
19

A Fast Scalable Automaton-Matching
Accelerator for Embedded Content
Processors

KUO-KUN TSENG

Hungkuang University

YUAN-CHENG LAI

National Taiwan University of Science and Technology

and

YING-DAR LIN and TSERN-HUEI LEE

National Chiao Tung University

Home and office network gateways often employ a cost-effective embedded network processor
to handle their network services. Such network gateways have received strong demand for ap-
plications dealing with intrusion detection, keyword blocking, antivirus and antispam. Accord-
ingly, we were motivated to propose an appropriate fast scalable automaton-matching (FSAM)
hardware to accelerate the embedded network processors. Although automaton matching algo-
rithms are robust with deterministic matching time, there is still plenty of room for improv-
ing their average-case performance. FSAM employs novel prehash and root-index techniques to
accelerate the matching for the nonroot states and the root state, respectively, in automation
based hardware. The prehash approach uses some hashing functions to pretest the input sub-
string for the nonroot states while the root-index approach handles multiple bytes in one single
matching for the root state. Also, FSAM is applied in a prevalent automaton algorithm, Aho-
Corasick (AC), which is often used in many content-filtering applications. When implemented in
FPGA, FSAM can perform at the rate of 11.1Gbps with the pattern set of 32,634 bytes, demon-
strating that our proposed approach can use a small logic circuit to achieve a competitive per-
formance, although a larger memory is used. Furthermore, the amount of patterns in FSAM is
not limited by the amount of internal circuits and memories. If the high-speed external mem-
ories are employed, FSAM can support up to 21,302 patterns while maintaining similar high
performance.

Authors’ addresses: K. K. Tseng, Department of Computer and Information Engineering,
Hungkuang University, Taichung, Taiwan, 433; email: kktseng@sunrise.hk.edu.tw; Y. C. Lai, De-
partment of Information Management, National Taiwan University of Science and Technology,
Taipei, Taiwan, 106; email: laiyc@cs.ntust.edu.tw; Y. D. Lin, Department of Computer and Informa-
tion Science, National Chiao Tung University, Hsinchu, Taiwan, 300; email: ydlin@cis.nctu.edu.tw;
T. H. Lee, Department of Communication Engineering, National Chiao Tung University, Hsinchu,
Taiwan, 300; email: tlee@banyan.cm.nctu.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/04-ART19 $5.00
DOI 10.1145/1509288.1509291 http://doi.acm.org/10.1145/1509288.1509291

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:2 • K. K. Tseng et al.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Packet-switching networks; I.5.4 [Pattern Recognition]: Applications—
Text processing

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: String matching, content filtering, automaton, Aho-Corasick,
Bloom filter

ACM Reference Format:
Tseng, K. K., Lai, Y. C., Lin, Y. D, Lee, T. H. 2009. A fast scalable automaton-matching accelerator
for embedded content processors. ACM Trans. Embedd. Comput. Syst. 8, 3, Article 19 (April 2009),
30 pages. DOI = 10.1145/1509288.1509291 http://doi.acm.org/10.1145/1509288.1509291

1. INTRODUCTION

In recent years, deeper and more complicated content filtering has been re-
quired for applications dealing with intrusion detection, keyword blocking, an-
tivirus, and antispam. In such applications, string matching usually occupies
30% to 70% of the system workload [Mike et al. 2001; Antonatos et al. 2004]. In
particular, new content-filtering applications are increasingly being built on the
home and office network gateways, which are often implemented with an em-
bedded network processor with moderate performance. Thus, as transmission
speed increases, it becomes more necessary to design an appropriate string-
matching accelerator to offload the work of string matching from the network
processor.

To understand the necessary requirements of string-matching algorithms,
we surveyed real patterns from open source software, which includes Snort
[Roesch et al. 2006] for intrusion detection, ClamAV [2006] for antivirus, Spa-
mAssassin [2006] for antispam, and SquidGuard [2006] and DansGuardian
[2006] for Web blocking. In Table I, the necessary requirements can be concluded
to be those matching the variable-length patterns, multiple patterns, and online
processing of all content-filtering applications. Because content-filtering appli-
cations often perform the exact matching, then the string-matching allowing
errors is not always necessary. Moreover, the complex patterns, such as those
created by adopting class, wildcard, regular expression, and case sensitivity,
might increase the expressive power of the patterns and hence might increase
the matching time and space requirement. Since the complex patterns can be
converted into patterns composed of multiple simple patterns [Navarro et al.
2002], they are optional in most applications.

Current existing online string-matching algorithms for content-filtering can
be classified into five categories: simple matching, dynamic programming, bit
parallel, backward filtering, and automaton, as shown in Table II. The simple
matching compares the text against patterns with the naı̈ve algorithm, and
its average and worst-case time complexities are both poor as O(nm), where n
and m are the lengths of the text and patterns, respectively. The dynamic-
programming [Navarro 2001] and bit-parallel [Wu et al. 1992] algorithms
have the better deterministic average and worst-case time complexities O(n),
but they are inappropriate for variable-length and multiple patterns. The

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:3

Table I. String-matching Requirements for Content-Filtering Applications

Intrusion Web
Functions Description detection blocking Anti-virus Anti-spam
Error

allowance
Allow error with

some number of
characters

Unnecessary Unnecessary Unnecessary Optional

Multiple
patterns

Arbitrary pattern
amount in a single
matching

Necessary Necessary Necessary Necessary

Class One character
represents
multiple alphabets

Unnecessary Optional Unnecessary Optional

Wildcard Don’t care multiple
characters

Optional Optional Optional Optional

Regular
expression

Kleene star,
concatenation, OR

Optional Optional Optional Optional

Variable length Arbitrary length of
patterns

Necessary
(Short
length)

Necessary
(Medium
length)

Necessary
(Long
length)

Necessary
(Medium
length)

Online
processing

Text is unknown
before match

Necessary Necessary Necessary Necessary

Case
sensitivity

Alphabet is case
sensitive

Unnecessary Optional Unnecessary Optional

backward-filtering algorithm [Boyer et al. 1977] employs a heuristic technique
for variable-length patterns with the sublinear average-case time complexity,
but its worst-case time complexity O(nm) is poor, and the performance is not
deterministic for a large pattern set. Only the automaton-based algorithms,
such as Aho-Corasick (AC) [Aho et al. 1975], support the variable-length and
multiple patterns and also have the deterministic worst-case time complexity
O(n). Thus, the automaton-based algorithm was selected as a base to develop
our new approaches.

