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摘要 

在這篇論文裡，我們發展了一套具有分析人類行動能力的即時視覺監視系統

（real-time visual surveillance system）。設備為一支彩色單眼錄影機；環境參

數為靜止不動的背景（stationary background）。在一開始，系統會結合傳統的電

腦追蹤演算法-背景相減法及混合高斯模型（GMM），將出現在鏡頭裡的目標

物偵測出來，並萃取出其輪廓。接著，系統使用形狀及幾何分析所獲得的特徵

值，成功的將人體各部位區分開成尚未定義的區塊。並利用我們所發展的階層

式形狀統計相似演算法（HSSS）標明被區分開的區域（頭、手、軀體…等）。

當系統成功地將以上區塊分辯出來，便會估算出被觀察者身體各部位的物理特

徵值，例如：型體重心、主軸角度、長寬比例…等。最後再利用這些估算值，

與事先建立好的資料庫作比對。此資料庫是以動作（actions）為基礎所建立的。

藉此系統可以自動地監視被觀察者以及適時地發出警告訊息。此系統可以

20~25Hz 的速度、240x160 的解析度在 Pentium-M 1600MHz 的 PC 上作用。  
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Abstract 

In this thesis, we develop a real-time visual surveillance system for human 

behavior analysis. It operates on monocular color-scale video imagery with a 

stationary background scene.  At the first step in the system process, it extracts the 

silhouette of the target object by traditional video tracking method, background 

subtraction combined with Gaussian Mixture Model ( GMM ). And furthermore, it 

detects the contour of the object silhouette. At the second step, the system employs a 

combination of shape analysis and geometry analysis on the contour to decompose 

the detected silhouette to several undefined parts（unlabeled body parts）. After the 

decomposition process, it labels each the separated part （head、torso、hands、feet）

by the use of our hierarchical statistical-shape-similarity algorithm ( HSSS ). As 

the above steps have been processed successfully, the last step in our system is to 

extract local features of the detected body part（orientation、centroid. . . etc）, and the 

global features of the entire silhouette（aspect ratio、 block density. . . etc）, and then 

these features can be used to guide the high-level human behavior analysis. In the 

on-line behavior analysis process, an unknown sequence will be matched with the 

templates collected in our database. The database is established offline by the use of 

real video captures, which is a group of labeled reference sequence representing 

typical behaviors. In short, our system can detect the human body parts and classify 

the posture of human at individual imagery, then identify the event of a query 

sequence which involves human beings. It runs at 20~25Hz for 240 x 160 resolution 

images on a single Pentium-M 1600Mhz PC. 



 iii

Table of Contents 

摘要.................................................................................................................................i 

Abstract ..........................................................................................................................ii 

Table of Contents ......................................................................................................... iii 

List of Figures ................................................................................................................v 

List of Tables................................................................................................................vii 

1 Introduction............................................................................................................1 

1.1 Motion Detection .......................................................................................2 

1.2 Object Tracking..........................................................................................4 

1.3 Understanding and Description of Human Behaviors ...............................5 

1.4 The Proposed Surveillance System............................................................6 

2 Recent Developments and Activities .....................................................................8 

3 Human Modeling .................................................................................................10 

3.1 Related Work............................................................................................ 11 

3.2 Part-Based Human Body Model ..............................................................14 

3.2.1 Human Silhouette Extraction.......................................................17 

3.2.2 Human Contour Smoothing .........................................................23 

3.2.3 Curvature Estimation on Contour ................................................26 

3.2.4 Human Silhouette Decomposition ...............................................31 

4 Human Body Parts Identification.........................................................................41 

4.1 Related Work on Shape Similarity Measure ............................................42 

4.2 Architecture of a Human Body ................................................................46 

4.3 Statistical Shape-Similarity-Based Algorithm .........................................49 

4.3.1 Body Model for Shape-Similarity Measure.................................49 



 iv

4.3.2 Moment Function for Local Shape Description...........................54 

4.3.3 Hierarchical Identification ...........................................................58 

4.3.4 Missed Human Body Parts Estimation ........................................63 

5 Concluding Remark .............................................................................................66 

Appendix: Parameters of the Statistical Human Model...............................................67 

References....................................................................................................................71 

 



 v

List of Figures 

 
Figure 1-1  General framework of a visual surveillance system .................................1 

Figure 1-2  Architecture of the proposed surveillance system .........................................7 

Figure 3-1  Silhouette decomposition (a) original silhouette (b) random 

decomposition (c) decomposition at NCM (d) natural decomposition....15 

Figure 3-2  Flow chart of the proposed human silhouette decomposition.................16 

Figure 3-3  Flow of silhouette extraction...................................................................17 

Figure 3-4  Background subtraction (a) the original image (b) pixel-level image 

(c)frame difference (d) frame-level (e) region level ................................21 

Figure 3-5  Left column shows the noisy extracted silhouette images. Right column 

shows the smoothed contour of left. )8( =σ .........................................25 

Figure 3-6  This figure illustrates the three different definitions of curvature：(1) the 

derivative of tangent orientation θ ；(2) the norm of the second 

derivative )(" sx ；(3) the inverse of the radius r  of the osculating 

circle.........................................................................................................29 

Figure 3-7  (a) points with NCM (b) non-principle decomposition at NCM (c) 

natural decomposition..............................................................................31 

Figure 3-8  Computing the cut passing through the point 
incmp . Lp  and Rp  are 

another ends lie on LC  and RC .............................................................37 

Figure 3-9  Human silhouette decomposition： (a) smoothed contour (b) NCM 

estimation (c) decomposition (before alignment) (d) decomposition 

(after alignment).......................................................................................38 

Figure 3-10  Example results of our human silhouette decomposition algorithm.....39 

Figure 4-1  Human model：(a) front view, (b)side view ..........................................46 



 vi

Figure 4-2  Architecture of human body (L/R-U/L-part：L/R means Left/Right, U/L 

means Upper/Lower) ...............................................................................47 

Figure 4-3  An example of the trunk in a human object ............................................48 

Figure 4-4  Parameterized human body part..............................................................50 

Figure 4-5  Statistical human body model .................................................................53 

Figure 4-6  The geometric center and orientation of the detected human object. .....56 

Figure 4-7  Flow chart of the proposed HSSS algorithm ..........................................58 

Figure 4-8  The solid points indicate the local geometric center, and the non-solid 

point indicates the global geometric center..............................................59 

Figure 4-9  First iteration of proposed HSSS algorithm............................................62 

Figure 4-10  The results after second iteration of the proposed HSSS algorithm. ....65 

 



 vii

List of Tables 
Table 1  Body parts index names ...............................................................................67 

Table 2  The means and the standard deviations of the aspect ratio ..........................67 

Table 3  The means of length ratios ...........................................................................68 

Table 4  The standard deviations of the length ratios ................................................68 

Table 5  The means of the coordinates of the body parts in the normalized torso 

coordinate system.....................................................................................69 

Table 6  The covariance of the coordinates of the body parts in the normalized torso 

coordinate system (front view) ................................................................69 

Table 7  The covariance of the coordinates of the body parts in the normalized torso 

coordinate system (side view)..................................................................70 

 



 1

1 Introduction 

As an active research topic in computer vision, visual surveillance attempts to detect, 

recognize and track certain objects from image sequences, and more generally to 

understand and describe object behaviors. The aim of this work is to develop 

intelligent visual surveillance system to replace the traditional passive video 

surveillance. In short, the indeed visual surveillance system is not only to put cameras 

in the place of human eyes, but also to accomplish the entire surveillance task as 

automatically as possible. 

 

Figure 1-1  General framework of a visual surveillance system 
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Figure 1-1 shows the general framework of a visual surveillance system. The 

prerequisites for effective automatic surveillance using single camera include the 

following stages: modeling of environments, detection of motion, classification of 

moving object, tracking, understanding and description of behaviors. In order to 

extend the surveillance area and overcome occlusion, fusion of data from multiple 

cameras is needed. This fusion can involve all the above stages. 

1.1 Motion Detection 

Nearly every visual surveillance system starts with motion detection. Motion 

detection aims at segmenting regions corresponding to moving object from the rest of 

an image. Subsequent processes such as tracking and behavior analysis are greatly 

dependent on it. The process of motion detection usually involves environment 

modeling, motion segmentation, and object classification. The following discussions 

would be all considered in a fixed camera environment.  

 

Environment Modeling 

The key problem in environment modeling is to automatically recover and update 

background images. Unfavorable factors, such as illumination variation, 

shadows. . .etc, introduce many difficulties to accomplish the goal. There are many 

algorithms for resolving the above mentioned problems. Temporal average of an 

image sequence [15], adaptive Gaussion estimation [16], and parameter estimation 

based on pixel process [17] are all good algorithms for this mission. A classic method 

was proposed by Ridder et al. [18]. They model each pixel value with a Kalman filter 

to compensate for illumination variance.   
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Motion Segmentation 

After the background is modeled, the next step is to analyze the activities of the 

foreground objects. For capturing and analyzing the foreground objects, the 

movement contributed by each object has to be independently captured. Therefore, 

motion segmentation has to be executed in advance. When on mentions motion 

segmentation in an image sequence, it means to detect regions corresponding to 

moving object such as vehicles and human beings. At present, most segmentation 

methods use either temporal or spatial information in an image sequence. 

