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Abstract

In this thesis, we develop a real-time visual surveillance system for human
behavior analysis. It operates on monocular color-scale video imagery with a
stationary background scene. At the first step in the system process, it extracts the
silhouette of the target object by traditional video tracking method, background
subtraction combined with Gaussian Mixture Model ( GMM ). And furthermore, it
detects the contour of the object silhouette. At the second step, the system employs a
combination of shape analysis and geometry analysis on the contour to decompose

the detected silhouette to several unde{igas (unlabeled body parts ) . After the

decomposition process, it labels SRl tart (head ~ torso ~ hands -~ feet )
by the use of our hierarchical stafis

the above steps have been processeds y, the last step in our system is to
extract local features of the detected body part( orientation ~ centroid. . . etc ), and the
global features of the entire silhouette ( aspect ratio~ block density. . . etc ), and then
these features can be used to guide the high-level human behavior analysis. In the
on-line behavior analysis process, an unknown sequence will be matched with the
templates collected in our database. The database is established offline by the use of
real video captures, which is a group of labeled reference sequence representing
typical behaviors. In short, our system can detect the human body parts and classify
the posture of human at individual imagery, then identify the event of a query

sequence which involves human beings. It runs at 20~25Hz for 240 x 160 resolution

images on a single Pentium-M 1600Mhz PC.
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1 Introduction

As an active research topic in computer vision, visual surveillance attempts to detect,
recognize and track certain objects from image sequences, and more generally to
understand and describe object behaviors. The aim of this work is to develop
intelligent visual surveillance system to replace the traditional passive video
surveillance. In short, the indeed visual surveillance system is not only to put cameras
in the place of human eyes, but also to accomplish the entire surveillance task as

automatically as possible.

+

Input images

]

silhouetie & contour
extraction

1

Silouette decpmposition
&
human body labeling

]

Posture estimation
&
action interpretation

!

Safe or alarm signal

Figure 1-1 General framework of a visual surveillance system



Figure 1-1 shows the general framework of a visual surveillance system. The
prerequisites for effective automatic surveillance using single camera include the
following stages: modeling of environments, detection of motion, classification of
moving object, tracking, understanding and description of behaviors. In order to
extend the surveillance area and overcome occlusion, fusion of data from multiple

cameras is needed. This fusion can involve all the above stages.

1.1 Motion Detection

Nearly every visual surveillance system starts with motion detection. Motion
detection aims at segmenting regions corresponding to moving object from the rest of

an image. Subsequent processes SUClys3 ing and behavior analysis are greatly

dependent on it. The process of ACORCHON usually involves environment
modeling, motion segmentation, 3\d Qe gcation. The following discussions

would be all considered in a fixed canm®g

Environment Modeling

The key problem in environment modeling is to automatically recover and update
background images. Unfavorable factors, such as illumination variation,
shadows. . .etc, introduce many difficulties to accomplish the goal. There are many
algorithms for resolving the above mentioned problems. Temporal average of an
image sequence [15], adaptive Gaussion estimation [16], and parameter estimation
based on pixel process [17] are all good algorithms for this mission. A classic method
was proposed by Ridder et al. [18]. They model each pixel value with a Kalman filter

to compensate for illumination variance.



Motion Segmentation

After the background is modeled, the next step is to analyze the activities of the
foreground objects. For capturing and analyzing the foreground objects, the
movement contributed by each object has to be independently captured. Therefore,
motion segmentation has to be executed in advance. When on mentions motion
segmentation in an image sequence, it means to detect regions corresponding to
moving object such as vehicles and human beings. At present, most segmentation
methods use either temporal or spatial information in an image sequence.
Background subtraction [19] is a popular method for motion segmentation,
especially under static background situation.. It detects moving regions by calculating
the difference between the target image and the reference image in a pixel-by-pixel

fashion. It is simple, but extremely 8o changes in dynamic scenes derived

from light variation and extrane@s gfore, it is highly dependent on a

good background model to redu@g 8 of these changes. Lipton et al.
proposed a method called temporal dWférencing [8] to solve the above mentioned
problem. They use a threshold function to determine changes after the absolute
difference between current image and previous image is obtained. It is very adaptive
to dynamic environments, but generally does a poor job of extracting all the relevant
pixels, e.g., there may be a hole left inside moving entities. Another way to do the

motion segmentation job is Optical flow [20]. But unfortunately, it is computationally

complex and sensitive to noise, and cannot be applied to real-time video stream.

Object Classification
The last mission for motion detection is object classification. As different moving
regions may correspond to different moving targets in a natural scene, to further track

objects and analyze their behaviors, it is necessary to correctly classify moving
3



objects. For instance, the image sequences captured by surveillance cameras mounted
in road scenes probably include humans, vehicles, flying birds . . .etc. At present,
there are two main categories of approaches for classifying moving objects. A lot of
different descriptions of shape information can be applied to classify moving objects,
such as points, bounded boxes, silhouettes and blobs. VASM [14] takes image blob
representation for the detected moving objects, and uses the aspect ratio of the image
blobs bounding box to classify moving-object blobs into four classes: single person,
vehicles, human groups, and clutter. This kind of approach is so called Shape-based
classification. The other approach is Motion-based classification. In general,
non-rigid articulated human body motion shows a periodic property, so this has been
used as a strong cue for classification of moving objects. Cutler et al. [21] describe a

similarity-based techniques to dete allalyze periodic motion. We know, for

periodic motion, its self-similarit eriodic. Therefore, time-frequency

analysis is applied to detect and SRa a®eriodic motion, and tracking and
classification of moving objects are impI&MEnted using periodicity.
1.20bject Tracking

After motion detection, surveillance systems generally track moving objects from one
frame to the next in an image sequence. The tracking algorithms usually have
considerable intersection with the motion detection during processing. Useful
mathematical tools for tracking include the Kalman filter, the Condensation algorithm,
the dynamic Bayesian network, the geodesic method. Recently, McKenna et al. [19]
propose an adaptive background subtraction method in which color and gradient
information are combined to cope with shadows and unreliable color cues in motion

segmentation. Isard et al. [22] make a big contribution to the tracking field, which is

4



so called active contour-based tracking. They adopt stochastic differential equations
to describe complex motion models, and combine this approach with deformable
templates to cope with people tracking. In contrast to any other tracking algorithms,
an active contour-based algorithm describes objects more simply and more effectively.
In addition, it is able to significantly reduce computational complexity. Even under
disturbance or partial occlusion, an active contour-based algorithms can still

continuously track objects.

1.3Understanding and Description of Human Behaviors

stick-figure model is usually the first choice in people’s mind. Karaulova et al. [23]

use a stick figure representation to build a novel hierarchical model of human
dynamics using hidden Markov models (HMMs). 2-D contour is a kind of human
model directly relative to human body projections in an image plane. Ju et al. [24]
propose a cardboard human model, in which the human limbs are represented by a set
of jointed planar ribbons. The main disadvantage of 2-D models is the requirement of
the restrictions on the viewing angle. To overcome this disadvantage, many
approaches apply the volumetric models, such as elliptical cylinders, cones [25],
spheres. Plankers et al. [26] present a hierarchical human model. It includes four
levels: skeleton, ellipsoid meatballs, polygonal surface skin, and shaded rendering. In

short, the more accuracy human model achieves, the more computation time is needed.

5



There is always a trade-off between the accuracy requirement and computation

efficiency..