AC is a typical deterministic finite automaton (DFA)-based algorithm used
for string-matching, and there are several variations. Bitmap AC [Tuck et al.
2004] used bitmap compression to reduce the storage of AC states. AC BM
[Mike et al. 2001; Coit et al. 2002; Desai et al. 2002] was a combination of the
AC and Boyer Moore (BM) algorithms and aimed to improve the conventional
AC from O(n) to the sublinear time complexity with the BM approach. AC BDM
[Raffinot 1997] combined AC with backward dawg matching (BDM) and also
improved the average-case time complexity of the conventional AC. Bit-split
AC [Tan et al. 2005] split the width of the input text into a smaller bit-width
to reduce the memory usage and the number of comparisons for selecting the
next states. Since AC BM has the worst-case time complexity O(nm), AC BDM
requires double space and has overhead for switching between AC and BDM,
and bit-split AC requires a large match vector for each bit-split state, they are
impractical for a large number of patterns. Hence, a scalable bitmap AC with
superior space efficiency is preferable for our purpose.

Although bitmap AC has the good worst-case matching time complexity of
O(n), it is insufficient for high-speed processing. In this article, we present

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:4 • K. K. Tseng et al.

Table II. Comparison of the Online String-Matching Algorithms

Simple Dynamic Backward Bit
Algorithm Matching Programming Filtering Automaton Parallel
Description Compare the text

and the patterns
byte by byte

Compute
matrix
similarity of
the texts and
the patterns

Do backward
scanning in
the text
window for
skipping
the
multibytes
text

Search through
a Determin-
istic Finite
Automation
(DFA)

Simulate Non
Deterministic
Finite
Automation
(NFA) by
bitwise
operations

Average Time O(nm) O(n) Sublinear O(n) O(n)
Worst Time O(nm) O(n) O(nm) O(n) O(n)
Text Length Variable long length Fixed short

length
Variable long

length
Variable long

length
Variable long

length
Pattern Length Fixed short length Fixed short

length
Variable short

length
Variable short

length
Fixed short

length
Multiple Pattern No No Yes Yes Yes
Regular Expression No No No Yes Yes
Pros for hardware Easy for parallelism

and pipeline
Systolic, array

is regular
Storage is

smaller
than
Automaton

Comparison is
a lookup
operations

Bitwise
operation is
fast

Cons for hardware Duplicated circuits or
slow performance

Large array
circuit is
impractical

Complex to
compute
skipping
length

Table size is
Larger than
Bit-Parallel

Not feasible to
have a long
vector

Typical Algorithm Naı̈ve Edit Distance Boyer-Moore Aho-Corasick Shift-OR

Fig. 1. (a) Content filtering gateway, (b) FSAM performing two techniques: root-index matching
for the root state and the prehash matching for the nonroot states.

a fast scalable automaton matching (FSAM) that is built on an embedded
system and applied to a network gateway to perform deep-content filtering,
as shown in Figure 1(a). FSAM employs two novel techniques: prehash for
the nonroot states and root-index for the root state in order to accelerate the
automaton-based algorithms as shown in Figure 1(b). The prehash approach is

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:5

a quick scanning for the nonroot states to avoid the time-consuming automa-
ton matching. The idea is to have an initial hashing for the substring of the
input text and comparing the result with the vector for the suffixes of the state
in the bitmap AC finite automaton. If no-hit occurs, meaning a true negative,
then the slow automation matching is no longer required. For the root state,
the root-index approach uses a compressed technique to remember all the next
states whose lengths, counting from the root state, are less than l (l > 1). Thus,
multiple bytes of length l , rather than 1 byte, can be handled in one single
matching for the root state to accelerate the matching speed, although the pro-
cessing of such variable bytes per cycle is dependent on the characteristics of
the matched texts and patterns. In fact, since the root state is often visited
in the matching operation, the root-index approach is an effective acceleration
approach.

We developed the appropriate hardware design according to our proposed
algorithms. To evaluate our approaches, the space and time complexities are
formally analyzed using real patterns. Also, the FSAM design, which was im-
plemented in Xilinx FPGA, can achieve 11.1Gbps throughput with a pattern
set of 32,634 bytes. The results demonstrate that our proposed approach uses
a small logic circuit to achieve a competitive performance and support a large
pattern set, comparing with the previous matching hardware.

The rest of this article is organized as follows: Section 2 includes the sur-
veys of AC related algorithms, related hashing-matching works, and existing
string-matching hardware. Section 3 describes the algorithm and architecture
of FSAM as well as the detailed pseudocode of prehash and root index. The for-
mal analysis and evaluation of real patterns and network traffic are shown in
Section 4. The hardware implementation and its performance comparison with
other methods are demonstrated in Section 5. Finally, we draw our conclusion
in Section 6.

2. BACKGROUND

The most related works to our approaches are AC, bitmap AC, and hashing
matching algorithms, so a brief tutorial for the first two is presented in Section
2.1 and for the third one is given in Section 2.2. Finally, the related string-
matching hardware is introduced in Section 2.3.

2.1 AC and Bitmap AC Algorithms

As AC is our accelerating target, we need to know more about AC and AC related
algorithms. AC state machine is constructed from the patterns to be matched in
the preprocessing phase and requires three preprocessing functions. The first
is goto function, which is used to traverse from node to node. The second is
failure function, which is traversed when there is no next state, and the third is
output function, which output the matched state pattern for matched patterns.
Actually, AC is a special automaton for string-matching that uses the failure
links to reduce the number of the next state links.

