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摘 要       

論文的第一部分涵蓋了光譜橢偏儀在近紅外波段（700-1000nm）可使樣品置於低溫

（～4.2 K）和強磁場（磁場最高達 14T）下量測的設計和實現。論文中將詳細探討在低

溫環境下系統的光學和機械的各個組成部分。我們把主要的光學原件都結合在一個可插

入到常規的長頸液態氦杜爾瓶的探測器上，這樣的設計使得系統擁有很長的空宇光路徑

（～ 1.8 m × 2）。在偏振光的解析方面，我們使用偏振片-樣品-（四分之一波片）-

旋轉偏振片的橢偏儀配置。在光路方面，我們用兩個介電反射鏡，一個在樣品前，另一

在樣品之後；而在樣品座下的兩軸壓電驅動傾角器則可用來調控反射光的方向，使光能

順利反射回旋轉偏振片而被量測。系統的功能性量測結果和其隨機誤差的分析都將在文

中展示。我們用此自行設計的橢偏儀系統探索砷化鎵極化子在磁場下傳播的特性。藉

此，我們可同時量測到砷化鎵激子橢偏光譜的振幅和相位頻譜以及其相位譜在能量接近

砷化鎵激子躍遷時，光左、右旋的轉變。更重要的，我們藉此量測方法觀察到有趣且未

曾被發表過的砷化鎵激子光譜的精細結構，且這些精細結構的磁光行為無法由已知特性

的激子態做解釋。鑑於此，我們把樣品的表面和磊晶界面都當作砷化鎵極化子的邊界，

如此可解釋這些精細結構的由來並歸咎其為多重極化子模態間的干涉結果。而對於此干
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涉精細結構的磁響應，我們提出了一個同時考慮極化子的空間色散和激子的中心運動與

相對運動耦合所導致的有效質量提升的模型對其做定性的解釋。 

在論文的第二部分，我們提出了一個設計特殊半導體量子井的想法，這種量子井相對於

一般的量子井而言；即使厚度減小，仍能提供較小的電子傳輸有效質量和較高的遷移

率。在理論計算中，我們同時考慮了能帶的非拋效應和量子井能障所帶來的影響。在低

溫情況下，主要的散射機制包括界面粗糙度，合金無序和雜質的散射均被用來評估電子

在量子井中的遷移率。四種不同組合的低能隙量子井的結果和比較都將在文中展現。通

過適當選取合適的能帶組合的量子井和其能障的材料，此新穎的傳輸特性可被實現。
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ABSTRACT 
 
The first part of this thesis covers the design and implementation of a spectral ellipsometer at 

near-infrared wavelength (700-1000nm) for samples placed in high magnetic fields (up to 14 

Tesla) at low temperatures (~4.2 K). It details both the optical and mechanical aspects of the 

system in the low temperature environment. The main optical components are integrated in a 

probe, which can be inserted into a conventional long-neck He dewar and has a very long 

free-space optical path (~1.8 m x 2). A polarizer-sample-(quarter-wave plate)-rotating 

analyzer configuration was employed. Two dielectric mirrors, one before and one after the 

sample in the optical path, helped to reflect the light back to the analyzer and a two-axis 

piezo-driven goniometer under the sample holder was used to control the direction of the 

reflected light. Functional test results and analysis on the random error of the system are 

shown. The properties of GaAs polariton propagating in magnetic field have been explored 

using this self-designed ellipsometry system. We obtained both the amplitude and phase 

ellipsometric spectra simultaneously and observed helicity transformation at energies near the 

GaAs exciton transitions in the phase spectra. Interesting fine structures, which have not been 

reported before, have been observed and their magneto-optical behavior cannot be accounted 

by the known properties of excitonic states. Treating the surface and the growth interface as 

boundaries, we attribute the fine structures to the interference among various polariton modes. 
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A model considering both the polariton spatial dispersion and the exciton effective mass 

enhancement induced by the coupling of the exciton center of mass and relative motions is 

proposed to explain the magnetic response of the interference ellipsometry spectra. 

In the second part of this thesis, we propose an ideal to design a special kind of semiconductor 

quantum wells, which, in contrary to conventional quantum wells, are able to provide smaller 

electron transport effective mass and higher mobility when the quantum well thickness is 

decreased. The theory used accounts for both the nonparabolicity effect and the influence of 

the barrier. Major scattering mechanisms at low temperatures, including the scatterings by the 

interface roughness, the alloy disorder, and impurities have been considered in mobility 

calculations. The results of four different combinations of quantum wells are shown and 

compared. By properly choosing the well/barrier materials with proper band lineups, the 

novel transport property is achievable.  
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Chapter 1

Introduction

Taking precise and careful measurements of subtle phenomena in semiconductors

is very important in understanding the physical properties of the material. In the

first part of the thesis, we describe the design and construction of an ellipsometer

that can be used in high magnetic field and low temperatures. This is an unique

scientific instrument, which is able to perform measurements that could not be

done before. A lot of innovative ideas have been used and many difficult obstacles

have been overcome in this challenging project. This is the first and the only

ellipometer in the world that can be operated in such harsh environment. The

system has been fully tested and characterized. We have used it in the study of

exciton-polariton properties of GaAs. It has provided information that could not

be achieved otherwise.

1.1 Ellipsometry

Ellipsometry is a technique to measure the change of a polarization state of light

after being interacted with sample [1–3]. From analysing the polarization change,

we can explore the light-matter interaction and deduce parameters such as over-

layer/film thickness and complex dielectric functions [1–3]. More specifically, the

spectroscopic ellipsometry is able to measure wavelength dependent complex di-

electric functions providing additional information on the electronic states and the

band structure of crystalline materials. This is especially important for semicon-

ductor analysis and is useful for optoelectronic applications. Unlike reflectance and

photoemission spectra, spectroscopic ellipsometry simultaneously provides both

2
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real and imaginary parts of ellipsometric spectra connected to the complex dielec-

tric function, which fully characterizes the inherent wavelength dependence linear

response (both the absorption and dispersion) of materials.

Its high sensitivity integrated with a high magnetic field (B) and low tempera-

ture (T ) environment for the sample has attracted researchers to utilize such a

technique to explore interesting quantum electron systems of which the optical

response can show very intriguing effect induced by B. For many of these studies,

especially on new phenomena of materials and new structures, it is desirable that

these measurements are performed at low temperatures (T ) and high magnetic

fields (B). For example, nonmagnetic semiconductor nano-object based artificial

materials have been proposed to exhibit magnetic-material-like collective optical

responses which can be revealed by low-T and high-B ellipsometric measurements

[4–8]. Another area of interest is the spatial dispersive exciton-polariton related

problems [9–13], for which the obliquely incident geometry nature and high-B

fields provide extra information of the momentum space parallel to the interface

and the effect of spin configurations. We believe such a comprehensive study will

help to develop the microscopic theory of exciton-polariton behaviors in magnetic

fields. Therefore a versatile but miniature ellipsometer that can be fitted into and

operated in a low temperature and high magnetic field environment is of great

importance for the studies mentioned above.

A generalized magneto-optical ellipsometry system was proposed by Berger et al.

[14] to obtain complex refraction index and magneto-optical coupling constant

simultaneously. Later, Neuber et al. [15] showed a temperature-varying general-

ized spectral magneto-optical ellipsometer design with a He-flow cryostat and a

small electromagnet of a few tens of mT. Schubert et al. [16] extended this tech-

nique to far-infrared and a higher magnetic field of a few Tesla to characterize the

carrier properties of n-GaAs; Hofmann et al. [17] further pushed the technique

to terahertz frequency range. Mok et al. [18] presented a variable-angle vector-

magneto-optical generalized ellipsometer with field magnitude up to 400 mT at

room temperature. However, all the previous systems had relatively short optical

path designs and were equipped with small coil magnets or split-coil superconduct-

ing magnets, which limited the strength of the applied magnetic fields. To extend

the operation range of the spectroscopic ellipsometry systems to higher magnetic

fields, a new approach to design a ellipsometer is presented in this thesis.
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1.2 Exciton-Polariton Light Semiconductor Cou-

pling

As mentioned above, the self-designed ellipsometer performs measurements differ-

ent from common reflectance and transmission experiments for the sample in the

low temperature and high magnetic field environment. We use it to investigate

the properties of GaAs exciton-polariton propagation in high magnetic fields. The

term “exciton-polariton”, was first introduced by J. J. Hopfield [19] to refer to the

coupling of the electromagnetic field and the excitonic polarization field in semi-

conductors. This concept has exerted considerable influences on researches in the

linear optical regime [20–23] and on future applications such as plasma-gain lasing

[24, 25], low energy switches [26–28], single photon sources [29–31], etc. When

spatial dispersion of polaritons [32, 33] in the presence of interfaces is considered,

the polariton problem becomes more complicated. Lack of knowledge on the ex-

citon polarization near interfaces leads to various types of “additional boundary

condition”(ABC) [32, 34–36] be proposed to match the multi-polariton modes in

the material and the single electromagnetic wave at an interface.

Over the past 20 years there have been a lot of researches on polariton effects in

GaAs QWs for fundamental and practical reasons. These effects have been ex-

plained by the interference among multi-polariton modes and the exciton center-

of-mass (CM) motion quantization. And the mechanisms exchange dominating for

different QW thickness comparing to the photon wavelength and the exciton Bohr

radius in the material [37, 38]. For a thick quantum well (QW), some features

have been observed and have been explained as due to the interference among

multi-polariton modes [39]. When the layer thickness is reduced, the exciton

center-of-mass (CM) motion quantization has been expected to play a more im-

portant role [38]. However, to recognize all the features induced by these coupled

mechanisms is complicated. Recently, more elaborate microscopic models [10–13]

have been developed to explain the interplay of the interference of polariton and

the CM motion quantization for intermediate sample length and have an excellent

agreement with recent experimental results [9]. However, no such treatments with

magnetic fields have been published up to now.

Applying magnetic fields to semiconductors has attracted many interests in study-

ing the behavior of magneto-exciton and being available to obtain the important
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parameters (diamagnetic shift coefficient, g-factor, band-parameters, etc.) of ma-

terial [40]. The last decade has seen growing importance placed on research in the

magnetic field induced phenomena due to the coupling between the quantized ex-

citon CM and relative motions [41–44]. Magnetic fields are not only a perturbation

but also lead coupling of exciton CM motion and internal motion [41, 42, 45, 46],

and possibly induces mixing of the exciton s-state and other states [43, 44]. This

is especially important for the sample that the exciton can move freely in mag-

netic fields. However, all the experiments published previously were done with a

normal-incidence configuration that can not provide a wavevector parallel to the

sample surface and obliquely moving excitons in magnetic fields.

1.3 Scope of Part I

Having an ellipsometer that can operate at low temperatures and high magnetic

fields makes it possible to perform experiments mentioned above in a different

way. The first part of the research (Chapter 2) details the design, construct and

characterization of the spectroscopic ellipsometry system that can be inserted into

an Oxford long-neck low temperature dewar, which is equipped with a supercon-

ducting magnet with field up to 14 T. This ellipsometer employs free space optics

to bring the polarized light in and out of the sample stage, which is placed ∼1.6 m

deep into the cryostat. Specific mechanical design to control the light beam and

stabilize the overall system is presented. The system is fully tested and functional,

and has provided magneto-optical spectroscopic information of our samples with

high resolution and clarity.

The second part of this work involves measuring III-V semiconductor samples

using the self-designed ellipsometer. More specifically, we study the behavior of

GaAs polariton in a substrate and a 1-μm layer grown by molecular beam epitaxy

(MBE) in high magnetic fields at 4.2 K. Unlike the previous measurements done

with a normal incident angle, our measurements were performed with an oblique

(60◦) incident angle under variable magnetic fields up to 14 Tesla (T) and were

able to show simultaneously both the phase and the amplitude ratios of the two

principal axis reflectivities.

From the measurement done with taking the ratio of the two principal-axis re-

flectivities and a large wavevector component parallel to the interfaces of a GaAs
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epilayer, fine structures in the ellipsometry spectra were observed. The peculiar

structures, which cannot be seen in our GaAs substrate sample and have not been

reported in the previous measurements of GaAs epilayer [47–52], were present even

at 0 T. The fine structures evolved with the magnetic field in a fashion that cannot

be explained by the traditional models of the magnetic field induced quantization.

Treating our sample as a slab of GaAs with two boundaries , which are the surface

and the epilayer-substrate interface, and using the theory of the dispersive polari-

ton with Pekar’s ABC [32, 36], we were able to explain qualitatively the observed

fine structures in the ellipsometry spectra as a result of the interference among

various polariton modes in the slab. The behavior of the spectra under magnetic

fields was explained as a possible result of the enhancement of exciton effective

mass [45, 46], which is due to the coupling of the exciton CM and relative mo-

tions in the presence of magnetic field. We hope the results and their explanations

provided in this work can stimulate an appropriate theoretical description.



Chapter 2

Ellipsometry System Design &

Measurements

2.1 Description of The Complete System

Figure 2.1: Diagram of the long-neck liquid-Helium dewar with a liquid-
Nitrogen jacket.

7
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Figure 2.2: Schematic diagram of the ellipsometery system, which can be fit
into a long-neck cryogenic dewar with a small-bore high-field superconducting

magnet.

To overcome the constraints of the small bore size (50 mm) of the high-field (14 T)

superconducting magnet and a long optical path set by the long-neck liquid-Helium

dewar with a liquid-Nitrogen jacket (Fig. 2.1), we designed a multi-reflection

sample stage mounted at the end of an insert. The laser beam is brought in

through free-space along the insert. In this way, we are able to maintain a large

incident angle and high polarization stability of the laser beam into the sample

as required by an ellipsometry system. To make sure the laser beam traveling

from the top window of the dewar can go back to the same window after being

reflected by the sample at the center of the magnet that is placed near the bottom

of the dewar, we use two dielectric mirrors besides the sample under test to form

a triple-reflection configuration.

Figure 2.2 shows the complete schematic diagram of the ellipsometry system. The

whole system was constructed as an insert for the low temperature dewar. It

consists of a polarization generation part, a polarization detection part, a signal

processing part, and a sample stage that holds the sample and the two dielectric

mirrors in a low-temperature environment. A Ti-sapphire laser provides the coher-

ent light in the wavelength range of 700 nm to 1000 nm and its FWHM linewidth
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is about 3 Å. The laser beam is firstly split into two by a beam-sampler. One beam

is coupled into a monochromator for wavelength measurement, and the other is

coupled into a 10-m long single-mode fiber ended with a collimator. The light out

of the collimator passes through a Glan-Laser calcite polarizer with an extinction

ratio larger than 105 and then becomes a linearly polarized light. One of the laser

beams being branched out by the beam-splitter is detected by a silicon photodiode

(D1) to monitor the fluctuation of polarization and intensity, while the other beam

is guided into the cryogenic dewar through a window at room temperature. The

incident beam is reflected by a dielectric mirror before reaching the sample. The

outgoing beam is reflected by another dielectric mirror and then goes to the polar-

ization detection part placed outside the dewar. The polarization detection part

includes a quarter-wave plate, a rotating analyzer, and another silicon photodiode

(D2). The photocurrents from D1 and D2 are measured by lock-in amplifiers and

current preamplifiers respectively in the signal processing part. All reflections, two

from the mirrors and one from the sample, have a 60◦ incident angle and share

the same incident plane, making the incoming beam and outgoing beam parallel

to each other. The holder containing the mirrors and sample is attached to a

two-axis piezoelectric goniometer which can tune the sample orientation in-situ.

2.2 Operation Principle

The polarization state of a light beam can be expressed in the form of Jones vector

[1–3]. For a triple-reflection process, the output and input Jones vectors are related

by

(
pout

sout

)

=

(
rC
pp rC

sp

rC
ps rC

ss

)(
rB
pp rB

sp

rB
ps rB

ss

)(
rA
pp rA

sp

rA
ps rA

ss

)(
pin

sin

)

≡

(
reff
pp reff

sp

reff
ps reff

ss

)(
pin

sin

)

= reff

(
pin

sin

)

, (2.1)

where p and s are the electric field components parallel and perpendicular to the

incident plane, and r is the complex reflection coefficient with subscripts and su-

perscripts specifying the polarization states and reflecting materials, respectively.

For example, rB
ps represents the ratio of the s-component of the light reflected by

the sample in the middle and the p-component of the incident light. The effective

reflection matrix, reff, represents the overall result of all three reflections. The
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ratio of the output and input ratios of the p- and s- polarization components is

defined as [53]

ρ =
pout/sout

pin/sin

=
(reff

pp/r
eff
ss ) + (reff

sp/r
eff
ss )(pin/sin)−1

1 + (reff
pp/r

eff
ss )(reff

ps/r
eff
pp)(pin/sin)

=
Reff

pp + Reff
sp(pin/sin)−1

1 + Reff
ppR

eff
ps(pin/sin)

, (2.2)

where [16, 53]

Reff
pp =

reff
pp

reff
ss

= tan Ψeff
ppe

iΔeff
pp ; (2.3a)

Reff
sp =

reff
sp

reff
ss

= tan Ψeff
spe

iΔeff
sp ; (2.3b)

Reff
ps =

reff
ps

reff
pp

= tan Ψeff
pse

iΔeff
ps , (2.3c)

tan Ψ and Δ stand for the amplitude ratio and the phase difference of the reflec-

tivities.