Behavior understanding involves the analysis and recognition of motion patterns, and
the production of high-level description of actions and interactions. It may simply be
thought of the classification of time varying feature data, i.e., matching an unknown
sequence with a group of labeled reference sequences representing typical behaviors.
Dynamic time warping [27][28]is a template-based dynamic programming match
technique widely used for speech recognition. It has the advantage of conceptual
simplicity and robust performance, and has been used recently in the match of human
movement patterns. An HMM is a kind of stochastic state machines [29]. It allows

more sophisticated analysis of data wssl=SBatie,temporal variability. There are some

proposed methods in this field, s¥

syntactic techniques [31], and nons8et&g

All the effort introduced above have one common goal. i.e. automatic surveillance.
Although there is a lot of progress in visual surveillance field, some key problems
remain open, for example, what is the most efficient representation of human body
model, how to properly represent semantic concepts and how to map motion
characteristics to semantic concepts. In the following, we will shortly introduce our

visual surveillance system.

1.4The Proposed Surveillance System

Figure 1-2 shows the architecture of our surveillance system. It operates with one

single fixed camera in a stationary background scene. First, the system takes the

6



monocular color-scale video imagery from the camera. Then it extracts the silhouette
of the detected moving objects in the input image. Object contour will be detected
from the object silhouette. Gaussian filter [33] and negative curvature minimum
criteria [56][57] are applied to smooth the detected object contour and to decompose
the object silhouette. The system labels the decomposed parts of the object silhouette
corresponding to human body parts by our proposed algorithm HSSS. After the
process has been done successfully, it extracts the global features of the entire object
silhouette and the local features of the labeled human body parts. Hereby, our visual
surveillance system employs a hierarchical analysis to estimate the posture and
interpret the action (behavior ) of the detected moving object in the image sequence.
Furthermore, a safe state remains or an alarm signal is sent out.

9"/"__::\“@.

Camera

e ¥
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Input images

1

silhouette & contour
extraction

i

Silouette decpmposition
&
human hody labeling
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&
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!
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Figure 1-2  Architecture of the proposed surveillance system
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2 Recent Developments and Activities

There have been a number of famous visual surveillance systems developed in the
post few years [4-8]. The real-time visual surveillance system W4 [4] employs a
combination of shape analysis and tracking, and constructs models of people’s
appearances in order to detect and track groups of people as well as monitor their
behaviors even in the presence of occlusion and in outdoor environments. This system
uses a single camera and grayscale sensor. The VIEWS system [5] developed by the
University of Reading is a 3-D model based vehicle tracking system. The Pfinder

system developed by Wren et al. [6] is used to recover a 3-D description of a person in

a large room. It tracks a single no
extensively used in many real-wo§ I
TIl, developed by Olsen et al. [7
motion detection, tracks them using first-order prediction, and recognizes behaviors
by applying predicates to a graph formed by linking corresponding objects in
successive frames. This system cannot handle small motions contributed by
background objects. The system at CMU [8] can monitor activities over a large area
using multiple cameras that are connected into a network. It can detect and track
multiple persons and vehicles within cluttered scenes and monitor their activities over

long periods of time.

Due to the broad range of applications it can cover, visual surveillance motivates the
interests of researchers worldwide. The IEEE has sponsored the IEEE International

Workshop on Visual Surveillance on three occasions, in India (1998), the U.S.(1999 ),



and Ireland (2000). In June and August of 2000, two special issues on visual
surveillance was published [9] [10]. In March of 2001, a special issue on visual
analysis of human motion was published [11]. In October of 2001, a special issue on
third-generation surveillance systems was published [12]. In October of 2002, a
special issue on understanding visual behavior was published [13]. Also, visual
surveillance has been investigated worldwide under several large research projects.
The Defense Advanced Research Project Agency ( DARPA) supported the Visual
Surveillance and Monitor ( VASM ) project [14] in 1997, whose purpose was to
develop automatic video understanding technologies that enable a single human
operator to monitor behavior over complex environments such as battlefields and

civilian scenes.

All of the above activities are @t and growing interest in visual

surveillance.



3 Human Modeling

Human modeling is an essential part of model-based human detection. Although a
great number of human models have been proposed in the literature, few of them are
appropriate for human detection. Most models are developed for other purposes, such
as human tracking or figure animation [36]. These models are either too complicated
to be practical for efficient human detection, or can just be used to detect a particular
person rather than all instances of humans. The common drawbacks of previous

human models are :

(1) The representations of humana#apeMmeNI8Einvariant to similarity transforms,
thus, they can only detect peofle A4B0'Si7e80r orientation.
14
(2) The models are usually specifréj§g._a pagdtilar person, and do not model the
statistical variance among individuals.
(3) Although some models such as deformable templates can handle certain global

shape variance, they have difficulty dealing with large articulated motion and

partial occlusion.
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3.1 Related Work

Human modeling is a hot area and has attracted the attention in the past few years[6,
24, 36-52]. Among different types of human models, most models employ part-based
representations to handle articulation. They vary widely in their level of detail. One
group of researchers crudely model the body as a collection of articulated planar
patches [ 24 ]. Another group of people develop 3-D models with deformable limb

shapes [ 36 ].

For part-based 2D models, the representation of parts varies from planar patches [24]

against the data. Gavrila and Davis [40] proposed a complex 3D model of the body
that takes into account kinematic constraints, but their method requires searching
through a high dimensional pose parameter space for 3D pose recovery. If only 2D

data is available, we need to match the 3D model against the extracted 2D data.

Assumptions about the viewing conditions vary from scaled orthographic projection
[41] to full perspective [42,43]. To account for large variations in depth, Hogg [44]
modeled the body in terms of articulated 3D cylinders viewed under perspective
projection. More sophisticated tapered cylinders [43,45] or super-quadrics [46] have
been employed. Bowden et al. [47] encapsulated the correlation between 2D image

data and 3D skeleton pose in a hybrid 2D-3D model trained on real life examples. The

11



model they used allows 3D inference from 2D data, but their method does not
generalize easily to new camera positions, because their 2D model is not invariant to
viewpoint. The common drawback with the above models is that they do not model
the statistical variation among individuals and the effects of clothes on human shape.
Thus, they may be used for human tracking or figure animation, but they are not

appropriate for detecting people of various shapes and clothing.

Marr and Nishihara [48] proposed a hierarchical 3D human model. At the highest
level of the hierarchy, the body is modeled as a large extended cylinder, which is then

resolved into small cylinders forming limbs and torso, and so on to fingers and toes.

This hierarchical representation is stable in the presence of noise and sensitive to

Baumberg et al [49]. and Sullivan et al. [82] employed a deformable template to
handle shape deformation, where the shape model is derived from a set of training
shapes. The orthogonal shape parameters are estimated using Principal Component
Analysis(PCA). One drawback with this approach is that the model and the extracted
contour should be aligned first, which is not a trivial task. Another drawback is that
some invalid shapes are produced by the combination of two or more linear
deformations. Gavrila et al. [50] developed a template hierarchy to capture the variety
of human shapes, and the model contains no invalid shapes. The common drawback
with the above approaches is that they do not model individual parts, and so they can
only handle limited shape variety due to articulation and cannot deal with occlusion

very well.
12



Skeleton-based representations [51] have been used to model the topological structure
of the human body, but they do not model the shapes of body parts. These approaches
are sensitive to noise and cannot distinguish two classes with the same topological

structure but different geometrical structures.

