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control of the uncertain process with time delays. The analytical
formula of the fuzzy controller was used to adaptively regulate fuzzy
rules, and the neural network model for self-learning dynamics of
the uncertain process or plants. The neural network predictor for the
uncertain process with time delays has been used in the closed-loop
systems for compensating the adverse effects of the time delays in
the process. The self-learning fuzzy neural control scheme has been
used for control of the pulse TIG welding process, and the experiment
results show the control scheme available.
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On-Line Signature Verification Using
LPC Cepstrum and Neural Networks

Quen-Zong Wu, I-Chang Jou, and Suh-Yin Lee

Abstract—In this paper, an on-line signature verification scheme based
on Linear Prediction Coding (LPC) cepstrum and neural networks is
proposed. Cepstral coefficients derived from linear predictor coefficients
of the writing trajectories are calculated as the features of the signatures.
These coefficients are used as inputs to the neural networks. A number of
single-output multilayer perceptrons (MLP’s), as many as the number of
words in the signature, are equipped for each registered person to verify
the input signature. If the summation of output values of all MLP’s is
larger than verification threshold, the input signature is regarded as a
genuine signature; otherwise, the input signature is a forgery. Simulations
show that this scheme can detect the genuineness of the input signatures
from our test database with an error rate as low as 4%.

I. INTRODUCTION

As the computer industry is on its way to change the life styles of
human beings, processes and schedules for many works are somehow
affected or even completely reorganized. Office automation is one of
the examples. Due to the wide use of computers and peripherals,
such as printers, scanners, and digital tablets, we are in the era of
intelligent input/output and electronic documentation.

Signature verification is a way to determine the validity and
authority of documents. In addition, it could also be applied to
security systems to prevent critical data or information from being
modified or stolen. Therefore, signature verification is of great
importance in electronic documentation. Its applications may include
banking, credit card authorization, and personal identification. Fig. 1
demonstrates examples of genuine signatures as well as forgeries in
Chinese.

Visual examination is the most popular approach for signature
verification, yet there are occasions for the examiners to make
mistakes or lower their thresholds of acceptance. For instance, in
a commercial transaction, comparing the signature with a previously
written signature, such as the signature on the back of a credit card,
is more or less a challenge to the clerks. As a result, large financial
losses may occur. It is clear that signature verification through visual
examination can only judge the authentication roughly. Human eyes
can hardly analyze the detailed writing features.
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(a) (b)

Fig. 1. The example of (a) genuine signatures and (b) forgeries.

Fig. 2. Common modules for a signature verification system.

Recently, many methods [1] have been developed for computer-
based signature verification, especially for on-line signature veri-
fication. Fig. 2 shows the common modules for on-line signature
verification. Static features, such as coordinates, as well as dy-
namic features, including writing velocity and acceleration, are useful
characteristics for on-line signature verification. Other issues to
be considered in a verification system are distortion measurement
scheme, learning scheme on the signatures, and the criteria for forgery
determination [1].

Numerous pattern recognition methods have been applied to on-
line signature verification [1]. Among the methods that have been
proposed for pattern recognition, two broad categories can be iden-
tified: memory-based techniques in which incoming patterns are
matched to a (usually large) dictionary of templates, and parameter-
based methods in which preprocessed patterns are sent to a trainable
classifier such as a neural network [2], [3]. Memory-based recognition
methods require a large memory space to store the templates, while
a neural network is a parameter-based approach which just requires
a small amount of memory space to store the linking weights among
neurons. For the memory-based methods, it is a difficult problem to
generate a reference template (or templates) when there is a large
number of training examples. In this case, the number of reference
templates is usually raised in order to obtain a reasonable error rate,
which requires more storage space. As for neural networks, although
convergence is an issue for learning from examples, convergence can
be achieved by careful tuning of the initial linking weights or adding
more hidden nodes. Correlation function analysis and Euclidean
distance measurement [1] are currently viewed as practical memory-
based methods for signature verification. However, these methods are

Fig. 3. The procedures for feature extraction.