In the searching phase, AC being algorithm for processing multiple patterns
searches the patterns in the text by traversing the patterns in a data structure

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:6 • K. K. Tseng et al.

Fig. 2. AC and bitmap AC, (a) AC tree for string-matching, (b) data structure of bitmap AC for
state i using a bitmap to locate the next state among 0- j states, (c) circuit for converting a character
to the corresponding bit position in the 256-bit bitmap, (d) circuit for counting the number of 1s in
the 256-bit bitmap.

of automaton as in Figure 2(a), the root state is the initial matching for the AC
tree. A state Si has a next-state link if it matches a corresponding character
in the patterns. For handling the unmatched case, each state keeps a failure link
to another state, except the failure to the root state. There are two alternatives
to storing the next state links.

(1) Table: Each state has 256 next states for all letters. Table data structure
has the merit of fast matching, but it wastes the space if the table is sparse.

(2) Link list: Each state only has the link lists of the existing next states. This
data structure has smaller space, but it is slow if there are many next
states.

Bitmap AC is a compromise between the table and link list approaches.
Bitmap AC uses a 256-bit bitmap to store the next state links for each state.
The 256-bit bitmap is added in the data structure of the AC, as in Figure 2(b).
The idea for locating the next state is using the next state pointer of Si as a
base address, and counting the number of 1s in the 256-bit bitmap to locate the
offset of the next state.

Although bitmap AC can reduce the memory requirement, its matching pro-
cedure uses a lot of clock cycles, which is dominated by loading the state and

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:7

performing the population count. For the cycle of loading bitmap, each state
contains 32-bit next state, 32-bit failure state, 32-bit pointer and 256-bit next-
state bitmap, causing 11 words to be required in total. If memory access time is
2 cycles per word, 22 cycles are needed for loading a state. For performing the
conversion, converting from decimal to bit position and counting the number of
1s for locating the next state, as shown in Figures 2(c) and 2(d), respectively. Due
to the processing of the 256-bit register, 8 cycles are required for each operation,
and there are at least 16 cycles for matching a byte in the text. Consequently,
bitmap AC requires at least 38 cycles to process a single byte.

2.2 Related Hashing-Matching Works

There are several hashing-matching algorithms, mainly including BFSM
[Dharmapurikar et al. 2004], PHmem [Sourdis et al. 2005], Hash-Mem
[Papadopoulos et al. 2005], and Piranha [Antonatos et al. 2005] applied to
the string-matching. The basic idea of the hashing-matching works is to use
hashing functions to reduce the probability of false positive for the original
matching algorithms. Their common problems are that they require nondeter-
ministic verification time and that they cannot afford long patterns and a large
set of patterns.

Since BFSM was the first approach to use hashing function in the string-
matching and our prehash technique is motivated from it, we introduce BFSM
as a representative for the hashing string-matching works. In BFSM, the Bloom
filter hashing is employed to perform the approximate matching and cooper-
ates with the other exact-matching algorithms for content-filtering as shown
in Figure 3(a). The main idea of the Bloom filter is to use multiple hashing
functions to improve the hashing performance. In the preprocessing phase of
BFSM, each length j of all patterns are hashed into the corresponding bit vec-
tors Vj , and each Vj is associated with k hashing functions Hj ,k . For example,
in Figure 3(b), the hashing functions H1,1, H1,2 . . . H1,k are used for length
one of all patterns. Figure 3(c) shows its searching phase where the substring
of each length in the compared text is hashed with k hashing functions and
compared with the corresponding bit vector to determine whether the text is
possibly matched or not with the AND function.

The basic philosophy of BFSM is that it uses multiple hashing functions to
reduce the probability of false-positive. When BFSM chooses k independent
hashing functions to hash N independent patterns into a vector with size M ,
the probability of false-positive Pfp is obtained as

Pfp =
(

1 −
(

1 − 1
M

)Nk
)k

, (1)

according to Dharmapurikar et al. [2004]. Equation (1) holds under the assump-
tion of the uniform hashing function, meaning that the probability of hashing
to any position is equal to 1/M .

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:8 • K. K. Tseng et al.

Fig. 3. (a) Bloom filter for string-matching, (b) Each pattern is hashed into bit vectors in the
preprocessing phrase, (c) Text is hashed and compared with the bit vectors in the searching phrase.

2.3 String-Matching Hardware

As mentioned earlier, the sting matching is a bottleneck for content-filtering
systems, and hence the hardware solutions are required for high-speed con-
tent processing. For the algorithms in Table II, the existing string-matching
hardware are mainly based on dynamic programming, simple matching, and
automaton algorithms, while backward filtering and bit-parallel algorithms are
seldom implemented as the matching hardware. The work from Blüthgen et al.
[2000] and Sastry et al. [1995] implemented the dynamic programming algo-
rithm with the systolic array, which is only appropriate for short patterns and
text, since the circuit size is proportional to the lengths of patterns and the text.

Since the naı̈ve algorithm (simple matching) is easily implemented in hard-
ware design, many previous works applied the parallel circuits, content ad-
dressable memory (CAM), and hashing function techniques to accelerate the
naive algorithm. For instance, the works Park et al. [1999], Sourdis et al. [2003],
and Cho et al. [2005] used the parallel circuit; the works Gokhale et al. [2002]
and Sourdis et al. [2004] applied the content addressable memory (CAM); and
the works Dharmapurikar et al. [2004], Sourdis et al. [2005], Papadopoulos
et al. [2005], and Rubin et al. [2006] employed the hashing functions. However,
the previously described accelerating techniques are not scalable to a large set
of patterns since parallel, CAM, and internal hashing circuits are increased as
the number of patterns is increased.