Some models incorporate other cues or features into the model. Pentland [6]
introduced a blob-based representation that combines skin color and contour to
represent a body part. While the color-blob representation of a person is quite useful,
it is not invariant under clothing/lighting changes and so it requires an initial model
learning procedure for different subjects and a smoothly changing image background.
Papageorgiou et al. [52] developed a wavelet-based representation to model

pedestrians, but this representation i @glant under rotation and cannot handle

or in some limited field.
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3.2Part-Based Human Body Model

Shape representation is a major problem in computer vision and is the basis for

recognition. Here we define the word shape :

Definition 3.1

The Shape is the geometry of an object’s occluding contour in 2-D space.

The requirements of a good description that facilitates recognition lead to

representations that are segmented ap# Sdical. Thus, shape decomposition is a

key stage in a part-based shap@ Here, we need to make some

definitions clear :

Definition 3.2

A Part of an object is a region bounded by a portion of the outline of a

silhouette and one or more cuts.

A Cut of an object is the boundary between two adjoining parts of the object.

It strictly passes through just two points on the outline of the object.

A silhouette can be decomposed in many different ways as shown in Fig. 3-1, but for

the task of recognition not just any partitioning scheme will do. The decomposed parts

14



must satisfy certain requirements for recognition:

1. They should correspond to the natural body parts of an object.
2. The decomposition should be invariant under translation, rotation, and scaling.

3. The decomposition should be computable.

Figure 3-1 Silhouette decomposition (a) original silhouette (b) random

decomposition (c) decomposition at NCM (d) natural decomposition

These requirements suggest that to break a shape into parts we should use its intrinsic
geometry. Figure 3-2 shows the flow chart of our part-based human silhouette
decomposition process. In the following, we will discuss each stage step by step. In

15



section 3.2.1, a human silhouette extraction process based on background-subtraction
is introduced. After this extraction process, a contour smoothing algorithm applying
Gaussian filter is presented in section 3.2.2. Then, curvature estimation for every
point on the smoothed contour is introduced in section 3.2.3. At last, we will present
the main process for human silhouette decomposition in section 3.2.4 by applying the

features discussed above .

start

'

Silhouette extraction

’

Contour detection and smoothing

'

Curvature estimation on contour

|

Silhouette decomposition

|

end

Figure 3-2 Flow chart of the proposed human silhouette decomposition
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3.2.1 Human Silhouette Extraction

Background subtraction is one of the main techniques to extract moving objects from
background scenes. A Gaussian Mixture Model (GMM)[53]is a frequently used model
for background subtraction. A famous approach is Stauffer’s paper [53] which models

each background pixel’s distribution using a GMM; this model allowed to monitor

continuously a university campus.

Our system requires three steps to complete the process : background modeling,

background estimation ,and background updating. Figure 3-3 shows the flow chart of

our silhouette extraction process.

Initial

|

Background Model ing

Foreground
Extraction

Backround estimation =

Background Updating

Figure 3-3  Flow of silhouette extraction.
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Background modeling

For each application, the first and important step is to extract moving objects from the
background (background subtraction defines the moving objects). Each background
pixel is modeled using a mixture of Gaussian distributions[53]. The Gaussians are
evaluated using a simple heuristic to hypothesize which are most likely to be part of

the “background process” . Each pixel at (i, /) is modeled by a mixture of x

Gaussians, G, ,...G,; , ,as stated in the formula :

The probability of observing pixel value
k
Plx;, )= 2y Gy (5 510 Z ) (3.1)
h=1
After a learning duration 7', we have images 1,...[, .

where 7, ={x;,}
x;, =(R;,.G,,.,B;,) , Vt=1..T

For each pixel at (i, j) ,cluster x;,,...,x;, into xclustersC;,..C;,

then have

4, - mean of the A th cluster at position (i, /),C;,

¥, + covariance matrix of the A th cluster at position (i, j),C;,
1 _i()ﬁ/,lﬂ —py, ) (= a0
Gy (X ly 1n 2y ) = ————e ? |
(277, |

where n = dim(x; )
w,, * weighted parameter of G, ,

ize(C,
usually defined as M
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Normally we choose x equals to 3 for indoor scenes and x equals to 5 for outdoor

scenes. For computational convenience, the covariance matrix is assumed to be the

form: X, =0, 1. This assumes that the red, green, and blue pixel values are

independent and have the same variances.

Background estimation

By following the approach proposed in Stauffer’s thesis [53], we add some post

processes to extract moving objects with more accuracy. In summary, background

estimation requires to work on : pixel-level process, frame process, region process.

background estimation problem is solved by specifying the Gaussian distributions,

which have the most supporting evidence and the least variance. Because a moving

object has larger variance than a background pixel, so in order to represent

@

background processes, first the Gaussians are ordered by the value of in

ijh
decreasing order. The background distribution stays on top with the lowest variance

by applying a threshold, where

b
Z%,h

B = argmin| * > Threshold (3.2)

k

Z%,h
h=1
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Then the first B distributions are chosen as the background model. All pixels x,,

which do not match any of these distributions will be marked as foreground. At this
stage, the obtained foreground mask (we use Mask to represent it) contains errors.
The foreground part may have holes due to misclassified pixels. shadow represents
another error source, together with the noises occurred in the imagery process , they
both make the background pixels misclassified as foreground pixels frequently. To

avoid these errors, we continue the processes at the region level and the frame level.

Frame level process : The frame level process comes second, and it is basically
defined by frame differences. Let 7, represent the current image, /,, the previous

image, and /,, the subsequent image. We use D, , and D, to represent frame

t+1

differences. We have D, , =1 .. —I,. The pixels being identical in

t

all three images are in the foregrg gage /,. We ensure that these are

also in the foreground mask obtainsg Wious pixel process, indicated by the

following updating formula :

MASK = MASK +D, AD, (3.3)

Region level process : The region level process comes last. The foreground mask at
this step may contain Salt and Pepper noises or small holes. We designed an extra post
processing step. Most approaches use opening and closing to remove such noise and
fill in small gaps. But this method cannot fill in large holes. We use a different method
by applying a 5x5 window. By running this window on our foreground mask, we can

remove noise, shrink and fill small or large holes. Each pixel P in the foreground

20



mask is the center point in the 5x5 window, so there are 8 points surrounding P
forming a 3x3 window, and another 16 points surrounding this 3x3 window. For each
foreground pixel, we will check if there are less than half the number of foreground
points surrounding it. If these points are not connected, then this central foreground
pixel is an isolated noise pixel and will be removed from foreground mask; if there are
more than half the number of foreground points surrounding it, and if these points are
connected, then this central point is confirmed to be a foreground pixel. Under these
circumstances, we need to fill in gaps between this point and surrounding connected

foreground point within the current window.

Figure 3-4 Background subtraction (a) the original image (b) pixel-level image

(c)frame difference (d) frame-level (e) region level
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Background updating

Based on the background estimation results, the background is updated as follows: If

x,, matches /4 th distribution, then the parameters of the 4 th distribution are

it

updated as follows:

Hyni = U= Py gia + X, (3.4)

O-Jz',h,t = (1_ p)o-Jz',h,t—l + p(x;‘j,t - lu;‘j,h,t)t (xgj,t - /uij,h,t) ( 35 )

where p is the learning rate, ,,, remains unchanged. The parameters for

t

unmatched distributions remain ygiéfanoesée, But .

lj,h,l‘ = (1_a)a)ij,h,t—l WI“ be

e distributions, we will check if

ij
xequals to 5, then the least probablSgistribu@®h is replaced by a distribution where
the current value acts as its mean value; if xis less than 5, a new distribution will be

added to background model.