Fig. 4. A single-output multilayer perceptron.

either inherently complex or require large amount of data storage for
comparison purpose.

In this paper, we propose an on-line signature verification scheme
based on multilayer perceptron (MLP). For each registered customer,
a number of single-output MLP’s (as many as the number of
words in the signature) are used to measure the similarity between
input signature and the system-learned signatures. By comparing the
summation of output values of all MLP’s with a threshold value, we
can figure out whether the input signature is a forgery or not.

Most signature verification researches select trajectory-based (or
time domain) features for measuring the similarity of the signatures
[4]–[10]. Trajectory-based features basically use the characteristics of
all (or part of) the sample points, such as coordinates or velocities,
for similarity measurement. Therefore, the system should either
maintain a large amount of storage or prune away some sample
data by preprocessing skills which may inherently distort the input
signature. Parameters obtained from spectral domains or through
some transform processes, such as Fourier transform, on the raw
trajectories have been used to feature a signature. However, the
amount of data is not compressed through Fourier transform. The
system still faces the problem of large storage requirement. In [11],
the largest 15 harmonics derived from fast Fourier transform (FFT)
are used to extract the features for the signatures. In this case, the
amount of data is compressed under the risk of distorting the spectrum
of the signature.

As linear prediction [12] is popularly employed in a wide range
of applications, we adopt cepstral coefficients derived from linear
predictor coefficients (LPC) as features. A lower error rate can be
achieved by using LPC cepstrum instead of LPC as the features of the
signatures, which is verified in the performance comparison shown
in Fig. 6. Therefore, LPC cepstrum is used to model the signatures.
In this way, the amount of data is compressed, while the global
characteristics of the signatures are still retained.

It is quite intuitive to link LPC cepstrum with hidden Markov
model (HMM) [14]. However, the selection of the verification thresh-
old is more difficult for HMM. As for MLP, it is intuitive and practical
to adopt 0.5 as the boundary for separating positive and negative
stimuli. Thus, the verification threshold could be easily selected if
MLP is used for signature verification. Hence, in this paper, we
propose a new scheme for signature verification which uses LPC
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Fig. 5. The decision of whether the input signature is a genuine one.

Fig. 6. Total error rates of using LPC and LPC cepstrum as input features,
respectively.

cepstrum as input features and single-output MLP classifiers for
mismatch measurement.

The organization of this paper is as follows. In Section II, feature
extraction based on LPC cepstral analysis is discussed. Section III
discusses the neural network architectures used for the classifiers.
Simulations and performance evaluations of the proposed techniques
are given in Section IV. Finally, Section V provides the conclusion.

II. FEATURE EXTRACTION

Cepstral analysis [13]–[15] is widely used in the area of speech
processing due to its capability to well represent speech waveforms
and characteristics with a small number of parameters. For a time
series of samplesfs(n)g, anN th order linear predictor of the sample
s(n), says�(n), is a linear combination of theN previous samples
fs(n � i); 1 � i � Ng, denoted by

s
�(n) =

N

i=1

ai � s(n� i): (1)

The spectrum based on the linear predictive coding (LPC) is defined
as

S(ejw) =
�2

1� N

i=1
aie�jwi

: (2)

LPC cepstrum is defined as the Fourier representation of thelogarith-
mic amplitude spectrumbased on LPC modeling. The LPC cepstral
coefficientsfcig are defined as

log jS(ejw)j =

1

i=�1

cie
�jwi

: (3)

Better performance could be achieved by selecting LPC cepstrum
fcig instead of LPCfaig for feature extraction. Therefore, we use
LPC cepstral coefficients as the features of the signatures. PARtial
autoCORrelation (PARCOR) algorithm and line spectrum pair (LSP)
algorithm [13]–[15] are two approaches to computefaig. The LPC

cepstral coefficientsfcig can be obtained fromfaig through the
following equations:

c1 = a1; (4)

ci = ai +

i�1

m=1

m

i
� am � ci�m; where1 < i � N: (5)

