AR P e B EE I TR £5 B B 1T K

On Mining Moving Patterns for Object Tracking Sensor

Netwaorks

R B A L=

TS IS R AT

Hr & XN B e A 1 F A F



£ SR P e B AF B P R A BB IS A8

On Mining Moving Patterns for Object Tracking Sensor
Networks

Bop o4 reatiE Student : Yu-Jen Ko

hERRE I EYE Advisor : Wen-Chih Peng

= 3
|4
~ 4

-
=B e
R (=
Ao -

A Thesis
Submitted to Department of Computer Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
Oct 2005

Hsinchu, Taiwan, Republic of China

PEARA e gL



¥ &

§OT RSB S PP R AR TRAR S T A T T AR R
BoPHBFEH2 A0 3 g80k" 2 - c AN PMB R L 2R
AP - G S HTM g 25 = FR P EB FE e E 298 -
Y- 25 od WM ol 2w At 4B i T B A variable
memory Markov 7 3¢ ke dF 8 F R B B4R 30 o £ F o o 22 HTM 5 1 A chi i
A PR BERS LG R RITR c RRIFE DB R P
D HTM 3 B 7 s SRR A BB > i m "% MR R R i E4F
oo LRGSR HTM & 25 B - TR frff B IR oifRIF B o & F

A feif g B? R RIBRRAFFRBIE T F ORI ES RS

*‘m}%

B § TR R ER Y © RN B B e TR o ATRIER
Co R RIER G REUR G 0 R LR R R E € ek IS B R R
FIER AP e gt o I RREEER G APRNA BN K22
HTM 2 - ss gt g e 2 e F B e sEl 20 Pde 1 ch HTM i 59 5 o 178
TR EERNE LR -

MeEF - PHEHD TRER O TR E T A )



Abstract

The rapid progress of wireless communication and embedded technologies
has made wireless sensor networks possible. Since sensor networks are typically
used to monitor the environment, one promising application of sensor networks
is object tracking. Based on the fact that the movements of the tracked objects
generally reflect periodic behaviors, we propose a heterogeneous tracking model,
referred to as HTM, to efficiently mine object moving patterns and track objects.
Specifically, since the movements of objects have the feature of dependencies, we
explore variable memory Markov to mine object moving patterns. Furthermore,
due to the hierarchical feature of HTM, multi-resolution object moving patterns
are provided. In light of object moving patterns, our proposed HTM is able to
accurately predict the movements of objects and thus reduces the energy
consumption for object tracking. Explicitly, HTM consists two phases: data
collection and mining phase and prediction phase. In data collection and mining
phase, all sensors will turn on and monitor the whole sensing region to collect
movements of objects. Once collecting sufficient movements of objects, sensor
nodes will be in prediction phase. In prediction phases, sensor nodes turn to
sleep modes so as to save energy:consumption. Only selected sensor nodes will be
activated to track objects according to the object moving patterns. Moreover,
due to the storage constraint.on sensor-nodes, we devise two storage strategies
to build HTM. Performance of the proposed HTM is analyzed and sensitivity
analysis on several design parameters is conducted. Simulation results show
that HTM is able to not only effectively mine object moving patterns but also
efficiently track objects.

Keywords —Object Tracking, data mining, variable memory Markov
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1 Introduction

Recent advances in wireless and embedded technologies usher in a new era for our lives. It
is expected that an increasing number of small and inexpensive wireless devices (referred
to as sensor nodes) are deployed for monitoring various measurements such as temperature,
pressure and movements. Applications of wireless sensor networks span a large variety of
domains from ecological monitoring to military environments. Due to the nature of wireless
sensor networks, sensors have several resource limitations such as power consumption, limited
computing capability, smaller storage space and low bandwidth in communications. These
limitations of wireless sensor networks have lead to the challenges and issues to the design of
sensor networks [1][3][4][8][10].

Since sensor networks are typically used to monitor the environment, one promising appli-
cation of sensor networks is object tracking. Qbject:tracking sensor networks consist of detect-
ing and monitoring locations of moving objects: It is believed that an object tracking sensor
network (abbreviated as OTSN) is viewed ‘asroneof the killer applications [2][5][6][11][12][14][15].
An object tracking sensor network is designed for tracking objects with their corresponding
unique identifications. In object tracking sensor networks, a number of sensor nodes are de-
ployed over a monitor region. Assume that sensor nodes in the OTSN are static and one
sink is required to be the interface for issuing queries and collecting the location of objects.
Sensor nodes sense objects with a given sampling frequency to obtain the up-to-date location
of objects. Data is reported to the sink according to a report frequency required. Data are
sent to the sink via multi-hop communications among sensor nodes. Note that sensor nodes
use small batteries for their operations without directly connecting to any power source. As a
result, an important design issue in object tracking sensor networks is to conserve the energy
as much as possible.