Figure 3-4 shows the result that extracts a person’s silhouette who runs in an indoor
environment. Figure 3-4(a) shows the result which detects the foreground object in the
pixel-level process. Figure 3-4(b) is D,AD,, image and Figure 3-4(c) is
MASK = MASK + D, A D,_; which is processed in the frame-level stage. The final

result obtained after applying region-level process is shown in Figure 3-4(d).
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3.2.2 Human Contour Smoothing

At first, we need to make a definition of human contour.

Definition 3.3
The contour of a human silhouette here is defined as the first layer boundary

inside the silhouette.

After extracting the silhouette of the intended human target, we need to detect the
contour of the human silhouette. It is a trivial work to be achieved by applying some

classical edge detection algorith 4] pfortunately, through the silhouette

extraction stage, there are still & fhere circumstances, the detected

contour would be saw-toothed eff&8 nius, an additional curve smoothing
process is necessary. The most promisifgfigandidate would seem to be smoothing with
a low-pass Gaussian filter, as has been proposed in many other areas of image
analysis. This section will briefly present the basic method and terminology for

filtering a curve by Gaussian filter.

The curve to be smoothed is represented as two coordinate functions of a path

parameter ¢ :

p(t) = (x(®), y(@®)) (3.6)
where

x = x(t)

y=y()
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In order to filter out high frequencies in this curve, we convolve these functions with

one dimensional Gaussian G_(¢) of standard deviation o :

1-D Gaussian Function

G, (1) =%3—e % (3.7)

Then we will have the smoothed curve :

Smoothed curve :
P(t) = (X(0),Y (1)) (38)
where
X)) =G, (t)®x(¢)

Y(1) = G, () ® y(r)

As we use a convolution operator with an one dimensional Gaussian filter, there are

two parameters need to be predefined initially :

o : the standard deviation

w ' the convolution window size

The considerable factors to define these parameters depend on the trade-off between
the influence of noise and the number of pixels near by. The high frequency noises
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would not be filtered out by applying a smaller o. And sharp areas would be
smoothed by applying a larger ocor w. By experimental-based methodology, we
choose the standard deviation o between 2 to 10, and the convolution window size
is predefined as w=3~50-2+1 . Figure 3-5 shows the results obtained by

applying the above mentioned method.

Figure 3-5 Left column shows the noisy extracted silhouette images. Right column

shows the smoothed contour of left. (o =8)
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3.2.3 Curvature Estimation on Contour

A precise estimation of curvature properties plays an important role in the
interpretation of digital binary data such as maps, engineering drawings, and the like.
Curvature also is a key notion in the recognition of objects from digital pictures.
Specifically maxima, minima, and zero crossings of curvature carry important shape

clues.

Digital curvature is computed from a discrete set of points, either representing a
digital line or the discrete boundary of some digital objects. The digital set of points is
a representation of some continuous pre-digitized object. In the digitization process,

exact information on the continuous.@ Wost and therefore curvature cannot be

calculated exactly, but it can only

In the literature, a large number o MO0S have been proposed for curvature
estimation. And we know that the ability of a method is reflected by the accuracy and
precision of estimation. In the literature on the differential geometry of curves [55],
three equivalent formulations of curvature are found. They are respectively based on
the orientation of the tangent, the second derivative of the curve considered as a path,
or on the local touching circle. For continuous case, the three formulations are
equivalent, but not so in digital case. In the following, we would introduce these three

formulations briefly.

Definition of curvature
Consider a continuous object X with boundary oX . Let p(s) = (x(s),y(s))" be

the length parameterized path following 0X in a counterclockwise fashion.
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By definition, the curvature k& of a curve or path pis given by the directional

change of the tangent ¢ of p.

Definition 3.4 (Orientation —based continuous curvature)

k(s) = 6'(s) (3.9)
where

0(s) = L(t,x" — axis)

Formulated in this way, the sign of k(s) indicates whether the curve locally at s is

Alternatively one can express th & norm of the second derivative of

path x.

Definition 3.5 (Path —based continuous curvature)

( )={+ Ip"(s)|  (contour locally convex) (3.10)

- |p"(s)| (contour locally concave)

For an arbitrary (non-path-length) variable u, Definition 3.5 is reformulated into the
following equation giving the correct magnitude of curvature as well as the correct

sign :
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k() = ¥ 00" () = x" W)y (3”) (311)
(' ))? + (' (u))?)?

A third definition is derived from the osculating circle touching at p(s) , defined as
the limiting circle through p(s—As), p(s), and p(s+As), when As — 0. Let

r(s) be the radius of the osculating circle at p(s) then:

Definition 3.6  (Osculating circle — based continuous curvature)

1
+—— (contour locally convex)
r(s)

k(s) = (3.12)

- (— (contour locally concave)
r\s

The three definitions are illustrated in Figure 3-6.

Here, for computational convenience, we apply a common method that employs
Gaussian filter with convolution operator in Definition 3.5. At every point of the
discrete curve, a limited window of fixed size w is predefined initially in the
computation. From the point in the window, a local curvature estimation is made. The
choice of a fixed window size implies that curvature feature should have compatible

level of detail.
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X(S)

derivative of tangent orientation 6s

the inverse of the radius » of the@

Just as what we have discussed in section 3.3.2, the smoothed contour can be

parameterized as :

p(1) = (x(2), ¥(1)) (3.13)

where
x = x(1)
y =)
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Then the curvature at p(s) is estimated as :

MPSELONORE {OII0
(' @) + (' (1))
where
X(t)=G" (1) ®x(t)
V() =G, ()®y()
xX'(t) =G"_ (1) ® x(¢)
V() =G", (1)) ® »(1)

(3.14)

And the higher derivatives of Gaussian kernel is formulated as :

the first derivative of Gaussian kernel

t2

G ()= —L ¢

o*Nex

the second derivative of Gaussian kernel

2 i

1 t T, 2
G (N=——(~—1e 20
o—() 0_3\/5(0_2 )e

(3.15)

(3.16)
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3.2.4 Human Silhouette Decomposition

In this section, we will present the main process at the human silhouette
decomposition stage of our system. All what we have discussed above in this chapter
are sub-functions of this process. At the beginning, we will describe two important

rules for achieving our subject to decompose the extracted silhouette.

Figure 3-7 (a) points with NCM (b) non-principle decomposition at NCM (c) natural

decomposition

Minima rule
According to the Hoffman and Richard’s research [56], by human intuition about
parts, a segmentation into parts occurs at negative curvature minima (NCM) as shown

with small circles in Figure 3-7(a).
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Minima rule :
For any silhouette, all negative minima of curvature of its bounding curve are

boundaries between parts.

The minima rule constrains cuts to pass through the boundary points it provides, but
does not guide the selection of cuts themselves. For example in Figure 3-7(b), the
silhouette of a person is decomposed into parts at NCM, but some segmented parts do
not correspond to the natural body parts of a person and one of the legs is not detected
at all. This example demonstrates that not every pair of NCM forms a natural part, and

some parts such as the limbs of animals may be bounded by a NCM and a non-NCM.

decomposition.

Short cut rule
Singh et al. [58]noted that when boundary points can be joined in more than one way
to decompose a silhouette, human vision prefers the partitioning scheme which uses

the shortest cuts.

Short cut rule :

Divide silhouettes into parts using the shortest possible cuts.

The requirements of a cut by this rule :
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(1) Be astraight line

(2) Cross an axis of local symmetry

(3) Join two points on the outline of a silhouette, such that at least one of the two
points has negative curvature

(4) Be the shortest one if there are several possible competing cuts.

