q0
n), F1 = F ∩ E(Q1

n) and Fc = F ∩ Ec. Moreover, we set
δ = n−1−|F | in the remainder of this paper. To tolerate faulty edges in hypercubes,
we have the next lemma.

Lemma 3 Let F ⊆ E(Qn) be a set of at most n − 2 faulty edges for n ≥ 3. Sup-
pose that A = {(wi, bi) ∈ E(Qn) | wi ∈ V0(Qn), bi ∈ V1(Qn),1 ≤ i ≤ δ} consists of
δ distinct edges with no shared endpoints. Then Qn − F contains δ-mutually fully
independent Hamiltonian paths P1[w1, b1], . . . ,Pδ[wδ,bδ].

Proof This proof proceeds by induction on n. First suppose |F | = 0. Then this case
follows from Lemma 2. Suppose |F | = n−2. Then we have δ = n−1− (n−2) = 1.
By Theorem 1, Qn −F has a Hamiltonian path between any two vertices from differ-
ent partite sets. Obviously, the statement holds for Q3, as the induction basis. In what
follows, we only consider 1 ≤ |F | ≤ n − 3 and n ≥ 4. As the inductive hypothesis,
suppose that the statement is true for Qn−1.

Since δ + |F | = n − 1 < n, there must exist a dimension d of {1,2, . . . , n} such
that A ∪ F contains no d-dimensional edges. Since Qn is edge-transitive, we can
assume d = n. Then we partition Qn into {Q0

n,Q
1
n} along dimension n. Thus, each

edge of A ∪ F is in either Q0
n or Q1

n. Let r0 = |{(wi, bi) ∈ E(Q0
n) | 1 ≤ i ≤ δ}| and

r1 = |{(wi, bi) ∈ E(Q1
n) | 1 ≤ i ≤ δ}|. Clearly, r0 + r1 = δ. Without loss of generality,

we assume {(w1, b1), . . . , (wr0, br0)} ⊂ E(Q0
n) and {(wr0+1, br0+1), . . . , (wδ, bδ)} ⊂

E(Q1
n). Since n − 1 = δ + |F | = r0 + r1 + |F0| + |F1|, we have ri + |Fj | ≤ n − 1 for

any i, j ∈ {0,1}. Then we have to take the following cases into account.
Case 1: Suppose ri + |Fj | ≤ n − 2 for any i, j ∈ {0,1}. Since r0 + |F0| ≤ n − 2,

r0 ≤ n − 2 − |F0| = (n − 1) − 1 − |F0|. By the inductive hypothesis, Q0
n − F0 has

r0-mutually fully independent Hamiltonian paths Hi[wi, bi], 1 ≤ i ≤ r0. Obviously,
Hi[wi, bi] can be represented as 〈wi,H

′
i , ui, bi〉, in which ui is some vertex adja-

cent to bi . Similarly, Q1
n − F1 has r1-mutually fully independent Hamiltonian paths

Hi[wi, bi] = 〈wi,H
′
i , ui, bi〉, r0 + 1 ≤ i ≤ δ.

Next, we construct r0 paths in Q1
n −F1 to incorporate the previously established r0

paths of Q0
n −F0. Since r0 +|F1| ≤ n−2, we have r0 ≤ n−2−|F1|. By the inductive

hypothesis, Q1
n − F1 also contains r0-mutually fully independent Hamiltonian paths

R1[(u1)
n, (b1)

n], . . . ,Rr0[(ur0)
n, (br0)

n]. Similarly, Q0
n−F0 also contains r1-mutual-

ly fully independent Hamiltonian paths Rr0+1[(ur0+1)
n, (br0+1)

n], . . . ,Rδ[(uδ)
n,

(bδ)
n]. Accordingly, we set Pi[wi, bi] = 〈wi,H

′
i , ui, (ui)

n,Ri, (bi)
n, bi〉 for every

1 ≤ i ≤ δ. Thus, {P1, . . . ,Pδ} forms a set of δ-mutually fully independent Hamil-
tonian paths in Qn − F . See Fig. 1(a) for illustration.

Case 2: Suppose ri + |Fi | = n − 1 for some i ∈ {0,1}. Without loss of generality,
we assume r0 + |F0| = n − 1. Since r0 = n − 1 − |F0| ≥ n − 1 − |F | = δ, we must
have r0 = δ and |F0| = |F | ≤ n − 3. Note that r0 − 1 = δ − 1 = n − 2 − |F | =
(n − 1) − 1 − |F0|. By the inductive hypothesis, Q0

n − F0 has (r0 − 1)-mutually
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(a) Case 1

(b) Subcase 2.1 of Case 2

(c) Subcase 2.2 of Case 2

(d) Case 3

Fig. 1 Illustration for the proof of Lemma 3
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fully independent Hamiltonian paths Hi[wi, bi], 2 ≤ i ≤ r0. Again, Hi[wi, bi] can be
represented as 〈wi,H

′
i , ui, bi〉, in which ui is some vertex adjacent to bi .