Object tracking sensor networks can be roughly categorized into two categories. In the



first category, sensor nodes in the OTSN are always active. For example, dynamic convoy tree-
based collaboration approach is proposed that sensor nodes collaborate to achieve the goal of
tracking mobile objects [14][15]. This kind of OTSN can capture the exact location of moving
objects. However, since sensor nodes in the network are active all the time, a huge amount of
energy consumption is expected. In the second category, only those sensor nodes whose sensing
regions are likely to contain tracking objects are active, whereas the rest of sensor nodes are in
sleep mode. In previous work [11][12], a sensor node that currently detects objects is called the
current node. The current node will predict the location of a moving object and wakes up the
sensor nodes (referred to as destination nodes) whose sensing regions are possible contain the
objects. If one destination node detects objects successfully, this destination node will become
the new current node and will be used to predict the next destination nodes to track objects.
If no destination nodes detect the object, flooding recovery will be exploited to find out this
missing object. Thus, the performance of a prediction-based object tracking sensor network
counts on the prediction accuracy. “Thesauthors-in [11][12] assume that object movements
will remain constant for a period of time: *With this assumption, three prediction strategies
based on the moving directions and velocities of objects are proposed. In order to ensure the
freshness and correctness of moving properties of objects, increasing the sampling frequency
in object tracking sensor networks is necessary, incurring more energy consumption when
the sampling frequency is increased. Moreover, the object moving history must be passed
among sensor nodes for prediction, which incurs extra communication overhead. Notice that
when the prediction is not accurate, the worst case is that the flooding recovery will wake
all the sensor nodes. In other words, the recovery is unbounded. In reality, objects usually
have moving patterns or periodic behaviors [9]. For example, animals are usually have their
territories and moving behavior. Consider an example in Figure 1, where the bold arrows
are the usual object movement and the dotted arrows are the predicated locations made by

sensor D according to the speed and the direction of the object. It can be seen that the
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Figure 1: An example of showing the advantage of object moving patterns

object moving direction changes many times. If the sampling frequency is not enough, sensor
D is likely to collect wrong information of the object movement and thus makes incorrect
predictions. As shown in Figure 1, if sensor D only samples once, the probability of incorrect
predictions is % Furthermore, if the sampling frequency are not adjusted dynamically, sensor
D may never learn that the object often moves té.sensor K and always makes incorrect
predictions. To increase the accuracy for prediction-based object tracking sensor networks,
mining moving patterns of objects is very impeortant-in that the destination nodes are precisely
determined from the moving patterns of'objects:” Clearly, mining moving patterns requires
to record each movement of objects for moving log generation, which is unavoidably lead to
the energy consumption in object tracking sensor networks. Though improving the accuracy
of prediction, utilizing data mining increases the cost of energy consumption. Consequently,
we shall explore in this paper an efficient mechanism of mining object moving patterns in a
object tracking sensor networks.

Our goal is to propose an efficient mining mechanism for mining object moving patterns
in object tracking sensor networks and utilize object moving patterns for prediction-based
object tracking sensor networks. To facilitate collaborative data collection processing in object
tracking sensor networks, the cluster architecture is usually used in which sensors are organized
into clusters, with each cluster consisting of a cluster head and sensors. Similar to [1], we

propose a heterogeneous tracking model (referred to as HTM), in which a large number of



inexpensive sensor nodes perform sense operations and a limited number of powerful sensor
nodes (standing for cluster heads) offer data collection, queries and mining capabilities. Figure
2 shows the proposed heterogeneous tracking model, where low-end sensors will sent their
sensing data to the corresponding cluster heads and cluster heads have the responsibility for
collecting the local moving log of objects from sensor nodes and mining local moving patterns
of each object. Notice that cluster heads are powerful sensor nodes with farther communication
range, stronger computing power and larger storage space and much more energy than low-
end sensors. For the scalability purpose, the cluster heads form a hierarchical architecture
for efficiently mining and queries. For simplicity, four neighboring level (i-1) clusters form
a larger level i cluster. The level i cluster head is chosen among the four level (i-1) cluster
heads. Level i cluster heads will receive the moving records from level (i-1) cluster heads if
a object is crossing the boundaries of level (i-1) elusters heads. Thus, level i cluster heads
will have the moving behaviors of objects in"terms of level (i-1) cluster heads. It is worth
mentioning that a multi-resolution data cellectionmechanism is proposed in our HTM model,
where the higher levels of cluster heads will contain” coarse object moving patterns and the
lower levels of cluster heads will have more precise object moving patterns. In light of object
moving patterns, the cluster heads predict the object movements. If the prediction is failure,
the recovery procedure will be executed by waking up sensor nodes within the coverage region
of the cluster head, showing that a bound number of sensor nodes will be participated in the
recovery procedure.

There are, however, several issues which we have to address to realize the concept of a
heterogeneous tracking model. Specifically, since data collected from low-end sensors can
be regarded as data stream, an appropriate mining approach is necessary. Intuitively, the
movement of an object is usually dependent on its previous locations. As a result, we will
explore the variable memory Markov (termed as VMM) model in which by exploring the

dependences of states, VMM is very suitable to capture patterns with high dependences.
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Figure 2: Architecture of Heterogeneous Tracking Model (HTM)

Although the cluster heads are more powerful than low-end sensors, these sensor nodes are
still storage constrained. Note that multiple objects are tracked at the same time and thus
there will be multiple moving records.oecupied.in.constraint storage spaces of cluster heads.
Therefore, without reducing the prediction acecutacy of cluster heads, two storage strategies
for our proposal heterogeneous tracking model are developed in this paper.

The rest of the paper is organized as follows." Preliminary is described in Section 2. The
detailed object tracking mechanism is presented in Section 3. Performance study is conducted

in Section 4. This paper concludes with Section 5.