Because only one end of a cut is required to lie on a portion of the boundary with
negative curvature, this enables us to decompose a shape such as a leg at the right
position as shown in Figure 3-7(c). Singh et al.’s scheme restricts the cut to cross a
symmetry axis in order to avoid short but undesirable cuts. However, robust
computation of symmetry axes is difficult and complex since from their very

sensitive to noise.

»

definitions [48, 59,60] most axes are g%

Human silhouette decompositior#h N

In this thesis, the constraint on the sa{leMEEGr a part is used to replace the second
requirement in the short-cut rule in order to avoid the computation of symmetry axes.
According to Hoffman and Singh’s research [57], there are three factors that affect the

salience of a part:

(1) The size of the part relative to the whole object.
(2) The degree to which the part protrudes.

(3) The strength of its boundaries.

Among these three factors, the computation of a part’s protrusion (the ratio of the
perimeter of the part (excluding the cut) to the length of the cut) is more efficient and

robust to noise and partial occlusion of the object. Thus, the protrusion of a part is
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employed to evaluate its salience; the salience of a part increases as its protrusion

increases.

Therefore, we combine the minima rule, the short-cut rule, and the salience
requirement to constrain the conditions of a cut. In the following, we write our

decomposition algorithm in a pseudo-code fashion.

Decomposition Algorithm:
Input :
S : the silhouette of the detected object

C : the contour of the silhouette

1. foreach point p(¢) e C
2. estimate the curvature &(¢z) at p(¢)
(‘here the curvature at each point is collected in the set K)

3. end-for

4.  find the negative curvature minima point p, .~ with K

(‘here the negative curvature minima points is collected in the set NCM )

5. if NCM = ¢
6. for each point p,, € NCM
7. divide C into C, and Cg, which start from p,,
( where length(C,) = length(C,), length(C,)+ length(C,) = length(C) ,
C, is the left part of C which starts from p ., and C, is the right

one)
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m
[l

pncm[ p

5. find p, —agminfp p| St — 5T, peCy ppeS
Prem, P

9. if p, exists

10. dothecut p,, p,

11. end — if
pnc:z[p'

12.  find p,=argmin|p,, p| st 1> T PECh Prn P’ €S
Prem, P

13. if p, exists

14. dothecut p,, px

15. end — if

16. end-for

17. end-if

Here, we describe the decomposition algorithm in details : After we extract the
silhouette S of the object in an image and detect the smoothed contour C of a

silhouette. Then the curvature estimation discussed in 3.2.3 will be applied to

calculate the curvature k(¢r) for each point p(f) e C. The estimated curvature

values are collected in the set K. For efficiency and robustness purpose, at the

negative-curvature-minima detection stage, we filter out the small magnitude of

curvature to avoid parts due to noise and small local deformation. The points p,.,

with negative curvature minima are collected in the set NCM. For each point

Puen, € NCM , let p,,. be the point on C so that p,, and p,, divide the
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contour C into two curves C,

and C, , where length(C,) = length(C,) ,

length(C,) + length(Cy) = length(C). Then two cuts p,.,, p;,  P,., Px are formed

passing through  p,,, ,where p,, p, € C are located as follows :

Puen D'

p,=argminip, ., p'H s.t.
P ' Pem P’
Duen P’
pr =arg miln‘pm,mip'u s.t. .
P Puem, P

>Tp, P'€Cy Pyn,P' €S (3.16)

>T'P’ p'ECR’ pncm,p'ES (317)

Puen, D' 15 the smaller part of C

(@)

pncmi p

of p,.,p', and

andcut p,,, p"

pnle- p

Do p'H is the arc length

'd p',
&

the part bounded by curve p,.. p',

Eg. (3.16) means that p, lying on C,is located such that the cut p,,, p, is the

shortest one among all cuts sharing the same end p,, , and fits the protrusion

threshold T7,. The other end p, is located in the same way using Eq. (3.17). Figure

3-8 shows an one-step example that decompose the human silhouette into parts, where

Puen, @nd p,,. divide the contour C into two curves C, and Cy, p,,, p, and

P.n, Pr are the cuts satisfy Egs. (3.16) and (3-17).
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Phay

Figure 3-8 Computing the cut passing through the point p,., . p, and p, are

another ends lieon C, and C,.

Over-segmentation alignment

When using Egs. (3.16) and (3.17) to compute the cuts of a silhouette, they may result
in over-segmented parts as shown in Figure 3-9(c). Therefore, a post processing step
is needed to merge two over-segmented parts that share a cut into a larger one if this
larger part cannot be decomposed into significant subparts using Egs. (3.16) and
(3.17). The order of grouping is from the largest to the smallest parts so that the
largest one is selected when several possible competing merges exist. Figure 3-9
illustrates the whole procedure of the shape decomposition algorithm. The procedure
stops when no part can be further decomposed into significant parts and no two parts

can be merged into a non-decomposable larger part.
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Figure 3-9 Human silhouette d88gh" (&) smoothed contour (b) NCM

estimation (c) decomposition (before alignment) (d) decomposition (after alignment).

Fig. 3-10 shows several example results from the human silhouette decomposition
algorithm. These results demonstrate that the algorithm can produce natural part
decompositions that are robust to noise and local deformation. Nowadays, it is still an
open problem to decompose a shape into a set of perfect subparts without using higher
level information. For example, variations in the locations of subparts may occur due
to self-occlusion and flexible deformation. There are also missing parts resulting from
the inherent difficulty in finding the cut points. All of these will cause non-perfect

decomposition. Solving this kind of problems would be our future work. In this thesis,
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we focus on the limitations of binary scale and 2-D projection images.

R R P =
2y |9 | |=%

Figure 3-10 Example results of our human silhouette decomposition algorithm.

In summary, this chapter presents a whole human silhouette decomposition algorithm
of our system. First, we extract the human silhouette by background subtraction
algorithm. Second, the contour of the silhouette is detected and smoothed. Third, the
curvature for each point on contour would be estimated. At last, the decomposition

algorithm is applied. It can be used to decompose people in an image independent of
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their sizes, poses, and articulation. In next chapter, we will introduce an algorithm to

identify the parts from this chapter.
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4 Human Body Parts Identification

After the decomposition algorithm discussed in chap. 3 is applied in our proposed
surveillance system, human body parts identification is an essential and necessary
stage for human behavior analysis. In this chapter, we will propose a statistical
shape-similarity-based algorithm for this purpose. Although a large number of shape
similarity measures have been proposed, most of them are for some special
applications, e.g. image retrieval, object recognition...etc. This chapter focuses on
designing a similarity measure for deformable shape classification, especially for

articulated objects such as humans.

The rest of this chapter is organie /! I8 section 4.1, the related work on
shape similarity measure is discusSgk. Sectigi*4.2 defines the architecture of the
human body in our proposed system. Section 4.3 presents a statistical
shape-similarity-based algorithm for human body parts identification in a hierarchical

fashion. At last, a human body parts estimation for missed parts is presented.
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4.1 Related Work on Shape Similarity Measure

The problem of determining the similarity of two shapes has been well-studied in
several fields. The design of a similarity measure depends on how a shape is
represented. Many global shape descriptors (see reviews in [61,62]) such as Fourier
Transform, moments, and eigen shapes have been used to compare two shapes, but
they cannot handle occlusion and local deformation such as articulations very well.
Therefore, this section does not discuss the similarity measures based on global shape
but concentrates instead on those that use local shape primitives, such as points, key
points, lines, arcs, axes, or parts. Broad overviews of shape similarity measures can be

found in [63, 64, 65].

that is not as sensitive is the partial Hausdorff distance [66]. This measure can deal
with occlusion and clutter very effectively; the measure itself is used to guide the
search for an alignment transform in the discrete space. Technically speaking,
different transformations such as similarity, affine, or non-rigid transforms can be
used for shape alignment. However, the dimension of a non-rigid transformation
space is too high to be searched efficiently. A match-based method has been proposed
to avoid the search for the transformation in a high dimensional space. An alignment
transform is calculated from the matched points, then the similarity measure is
calculated as the sum of the residual distances between the corresponding primitives.
The common drawback with the above measures is that they have to transform one

shape to another before shape comparison because the distance metric is not invariant
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under similarity transform.