Subcase 2.1: Suppose n = 4. Thus, we have r0 = 2. By Theorem 2, Q0
4 − F0

has a Hamiltonian path H1[w1, b1] = 〈w1, u1,H
′
1, (b1)

j , b1〉, in which u1 is a ver-
tex adjacent to w1 and j is some integer of {1,2,3,4}. Let X = {((u1)

4, (u2)
4)}.

Similarly, there are two Hamiltonian paths R1[(w1)
4, (u1)

4] and R2[(u2)
4, (b2)

4]
in Q1

4 − X. Obviously, one can see that R1(7) �= R2(1) and R1(8) �= R2(2).
Then we set P1[w1, b1] = 〈w1, (w1)

4,R1, (u1)
4, u1,H

′
1, (b1)

j , b1〉 and P2[w2, b2] =
〈w2,H

′
2, u2, (u2)

4,R2, (b2)
4, b2〉. Consequently, {P1,P2} forms a set of 2-mutually

fully independent Hamiltonian paths in Q4 − F . See Fig. 1(b) for illustration.
Subcase 2.2: Suppose n ≥ 5. We first consider |F0| ≤ n − 4. By the induc-

tive hypothesis, Q1
n has (r0 − 1)-mutually fully independent Hamiltonian paths

Ri[(ui)
n, (bi)

n], 2 ≤ i ≤ r0. Then we can choose an integer j of {1, . . . , n − 1} such
that both (b1)

j �= w1 and ((b1)
j )n /∈ {Ri(2n−1 − 1) | 2 ≤ i ≤ r0} are satisfied. Since

r0 = n−1−|F | ≤ n−2, such an integer exists. By Theorem 2, Q0
n − (F0 ∪{b1}) has

a Hamiltonian path H1[w1, (b1)
j ] = 〈w1, u1,H

′
1, (b1)

j 〉, in which u1 is some ver-
tex adjacent to w1. By Lemma 1, there exists a Hamiltonian path R1[(w1)

n, (u1)
n]

in Q1
n − {(b1)

n, ((b1)
j )n}. Then we set P1[w1, b1] = 〈w1, (w1)

n,R1, (u1)
n, u1,H

′
1,

(b1)
j , ((b1)

j )n, (b1)
n, b1〉 and Pi[wi, bi] = 〈wi,H

′
i , ui, (ui)

n,Ri , (bi)
n, bi〉 for 2 ≤

i ≤ r0. As a result, {P1, . . . ,Pr0} forms a set of r0-mutually fully independent Hamil-
tonian paths in Qn − F . See Fig. 1(c) for illustration.

Next, we consider |F0| = n − 3. Thus, we have r0 = 2. By Theorem 1, Q0
n − F0

has a Hamiltonian path H1[w1, b1] = 〈w1, u1,H
′
1, (b1)

j , b1〉, in which u1 is a vertex
adjacent to w1 and j is some integer of {1,2, . . . , n − 1}. By Lemma 1, there ex-
ists a Hamiltonian path R1[(w1)

n, (u1)
n] in Q1

n − {(b1)
n, ((b1)

j )n}. By the inductive
hypothesis, Q1

n − {((b2)
n, ((b1)

j )n)} has a Hamiltonian path R2[(u2)
n, (b2)

n]. Obvi-
ously, we have R2(2n−1 − 1) �= ((b1)

j )n. Again, we set P1[w1, b1] = 〈w1, (w1)
n,

R1, (u1)
n, u1,H

′
1, (b1)

j , ((b1)
j )n, (b1)

n, b1〉 and P2[w2, b2] = 〈w2,H
′
2, u2, (u2)

n,

R2, (b2)
n, b2〉. Hence, {P1,P2} forms a set of 2-mutually fully independent Hamil-

tonian paths in Qn − F . See Fig. 1(c).
Case 3: Suppose that ri + |F1−i | = n − 1 for some i ∈ {0,1}. Without loss of gen-

erality, we assume r1 + |F0| = n − 1. Since r1 = n − 1 − |F0| ≥ n − 1 − |F | =
δ, we have r1 = δ and F0 = F . By the inductive hypothesis, Q1