Background subtraction [19] is a popular method for motion segmentation, 

especially under static background situation.. It detects moving regions by calculating 

the difference between the target image and the reference image in a pixel-by-pixel 

fashion. It is simple, but extremely sensitive to changes in dynamic scenes derived 

from light variation and extraneous events. Therefore, it is highly dependent on a 

good background model to reduce the influence of these changes. Lipton et al. 

proposed a method called temporal differencing [8] to solve the above mentioned 

problem. They use a threshold function to determine changes after the absolute 

difference between current image and previous image is obtained. It is very adaptive 

to dynamic environments, but generally does a poor job of extracting all the relevant 

pixels, e.g., there may be a hole left inside moving entities. Another way to do the 

motion segmentation job is Optical flow [20]. But unfortunately, it is computationally 

complex and sensitive to noise, and cannot be applied to real-time video stream.  

 

Object Classification 

The last mission for motion detection is object classification. As different moving 

regions may correspond to different moving targets in a natural scene, to further track 

objects and analyze their behaviors, it is necessary to correctly classify moving 



 4

objects. For instance, the image sequences captured by surveillance cameras mounted 

in road scenes probably include humans, vehicles, flying birds . . .etc. At present, 

there are two main categories of approaches for classifying moving objects. A lot of 

different descriptions of shape information can be applied to classify moving objects, 

such as points, bounded boxes, silhouettes and blobs. VASM [14] takes image blob 

representation for the detected moving objects, and uses the aspect ratio of the image 

blobs bounding box to classify moving-object blobs into four classes: single person, 

vehicles, human groups, and clutter. This kind of approach is so called Shape-based 

classification. The other approach is Motion-based classification. In general, 

non-rigid articulated human body motion shows a periodic property, so this has been 

used as a strong cue for classification of moving objects.  Cutler et al. [21] describe a 

similarity-based techniques to detect and analyze periodic motion. We know, for 

periodic motion, its self-similarity measure is also periodic. Therefore, time-frequency 

analysis is applied to detect and characterize the periodic motion, and tracking and 

classification of moving objects are implemented using periodicity. 

1.2 Object Tracking 

After motion detection, surveillance systems generally track moving objects from one 

frame to the next in an image sequence. The tracking algorithms usually have 

considerable intersection with the motion detection during processing. Useful 

mathematical tools for tracking include the Kalman filter, the Condensation algorithm, 

the dynamic Bayesian network, the geodesic method. Recently, McKenna et al. [19] 

propose an adaptive background subtraction method in which color and gradient 

information are combined to cope with shadows and unreliable color cues in motion 

segmentation. Isard et al. [22] make a big contribution to the tracking field, which is 
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so called active contour-based tracking. They adopt stochastic differential equations 

to describe complex motion models, and combine this approach with deformable 

templates to cope with people tracking. In contrast to any other tracking algorithms, 

an active contour-based algorithm describes objects more simply and more effectively. 

In addition, it is able to significantly reduce computational complexity. Even under 

disturbance or partial occlusion, an active contour-based algorithms can still 

continuously track objects. 

 

1.3 Understanding and Description of Human Behaviors 

After successfully tracking the moving objects from one frame to another in an image 

sequence, the next step we should do is to choose the model of human and to match 

the detected moving objects with it. The essence of human motion is typically 

contained in the movements of the torso, the head and the four limbs, so the 

stick-figure model is usually the first choice in people’s mind. Karaulova et al. [23] 

use a stick figure representation to build a novel hierarchical model of human 

dynamics using hidden Markov models (HMMs). 2-D contour is a kind of human 

model directly relative to human body projections in an image plane. Ju et al. [24] 

propose a cardboard human model, in which the human limbs are represented by a set 

of jointed planar ribbons. The main disadvantage of 2-D models is the requirement of 

the restrictions on the viewing angle. To overcome this disadvantage, many 

approaches apply the volumetric models, such as elliptical cylinders, cones [25], 

spheres. Plankers et al. [26] present a hierarchical human model. It includes four 

levels: skeleton, ellipsoid meatballs, polygonal surface skin, and shaded rendering. In 

short, the more accuracy human model achieves, the more computation time is needed. 
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There is always a trade-off between the accuracy requirement and computation 

efficiency..  

 

Behavior understanding involves the analysis and recognition of motion patterns, and 

the production of high-level description of actions and interactions. It may simply be 

thought of the classification of time varying feature data, i.e., matching an unknown 

sequence with a group of labeled reference sequences representing typical behaviors. 

Dynamic time warping [27][28]is a template-based dynamic programming match 

technique widely used for speech recognition. It has the advantage of conceptual 

simplicity and robust performance, and has been used recently in the match of human 

movement patterns. An HMM is a kind of stochastic state machines [29]. It allows 

more sophisticated analysis of data with spatio-temporal variability. There are some 

proposed methods in this field, such as time-delay neural network（TDNN）[30], 

syntactic techniques [31], and non-deterministic finite automata（NFA）[32].   

 

All the effort introduced above have one common goal. i.e. automatic surveillance. 

Although there is a lot of progress in visual surveillance field, some key problems 

remain open, for example, what is the most efficient representation of human body 

model, how to properly represent semantic concepts and how to map motion 

characteristics to semantic concepts. In the following, we will shortly introduce our 

visual surveillance system. 

1.4 The Proposed Surveillance System 

Figure 1-2 shows the architecture of our surveillance system. It operates with one 

single fixed camera in a stationary background scene. First, the system takes the 
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monocular color-scale video imagery from the camera. Then it extracts the silhouette 

of the detected moving objects in the input image. Object contour will be detected 

from the object silhouette. Gaussian filter [33] and negative curvature minimum 

criteria [56][57] are applied to smooth the detected object contour and to decompose 

the object silhouette. The system labels the decomposed parts of the object silhouette 

corresponding to human body parts by our proposed algorithm HSSS. After the 

process has been done successfully, it extracts the global features of the entire object 

silhouette and the local features of the labeled human body parts. Hereby, our visual 

surveillance system employs a hierarchical analysis to estimate the posture and 

interpret the action（behavior）of the detected moving object in the image sequence. 

Furthermore, a safe state remains or an alarm signal is sent out.  

 

 
Figure 1-2  Architecture of the proposed surveillance system 
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2 Recent Developments and Activities 

There have been a number of famous visual surveillance systems developed in the 

post few years [4-8]. The real-time visual surveillance system W4 [4] employs a 

combination of shape analysis and tracking, and constructs models of people’s 

appearances in order to detect and track groups of people as well as monitor their 

behaviors even in the presence of occlusion and in outdoor environments. This system 

uses a single camera and grayscale sensor. The VIEWS system [5] developed by the 

University of Reading is a 3-D model based vehicle tracking system. The Pfinder 

system developed by Wren et al. [6] is used to recover a 3-D description of a person in 

a large room. It tracks a single non-occluded person in complex scenes, and has been 

extensively used in many real-world applications. As a single-person tracking system, 

TI, developed by Olsen et al. [7], detects moving objects in indoor scenes using 

motion detection, tracks them using first-order prediction, and recognizes behaviors 

by applying predicates to a graph formed by linking corresponding objects in 

successive frames. This system cannot handle small motions contributed by 

background objects. The system at CMU [8] can monitor activities over a large area 

using multiple cameras that are connected into a network. It can detect and track 

multiple persons and vehicles within cluttered scenes and monitor their activities over 

long periods of time. 

 

Due to the broad range of applications it can cover, visual surveillance motivates the 

interests of researchers worldwide. The IEEE has sponsored the IEEE International 

Workshop on Visual Surveillance on three occasions, in India (1998), the U.S.（1999）, 
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and Ireland (2000). In June and August of 2000, two special issues on visual 

surveillance was published [9] [10]. In March of 2001, a special issue on visual 

analysis of human motion was published [11]. In October of 2001, a special issue on 

third-generation surveillance systems was published [12]. In October of 2002, a 

special issue on understanding visual behavior was published [13]. Also, visual 

surveillance has been investigated worldwide under several large research projects. 

The Defense Advanced Research Project Agency（DARPA）supported the Visual 

Surveillance and Monitor（VASM）project [14] in 1997, whose purpose was to 

develop automatic video understanding technologies that enable a single human 

operator to monitor behavior over complex environments such as battlefields and 

civilian scenes. 

 

All of the above activities are evidence of a great and growing interest in visual 

surveillance. 
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3 Human Modeling 

Human modeling is an essential part of model-based human detection. Although a 

great number of human models have been proposed in the literature, few of them are 

appropriate for human detection. Most models are developed for other purposes, such 

as human tracking or figure animation [36]. These models are either too complicated 

to be practical for efficient human detection, or can just be used to detect a particular 

person rather than all instances of humans. The common drawbacks of previous 

human models are： 

 

(1) The representations of human shapes are not invariant to similarity transforms, 

thus, they can only detect people of a fixed size or orientation. 