In speech processing, LPC coefficients as well as LPC cepstral
coefficients are calculated from sample points of a speech waveform
thex-axis of which is time scale and they-axis of which is amplitude.
As the speech waveform can be featured by LPC cepstral coeffi-
cients, similarly the projective waveformsf(x; t)g and f(y; t)g of
x-coordinates andy-coordinates from a writing trajectoryf(x; y; t)g
can also be characterized by LPC cepstral coefficients. Therefore,
the skill of using LPC cepstrum for feature extraction can also be
applied to signature verification. In addition, due to fast amplitude
variation in a speech waveform, the whole set of speech samples is
divided into small frames of samples by windowing techniques, such
as Hamming window. This helps to preserve “short time stationary”
for LPC analysis. The LPC cepstral coefficients are then calculated
for each speech frame. In the case of signature, the variation of
coordinates in signature waveform is not so wild as that in speech
waveform. Therefore, we just divide the sample points in a word of
the signature into smaller number of frames.

The procedures of feature extraction are shown in Fig. 3 and the
detailed steps for feature extraction are listed as follows:

Step 1): This step normalizes the size of the word. At the beginning
of extracting features from a word in the signature, allx-
coordinates andy-coordinates of the sample points in the
word are linearly normalized to be between 0 and 127
such that

xnew = 127 � (xold � xmin)=(xmax � xmin)

and

ynew = 127 � (yold � ymin)=(ymax � ymin)

where xmax; xmin; ymax and ymin are the maximal
and minimal values ofx coordinates andy coordinates,
respectively.

Step 2): This step resamples the signature word and divides the
sample points into frames. We resample every word in
the signature into fixed number of sample points by
interpolation skills because the sample rates of the writing
tablets may be different. Assume that there are FR
frames in a signature word with the size of each frame
being FRAMESIZE and the number of sample points
shift between two adjacent frames being FRAMESHIFT.
The total number of sample points after resampling
by interpolation skills is FRAMESIZE + (FR � 1) �
FRAME SHIFT. In addition, there are (FRAMESIZE
� FRAME SHIFT) overlapped sample points between

two adjacent frames. If the time duration for writing the
signature word isT , then the signature word is resampled
everyT=[FRAME SIZE+ (FR� 1) � FRAME SHIFT]
time unit.

Step 3): This step windows each individual frame so as to minimize
the sample point discontinuities at the beginning and end
of each frame. Using a Hamming window functionw(n)
on a frame of sample pointsf(xf (n); yf (n))g, then the
result of windowing, sayf(x�f(n); y

�

f(n))g, is

x
�

f (n) = xf (n)w(n) and y
�

f(n) = yf (n)w(n) (6)
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where

w(n) = 0:54� 0:46 cos
2n�

FRAME SIZE� 1
: (7)

Step 4): This step calculates x-coordinate LPC cepstrum and y-
coordinate LPC cepstrum for every frame. Applying LPC
analysis tofx�f(n)g and fy�f(n)g, we obtain two sets
of linear predictor coefficients, sayfaxi g and fayi g,
respectively. Using (4) and (5), we get LPC cepstral
coefficientsfcxi g and fcyi g, which characterize a frame
of a word in the signature. Therefore, there are2 �N �FR
coefficients for a word in the signature, whereN is the
order of LPC cepstrum and FR is the number of frames
of a word. Usually,2 �N � FR is much smaller than the
number of sample points of a signature word.

A signature could be made up of several words, depending on
the skills to segment the signature. The easiest way is to regard the
whole signature as a big word no matter how individual words are
separated. Another convenient approach is to ask users to write each
signature word in a different grid on the tablet to avoid segmentation
problem. In the case that the signature containsM separate words,
there will be2 �N �FR�M coefficients to feature the whole signature.
Typically, M is 3 for Chinese signatures.