The other prevalent hardware is automaton-based hardware, due to the sup-
port of the deterministic matching time and a large amount of patterns. The

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:9

automaton-based hardware can be classified into two categories, namely, the
DFA and the nondeterministic finite automaton (NFA)-based hardware. DFA-
based hardware has a unique transition, which activates one state at a time and
normally has a large number of states. NFA can handle multiple transitions at
one time, but it requires parallel circuits for entering its multiple next states.
Therefore, most DFA-based hardware use the table or link list to store their
patterns, while most NFA-based hardware use parallel reconfigurable circuits
to handle their patterns.

For DFA-based hardware, there are three common designs in recently devel-
oped string-matching hardware, namely, the AC based hardware [Tan et al.
2005, Aldwairi et al. 2005], the Regular Expression (RE)-based hardware
[Lockwood et al. 2001; Moscola et al. 2003] based hardware, and the Knuth-
Morris-Pratt (KMP), [Baker et al. 2004; Tripp 2005; Bu et al. 2004]. In order to
save a great number of states, KMP and AC were simplified from RE DFA by
disabling the regular expression patterns. Each AC DFA supports multiple sim-
ple patterns, while each KMP DFA only supports a single simple pattern. Thus,
many KMP DFAs use duplicate hardware for supporting multiple patterns.

For NFA-based hardware, there are two variations, namely, the compara-
tor NFA [Sidhu et al. 2001; Franklin et al. 2002], which used the distributed
comparators, and the decoder NFA [Clark et al. 2003; Clark et al. 2004; Clark
et al. 2005], which used the character decoder (shared decoder) to build its NFA
circuits.

3. ARCHITECTURE AND ALGORITHM DESIGN

Our FSAM incorporates two techniques, the prehash matching and root-index
matching. Except the root state, each state is applied the prehash technique
to avoid the bitmap AC matching. Dissimilar to BFSM, prehash uses a single
hashing function and only builds the corresponding bit vector for the substrings
of each state, making the hashing technique feasible in string matching by
reducing the hardware complexity. On the other hand, because the root state is
frequently visited in the AC matching and usually has a large number of next
states, a root-index technique is applied to advance multiple bytes in one single
matching.

In Section 3.1, we introduce the algorithm of FSAM to obtain its overall
image. In Section 3.2 and 3.3, the detailed algorithms of the prehash and root-
index matching are formally described. In the last section, the parallel archi-
tecture of FSAM is proposed for its feasibility.

3.1 Algorithm of FSAM

The algorithm of FSAM can be described as consisting of a preprocessing phase
and a searching phase. The preprocessing phase produces the required data
structure and data for further processing in the searching phase. The sequen-
tial matching flow in the searching phase is logically presented in Figure 4(a).
If the current state is the root state, root-index is applied for multiple-byte
matching to obtain the next state; otherwise, prehash is used. If the result of
the prehash matching reports a “no-hit,” a true negative is indicated and the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:10 • K. K. Tseng et al.

Fig. 4. Sequential algorithm of FSAM, (a) Logical matching flow in the searching phrase, (b)
Function of the preprocessing phase, (c) Function of the searching phase.

state immediately returns to the root state, implying that the slow AC matching
can be avoided. If a “hit” occurs, the AC matching is definitely required to obtain
the next state. The pseudocodes in the preprocessing phase and the searching
phase are described in the following text. The functions and their parameters
will be further explained in the next two sections.

1. Preprocessing phase: The function Preprocessing (P) does the preprocess-
ing phase of FSAM and is written in Figure 4(b). First of all, Preprocessing ()
translates all the patterns P into the states S of the AC tree using the con-
ventional AC function Build - AC (). After S is obtained, Preprocessing () then
builds all bit vectors V by the function Build - Pre - Hash (), and generates
the multiple root-index tables IDX[1..kroot] and the root next table NEXT by
Build - Root - Index (S) and Build − Root − Next (IDX[1..kroot]), respectively.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:11

Fig. 5. Prehash-matching algorithm (a) Build the bit vector function in the preprocessing phase
(b) Matching function in the searching phase.

2. Searching phase: The function searching Searching (T, S) for FSAM is in-
voked in this phase and is described as in Figure 4(c) where T denotes the
input text. Initially, current state Sc is set to root state S0. In each matching
loop for 1 ≤ i ≤ |T |, if the current state Sc is the root state S0, root index
can be used to accelerate the performance by using Match − Root − Index (z),
where the substring of the text T [i..(i+kroot)] is set as z for root-index match-
ing and it can advance kroot characters. Otherwise, Searching () loads the
current bit vector Vc for Sc and sets the substring of text T [i..(i + kpre−hash)]
to w for prehash matching, where i is the current matching position of the
text. Then, Match − Pre − Hash (w, Sc, Vc) tests whether w has a hashing
hit in Vc or not. If it returns True, Searching () must continue the original
AC matching using Match − AC (Sc, T [i]) to match a single character.

3.2 Prehash Matching

The prehash method can quickly test the multiple partial patterns of the cur-
rent state against the compared substring of text to avoid consequent slow AC
matching. The AC matching can be skipped if a true negative is indicated in
the prehash matching. True negative is the condition where the compared sub-
string of text is absent in the prehash vector for the suffixes of the current
state.

The prehash algorithm can be described as in Figure 5. S is the set of all AC
states and |S| is the number of states, built by the conventional AC algorithm
from a set of multiple patterns P . Let βi, j be the set of suffixes of length j
for state Si, and βi, j ,x represents the xth suffixes in length j for state Si. A

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:12 • K. K. Tseng et al.

Fig. 6. Prehash matching for state Si (a) Building the bit vector in the preprocessing phase (b)
Load bit vector and compare text in the searching phase.

transition function η can collect the possible βi, j from Si to the states with
length j .