(2) The models are usually specific to a particular person, and do not model the 

statistical variance among individuals. 

(3) Although some models such as deformable templates can handle certain global 

shape variance, they have difficulty dealing with large articulated motion and 

partial occlusion. 
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3.1 Related Work  

Human modeling is a hot area and has attracted the attention in the past few years[6, 

24, 36-52]. Among different types of human models, most models employ part-based 

representations to handle articulation. They vary widely in their level of detail. One 

group of researchers crudely model the body as a collection of articulated planar 

patches [ 24 ]. Another group of people develop 3-D models with deformable limb 

shapes [ 36 ].  

 

For part-based 2D models, the representation of parts varies from planar patches [24] 

and 2D ribbons [37,38] to deformable models [39]. The advantage of using 2D 

models for recognition is that the matching is between 2D and 2D. The disadvantage 

is that it is hard for 2D models to deal with shape variations due to the change of 

viewpoint. For 3D models, if 3D data is available we can match the model directly 

against the data. Gavrila and Davis [40] proposed a complex 3D model of the body 

that takes into account kinematic constraints, but their method requires searching 

through a high dimensional pose parameter space for 3D pose recovery. If only 2D 

data is available, we need to match the 3D model against the extracted 2D data.  

 

Assumptions about the viewing conditions vary from scaled orthographic projection 

[41] to full perspective [42,43]. To account for large variations in depth, Hogg [44] 

modeled the body in terms of articulated 3D cylinders viewed under perspective 

projection. More sophisticated tapered cylinders [43,45] or super-quadrics [46] have 

been employed. Bowden et al. [47] encapsulated the correlation between 2D image 

data and 3D skeleton pose in a hybrid 2D-3D model trained on real life examples. The 
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model they used allows 3D inference from 2D data, but their method does not 

generalize easily to new camera positions, because their 2D model is not invariant to 

viewpoint. The common drawback with the above models is that they do not model 

the statistical variation among individuals and the effects of clothes on human shape. 

Thus, they may be used for human tracking or figure animation, but they are not 

appropriate for detecting people of various shapes and clothing. 

 

Marr and Nishihara [48] proposed a hierarchical 3D human model. At the highest 

level of the hierarchy, the body is modeled as a large extended cylinder, which is then 

resolved into small cylinders forming limbs and torso, and so on to fingers and toes. 

This hierarchical representation is stable in the presence of noise and sensitive to 

fine-level features, but is impractical because it contains few actual constraints to 

support human detection.  

 

Contour-based representations have been used to model the 2D human shape. 

Baumberg et al [49]. and Sullivan et al. [82] employed a deformable template to 

handle shape deformation, where the shape model is derived from a set of training 

shapes. The orthogonal shape parameters are estimated using Principal Component 

Analysis(PCA). One drawback with this approach is that the model and the extracted 

contour should be aligned first, which is not a trivial task. Another drawback is that 

some invalid shapes are produced by the combination of two or more linear 

deformations. Gavrila et al. [50] developed a template hierarchy to capture the variety 

of human shapes, and the model contains no invalid shapes. The common drawback 

with the above approaches is that they do not model individual parts, and so they can 

only handle limited shape variety due to articulation and cannot deal with occlusion 

very well. 
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Skeleton-based representations [51] have been used to model the topological structure 

of the human body, but they do not model the shapes of body parts. These approaches 

are sensitive to noise and cannot distinguish two classes with the same topological 

structure but different geometrical structures. 

 

Some models incorporate other cues or features into the model. Pentland [6] 

introduced a blob-based representation that combines skin color and contour to 

represent a body part. While the color-blob representation of a person is quite useful, 

it is not invariant under clothing/lighting changes and so it requires an initial model 

learning procedure for different subjects and a smoothly changing image background. 

Papageorgiou et al. [52] developed a wavelet-based representation to model 

pedestrians, but this representation is not invariant under rotation and cannot handle 

large part movements and occlusion very well.  

 

In summary, previous work for human modeling just operate on some special purpose 

or in some limited field. 
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3.2 Part-Based Human Body Model 

Shape representation is a major problem in computer vision and is the basis for 

recognition. Here we define the word shape： 

 

  

 

The requirements of a good description that facilitates recognition lead to 

representations that are segmented and hierarchical. Thus, shape decomposition is a 

key stage in a part-based shape representation. Here, we need to make some 

definitions clear： 

 

 

 

A silhouette can be decomposed in many different ways as shown in Fig. 3-1, but for 

the task of recognition not just any partitioning scheme will do. The decomposed parts 

Definition 3.2 

A Part of an object is a region bounded by a portion of the outline of a 

silhouette and one or more cuts. 

 

A Cut of an object is the boundary between two adjoining parts of the object. 

It strictly passes through just two points on the outline of the object. 

Definition 3.1 

The Shape is the geometry of an object’s occluding contour in 2-D space. 
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must satisfy certain requirements for recognition:  

 

1. They should correspond to the natural body parts of an object. 

2. The decomposition should be invariant under translation, rotation, and scaling. 

3. The decomposition should be computable.  

 

 

Figure 3-1  Silhouette decomposition (a) original silhouette (b) random 

decomposition (c) decomposition at NCM (d) natural decomposition 

 

 

These requirements suggest that to break a shape into parts we should use its intrinsic 

geometry. Figure 3-2 shows the flow chart of our part-based human silhouette 

decomposition process. In the following, we will discuss each stage step by step. In 

a b 

c d 
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section 3.2.1, a human silhouette extraction process based on background-subtraction 

is introduced. After this extraction process, a contour smoothing algorithm applying 

Gaussian filter is presented in section 3.2.2. Then, curvature estimation for every 

point on the smoothed contour is introduced in section 3.2.3. At last, we will present 

the main process for human silhouette decomposition in section 3.2.4 by applying the 

features discussed above . 

 

 
Figure 3-2  Flow chart of the proposed human silhouette decomposition 

 

 

 

Silhouette extraction 

Contour detection and smoothing 

Curvature estimation on contour 

Silhouette decomposition 

start 

end 



 17

3.2.1 Human Silhouette Extraction 

Background subtraction is one of the main techniques to extract moving objects from 

background scenes. A Gaussian Mixture Model (GMM)[53]is a frequently used model 

for background subtraction. A famous approach is Stauffer’s paper [53] which models 

each background pixel’s distribution using a GMM; this model allowed to monitor 

continuously a university campus. 

 

Our system requires three steps to complete the process：background modeling,  

background estimation ,and background updating. Figure 3-3 shows the flow chart of 

our silhouette extraction process. 

 

 

Figure 3-3  Flow of silhouette extraction. 
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Background modeling 

 

For each application, the first and important step is to extract moving objects from the 

background (background subtraction defines the moving objects). Each background 

pixel is modeled using a mixture of Gaussian distributions[53]. The Gaussians are 

evaluated using a simple heuristic to hypothesize which are most likely to be part of 

the “background process＂. Each pixel at ),( ji  is modeled by a mixture of κ  

Gaussians, kijij GG ,1, ...  ,as stated in the formula： 

 

The probability of observing pixel value  

∑
=

Σ⋅=
k

h
hijhijtijhijhijtij xGxP

1
,,,,,, ),,()( μω

ρ
 

After a learning duration T , we have images TII ...1 . 

where }{ ,tijt xI =  

      ),,( ,,,, tijtijtijtij BGRx =   ,  Tt ,...,1=∀  

For each pixel at ),( ji  , cluster Tijij xx ,1, ,...,  into κ clusters kijij CC ,1, ... , 

then have 

hij ,μ ：mean of the h th cluster at position ),( ji , hijC ,  

hij ,Σ ：covariance matrix of the h th cluster at position ),( ji , hijC ,  
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=
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hij ,ω ：weighted parameter of hijG ,  

       usually defined as 
T
Csize hij )( ,  

( 3.1) 
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Normally we choose κ  equals to 3 for indoor scenes and κ  equals to 5 for outdoor 

scenes. For computational convenience, the covariance matrix is assumed to be the 

form： Ι⋅=Σ hijhij ,, σ . This assumes that the red, green, and blue pixel values are 

independent and have the same variances. 

 

Background estimation 

 

By following the approach proposed in Stauffer’s thesis [53], we add some post 

processes to extract moving objects with more accuracy. In summary, background 

estimation requires to work on：pixel-level process, frame process, region process. 

 

Pixel level process： This process comes first. Every new pixel value tijx ,  is 

checked against the existing κ  Gaussian distributions until a match is found. A 

match is defined as a pixel value within 2.5 standard deviations of a distribution. The 

background estimation problem is solved by specifying the Gaussian distributions, 

which have the most supporting evidence and the least variance. Because a moving 

object has larger variance than a background pixel, so in order to represent 

background processes, first the Gaussians are ordered by the value of 
hij

hij

,

,

Σ

ω
 in 

decreasing order. The background distribution stays on top with the lowest variance 

by applying a threshold, where 
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Then the first B  distributions are chosen as the background model. All pixels tijx ,  

which do not match any of these distributions will be marked as foreground. At this 

stage, the obtained foreground mask (we use Mask to represent it) contains errors. 