2 Preliminary

In this paper, assume that all nodes (i.e., low-end sensor nodes and cluster heads) have their
unique identifications and these sensor nodes are well time-synchronized. Suppose that each
low-end sensor node is a logical representation of a set of sensor nodes which collaboratively
detect an object. When a low-end sensor detects an object, this sensor node will inform the
corresponding cluster head of the detected object identification, object arrival time and its

sensor identification. It can be seen that the location of an object is represented as sensor
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Figure 3: An illustrative example for moving record collection.

identifications and the moving log of an object is viewed as a moving stream, which is composed
of a series of symbols (i.e., sensor identifications). Consider an illustrative example in Figure
3(a), where there are 16 sensor nodesydeployed-in the coverage region of one cluster head
and the object has 5 moving paths. <It. can'be ¥erified that the moving log collected by the
cluster head is in a data stream manner shown'in Figure 3(b). The symbol "*" means that
there is no sensor node reporting the detection of this object (i.e., the object moves out the
region monitored by the cluster head and thus the cluster head will not receive any detection
message from low-level sensors). Note that cluster heads also have the storage constraint and
there are possibly many object moving into the monitoring region of one cluster head. It is
impossible to store whole moving records for all objects in cluster heads and let alone scanning
moving records multiple times for mining object moving patterns. Therefore, in this paper,
we shall address the problem of mining moving patterns with one data scan. Consequently,
the variable memory Markov (VMM) model is very appropriate for discovering object moving
behavior in that only one data scan is needed for training the VMM model and the movement
of an object is in general dependent on its previous locations, satisfying the feature of VMM.

As pointed before, the moving records are a series of symbols in a finite alphabet and can



be viewed as the output of a stationary stochastic process. Due to the storage constraint in
cluster head and the very nature of moving, i.e., the consecutive moving is dependent on the
current location, mining object moving patterns can be regarded as the VMM model training.
We borrow a variation of a suffix tree called emission tree from [13] to maintain each VMM
model and a buffer in a cluster head is used to hold the most recently records of the stream.
An edge in an emission tree represents one symbol which is a sensor identification in moving
streams and an emission tree contains tree nodes with the labels defined as the paths from
the tree nodes to the root. For example, a tree node labeled as ry...r,r; can be reached from
the traversal path from root — r; — r, — ... — r;. Each tree node maintains the appearing
counts and the conditional probabilities of all possible next nodes with this node labeled as
a prefix. Assume that the moving records held by the buffer are ri...r;_; and initially, the
emission tree has only one root node with 'the counts of each symbols appearing in the buffer
so far. If the count of the symbol r;is larger than the threshold, minimal support, one child
node labeled as r; will be inserted into the emission tree. With an example profile given in
Figure 3(b) and the minimal support being 3, the-cluster head receives the 17th record (i.e., C
in this example). Figure 4 shows the configuration of the emission tree so far. It can be seen
that the root node maintains the conditional probabilities and the counts of sensors and since
the count of C is larger than the minimal support (i.e., 3), one child node labeled as node C is
included in the emission tree. Assume that the moving records held by the buffer are ry...r;_;
and when a new record, r,;, arrives into the buffer, those statistic information (i.e., counts and
the probabilities) should be updated accordingly. If the node r;_;...r;_or;_; is the furthest
node we can reach from the root of the emission tree along the path root — r; ; — r; ,
— ... — Iy, for each node r;_j...r;_»r;_1, the count N(r;_...r;_17r;) should be increased by
1 and the conditional probabilities P(r;|r;_k...r;—2r;—1) and P(z|rj_k...ri_27—1, * # r;) must
be adjusted. Once the updates of these tree nodes are performed, if N(r;_...r;_17;) is larger

than the minimal support, r;_...r;_17; becomes a frequent subsequence and thus a new node
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Figure 5: The emission tree with some selected tables after receiving the the 37th record.

labeled as r;_j...r;—_1m; will be inserted asta child-node of “node ri_g+1.--1—17;. Figure 5 shows
the tree after all the 37 records are processed-by the cluster head. In order not to distract
users from the main theme of this paper, interested readers are referred to [13] for the detailed
procedure of constructing an emission tree.

VMM model is trained on the fly and not all the tree nodes are stable for predicting.
Consequently, there are two nodes in an emission tree: one is the mature node and the other
is immature node. Mature nodes are those tree nodes in which a certain amount of records are
collected and the conditional probabilities are stable. When predicting the next movement,
only mature node is participated in prediction. Consider an example in Figure 6. Only a
portion of information is shown in the figure. The nodes with bold sideline are mature nodes
and the nodes with dotted sideline are immature nodes. Suppose that the most recent records
held in the buffer are D, C, A, E, F in the chronological order. If we want to predict the next

symbol with these records as prefix, we traverse the tree along the path root — F — E — ...
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Figure 6: An example of prediction and compliance verification

— D. Since node AEF is immature, the traversing terminates at node EF. The probability
distribution in the table of node EF showsthat Dshas the highest conditional probability 0.60
to be the next symbol.

To justify whether a node is mature or not, we explore L., distance, which is defined as
follows:
Definition 1: For a node y with the corresponding probability table denoted as x and the
number of tuples in table x is n, L (z, ) = max(|d] — "’f/|, |d5 — §,|, o |dE— dj”l/ ), where
d? represents the probability value for tuple i in table z and table 2’ is the probability table
after updating.

In light of Definition 1, for node y, if Lo (z, ') < « for § times of successive updates,
node Yy becomes a mature node, where o and [ are given by users and will be application

dependent parameters.



3 Exploring Moving Patterns for Object Tracking Sen-

sor Networks

Based on the mining object moving patterns, we propose a heterogeneous tracking model
(referred to as HTM) for object tracking sensor networks. In Section 3.1, the overview of
HTM, which is composed of two phases (i.e., data collection and mining phase and prediction
phase) is described. Specifically, with moving records generated in HTM, we devise an efficient
mechanism for data collection and mining in Section 3.2. In Section 3.3, once mining object
moving patterns, sensor nodes will be in prediction phase so as to save as much energy as
possible. A recovery procedure is developed in Section 3.4. In Section 3.5, two storage

strategies are devised.