Build − Pre − Hash (S)builds the prehash bit vector in the preprocessing
phase as shown in Figure 5(a). This function initially inputs the AC tree, which
is built by the conventional AC algorithm. Then it extracts suffixes βi within the
length kpre−hash for the specific state Si by using η(Si, kpre−hash), where kpre−hash
is maximum length of prehash suffixes and also the length of the substring in
text for each prehash matching. βi also includes the failure links in the AC tree.
When suffixes are obtained, the prehash algorithm hashes suffixes into bit vec-
tors by Vi, j ← Hj (βi, j ,x), where Hj is a hashing function for the corresponding
bit vector Ve, j and the same Hj is used for all states. This procedure of building
the bit vectors is also illustrated in Figure 6(a).

In the searching phase, prehash performs Match − Pre − Hash (w, Vc) to
rapidly match for the current state in the AC tree as shown in Figure 5(b),
where w is the current compared substring of the text and Vc is the current
bit vector. The operation TN j ← Vc, j [Hj

(
w[1.. j]

)
] looks up the bit value of the

position Hj
(
w[1.. j]

)
in Vc, j , in order to return true-negative TN j for length j .

TN j is 1 (True) if the hashed w[1.. j] bit is set in Vc, j . The prehash matching

return no-hit when
kpre−hash∧

j=1
T N j �= 1, where the operation

kpre−hash∧
j=1

is an AND

operation for multiple TN j , which amount is kpre−hash.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:13

A Threshold j parameter is used to limit the space of bit vectors for the states,
which has more suffixes than Threshold j . If

∣∣βi, j
∣∣ is smaller than Threshold j ,

βi, j ,x will be hashed into Ve, j by the hashing function Hj . Otherwise, no bit
vector will be built for this state.

The diagram of Figure 6(b) illustrates this searching process wherein
the matching unit loads the current bit vectors Vc, then performs TN j ←
Vc, j [Hj

(
w[1.. j]

)
] operation to test whether each w[1.. j] is true negative or

not.
To clearly explain the previous prehash algorithm, an example for extracting

the suffixes from the AC tree is shown in Figure 7(a). The AC tree and the suf-
fixes table are built for the patterns “TEST,” “THE,” and “HE.” The suffixes are
the possible transition paths and include the failure links, which are denoted
as dash lines. After the suffixes are extracted, the bit vector for each state can
be generated. Figure 7(b) plots the suffixes and bit vectors, which are generated
from Figure 7(a). With referring a related hashing article [Erdogan et al. 2006],
if the proper masking bits are selected, the mask-hashing function has the
fastest speed, the smallest circuit, and the similar performance to other hash-
ing functions. In fact, it can provide the satisfactory results of uniform hashing,
the required condition of Equation (1). Thus, in generating the bit vectors, we
use the adjustable mask-hashing function that allows selecting the masking
position for different sizes of bit vectors to achieve a more uniform distribution
in the preprocessing phase. For this simplified example, the masking position
is selected to be the rightmost 3 bits of the characters. When conversion from
binary to one-hot representation (each bit represents a binary number) is used
as the hashing function, the 00100001 and 00101000 bit vectors are generated
from {01000101, 01001000} and {01000101 01010011, 01001000 01000101}, re-
spectively. For instance, Figure 7(c) depicts that state 4 has suffixes “E” and “H”
of length one, and their ASCII codes are {01000101, 01001000} in the binary
format, and thus its bit vector of depth one is {00100001}.

Figure 7(d) shows an example for state 4 in the suffix matching. The prehash
unit reads a 2-byte substring and then hashes the length 1 substring “A” and
length 2 substring “AB” with H1 and H2 in parallel, respectively. When the
prehash unit indicates any no-hit for H1 and H2, which means substring “A”
and “AB” has no any possibility to match patterns, the current state will transit
to the root state and then root-index is performed to match multiple characters
in a single matching. Note that returning to the root state by prehash is different
from the conventional AC failure transition, since the former provides a faster
state transition, by using the hashing technique.

Although our prehash idea is motivated by BFSM, there are two main dif-
ferences between BFSM and our prehash.

1. Since BFSM requires multiple Bloom filters and builds the bit vector of
each Bloom filter from all patterns, it requires a large memory and multiple
memory accesses for the bit vectors. Therefore, BFSM makes implementing
the bit vectors impractical by using either a register or SRAM. However,
our approach builds the distinct bit vectors from the suffixes of each state
Si only. The number of suffixes is quite small, which makes implementing

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:14 • K. K. Tseng et al.

Fig. 7. Prehash example, (a) AC tree, (b) Suffixes and bit vectors for all states in the AC tree, (c)
Mask hashing function for prehash, (d) Prehash matching for state 4.

the bit vectors more feasible. Actually, the prehash matching requires a very
small bit vector, that is, about 8 to 32 bits.

2. Since more hashing functions will set more bits to 1 in a bit vector, BFSM
employing multiple hashing functions can reduce the probability of false pos-
itive only and thus cannot reduce the amount of subsequent exact match-
ing. Our approach intends to improve the probability of true negative by
ascertaining the unmatching suffixes. Hence, using one hashing function
for each bit vector is sufficient and can significantly reduce the hardware
cost and latency. The probability of true negative Ptn is adapted from
(1) as

Ptn =
(

1 − 1
M

)|β|
, (2)

where |β| is the number of suffixes, and M is the size of the bit vector. This
equation holds under the same assumption as Equation (1).

3.3 Root-Index Matching

Root-index can match multiple characters of the text at the same time. When
the prehash result is a no-hit (true negative), the matching transition will

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:15

Fig. 8. (a) Root-index architecture, (b) A root-index example for matching the texts “ABHE,” “TT,”
“TEE,” “TEST,” and “THE” with the patterns “TEST,” “THE,” and “HE.”

return to the root state to perform the root-index matching. Since most bytes
of the text will visit the root state, the root-index technique is worth using. In
fact, the root-index matching is a compressed technique for matching in the
automaton, which generates 2kroot next states for matching the substrings of
length kroot.