III. N EURAL NETWORK ARCHITECTURE

Over the last few years, different kinds of neural network models
have been proposed or derived; nevertheless the multilayer per-
ceptrons (MLP’s) are still the most widely used ones. An MLP
with multiple output nodes is usually used in the applications of
pattern classification while a single-output MLP is suitable for the
applications such as function approximation [17], [18]. An interested
reader can find more information about neural network in [2] and [3].
Fig. 4 shows the architecture of a single-output MLP. In this paper,
“back-propagation with selective updates” [16] is used to update the
linking weights of the MLP. For a presented training pattern, the
linking weights are not updated when the actual output value of the
MLP is very close to its desired output value based on this input
pattern.

In this work, each registered person is equipped with a number
of single-output MLP’s (as many as the number of words in his/her
signature) to determine whether the signature is genuine or not. There
are2 � N � FR nodes in the input layer of every MLP, whereN is
the order of LPC cepstrum and FR is the number of sample frames
of a word in the signature. For a registered person withM words in
his/her signature, theseM MLP’s are trained based on the features
of the corresponding words in the signatures independently. In other
words, features extracted from the first word of the signature are used
to train the first MLP, and so forth.

Every MLP learns from corresponding word of both genuine
and forgery signatures of the registered customer that this MLP is
dedicated to. The features of genuine signature word are fed into
the corresponding MLP with desired output value being 1, while the
features of forgery signature word are fed into MLP with desired
output value being 0.

Trained MLP’s are used for verifying the signatures. The MLP’s
corresponding to the person that the customer declares to be are
picked up and equipped with trained linking weights. Features of
the input signature words are fed into the corresponding MLP’s for
recalling. If the summation of the output values of MLP’s is larger
than verification threshold, this signature is regarded as a genuine one;
otherwise, it is a forgery. The diagram of deciding whether the input
signature is a genuine one of theLth registered person is shown in
Fig. 5.

The forward phase of training and recalling is bounded within
(0, 1). Therefore, 0.5 is suitable to be the threshold of a word in
the signature and0:5M is chosen to be the verification threshold of
the whole signature. In typical Chinese signatures,M is 3 and the
verification threshold is set to be 1.5. Certainly, verification threshold
can be adjusted in order to meet different security requirements. For
instance, larger verification threshold, say 1.7, sets higher barrier for
forgeries to be misverified as genuine signatures but increases the
possibility for genuine signatures to be rejected. In the contrast, lower
verification threshold, say 1.3, sets lower barrier for forgeries to be
misverified as genuine signatures yet decreases the possibility for
genuine signatures to be rejected. Therefore, in highly confidential
systems, the verification threshold could be elevated. When confi-
dential rank is not so high, lower verification threshold could prevent
users from unpleasant retries.

IV. PERFORMANCE EVALUATION

Real Chinese signatures are collected for evaluating the perfor-
mance of the verification scheme proposed in this paper. Twenty-
seven people are invited to register to the simulation system. Each
of them is asked to write his (or her) signatures. Another four people
imitate the signatures of all registered people. Based on the signatures
of registered people, every imitator forges every registered person’s
signature.

Type I error rate is defined to be the rate that the genuine signatures
are classified to be forgeries. Type II error rate is the rate that the
forgeries are classified to be genuine ones. The total error rate is
defined to be the ratio of the number of misverified genuine and
forgery signatures over the total number of genuine and forgery
signatures. We use 321 genuine signatures from 27 registered people
and 321 forgeries from the first two imitators to train the single-output
MLP’s. The remaining 489 genuine signatures and 317 forgeries from
another two imitators are used for obtaining the error rates. Therefore,
if Type I and Type II error rates areA=489 andB=317, then the total
error rate should be(A + B)=(489 + 317).

In the simulation, FRAMESIZE, the size of a frame, is set to
be 50 sample points, while FRAMESHIFT, the number of sample
points shift between two adjacent frames, is set to be 30. Number of
frames of a word in the signature (FR), order of the LPC cepstrum
(ORDER), verification threshold (THRLD) and the number of hidden
nodes in every MLP (HNODE) are control parameters.