3.1 Overview of Heterogeneous -Tracking Model

Our proposed heterogeneous tracking model consists two phases for each cluster heads which
is shown in Figure 7. In data collection and mining phase, all sensors will turn on and monitor
the whole sensing region to collect moving records of objects. Once an object is detected by
a sensor node, the sensor node will inform its corresponding cluster head by generating one
moving record. At the same time, the mining procedure (i.e. the VMM model training for
each object) is performed in the cluster head. Furthermore, similar to the concept of message
pruning trees [6], when one object crosses the boundary of two neighboring cluster heads, these
two cluster heads will transmit location updated messages upward the hierarchical tracking
model until their common parent node receives the messages. Then the nodes along the
message forwarding path will also have these location updated messages used to train VMM
models in higher level cluster heads. Note that if an object Obj; is in the coverage of cluster
head CH ;, CH ; will predict the movement of Obj; and justify the correctness of the prediction.

To decide whether a cluster head can transit to the prediction phase or not, we define two

10
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Figure 7: A diagram of the heterogeneous tracking model.

threshold values to verify. If the average prediction hit rate > ¢ and the average number of
correct predictions > o, the cluster head will be in the prediction phase. The performance
study of these two threshold values (i.e., 0 and o) will be conducted in our experiments. If
the cluster head is in the prediction phase, sensor nodes within the coverage of this cluster
head will turn into sleep modes. The cluster: head in the prediction phase will estimate the
possible locations of an object and wake up those sensot. nodes whose sensing ranges are able
to sense the object. If the cluster head accurately predict-the location of the object, the sensor
nodes capturing the object will notify the cluster head.-Intuitively, this operation is similar to
the feedback of the prediction, which can be viewed as data collection as well. It is possible
that the prediction is not correct and thus sensor nodes cannot sense the object. In this case,
the recovery procedure will be executed in the cluster head. The cluster head will wake up
more sensor nodes to sense the missing object. Once sensing the missing object, sensor nodes
will sends a location message to the cluster head. This location message will be used to train
VMM model so as to increase the prediction accuracy. From these feedback messages, VMM
mining models will be trained and is able to generate object moving patterns. In light of
these moving patterns mined, the prediction-based heterogeneous tracking model is able to

save more energy.
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Figure 8: An illustrative diagram represents the manner of sampling and reporting for low-end
sensor nodes in DCM phase

3.2 Data Collection and Mining Phase

In this phase, moving records of objects (referred as logs) will be collected for mining ob-
ject moving patterns. In the beginning, since there are no moving records available, sensor
nodes and cluster heads turn on their power and radio to monitor objects. Given a sampling
frequency, the low-end sensors sense and report the sensing information to the sink every T
seconds. Similar to the work in [12], each lewzend:sensor node keeps idle for (T - S) seconds,
and then senses the environment for S sdconds. -When a low-end sensor detects a moving ob-
ject, this sensor node will send one message containing the time and the object sensed to the
cluster head in charge of this sensor nede. After receiving the detection message, the cluster
head will have a moving record represented as (i, j,t) meaning that sensor i detects object
j at time t. As mentioned before, in our proposed tracking model, the cluster heads form a
hierarchical architecture for efficient mining and queries. For simplicity, four neighboring level
(i-1) clusters form a larger level i cluster. The level i cluster head is chosen among the four
level (i-1) cluster heads. Level i cluster heads will receive the moving records from level (i-1)
cluster heads if an object is crossing the boundaries of level (i-1) clusters heads. In order to
reduce the amount of location updates among cluster heads, we employ the message pruning
concept [6][7]. The goal of a message pruning concept is to reduce the number of location
update messages for object tracking. By exploring the concept of message pruning, if one
object crosses the boundary of two neighboring cluster heads, these two cluster heads will

transmit location update messages upward the hierarchy until their common parent receives

12



the messages. As such, the cluster heads along the message forwarding path should generate
the higher level moving records that indicates which cluster head and the object detected
by their low-end sensors. Once having higher level moving records, cluster heads at higher
levels are able to mine more coarse object moving patterns. Given moving records of objects,
each cluster head will exploit the VMM model for mining object moving patterns. Note that
without collecting moving records in the sink, our proposal heterogeneous tracking model is
able to achieve in-network mining in that mining object moving patterns is performed while
moving records are forwarded in the sink. Furthermore, cluster heads at higher levels have
coarse object moving patterns, whereas cluster heads at lower levels contain finer object mov-
ing patterns. Note that if an object Obj; is in the coverage of cluster head CH;, CH, will
predict the movement of Obj; and justify the correctness of the prediction. To decide whether
a cluster head can transit to the predigtion phase or.not, we define two threshold values to
verify. If the average prediction hit.rate > 9 and.the average number of correct predictions
> o, the cluster head will be in the prediction-phase.’ The performance study of these two
threshold values (i.e., ¢ and o) will be conducted-in-our experiments.

Consider an example in Figure 9, where the dash line represents the moving path of the
object Obj; and CHy is the level 1 cluster head chosen from the 4 cluster heads in level 0. The
low-end sensors along the moving path in the territory of cluster CH; will detect Obj; and
notify CH; in the chronological order. Then CH uses these records to update the emission
tree of Obj;. When Obj; departs from CH; and moves into CH,, CH; will not receive any
detection messages from low-end sensors and assumes that Obj; is out of its territory. If
cluster heads cannot receive any detection message, '*” will be appended to the tail of the
buffer. As such, CH; will append a ’*’ symbol to the tail of the Obj’s sensor-level buffer. As
can be seen in Figure 9, this object moves to the coverage of CH, and one of its sensor nodes
reports the location of this object. According to the message pruning concept, CH; sends a

departure message, whereas CH, will send an arrival message upward the hierarchy. Since
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Figure 9: An example of data collection and mining phase

CH is the common parent node of CHy and CH,. Thus, the location update message will not
be forwarded to upper levels. In addition, CH 4 will append 'CH,’ to the tail in the moving
records for Obj;. With the movements of:Obj 1, the moving records are generated accordingly
and object moving patterns are mined via the emission tree construction.