Various cost functions have been proposed to evaluate the dissimilarity between two
contours without aligning them. A cost function weights the similarity of the matched
points on the basis of their local properties, such as the difference in the tangent or
curvature of the contours at those points. The cost function itself is used to guide the
search for the best match. Basri et al. [65] defined the cost function as “elastic energy”
needed to deform (stretch or bend) one curve to another. However, the computation of
elastic energy (which is defined in terms of curvature) is very sensitive to noise. Other
alternatives are possible, for example, such as turning functions [67], arch height
functions [68], size functions [69], or functions combining multiple local properties

everal methods such as dynamic

MR8 algorithm have been employed to
find the correspondence between GBIt gk Etratnigimize the cost. The main drawback
of these methods is their high co [tioNal complexity due to searching for

correspondences at the point level. Furthermore, none of these cost functions is

invariant under scaling and/or rotation of the point data.

Other features such as key points and lines have been used to reduce the
computational cost because a digital contour usually consists of much fewer features
than of points. Pope and Lowe [72] modeled an object with a graph whose nodes
represent the feature values and whose edges represent the spatial arrangement
(symmetric, parallel) of the features. Objects are considered similar if their graphs are
isomorphic; a similarity metric based on a probability density estimator is used to
identify if a shape is an instance of a modeled object. To handle occlusion, partial

matching is allowed and the largest mutually compatible matches are found by
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constructing an association graph to search for the maximal clique [73]. The main
drawback of these methods is that they cannot handle articulated motion because the
spatial relationships between features are assumed to be fixed. Moreover, it is difficult
to find a coherent set of features that is shared by all possible shapes in a class and

that can be extracted reliably.

Part-based representations is a more effective way to handle articulation and occlusion.
They have several advantages over other representations such as points, lines, and
arcs. First, articulation usually happens at part boundaries, thus, a part-based
representation is a more natural and coherent description of articulated shapes. Second,
a shape contains fewer aggregate parts than other features. Third, part-based methods

find strong support from human vijss The main concerns of a part-based

similarity measure are how to de
correspondence among them. Pawg

’

convex shapes separated from the rest"OIftNe*Object at concavity extrema [58], or at
inflections [75]. One type of approach is to represent shapes as skeletons or graphs
and then to use graph matching or qualitative properties such as topology to compare
shapes. The main drawback of these approaches to part-based shape analysis is that
the shape decomposition is not stable. Since only qualitative properties are used for
shape classification, they cannot distinguish two shapes with the same body part
structure but different body part shapes and geometric relationships. Zhu and Yuille
[51] developed a similarity measure to compare silhouettes based on both the local
shapes of parts and the topology but the method can not handle shape degeneration or
resolution changes very well. Several curve evolution approaches [76,77,78] have

been proposed to model shapes of an object at different scales, but the related

similarity measure is sensitive to occlusion and is not invariant under scaling.
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Leung et al. [79,80,81] have proposed a method which combines the intensity pattern
and the spatial relationships between the facial features to detect faces from the
cluttered environment. However, they do not use the spatial relationship to help detect
face features, and no size relationship and recursive procedure is involved in face
detection. The main reason is that the facial features have very distinctive patterns and
can be detected based on their intensity patterns. In human detection, we rely heavily
on the spatial and size relationships to identify the human body parts, because the

body parts such as arms and legs do not present very distinctive texture patterns.

In summary, the drawbacks of the above similarity measures are listed as follows :

digitization and poor segmentation.

Point-based approaches are time consuming, while feature-based approaches are not
stable and cannot handle articulation appropriately. In contrast, the part-based
approach is a more promising direction, however, current methods cannot handle
shape decomposition errors and shape degeneration very effectively. Above all, the
above shape similarity measures cannot deal with large shape variations within a class.
They are not appropriate for the purpose of classifying shapes such as those of

humans.
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4.2 Architecture of a Human Body

[

(a) (b)

Figure 4-1 Huma

A human body can be represented directly using a 3D model or indirectly using a
collection of 2D models corresponding to different views. Since the goal of this thesis
is to detect people in an image, 2D models are preferred, because a 2D model can be
compared directly with a 2D shape without projecting the 3D model onto the image
plane by searching a continuous viewpoint/pose space. The question of how many and
which viewpoints to use is an open question and also depends on the application. In
the case of pedestrian detection, we found two 2D human body models were
sufficient— the front-view and the side-view models as shown in Figure 4-1. The two
models share the same body parts. The main differences are the spatial relationships
between the parts and the shape of the torso. The views not modeled by these two

models are partially absorbed by the probability distributions of the spatial
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relationships among the body parts encoded in the human model.

In order to make it more clear, we define the architecture of a human body as shown
in Figure 4-2. Each human body model consists of six main body parts : the torso, the
head, left arm, right arm, left leg and right leg. For more detail description, the human
body model consists of ten body parts - the torso, the head, left upper arm, left lower arm,
right upper arm, right lower arm, left upper leg, left lower leg, right upper leg, and right

lower leg.

L-L-Arm |¢ L-U-Arm R-U-Arm || R-L-Arm

L-U-Leg R-U-Leg

L-L-Leg R-L-Leg

Figure 4-2  Architecture of human body (L/R-U/L-part : L/R means Left/Right, U/L

means Upper/Lower)
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There are still two definitions need to be introduced.

Definition
The parent of a body part is defined as the origin side of the arrow in the

architecture of human body. E.g. torso is the parent of head, upper arms, and

upper legs.

Definition
The trunk of a human object is defined as the one special merged body part
which cover the torso and some other body parts, e.g. legs, upper legs, arms,

upper arms. Figure 4-3 shows an example of trunk.

trunk

|

Figure 4-3  An example of the trunk in a human object
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4.3 Statistical Shape-Similarity-Based Algorithm

4.3.1 Body Model for Shape-Similarity Measure

For computation convenience, we need to define the body model in a numeric fashion.

Figure 4-4 shows an example to describe definition 4.3.

Definition 4.3

Abody part B is parameterized with a vector

B=(x,y,a,l,0)

where
x : the horizontal coordinate of the joint of B in its parent local
coordinate

y * the vertical coordinate of the joint of B in its parent coordinate

a : the aspectratioof B, a =%, where w is the width of B

[ :lengthof B

@ : the orientation of B based on the joint of the body part.

sk the joint is defined as the intersection point between the major axis of

B and the cut comes from its parent.
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Upper arm
(x,¥)

w / Lower arm

Figure 4-4 Parameterized human body part

The aspect ratio a - s invariag lerpsiN@rity transforms, and it captures the

However, the aspect ratio, a, is too ambiguous to be used alone to distinguish
different parts. For example, the head and the torso have similar aspect ratios.
Therefore, besides aspect ratios of the body parts, the geometric relationships between

them are also modeled. There are two more measures we apply :

1. Position (x, )

The position, (x,y), of a body part is defined as the joint location of the body part,
expect the position of torso is defined as its geometric center. (x,y) is the relative
position comes from its parent part’s coordinate. The joint of a body part is defined as

the intersection point between the major axis and the cut comes from its parent.
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2. Length [

In section 4.2, we have shown that the architecture of our body model consists of ten
sub-parts, or six main parts. Assuming that the ten-sub-parts model is parameterized
with vectors B,, B,, ..., By, where B, =(x,y,aq,1[,6). Here, we define the
length ratio matrix S ={s,}, 7,7 =1...10, wheres, = IZ_

J

The advantage of locating the position, (x,y), of a body part as the joint point instead
of the geometric center of a body part is that the location of the joint become invariant

to its parent’s orientation. In summary, a body part is parameterized with a vector

B=(x,y,a,1,0).