To extract the reflection information from the triple-reflection measurement, we

must obtain the effect of the dielectric mirrors first. This can be done through

a calibration procedure by using three identical mirrors, i.e., using the same di-

electric mirror (M) to replace the sample. The overall result of the three identical

reflections then has the form

(
(rM

pp)
3 + 2fM

pp + fM
ss rM

spF
M

rM
psF

M (rM
ss)

3 + 2fM
ss + fM

pp

)

, (2.4)

where fM
pp = rM

ppr
M
psr

M
sp, fM

ss = rM
ssr

M
psr

M
sp, and FM = (rM

pp)
2 + rM

psr
M
sp + rM

ppr
M
ss + (rM

ss)
2.

Here we assume the reflection coefficients to be the same due to the same material

and identical incident angle. The ellipsometry parameters for each mirror can be

obtained with neglecting the product of rM
psr

M
sp terms that are at least three orders

smaller than the product of diagonal terms in general.

RM
pp = (Rcal

pp )1/3; (2.5a)

RM
sp = Rcal

sp [(Rcal
pp )2 + Rcal

pp + 1]−1; (2.5b)

RM
ps = Rcal

ps [(Rcal
pp )−2 + (Rcal

pp )−1 + 1]−1. (2.5c)
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The superscript “cal” represents the three identical mirror calibration measure-

ment.

For a measurement where the second mirror is replaced by a sample (σ), the

effective reflectivity matrix becomes

(
(rM

pp)
2rσ

pp rM
ppr

M
ssr

σ
sp + gsp

gps + rM
ppr

M
ssr

σ
ps (rM

ss)
2rσ

ss

)

, (2.6)

where gsp/ps = rM
sp/ps(r

M
ssr

σ
ss+rM

ppr
σ
pp). The ellipsometry parameters of the sample

(σ) are then obtained by Eg. (2.3) as

Rσ
pp =

Reff
pp

(RM
pp)

2
; (2.7a)

Rσ
sp = [Reff

sp − RM
sp(1 +

Reff
pp

RM
pp

)](RM
pp)

−1; (2.7b)

Rσ
ps = [Reff

ps − RM
ps(1 +

RM
pp

Reff
pp

)]RM
pp. (2.7c)

The mirror contributions RM
pp, RM

sp, and RM
ps can be deduced from the three-mirror

calibration procedure in Eq. (2.5).

2.3 Mechanical Design

The main part of the ellipsomety system is designed as a long insert (Fig. 2.3) to fit

into an Oxford He long-neck dewar (Fig. 2.1). Because of the long distance (∼1.8

m) between the center of magnetic field and the outlet window and the extreme

conditions in the dewar, the mechanical design of the ellipsometer has to be done

very carefully to ensure stable operation and ruggedness under harsh conditions.

It also needs to be flexible enough to allow fine adjustment of the optical path to

make sure that the light beam travels through free space to the sample and back

to the polarization detection part accurately. The main mechanical support of

the insert is provided by four parallel 6 mm-outside-diameter stainless-steel tubes,

which are kept in place and separated by several aluminum spacer plates. In each

of the spacer plate, there are two cross-shaped holes to allow the laser beams to

travel through. Such a frame structure avoids the possibility of bending the insert

frame and also suppresses mechanical vibrations. The top of the frame structure,
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Figure 2.3: Overall view of the ellipsometer insert.

as shown in Fig. 2.4 (a), is connected to a manifold that supports the optical head

and provides necessary ports for pumping and electrical feedthroughs. The optical

head mainly consists of two 25 cm ×10 cm ×1 cm parallel optical breadboards

that hold the optical components and detectors. The bottom of the insert, as

shown in Fig. 2.4 (b), includes a sample stage, a two-axis piezoelectric goniometer

and a protective housing, whose material are all titanium. Between components of

different materials, beryllium-copper washers are used to reduce the deformation

caused by different contractions at low temperatures. To ensure the reflected beam

reaching the polarization detection part, the sample stage is mounted on a two-

axis piezoelectric goniometer with its rotation center coinciding with the sample

position to provide a very precise and instantaneous angle-control without sample

displacement.
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Figure 2.4: Design of the ellipsometer insert. (a) The optical head consists
of all polarization optical elements in the room temperature environment. (b)
The bottom of the insert, positioned in 4.2 K environment, includes a sample

stage, a two-axis piezoelectric goniometer and a protective housing.

A thin-wall stainless steel jacket (see Fig. 2.3) with a 50 mm inner diameter

is used to protect the insert and also allows the sliding seal to be used during

cooling. The outer jacket must be fit to the insert by carefully tuning the 8 screws

in the connection flange on the manifold to avoid any contact between them. Four

springs are placed below the horizontal plate of the optical head to counterbalance

the weight of the whole insert and also buffer the vibration from the dewar.

2.4 Experimental Procedure

In real measurement, two semi-insulating GaP substrates are used as the dielectric

mirrors because GaP possesses a larger band gap than most III-V materials and a
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Figure 2.5: The first step of the experimental procedure: sample preparation
and optical alignment. The alignment was done by fine tuning the 3-axis col-
limator mount in the optical head and the 2-axis goniometer in the bottom of
the sample stage with the help of two cross-shape holes shown in the picture.
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Figure 2.6: The second step of the experimental procedure: pumping. The
outer jacket, which is a thin wall (∼ 1 mm) stainless steel tube, was connection
to the flange on the manifold carefully by tuning the 8 screws shown in the
picture. The pressure inside the insert was pumped down to ∼ 10−5 mbar, and

∼ 25 mbar Helium gas was introduced into the insert
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Figure 2.7: The third step of the experimental procedure: cooling. The insert
was lowered down into the low temperature dewar slowly via a sliding seal shown

in the picture.

reasonably large refractive index. In addition, no significant photo and magneto-

optical response is observed for GaP under magnetic fields in the measurement

band. These two GaP side mirrors and sample was mounted on the sample stage

carefully by grease. To compensate the thickness difference of GaP and GaAs

substrates, a glass slide was put under the GaAs substrate.

The optical alignment procedure was carried out by fine tuning the three-axis

collimator mount on the top of the optical head (see Fig. 2.4 (a)) for the input

light beam and the two-axis piezoelectric goniometer at the bottom of the sam-

ple stage (see Fig. 2.4 (b) and Fig. 2.5) for the reflected light beam. After the

alignment, the insert was carefully sealed by the outer jacket with an O-ring and

bolts and then pumped down to ∼ 10−5 mbar (Fig. 2.6). During the time of

pumping, the intensity of the reflected light measured by the detector was main-

tained stable before and after sealed to insure no contact between the insert and

the jacket1. Before the probe being inserted into the dewar, ∼ 25 mbar Helium

gas was introduced into the insert for heat exchange.

1by carefully tuning the 8 screws in the connection flange (see Fig. 2.6).
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Figure 2.8: The final step of the experimental procedure: system ready.

In the cooling procedure, the insert was lowered down into the low temperature

dewar slowly via a sliding seal (Fig. 2.7) and at the same time the goniometer

was adjusted instantaneously to keep the reflected light signal stable. The cooling

procedure need to be manipulate slowly enough to avoid rapid changes in temper-

ature. Once the whole probe was totally inserted into the dewar and the optical

head was poised on the elevated table like in Fig. 2.8, the system was idle till

thermal equilibrium and was ready to perform a measurement.

2.5 Data Acquisition and Reduction

Figure 2.9 shows the data acquisition procedure. The parameters including the po-

larizer angle Π, the ranges and the steps of the laser wavelength, and the magnetic

field are set at the beginning. The superconducting magnet can be switched to the

persistent mode to save Helium consumption once the field strength reaches the

setting value. The wavelength of the Ti-sapphire laser is auto-controlled by a step
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Figure 2.9: Flowchart of the data acquisition.

motor and is characterized by a monochromator together with the ellipsometry

parameter measurement.

A polarizer-sample-rotating analyzer ellipsometry (RAE) configuration is used to

measure the ellipsometry parameters. The measured light intensity can be ex-

pressed as [1–3, 53] (see Appendix A)

I(Π, A) = |Ein|
2 |rss|

2 cos2 Π |(Rpp + Rsp tan Π) cos A

+(RpsRpp + tan Π) sin A
∣
∣2, (2.8)

where Ein is the complex amplitude of the electric field before the polarizer. A

and Π are the angles between the incident plane and the analyzer and polarizer

transmission axes, respectively. This equation can be further simplified to
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I(Π, A) = ID[1 + α cos(2A) + β sin(2A)], (2.9a)

where [53]

α =
|Rpp + Rsp tan Π|2 − |RpsRpp + tan Π|2

|Rpp + Rsp tan Π|2 + |RpsRpp + tan Π|2
, (2.9b)

and

β =
2Re{(Rpp + Rsp tan Π)(RspRpp + tan Π)}

|Rpp + Rsp tan Π|2 + |RpsRpp + tan Π|2
. (2.9c)

The ellipsometry parameters depend only on α and β, and are independent of

the average intensity ID. We can obtain α and β from the Fourier expansion of

I(Π, A) [54]:

ID =
1

N

N∑

i=1

Ii; (2.10a)

α =
2

IDN

N∑

i=1

Ii cos 2Ai; (2.10b)

β =
2

IDN

N∑

i=1

Ii sin 2Ai. (2.10c)

where Ii is the intensity at Ai, and N is the total number of analyzer angles

measured. We can use the Kerr measurement (see Appendix A) or follow the

maturely developed method [16, 53] by choosing several azimuthal settings Π and

using Eq. (2.9) to determine all the ellipsometry parameters Rpp, Rps, and Rsp.

In some of our studies, the Rpp response function near the exciton transition energy

at low temperatures and high magnetic fields is important. The contribution from

measured Rps and Rsp to Rpp spectra is small (see Appendix A) and does not

influence the data fitting and interpretation shown in Chapter 5. For simplicity

and clarity, we will focus on the response of Rpp and neglect Rps and Rsp in the

following data analysis. The Eqs. (2.9b) and (2.9c) become the same as in the

standard ellipsometry situation [1–3].

α =
tan2 Ψpp − tan2 Π

tan2 Ψpp + tan2 Π
, (2.11a)

and

β =
2 tan Π tan Ψpp cos Δpp

tan2 Ψpp + tan2 Π
. (2.11b)
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2.6 Error Analysis

For precise detection of the changes of Rσ
pp of the measured spectra under various

external magnetic fields, to minimize the random error of the RAE technique with

a multi-reflection configuration is important. It can be shown that making the

light before the rotating analyzer circularly polarized gives better precision for

RAE [55] (see Appendix B). Therefore, we choose a polarizer angle Π close to the

measured ellipsometry angle Ψeff
pp to balance the intensities of p- and s-polarized

components after three times of reflection.

Figure 2.10: Γ (a) and Λ (b) (in Eqs. (2.12) and (2.14)) as a function of Ψσ
pp

and ΨM
pp .
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To analyze the precision of the measured result, we first find the relationship

between the error of Ψeff
pp and the error of Ψσ

pp by taking the derivative of the real

part of Eq. (2.7a).

dΨeff
pp =

sec2 Ψσ
pp tan2 ΨM

pp

1 + tan2 Ψσ
pp tan2 ΨM

pp

dΨσ
pp ≡ ΓdΨσ

pp, (2.12)

where Γ represents the coefficient that relates the two error quantities. Figure 2.10

(a) shows Γ as a function of Ψσ
pp and ΨM

pp. For a given error in the triple reflection

measurement, the error in the sample’s parameter can be minimized by choosing

proper Ψσ
pp and ΨM

pp to maximize Γ. Thus, we can choose the mirrors once we

know the dielectric constant of the sample. For example, if Ψσ
pp equals 22◦ (for

GaAs at a wavelength near 800 nm and a 60◦ incident angle), we can choose ΨM
pp

close to 45◦ (see Fig. 2.10(a)) to minimize the error (dΨσ
pp) of the deduced sample

parameter.

However, the error in the triple reflection measurement, dΨeff
pp, depends on the

polarizer angle Π and is related to the error in the Fourier component α by (see

Appendix B)

dΨeff
pp = [

cos2 Ψeff
pp(tan2 Π + tan2 Ψeff

pp)
2

4 tan Ψeff
pp tan2 Π

]dα. (2.13)

By using this relationship and choosing Π = Ψeff
pp for best precision, Eq. (2.12) can

be rewritten as

dΨσ
pp =

tan2 ΨM
pp tan Ψσ

pp

Γ[1 + (tan2 ΨM
pp tan Ψσ

pp)
2]

dα ≡ Λdα. (2.14)

The error dΨσ
pp is now related to the error in the Fourier coefficient dα (see Ap-

pendix B) by a factor Λ, which depends on the parameter Γ and the Ψpp values

of the mirrors and the sample. Figure 2.10 (b) shows the factor Λ as a function

of Ψσ
pp and ΨM

pp. For a typical sample (ex. ΨGaAs
pp ∼ 22◦), Λ is a slowly varying

function of ΨM
pp. The precision is not sensitive to the choice of a mirror when the

polarizer angle Π is chosen close to Ψeff
pp.

The precision of the phase difference Δpp can be shown as (see Eq. (B.1b) in

Appendix B)

dΔeff
pp =

1

sin Δeff
pp(1 − α2)3/2

[(α2 − 1)dβ − (αβ)dα]. (2.15)
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It can be improved by adding a quarter-wave plate in front of the analyzer espe-

cially for measuring dielectric samples whose Δpp is close to 0◦ or 180◦. Then, Eq.

(2.11b) becomes

sin Δeff
pp = −sgn(P )

β
√

1 − α2
(2.16)

for the fast axis of a quarter-wave plate parallel to the incident plane. From Eq.

(2.16), the sign of Δpp can be distinguished by adding a quarter-wave plate in

front of a rotating analyzer. This is important especially for the measurements

with photon energy close to the exciton or polariton states (see Chapter 3).

To test the performance of this system at low temperature, we have taken data

for more than 200 periods of rotations of the analyzer. The resulted standard

deviations (shown in Fig. 2.11) of Ψeff
pp and Δeff

pp are 0.04◦ and 0.3◦(while Ψσ
pp and

Δσ
pp are ∼ 0.25◦ and 0.3◦) for Ψeff

pp = 3.05◦ , Δeff
pp = 100.2◦, and Π = 4◦. We can

then use the standard deviations (dΨeff
pp and dΔeff

pp ) and the known parameters (α,

β and dA) to obtain the intensity fluctuation δ defined as dI/ID in Appendix B)

using the coupled coupled Eqs. (B.3a) and (B.3b). We found that the contribution

of δ is larger than that of the error of the analyzer angle dA and the residue from

the asymmetry of Ai in real measurements. It can be attributed to the mechanical

vibration through such a long framework of the insert. Although the random errors

are not as small as that of conventional ellipsometers, the precision of this system

is good enough for many of the proposed studies [4–8], and more importantly, it

can operate at much higher magnetic fields than the ones reported previously.
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Figure 2.11: Histograms of Ψeff
pp and Δeff

pp shown as bar charts. (a) The stan-
dard deviation of Ψeff

pp is 0.04◦at average of 3.05◦ (b) The standard deviation of
Δeff

pp is 0.3◦ at average of 100.2◦.



Chapter 3

Results

We have used this self-designed ellipsometer to measure the samples including a

semi-insulating GaAs (001) wafer and a 1-μm un-doped MBE grown layer on the

substrate (Fig. 3.1). The results of them will shown in this chapter.

Figure 3.1: Sample structures. (a) Semi-insulating (S.I.) GaAs wafer (∼ 350
μm); and (b) MBE grown 1μm un-doped GaAs layer on S.I. GaAs wafer (∼ 350

μm).

24
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3.1 GaAs Substrate

The Ψσ
pp and Δσ

pp spectra of GaAs substrate from 1.514 to 1.532 eV at 4.2 K are

shown in Figs. 3.2(a) and 3.2(b) respectively for different magnetic fields up to

14 Tesla. In Fig. 3.2(b), the asymmetric curves in Δσ
pp spectra across the 180◦

line indicate that the phase differences change sign from right-handed (negative

helicity) to left-handed (positive helicity) polarizations [56] near the transitions.

The raw RAE data with a quarter-wave plate in front of the rotating analyzer at

wavelength 812.12 nm and 812.4 nm (marked by the dashed cycles in Fig. 3.2(b))

are plotted in a polar coordinate in Fig 3.2(c). The sign change of Δσ
pp can be

determined from the orientations of the long-axes (the dash lines) of the polar

curves located in different quadrants (see Appendix C).