Note that since the object movements usually exhibit locality, the incoming rates of moving
records of upper level cluster heads is slower than those of lower level cluster heads. In order
to speed up the training of upper level emission trees, we have to specify smaller min_sup

and the number of times (3 for verifying node maturity.

3.3 Prediction Phase

When a cluster head is in this phase, the cluster head will allow the low-end sensor nodes to be
in sleep modes. If an object Obj; is within the coverage region of level 0 cluster CH ;, CH ; is in
charge of predicting the next movement of Obj;. By traveling the emission tree of Obj,;,CH;

will wake up those sensor nodes appearing in the emission tree with their probabilities >

14
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Figure 10: An illustrative diagram which shows the behavior of each low-end sensor node in
prediction phase

threshold . Assume that the sampling frequency is set to T seconds. As shown in Figure 10,
after sleeping for (T - S) seconds, those sensor nodes determined by CH; will be activated
for S seconds. If one of these sensor nodes detects Obj;, this sensor node will send an ACK
message to CH ;. Since the predicted sensor nodes are able to successfully detect objects, all
of these sensor nodes waked up will turn to sleep. According to the response message from
low-end sensor nodes, CH ; will update,the hit rate, the buffer and the emission tree of object
Obj;. If the predicted sensor nodes are not-ablettordetect object Obj;, which means that the
prediction of the next movement of Obj;"is wrong, CH ; will initiate the recovery procedure.
Note that if the average hit rate for objects becomes smaller than the specified threshold 9,
CH; will be in the the data collection and mining phase for training VMM models so as to
increase the prediction accuracy.

Consider an example in Figure 11, where Figure 11(a) shows the emission tree of Obj;
in CH; and Figure 11(b) is the buffer of CH; for Obj; . Given the most recent moving
records of the buffer, CH ; traverses the emission tree along the path root — node C — node
EC — node FEC. Assume that node FEC is not mature yet and the probability threshold
for the determination of candidate sensor nodes is 0.5. Thus, the traversing terminates at
node EC. The probability table of node EC shows that the sensor node B will be activated
since the corresponding probability of node B satisfies the probability threshold (i.e., 0.5).

If sensor node B is able to detect Obj;, sensor node B will send an ACK message to CH;
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Figure 11: An example of an emission tree traversing for prediction.

and one moving record (i.e., (Sid, Objg; t)), will be appended to the buffer for next location
prediction. On the other hand, if sensor node B cannot detect Obj;, the recovery process
has to be started. Moreover, the cluster head appends symbol "*" to the buffer for Obj,.
From feedbacks of sensor nodes (i.e., Acknowledge message), though a cluster head is in the

prediction phase, these feedbacks are beneficial to train VMM models as well.

3.4 Recovery Procedure

When cluster head CH ; cannot precisely predict the sensor nodes to detect object Obj;, the
recovery procedure will be performed to track object Obj;. The possible location of object
Obj; can be conducted into two cases. One is that Obj; is still in the coverage region of
CH ;. The other is that object Obj,; moves into the coverage regions of other cluster heads.
According to the observations above, cluster head CH ; will first check whether Obj; is still in
the coverage region of CH ; by waking up all sensor nodes under the coverage region of CH ;.

If one of these sensor nodes captures Obj;, the sensor node still sends an ACK message to
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CH . Otherwise, CH ; informs its higher level cluster head (i.e., the parent node of CH ;) since
higher level clusters have coarse moving patterns of Obj; used to predict possible cluster heads
of object Obj;. By traveling the emission tree of Obj; and selecting the node with the highest
probability, one cluster head, in which object Obj; is likely to appear, will be determined.
Then, the selected cluster head will downward to the lowest level cluster heads to estimate
the fine moving patterns of object Obj;. If the object is still not found in the selected cluster
head, the parent cluster head will select other cluster heads to perform the recovery procedure.
If none of these cluster heads finds the missing object, the parent cluster head will forward
the upper level cluster head for the recovery purpose. As mentioned before, each level cluster
head has different resolution object moving patterns. In light of these multi-resolution object
moving patterns, the number of sensor nodes activated for the recovery procedure is bound,
showing the advantage of utilizing our proposal heterogeneous tracking model.

Consider an example in Figure 12. Since CH ;. misses the object, CH; informs its parent
CHs and appends "* to the tail of-bufferin-CHy. By traversing the emission tree of the
object in CHs, CH s predicts that the objeet.is likely to be in the coverage region of CH, and
let CH ; track the missing object. The sensor nodes within the coverage region of CH, will be
activated to detect the missing object. Once receives the detection message from one of these
sensor nodes, CH, will update the corresponding emission tree. Note that CH, will send a
location update message to its parent CHs. Accordingly, CHs will also appends 'CH >’ to the

tail of its buffer and updates the corresponding emission tree.