The foreground part may have holes due to misclassified pixels. shadow represents 

another error source, together with the noises occurred in the imagery process , they 

both make the background pixels misclassified as foreground pixels frequently. To 

avoid these errors, we continue the processes at the region level and the frame level. 

 

Frame level process：The frame level process comes second, and it is basically 

defined by frame differences. Let tI  represent the current image, 1−tI  the previous 

image, and 1+tI  the subsequent image. We use 1−tD  and tD  to represent frame 

differences. We have 11 −− −= ttt IID  and ttt IID −= +1 . The pixels being identical in 

all three images are in the foreground region of image tI . We ensure that these are 

also in the foreground mask obtained from the previous pixel process, indicated by the 

following updating formula： 

 

 

 

Region level process：The region level process comes last. The foreground mask at 

this step may contain Salt and Pepper noises or small holes. We designed an extra post 

processing step. Most approaches use opening and closing to remove such noise and 

fill in small gaps. But this method cannot fill in large holes. We use a different method 

by applying a 5x5 window. By running this window on our foreground mask, we can 

remove noise, shrink and fill small or large holes. Each pixel P  in the foreground 

1−∧+= tt DDMASKMASK  ( 3.3 )
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mask is the center point in the 5x5 window, so there are 8 points surrounding P  

forming a 3x3 window, and another 16 points surrounding this 3x3 window. For each 

foreground pixel, we will check if there are less than half the number of foreground 

points surrounding it. If these points are not connected, then this central foreground 

pixel is an isolated noise pixel and will be removed from foreground mask; if there are 

more than half the number of foreground points surrounding it, and if these points are 

connected, then this central point is confirmed to be a foreground pixel. Under these 

circumstances, we need to fill in gaps between this point and surrounding connected 

foreground point within the current window. 

 

 

Figure 3-4  Background subtraction (a) the original image (b) pixel-level image 

(c)frame difference (d) frame-level (e) region level 

 

a

b c

d e
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Background updating 

Based on the background estimation results, the background is updated as follows: If 

tijx ,  matches h th distribution, then the parameters of the h th distribution are 

updated as follows: 

 

 

 

where ρ  is the learning rate, thij ,,ω  remains unchanged. The parameters for 

unmatched distributions remain unchanged. But 1,,,, )1( −−= thijthij ωαω  will be 

adjusted as hij ,ω . If tijx ,  matches none of the κ distributions, we will check if 

κ equals to 5, then the least probable distribution is replaced by a distribution where 

the current value acts as its mean value; if κ is less than 5, a new distribution will be 

added to background model. 

 

Figure 3-4 shows the result that extracts a person’s silhouette who runs in an indoor 

environment. Figure 3-4(a) shows the result which detects the foreground object in the 

pixel-level process. Figure 3-4(b) is 1−∧ tt DD  image and Figure 3-4(c) is 

1−∧+= tt DDMASKMASK  which is processed in the frame-level stage. The final 

result obtained after applying region-level process is shown in Figure 3-4(d). 

tijthijthij x ,1,,,, )1( ρμρμ +−= −  

)()()1( ,,,,,,
2

1,,
2

,, thijtij
t

thijtijthjthj xx μμρσρσ −−+−= −  

( 3.4 )

( 3.5 )
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3.2.2 Human Contour Smoothing 

At first, we need to make a definition of human contour. 

 

 

 

After extracting the silhouette of the intended human target, we need to detect the 

contour of the human silhouette. It is a trivial work to be achieved by applying some 

classical edge detection algorithm [54]. Unfortunately, through the silhouette 

extraction stage, there are still noises.  Under there circumstances, the detected 

contour would be saw-toothed effect somewhere. Thus, an additional curve smoothing 

process is necessary. The most promising candidate would seem to be smoothing with 

a low-pass Gaussian filter, as has been proposed in many other areas of image 

analysis. This section will briefly present the basic method and terminology for 

filtering a curve by Gaussian filter. 

 

The curve to be smoothed is represented as two coordinate functions of a path 

parameter t： 

 

Definition 3.3 

The contour of a human silhouette here is defined as the first layer boundary 

inside the silhouette. 

ttytxtp ))(),(()( =  

where 

)(txx =  

)(tyy =  

( 3.6 ) 
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In order to filter out high frequencies in this curve, we convolve these functions with 

one dimensional Gaussian )(tGσ  of standard deviation σ ： 

 

 
 

Then we will have the smoothed curve： 

 

 

 

As we use a convolution operator with an one dimensional Gaussian filter, there are 

two parameters need to be predefined initially： 

 

 

 

The considerable factors to define these parameters depend on the trade-off between 

the influence of noise and the number of pixels near by. The high frequency noises 

1-D Gaussian Function 
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Smoothed curve： 

))(),(()( tYtXtP =  

where 

)()()( txtGtX ⊗= σ  

)()()( tytGtY ⊗= σ  
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would not be filtered out by applying a smaller σ . And sharp areas would be 

smoothed by applying a larger σ or w . By experimental-based methodology, we 

choose the standard deviation σ  between 2 to 10, and the convolution window size 

is predefined as 125~3 +⋅= σw  . Figure 3-5 shows the results obtained by 

applying the above mentioned method. 

 

 

Figure 3-5  Left column shows the noisy extracted silhouette images. Right column 

shows the smoothed contour of left. )8( =σ  
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3.2.3 Curvature Estimation on Contour 

A precise estimation of curvature properties plays an important role in the 

interpretation of digital binary data such as maps, engineering drawings, and the like. 

Curvature also is a key notion in the recognition of objects from digital pictures. 

Specifically maxima, minima, and zero crossings of curvature carry important shape 

clues.  

 

Digital curvature is computed from a discrete set of points, either representing a 

digital line or the discrete boundary of some digital objects. The digital set of points is 

a representation of some continuous pre-digitized object. In the digitization process, 

exact information on the continuous object is lost and therefore curvature cannot be 

calculated exactly, but it can only be estimates.  

 

In the literature, a large number of methods have been proposed for curvature 

estimation. And we know that the ability of a method is reflected by the accuracy and 

precision of estimation.  In the literature on the differential geometry of curves [55], 

three equivalent formulations of curvature are found. They are respectively based on 

the orientation of the tangent, the second derivative of the curve considered as a path, 

or on the local touching circle. For continuous case, the three formulations are 

equivalent, but not so in digital case. In the following, we would introduce these three 

formulations briefly. 

 

Definition of curvature 

Consider a continuous object X  with boundary X∂ . Let tsysxsp ))(),(()( =  be 

the length parameterized path following X∂  in a counterclockwise fashion.  
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By definition, the curvature k  of a curve or path p is given by the directional 

change of the tangent  t  of p . 

 

 

 

Formulated in this way, the sign of )(sk  indicates whether the curve locally at s  is 

convex ( 0)( >sk ), or concave ( 0)( <sk ). 

 

Alternatively one can express the curvature in the norm of the second derivative of 

path x .  

 

 

 

For an arbitrary (non-path-length) variable u , Definition 3.5 is reformulated into the 

following equation giving the correct magnitude of curvature as well as the correct 

sign： 

Definition 3.4 (Orientation –based continuous curvature) 

 

)(')( ssk θ=  

where 

),()( axisxts −∠= +θ  

Definition 3.5 (Path –based continuous curvature) 
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( 3.9 )
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A third definition is derived from the osculating circle touching at )(sp  , defined as 

the limiting circle through )(),( spssp Δ− , and )( ssp Δ+ , when 0→Δs . Let 

)(sr be the radius of the osculating circle at )(sp  then： 

 

 

 

The three definitions are illustrated in Figure 3-6. 

 

Here, for computational convenience, we apply a common method that employs 

Gaussian filter with convolution operator in Definition 3.5.  At every point of the 

discrete curve, a limited window of fixed size w  is predefined initially in the 

computation. From the point in the window, a local curvature estimation is made. The 

choice of a fixed window size implies that curvature feature should have compatible 

level of detail.  

 

Definition 3.6  (Osculating circle – based continuous curvature) 
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Figure 3-6  This figure illustrates the three different definitions of curvature：(1) the 

derivative of tangent orientation θ；(2) the norm of the second derivative )(" sx ；(3) 

the inverse of the radius r  of the osculating circle. 

 

Just as what we have discussed in section 3.3.2, the smoothed contour can be 

parameterized as： 
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Then the curvature at )(sp  is estimated as： 

 

 

 

And the higher derivatives of Gaussian kernel is formulated as： 
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3.2.4 Human Silhouette Decomposition 

In this section, we will present the main process at the human silhouette 

decomposition stage of our system. All what we have discussed above in this chapter 

are sub-functions of this process. At the beginning, we will describe two important 

rules for achieving our subject to decompose the extracted silhouette. 