Semi-insulating GaAs substrates, because of the high defect density, usually have

broadened spectra due to a large damping. Thus it is difficult to observe the fine

structure of level splitting at high fields and even the signal from the zero-field

exciton becomes very weak. In comparison, we show in Fig. 3.3 the ellipsomet-

ric measurement of a high-quality GaAs layer grown by molecular beam epitaxy

(MBE). The layer, grown on a (100) semi-insulating GaAs substrate, was undoped

and had a thickness of 1-μm. Unlike what was seen from the substrate alone, the

result from the epilayer shows discernible features in the ellipsometry spectra even

at zero magnetic field as shown in Fig. 3.3, and some of the features exhibit intrigu-

ing behaviors when high magnetic fields are applied. These features, which have

not been reported before, can now be studied and observed using our ellipsometry

system. The data will be showed in the next section.

3.2 GaAs 1-μm Epitaxial Layer

Figure 3.4 (a) shows the measured phase difference Δ and the amplitude ratio Ψ

(inset) of the sample (to distinguish from the results of the GaAs substrate and for

convenience, we drop the superscript “σ ”and subscript “pp ” in the following) at 0

T and 1 T. Fine structures with multiple peaks and dips are observed in the spectra

and become apparent when the magnetic field is applied. In Fig 3.4 (a), similar to

the results of the GaAs substrate, the measured curves in the Δ spectra across 180 ◦

(dash-line) indicates the sign change of Δ. The raw RAE data measured at 1 T
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Figure 3.2: Spectra of (a) Ψσ
pp and (b) Δσ

pp of intrinsic GaAs substrate for
different magnetic fields at 4.2 K. (c) Intensity versus analyzer angle at 812.12
nm (solid points) and 812.40 nm (open circles) in polar coordinates at 14 T.

The angle Ac is defined in Appendix C.
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Figure 3.3: Comparison of Δσ
pp spectra of GaAs substrate (dash-line) and

GaAs epitaxial layer (solid-line) grown by MBE at zero magnetic field.

with the fast axis of the quarter-wave plate parallel to the incident plane at energies

1.5157 eV and 1.516 eV are showed in polar plots in Fig 3.4 (b). The orientation

of the long-axes (dot-lines) of the two elliptical intensity distributions located in

different quadrants represents that the handedness of the two polarisation states

are different (Appendix C). The polarisation states turn from elliptical clockwise

to counterclockwise for the energy approaching from 1.5157 eV to 1.516 eV in the

Δ spectrum of 1 T.

When magnetic field is increased (≥ 6 T), more dips and peaks appear in the

spectra. We show, for instance, the spectra of Ψ and Δ at 14 T in Fig. 3.5.

It shows the corresponding property of the real (Ψ) and imaginary (Δ) spectra,

which ensures the reliability of the measurement. We denote appropriately the

dips as A, B, C, and D in the spectrum Δ the order from lower energy to higher

energy.

To observe how the fine structures evolve with varied magnetic fields, we show

the spectra of Δ with the magnetic field varied from 2 to 14 T in Fig. 3.6. The

spectra are shifted in energy to exclude the diamagnetic shift differences. While

the dips B, C, and D are observed starting from 0 T, the dip A appears only above

6 T. The separation of the dips A and B becomes larger when the magnetic field

increases, but the dips C and D become closer first and then nearly maintain a

certain distance when the magnetic field increases.
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Figure 3.4: (a) Spectra of Δ and Ψ (the inset) of GaAs epitaxial layer for
magnetic fields of 0 T and 1 T at 4.2 K. (b) The raw data of the rotating-
analyser ellipsometry measurements in polar coordinates at 1 T, 4.2 K for the

energies 1.5157 eV (open circles) and 1.5160 eV (solid points).
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Figure 3.5: Spectra of Ψ and Δ at 14 T, 4.2 K. Four dips are denoted as A,
B, C, and D in the spectrum of Δ. The four dot-lines show the corresponding

property of the spectra Ψ and Δ.

Figure 3.6: Spectra of Δ for magnetic fields varied from 2 to 14 T at 4.2 K.
The spectra are shifted to exclude the differences of the diamagnetic shift. The
arrows represent the increasing separation between the dips A and B, and the

dash-lines show the change of the dips C and D with magnetic fields.



Chapter 4

Theory & Models

4.1 Direct-Excitons in Semiconductor

4.1.1 Multi-Band Theory

In this section, we review the direct-exciton model constructed by Baldereschi and

Lipari [57] as the band mixing effect are accounted. The Hamiltonian (neglecting

the CM motion and the electron spin) can be written as:

Hex(p) = HLK
6×6(p) + [E0 +

p2

2me

−
e2

4πεbr
]I, (4.1)

where HLK
6×6 describe the hole kinetic energy near k=0 with the relative electron-

hole momentum p, and r is the distance of a electron and a hole. The second

part of Eq. (4.1) is a 6×6 diagonal matrix including the band-edge energy E0, the

electron kinetic energy and the Coulomb interaction. For the diamond structure,

Eq. (4.1) can be represented in a matrix [57]















P + Q L† M 0 (i/
√

2)L −(i/
√

2)M

L† P − Q 0 M −(i/
√

2)Q i(
√

3/2)L

M † 0 P − Q −L −i(
√

3/2)L† −(i/
√

2)Q

0 M † −L† P + Q −(i/
√

2)M † −(i/
√

2)L†

−(i/
√

2)L† (i/
√

2)Q i(
√

3/2)L (i/
√

2)M P + Δso 0

(i/
√

2)M † −i(
√

3/2)L† (i/
√

2)Q (i/
√

2)L 0 P + Δso















,

(4.2)
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and can be separated as

Hex(p) = Hs + Hd, (4.3)

where

Hs =















P 0 0 0 0 0

0 P 0 0 0 0

0 0 P 0 0 0

0 0 0 P 0 0

0 0 0 0 P + Δso 0

0 0 0 0 0 P + Δso















, (4.4a)

and

Hd =















Q L† M 0 (i/
√

2)L −(i/
√

2)M

L† −Q 0 M −(i/
√

2)Q i(
√

3/2)L

M † 0 −Q −L −i(
√

3/2)L† −(i/
√

2)Q

0 M † −L† Q −(i/
√

2)M † −(i/
√

2)L†

−(i/
√

2)L† (i/
√

2)Q i(
√

3/2)L (i/
√

2)M 0 0

(i/
√

2)M † −i(
√

3/2)L† (i/
√

2)Q (i/
√

2)L 0 0















,

(4.4b)

with Δso being the spin-orbit splitting, and the coefficients

P =
p2

2μ
−

e2

4πεbr
(s-like), (4.5a)

Q =
p2

x + p2
y − 2p2

z

2μ1

(d-like), (4.5b)

L = −i
(px − ipy)pz

2μ2

(d-like), (4.5c)

M =
√

3
p2

x − p2
y

2μ1

− i
pxpy

2μ2

(d-like). (4.5d)

The masses μ, μ1, and μ2 are related to the Luttinger parameters (γ1, γ2, γ3) as

follows
1

μ
=

1

me

+
γ1

m0

, (4.6a)

1

μ1

=
γ2

m0

, (4.6b)

1

μ2

= 2
√

3
γ3

m0

, (4.6c)
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where m0 is the free-electron mass. Equations (4.4a) and (4.4b) represent the

exciton Coulomb interaction formed by the electron-isotropic hole and the electron-

anisotropic hole respectively. The separation of the full Hamiltonian to the s-

like and d-like parts renders the perturbation of it being possible. Because μ is

much smaller than μ1 and μ2 (me � m0), equation (4.5a) is more important

than Eqs. (4.5b), (4.5c), and (4.5d). Therefore, we can treat the anisotropic

part Hd as a perturbation of the hydrogen-atom-like part Hs. This represents

that the exciton is just like a hydrogen atom with a small distortion. For Zinc-

Blende structures, the Hamiltonian (4.3) should be added another contribution

from inversion-asymmetry. However, this effect is small and negligible.

4.1.2 One-Band Model

Figure 4.1: Diagram of a exciton propagating in semiconductor. It moves
from r to r′ during the time t to t′.

From 4.1.1, we know that the exciton is like a hydrogen atom with a small dis-

tortion (Fig. 4.1 ). Hence, in this subsection, we use one-band effective mass

Schrödinger equation

[E0 +
p2

e

2me

+
p2

h

2mh

−
e2

4πεb |re − rh|
]ψ(re, rh) = Eψ(re, rh), (4.7)

as a good approximation to describe the exciton. Where re, rh, pe, ph, mh, E0,

E and ψ(re, rh) are the electron coordinate, hole coordinate, electron momentum,

hole momentum, hole effective mass, band edge energy, exciton energy, and exciton

(envelope) wave function, respectively. Equation (4.7) can be rewritten as

[
P 2

2Mex

+
p2

2μ
−

e2

4πεbr
]ψ(r,R) = (E − E0)ψ(r,R), (4.8)
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using the relative coordinate

r = re − rh, (4.9a)

and the center-of-mass coordinate

R =
mere + mhrh

Mex

, (4.9b)

where

P = − i~∇R, (4.9c)

p = − i~∇r, (4.9d)

Mex = (me + mh), (4.9e)

μ =
memh

Mex

, (4.9f)

The exciton wave function can be found from Eq. (4.8), which is independent of

R, and written in the form

ψ(r,R) = exp(iqex ∙ R)φ(r), (4.10)

where qex = P/~. Substituting Eq. (4.10) into Eq. (4.8) yields a hydrogen-atom-

like equation 1

[
p2

2μ
−

e2

4πεbr
]φ(r) = (E − E0 −

~2q2
ex

2Mex

)φ(r), (4.11)

whose energy levels are

En = −
Rex

n2
, (4.12a)

where the exciton Rydberg energy

Rex =
μe4

2(4πεb)2~2
, (4.12b)

and the exciton Bohr radius

aex =
4πεb~2

μe2
. (4.12c)

To define the relative strength of the Coulombic and magnetic terms, we define

γ =
~ωc

2Rex
(4.12d)

=
~eB

2Rexμ
.

1Actually, just like the diagonal terms of Hs in Eq. (4.5a.)
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Thus, the exciton energy

E = E0 + En +
~2q2

ex

2Mex

, or (4.12e)

~ω0 = ~ωT +
~2q2

ex

2Mex

, (4.12f)

where ~ωT is the energy to create a motionless exciton.

4.2 Excitons in Magnetic Fields

4.2.1 One-Band Excitons in Magnetic Fields

We first consider the simple one-band excitons in a magnetic field [58], equation

(4.7) becomes

[E0 +
(pe − eA)2

2me

+
(ph − eA)2

2mh

−
e2

4πεb |re − rh|
]ψ(re, rh) = Eψ(re, rh), (4.13)

where A is the vector potential. Using the relative and CM coordinates, Eq. (4.13)

can be rewritten as

[
p2

2μ
+ e(

1

mh

−
1

me

)A ∙ p +
e2

2μ
A ∙A−

e2

4πεbr
(4.14)

−
2e~
Mex

qex ∙A +
P 2

2Mex

]φ(r) = (E − E0)φ(r).

When the Lorentz gauge

A =
1

2
B × r (4.15)

is applied, Eq. (4.14) becomes

[
p2

2μ
+

e

2
(

1

mh

−
1

me

)B ∙ L +
e2

8μ
|B × r|2 −

e2

4πεbr
(4.16)

−
e~

Mex

(qex ×B ∙ r) +
P 2

2Mex

]φ(r) = (E − E0)φ(r),

where L is the angular momentum, the second term is the Zeeman term2, the

third term is the diamagnetic operator, the fifth and sixth terms depend upon the

2Electron and hole spins are not considered here, their contribution to the Zeeman term is
geμBS e∙B+ghμBSh∙B .
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exciton motion and are usually neglected due to their small values. If only the

s-states are considered, the Eq. (4.16) becomes

[
p2

2μ
−

e2

4πεbr
+

e2B2

8μ
(x2 + y2)]φ(r) = (E − E0)φ(r), (4.17)

for B applied parallel to the z direction.

4.2.2 Multi-Band Excitons in Magnetic Fields

For considering the band mixing of excitons in magnetic fields, we discuss the

theory developed by K. Cho et al. [59] for zinc-blend crystals in this subsection.

The effective Hamiltonian in a magnetic field was obtained by considering the

symmetry of invariant terms [59] and was compared to the result obtained by

perturbation method done by Altarelli and Lipari [60]. The Hamiltonian is given

by [59]

H = Eb + Δ̃1J ∙ ~σ + Δ̃2(σxJ
3
x + σyJ

3
y + σzJ

3
z ) + g̃cμB~σ∙B (4.18)

−2μB[κ̃J ∙ B+q̃(BxJ
3
x + ByJ

3
y + BzJ

3
z )]

+(
eaex

2c
)2 1

μ0

[c1B
2 + c2(J ∙ B)2 + c3(BxBy{JxJy} + ByBz{JyJz} + BzBx{JzJx})],

where ~σ and J are the effective spin operator for the electron and hole respectively,

{JxJy} = (JxJy + JyJx)/2 etc., the axes x, y, z refer to three 〈001〉 axes of

the crystal, and the nine parameters:Eb, Δ̃1, Δ̃2, g̃c, κ̃, q̃, c1,c2, c3 , which determine

the exciton energies, can be expressed in terms of more fundamental material

parameters by comparing to the perturbative expression [60]. The second and

third terms in Eq. (4.18) stand for the exchange interaction, the fourth and fifth

terms are the Zeeman terms, and the latest term accounts for the diamagnetic

shift. The coefficients Δ̃2, q̃, and c3 are the sources of the anisotropy.

For analysing the splitting patterns, we can express Eq. (4.18) as a matrix and

select the quantization axis of the basis along the direction of the magnetic field

B in the ζ axis. We choice the basis
∣
∣J t, J t

ζ

〉
that can diagonalize the second term

in Eq. (4.18), where

Jt = J+~σ (J t = 2 or 1). (4.19)
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The relation between
∣
∣J t, J t

ζ

〉
and

∣
∣1
2
,±1

2

〉
× |J, Jζ〉 is [59]

|2, 2〉 =

∣
∣
∣
∣
3

2
,
3

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

, (4.20a)

|2, 1〉 =

√
3

2

∣
∣
∣
∣
3

2
,
1

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

+
1

2

∣
∣
∣
∣
3

2
,
3

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20b)

|2, 0〉 =
1

2

∣
∣
∣
∣
3

2
,
−1

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

+
1
√

2

∣
∣
∣
∣
3

2
,
1

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20c)

|2,−1〉 =
1

2

∣
∣
∣
∣
3

2
,
−3

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

+

√
3

2

∣
∣
∣
∣
3

2
,
−1

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20d)

|2,−2〉 =

∣
∣
∣
∣
3

2
,
−3

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20e)

|1, 1〉 =
−1

2

∣
∣
∣
∣
3

2
,
1

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

+

√
3

2

∣
∣
∣
∣
3

2
,
3

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20f)

|1, 0〉 =
1
√

2

∣
∣
∣
∣
3

2
,
−1

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

−
1
√

2

∣
∣
∣
∣
3

2
,
1

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

, (4.20g)

|1,−1〉 =

√
3

2

∣
∣
∣
∣
3

2
,
−3

2

〉 ∣∣
∣
∣
1

2
,
1

2

〉

−
1

2

∣
∣
∣
∣
3

2
,
−1

2

〉 ∣∣
∣
∣
1

2
,
−1

2

〉

. (4.20h)

The states |1, 1〉, |1, 0〉, and |1,−1〉 are dipole active for σ+, π, and σ− polariza-

tions3 respectively. If the magnetic field (ζ axis) is applied along 〈001〉 directions

of the crystal (see Fig. 4.2), the matrix can be expressed as






















|2, 2〉 |2,−2〉 |2, 1〉 |1, 1〉 |2,−1〉 |1,−1〉 |2, 0〉 |1, 0〉

|2, 2〉 I11 I12 0 0 0 0 0 0

|2,−2〉 I21 I22 0 0 0 0 0 0

|2, 1〉 0 0 II11 II12 0 0 0 0

|1, 1〉 0 0 II21 II22 III11 III12 0 0

|2,−1〉 0 0 0 0 III21 III22 0 0

|1,−1〉 0 0 0 0 0 0 0 0

|2, 0〉 0 0 0 0 0 0 IV11 IV12

|1, 0〉 0 0 0 0 0 0 IV21 IV22






















(4.21)

3σ+, and σ− are the right-handed and left-handed circular polarizations in the Faraday con-
figuration; and π is the linear polarization with E parallel to B in the Voigt configuration.
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Figure 4.2: Diagram of the directions of the applied magnetic field B and the
crystal. The axes x, y, and z are the crystal lattice coordinate; and the axis ζ

is the coordinate of the applied magnetic field.

where

I = (Eb + c)

(
1 0

0 1

)

+ (
3

4
Δ̃1 + c2)

(
1 0

0 1

)

+ (
1

2
gc − 3κ)

(
1 0

0 −1

)

(4.22a)

+
1

16

(
27(Δ̃2 − 4q) 12Δ̃2

12Δ̃2 27(Δ̃2 + 4q)

)

,

II = (Eb + c − 2κ)

(
1 0

0 1

)

+
1

4
Δ̃1

(
3 0

0 −5

)

(4.22b)

+
1

4
(gc + 2κ − 2c2)

(
1 −

√
3

−
√

3 −1

)

+
1

16

(
15(Δ̃2 − 2q) −26

√
3q

−26
√

3q −41(Δ̃2 + 2q)

)

,
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III = (Eb + c − 2κ)

(
1 0

0 1

)

+
1

4
Δ̃1

(
3 0

0 −5

)

(4.22c)

−
1

4
(gc + 2κ + 2c2)

(
1 −

√
3

−
√

3 −1

)

+
1

16

(
15(Δ̃2 + 2q) 26

√
3q

26
√

3q −41(Δ̃2 − 2q)

)

,

IV = (Eb + c)

(
1 0

0 1

)

+

(
3
4
Δ̃1 − c2 κ + 1

2
gc

κ + 1
2
gc

−5
4

Δ̃1 − c2

)

(4.22d)

+
1

16

(
39Δ̃2 4q

4q −41Δ̃2

)

,

where the magnetic field related parameters are

gc = g̃cμBB, (4.22e)

q = q̃μBB, (4.22f)

κ = κ̃μBB, (4.22g)

c =
1

2
γ2Rex(c1 +

5

4
c2), (4.22h)

c2 =
1

2
γ2Rexc2. (4.22i)

The existence of the exchange interaction (Δ̃1, Δ̃2) splits the degenerate states,

and the applied magnetic field leads coupling between diploe active and inactive

states as shown in Eqs. (4.22b), (4.22c), and (4.22d). Thus, the dark (diploe

inactive) states are observable under high magnetic fields.