n has (r1 − 1)-
mutually fully independent Hamiltonian paths Hi[wi, bi] = 〈wi,H

′
i , ui, bi〉, in which

ui is some vertex adjacent to bi with 1 ≤ i ≤ r1 − 1. Since r1 − 1 = δ − 1 =
n − 2 − |F | = (n − 1) − 1 − |F0|, Q0

n − F0 has (r1 − 1)-mutually fully indepen-
dent Hamiltonian paths Ri[(ui)

n, (bi)
n], 1 ≤ i ≤ r1 − 1. Then we set Pi[wi, bi] =

〈wi,H
′
i , ui, (ui)

n,Ri, (bi)
n, bi〉 with 1 ≤ i ≤ r1 − 1. Next, we have to choose a ver-

tex v of V0(Q
0
n) and construct a Hamiltonian path Rr1[(wr1)

n, v] in Q0
n − F0 such

that v �= Ri(2) and Rr1(2
n−1 − 1) �= (ui)

n for every 1 ≤ i ≤ r1 − 1. We distinguish
the following subcases.

Subcase 3.1: Suppose n �= 5 or |F | > 1. One can see that (u1)
n, . . . , (ur1−1)

n have
at most (r1 − 1)(n− 1) neighbors in Q0

n. Since |V0(Q
0
n)| = 2n−2 > (r1 − 1)(n− 1) =

(n − 2 − |F |)(n − 1) in this subcase, we can choose v other than all neighbors of
(u1)

n, . . . , (ur1−1)
n. Obviously, we have v �= Ri(2) for 1 ≤ i ≤ r1 −1. By Theorem 1,

there is a Hamiltonian path Rr1[(wr1)
n, v] in Q0

n − F0. Since v is not adjacent to



320 J Comb Optim (2009) 17: 312–322

any node of {(u1)
n, . . . , (ur1−1)

n}, we have Rr1(2
n−1 − 1) �= (ui)

n for every 1 ≤ i ≤
r1 −1. By Theorem 2, there is a Hamiltonian path Hr1[(v)n, br1] in Q1

n −{wr1}. Then
we set Pr1 = 〈wr1, (wr1)

n,Rr1, v, (v)n,Hr1, br1〉. Consequently, {P1, . . . ,Pr1} forms
a set of r1-mutually fully independent Hamiltonian paths in Qn − F . See Fig. 1(d)
for illustration.

In the following, we consider n = 5 and |F | = 1; that is, r1 = 3.
Subcase 3.2: For n = 5 and |F | = 1, suppose that (u1)

n and (u2)
n have at least

one common neighbor. Since |V0(Q
0
n)| = 2n−2 = 8 > 7 = (r1 − 1)(n − 1) − 1,

we still can choose a vertex v from V0(Q
0
n) other than all neighbors of (u1)

n and
(u2)

n. Obviously, we have v �= Ri(2) for 1 ≤ i ≤ r1 − 1. By Theorem 1, there is a
Hamiltonian path Rr1[(wr1)

n, v] of Q0
n − F0 such that Rr1(2

n−1 − 1) �= (ui)
n for

every 1 ≤ i ≤ r1 − 1. By Theorem 2, there is a Hamiltonian path Hr1[(v)n, br1]
in Q1

n − {wr1}. Similarly, we set Pr1 = 〈wr1, (wr1)
n,Rr1, v, (v)n,Hr1, br1〉. Then

{P1, . . . ,Pr1} forms a set of r1-mutually fully independent Hamiltonian paths in
Qn − F . See Fig. 1(d).

Subcase 3.3: For n = 5 and |F | = 1, suppose that (u1)
n and (u2)

n have no
common neighbors. Then we assign the vertex v as the one that is adjacent to
(u1)

n but is not identical to R1(2). Obviously, we have v �= Ri(2) for 1 ≤ i ≤
r1 − 1. By Theorem 1, Q0

n − (F0 ∪ {(v, (u1)
n)}) remains Hamiltonian laceable.

Thus, there is a Hamiltonian path Rr1[(wr1)
n, v] of Q0

n − (F0 ∪ {(v, (u1)
n)})

such that Rr1(2
n−1 − 1) �= (ui)

n for every 1 ≤ i ≤ r1 − 1. By Theorem 2, there
is a Hamiltonian path Hr1[(v)n, br1] in Q1

n − {wr1}. Similarly, we set Pr1 =
〈wr1, (wr1)

n,Rr1, v, (v)n,Hr1, br1〉. Then {P1, . . . ,Pr1} forms a set of r1-mutually
fully independent Hamiltonian paths in Qn − F . See Fig. 1(d). �

With Lemma 3, the next theorem can be easily derived.

Theorem 4 Let n ≥ 3. Suppose that F ⊆ E(Qn) consists of at most n − 2 faulty
edges. Then Qn −F contains (n−1−|F |)-mutually independent Hamiltonian cycles
beginning from any vertex.