 

 
Figure 3-7  (a) points with NCM (b) non-principle decomposition at NCM (c) natural 

decomposition 

 

Minima rule 

According to the Hoffman and Richard’s research [56],  by human intuition about 

parts, a segmentation into parts occurs at negative curvature minima (NCM) as shown 

with small circles in Figure 3-7(a). 

 

a 

b c 
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The minima rule constrains cuts to pass through the boundary points it provides, but 

does not guide the selection of cuts themselves. For example in Figure 3-7(b), the 

silhouette of a person is decomposed into parts at NCM, but some segmented parts do 

not correspond to the natural body parts of a person and one of the legs is not detected 

at all. This example demonstrates that not every pair of NCM forms a natural part, and 

some parts such as the limbs of animals may be bounded by a NCM and a non-NCM. 

Therefore, we need to introduce more constraints to achieve unique and natural shape 

decomposition.  

 

Short cut rule 

Singh et al. [58]noted that when boundary points can be joined in more than one way 

to decompose a silhouette, human vision prefers the partitioning scheme which uses 

the shortest cuts.  

 

 

 

The requirements of a cut by this rule： 

 

Short cut rule： 

Divide silhouettes into parts using the shortest possible cuts. 

 

Minima rule： 

For any silhouette, all negative minima of curvature of its bounding curve are 

boundaries between parts. 
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(1) Be a straight line 

(2) Cross an axis of local symmetry 

(3) Join two points on the outline of a silhouette, such that at least one of the two 

points has negative curvature 

(4) Be the shortest one if there are several possible competing cuts.  

 

Because only one end of a cut is required to lie on a portion of the boundary with 

negative curvature, this enables us to decompose a shape such as a leg at the right 

position as shown in Figure 3-7(c). Singh et al.’s scheme restricts the cut to cross a 

symmetry axis in order to avoid short but undesirable cuts. However, robust 

computation of symmetry axes is difficult and complex since from their very 

definitions [48, 59,60] most axes are extremely sensitive to noise. 

 

Human silhouette decomposition 

In this thesis, the constraint on the salience of a part is used to replace the second 

requirement in the short-cut rule in order to avoid the computation of symmetry axes. 

According to Hoffman and Singh’s research [57], there are three factors that affect the 

salience of a part:  

 

(1) The size of the part relative to the whole object. 

(2) The degree to which the part protrudes. 

(3) The strength of its boundaries.  

 

Among these three factors, the computation of a part’s protrusion (the ratio of the 

perimeter of the part (excluding the cut) to the length of the cut) is more efficient and 

robust to noise and partial occlusion of the object. Thus, the protrusion of a part is 
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employed to evaluate its salience; the salience of a part increases as its protrusion 

increases. 

 

Therefore, we combine the minima rule, the short-cut rule, and the salience 

requirement to constrain the conditions of a cut. In the following, we write our 

decomposition algorithm in a pseudo-code fashion. 

 

 

Decomposition Algorithm: 

Input： 

S：the silhouette of the detected object 

C：the contour of the silhouette 

 

1. for each point Ctp ∈)(  

2.  estimate the curvature )(tk  at )(tp  

      ( here the curvature at each point is collected in the set K ) 

3. end-for 

4. find the negative curvature minima point ncmp  with K  

      ( here the negative curvature minima points is collected in the set NCM ) 

5. if φ≠NCM  

6.   for each point NCMp
incm ∈  

7.     divide C  into LC  and RC , which start from 
incmp  

        ( where )()( RL ClengthClength = , )()()( ClengthClengthClength RL =+ , 

LC  is the left part of C  which starts from 
incmp , and RC  is the right 

one ) 
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Here, we describe the decomposition algorithm in details： After we extract the 

silhouette S  of the object in an image and detect the smoothed contour C  of a 

silhouette. Then the curvature estimation discussed in 3.2.3 will be applied to 

calculate the curvature )(tk  for each point Ctp ∈)( . The estimated curvature 

values are collected in the set K . For efficiency and robustness purpose, at the 

negative-curvature-minima detection stage, we filter out the small magnitude of 

curvature to avoid parts due to noise and small local deformation. The points 
incmp  

with negative curvature minima are collected in the set NCM. For each point 

NCMp
incm ∈ , let halfp  be the point on C  so that 

incmp  and halfp  divide the 

8.     find 'min arg 
p'

ppp
incmL =   s.t. SppCpT

pp

pp

i

i

i

ncmLP
ncm

ncm

∈∈>

∩

'   ,'   ,
'

'
 

9.     if Lp  exists 

10.       do the cut lncm pp
i

 

11.     end – if 

12.     find 'min arg 
p'

ppp
incmR =   s.t. SppCpT

pp

pp

i

i

i

ncmRP
ncm

ncm

∈∈>

∩

'   ,'   ,
'

'
 

13.     if Rp  exists 

14.       do the cut Rncm pp
i

 

15.     end – if 

16.   end-for 

17. end-if 



 36

contour C  into two curves LC  and RC , where )()( RL ClengthClength = , 

)()()( ClengthClengthClength RL =+ . Then two cuts lncm pp
i

,  Rncm pp
i

 are formed 

passing through  
incmp , where Cpp RL ∈  ,  are located as follows： 

 

 
 

∩

'pp
incm  is the smaller part of C  between 

incmp and 'p , 
∩

'pp
incm  is the arc length 

of 
∩

'pp
incm , and 

'

'

pp

pp

i

i

ncm

ncm

∩

 is the protrusion of the part bounded by curve 
∩

'pp
incm , 

and cut 'pp
incm . 

 

Eq. (3.16) means that Lp  lying  on LC is located such that the cut lncm pp
i

 is the 

shortest one among all cuts sharing the same end 
incmp , and fits the protrusion 

threshold PT . The other end Rp  is located in the same way using Eq. (3.17). Figure 

3-8 shows an one-step example that decompose the human silhouette into parts, where 

incmp  and halfp  divide the contour C  into two curves LC  and RC , lncm pp
i

 and 

Rncm pp
i

 are the cuts satisfy Eqs. (3.16) and (3-17). 

'min arg 
p'

ppp
incmL =   s.t. SppCpT

pp

pp

i

i

i

ncmLP
ncm

ncm

∈∈>

∩

'   ,'   ,
'

'
 

'min arg 
p'

ppp
incmR =   s.t. SppCpT

pp

pp

i

i

i

ncmRP
ncm

ncm

∈∈>

∩

'   ,'   ,
'

'
 

( 3.16 ) 
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Figure 3-8  Computing the cut passing through the point 
incmp . Lp  and Rp  are 

another ends lie on LC  and RC . 

 

 

Over-segmentation alignment  

 

When using Eqs. (3.16) and (3.17) to compute the cuts of a silhouette, they may result 

in over-segmented parts as shown in Figure 3-9(c). Therefore, a post processing step 

is needed to merge two over-segmented parts that share a cut into a larger one if this 

larger part cannot be decomposed into significant subparts using Eqs. (3.16) and 

(3.17). The order of grouping is from the largest to the smallest parts so that the 

largest one is selected when several possible competing merges exist. Figure 3-9 

illustrates the whole procedure of the shape decomposition algorithm. The procedure 

stops when no part can be further decomposed into significant parts and no two parts 

can be merged into a non-decomposable larger part. 

RC
LC  

incmp

Rp
Lp

halfp
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Figure 3-9  Human silhouette decomposition： (a) smoothed contour (b) NCM 

estimation (c) decomposition (before alignment) (d) decomposition (after alignment). 

 

 

Fig. 3-10 shows several example results from the human silhouette decomposition 

algorithm. These results demonstrate that the algorithm can produce natural part 

decompositions that are robust to noise and local deformation. Nowadays, it is still an 

open problem to decompose a shape into a set of perfect subparts without using higher 

level information. For example, variations in the locations of subparts may occur due 

to self-occlusion and flexible deformation. There are also missing parts resulting from 

the inherent difficulty in finding the cut points. All of these will cause non-perfect 

decomposition. Solving this kind of problems would be our future work. In this thesis, 

a b 

c d 
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we focus on the limitations of binary scale and 2-D projection images.  

 

 

Figure 3-10  Example results of our human silhouette decomposition algorithm. 

 

 

In summary, this chapter presents a whole human silhouette decomposition algorithm 

of our system. First, we extract the human silhouette by background subtraction 

algorithm. Second, the contour of the silhouette is detected and smoothed. Third, the 

curvature for each point on contour would be estimated. At last, the decomposition 

algorithm is applied. It can be used to decompose people in an image independent of 
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their sizes, poses, and articulation. In next chapter, we will introduce an algorithm to 

identify the parts from this chapter.  
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4 Human Body Parts Identification 

After the decomposition algorithm discussed in chap. 3 is applied in our proposed 

surveillance system, human body parts identification is an essential and necessary 

stage for human behavior analysis. In this chapter, we will propose a statistical 

shape-similarity-based algorithm for this purpose. Although a large number of shape 

similarity measures have been proposed, most of them are for some special 

applications, e.g. image retrieval, object recognition…etc. This chapter focuses on 

designing a similarity measure for deformable shape classification, especially for 

articulated objects such as humans.  