4.3 Exciton-Polariton with Spatial Dispersion

4.3.1 Isotropic

For phenomenologically understanding the spectra of ellipsometry measurements

near an excitonic transition, we consider the exciton-polariton model with spatial

dispersion and in general, both p and s polarization in arbitrary incidence. When
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the displacement and electric fields vary with time t and position r, the connection

between the displacement field and the electric field can be expressed as [56, 61]

−→
D(r, t) =

∫
d3r′

∫
dt′ε(r, r′, t − t′)

−→
E (r′, t′). (4.23)

For infinite and homogeneous media, i.e. ε(r, r′, t− t′) = ε(r− r′, t− t′), the above

Eq. (4.23) can be transformed to be represented as the wavevector q and the

angular frequency ω as

−→
D(q, ω) = ε(q, ω)

−→
E (q, ω). (4.24)

In general, ε(q, ω) can be a tensor. We assume the wavevector- and frequency-

dependent dielectric response ε based on a coupled harmonic oscillator model4 can

be written as [33, 61]

ε(q, ω) = εb +
ω2

p

ω2
T + Dq2 − ω2 − iνω

. (4.25)

Where εb is the background dielectric constant, ω2
p is the strength of the transition,

ωT is the transition frequency, ν is a phenomenon damping constant and the

parameter D = ~ωT /Mex , which describes the spatial non-locality due to exciton

CM motion. The wavevector q also satisfies the Maxwell’s equation [56, 61]

q × (q × E) −
ω2

c2
ε(q, ω)E = 0, (4.26)

within a homogeneous media. Where E is the electric field in the medium, and c is

the speed of light. Hence, the wavevector q has more than one solutions [33, 61].

q2 =
1

2
(Γ2

0 + εb
ω2

c2
) ±

1

2
[(Γ2

0 − εb
ω2

c2
)2 +

4ω2ω2
p

Dc2
]1/2 (4.27a)

for two transverse modes (labeled q1 and q2), and

q2 = Γ2
0 −

ω2
p

Dεb

(4.27b)

4Replacing ω0 in Eq. (4.12f) with qex = q into a non-spatial dispersive harmonic dielectric
response function yields Eq. (4.25).
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for one longitudinal mode (labeled q3). Where

Γ0 ≡
(ω2 + iνω − ω2

T )

D
. (4.28)

The dispersion relations are illustrated in Fig. 4.3 without dissipation (ν = 0).

To obtain the ellipsometric parameters, we can calculate the reflection coefficients

for s (two transverse modes) and p (two transverse modes and one longitudinal

mode) polarization in a oblique incidence configuration respectively and use the

generalized additional boundary condition (ABC) [36]. And, we can obtain Ψ and

Δ using Eq. (2.3).

Figure 4.3: Schematic dispersion relation E = ~ω vs. real part of q of the
two transverse modes q1 and q2, and the single longitudinal mode q3 of spatial
dispersive exciton-polariton in the absence of dissipation ν = 0. qph = ω

√
εb/c

is the wavevector of photons.

4.3.2 Anisotropic Exciton Effective Mass

If the exciton effective mass is anisotropic, i.e. the exciton motion depends on

the moving direction. For instance, if we assume the exciton effective mass in the

x-y plane is a function of the external magnetic field B, equation (4.25) can be

rewritten as

ε(Q, qz, ω) = εb +
ω2

p

ω2
T + [D′(B)Q2 + Dq2

z ] − ω2 − iυω
; (4.29)
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where Q is the wavevector in the x-y plane, qz is the wavevector in the z direction,

(Fig. 4.4), and

D′(B) =
~ωT

Mex(B)
, (4.30a)

with

D′(0) = D. (4.30b)

Thus, similar to the isotropic ones, the transverse mode wavevectors satisfying Eq.

(4.26) yields

q2 =
ω2

c2
ε(Q, qz, ω), (4.31a)

and the longitudinal mode wavevector satisfies

ε(Q, qz, ω) = 0. (4.31b)

4.4 Oblique Incidence of s & p Polarized Light

Figure 4.4: Diagram of light incident to a surface separating vacuum and
spatial dispersive medium .

Figure 4.4 is a diagram of light incident with a wavevector q0 and a incident

angle θ from medium I into spatial dispersive medium II. Q is the projection

of the wavevector in the x direction5 and remains the same value q0 sin θ for all

5We assume the incidence plane is parallel to the x direction.
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interfaces due to the conservation of momentum. To analyse the response of

non-local polariton for an arbitrary polarized light, we derive the electric field,

magnetic field, and excitonic polarization in the medium II for s- and p- polarized

components respectively.

4.4.1 s-polarized

For the s- polarized component, there is no longitudinal mode. The transmitted

electric field can be written as (see Fig. 4.4)

Ey(z) =
2∑

n=1

(E+
n eiqnz + E−

n e−iqnz)ei(Qx−ωt), (4.32)

where qn is the z- component of the wavevector for n = 1 and 2 indicating two

transverse modes respectively. We can then use the Maxwell equation

∇×
−→
E = −

1

c

∂
−→
H

∂t
=

iω

c

−→
H, (4.33)

and neglect the term Exp[i(Qx−ωt)] for convenience to obtain the magnetic field

component

Hx(z) =
−ic

ω

∂Ey

∂z
(4.34)

=
−i

q0

2∑

n=1

(iqnE+
n eiqnz − iqnE−

n e−iqnz)

=
2∑

n=1

qn

q0

(E+
n eiqnz − E−

n e−iqnz)

=
2∑

n=1

Y s
n (E+

n eiqnz − E−
n e−iqnz),

where Y s
n = qn/q0 is the admittance for the s-component. To obtain the polariza-

tion
−→
P induced by excitons, we use a linear constitutive relation connecting the

displacement field
−→
D and the electric field

−→
E .

{ −→
D (−→q , ω) =

−→
E (−→q , ω) + 4π

−→
P (−→q , ω);

−→
P (−→q , ω) = χ(−→q , ω)

−→
E (−→q , ω).

(4.35)
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The electric susceptibility of the medium

χ(−→q , ω) =
ε − 1

4π
(4.36)

=
εb − 1

4π
+

ω2
p

4πD
χn,

where Γ = (ω2 + iυω − ω2
T )/D − Q2, χn = 1/(q2

n − Γ2), and the last term of Eq.

(4.36) is the excitonic polarization associated with the excitonic transition.

4.4.2 p-polarized

For the p- polarized component, there are two transverse (n = 1, 2) and one

longitudinal (n = 3) modes. The transmitted electric field in the x direction

neglecting Exp[i(Qx − ωt)] can be expressed as

Ex(z) =
3∑

n=1

(E+
n eiqnz + anE−

n e−iqnz); a1,2 = −1, a3 = 1. (4.37)

We can get the magnetic field through

∇×
−→
E = x̂(

∂Ez

∂y
−

∂Ey

∂z
) + ŷ(

∂Ex

∂z
−

∂Ez

∂x
) + ẑ(

∂Ey

∂x
−

∂Ex

∂y
) =

iω

c

−→
H. (4.38)

Thus, the magnetic field component

Hy(z) =
−ic

ω
(
∂Ex

∂z
−

∂Ez

∂x
) (4.39)

=
−i

q0

(
∂Ex

∂z
− iQEz)

=
−i

q0

2∑

n=1

iqn(E+
n eiqnz + E−

n e−iqnz) +
iQ2

qn

(E+
n eiqnz + E−

n e−iqnz)

=
2∑

n=1

εnq0

qn

(E+
n eiqnz + E−

n e−iqnz)

=
2∑

n=1

Y p
n (E+

n eiqnz + E−
n e−iqnz).

We use Ez = (−Q/qn)Ex = −DnEx for n = 1, 2 , Ez = (q3/Q)Ex = −D3Ex, and

Y p
n = εnq0/qn is the admittance for the p-component. It should be mentioned that

only two components are exist for Hy.
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4.5 Transfer Matrix for Non-Spatial Dispersive

Material

The transfer matrix for a common material6 can be found in general optics text-

books [62]. We follow several important issues here. The electric field components

traveling in +z and −z directions (Fig. 4.5) can be related to the total electric

field E and magnetic field H by a 2 × 2 matrix GI ,

[
E

H

]

= GI

[
E+eiqIz

E−e−iqIz

]

; (4.40a)

GI =

[
1 1

YI −YI

]

. (4.40b)

The admittance YI equals to qI/q0 for s-polarized light and εbq0/qI for p-polarized

light. Where qI is the z-component of the wavevector inside the material with

background dielectric constant εb. The transfer matrix can be obtained through

connecting the fields at the left boundary zL and the right boundary zR = zL + dI

[
E

H

]

zR

= GIT(dI)G−1
I =

[
E

H

]

zL

≡ MI

[
E

H

]

zL

(4.41)

with the transfer matrix

MI =

[
cos(qId

I) −i 1
YI

sin(qId
I)

−iYI sin(qId
I) cos(qId

I)

]

, (4.42)

where T(z) = diag(eiqIz, e−iqIz)7.

6Exciton-free and non-spatial dispersive material.
7diag(...) is a diagonal matrix constructor.
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4.6 Transfer Matrix for Spatial Dispersive Ma-

terial

If the sample considered consists of several layers of spatial dispersive and non-

dispersive materials, it is efficient to construct transfer matrixes to calculate the

resulted reflection coefficients of the overall system by matrix multiplication [63–

66]. In this section, we describe in detail how to construct a transfer matrix of a

spatial dispersive material and to reduce its dimension by applying general ABCs

[36] for both s- and p- polarized components.

Figure 4.5: Diagram of a multi-layer system. “V” represents vacuum,
“I”represents insulator, and “S”represents semiconductor with spatial disper-

sion.

4.6.1 s-polarized

For the s-component, there are two transverse modes in +z and −z directions

respectively (Fig. 4.5). We can use a 4 × 4 matrix Gs to connect the four electric

field components and the 4 × 1 vector formed by the electric field Ey, magnetic

field Hx, excitonic polarization P , and the derivative of the excitonic polarization

to the normal direction n (+z or −z).
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Ey

Hx

P

∂nP









= Gs









E+
1 eiq1z

E−
1 e−iq1z

E+
2 eiq2z

E−
2 e−iq2z









, (4.43)

where,

Gs=









1 1 1 1

Y s
1 −Y s

1 Y s
2 −Y s

2

χ1 χ1 χ2 χ2

iq1χ1 −iq1χ1 iq2χ2 −iq2χ2









. (4.44)

Each component of Gs (Eq. (4.44)) can be derived from Eqs. (4.34) and (4.36).

And we can relate the fields at the left boundary zL and the right boundary

zR = zL + ds through







Fs

P

∂nP







zR

= Ns
T







Fs

P

∂nP







zL

. (4.45)

The field vector Fs = (Ey, Hx)
T , and the transfer matrix

Ns
T = GsT(ds)G−1

s , (4.46)

where T(z) = diag(eiq1z, e−iq1z, eiq2z, e−iq2z). To reduce the dimension of Ns
T , we

apply the generalized ABC [36]

αyyP + ∂nP = 0, (4.47a)

to both interface of the left boundary zL and the right boundary zR. αyy can be

written as

αyy = iΓ
1 − Uy

1 + Uy

, (4.47b)

and some of its values that represents different types of ABCs are listed in Table

4.1.

Then Eqs. (4.46) and (4.47b) yield

P(zR) = MpfFs(z
L) + MppP(zL) + Mpp′αyyP(zL), (4.48a)
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Table 4.1: Special cases of ABC for s polarized light.

ABC Uy Excitonic polarization
Pekar −1 Py(0) = 0

Fuchs-Kliewer 1 ∂nPy(0) = 0
Agarnal et al. 0 iΓPy(0) + ∂nPy(0) = 0

− αyyP(zR) = Mp′fFs(z
L) + Mp′pP(zL) + Mp′p′αyyP(zL), (4.48b)

where Mff = {(N s
11, N

s
12), (N

s
21, N

s
22)}

T, Mfp = {N s
13, N

s
23}

T, Mfp′ = {N s
14, N

s
24}

T,

Mpf = {N s
31, N

s
32}, Mp′f = {N s

41, N
s
42}, Mpp = N s

33, Mpp′ = N s
34, Mp′p = N s

43, and

Mp′p′ = N s
44

8. P(zL) can be solved by the associated Eqs. (4.48a) and (4.48b),

P(zL) = −S−1(αyyMpf + Mp′f )Fs(z
L), (4.49)

where S = αyyMpp + αyyMpp′αyy + Mp′p + Mp′p′αyy. The relation between Fs(z
R)

and Fs(z
L) can be written as

Fs(z
R) = Ms

TFs(z
L), (4.50)

where

Ms
T = Mff − (Mfp + Mfp′αyy)S

−1(αyyMpf + Mp′f ) (4.51)

is a 2 × 2 transfer matrix for s- polarized component.

4.6.2 p-polarized

It is more complex to construct a transfer matrix for the p-component than that

for the s-component. There are two transverse modes and a longitudinal mode in

+z and −z directions respectively (Fig. 4.5). Thus a 6 × 6 matrix Gp similar to

Gs(Eq. (4.44)) can be constructed to relate the six electric field components and

the electric field Ex, magnetic field Hy, excitonic polarization Px, Pz and their

8Ns
ab is the matrix element at row a and column b of the matrix Ns

T .
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normal derivatives. 













Ex

Hy

Px

Pz

∂zPx

∂zPz















= Gp















E+
1 eiq1z

E−
1 e−iq1z

E+
2 eiq2z

E−
2 e−iq2z

E+
3 eiq3z

E−
3 e−iq3z















, (4.52)

where

Gp=















1 −1 1 −1 1 1

Y p
1 Y p

1 Y p
2 Y p

2 0 0

χ1 −χ1 χ2 −χ2 χ3 χ3

−D1χ1 −D1χ1 −D2χ2 −D2χ2 D3χ3 −D3χ3

iq1χ1 iq1χ1 iq2χ2 iq2χ2 iq3χ3 −iq3χ3

−iq1D1χ1 iq1D1χ1 −iq2D2χ2 −iq2D2χ2 iq3D3χ3 iq3D3χ3















.

(4.53)

The elements of Gp are defined as in Eqs. (4.36) and (4.39). The fields at the left

boundary zL and the right boundary zR = zL + ds can be related through







Fp

Pp

∂nPp







zR

= Np
T







Fp

Pp

∂nPp







zL

, (4.54)

where Fp = (Ex, Hy)
T , Pp = (Px,Pz)

T and the transfer matrix

Np
T = GpT(ds)G−1

p =







N11 N12 N13

N21 N22 N23

N31 N32 N33





 . (4.55)

We conduct the generalized ABC [36],

tP+∂nP = 0 (4.56a)

with

t =

[
αxx 0

0 αzz

]

, (4.56b)
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Table 4.2: Special cases of ABC for p polarized light.

ABC Ux Uz Excitonic polarization
Pekar −1 −1 Px(0) = 0, Pz(0) = 0

Rimbey-Mahan −1 1 Px(0) = 0, ∂nPz(0) = 0
Fuchs-Kliewer 1 −1 ∂nPx(0) = 0, Pz(0) = 0

Ting et al. 1 1 ∂nPx(0) = ∂nPz(0) = 0
Agarnal et al. 0 0 iΓPx(0) + ∂nPx(0) = iΓPz(0) + ∂nPz(0) = 0

to the boundaries at zR and zL. αxx and αzz can be written as

αxx = iΓ
1 − Ux

1 + Ux

, (4.57a)

αzz = iΓ
1 − Uz

1 + Uz

, (4.57b)

and some specific values of the parameters Ux and Uz that represent different types

of ABCs are listed in Table 4.2. Then Eqs. (4.54) and (4.55) can be written as

{
P(zR) = N21F(zL) + N22P(zL) + N23t P(zL),

−t P(zR) = N31F(zL) + N32P(zL) + N33t P(zL).
(4.58)

Thus the relation

P(zL) = −S−1(tN21 + N31)F(zL) (4.59)

can be solved by Eq. (4.58) using the same way as introduced in 4.6.1 with

S = tN22 + tN23t + N32 + N33t. Finally, we can obtain the relation of the fields

at the right boundary and the left boundary,

F(zR) = [N11 − (N11 + N13t)S
−1(tN21 + N31)]F(zL) = Mp

TF(zL). (4.60)

Mp
T is the 2 × 2 transfer matrix for p- polarized component.