Obviously, the aspect ratio, a, 0 and the length ratio matrix, S, is

invariant under rotation and sc& lengths of the body parts are
constrained by the length ratio ma# e relative positions of the six main
body parts needs to be modeled. Let the six relative position of the six main body
parts as X ={(x;,»,),....(xs, vs)}, where (x;,»,)=(0,0)is the position of torso. To
make this vector invariant under rotation and scaling, the coordinates of the joints are

represented in a normalized torso coordinate system with the length of the torso

normalized to be 1. Then X ={(x,»),...(x5,»s)} would be transform into

U ={(0,0),...,(uq,vs)}, Where (”1"’1):11(%%)’ [, is the length of the torso.

1

Finally, we define the body model in our proposed system for the shape-similarity

measure which consists of five model matrices in the following :
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Definition 4.4 ( Body Model)

The body model consists ten sub parts for shape similarity measure is defined as

M ={4,5,U,0}

where
A= {N(a_l, aal),N(a_z, o, ),...,N(a_lo, o, )} * aspectratio vector

S= N(s_l.j, z.}, 1,7 =1..10 * length ratio matrix, where s, =ll—"

J

U ={(0,0),..., N((ug, ), Z,, ..., * normalized relative position vector for six

main parts.

where (ul,vl):ll(xi, ¥,;), & isthe length of the torso

1

0={4,..,6,} - the orientation vector

T

The above probability distributions provide metrics to evaluate the shape, size
relationship, and configuration similarities between the detected human object and the
body model. Their parameters (means and covariances) are estimated from the
measurements provided by Tilley[](see Appendix). Figure 4-5 shows the diagram of

the statistical human body model.
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4.3.2 Moment Function for Local Shape Description

Moments and functions of moments have been used as pattern features in a number of
applications to achieve invariant recognition of two-dimensional image patterns. Any
model aiming at describing shapes should be invariant under translation, scaling and
rotation [83][84]. In this section, the mathematical basis of geometrical moments is
presented in the framework of the theory of orthogonal polynomials and the question
of how well an entity can be characterized by a finite set of moments is investigated:
first in the form of how to rebuild the entity from its moments, then in the evaluation

of the reconstruction error.

Definition 4.5 ( general definition of moments of order (p+q))

My = [0 (6 2) f (5, p)dlxdly (4.1)
¢

where
p,q ‘ positive integers
f : the intensity function R — {01}

¢t the definition domain of f

v,, - the kernel of the moment function

The definition of Eq (4.1) means that f is projected onto y, . Here, we apply the
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geometric moments defined with basis set x”y? and the central moments to estimate

the geometric center and the orientation of a body part. The
(p + q)" two-dimensional geometrical moment m_pq in a discrete-time image can be

defined as follows :

Definition 4.6 ( geometric moments of order (p+q))

M

ps = Z in"y;?f(xiyj) (4.2)

1

3

Where
p,q : positive integers

f * the intensity function R — {01}

Definition 4.7 ( geometric center)

The geometric center (x,, y,)of an object in an image can be estimated as

m
X, = 10
m
00
4.3)
m
_ My
Ve ==
My
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By applying the Eq. (4.2), the geometric center of a body part can be estimated by the
geometric moments : my,, my,, my . The moment of order zero m,, represents the
total intensity of the body part. For an areal entity, this moment is equal to its area.
The first order moments m,, and m_01 provide the intensity about the x -axis and

y -axis of the entity respectively.

It is often convenient to evaluate the moments with the origin of the reference system
shifted to the intensity centroid of the entity. This transformation makes the moments

independent from the position of the entity. The moments computed with respect to

the intensity centroid are called central moments.

Figure 4-6 The geometric center and orientation of the detected human object.
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Definition 4.8 ( central moments of order (p+q))

Hpy =2

1

(= x)" (v =y ) f (%)) (4.4)

M N
1

where
p,q - positive integers

f : the intensity function R — {0,1}

The second-order moments are measures of variance of the entity intensity function

about the origin. The central moments quipb@nd 1., assess the variances around the

mean. 4, gives the covariance

estimations of the detected human Bf§£C

Definition 4.9 ( orientation)

The orientation & of an object in an image can be estimated as

0= ltcz;fl( b
2 a-—c

where

) (4.5)
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4.3.3 Hierarchical Identification

As what we discussed in chapter 3, after the decomposition process there is a
collection of unidentified parts. In this section, a hierarchical statistical-
shape-similarity algorithm (HSSS ) for human body parts identification is presented.
In the following, we will introduce how the algorithm works by applying the body
model proposed in section 4.3.1. Figure 4-7 shows the flow chart of the HSSS

algorithm.

Decomposed Silhouette

|

Torso ldentification

Unidentified Torso or Upper trunk

upper trunkl I
Head & Four Main Head & Main Legs
Limbs Identification Estimation
A
Main Arm
/ Identifation
Missed Part
Estimation
v \ﬁ
Discard Success ldentification

Figure 4-7 Flow chart of the proposed HSSS algorithm
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Local-Moment-to-Global-Moment Hypothesis

According to our observation, the geometric center of the torso is the nearest one with

the global geometric center of the entire human object.

Hypothesis 4.1 (Local-moment-to-global-moment hypothesis)

The geometric center of torso is the nearest one nearby the global geometric center

of the human object.

We have observed thousands of humag,gQstures. Under most variable posture, the

geometric center of torso is alwayg oge nearby the human object’s, even

bending down. Figure 4-8 shows tHe reSBMSMBIdeSgRbe the hypothesis.
\

— —

5
;

A :
[ A

Figure 4-8 The solid points indicate the local geometric center, and the non-solid

point indicates the global geometric center.
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Torso ldentification

According to the architecture of a human object proposed in section 4.2, obviously
torso is the only basis of the architecture. Thus, the first step to the identification
mission is to classify the torso of the observed human object. If the identification is

unsuccessful, we decide to discard this image.

We have presented an important hypothesis to accomplish this mission. Even so, it is
still un-robust and weak to classify the torso part. We apply the second measure,
aspect ratio, to make the identification process more robust. In summary, if an
unidentified decomposed part satisfies the conditions below, the system will identify

the part as ” torso”

Torso identification conditions :

1. Cj = miin d(C[,Cglobal)

where

C, : the geometric center of unidentified decomposed part .

C

o - tNE global geometric center of the human object

2. a,~N(a,, %, ) *aspectratio measure

torso !
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The identification result will be in just three kind of conditions :
1. Unidentified
If no parts fit the conditions, the system cannot identifies, and the image is discarded.
2. Torso or upper trunk
3. Truck
In this condition, we assume that the legs 1s occluded. Thus, a legs estimation

algorithm will be applied. The algorithm will be introduced in section 4.3.4.