 

The rest of this chapter is organized as follows. In section 4.1, the related work on 

shape similarity measure is discussed. Section 4.2 defines the architecture of the 

human body in our proposed system. Section 4.3 presents a statistical 

shape-similarity-based algorithm for human body parts identification in a hierarchical 

fashion. At last, a human body parts estimation for missed parts is presented.  
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4.1 Related Work on Shape Similarity Measure 

The problem of determining the similarity of two shapes has been well-studied in 

several fields. The design of a similarity measure depends on how a shape is 

represented. Many global shape descriptors (see reviews in [61,62]) such as Fourier 

Transform, moments, and eigen shapes have been used to compare two shapes, but 

they cannot handle occlusion and local deformation such as articulations very well. 

Therefore, this section does not discuss the similarity measures based on global shape 

but concentrates instead on those that use local shape primitives, such as points, key 

points, lines, arcs, axes, or parts. Broad overviews of shape similarity measures can be 

found in [63, 64, 65]. 

 

A point-based similarity measure such as the Hausdorff distance is commonly used to 

compare two shapes, but it is very sensitive to noise and occlusion. A similar measure 

that is not as sensitive is the partial Hausdorff distance [66]. This measure can deal 

with occlusion and clutter very effectively; the measure itself is used to guide the 

search for an alignment transform in the discrete space. Technically speaking, 

different transformations such as similarity, affine, or non-rigid transforms can be 

used for shape alignment. However, the dimension of a non-rigid transformation 

space is too high to be searched efficiently. A match-based method has been proposed 

to avoid the search for the transformation in a high dimensional space. An alignment 

transform is calculated from the matched points, then the similarity measure is 

calculated as the sum of the residual distances between the corresponding primitives. 

The common drawback with the above measures is that they have to transform one 

shape to another before shape comparison because the distance metric is not invariant 
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under similarity transform. 

 

Various cost functions have been proposed to evaluate the dissimilarity between two 

contours without aligning them. A cost function weights the similarity of the matched 

points on the basis of their local properties, such as the difference in the tangent or 

curvature of the contours at those points. The cost function itself is used to guide the 

search for the best match. Basri et al. [65] defined the cost function as “elastic energy” 

needed to deform (stretch or bend) one curve to another. However, the computation of 

elastic energy (which is defined in terms of curvature) is very sensitive to noise. Other 

alternatives are possible, for example, such as turning functions [67], arch height 

functions [68], size functions [69], or functions combining multiple local properties 

[70,71]. Given a choice of cost functions, several methods such as dynamic 

programming, gradient descent, or the shortest path algorithm have been employed to 

find the correspondence between contours that minimize the cost. The main drawback 

of these methods is their high computational complexity due to searching for 

correspondences at the point level. Furthermore, none of these cost functions is 

invariant under scaling and/or rotation of the point data. 

 

Other features such as key points and lines have been used to reduce the 

computational cost because a digital contour usually consists of much fewer features 

than of points. Pope and Lowe [72] modeled an object with a graph whose nodes 

represent the feature values and whose edges represent the spatial arrangement 

(symmetric, parallel) of the features. Objects are considered similar if their graphs are 

isomorphic; a similarity metric based on a probability density estimator is used to 

identify if a shape is an instance of a modeled object. To handle occlusion, partial 

matching is allowed and the largest mutually compatible matches are found by 
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constructing an association graph to search for the maximal clique [73]. The main 

drawback of these methods is that they cannot handle articulated motion because the 

spatial relationships between features are assumed to be fixed. Moreover, it is difficult 

to find a coherent set of features that is shared by all possible shapes in a class and 

that can be extracted reliably. 

 

Part-based representations is a more effective way to handle articulation and occlusion. 

They have several advantages over other representations such as points, lines, and 

arcs. First, articulation usually happens at part boundaries, thus, a part-based 

representation is a more natural and coherent description of articulated shapes. Second, 

a shape contains fewer aggregate parts than other features. Third, part-based methods 

find strong support from human vision [74]. The main concerns of a part-based 

similarity measure are how to decompose a shape into stable parts and how to set up 

correspondence among them. Parts generally are defined to be convex or nearly 

convex shapes separated from the rest of the object at concavity extrema [58], or at 

inflections [75]. One type of approach is to represent shapes as skeletons or graphs 

and then to use graph matching or qualitative properties such as topology to compare 

shapes. The main drawback of these approaches to part-based shape analysis is that 

the shape decomposition is not stable. Since only qualitative properties are used for 

shape classification, they cannot distinguish two shapes with the same body part 

structure but different body part shapes and geometric relationships. Zhu and Yuille 

[51] developed a similarity measure to compare silhouettes based on both the local 

shapes of parts and the topology but the method can not handle shape degeneration or 

resolution changes very well. Several curve evolution approaches [76,77,78] have 

been proposed to model shapes of an object at different scales, but the related 

similarity measure is sensitive to occlusion and is not invariant under scaling. 
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Leung et al. [79,80,81] have proposed a method which combines the intensity pattern 

and the spatial relationships between the facial features to detect faces from the 

cluttered environment. However, they do not use the spatial relationship to help detect 

face features, and no size relationship and recursive procedure is involved in face 

detection. The main reason is that the facial features have very distinctive patterns and 

can be detected based on their intensity patterns. In human detection, we rely heavily 

on the spatial and size relationships to identify the human body parts, because the 

body parts such as arms and legs do not present very distinctive texture patterns. 

 

In summary, the drawbacks of the above similarity measures are listed as follows： 

 

1. Some depend on the position, size, and orientation of an object. 

2. Some cannot support articulation and partial occlusion. 

3. Some is not robust to noise, deformation, and blur resulting from image 

digitization and poor segmentation. 

 

Point-based approaches are time consuming, while feature-based approaches are not 

stable and cannot handle articulation appropriately. In contrast, the part-based 

approach is a more promising direction, however, current methods cannot handle 

shape decomposition errors and shape degeneration very effectively. Above all, the 

above shape similarity measures cannot deal with large shape variations within a class. 

They are not appropriate for the purpose of classifying shapes such as those of 

humans. 



 46

4.2 Architecture of a Human Body 

 

Figure 4-1  Human model：(a) front view, (b)side view 

 

 

A human body can be represented directly using a 3D model or indirectly using a 

collection of 2D models corresponding to different views. Since the goal of this thesis 

is to detect people in an image, 2D models are preferred, because a 2D model can be 

compared directly with a 2D shape without projecting the 3D model onto the image 

plane by searching a continuous viewpoint/pose space. The question of how many and 

which viewpoints to use is an open question and also depends on the application. In 

the case of pedestrian detection, we found two 2D human body models were 

sufficient— the front-view and the side-view models as shown in Figure 4-1. The two 

models share the same body parts. The main differences are the spatial relationships 

between the parts and the shape of the torso. The views not modeled by these two 

models are partially absorbed by the probability distributions of the spatial 

(a) (b)
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relationships among the body parts encoded in the human model.  

 

In order to make it more clear, we define the architecture of a human body as shown 

in Figure 4-2. Each human body model consists of six main body parts：the torso, the 

head, left arm, right arm, left leg and right leg. For more detail description, the human 

body model consists of ten body parts：the torso, the head, left upper arm, left lower arm, 

right upper arm, right lower arm, left upper leg, left lower leg, right upper leg, and right 

lower leg. 

 

 

 

Figure 4-2  Architecture of human body (L/R-U/L-part：L/R means Left/Right, U/L 

means Upper/Lower) 

 

 

Torso R-U-Arm

L-L-Leg R-L-Leg 

Head 

R-L-ArmL-L-Arm L-U-Arm 

R-U-Leg L-U-Leg 
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There are still two definitions need to be introduced. 

 

 

 

 

 

 

Figure 4-3  An example of the trunk in a human object 

trunk 

Definition  

The trunk of a human object is defined as the one special merged body part 

which cover the torso and some other body parts, e.g. legs, upper legs, arms, 

upper arms. Figure 4-3 shows an example of trunk. 

Definition  

The parent of a body part is defined as the origin side of the arrow in the 

architecture of human body. E.g. torso is the parent of head, upper arms, and 

upper legs. 
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4.3 Statistical Shape-Similarity-Based Algorithm 

4.3.1 Body Model for Shape-Similarity Measure 

For computation convenience, we need to define the body model in a numeric fashion. 

Figure 4-4 shows an example to describe definition 4.3. 

 

 

 

 

Definition 4.3  

A body part B  is parameterized with a vector 

),,,,( θlayxB =  

 

where 

x ： the horizontal coordinate of the joint of B  in its parent local 

coordinate 

y：the vertical coordinate of the joint of B  in its parent coordinate 

a：the aspect ratio of B , 
l
wa = , where w  is the width of B  

l  ：length of B  

θ ：the orientation of B  based on the joint of the body part. 