In Figure 8(a), root index comprises kroot root-index tables IDX[1..kroot] and
a root-next table NEXT, where kroot denotes the maximum length of the root-
index matching. Each entry of IDX stores a partial address for locating the
next state in NEXT, where the partial address is a sequential integer to rep-
resent the order of appearing characters for the corresponding substrings in
the suffixes of the root state. Note that, for advancing kroot characters in one
matching iteration, the substring begins from the current byte to kroot, meaning
the later IDX table requires including the entry of the former IDX tables. The
width of each IDX is equal to the number of characters appearing in the binary
format.

The NEXT table is used to store the next state addresses of the states within
length kroot, counting from the root state S0. NEXT is indexed by a concatenation
address of lookup value from the IDX tables. Thus, the number of NEXT entries

is equal to
kroot∏
j=1

(|IDX j | + 1), which is the product of the numbers of nonzero

entries adding one zero entry in each root-index table, where
∣∣IDX j

∣∣ denotes
the number of alphabets that appeared in the j th index table.

In the preprocessing of root-index, Build − Root − Index (S) is first invoked
to build IDX[1..kroot] as Figure 9(a). The length of input text and the number of
IDX tables are equal to kroot. This function builds the IDX table from IDX1 to
IDXkroot . It first performs IDX j [x] ← 0 to initialize the current IDX table and
performs IDX j [x] ← IDX j−1[x] to bring the IDX j−1 to the IDX j , and finally
performs IDX j [α j [x]] ← ρ to set the index value from the current character of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:16 • K. K. Tseng et al.

Fig. 9. Root-index algorithm, (a) Function of building the root-index tables, (b) Function of building
the root next table, (c) Assisted recursive function of building the root-next table, (d) Function of
performing the root-index matching.

the suffixes. α comprises the suffixes of S0, which is a set of possible transition
paths from root state S0 to the states within length kroot and can be defined as
α ← η(S0, kroot). The xth suffix of length j in α will be indexed into the entry by
IDX j [α j [x]] and numbered by an increasing value ρ. If the corresponding entry
in IDX j is appearing in suffix α j [x], ρ will be put into that entry and increased
by 1.

After root-index tables are built, a root-next table NEXT for the root state
is required to be built using the function Build − Root − Next (IDX[1..kroot]) as
shown in Figure 9(b). NEXT stores all next states within length kroot. The entry
of NEXT is accessed using the next address NA, which is a concatenation of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:17

all lookup values in IDX[1..kroot]. Therefore, a recursive Root − Next (NA, αc ◦
x, IDX j+1) is used to concatenate NA from the deeper root-index table IDX j+1,
where αc is temporary storage for current suffix, symbol ◦ is a concatenation
operation, and x is the character of suffix to index the entries of IDX. IDX j+1 is
indexed by supplying the deeper (j + 1)th byte of suffixes.

The recursive Root − Next (NA, αc, IDX j) can be written as Figure 9(c). After
NA is obtained, the entry of the root-next state NEXT[NA] will be set using the
function of the conventional AC transition δAC(S0, αc ◦ x), which can move to
the new next state from the root state by supplying a suffix.

In the matching phase of root-index, Match − Root − Index(z) inputs a sub-
string of the text z to locate the new state Sc, and it is defined as Figure 9(d).
The lookup operation inputs z[j] into IDX j (z[j]) to generate a NA, repeatedly,
which is defined as NA ← NA ◦ IDX j [z[j]]. When NA is obtained, Sc is then
lookup by NEXT[NA].

An example of root index is illustrated in Figure 8(b). When patterns are
“TEST,” “THE,” and “HE,” IDX1 to IDX4 will at least contain the characters
appearing in the corresponding position as {“H,”“T”}, {“E,”“H”}, {“E,”“S”}, and
{“T”}, respectively. However, suffixes of text might be in the prefixes of patterns,
thus the later tables must contain the entries of the former tables, leading
that IDX1 to IDX4 actually contain {“H,”“T”}, {“E,”“H,”“T”}, {“E,”H,”“S,”T”}, and
{“E”,“H”,“S”,“T”}, respectively. For numbering the entries of IDX tables, the
third and fourth IDX have four appearing characters. Thus, “H,”“E,”“S,” and “T”
are numbered as “001,” “010,” “011,” and “100” in the binary format, respectively.
The other nonnumbered entries will be filled with zero.

In the matching phase, 00 00 010 010, 10 11 000 000, 10 01 001 000,
10 01 011 100, and 10 10 001 000 are NAs to locate Sc as next states 8, 1,
0, 4, 6 for the texts “ABHE,” “TT,” “TEE,” “TEST,” and “THE,” respectively. For
instance, root index can lookup IDX1[T]◦IDX2[E]◦IDX3[S]◦IDX4[T] to obtain
10 01 011 100 to locate the text “TEST”. Note that the zero value of IDX j is
mapped into the entry of the symbol (∼), which is a termination symbol for
the length of z is shorter than kroot. For example, NA of the text “TEE” is not
IDX1[T] ◦ IDX2[E] ◦ IDX3[E], but IDX1[T] ◦ IDX2[E] ◦ IDX3[E] ◦ IDX4[∼].

3.4 System Architecture

Different from the sequential algorithm in Section 3.1, a preferred parallel
architecture for the FSAM coprocessor is suggested in Figure 10. Three inde-
pendent matching units—the prehash matching, the root-index matching, and
the bitmap AC matching—simultaneously perform Match − Root − Index (),
Match − Pre − Hash (), and Match − AC (), respectively, which are described in
the sequential algorithm. Hence, a control logic coordinates these units for par-
allel processing and each matching function has its individual memory interface
to access its preprocessing data. Since the design methodologies for System-on-
Chip (SOC) have become popular and well developed in recent times, the use
of such a component in modern IC technology is quite feasible.

In the FSAM coprocessor, the three units can read the text in different
lengths and perform their matching concurrently. This example in the FSAM

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:18 • K. K. Tseng et al.

Fig. 10. The parallel architecture of the FSAM coprocessor.

coprocessor processes a 1-byte substring for AC matching, a 2-byte substring
for prehash matching and a 4-byte substring for the root-index matching in a
single matching iteration. The root index and bitmap AC are used to locate the
next states, and the prehash matching is used to decide which next state is to
be used in the next matching iteration.