4.7 Calculation of Reflection Coefficients

To calculate the reflection coefficient of a multi-layer system (Fig. 4.5 as an ex-

ample), we can use the property of the impedance9 match on the surface, i.e. to

match the impedance Z+(0) of the multi-layer system obtained from the transfer

9Impedance is the ratio of the electric and magnetic fields, and its reciprocal is the admittance.



Chapter 4. Theory & Models 50

matrix methods and the surface impedance Z−(0) of vacuum. The electric field

and magnetic field at vacuum can be written as (see Fig. 4.5)

Ev(z) = (Eineiq0z + rEineiq0z)e−iωt; (4.61a)

Hv(z) =
1

Zv
(Eineiq0z − rEineiq0z)e−iωt. (4.61b)

Thus, the surface impedance

Z−(0) =
Ev(0)

Hv(0)
=

Zv(1 + r)

(1 − r)
= Z+(0). (4.62)

If we have already obtained the surface impedance Z+(0) = Zs and Z+(0) = Zp

for s- and p- polarized component respectively, the reflection coefficients yield

rs =
Zs − Zv

s

Zs + Zv
s

(4.63a)

for s-polarized component, and

rp =
Zp − Zv

p

Zp + Zv
p

(4.63b)

for p-polarized component. where Zv
s = 1/ cos θ, and Zv

p = cos θ.
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Discussion

We discuss the ellipsometry measurement results of the GaAs substrate and epi-

taxial layer respectively in this chapter. For the GaAs substrate, the result is

relatively simple, and we use simple model in 4.2.1 to fit the energy shift of the

spectra. For the GaAs epitaxial layer, however, the result is much more compli-

cated and has not been reported before. Therefore, we will pay more attention on

the discussion of the result of the GaAs epitaxial layer in the following.

5.1 GaAs Substrate

The effects of external magnetic fields on the ellipsometry spectra of the GaAs

substrate were investigated. The curves in Figs. 3.2(a) and 3.2(b) shift to higher

energy and become stronger as magnetic fields increases. This can be explained

by the diamagnetic effect of excitons and the increased oscillator strength due to

the magnetic confinement [67]. The amount of diamagnetic shift depends on the

radius of the magneto-excitons in the plane perpendicular to the magnetic field

(Eq. (4.17)), and can be obtained by solving the Schrödinger equation (4.17) with

a magnetic field along the z axis [58]. The calculated magnetic field dependent

ground state energy is shown in Fig. 5.1 and compared with the experimental

data. The reduced effective mass μ and the dielectric constant εb used are 0.05

me [68] and 12.8 [69]. However, we should mention that the calculation was only

performed with the simple two band hydrogen-like (s-states) exciton in a magnetic

field [58]; the Zeeman term, the motion of the exciton, and the electron-hole

exchange interaction are neglected.

51
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Figure 5.1: Measured peak energy (black points) versus magnetic field. The
line is fitted by the result of Eq. (4.17) with a reduced effective mass μ = 0.05

me and a dielectric constant εb = 12.8.

5.2 GaAs Epitaxial Layer

Unlike the results of the GaAs substrate, for the GaAs epitaxial layer, there exists

several fine structures even at 0 T, and an extra dip appears when the magnetic

field is larger than 6 T in the ellipsometry spectra. In the following, we will discuss

the magneto-optical response of the dips A, B; and the leading cause of the dips

C, D and their behavior under magnetic fields respectively.

5.2.1 Dips A and B

Figure 5.2 shows the energy shift of the dips A and B as functions of the magnetic

field. The dips, which are similar to the results of the GaAs substrate, shift to

higher energies due to the diamagnetic effect when the magnetic field is increased.

The separation of the two dips is proportional to the magnetic field value as shown

in the inset of Fig. 5.2. The behavior of the two dips A and B is similar to what

has been reported by F. Willmann, et al. (the conventional normal reflectance

measurement [52].) The same authors assigned them to be the exciton σ−1 states,
∣
∣J t, J t

ζ

〉
= |2,−1〉 and |1,−1〉, with the component of the total spin angular mo-

mentum along the magnetic field direction being equal to −1 [59]. The dip A,

a dark state with J t = 2, becomes optically active when it couples to the bright

state, dip B (with J t = 1), by the electron-hole exchange interaction and strong
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magnetic field (≥ 6 T) (see 4.2.2). It should be mentioned that when the angle

between the direction of the magnetic field and the exciton CM motion is arbi-

trary the two states discussed here are no longer good eigenstates (this effect was

neglected in Ref. [59]). Although a more precise theory should be constructed for

the oblique configuration, we obtained almost the same result as in the Farady

configuration [52]. It means, for the energy consideration, the contribution from

the exciton CM motion is very small. However, as we show below, the exciton CM

motion has an enormous impact on the shape of the ellipsometry spectra.

Figure 5.2: The measured energy shift of the dips A (circles) and B (solid
points) as functions of magnetic fields; lines ( |1,−1〉 solid line, |2,−1〉 short-
dash line) are the reflectance measured data in the Farady configuration (σ−1)
from F. Willmann, et al. [52] The inset shows the energy difference of the dips

B and A with a straight fitting line.

5.2.2 Dips C and D

To understand the behavior of the dips C and D, which have not been reported

before, we consider phenomenologically the exciton-polariton model with spatial

dispersion for both p- and s- polarizations mentioned in Chapter 4. To determine

the ellipsometric parameters, we have to calculate the reflection coefficients of

s- (two transverse modes) and p- (two transverse modes and one longitudinal

mode) polarization components with an oblique (60◦) incident angle and use the

generalized ABC [36]. We can then obtain Ψ and Δ using Eq. (2.3) taking into

account appropriate transitions between the exciton energy states.
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While the dips A and B observed in our experiment are identified as the exciton

states reported earlier [52]; the dips C and D, which are present at 0 T, have never

been reported and identified before [47–52]. For a rather thick sample (substrate

plus epitaxy ∼ 0.35 mm), it is difficult to observe such energy splitting from the

thermal mismatch between a sample and its mounting [47, 50–52]. The separations

between the dips (B, C and C, D) are much smaller than the separations of the

exciton levels predicted by the simple hydrogen model (Eq. (4.12)). Another

possibility is due to the exchange interaction between the electrons and holes,

which can result in separation of states with different angular momentum. But

the separations reported earlier (10−2 ∼ 10−1 meV) [70] are too small for what are

observed in this work. If the excitons are trapped at the Morse potential [71, 72]

near the semiconductor surface, the energy separations obtained between states

become larger for higher energy states. The result is still quite different from what

is observed in our experiment.

To explain the experimental result that can not be interpreted by the models

provided in the previous studies, we propose our original model. We assume that

an exciton-free region exists at the interface between the GaAs substrate and the

epitaxial layer in addition to the sample surface, because a high concentration of

carbon impurity is generated at the interface during MBE process (see Fig. 5.3 (b))

[73]. A diagram of the model is shown in Fig. 5.3 (a). In the model, d1 and d2 are

the width of the dead (exciton-free) layers, which simply describe the potential

due to the interaction of an exciton with the surface and the growth interface

respectively [33, 61]. And, we assume the background dielectric constant in the

region containing carbon impurity is the same as in other regions. We use the

transfer matrix method with spatial dispersion (Section 4.6) and the wavevector

obtained from Eq. (4.27) to determine the ellipsometric parameters of this multi-

layer system.

The modulation of the calculated Δ spectra with various parameters: d1, d2, l,

and ABC are shown in Fig. 5.4 . The shape of the spectra are more sensitive to

the width of the dead layer d1 at the surface than to the width of the dead layer

d2 at the growth interface. Because the length of the epitaxial layer is known (∼ 1

μm), there are only the parameters d1, d2 (not as important as d1) and the choice

of ABC can be changed to determine the shape of the spectra. However, without

losing the physical meaning, the dead layer width d1 should not be less than two

times of the GaAs exciton Bohr radius (∼ 24 nm) [70], and the dead layer width d2
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Figure 5.3: Diagram of the purposed model (a) and measured SIMS data (b).
In (a), c+ represents carbon impurities at the growth interface. We assume
that d1, d2 are the dead layer widths at the surface and the growth interface
respectively, and l is the epitaxial layer thickness. (b) The measured SIMS data
for Ga, As, and C. The depth is counted from the surface and can just be a

reference because its accuracy and resolution (∼ 10 nm) is not very well.

is supposed to be smaller than d1. In addition, recent studies [10–12] showed that

the results of using Pekar’s ABC is more close to the results obtained by micro-

scopic calculations than using other ABCs. Therefore, we choice the parameters

d1=33 nm, d2=8 nm, and Pekar’s ABC to fit the experimental results. The calcu-

lated ellipsometry spectra and normal-incidence reflectance spectrum are shown

in Fig. 5.5 (a), (b), and (c) respectively. The shapes of the calculated spectra are

quite similar to the experimental results shown in the insets. In comparison to

the calculated ellipsometry spectra, the reflectance spectrum, which is obtained

by using the same model and parameters except the transition energy, shows very
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Figure 5.4: Calculated Δ spectra for various d1 (a), d2(c), l(b), and different
types of ABCs (d).

faint fine structures. This explains why the fine structure is difficult to be ob-

served using normal-incidence reflection measurements. The fine structures in the

calculated spectra are due to the interference of multi-polariton waves reflecting

back and forth from the two boundaries as shown in Fig. 5.5. The reason that

such detailed interference patterns can be observed in this work is the unique con-

figuration of the ellipsometry system. It measures the reflectivity ratio of the p-

and s- components in an oblique configuration, which provides a large wave-vector

component parallel to the interfaces. This makes it more sensitive to the interfaces

than the conventional normal-incidence reflection measurements.

The phenomenological model used here treats the exciton as a solid sphere. It

cannot describe the distortion of electron- and hole- wavefunctions respectively

near the boundaries and the internal motion of the exciton [10–12]. This may

result in some dissatisfies between the calculated and the experimental results.

First, the separation between the two dips C and D from the calculation (0 .69 meV)

is slightly smaller than the experimental data (0.87 meV). Second, discrepancies



Chapter 5. Discussion 57

Figure 5.5: (a), (b) Calculated spectra of Δ and Ψ at 0 T with parameters:
d1=33 nm, d2=8 nm, l=1 μm, ~ν=0.32 meV, ~ωp=0.055 eV, Mex=0.22 m0 [45,
46], and Pekar’s ABC [32, 36]. The insets are the experimental data measured
at 4.2 K, 0 T. (c) Calculated normal-incidence reflectance spectrum using the
same model and parameters as in (a), (b) except for the transition energy. The
inset is the experimental data of normal-incidence reflectance measured at 12

K, 0 T.
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exist in the shapes at energy around 1.518 eV in the spectra, and to fit the shapes

and the relative amplitudes of the peaks and dips in the Ψ and Δ spectra well

simultaneously is difficult. Another thing, which is difficult to explain, is why

the separation between the two dips becomes different when the magnetic field

is changed. Because the dips C and D are caused by the interferences among

the polariton waves bounced between the two boundaries and are not due to other

excitonic states, their relative position should stay the same under magnetic fields.

Figure 5.6: Calculated energy difference (ΔE) of the dips C and D as a
function of exciton effective mass Mex in units of the free electron mass m0.
The inset is the calculated spectra of Δ for different Mexs ( 0.22 m0 solid line,
0.264 m0 dash line, 0.352 m0 dot line, 0.44 m0 short-dash line, and 0.528 m0

short-dot line). The exciton effective mass Mex used in the study at 0 T is 0.22
m0 [45, 46].

To explain the behaviour of the dips C and D in magnetic fields shown in Fig.

3.6 and considering a large excitonic momentum component perpendicular to the

direction of the magnetic field [45, 46], we allow the exciton effective mass to be

changed due to the magnetically induced exciton effective mass enhancement effect

[45, 46] in the non-local polariton model Eq. (4.29). The separation of the two

dips (ΔE) was calculated as a function of the exciton effective mass (Mex) and

the result is shown in Fig. 5.6. The calculated Δ spectra for different masses are

shown in the inset. It is clear that the shapes of the spectra and the separation

between the two dips are modified for various exciton effective masses. And to

observe more detailed structures change with various exciton effective masses, we

show the spectra of the small damping 0.5 ν in comparison to that of 1 ν with
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exciton effective masses Mex and 2Mex respectively in Fig. 5.7. The detailed

fine structures change their relative amplitude when the exciton effective mass is

changed.

The reason for the changes of the spectra and ΔE is that the Mex changes the

wavevector of the polariton and then influences the interference. The separation

ΔE, which decreases first and the decrease becomes moderate as Mex increases,

is similar to the behaviour of the measured dips C and D in magnetic fields. The

amount of change of the separation ΔE, however, is smaller compared to the

experimental result in a reasonable enhancement range of Mex [45, 46]. But, we

need to bear in mind that we are facing subtle fine structures in magnetic fields.

Some details such as the influences from other exciton levels and microscopic

mechanisms may also play a role. Nevertheless, the enhancement of the exciton

effective mass gives a plausible explanation to the changes of the ellipsometry

spectra under magnetic fields.

Figure 5.7: Calculated Δ spectra for various exciton effective mass Mex and
2Mex with different damping ν and 0.5ν.
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Conclusion

6.1 Low Temperature and High Magnetic Field

Ellipsometry System

In conclusion, we have demonstrated an ellipsometry system that can be fitted into

a long-neck He-dewar with a high-field superconducting magnet. The functionality

and the precision of the system were systematically analyzed. Its random error

was found to be dominated by the light intensity fluctuation. To demonstrate

the system’s capability, we have measured the ellipsometry spectra of GaAs sam-

ples with and without an epilayer near the band edge in magnetic fields up to 14

Tesla. Fine structures from the high quality GaAs epilayer were clearly observed

in the spectra and they varied with the magnetic field. The lower energy dips (A

and B) evolved with magnetic fields in a fashion similar to the previous results

obtained in Faraday configuration and were identified as the two σ−1 magneto-

exciton states with the dip B being the bright state and the dip A being the dark

state. For the fine structures at higher transitions that have not been reported, we

proposed a model taking into account of the non-local polariton with dead layers

and Pekar’s ABC introduced at the surface and the interface of the epilayer and

the substrate. Using the model, we can give a interpretation of the measured ellip-

sometry spectra, and explain why the fine structures are difficult to be observed at

normal-incidence reflectance spectra. To explain the behaviour of the ellipsome-

try spectra under magnetic fields, we considered the magnetically induced exciton

effective mass enhancement effect and introduced it into the spatial dispersive

60



Chapter 6. Conclusion 61

polariton model. The result showed changes of both the shapes and the separa-

tion of the dips C and D with various exciton effective mass. The simple model

proposed here can predict that the separation of the two dips decreases with in-

creasing magnetic field but failed to match the experimental result quantitatively.

The fine structure of the magneto-polariton observed in the ellipsometry spectra

is intricate in magnetic fields, and the exact model may require considerations of

thorough physical mechanisms in addition to the ones used here. With its unique

capability, this system provide us an innovated way to study the magneto-optical

response of exciton-polariton in semiconductors under high magnetic fields at low

temperatures. We hope that the obtained results and the proposed explanations

can be a descriptive bases for further research.

6.2 Recommendations for Future Research

• Extra Functionality of the Equipment

Conducting ellipsometry measurements in low temperatures and high mag-

netic fields is still very much in the developing stage and more has yet to be

done. There is still room for improvements of the accuracy, precision, oper-

ation speed, spectra resolution, and additional functions of the instrument.

We would recommend for instance using photo-elastic modulators (PEMs) to

replace the mechanical rotation elements to reduce the vibration of the long

insert. PEMs can be operated very fast and hence can improve the precision

by averaging a large mount of measurement data. In addition, the full Muller

matrix can be measured once the PEMs and other polarization elements are

arranged appropriately [2]. This could extend the applications of the instru-

ment to measure the depolarization of the light reflected from sample at high

magnetic fields. And many interesting topics such as the magneto-optical

coupling constants and magnetization of material [18, 74, 75], the polariza-

tion selection rules for carriers in quantum regimes [76] or for excitons can

also be explored using our ellipsometer.

• Microscopic Theory of Polariton Propagation in Magnetic Field

There is a continuing need for an adequate theoretical basis for the polari-

ton propagation in magnetic fields, especially when the configuration is not

simply the Voigt (B ⊥ qex ) or Farady (B ‖ qex ) geometries. Although, the
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microscopic treatments are free from using ABC approximations, the com-

plexity of the polariton problems limits them to the specific geometry and

to further simplifications [10–12]. When the magnetic field induced mixing

of other states to the 1s state [43, 44] is taking into account, the problem

becomes more complicated. And no theoretical works in this direction have

been published previously.