The first simulation is to validate our assumption that LPC
cepstrum are better features for signature verification than LPC.
Fig. 6 demonstrates the total error rates by using different orders
of LPC and LPC cepstrum as input features respectively with
FR = 6; H NODE = 6 and THRLD = 1:5. It shows that we
can get lower error rates by using LPC cepstrum rather than LPC as
input features. Fig. 7 depicts the performance that varies according
to different orders of LPC cepstrum withFR = 6; THRLD = 1:5
andH NODE = 6. As the number of sample points in a frame is 50,
therefore, the data compression ratio is 50/ORDER, where ORDER
varies from 8 to 18 in Fig. 7. Under data storage consideration,
higher data compression ratio is more economic.

Fig. 8 depicts the error rates according to different verification
thresholds withFR = 6; ORDER = 12 andH NODE = 6. Lower
verification threshold results in lower Type I error rates and higher
Type II error rates, while higher Type I error rates and lower Type II
error rates are obtained for higher verification threshold. As the total
error rate is defined to be the ratio of the number of misverified
genuine and forgery signatures over the total number of genuine
and forgery signatures, it may fluctuate and not be increasing when
verification threshold increases, although the total error rate in Fig. 8
increases when verification threshold increases.



152 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

Fig. 7. Error rates according to different orders of LPC cepstrum.

Fig. 8. Error rates according to different verification thresholds.

Fig. 9 depicts the error rates of different numbers of hidden
nodes assigned to the MLP’s withFR = 6; THRLD = 1:5 and
ORDER = 12. It is obvious that, in this case, assigning more hidden
nodes to the MLP’s does not always lead to lower error rates. But the
number of linking weights and computations of the MLP’s increases
whenH NODE increases.

Fig. 10 depicts the error rates by setting different numbers of
frames to a signature word withH NODE = 6; THRLD = 1:5

andORDER = 12. It should be noticed that there are totally 50, 80,
110, 140, 170, 200, 230, or 260 sample points of a signature word
after resampling as FR varies from 1 to 8.

In the illustrations of these figures, there is small variation in
error rates with different settings of control parameters. Although this
scheme provides a novel framework for verifying signatures, careful
tuning of control parameters is necessary in order to obtain better
performance. Simulations show that by careful tuning of the control
parameters this scheme can determine the genuineness of the input
signatures from our test database with an error rate as low as 4%.

Of course, it takes some efforts to achieve the optimal settings
of control parameters. There is no theoretical warranty showing that
the performance of the neural network could be upgraded by adding
some hidden nodes into the MLP although it is more likely. This also
holds for the settings of the order of LPC cepstrum. The complexities
and degrees of variation of the signatures are different from person
to person. Hence, it would be a good idea to assign different values
of the control parameters to different registered people although the
parameters are uniformly set in our simulation.

Most of the errors occur because signing on the tablet is not as
smooth as signing on the paper. Furthermore, even genuine signatures

Fig. 9. Error rates according to different numbers of hidden nodes.

Fig. 10. Error rates according to different numbers of frames.

are not time-invariant. Therefore, some variation of the signatures
are “innocent” and may affect the error rates to some extent. The
signatures can be embedded with innocent noises, which may train
the MLP’s in the wrong ways. As a result, some genuine signatures
may look like forgeries and some forgeries may look like genuine
signatures to the MLP.

Unlike the problems of writer identification, signature verifica-
tion (or writer verification) is a process of determining the accep-
tance/rejection on the input writings. The MLP’s dedicated to a
specific registered customer are trained using only the genuine and
forgery signatures of that customer. These MLP’s are irrelevant to
the signatures of other customers. In verification, only the MLP’s
which are dedicated to the claimed customer is activated for recalling.
Therefore, it is clear that the performance of this verification scheme
is independent of the number of customers in the system.

Although the simulations use Chinese signatures to validate the
proposed signature verification scheme, it is clear that this scheme
can also be applied in the verification of other kinds of signatures,
such as signatures written in English, Japanese, etc.