   

※ the joint is defined as the intersection point between the major axis of 

B and the cut comes from its parent. 
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Figure 4-4  Parameterized human body part 

 

The aspect ratio 
l
wa =  is invariant under similarity transforms, and it captures the 

global shape information of a body part while ignoring small local shape deformations. 

Thus the aspect ratio is appropriate for the purpose of recognition. 

 

However, the aspect ratio, a , is too ambiguous to be used alone to distinguish 

different parts. For example, the head and the torso have similar aspect ratios. 

Therefore, besides aspect ratios of the body parts, the geometric relationships between 

them are also modeled. There are two more measures we apply： 

 

1. Position ),( yx  

The position , ),( yx , of a body part is defined as the joint location of the body part, 

expect the position of torso is defined as its geometric center.  ),( yx  is the relative 

position comes from its parent part’s coordinate. The joint of a body part is defined as 

the intersection point between the major axis and the cut comes from its parent. 

Upper arm

Lower arm

),( yx

 

l

w  

θ
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2. Length l  

In section 4.2, we have shown that the architecture of our body model consists of ten 

sub-parts, or six main parts. Assuming that the ten-sub-parts model is parameterized 

with vectors 1B , 2B , …, 10B , where ),,,,( iiiiii layxB θ= . Here, we define the 

length ratio matrix 10,...,1,  },{ == jisS ij , where
j

i
ij l

ls = . 

 

The advantage of locating the position, ),( yx , of a body part as the joint point instead 

of the geometric center of a body part is that the location of the joint become invariant 

to its parent’s orientation. In summary, a body part is parameterized with a vector 

),,,,( θlayxB = . 

 

Obviously, the aspect ratio, a , of a body part and the length ratio matrix, S , is 

invariant under rotation and scaling. Because the lengths of the body parts are 

constrained by the length ratio matrix, S , only the relative positions of the six main 

body parts needs to be modeled. Let the six relative position of the six main body 

parts as )},(),...,,{( 6611 yxyxX = , where )0,0(),( 11 =yx is the position of torso. To 

make this vector invariant under rotation and scaling, the coordinates of the joints are 

represented in a normalized torso coordinate system with the length of the torso 

normalized to be 1. Then )},(),...,,{( 6611 yxyxX = would be transform into 

)},(),...,0,0{( 66 vuU = , where ),(1),(
1

11 ii yxl
vu = , 1l  is the length of the torso. 

 

Finally, we define the body model in our proposed system for the shape-similarity 

measure which consists of five model matrices in the following： 
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The above probability distributions provide metrics to evaluate the shape, size 

relationship, and configuration similarities between the detected human object and the 

body model. Their parameters (means and covariances) are estimated from the 

measurements provided by Tilley[](see Appendix). Figure 4-5 shows the diagram of 

the statistical human body model. 

Definition 4.4 ( Body Model) 

 

The body model consists ten sub parts for shape similarity measure is defined as

},,,{ Θ= USAM  

 

where 

)},(),...,,(),,({
1021 1021 aaa aNaNaNA σσσ=  ：aspect ratio vector 

10,...,1,  },,( =Σ= jisNS sij ：length ratio matrix, where
j

i
ij l

ls =  

},),((),...,0,0{( ),(66 66 vuvuNU Σ= ：normalized relative position vector for six 

main parts. 

where ),(1),(
1

11 ii yxl
vu = , 1l  is the length of the torso 

},...,{ 101 θθ=Θ ：the orientation vector 



 53

 

Figure 4-5  Statistical human body model 

),( HDHD vu  

),(
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),(
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),(
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),(
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4.3.2 Moment Function for Local Shape Description 

Moments and functions of moments have been used as pattern features in a number of 

applications to achieve invariant recognition of two-dimensional image patterns. Any 

model aiming at describing shapes should be invariant under translation, scaling and 

rotation [83][84]. In this section, the mathematical basis of geometrical moments is 

presented in the framework of the theory of orthogonal polynomials and the question 

of how well an entity can be characterized by a finite set of moments is investigated: 

first in the form of how to rebuild the entity from its moments, then in the evaluation 

of the reconstruction error. 

 

 

 

The definition of Eq (4.1) means that f  is projected onto pqψ . Here, we apply the 

Definition 4.5 ( general definition of moments of order )( qp + ) 

 

∫∫=
ζ

ψ dxdyyxfyxm pqpq ),(),(  

 

where  

p ,q：positive integers 

f ：the intensity function }1,0{→ℜ  

ζ ：the definition domain of f  

pqψ ：the kernel of the moment function 

(4.1) 
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geometric moments defined with basis set qp yx  and the central moments to estimate 

the geometric center and the orientation of a body part. The 

thqp )( + two-dimensional geometrical moment pqm  in a discrete-time image can be 

defined as follows： 

 

 

 

 

Definition 4.6 ( geometric moments of order )( qp + ) 

 

∑∑=
N

ji
q
j

p
i

M

pq yxfyxm
11

)(  

 

Where  

p ,q：positive integers 

f ：the intensity function }1,0{→ℜ  

Definition 4.7 ( geometric center) 

 

The geometric center ),( cc yx of an object in an image can be estimated as 

 

00

10

m
mxc =  

00

01

m
myc =   

(4.2)

 (4.3)
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By applying the Eq. (4.2), the geometric center of a body part can be estimated by the 

geometric moments ： 00m , 10m , 01m . The moment of order zero 00m  represents the 

total intensity of the body part. For an areal entity, this moment is equal to its area. 

The first order moments 10m  and 01m  provide the intensity about the x -axis and 

y -axis of the entity respectively. 

 

It is often convenient to evaluate the moments with the origin of the reference system 

shifted to the intensity centroid of the entity. This transformation makes the moments 

independent from the position of the entity. The moments computed with respect to 

the intensity centroid are called central moments. 

 

 

Figure 4-6  The geometric center and orientation of the detected human object. 

 

 

 



 57

 
 

The second-order moments are measures of variance of the entity intensity function 

about the origin. The central moments 20μ  and 02μ  assess the variances around the 

mean. 11μ  gives the covariance measure. Figure 4-6 shows an example of the 

estimations of the detected human object. 

 

 

Definition 4.9 ( orientation) 

 

The orientation θ  of an object in an image can be estimated as 

)(
2
1 1

ca
btan
−

= −θ  

where 

20μ=a  

002 μ⋅=b  

01μ=c  

Definition 4.8 ( central moments of order )( qp + ) 

 

∑∑ −−=
N

ji
q

ci
p

ci

M

pq yxfyyxx
11

)()()(μ  

 

where  

p ,q：positive integers 

f ：the intensity function }1,0{→ℜ  

)4.4(

(4.5) 
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4.3.3 Hierarchical Identification 

As what we discussed in chapter 3, after the decomposition process there is a 

collection of unidentified parts. In this section, a hierarchical statistical- 

shape-similarity algorithm （HSSS）for human body parts identification is presented. 

In the following, we will introduce how the algorithm works by applying the body 

model proposed in section 4.3.1. Figure 4-7 shows the flow chart of  the HSSS 

algorithm. 

 

Figure 4-7  Flow chart of the proposed HSSS algorithm 

Torso Identification 

Head & Four Main 

Limbs Identification 

Head & Main Legs 

Estimation 

Discard 

Main Arm 

Identifation 
Missed Part 

Estimation 

Success Identification 

Decomposed Silhouette 

Unidentified Torso or 
upper trunk   

Upper trunk  
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Local-Moment-to-Global-Moment Hypothesis 

 

According to our observation, the geometric center of the torso is the nearest one with 

the global geometric center of the entire human object.  

 

 

 

We have observed thousands of human postures. Under most variable posture, the 

geometric center of torso is always the nearest one nearby the human object’s, even 

bending down. Figure 4-8 shows the results to describe the hypothesis.  

 

Figure 4-8  The solid points indicate the local geometric center, and the non-solid 

point indicates the global geometric center. 

 

Hypothesis 4.1 (Local-moment-to-global-moment hypothesis) 

 

The geometric center of torso is the nearest one nearby the global geometric center 

of the human object. 
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Torso Identification 

 

According to the architecture of a human object proposed in section 4.2, obviously 

torso is the only basis of the architecture. Thus, the first step to the identification 

mission is to classify the torso of the observed human object. If the identification is 

unsuccessful, we decide to discard this image. 

 

We have presented an important hypothesis to accomplish this mission. Even so, it is 

still un-robust and weak to classify the torso part. We apply the second measure, 

aspect ratio, to make the identification process more robust. In summary, if an 

unidentified decomposed part satisfies the conditions below, the system will identify 

the part as ＂torso＂： 

 

 

 

 

 

Torso identification conditions： 

 

1. )( , globaliij CCdminC =  

where 

iC ：the geometric center of unidentified decomposed part i . 

globalC ：the global geometric center of the human object 

2. ),(~
torsoatorsoj aNa Σ ：aspect ratio measure 
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The identification result will be in just three kind of conditions： 

1. Unidentified 

If no parts fit the conditions, the system cannot identifies, and the image is discarded. 