Proof Since Qn is vertex-transitive, we only need to construct δ-mutually indepen-
dent Hamiltonian cycles beginning from e = 0n. Suppose |F | = 0. Then the statement
follows from Theorem 3. Thus, we only consider the situation that F is nonempty.
Furthermore, since Qn is edge-transitive, we assume that at least one faulty edge is
an n-dimensional edge.

The proof idea is based on the partition of Qn. As discussed previously, Qn can
be partitioned into {Q0

n,Q
1
n}. Obviously, e is located in Q0

n. Recall that F0 and F1

denote the sets of faulty edges in Q0
n and Q1

n, respectively. Then the proof idea is
outlined as follows:

(1) We first build δ-mutually independent Hamiltonian cycles C1,C2, . . . ,Cδ begin-
ning from e in Q0

n − F0.
(2) Next, we have to claim that there must exist an integer t , 1 ≤ t ≤ 2n−2, so that the

crossing edges (Ci(2t − 1), (Ci(2t − 1))n) and (Ci(2t), (Ci(2t))n) are fault-free
for all 1 ≤ i ≤ δ. For convenience, let xi = Ci(2t − 1) and yi = Ci(2t).
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Fig. 2 Illustration for the proof of Theorem 4. Without loss of generality, we assume xi ∈ V0(Qn) for
1 ≤ i ≤ δ

(3) By Lemma 3, Q1
n −F1 contains δ-mutually fully independent Hamiltonian paths

R1[(x1)
n, (y1)

n], . . . ,Rδ[(xδ)
n, (yδ)

n].
(4) Finally, we obtain the desired Hamiltonian cycles from combining Ci and Ri ,

1 ≤ i ≤ δ. See Fig. 2 for illustration.

More precisely, the proof is by induction on n. It is trivial that the statement
holds for Q3, as the induction basis. When n ≥ 4, we assume that the statement
holds for Qn−1. Now we consider how to build δ-mutually independent Hamil-
tonian cycles in Qn − F . Since we assume there is at least one n-dimensional
faulty edge, we partition Qn into {Q0

n,Q
1
n} along dimension n. Accordingly, we

have |F0| ≤ |F | − 1 ≤ n − 3, |F1| ≤ |F | − 1 ≤ n − 3, and (n − 1) − 1 − |F0| ≥
(n − 1) − 1 − (|F | − 1) = n − 1 − |F | = δ. Thus, by the inductive hypothesis,
Q0

n − F0 contains δ-mutually independent Hamiltonian cycles C1,C2, . . . ,Cδ begin-
ning from e. For convenience, we assume that the vertices on each cycle are indexed
sequentially from 1 to 2n−1; that is, the beginning vertex e has index 1. Next, we
claim that there must exist an integer t , 1 ≤ t ≤ 2n−2, so that the crossing edges
(Ci(2t − 1), (Ci(2t − 1))n) and (Ci(2t), (Ci(2t))n) are fault-free for all 1 ≤ i ≤ δ. If
such edges do not exist, then we have |F | ≥ |Fc| ≥ 2n−2/δ > |F | for n ≥ 3, leading
to an immediate contradiction. Let xi = Ci(2t − 1) and yi = Ci(2t). Accordingly,
Ci can be represented as 〈e,Pi, xi, yi,Hi, e〉, 1 ≤ i ≤ δ. By the definition of hyper-
cubes, (xi)

n and (yi)
n are adjacent in Q1

n. By Lemma 3, Q1
n −F1 contains δ-mutually

fully independent Hamiltonian paths R1[(x1)
n, (y1)

n], . . . ,Rδ[(xδ)
n, (yδ)

n]. There-
fore, {〈e,Pi, xi, (xi)

n,Ri, (yi)
n, yi,Hi, e〉 | 1 ≤ i ≤ δ} forms a set of δ-mutually in-

dependent Hamiltonian cycles beginning from e. �

5 Conclusion

In this paper, we concentrate on the problem of embedding mutually independent
Hamiltonian cycles in a faulty n-cube, as previously addressed by Hsieh and Yu
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(Hsieh and Yu 2007). However, there are two mistakes in (Hsieh and Yu 2007). There-
fore, we first point out why their proof is deficient. Then we prove that Qn contains
(n − 1 − f )-mutually independent Hamiltonian cycles when f ≤ n − 2 faulty edges
may occur accidentally. Indeed, we believe this result can be further refined; that is,
we would like to show Qn can be embedded with (n − f )-mutually independent
Hamiltonian cycles beginning from any vertex when f ≤ n − 2 faulty edges occur.
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