• An Idea to Measure Field-controlled Exciton Effective Mass

Despite Butov et al. [45, 46] has observed magnetically induced exciton ef-

fective mass enhancement by fitting the measured dispersion relation of a

magnetoexciton in GaAs double QWs, it does have some limitations. “The

dispersions become so flat that the scattering of the experimental points does

not allow precise determination of that mass which becomes very large” [45].

Thus, there were just three experimental determined values of exciton effec-

tive mass for the magnetic fields smaller than 4 T. But, as our study has

demonstrated, more also needs to be determined about the exciton transla-

tional effective mass in high magnetic fields.

We share an idea that might be able to measure exciton effective mass in

high magnetic fields. The diagram of the idea is shown in Fig. 6.1. We

propose a GaAs wide QW sample structure with length l about 200 ∼ 300

nm. The quantization of the exciton CM motion will lead discrete energies

En =
~2π2n2

2Mexl
. (6.1)

If the quality of the sample is good enough, the discrete energy levels will

show clearly in a reflectance spectrum [44]. One can obtain the exciton effec-

tive mass from Eq. (6.1) by fitting multi-peaks in the reflectance spectrum.

When the magnetic field is applied perpendicular to the exciton CM motion

direction, the magnetically induced exciton effective mass enhancement can

be obtained. Moreover, if side gates like in Fig. 6.1 can be processed, the

effective mass enhancement can be measured as a function of various dipole

length of the electron-hole pair, which is controlled by bias voltages.
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Figure 6.1: Diagram of the ideal to measure exciton translational effective
mass in various electric and magnetic fields. The circular polarized light is
incident in the z direction; the electric field and magnetic field are applied in
the y and x directions respectively. That is, the directions of the exciton CM
motion, the electric field, and the magnetic field are mutually perpendicular.
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Chapter 7

Introduction

The electron transport effective mass and the scattering time are the fundamen-

tal factors that determine the transport properties of electrons in semiconductor

quantum wells (QWs) [77]. The electron effective mass typically becomes larger

at higher energies because of the non-parabolic dispersion of the band structure

[78]. Thus in QWs, the electron effective mass usually increases as the well width is

reduced. Not only that, the reduced well width also causes an increase in the inter-

face roughness scattering (IRS), which dominantly contributes to the degradation

of the electron mobility in thin quantum wells [79]. Gold [79] has theoretically

predicted that for QWs with large barrier heights (infinite QW model), the elec-

tron mobility followed the law μ ∝ l6 (l being the well thickness), which was later

confirmed experimentally [80–82]. For QWs with small barrier height, the reduc-

tion in mobility is not as drastic as in the infinite QW model , but the mobility

still goes down with decreasing well thickness [83].

It would be much more desirable if one could design a QW, which can confine

the electrons at higher energies while keeping the mobility high at the same time.

Recently, pursuing for higher electron mobility and stronger spin-orbit interaction,

more attention is being given to the Sb-based compounds [84–86] for their narrow

bandgaps. In this part of the thesis, we discuss the transport properties of QWs

at low temperature regime from a theoretical perspective and compare four struc-

tures that have different transport properties. To calculate the electron transport

effective mass we use the one-band effective Hamiltonian, which includes the non-

parabolic dispersion relation for the conduction bands and includes the effects of

the barrier properties by considering the distribution of the electron wavefuntion.
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It was found that the electron transport effective mass and the confinement energy

behave differently depending on the combination of the barrier and the QW mate-

rials when the QW thickness is changed. In calculation of the impacts of various

scattering mechanisms on the electronic transport characteristics, the first Born

approximation was considered. The results indicate that the electron mobility can

become higher even when the well thickness is reduced.



Chapter 8

Theory & Calculation Methods

8.1 The Basic Idea

Figure 8.1 illustrates the basic idea of designing a QW that could have smaller

transport effective mass when the well thickness is reduced. It is based on a

type-II heterostructure, where the electrons are confined in the middle well with

the barriers provided by a narrower bandgap semiconductor, which has a smaller

electron effective mass. In this structure, when the well width is reduced, the

electron wavefunction of the well will penetrate more into the barriers and “feel” a

smaller effective mass mB. However, the electron effective mass of the QW (mQW )

will also increase because of the non-parabolic dispersion of the band when the

width of the QW is reduced. Is it possible that the wavefunction penetration

effect is more serious than the non-parabolic effect to result in a smaller electron

transport effective mass ? And, how does it influence the scattering mechanisms

and whether a thinner QW can have higher mobility ? In the following, we derive

the calculation methods and compare four structures with different well/barrier

combinations and demonstrate that it is indeed possible to achieve a lower electron

transport effective mass and higher mobility when the well width is reduced.
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Figure 8.1: Conduction band diagram to illustrate the basic idea. The elec-
tron wavefunction confined in the z-direction of the thinner well (lower one)
penetrates more into the barriers than the thicker well (upper one), and “feels”

a smaller effective mass mB .

8.2 Electron Transport Effective Mass

For 2D degenerated electronic gas1 in the first Born approximation for elastic

scattering, the transport scattering time τ is given by (see e.g. Refs. [79, 83, 87–

89] )
1

τ
=

A

4π2

2π

~

∫
SC |M |2 (1 − cos θ)δ(Ek − Ek′)d2k′. (8.1)

In this equation: k (k′) and Ek (Ek′) stand for the in-plane wave vectors before

(after) scattering and the corresponding in-plane components of the electronic

energy (Ek = Ek′ for the elastic scattering); θ denotes the scattering angle between

k and k′ ; M is the scattering matrix element; A is the sample area; SC is the

screening factor which is given by [q/(q + qs)]
2, where

1The electrons can move only in the xy plane and are confined in the z-direction; only one
lowest sub-band is occupied
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q = |q| = |k − k′| =
√

2k2(1 − cos θ), (8.2)

for elastic scattering, and

qs = [
me2

2πε~2
]

∫
|ϕ(z)|2

∫
|ϕ(z′)|2 e−q|z−z′|dz′dz. (8.3)

For small q, we use the Thomas-Fermi approximation and the Thomas-Fermi

wavevector qTF = 2/aex , where aex is the effective Bohr radius in a semicon-

ductor, to replace qs [83].

Within the conventional approach [87–89] the three-dimensional scattering pro-

cesses in 2D quantum channels can be described by the effective (adiabatic) 2D

Hamiltonian

Ĥρ =

+∞∫

−∞

dzϕ∗(z)Ĥϕ(z), (8.4)

where

Ĥ = −
~2

2
∇r[

1

m(E, z)
]∇r + V (z) + Vsc(r), (8.5)

is the three-dimensional system Hamiltonian, r = {x, y, z} ≡ {ρ, z} is the three-

dimensional radius vector, ∇r stands for the spatial gradient, V (z) represents the

potential profile in the structure along z-direction, Vsc(r) stands for the scattering

potential, m(E, z) is the energy (E) and position (z) dependent electron effective

mass [78, 88],

1

m(E, z)
=

2P 2

3~2
[

2

E + Eg(z) − V (z)
+

1

E + Eg(z) − V (z) + Δso(z)
], (8.6)

where Eg(z) and Δso(z) stand for the position dependent bandgap and the spin-

orbit splitting in the valence band, and P is the momentum matrix element. The

z-component of the envelop wavefunction ϕ(z) represents the solution confined in

the QW for the lowest energy subband. The component can be obtained from the

appropriate one dimensional non-linear Schrödinger equation:

[−
~2

2

d

dz

1

m(E0, z)

d

dz
+ V (z)]ϕ(z) = E0ϕ(z), (8.7)

where E0 refers to the bottom energy of the first electronic subband in the well.

After the averaging (Eq. (8.4)) along the z-direction, the adiabatic quasi-2D
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Schrödinger equation (which describes quasi-2D scattering processes) is given by

Ĥρψk = [−
~2

2

1

mt(E)
∇2

ρ + Ṽsc(ρ)]ψk = Ekψk. (8.8)

In this equation, therefore, the electron 2D transport energy dependent effective

mass is

1

mt(E)
=

+∞∫

−∞

dzϕ∗(z)
1

m(E, z)
ϕ(z) (8.9)

=

∫

QW

ϕ∗(z)
1

mw(E)
ϕ(z)dz+

∫

Barrier

ϕ∗(z)
1

mb(E)
ϕ(z)dz,

and

Ṽsc(ρ) =

+∞∫

−∞

dzϕ∗(z)Vsc(r)ϕ(z) (8.10)

is the quasi-2D scattering potential, E = E0 + Ek, mw(E) and mb(E) stand for the

electron effective mass at energy E in the QW and barrier regions correspondingly.

It is clear from the equations above that the energy dispersion relation and its non-

parabolicity for the electrons confined in the well is represented by

E = E0 +
~2k2

2mt(E)
(8.11)

and, consequently, in a very standard manner, the transport effective mass mt(E)

goes into all simulations of conduction characteristics of electrons in the well (scat-

tering time, mobility, etc.) [79, 83, 87–89].

8.3 Material Parameters

Four different cases representing different combinations of barrier/QW/barrier

structures are compared in our simulation: (i) GaAs/ GaIn0.25As/ GaAs, (ii)

GaAsSb0.49/ GaAsSb0.22/ GaAsSb0.49, (iii) InAsSb0.25/ InAs/ InAsSb0.25, and (iv)

Ga0.3InSb0.9P/ Ga0.2InSb0.8P/ Ga0.3InSb0.9P. The lattice mismatch between the

barriers and QWs for these cases is small than 2%. The deformation potential is

used to simulate the band parameters and the band lineups V (z) of the strained

interfaces [90, 91]. Because of the large separation of L- and X-point to Γ-point

of the four cases considered, only the Γ valley is included in the simulation.
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Table 8.1: k∙p band parameters for III-V semiconductors. alc is the lattice
constant, EΓ

g is the energy gap at Γ-point, me is the electron effective mass at Γ-
point, VBO is the valence band offset, ac and av are the hydrostatic deformation
potential for conduction band and valence band respectively, b is the shear
deformation potential, ε is the static dielectric constant, and c11, c12, c44 are

the elastic constants.

parameters GaAs InAs GaSb AlSb InSb InP GaP

alc (Å) 5.653 6.058 6.096 6.136 6.479 5.87 5.451
EΓ

g (eV) 1.519 0.417 0.812 2.386 0.235 1.424 2.886
Δso (eV) 0.341 0.39 0.76 0.676 0.81 0.108 0.08
me(m0) 0.067 0.026 0.039 0.14 0.0135 0.08 0.13

VBO (eV) -0.80 -0.59 -0.03 -0.41 0 -0.94 -1.27
ac (eV) -7.17 -5.08 -7.5 -4.5 -6.94 -6.0 -8.2
av (eV) 1.16 1.00 0.8 1.4 0.36 0.6 1.7
b (eV) -2.0 -1.8 -2.0 -1.35 -2.0 -2.0 -1.6

c11 (GPa) 1221 832.9 884.2 876.9 684.7 1011 1405
c12 (GPa) 566 452.6 402.6 434.1 373.5 561 620.3
c44 (GPa) 600 395.9 432.2 407.6 311.1 456 703.3

ε (static)[92] 12.9 15.15 15.7 12.04 16.8 12.5 11.1

The basic k∙p band parameters [90] of common III-V semiconductor used in the

study are shown in Table 8.1. For ternary alloys, the dependence of the band

parameters on alloy composition can be described approximately in the simple

form [90]

G(A1−αBα) = (1 − α)G(A) + αG(B) − α(1 − α)C, (8.12)

where G is either of the band parameters, and C is the bowing parameter ac-

counting for the deviation from a linear-relation between the two binaries A and

B. The bowing parameters for several III-V ternary compounds are listed in Table

8.3 [90].

Table 8.2: Bowing parameters for III-V ternary compounds.

parameters InGaAs AlGaSb GaAsSb InAsSb InPSb
EΓ

g (eV) 0.477 −0.044 + 1.22x 1.43 0.67 1.9
Δso (eV) 0.15 0.3 0.6 1.2 0.75
m∗

e(Γ) 0.0091 0 0 0.035 0
VBO (eV) -0.38 0 -1.06 0 0
ac (eV) 2.61 0 0 0 0

For most commonly encountered quaternary compounds of the AxB1−xCyD1−y

type, we use the method introduced by Glisson et al. [90, 93] to derive quaternary
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alloy band parameters. The parameter

G
′′

ABCD(x, y) =
x(1 − x)[(1 − y)G

′

ABD(x) + yG
′

ABC(x)]

x(1 − x) + y(1 − y)

+
y(1 − y)[(1 − x)G

′

BCD(y) + xG
′

ACD(y)]

x(1 − x) + y(1 − y)
, (8.13)

where the ternary parameters G
′

ABD, G
′

ABC , G
′

BCD, and G
′

ACD are given by Eq.

(8.12).

8.3.1 Strain

The valence-band edge of a strained semiconductor can be written as [90, 91]

Ev = VBO +
Δso

3
+ ΔEhy

v + max(ΔEsh
hh, ΔEsh

lh ), (8.14a)

and the conduction-band edge is based on the valence-band position with the form

Ec = VBO +
Δso

3
+ Eg + ΔEhy

c . (8.14b)

The band shifts are induced by the hydrostatic deformation potential effects ΔEhy
v

and ΔEhy
c for the valence-band and the conduction-band correspondingly; and the

shear deformation potential effect ΔEsh
hh and ΔEsh

lh for the heavy-hole and light-

hole bands respectively. The energy shifts induced by hydrostatic deformation

potential effect are given by

ΔEhy
v = av(2ε‖ + ε⊥) (8.15a)

for the valence-band, and

ΔEhy
c = ac(2ε‖ + ε⊥) (8.15b)

for the conduction-band. ε‖ and ε⊥ are the strain tensor components parallel and

perpendicular to the plane of the interface :

ε‖ =
a‖

alc

− 1, (8.15c)

and

ε⊥ =
a⊥

alc

− 1 (8.15d)
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with the deformed lattice constant parallel2

a‖ → a0; (8.15e)

and perpendicular to the plane of the interface

a⊥ = alc[1 − Di(
a‖

alc

)], (8.15f)

where a0 is the lattice constant of the host material (ex. substrate), alc is the

lattice constant when the material is unstrained (bulk value), and the constant D

depends on the elastic constants as

D001 = 2
c12

c11

(8.15g)

for the strain along [001] direction. And the shear deformation potential effect for

the strain along [001] direction leads energy shift

ΔEsh
hh = −

1

2
δEsh

001 (8.16a)

for the heavy-hole band,

ΔEsh
lh = −

1

2
Δso +

1

4
δEsh

001 +
1

2
[Δ2

so + ΔsoδE
sh
001 +

9

4
(δEsh

001)
2]1/2 (8.16b)

for the light-hole band, and

ΔEsh
so =

1

2
Δso +

1

4
δEsh

001 −
1

2
[Δ2

so + ΔsoδE
sh
001 +

9

4
(δEsh

001)
2]1/2 (8.16c)

for the split-off band. In these equations,

δEsh
001 = 2b(ε⊥ − ε‖). (8.16d)

Values of the deformation potential b for various materials are listed in Table 8.1.

2When the thickness of the host material is very large.
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8.3.2 Parameters of Selected Cases

8.3.2.1 InGaAs system

The band lineup of GaAs/GaIn0.25As is shown in Fig. 8.2, and some calculated

parameters obtained by the method introduced in 8.3.1. These parameters, de-

manded to calculate the confinement energy and transport effective mass (see

Section 8.2), are listed in Table 8.3.

Figure 8.2: Band lineup diagram of GaAs/GaIn0.25As. Solid lines are un-
strained band alignment, and dash lines stand for the alignment being strained.
hh and lh represent heavy-hole and light-hole band respectively. The conduc-
tion band discontinuous is 116 meV for the situation of compressive strained

well (GaIn0.25As), and 109 meV for tensile strained barrier (GaAs).

Table 8.3: Parameters of GaAs/GaIn0.25As band alignment. The positive and
negative signs in front of the percentages in the row alc represent tensile and

compressive strain respectively.

parameters GaAs(unst.) GaIn0.25As(st.) GaAs(st.) GaIn0.25As(unst.)
EΓ

g (eV) 1.519 1.239 1.268 1.154
Δso (eV) 0.341 0.403 0.476 0.325
m∗

e(Γ) 0.067 0.0596 0.0578 0.055
ε 12.9 13.46 12.9 13.46

alc (Å) 5.653 5.755(-1.8%) 5.653(1.8%) 5.755
ΔEc (meV ) 116 0 109 0
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8.3.2.2 GaAsSb system

For the purpose to choice GaAsSb ternary compound material that can comprise

a combination of a smaller electron effective mass barrier and a larger mass well,

we show the conduction band edge (Eq. (8.14b)) and electron effective mass for

variety Sb concentration x of GaAsSb in different strain situation in Fig. 8.3.

In (a) and (b), the x−axis is the Sb concentration for the strained-layer, and

the y−axis is the Sb concentration difference between the unstrained-layer (white

mesh) and the strained-layer (black mesh); while the roles of the strained and

unstrained layers are in reverse order in (c) and (d). We can find in (a) and (b)

that the well is the strained layer with lower concentration and smaller electron

effective mass than the barrier (unstrained layer). In (c) and (d), the well is the

unstrained-layer and has larger effective mass than the barrier (strained-layer).