3.5 Storage Management

As mentioned above, in our proposed heterogeneous tracking model, those higher levels cluster
heads should store moving records of objects. In general, cluster heads are also sensor nodes
with more computing power and storage spaces. These cluster heads are intrinsically sensor

nodes as well. As such, cluster heads may suffer from the storage saturation problem in which
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Figure 12: An illustrative example of recovery procedure

there is no available free storage space for incoming moving records. Consequently, we propose
an efficient storage management for cluster heads. Assume that level i cluster head is chosen
among level (i - 1) cluster heads. It is possible that a level i cluster head will maintain moving
records of all level emission trees for each object. “As result, higher level cluster heads will
suffer more enormous storage overhead.

Let P, be the probability that an object-leaves its current level i cluster and d; is the
updating cost (i.e., hop counts) from the‘level-icluster head to the level (i+1) parent node.
Furthermore, suppose that there are (k+1) levels in the hierarchical tracking model (i.e., level
0 to level k). Therefore, the expected value of communication cost among cluster heads,

denoted as E[C], for one object can be evaluated as following:

ol > >R
ElC] = Pia di+(1—=PFPe1)Pi>2 di+(Q—-PF_)A—-P2)Ps di+..
i=0 i=0 i=0
> Y kKL
= ( Q-P)Peia d;), where P, =0
=0 =0 1=0

Given the leaving probabilities Fp to Py, it can be seen that the updating costs dg to dy_1
are the dominated factors for the value of E[C]. The values of d; are dependent on the network

topology. Therefore, two storage strategies are developed as follows. Consider an example of
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the strategy one in Figure 13. Suppose that the sensor field is divided into a 2* x 2% grid and
the sink (i.e., the level 4 cluster head) is at the center. Each grid is a level 0 cluster head
and the level i cluster head, the nearest to the sink in a 2i*1 x 2i*1 cluster, is selected to be
the level (i+1) cluster head. In Figure 13, the number i represents cluster heads of level 0 to
level i. The arrows show the transmission for each level i CH sending the location updating
messages to its level (i+1) parent. By observation, the expected value Ej[d;] = 2, where i
=[0,2] and E;[d3] = 1.

Figure 14 shows the storage strategy two, where the number i means that the grid is a
level 0 cluster head and a level 1 cluster heads. Once a level 0 cluster head is selected to be
the upper level cluster head, this cluster head will never be selected again. The hierarchy
construction principle is that among the level 0 cluster heads which are not selected yet, the
nearest one to the level (i+1) cluster hiead in eachr2’ x 2¢ cluster will be chosen to be the
child node of the level (i+1) cluster head. It can be verified that the expected value F,[d;] is
almost the same as Fj[d;]. Let E[S] be theexpected value of the storage cost for each cluster
head (i.e., average level that a CH is in‘charge of).- Then F;[S] and E5[S] can be evaluated
as follows:

In the strategy one, a level i cluster head must maintain sensor level, level 0, ..., level (i-1)

trees (i.e., (i41) levels totally), then,

(k+1)+ (4 — 4k + (42 — 4N (k — 1) + ... + (4" — 4" 1)
4k

EA[S] =

44k
3

In the strategy two, each cluster head maintains the trees at most 2 levels of information.

Then,

19



2(42-1) + 2x4k+1

44k
3

After the estimation of the average storage cost, we can evaluate the variance of the storage

cost in strategy 1 and 2.

((k +1) — Eq[S])* + 3(k — E[S])* + ... +3 x 4 1(1 — E4[S])°

Vilsl = T
—k P _ . . —k
_ (i o485 - 5))
= —
L (=38 (3 (hnin2)?)
41 , 15 10 v A0 S
= — — —k+ = et by by
12k 4 g 3 e 9 ) 3
gl = @ BISDAEN + (1 - IS
2 4—F 42k
"9 9 9

It can be seen that V1[S] will be much larger than V5[S] when k increases. Note that
strategy 2 has much better load balance than strategy 1. Load balance is an important issue
for the in-network mining and prediction in our work. If a cluster head has to maintain the
trees for too many levels, its storage may becomes full soon. Once the storage expires, the
trees can not be enhanced anymore and it affects the prediction accuracy directly. In strategy
2, the hot spot problem is solved. In each cluster head, there will be much more memory

space for the emission tree training at different levels.
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Figure 13: An illustrative example for the storage strategy 1.

T11
Yy
_h 1 1 1l 1 1 1 1
1]
1 o [alalal2]1]1 2011
1 1 1)1 1 1
1 1 32 2|1
1 2 TT 73 3044 1
1 2 3lisll 21 211
1 12 1
1 1 1 1)1 1 1
1 2 1l1]2]2]1]12 211
1 1 11 1 1 1

Figure 14: An illustrative example for the storage strategy 2.
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Figure 15: An illstrative diagram of pruning node in a level i cluster head when its memory
space is full and the new node is decided to be inserted.

Applying the hierarchy construction appreach-as shown in Figure 14, a level i (i > 1)
cluster head only has to maintain two level buffers (i.c., the sensor-level and (i-1)" level)and
emission trees for each object. Since there are multiple objects and the storage of each cluster
head is limited, it is still possible that the storage requirement exceeds the limit. Hence, a
storage management strategy is necessary for dealing with this situation. When the memory
space of a cluster head is full and the count of one symbol in the table maintained by an
emission tree node becomes > min_sup, we have to decide to prune other nodes so that
the newborn node can be inserted into emission trees. We specify a threshold e and if the
prediction hit rate of the tree to which the newborn node belongs is already larger than e, we
can ignore the insertion since this emission tree already has higher prediction rates. Otherwise,
we must select an appropriate node to be pruned from other trees. The pruning mechanism
consists two steps:(1). select the tree to be pruned and (2). select the node to be pruned.