In addition to the original-state and next-state address tables, the root-index
matching requires the root-index tables and a root-next table, while prehash
needs a bit vector table for their pattern storage. For the flexibility of using
storage, these tables can be stored in either internal or external memories. The
detailed discussion is described in Section 5.1.

For the performance, the memory access requires two clock cycles as in the
case of bitmap AC. For per byte processing, prehash is three cycles, composed
of two cycles for loading a 4-byte bit vector and one cycle for the hashing op-
erations. Root-index requires four cycles, composed of two cycles for processing
index codes and two cycles for processing the root-next table. Since the sizes of
the index tables are fixed and small, it is feasible to implement them as multi-
ple banks memory. Thus, the time required for accessing the index tables can

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:19

be less than two cycles and root-index takes two cycles for loading the 32-bit
root-next state address because the state table is stored in SRAM.

4. EVALUATIONS

This section intends to evaluate the performance and space requirement of our
FSAM. In the first subsection, we formally derive the time and space require-
ment of FSAM, as well as the probability of using prehash and root index. Then,
we use the real URL and virus patterns to show their results in using FSAM
in Section 4.2. To demonstrate more realistic results, the evaluation of real
network traffic is investigated in the last Section.

4.1 Formal Analysis

If prehash, root-index, and bitmap AC are run using the sequential algorithm
in Section 3.1, the average time for our FSAM is

Tavg time = Thash + Proot × Troot + (1 − Proot) × TAC

(kroot × Proot) + (1 − Proot)
, (3)

where Tavg time is the average time to process a byte, Thash is the prehash match-
ing time, Troot is the root index matching time, TAC is the AC matching time,
and Proot is the probability of using the root-index matching,

However, in Figure 10, prehash, root index, and AC can be performed in
parallel and the computation of the next states in these three units are inde-
pendent. Thus, the average time can be reduced to

Tavg time = Proot × Troot + (1 − Proot) × TAC

(kroot × Proot) + (1 − Proot)
. (4)

Since the AC matching is the critical path, the worst-case time of FSAM is
equal to TAC as

Tworst time = TAC. (5)

The probability Proot is an average probability that the root-index matching
is performed and calculated by

Proot = 1 −
kpre−hash∏

j=1

(1 − Ptn j × TH j), (6)

where Ptn j is the probability of true negative for the suffixes of length j , and
TH j is the ratio of states in which the number of suffixes of length j is less
than Threshold j . As stated before, a large number of suffixes will require a big
bit vector. Thus, a Threshold j parameter is applied to limit the rapid growth of
the bit vector size. TH j can be obtained as

TH j = N j

|S| , (7)

where N j is the number of states in which the number of suffixes is less than
Threshold j , and |S| is the number of states in the AC tree. Note that Equation

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:20 • K. K. Tseng et al.

Fig. 11. (a) Proot versus Ptn from 0.1 to 0.9 and kpre−hash from 1 to 4, (b) The size of bit vectors
M versus Ptn from 0.1 to 0.9 and |β| from 2 to 256.

(6) holds under the assumption that each nonroot state has the equal probability
of being visited, because of the calculation of TH j .

From observing Equation (6), Proot is influenced by two parameters, Ptn and
kpre−hash. In Figure 11(a), we present the effect of these two parameters by using
Equation (6). TH j is assumed to be 1. It obviously shows that under moderate
Ptn, even small kpre−hash still achieves acceptable Proot (Proot > 0.5). Therefore,
setting the maximum suffix length kpre−hash to 2 is sufficient. For example, when
Ptn is set to 0.6 and kpre−hash is set to 2, Proot is equal to 0.84.

For the space evaluation, we first need to determine the size of bit vectors
M . Since the probability of true negative is defined in Equation (2), M can be
determined by given |β| and Ptn as

M = 1

1 − p
1
|β|
tn

. (8)

Figure 11(b) shows that M increases significantly as |β| and Ptn grow, and
thus, M is feasible under small |β| and moderate Ptn.

The space requirement can be determined by summing the bitmap AC space
SizeAC, the prehash bit vector space Sizepre−hash, and the root-index space
Sizeroot, that is,

Sizetotal = SizeAC + Sizeroot + Sizepre−hash. (9)

The original space requirement of bitmap AC, SizeAC is mainly dominated
by the state table, which is equal to the number of states |S| multiplied by the
state size Sizestate,

SizeAC = |S| × Sizestate. (10)

Each state size Sizestate includes the 1-byte state information, the failure and
next state address Sizestate address, as well as the size of bitmap Sizebitmap for
locating the next state. Hence, Sizestate can be determined by

Sizestate = 1 + Sizestate address × 2 + Sizebitmap. (11)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:21

The prehash size Sizepre−hash is determined from
kpre−hash∑

j=1
M j , which is the

size of all bit vectors for one state, where M j is a bit vector size for length j and
kpre−hash is the maximum length of prehash. |S| × TH j is the number of states
where the number of suffixes is smaller than Threshold j . Thus, Sizepre−hash is
obtained from

Sizepre−hash =
kpre−hash∑

j=1

M j × |S| × TH j . (12)

Sizerootincludes all root-index tables and the root-next table as illustrated
in Figure 8. The size of all the root-index table is 256 multiplied by kroot, and
the root-next table is the number of the next-state addresses multiplied by the
state address size Sizestate address. The number of root-next state addresses is
the cross product of the numbers of appearing alphabets in the index tables
IDX j and one zero entry. Then Sizeroot is formulated as

Sizeroot = 256 × kroot +
kroot∏
j=1

(
∣∣IDX j

∣∣ + 1) × Sizestate address. (13)

4.2 Evaluation of Real Patterns

Section 4.1 provides the formal analysis of time and space requirements. How-
ever, some parameters, such as TH j and kroot, depend on the profile of patterns.
Thus, in this section, we choose the URL blacklists and virus signatures from
http://www.squidguard.org/blacklist/ and http://www.clamav.net, respectively.
Since the URL blacklists and virus signatures contain many patterns as well
as long patterns, such patterns are sufficient to evaluate the performance of
our FSAM.