Figure 8.3: Conduction band edge Ec (a), (c) and electron effective mass me

(b), (d) for different Sb concentration x of GaAsSb. “st”and “unst”represent
strained and unstrained layers respectively.

Therefore, we choice the combination GaAsSb0.49/ GaAsSb0.22 as an example, and

show the parameters and band lineup of it in Table 8.4 and Fig. 8.4 respectively.
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Table 8.4: Parameters of GaAsSb0.49/ GaAsSb0.22 band alignment. The posi-
tive and negative signs in front of the percentages in the row alc represent tensile

and compressive strain respectively.

parameters GaAsSb0.49(unst.) GaAsSb0.22(st.) GaAsSb0.49(st.) GaAsSb0.22(unst.)
EΓ

g (eV) 0.815 0.823 0.92 1.118
Δso (eV) 0.396 0.493 0.488 0.33
m∗

e(Γ) 0.0533 0.0473 0.0606 0.0608
ε 14.27 13.52 14.27 13.52

alc (Å) 5.87 5.751(2%) 5.87(-2%) 5.751
ΔEc (meV ) 172 0 171 0

Figure 8.4: Band lineup diagram of GaAsSb0.49/GaAsSb0.22. Solid lines
are unstrained band alignment, and dash lines stand for the alignment being
strained. hh and lh represent heavy-hole and light-hole band respectively. The
conduction band discontinuous is 172 meV for the situation of tensile strained
well (GaAsSb0.22), and 171 meV for compressive strained barrier (GaAsSb0.49).

8.3.2.3 InAsSb system

Similar to the GaAsSb system discussed in 8.3.2.2, we show the conduction band

edge (Eq. 8.14b) and electron effective mass for variety Sb concentration x of

InAsSb in different strain situation in Fig. 8.5. However, there exists a region

(indicated by an arrow in (a)) that the strained layer with lower Sb concentration

has higher conduction band edge Ec , and a region (indicated by an arrow in (b))

that the electron effective mass of the strained layer is larger than the unstrained

layer for specific Sb concentrations of strained and unstrained layers. If we want

the strain on the well material having larger electron effective mass in comparison

to the barrier, we need to choice the difference of the arrow indicated regions in
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(b) and in (a). But, for considering reasonable large ΔEc, we select the com-

bination InAsSb0.25/ InAs to be discussed. The parameters and band lineup of

the combination are shown in Table 8.5 and Fig. 8.6 respectively. Although, the

unstrained InAsSb0.25 as a barrier has slightly larger electron effective mass than

strained InAs well, we can still achieve our purpose and the results will be shown

in Chapter 9.

Figure 8.5: Conduction band edge Ec (a), (c) and electron effective mass me

(b), (d) for different Sb concentration x of InAsSb. “st” and “unst”represent
strained and unstrained layer. The arrows show the regions with different rela-
tive values of strained and unstrained layers in comparison to other regions.

8.3.2.4 GaInPSb system

For quaternary compound material, we have large degree of freedom to select a

combination to achieve the purpose. The band lineup and parameters of Ga 0.3InSb0.9P/

Ga0.2InSb0.8P as an example are shown in Fig. 8.7 and in Table 8.6 respectively.

Whether the strain is on the well or on the barrier, the electron effective mass of

the barrier is smaller than that of the well (Table 8.6).
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Figure 8.6: Band lineup diagram of InAsSb0.25/InAs. Solid lines are un-
strained band alignment, and dash lines stand for the alignment being strained.
hh and lh represent heavy-hole and light-hole band respectively. The conduction
band discontinuous is 17 meV for the situation of tensile strained well (InAs),

and 23 meV for compressive strained barrier (InAsSb0.25).

Table 8.5: Parameters of InAsSb0.25/ InAs band alignment. The positive and
negative signs in front of the percentages in the row alc represent tensile and

compressive strain respectively.

parameters InAsSb0.25(unst.) InAs(st.) InAsSb0.25(st.) InAs(unst.)
EΓ

g (eV) 0.246 0.237 0.279 0.417
Δso (eV) 0.27 0.507 0.359 0.39
m∗

e(Γ) 0.0163 0.0161 0.0188 0.026
ε 15.56 15.15 15.56 15.15

alc (Å) 6.163 6.058(1.7%) 6.163(-1.7%) 6.058
ΔEc (meV ) 17 0 23 0

Table 8.6: Parameters of Ga0.3InSb0.9P (Barrier)/ Ga0.2InSb0.8P (Well) band
alignment. The positive and negative signs in front of the percentages in the

row alc represent tensile and compressive strain respectively.

parameters Barrier(unst.) Well(st.) Barrier(st.) Well(unst.)
EΓ

g (eV) 0.431 0.38 0.444 0.422
Δso (eV) 0.698 0.624 0.711 0.606
m∗

e(Γ) 0.0265 0.0287 0.0273 0.0314
ε 16.03 15.71 16.03 15.71

alc (Å) 6.302 6.279(0.4%) 6.302(-0.4%) 6.279
ΔEc (meV ) 158.3 0 159.2 0
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Figure 8.7: Band lineup diagram of Ga0.3InSb0.9P/Ga0.2InSb0.8P. Solid lines
are unstrained band alignment, and dash lines stand for the alignment being
strained. hh and lh represent heavy-hole and light-hole band respectively.
The conduction band discontinuous is 158 meV for the situation of tensile
strained well (Ga0.2InSb0.8P), and 159 meV for compressive strained barrier

(Ga0.3InSb0.9P).

8.4 Scattering Mechanisms

In this work we study the low temperature regime based on the first Born approx-

imation (Eq. (8.1)) when scattering mechanisms depending on the well thickness

are taken into consideration [79, 83]. The scattering mechanisms considered are

interface roughness scattering (8.4.1), alloy disorder scattering (8.4.2), and ionized

impurity scattering (8.4.3).

8.4.1 Interface Roughness Scattering (IRS)

The interface roughness causes a modification in the well width and can be ex-

pressed as [80, 87]

〈Δ(r)Δ(r′)〉 = Δ2
r exp(−

|r − r′|2

Λ2
r

), (8.17)

where 〈...〉 represents an average, Δr stands for the mean height of roughness,

and Λr is the correlation length of the Gaussion fluctuation. The well width

modification leads a energy fluctuation

δE(r) =
∂E

∂l
Δr(r). (8.18)
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Thus the square of the matrix element from k state to k′ state can be expressed

as [79, 83, 94]

|M |2 =
πΔ2

rΛ
2
r

A
(
∂E

∂l
)2 exp(−

Λ2
rq

2

4
), (8.19)

and the transport relaxation time τ form Eq. (8.1) is given by3

1

τ
=

Δ2
rΛ

2
r

2~
(
∂E

∂l
)2

∫
SC exp(−

Λ2
rq

2

4
)(1 − cos θ)δ(Ek − Ek′)d2k′ (8.20a)

=
mt(E)Δ2

rΛ
2
r

2~3
(
∂E

∂l
)2F (Λr, k), (8.20b)

where

F (Λr, k) =

∫ 2π

0

SC exp[
−Λ2

rk
2(1 − cos θ)

2
](1 − cos θ)dθ. (8.20c)

8.4.2 Alloy Disorder Scattering (ADS)

The random potential of the alloy disorder scattering is expressed as [83]

〈
|Ualloy(q)|

2〉 =
1

A
Ωα(1 − α)(ΔV )2

∫

alloy

|ϕ(z)|4 dz. (8.21)

Substituting Eq. (8.21) into Eq. (8.1) for |M |2 yields

1

τ
=

mt(E)

2π~3
Ωα(1 − α)(ΔV )2

∫

alloy

dz |ϕ(z)|4
∫ 2π

0

SC(1 − cos θ)dθ. (8.22)

In the equation, Ω stands for the volume of the alloy primitive unit cell4, α is

the concentration of the alloy AαB1−αC, and ΔV is the conduction band energy

difference between AC and BC. For quaternary compounds, we use

x(1 − x)[(1 − y)(ΔVABD(x))2 + y(ΔVABC(x))2]

x(1 − x) + y(1 − y)

+
y(1 − y)[(1 − x)(ΔVBCD(y))2 + x(ΔVACD(y))2]

x(1 − x) + y(1 − y)
. (8.23)

through Eq. (8.13) to replace α(1 − α)(ΔV )2 in Eq. (8.22).

3We change the variable: d2k′ → k′dk′dθ → k′(dE′/dk′)−1dE′dθ, and use the dispersion
relation (Eq. 8.11).

4It has one quarter the volume of the conventional cubic cell for face-centered cubic Bravais
lattice.
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8.4.3 Ionized Impurity Scattering

The random potential for Coulomb scattering is [79, 83, 94]

〈| U(q)|2〉 = (
e2

2εε0q
)2

∫
ni(z)F (q, z)2dz, (8.24a)

where

F (q, z) =

∫
|ϕ(z′)|2 e−q|z−z′|dz′, (8.24b)

ni(z) is the impurity concentration, and ε is the dielectric constant of the host

material. If there is a 2D sheet impurity5 with density Ni located at a distance zi

from the boundary of a QW (see Fig. 9.7), the random potential (Eq. (8.24a))

becomes

〈| U(q)|2〉 = (
e2

2εε0q
)2NiF (q, zi)

2. (8.24c)

For background impurity scattering (BIS), we assume the background impurity

concentration is a constant NB inside and outside the QW. The electron scattering

time satisfies

1

τ
=

mt(E)

2~3

∫ 2π

0

(
e2

2εε0q
)2NBSC(1 − cos θ)F (q, zi)

2dθ. (8.24d)

The electron scattering time τ and mobility μ = eτ/mt determined by these

mechanisms can be obtained using the rectangular finite barrier QW model [83]

with a mismatch in the effective mass at the heterojunctions [78, 95] (see Appendix

D). In our calculation, we assume that all the scattering events are involved with

the electrons only at the Fermi-level, and independent of temperatures.

5In usual, it is called remote impurity and is doped on purpose.
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Results & Discussion

In Figs. 9.1 to 9.4 we present the calculated electron transport effective mass

mt, the confinement energy E0, and the electron transport mobility μ of the four

selective cases as functions of the QW thickness l . The scattering mechanisms

including interface roughness scattering, alloy disorder scattering, and impurity

scattering (Section 8.4) are applied to calculate the transport scattering time τ .

9.1 Electron Transport Effective Mass

For the case (i) in Fig. 9.1, where the structure is formed by a type-I heterojunction

(Fig. 8.2), both the effective mass and the confinement energy increase as the well

thickness is reduced whether the strain is on the well (Fig. 9.1 (a)) or on the barrier

(Fig. 9.1 (c)). In contrast, the cases (ii), (iii) and (iv), which are type-II band

alignments, behave differently. For the strained barrier situation of the case (ii) as

shown in Fig. 9.2 (c), the electron transport effective mass has a well recognized

maximum when the thickness of the QW is close to 5 nm. The cases (iii) and (iv),

even more, show totally opposite dependencies of the electron transport effective

mass and the confinement energy on the QW thickness regardless of strained well or

strained barrier. While the confinement energy increases as expected, the electron

transport effective mass, however, becomes smaller for thinner well thickness.

The dependencies between the electron transport effective mass and the confine-

ment energy of the different cases rely on how the QWs are constructed. In the

case (i), and all other type-I band lineups, which the bandgaps of the barriers are

82
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Figure 9.1: Calculation results of the electron transport effective mass mt,
the confinement energy E0, and the transport mobility μ as functions of the
well width l for the strain on the well (a), (b) and on the barrier (c), (d) of
the case GaAs/GaIn0.25As. The used parameters: the background impurity
concentration NB = 1× 1015cm−3, the remote delta doping concentration Ni =
3× 1010cm−2 at a distance 20 nm below the lower edge of the well, the electron
density in the channel n0 = Ni, and the interface roughness parameters Δr = 0.1

nm, and Λr = 15 nm [96].

larger than that of the wells, the electron effective mass in the barrier regions is

larger than that in the QWs. Both the effects of the band non-parabolicity (Eq.

(8.6)) and the wavefunction penetrating into the barriers (Eq. (8.9)) result in an

increase of the electron transport effective mass as the QW thickness is reduced.

However, for the cases that the electron effective mass of the barrier is smaller

than or comparable to that of the QW; when the well thickness is reduced, al-

though the non-parabolicity effect will cause the electron transport effective mass

to increase, the increasing of wavefunction penetration into the barriers will lead

to the electron transport effective mass to decrease. The competition of the two

mechanisms can be seen clearly in the cases (ii), (iii), and (iv). In the strained
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Figure 9.2: Calculation results of the electron transport effective mass mt,
the confinement energy E0, and the transport mobility μ as functions of the
well width l for the strain on the well (a), (b) and on the barrier (c), (d) of the
case GaAsSb0.49/GaAsSb0.22. The used parameters: the background impurity
concentration NB = 1× 1015cm−3, the remote delta doping concentration Ni =
4× 1010cm−2 at a distance 20 nm below the lower edge of the well, the electron
density in the channel n0 = Ni, and the interface roughness parameters Δr = 0.3

nm, and Λr = 20 nm [97].

barrier situation of the case (ii), the electron transport effective mass has a max-

imum in its dependence on the well width. The 0.17 eV conduction band offset

and not very small electron effective mass of GaAsSb0.22 (Table 8.4) contribute to

strong localized electrons. In addition, the effective mass difference between the

well and the barrier in this case is small compared to the case (iv). These lead to a

smaller influence of the barriers than that of the non-parabolicity effect when the

QW thickness is larger than 5 nm. However, when the QW thickness is further

reduced, the contribution from the small mass barriers becomes stronger than the

non-parabolicity effect. As a result, the electron transport effective mass begins to

go down. In contrast, although the barrier effective mass is slightly larger than well
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Figure 9.3: Calculation results of the electron transport effective mass mt, the
confinement energy E0, and the transport mobility μ as functions of the well
width l for the strain on the well (a), (b) and on the barrier (c), (d) of the case
InAsSb0.25/InAs. The used parameters: the background impurity concentration
NB = 1× 1015cm−3, the remote delta doping concentration Ni = 1× 1010cm−2

at a distance 20 nm below the lower edge of the well, the electron density in the
channel n0 = Ni, and the interface roughness parameters Δr = 0.68 nm, and

Λr = 20 nm [98].

effective mass in the strained well situation of the case (iii), the electron transport

effective mass goes down continuously for the well thickness less than 10 nm. For

the very low bandgap material, because of the strong non-parabolicity effect, the

electron effective mass of the well becomes larger than the barrier effective mass

even for a small confined energy. This together with the very small effective mass

(0.0161 m0) of the electron and the shallow confinement of the barrier give rise to

a dominant contribution from the penetration effect. In short, if type-II QWs are

properly designed, the penetration effect of the electron wavefunction can become

dominant and bring about a situation that the electron transport effective mass

goes down while the confinement energy goes up in thin QWs.
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Figure 9.4: Calculation results of the electron transport effective mass mt, the
confinement energy E0, and the transport mobility μ as functions of the well
width l for the strain on the well (a), (b) and on the barrier (c), (d) of the case
Ga0.3InSb0.9P/Ga0.2InSb0.8P. The used parameters: the background impurity
concentration NB = 1× 1015cm−3, the remote delta doping concentration Ni =
1× 1011cm−2 at a distance 20 nm below the lower edge of the well, the electron
density in the channel n0 = Ni, and the interface roughness parameters Δr =

0.68 nm, and Λr = 20 nm [98].

9.2 Electron Transport Mobility

The electron transport in semiconductors depends not only on the transport ef-

fective mass mt but also on the scattering time τ. For thin QWs, the various

scattering mechanisms except for the background impurity scattering are usually

high correlation functions of the well thickness. Using Eqs. (8.20), (8.22), and

(8.24), we calculated the scattering times for IRS, ADS, BIS, and remote impurity

scattering (RIS), and then calculated the mobility contributed by these mecha-

nisms as a function of the QW thickness respectively. The electron transport
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effective mass obtained from Section 9.1 also enters the scattering time calcula-

tion due to the use of the E-k relationship (8.11) in the integral (8.1). In our

simulations of the electron mobility, the carrier density n0 is set such that the

Fermi-level is ∼1 meV above the bottom energy of the first electronic sub-band in

the well. And we assume that the concentration of the remote delta doping Ni is

the same as n0. Because the experimental data of the interface roughness param-

eters for some of the cases in our calculation is not available in the literatures so

far, we use the parameters of similar combinations of materials in Refs. [96–98].

It should be mentioned that the tendency of the mobility to the QW thickness is

not influenced by using different roughness parameters for IRS calculations.

Figures 9.1 to 9.4 show the calculated mobilities caused by different scattering

mechanisms as functions of the QW thickness l for the strained well (in (b)) and

barrier (in (d)) situations of the four cases respectively. We can find that, for the

thin QWs in the cases (i), (ii), and (iv), the interface roughness scattering (IRS)

is strongly correlated to the well thickness similar to the previously published

results that the electron mobility goes down as the QW thickness decreases [83].