1) Select the tree to be pruned. Each object usually has its own moving behavior. An object

may stay in some regions more frequently than other regions. Hence, the reporting rates of
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objects in each cluster head will be different. For the tree selection, each tree maintains a
counter. Once a tree is updated, the counter of the tree is increased by one. In addition,
each counter minuses one every T periods. A tree with a lower counter value means that it
is not often used than other trees. Note that sinee’object movements usually exhibit locality,
upper level trees will be updated infrequently- and grow-with a slower speed than lower level
trees. If we just select the tree with the minimal eounter-value, the upper level trees will have
more chances to be pruned and the emission tree at higher levels of cluster heads will be hard
to achieve good accuracy. Hence, we only select the same level tree, to which the newborn
node will be inserted. To guarantee that the accuracy of each tree is acceptable, we specify a
threshold €. Suppose that the new node will be inserted into a level i emission tree. Among
other level i trees with their prediction hit rates > ¢, the tree with the minimal counter value
will be selected. Consider an example in Figure 15, where the size of a tree stands for the
access counter value of the tree. Let ¢ = 0.8 and € = 0.6. Since the hit rate of tree T, < 0.8,
we decide to insert the new node into T; and prune one node in T, Ts. Although T, has
the minimal counter value, its hit rate < 0.6. T, will not be selected and T 4 is next selected.
Since the hit rate of T4 > 0.6, T4 is then selected to be pruned.

2) Select the node which will be replaced by the new node. Once the tree is selected, we

must prune the node such that there will be less impact to the selected emission tree. For
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the node selection, each tree maintains the profits for each leaf node which no other node
is derived from it. Let LNode is the set of all these nodes. Consider an example in Figure
16, assume that node CD, CDA and CDB are leaf nodes. Since node CDA and CDB are
derived from node CD, we will not take node CD into consideration. The probability of a
node represents the importance of the node to the tree. A lower probability means that the
node is accessed infrequently than other nodes. Thus, we take the node probability as one
factor for the node profit. In addition, since only the mature nodes will be used for prediction
and probability estimation, the mature nodes bring more profits than the immature ones.
Among the immature nodes, there are still differences of the mature degree. An immature
node, which is likely to be mature, is more important than a whole new node. Thus, we
must first check whether a node is mature or not. let N be the number of times that the L.,
distance of the probability distribution of node X. The mature degree of a node X, denoted by

M D(z), is defined as follows:

Mb(x) = %

With the above two factors, the profit function of a node X, expressed by Profit(x), is

formulated as follows:

Profit(x) = P(z) x (M D(x) + ¢), where c is a real constant used as the base

The node with the minimal profit value in LNode will be chose to be pruned.

To reduce the cost of maintaining LNode, if a node becomes mature, we won’t continue
to update the probability entries in the table of the node. Consider an example in Figure
17. The nodes with bold sideline are mature nodes and the nodes with dotted sideline are
immature nodes. Node DCAE is a node in LNode. Since node DC and node DCA is immature,

P(DCAE) + P(D) x P(C|D) x P(A|C) x P(E|CA). We don’t have to recalculate P(DC AFE)
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until one of node DC and node DCA becomes mature. With the pruning mechanism, there
will not be a specific tree which is always selected to be pruned. Since if the prediction hit
rate of a tree becomes < e, the tree will notsbesselected anymore. Furthermore, even if the
hit rate of a tree becomes lower duée to the node pruning, it still has chances that the nodes

can be inserted back.

4 Performance Study

In this section, experimental results are presented. The simulation model is described in
Section 4.1. The comparison of our scheme with PES scheme [12] is conducted in Section 4.2.

Finally, the sensitivity analysis of in-network mining approach is described in Section 4.3.

4.1 Simulation Model

There are 3 levels in our proposed heterogeneous tracking model and we deploy 9 low-end
sensors in each level 0 cluster. Hence, there are 16 level 0 CHs, 4 level 1 CHs, one level 2 CH,
and the number of low-end sensors is 144. To simulate the object movements, we generate

VMM model trees for each object in each cluster head. In addition, the city mobility model
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[6] is used to simulate object movements with locality. With the model, each object has a
probability p; to determine whether it should leave its current level 1 cluster, and a probability
1 - p; to stay. In the former case, it will choose a level 1 cluster as the next position according
to its VMM model tree in the level 2 CH (It may stay in the current level 1 cluster). In the
latter case, it has a probability pg to determine whether it should leave its current level 0
cluster, and a probability 1 - py to stay. Similarly, in the former case, it will choose a level
0 cluster as the next position according to its VMM model tree in the parent. In the latter
case, it will stay in its current level O cluster. In all cases above, the VMM model looking up
procedure is repeated until the object has decided to move to which low-end sensor monitored
region. The probability p; is determined by an exponential probability p; = e 92" where C

is a positive constant. A higher value of C' means higher locality.

4.2 Experiments of PES and HTM

To conduct the experiments of PES schemé-an-[12f we simply utilize the object positions at
two successive time units to evaluate the object-speed and direction. The object missing rates
of PES and HTM are shown in Figure 18. Since the sampling frequency is not enough, the
evaluated object speed and direction is almost incorrect, PES cannot precisely predict the
object movement. It can be seen that with the time advances, the object missing rate of
HTM decreases since the moving patterns are extracted gradually.