Head and Four Main Limbs Identification
After the successful identification of torso, we need to go forward to identify other
parts. In order to achieve this purpose, three measures have been introduced in the

sections 4.3.1 : normalized relative ,geidreng aspect ratio, and length ratio. If an

unidentified decomposed part satisfis s bellow, then it will be classified as

the corresponding part. -

Parts identification conditions :

1. (u;,v,)~ N((u,0).2,.,) * normalized relative coordinate
2. a; -~ N(a_,.,zai) - aspect ratio measure

3. s, - N(s_

ji?

Z, ) * length ratio

In this section, we have presented the first iteration of our HSSS algorithm. In this

iteration, the system identifies the human body parts based on the probability
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distributions model presented in section 4.3.1. After this process, some body parts
may not be identified. Later, we will introduce the missed part estimation algorithm in

section 4.3.4. Figure 4-9 shows the results of the first iteration of HSSS algorithm.

Figure 4-9 First iteration of proposed HSSS algorithm
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4.3.4 Missed Human Body Parts Estimation

In this section, we will present the last process for the HSSS algorithm. The last
iteration is to estimate the parameters of the unidentified body parts. This is done by
applying the parameters from the body model proposed in section 4.3.1 and the
identified body parts. The parameter vectors of the missed body parts is still be
modeled as B, = (x,,y,,4,,.,,0,).

The parameters (x,,y,), a,, [, can be trivially estimated from the statistical body

i

model and the identified torso body vector.

Missed body parts B, = (x,,y,,a,,/,,6,) estimation :

3' Z = Si(torso) l

torso

The orientations &, of the missed body parts cannot be predicted from the model and
the identified parts, because the orientation relationships between the body parts are
not encoded in the human model. This is solved in the second iteration of the HSSS
algorithm by aligning the predicted body part with the contour of the detected human
object. The procedure of the alignment is as follows. For each missed body part fi, run

Steps 1 to 2:
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Steps of orientation ¢, estimation for missed body part :

4. 6. =0

1 torso

5. Let O be the rectangle rendered by the estimated parameters of B, .

6, = argmﬁaxN(O NE)

where
E : the contour of the detected human object

N(s) : the number of points in the set s

To make the algorithm having more rQl3dstedge other cues such as stereo, motion, and

sgarch of the body parts to be within
the region of similar attributes. FighireNg 1 sthe results by applying the second

iteration of the HSSS algorithm.
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Figure 4-10 The results after second iteration of the proposed HSSS algorithm.

65



5 Concluding Remark

In this thesis, we have developed a human-silhouette-based visual surveillance system
for the human behavior analysis. There are two main contributions have been

proposed :

Computational human silhouette decomposition :
In this part, we employ a combination of shape analysis and geometry analysis on a
human object’s silhouette and contour. By applying efficient computational scheme,

we successfully reduce the computation time for the real time processing purpose. The

proposed decomposition algorith human cognition, and makes the

decomposed human body parts cl@ gonding natural body parts.

Robust human body parts identification :

In this part, we have proposed a robust and effective algorithm to accomplish the human
body parts identification task. We name it the Hierarchical Statistical-Shape-Similarity
algorithm (HSSS). It runs at two fast passes and significantly identifies the human body

parts of a detected human object in many postures under rotation and scaling invariant.

In summary, by the robustness and the efficiency power of our algorithms, they can work

in a real-time visual surveillance system. Our system runs at 20~25Hz for 240 x 160

resolution images on a single Pentium-M 1600Mhz PC.
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Appendix: Parameters of the Statistical Human Model

In section 4.3.1, we have proposed an statistical human model for human body parts

1dentification. The parameters of the human body model are estimated based on a large

quantity of data accumulated over more than 40 years by Henry Dreyfurs, associates and

published by Tilley. Tilley provides both the body measurements of people at different

ages and the clothing corrections. The following tables list the parameters used in this

thesis:
Table 1 Body parts index names
TS | HD | AR |LG | UT LT | BD U L |LA |LL |[RA |RL
torso | head | arm | leg | upper | lo “hady er | lower | left | left | right | right
trunk arm | leg | arm | leg
NS 1896 |
Table 2 The means and the standard deviations of the aspect ratio
TS HD AR LG uT LT BD
U L U L
front a 61 | .78 25 25 92 | 43 | 30
12 .08
view o, .10 .09 12 13 12 13 .08 .10 .08
.05 | .06 .05 .05
side a 45 | .78 25 25 73 | 22 | 26
12 .08
view o, A1 .09 12 13 12 13 .09 A1 .09
.05 | .06 .05 .05

67




Table 3 The means of length ratios

TS HD AR LG UT LT BD
TS 1.0 52 95 1.47 1.0 1.47 3.0
HD 1.92 1.0 1.83 | 2.84 | 192 | 2.84 | 5.76
AR 1.05 55 1.0 1.55 | 1.05 | 155 | 3.16
LG .08 36 .66 1.0 .08 1.0 2.04
UT 1.0 52 95 1.47 1.0 1.47 3.0
LT .08 .36 .66 1.0 .08 1.0 2.04
BD 33 18 32 49 33 49 1.0

Table 4 The stange } fthe length ratios

TS | HD ¥ UT | LT | BD
TS 0 .05 01 .09 .08
HD 18 0 21 36 18 36 53
AR .05 07 0 04 .05 .04 10
LG 04 .06 02 0 04 01 10
UT 01 .05 .05 .09 0 09 .08
LT 04 .06 02 01 04 0 .10
BD 01 02 01 02 01 02 0
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Table 5 The means of the coordinates of the body parts in the normalized torso

coordinate system

TS HD LA LL RA RL UT LT
front x 0 0 231 | -163 | 163 31 0 0
view E 0 5 353 | =472 | -472 | 353 0 -5
side x 0 0 0 0 0 0 0 0
view E 0 5 353 | 472 | -472 | 353 0 -5

Table 6 The covariance of the coordinates of the body parts in the normalized torso

coordinate system (front view)

» .34 11 -.06 A5 1 -.09 04

HD
11 92 -.15 921 -.10 .55

Yup
. .08 .09 -17 14| -33 .06

L4
.03 .56 .07 95 051 1.13| -03] 1.01| -.07 91

Yia
x_ .04 13 .16 .05 .39 231 -35 271 -.16 .05

LL
13 91 191 1.13 231 182 -27| 1.89 ] -19| 1.13

YL
x_ -.06 15| -17] -03 351 -27 411 -32 171 -.06

RL
15 92 141 1.01 271 189 -32| 1.27] -20| 1.23

Yre
x_ -9 -10| -33| -07] -16| -.19 A7 -20 351 -.08

RA
.04 .55 .06 91 051 1.13 | -06] 1.23| -.08 90

Yra
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Table 7 The covariance of the coordinates of the body parts in the normalized torso

coordinate system (side view)

x107!
x_ 18 10 .06 02 .02 091 -.08 A3 -.07 .02
HD
- 10 .85 .07 45 A1 L7 -13 881 -.19 .50
Yup
T .06 .07 13 08 14 A5 1 -.11 A7 1 -25 .07
14
— .02 45 .08 91 061 111 -04| 1.06| -.04 .83
Y04
T .02 11 .14 .06 .20 A3 -30 251 -.13 .06
LL
_ .09 87 A5 111 A3 167 =251 171 -12| 1.02
Vi
— ] 08 13 2| -21| 5| -05
RL
- 13 .88 -21 0 118 -21| 1.14
Ve
x_ 071 -.19 A5 -21 16| -.07
RA
- .02 .50 .07 .83 06 1.02 -05] 1.14| -.07 92
Yra
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