It is, however, possible, as in the case (iii), the mobilities due to the four different

mechanisms increase when the QW thickness is reduced.

The reason that the mobility determined by IRS increases as the QW thickness

decreases is the scattering time (Eq. (8.20)) at the Fermi-energy inversely pro-

portional to the transport effective mass mt and the squared differential of the

energy to the QW thickness (∂E/∂l)2. Figure 9.5 shows the amplitude of the dif-

ferential |∂E0/∂l| as a function of the QW thickness l for the four different cases.

The amplitude of the derivative |∂E0/∂l| (see Eq. (D.6)) is a complex function of

the material parameters such as the band discontinuity (V0), the electron effective

mass of the barrier and well (mB and mQW ), and their differentiation etc. The dis-

tinctive band lineup constructed by a proper conduction band discontinuity with

small electron effective mass of the barrier and the well of the case (iii) result in a

decrease of the derivative |∂E0/∂l| with reducing well thickness. Therefore, as the

QW thickness decreases, the transport scattering time and mobility determined

by IRS increase.

Not only that, the mobility determined by the alloy disorder scattering (ADS) also

increases as the well thickness deceases in the case (iii). It seems to know intuitively

that the scattering should be stronger when more electron wavefunction penetrates

into a region constructed by an alloy. However, we need to keep in mind that
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(a) (b)

(c) (d)

Figure 9.5: Absolute value of the differentiation of the energy to the QW
thickness for the cases (i) (a), (ii) (b), (iii) (c), and (iv) (d) in the strained well

(solid line) and strained barrier (dot line) situations.

the alloy disorder scattering time is determined by
∫

alloy
|ϕ(z)|4 dz in Eq. (8.22).

Therefore, we show the results of the integrations
∫
|ϕ(z)|2 dz and

∫
|ϕ(z)|4 dz

in the barrier and well regions of the cases (ii) and (iii) in Fig. 9.6. Figure 9.6

shows that
∫
|ϕ(z)|4 dz is not just proportional to

∫
|ϕ(z)|2 dz. In Fig. 9.6 (b),

the integration
∫
|ϕ(z)|4 dz in the well increases as the well thickness decreases

for the thickness 5 ∼ 11 nm, although the probability of finding the electron (
∫
|ϕ(z)|2 dz) in the QW is reduced when the well thickness decreases in Fig. 9.6

(a). On the other hand, in Fig. 9.6 (d), although the probability of finding the

electron (
∫
|ϕ(z)|2 dz)) in the barrier increases when the well thickness decreases

(Fig. 9.6 (c)), the integration
∫
|ϕ(z)|4 dz in the barrier becomes smaller as the

well thickness decreases (Fig. 9.6 (d)). The integration
∫
|ϕ(z)|4 dz determines

the degree of localization of a wavefunction. For the case of InAsSb0.25/InAs,

the spreading of the wavefunction in the barrier region becomes more serious (
∫
|ϕ(z)|4 dz decreases) for thinner well thickness. The random potential of the

disordered alloy, hence, is “diluted” for a spreading wavefunction compared to a
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Figure 9.6: Integration of the wavefunction absolute value square
∫
|ψ|2 dz and

to the fourth
∫
|ψ|4 dz of GaAsSb0.49/GaAsSb0.22 (a), (b) and InAsSb0.25/InAs

(c), (d) in the strained well situation respectively.

localized wavefunction. This gives rise to a increase of ADS determined mobility

even for a larger probability of finding electrons in a alloy region when the well

thickness decreases.

For the remote impurity scattering (RIS), the mobility is determined by the

Coulomb interaction between the transport carriers and doping impurities, i.e.

by the average distance between them. Thus, in usual, RIS determined mobility

will decrease as the QW thickness decreases1 such as in the cases (i), (ii), and (iv).

But, in the case (iii), the result is opposite. To illustrate the special case, we show

the diagram of the electron wavefunction and the mobility determined by RIS with

different doping distance zi of the case (iii) in Fig. 9.7. The diagram in (a) can

illustrate that a lot of wavefunction in this case penetrates into the barrier even for

the 10 nm thickness well, and it expands rapidly when the well thickness deceases.

If the delta remote impurity is doped near the well, the expanding wavefunction

becomes far from the doping instead of close to it like in usual cases when the

1The distance between the remote doping and the boundary of the QW remains the same.
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QW thickness is reduced. However, when the delta doping is situated away from

the QW, the mobility behaves more like in the cases (i), (ii), and (iv). This can

be clearly seen in Fig. 9.7 (b) showing the dependency of the mobility to the well

thickness gradually modified when the doping distance zi is changed from 10 nm

to 80 nm. Hence, in this case, the tendency of RIS determined mobility to the

QW thickness is dependent on the doping distance zi.

Figure 9.7: (a) Illustration diagram of the electron wavefunction for the well
thickness 10 nm and 2 nm. (b) Mobility determined by the remote impurity
scattering as functions of the well thickness for the distance of the delta doping
to the bottom of the QW zi =10 nm, 20 nm, 40nm, and 80nm of InAsSb0.25/InAs

in the strained well situation.
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Conclusion

10.1 Well-thickness Dependent Electron Trans-

port Effective Mass and Mobility

In conclusion, we presented theoretical results on the transport property of quan-

tum wells at zero temperature. We processed a method to simulate the quantum

well electron transport effective mass including both the band nonparabolicity and

spread wavefunction effects especially for low bandgap materials. Four mechanisms

including the interface roughness, alloy disorder, background impurity, and remote

impurity scatterings were used to determine the electron transport mobility. With

a proper combination of barrier and well materials in a type-II heterostructure, we

managed to achieve the “inverse”transport properties that the electron transport

effective mass decreases and the mobility increases as the well thickness decreases.

Although our simulation was performed at the low temperature limit, the results

can be potentially useful for further device applications.

10.2 Recommendations for Future Research

Based on the calculation results of this study, further research on measuring the

effective mass and mobility of electrons in QWs is therefore warranted. We sug-

gest to perform experiments such as the Hall and Shubnikov de Haas oscillation

measurements [99] on the InAsSb/InAs system at low temperatures. Although
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the measured result is not exactly the “transport” effective mass and mobility,

it is worthy to obtained the tendency of theses measured properties to the QW

thickness.



Appendix A

Kerr Measurement & Generalized

Ellipsometry

Figure A.1: Diagram of the Kerr measurement.

The complex amplitude of the reflected electric field after a analyzer with a az-

imuthal angle A can be expressed as

EA =

(
1 0

0 0

)(
cos A sin A

− sin A cos A

)(
rpp rsp

rps rss

)(
cos Π

sin Π

)

Ein (A.1)

= Einrss cos Π[(Rpp + Rsp tan Π) cos A + (Rps + tan Π) sin A].

Where Ein is the complex amplitude of the electric field before a polarizer and

other quantities are defined as in Section 2.2. Taking the square of the absolute

value of (A.1), The measured intensity of the light after an analyzer is

I(A) = |Ein|
2 |rss|

2 cos2 Π |(Rpp + Rsp tan Π) cos A + (Rps + tan Π) sin A|2

= I0(1 + α cos 2A + β sin 2A), (A.2)
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where

α =
|Rpp + Rsp tan Π|2 − |RpsRpp + tan Π|2

|Rpp + Rsp tan Π|2 + |RpsRpp + tan Π|2
, (A.3a)

and

β =
2Re{(Rpp + Rsp tan Π)(RspRpp + tan Π)}

|Rpp + Rsp tan Π|2 + |RpsRpp + tan Π|2
. (A.3b)

To measure Rsp and Rps, we can choose several polarizer azimuthal settings Π

[16, 53] or use the experimental set up in Fig. A.1, which is similar to the Kerr

measurement [100]. The p- and s- components of the electric field after the analyzer

(Ep
A, Es

A ) and the polarizer (Ep
P , Es

P ) can be related by

(
Ep

A

Es
A

)

=

(
rpp rsp

rps rss

)(
Ep

P

Es
P

)

. (A.4)

If we let Ep
P = 0, i.e. only s- component is incident to the sample, Eq. (A.4)

becomes (
Ep

A

Es
A

)

=

(
rspE

s
P

rssE
s
P

)

. (A.5)

Takeing the ratio of the two components of the vector in Eq. (A.5), we obtain

Ep
A

Es
A

=
rsp

rss

= Rsp = φ′
s + iφ′′

s , (A.6)

where φ′
s and φ′′

s are usually called Kerr rotation and ellipticity. Thus, to obtain

φ′
s and φ′′

s , we can use the configuration shown in Fig. A.1 with a small analyzer

angle δ ∼ 0.2◦ instead of 0◦ that effectively determine the small p- component of

the reflected light [100]. The light intensity after the analyzer is

IKerr = |Ep
A cos δ + Es

A sin δ|2

≈ |Ep
A + Es

Aδ|2

= |Es
A|

2 |δ + φ′
s + iφ′′

s |
2

(A.7a)

If φ′
s and φ′′

s are small,

IKerr ≈ |Es
A|

2 (δ2 + 2δφ′
s)

≡ Izero(1 +
2φ′

s

δ
). (A.7b)
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Where Izero is the intensity at zero Kerr rotation. To measure φ′′
s , we placed a

quarter-wave plate in front of the analyzer, Eq. (A.7b) becomes

Izero(1 +
2φ′′

s

δ
). (A.7c)

Replacing the measurement results of α, β, φ′
s, and φ′′

s (assume rsp ∼ rps) into

Eqs. (A.3a), (A.3b), we can obtain Rpp (tan Ψpp and Δpp).

We evaluate the effect from the off-diagonal terms by comparing the results with

and without Rsp and Rps . We show the results of a MBE-grown GaAs sample at

12 T as an example in Fig. A.2. We can find that the difference between the two

different treatments is small and does not affect the interpretation of the data.

Thus, we neglect the effect of the off-diagonal terms on the diagonal terms of the

GaAs sample in this work.

Figure A.2: Comparison of Ψσ
pp (left-axis) and Δσ

pp (right-axis) spectra of
GaAs epitaxial layer at 12 T with (solid) and without (open) the contribution

of Rsp and Rps .



Appendix B

Error Analysis of Ellipsometry

Parameters

The small fluctuations dΨeff
pp and dΔeff

pp can be obtained from the derivative of Eqs.

(2.11a) and (2.11b).

dΨeff
pp = [

cos2 Ψeff
pp(tan2 P + tan2 Ψeff

pp)
2

4 tan Ψeff
pp tan2 P

]dα, (B.1a)

and

dΔeff
pp =

1

sin Δeff
pp(1 − α2)3/2

[(α2 − 1)dβ − (αβ)dα]. (B.1b)

As P ∼ Ψeff
pp and Δeff

pp ∼ 90◦(α and β ∼ 0 from Eqs. (2.11a) and (2.11b)), both

dΨeff
pp and dΔeff

pp are minimized. That is, for a rotating-analyzer ellipsometer, a

better precision can be achieved if the light before the rotating analyzer is nearly

circular polarized, i.e. P ∼ Ψeff
pp and Δeff

pp ∼ 90◦.

The small fluctuations of the Fourier coefficients dα and dβ can be derived from

Eq. (2.10). The Fourier coefficients α′, β′ and the average intensity I
′

D with small

fluctuations of the intensities dIi and the analyzer angles dAi (i = 1, 2, 3, ...N ) can

be written as

α′ =
2

I
′

DN

N∑

i=1

(Ii + dIi) cos[2(Ai + dAi)], (B.2a)

and

β′ =
2

I
′

DN

N∑

i=1

(Ii + dIi) sin[2(Ai + dAi)]. (B.2b)
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We assume that the fluctuations of intensities and analyzer angles are both con-

stants, i.e. dIi = dID = dI and dAi = dA, for each analyzer angle Ai when α, β

are small (Ii ∼ ID). By expanding the equations above and dropping the smallest

terms, we can obtain

dα =
−δ

1 + δ
α +

− sin 2dA

1 + δ
β +

δ

1 + δ

2

N

N∑

i=1

cos 2Ai, (B.3a)

and

dβ =
−δ

1 + δ
β +

− sin 2dA

1 + δ
α +

δ

1 + δ

2

N

N∑

i=1

sin 2Ai, (B.3b)

where δ is defined as dI/ID. If Ai are chosen symmetrically (i.e. Ai and Ai +180◦

for Ai < 90◦), the last term in both Eqs. (B.3a) and (B.3b) becomes zero. The

related parameters causing the error of the Fourier coefficients are the intensity

fluctuation δ, the random error of the analyzer angle dA, the random choice of

the analyzer angles (the last summation terms of Eqs. (B.3a) and (B.3b)) and the

choice of the polarizer angle Π.



Appendix C

Extreme Value and Its

Corresponding Analyzer angle of

a RAE Intensity Distribution

To find out the maximum/minimum intensity of an ellipse and the corresponding

analyzer angle Ac, we differentiate Eq. (2.9a) with respect to A. The angle Ac

satisfies the relation

tan(2Ac) =
β

α
. (C.1)

Substituting Eqs. (C.1), (2.11a) and (2.11b) into Eq. (2.9a) and analyzing the

sign of Eq. (2.9a) (see Table C.1), we can find that the maximum intensity will be

in the first and the third quadrants if 0◦ 6 Δpp < 90◦( β > 0), and in the second

and the fourth quadrants if 90◦ 6 Δpp 6 180◦( β 6 0).

Because the domain of Δpp is in the range of 0◦ to 180◦ for cos Δpp in Eq. (2.11b),

we cannot distinguish whether Δpp is larger than 180◦ or not. For example, Δpp =

150◦ and Δpp = 210◦(−150◦) show exactly the same elliptical intensity distribution

for an identical Ψpp. However,we can determine the handedness of the polarisation

state of the reflected light or the sign of Δpp with the help of using a quarter-wave

plate before the rotating analyser. if a quarter-wave plate is added in front of

a rotating analyzer, the maximum intensities will be in different quadrants, and

thus the Δpp values can be identified. (see Fig. C.1).
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Table C.1: Maximum and minimum values of the elliptical intensity distribu-
tion for Ac in different domains.

Domain β/α Maximum (β > 0) Minimum (β 6 0)
0◦ 6 2Ac < 90◦ > 0 1 + α cos 2Ac + β sin 2Ac 1 − |α| cos 2Ac − |β| sin 2Ac

90◦ 6 2Ac 6 180◦ 6 0 1 + |α| |cos 2Ac| + β sin 2Ac 1 − α |cos 2Ac| − |β| sin 2Ac

Figure C.1: Comparison of the elliptical intensity distributions with (b) and
without (a) a quarter wave plate.



Appendix D

Finite-Well with Effective Mass

Mismatch at Heterojuctions

Figure D.1: Diagram of a wavefunction in a QW.

The Schrödinger equation can be written for each region as follows

[−
~2

2mb(En)

∂2

∂z2
+ V0]ϕ(z) = Enϕ(z), z ≤ −

l

2
(D.1a)

−
~2

2mw(En)

∂2

∂z2
ϕ(z) = Enϕ(z), −

l

2
≤ z ≤

l

2
(D.1b)

[−
~2

2mb(En)

∂2

∂z2
+ V0]ϕ(z) = Enϕ(z), z ≥ −

l

2
(D.1c)
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Considering the symmetry of the problem, the solutions are either even parity or

odd parity. The wavefunctions for the even parity states yield

ϕ(z) = B exp(κz), z ≤ −
l

2
(D.2a)

ϕ(z) = A cos(kz), −
l

2
≤ z ≤

l

2
(D.2b)

ϕ(z) = B exp(−κz), z ≥
l

2
(D.2c)

where

k =

√
2mwEn

~
, and κ =

√
2mb(V0 − En)

~
. (D.3)

The boundary conditions1 of the envelope functions for electron transport across

a heterojunction are [101, 102]:

both ϕ(z) and
1

m

∂

∂z
ϕ(z) continuous. (D.4)

Thus we can obtain the relation between k and κ

κ

k
=

mb

mw

tan(
kl

2
). (D.5)

Replacing Eg. (D.3) to Eg. (D.5) and taking the derivative of both sides to l, we

can obtain

∂En

∂l
=

2Enz

lz+
√

2~[mb+m′
b(En−V0)]√

m′
b(V0−En)

+ Enlzm′
w

mw
+

√
2~ tan η[2Enmwm′

b+mb(mw−Enm′
w)]

(Enm3
w)1/2

,

(D.6)

where m′
b = ∂mb/∂En, m′

w = ∂mw/∂En, z = mb sec2 η, and η = (Enmwl2/2~2)1/2.

And considering the symmetry and using the normalization condition

|A|2
∫ l/2

0

cos2 kz dz + |B|2
∫ ∞

l/2

exp(−2κz) dz =
1

2
, (D.7)

we can obtain the normalization coefficients

B2 =
eκl(1 + cos kl)

l + k−1 sin kl + κ−1(1 + cos kl)
, (D.8a)

and

A2 =
2

l + k−1 sin kl + κ−1(1 + cos kl)
. (D.8b)

1The conditions have been know as the BenDaniel-Duke boundary conditions.
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