2. Torso or upper trunk 

3. Truck 

In this condition, we assume that the legs is occluded. Thus, a legs estimation 

algorithm will be applied. The algorithm will be introduced in section 4.3.4. 

 

Head and Four Main Limbs Identification 

After the successful identification of torso, we need to go forward to identify other 

parts. In order to achieve this purpose, three measures have been introduced in the 

sections 4.3.1：normalized relative coordinate, aspect ratio, and length ratio. If an 

unidentified decomposed part satisfies the distributions bellow, then it will be classified as 

the corresponding part.： 

 

 

 

In this section, we have presented the first iteration of our HSSS algorithm. In this 

iteration, the system identifies the human body parts based on the probability 

Parts identification conditions： 

 

1. ),),((~),( ),(11 11 vujj vuNvu Σ ：normalized relative coordinate 

2. ),(~
iaij aNa Σ ：aspect ratio measure 

3. ),(~
jisjijj sNs Σ ：length ratio 
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distributions model presented in section 4.3.1. After this process, some body parts 

may not be identified. Later, we will introduce the missed part estimation algorithm in 

section 4.3.4. Figure 4-9 shows the results of the first iteration of HSSS algorithm. 

 

  

 
Figure 4-9  First iteration of proposed HSSS algorithm 

 



 63

4.3.4 Missed Human Body Parts Estimation 

In this section, we will present the last process for the HSSS algorithm. The last 

iteration is to estimate the parameters of the unidentified body parts. This is done by 

applying the parameters from the body model proposed in section 4.3.1 and the 

identified body parts. The parameter vectors of the missed body parts is still be 

modeled as ),,,,( iiiiii layxB θ= . 

 

The parameters ),( ii yx , ia , il  can be trivially estimated from the statistical body 

model and the identified torso body vector. 

 

 

 

The orientations iθ  of the missed body parts cannot be predicted from the model and 

the identified parts, because the orientation relationships between the body parts are 

not encoded in the human model. This is solved in the second iteration of the HSSS 

algorithm by aligning the predicted body part with the contour of the detected human 

object. The procedure of the alignment is as follows. For each missed body part fi, run 

Steps 1 to 2: 

Missed body parts ),,,,( iiiiii layxB θ=  estimation： 

 

1. ),( ii yx  = ),( ii vu  

2. ia = ia  

3. torsotorsoii lsl ⋅= )(  
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To make the algorithm having more robustness, other cues such as stereo, motion, and 

the intensity pattern can be used to constrain the search of the body parts to be within 

the region of similar attributes. Figure 4-10 shows the results by applying the second 

iteration of the HSSS algorithm. 

Steps of orientation iθ estimation for missed body part： 

 

4. torsoi θθ =  

5. Let O  be the rectangle rendered by the estimated parameters of IB . 

)( EONmaxarg
θi ∩=θ  

where 

E：the contour of the detected human object 

)(sN ：the number of points in the set s  
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Figure 4-10  The results after second iteration of the proposed HSSS algorithm. 
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5 Concluding Remark 

In this thesis, we have developed a human-silhouette-based visual surveillance system 

for the human behavior analysis. There are two main contributions have been 

proposed： 

 

Computational human silhouette decomposition： 

In this part, we employ a combination of shape analysis and geometry analysis on a 

human object’s silhouette and contour. By applying efficient computational scheme, 

we successfully reduce the computation time for the real time processing purpose. The 

proposed decomposition algorithm is based on the human cognition, and makes the 

decomposed human body parts closer to the corresponding natural body parts. 

 

Robust human body parts identification： 

In this part, we have proposed a robust and effective algorithm to accomplish the human 

body parts identification task. We name it the Hierarchical Statistical-Shape-Similarity 

algorithm (HSSS). It runs at two fast passes and significantly identifies the human body 

parts of a detected human object in many postures under rotation and scaling invariant.  

 

In summary, by the robustness and the efficiency power of our algorithms, they can work 

in a real-time visual surveillance system. Our system runs at 20~25Hz for 240 x 160 

resolution images on a single Pentium-M 1600Mhz PC. 
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Appendix: Parameters of the Statistical Human Model 

In section 4.3.1, we have proposed an statistical human model for human body parts 

identification. The parameters of the human body model are estimated based on a large 

quantity of data accumulated over more than 40 years by Henry Dreyfurs, associates and 

published by Tilley. Tilley provides both the body measurements of people at different 

ages and the clothing corrections. The following tables list the parameters used in this 

thesis: 

 

Table 1  Body parts index names 

TS HD AR LG UT LT BD U L LA LL RA RL 

torso head arm leg upper 

trunk 

lower 

trunk

body upper lower left

arm

left 

leg 

right 

arm 

right

leg 

 

 

Table 2  The means and the standard deviations of the aspect ratio 

 

   

AR LG   TS HD 

U L U L 

UT LT BD 

.25 

.12 
.25 
.08 

front 

view 

a  

aσ  

.61 

.10 

.78 

.09 .12 
..05 

.13 

.06 
.12 
.05 

.13 

.05 

.92 

.08 

.43 

.10 

.30 

.08 

.25 

.12 
.25 
.08 

side 

view 

a  

aσ  

.45 

.11 

.78 

.09 .12 
..05 

.13 

.06 
.12 
.05 

.13 

.05 

.73 

.09 

.22 

.11 

.26 

.09 
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Table 3  The means of length ratios 

 TS HD AR LG UT LT BD 

TS 1.0 .52 .95 1.47 1.0 1.47 3.0 

HD 1.92 1.0 1.83 2.84 1.92 2.84 5.76 

AR 1.05 .55 1.0 1.55 1.05 1.55 3.16 

LG .68 .36 .66 1.0 .68 1.0 2.04 

UT 1.0 .52 .95 1.47 1.0 1.47 3.0 

LT .68 .36 .66 1.0 .68 1.0 2.04 

BD .33 .18 .32 .49 .33 .49 1.0 

 

Table 4  The standard deviations of the length ratios 

 TS HD AR LG UT LT BD 

TS 0 .05 .05 .09 .01 .09 .08 

HD .18 0 .21 .36 .18 .36 .53 

AR .05 .07 0 .04 .05 .04 .10 

LG .04 .06 .02 0 .04 .01 .10 

UT .01 .05 .05 .09 0 .09 .08 

LT .04 .06 .02 .01 .04 0 .10 

BD .01 .02 .01 .02 .01 .02 0 
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Table 5  The means of the coordinates of the body parts in the normalized torso 

coordinate system 

  TS HD LA LL RA RL UT LT 

front 

view 

x  

y  

0 

0 

0 

.5 

-.31 

.353 

-.163

-.472

.163 

-.472

.31 

.353 

0 

0 

0 

-.5 

side 

view 

x  

y  

0 

0 

0 

.5 

0 

.353 

0 

-.472

0 

-.472

0 

.353 

0 

0 

0 

-.5 

 

Table 6  The covariance of the coordinates of the body parts in the normalized torso 

coordinate system (front view) 

 110−×  

HDx  .34 .11 .08 .03 .04 .13 -.06 .15 -.09 .04

HDy  .11 .92 .09 .56 .13 .91 -.15 .92 -.10 .55

LAx  .08 .09 .30 .07 .16 .19 -.17 .14 -.33 .06

LAy  .03 .56 .07 .95 .05 1.13 -.03 1.01 -.07 .91

LLx  .04 .13 .16 .05 .39 .23 -.35 .27 -.16 .05

LLy  .13 .91 .19 1.13 .23 1.82 -.27 1.89 -.19 1.13

RLx  -.06 -.15 -.17 -.03 -.35 -.27 .41 -.32 .17 -.06

RLy  .15 .92 .14 1.01 .27 1.89 -.32 1.27 -.20 1.23

RAx  -.09 -.10 -.33 -.07 -.16 -.19 .17 -.20 .35 -.08

RAy  .04 .55 .06 .91 .05 1.13 -.06 1.23 -.08 .90
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Table 7  The covariance of the coordinates of the body parts in the normalized torso 

coordinate system (side view) 

 110−×  

HDx  .18 .10 .06 .02 .02 .09 -.08 .13 -.07 .02

HDy  .10 .85 .07 .45 .11 .87 -.13 .88 -.19 .50

LAx  .06 .07 .13 .08 .14 .15 -.11 .17 -.25 .07

LAy  .02 .45 .08 .91 .06 1.11 -.04 1.06 -.04 .83

LLx  .02 .11 .14 .06 .20 .13 -.30 .25 -.13 .06

LLy  .09 .87 .15 1.11 .13 1.67 -.25 1.71 -.12 1.02

RLx  -.08 -.13 -.11 -.04 -.30 -.25 .22 -.21 .15 -.05

RLy  .13 .88 .17 1.06 .25 1.71 -.21 1.18 -.21 1.14

RAx  -.07 -.19 -.25 -.04 -.13 -.12 .15 -.21 .16 -.07

RAy  .02 .50 .07 .83 .06 1.02 -.05 1.14 -.07 .92
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