Since the network in PES is homogeneous, we compare the average number of low-end
sensors waked up by recovery procedure. PES wakes up much more sensors because the
missing rate is high and the recovery scope is unbounded. Due to the feature of hierarchical

clustering, the number of sensors activated in the recovery procedure is bounded.
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Figure 19: The average number of nodes waked up in the recovery procedure
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4.3 Sensitivity Analysis of HTM

First, we investigate the impact of the two- storage. strategies. We set the value of min_sup
to be 15, o to be 0.01, S to be 6, C-to be 3, 0-to be 0.6, o to be 10, € to be 0.7, € to be 0.5
and each CH can store 30 emission tree nodes. Figure 20 shows the object missing rate in
the level 0 cluster at which the sink is located. With the clustering strategy 1, the sink node
has to maintain the emission tree nodes for 3 levels so the memory space is insufficient for
each level and the emission tree growing is limited. Hence, the missing rate increases when
the number of objects increases. However, clustering strategy 2 is a load balance clustering
approach and the sink will have more sufficient memory space for the emission tree training
at different levels.

In the next experiment, we let the CH can store 500 emission tree nodes. Figure 21 shows
the average number of level 1 emission tree nodes for each object in the sink. It can be seen
that clustering strategy 2 is better than clustering strategy 1 since the sink can have more
sufficient memory space to store more level 1 emission tree nodes.

To observe the impact of locality parameter C' on the prediction hit rate of our scheme,
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Figure 21: The level 1 emission tree nodes in the level 2 CH
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Figure 22: The impact of locality parameter on the prediction hit rate

we set min__sup to be 15, 8 to be 6, § to be 0.6, o to be 10, € to be 0.7, € to be 0.5, each CH
can store 500 emission tree nodes, o to be 0.01, 0.05 and 0.1 respectively. Figure 22 shows the
average prediction hit rate in each level 0 cluster. It can be seen that the prediction hit rate
tends to increase as the value of (' increases. The reason is that if C' is high, the object tends
to stay in the current cluster so that the CH can get much more moving records for mining
more quickly and the CH would seldom make incorrect predictions when the object leaves its
current level 0 cluster.

Next, we conduct the experiments to see the impact of o on prediction hit rate. We set
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B to be 6, min_sup to be 15, 25, and 35 respectively. The experimental results are shown in
Figure 23. It can be seen that the prediction hit rate decreases as the value of « increases.
Since a lower o means that a CH needs more meoving récords to let the probability variation of
a tree node between two successive updates < a. And more updates in a node means that the
probability distribution in the node is more stable-and close to the real probability distribution.
To conduct the experiments of another emission tree node maturity verification parameter [,
we set a to be 0.01, min_sup to be 15, 25, and 35. Figure 24 shows the experimental results.
We can conclude that the value of 3 should not be too small or too big. If the emission tree
training in a CH just gets start, it is possible that the probability difference is very small when
the CH receives the same record for a few times. If 5 is very small, we may make incorrect
decision that the node is mature. If § is big, then the appropriate nodes can not be used for
prediction as soon as possible. From Figure 23 and Figure 24, it can be seen that the major
factor of maturity verification is a.

Now, we observe the impact of the probability threshold for prediction on prediction hit
rate. Figure 25 shows the experiment results of the average level 0 CH prediction hit rate with

various probability threshold. A low threshold means that the CH will predict more sensors
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Figure 25: The impact of the probability threshold for prediction

as the next position so the prediction hit rate will be higher. A high threshold has low hit
rate due to the reason that there may be no sensor with probability which is higher than or
equal to the threshold so the CH won’t predict any sensor as the next position.

Finally, we conduct the experiments of the phase verification for two strategies. For the
experiments, we set 0 to be 0.5, 0.6, 0.7, o to be 10 and the object number to be 7. In strategyl,
a CH simply estimates the average hit rate and the average prediction hit numbers of all
objects. If the average hit rate > 0 and the average hit numbers > o, then the CH will turn

into prediction phase. The experimental results of strategy 1 is shown in Figure 26. It can be
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Figure 27: The experimental results of phase verification strategy?2

seen that it is hard for CHs turning into prediction phase. The reason is that there may be some
clusters in which only a few objects are often present so the average hit rate and the average
hit numbers will tends to descend. To solve the problem, strategy 2 uses the weighted average
hit rate and weighted hit numbers. Let the weighted average hit rate be wavg(hit rate)

P
and the weighted hit numbers be wavg(hit num). Then wavg(hit rate) = ﬂ'ﬁﬂ and

P
hit M kW,

wavg(hit_num) = —FEE where w; is the number of times which Obj; is in the cluster.
Figure 27 shows the experimental results of strategy 2. As shown in the figure, using strategy

2, the CHs can turn into prediction phase much faster than using strategy 1.
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5 Conclusions

In this paper, based on the fact that the movements of the tracked objects generally reflect
periodic behaviors, we proposed a heterogeneous tracking model, called HTM, to efficiently
mine object moving patterns and track objects. Specifically, since the movements of objects
have the feature of dependencies, we explored variable memory Markov to mine object moving
patterns. Furthermore, due to the hierarchical feature of HTM, multi-resolution object moving
patterns are provided. In light of object moving patterns, our proposed HTM is able to
accurately predict the movements of objects and thus reduces the energy consumption for
object tracking. Explicitly, HTM consists two phases: data collection and mining phase and
prediction phase. In data collection and mining phase, all sensors will turn on and monitor the
whole sensing region to collect movements of objects. Once collecting sufficient movements of
objects, sensor nodes will be in prediction phase.In prediction phases, sensor nodes turn to
sleep modes so as to save energy consumption. “Only selected sensor nodes will be activated
to track objects according to the object moving patterns. Moreover, due to the storage
constraint on sensor nodes, we devised two storage strategies to build HTM. Performance of
the proposed HTM was analyzed and sensitivity analysis on several design parameters was
conducted. Simulation results showed that HTM is able to not only effectively mine object

moving patterns but also efficiently track objects.
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