V. CONCLUSION

In this paper, a novel combination of MLP classifier and cepstrum-
based feature extraction is proposed for on-line signature verification.
LPC cepstrum provides useful features for characterizing signatures.
A number of single-output MLP’s (as many as the number of words
in the signature) are used as a classifier to determine whether the
input signature is a genuine one or not. The result of verification is
“yes” when the summation of output values of MLP’s is larger than
verification threshold, while it is “no” when the summation is not
larger than verification threshold.
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From performance tests on 27 registered people, it is clear that most
genuine signatures can be successfully verified and most forgeries can
be pointed out. With suitable setting of the order of LPC cepstrum,
verification threshold, the number of hidden nodes in MLP and
the number of frames of a word in the signature, this verification
scheme performs very well. In addition, because we logically equip
each registered person with a number of single-output MLP’s, the
verification system can be expanded by simply equipping MLP’s for
each new customer and training these MLP’s independently. This
verification scheme thus possesses the merits of flexibility, scalability
and system expansion.

Although the term “signature” is generally known in western
countries to refer to a handwritten name written in an alphabetic
script, there is no doubt that this term could also refer to handwritten
names in character form, such as Chinese characters. Section IV uses
Chinese signatures, which are often written in character-by-character
form, for simulation. But, in fact, this work can easily be adapted to
other types of signatures.
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Similarity Measures Between
Vague Sets and Between Elements

Shyi-Ming Chen

Abstract—This paper presents some similarity measures between vague
sets and between elements. An example is also presented to illustrate
the application of the proposed similarity measures in handling behavior
analysis problems. The proposed method can provide a useful way in
handling the behavior analysis problems.

I. INTRODUCTION

Since the theory of fuzzy sets [15] was proposed in 1965, many
measures of similarity between fuzzy sets have been developed in
the literature [2], [4], [6], [12], [13], [17]. In [2], we presented a
similarity measure for weighted reasoning for medical diagnosis. In
[4], we presented a method for calculating the degree of similarity
between fuzzy sets for handling fuzzy decision-making problems. In
[12], Leekwanget al. presented two similarity measures for behavior
analysis. In [13], Pappiset al. made a comparative assessment
of measures of similarity of fuzzy values. In [6], we extended
the work of [13] to present and compare the properties of some
similarity measures of fuzzy values. In [17], Zwick reviewed 19
similarity measures of fuzzy sets and compared their performance
in an experiment.

Roughly speaking, a fuzzy set is a class with fuzzy boundaries. A
fuzzy setA of the universe of discourseU , U = fu1; u2; . . . ; ung,
can be represented by

A = �A(u1)=u1 + �A(u2)=u2 + � � �+ �A(un)=un (1)

where�A is the membership function of the fuzzy setA; �A:U !

[0; 1], and�A(ui) indicates the grade of membership ofui in the
fuzzy setA. When the universe of discourseU is an infinite set, then
a fuzzy setA is often written in the form

A =
U

�A(ui)=ui; 8ui 2 U: (2)

It is obvious that8ui 2 U , the membership value�A(ui) is a
single value between zero and one. In [7], Gauet al. pointed out
that this single value combined the evidence forui 2 U and the
evidence againstui 2 U , without indicating how much there is
of each. Therefore, in [7], Gauet al. presented the concepts of
vague sets, where the notion of vague set is similar to that of
intuitionistic fuzzy sets [1]. They used a truth-membership function
tA and a false-membership functionfA to characterize the lower
bound on�A. The lower bounds are used to create a subinterval
on [0; 1], namely[tA(ui); 1 � fA(ui)], to generalize the�A(ui) of
fuzzy sets, wheretA(ui) � �A(ui) � 1 � fA(ui). For example, if
[tA(ui); 1 � fA(ui)] = [0:5; 0:7], then we can see thattA(ui) =

0:5; 1 � fA(ui) = 0:7, and fA(ui) = 0:3. It can be interpreted
as “the degree that objectui belongs to the vague setA is 0.5,
the degree that objectui does not belong to the vague setA
is 0.3.” As another example, in a voting model, the vague value
[0:5; 0:7] can be interpreted as “the vote for resolution is 5 in favor,
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