In this evaluation, we first obtain two statistics, namely, the suffix counting
and the index counting for real patterns. The suffix counting counts the number
of suffixes with a specific length for each state and is used to compute TH j . The
index counting counts appearing alphabets for each length in the root state and
is used to determine kroot.

The analyzed URL blacklists contain 21,302 patterns and generate 194,096
states, while the virus signatures contain 10,000 patterns and generate 402,173
states. Figure 12 shows the ratio of states for the range of the suffix counting,
aiming the suffixes of length 1 and 2 to give a proper Threshold j in Equation (7).
Figures 12(a) and 12(b) show that, when Threshold j is set to 8 for length 1, the
URL and virus patterns have 68% and 49% states using the prehash matching,
respectively. For length 2, Figures 12(c) and 12(d) show 41% and 32% states for
the URL and virus patterns, respectively. These results show that most states
of the URL and virus patterns only have a few numbers of suffixes, so that the
prehash approach is useful in reducing the matching time.

For the index counting of the root state, the URL patterns generate 36, 38, 38,
and 38 states while the virus patterns generate 256, 256, 256, and 256 states.
Since the virus patterns are nonalphabet binary values, they have a higher

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:22 • K. K. Tseng et al.

Fig. 12. The ratio of states (TH j) for the range of the number of suffixes, (a) Length 1 counting
for URL patterns, (b) Length 1 counting for virus patterns, (c) Length 2 counting for URL patterns,
(d) Length 2 counting for virus patterns.

index counting than the URL patterns in our analysis. These results show that
the URL patterns can use the longer suffixes than virus patterns for the root
state in the root-index matching. To avoid the large space requirement, kroot is
set to 4 and 2 for the URL patterns and virus patterns, respectively.

Using the previous equations and the statistic results of real patterns, the
time and space can be computed for the URL and virus patterns. We obtain
38 cycles for TAC from Section 2.1, 3 cycles for Thash, and 4 cycles for Troot
from Section 3.4. We set Threshold j to 8 and have 16-bit vector size for each
length of suffixes. From Section 4.1, Ptn 1 and Ptn 2 are at least 0.6 according
to Figure 11(b) because all |β|<Threshold j . Also from the previously described
statistics of real patterns, TH1 = 0.68 and TH2 = 0.41 for the URL patterns.
Similarly, TH1 = 0.49 and TH2 = 0.32 for the virus patterns, respectively. With
the previously-mentioned parameters, when kpre−hash is 2 and kroot is 4, accord-
ing to Equation (6), the average probability of true negative is Proot = 0.56, and
the parallel average time is obtained by Equation (4) as Tavg time = 7.07 cycles
per byte.

For the case of the virus patterns, when kpre−hash and kroot are both 2, and the
other parameters are same as the previously mentioned setting, the probability
of root-index matching is computed as Proot = 0.43. Also we obtain Tavg time =
16.3 cycles per byte.

From these results, bitmap AC requires 38 cycles for one character matching.
Thus, our approach is 537% and 233% faster than bitmap AC for the URL and
virus patterns, respectively.

For the space requirements, we can obtain the following parameters from
indexing counting of the URL patterns as follows: |S| is 194,096, RN1 is 36,
RN2 is 38, RN3 is 38, and RN4 is 38 .

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:23

Then, by using Equations (10), (11), (12), and (13), we can obtain SizeState =
37 bytes, SizeAC = 6.85MB, Sizepre−hash = 3.23MB, and Sizeroot = 7.5MB.
By summing the these results, the space requirement of the URL patterns
is Sizetotal = 17.58MB.

For the virus patterns, most of the computation parameters are the same as
those of the URL patterns. In order to avoid the large size in building root-index
data, only the length 1 and length 2 matching are used for root-index matching.
According to the virus patterns analysis, |S| is 402,173, kroot is 2, RN1 is 256,
and RN2 is 256. Then, we can obtain Sizestate = 37 bytes, SizeAC = 14.19MB,
Sizepre−hash = 4.97MB, and Sizeroot = 0.25MB. Finally, the total space for the
virus patterns is computed to be Sizetotal = 19.41MB.

From the analysis of real patterns, although Sizetotal of the URL and virus
patterns are larger than the original size SizeAC by 10.73MB and 5.22MB,
respectively, the space requirements of the URL and virus patterns are accept-
able for modern content-filtering systems because the high capacity memories
are now becoming steadily cheaper.

4.3 Evaluation of Real Network Traffic

As mentioned previously, Equation (6) holds under the assumption that each
nonroot state has the equal probability of being visited. However, this assump-
tion may not be true under the real input text. Some strings in the text may
frequently occur, causing some states are usually visited. Thus, we use the real
network traffic to directly measure the value of Proot, rather than calculating
from Equation (6). The Google website and the ethereal captured data consist-
ing of over 100MB and 120MB, respectively, are selected as the texts used to
evaluate the previously mentiones URL and virus patterns, respectively. Since
these large data already contain diverse types of network traffic, using them
should have a representative for the performance evaluation. Note in this exper-
iment, we use the adjustable mask-hashing function to provide a significantly
uniform distribution of hitting in the bit vectors.

Our experiment shows that when the Google website as the input text for
the URL patterns, Proot is 0.59, which is slight larger than 0.56, the value in
Section 4.2. When the ethereal captured data as the input text for the virus
patterns, Proot is 0.49, which is also larger than 0.43, the value in Section 4.2.
The differences between them are caused by two points: (1) Since Threshold is
an upper bound for the number of suffixes, many states having less |β| will own
the higher probability of true negative Ptn. Thus, the value of 0.56 for the URL
patterns and 0.43 for the virus patterns are conservative. (2) The probability
of visiting the states with high Ptn is larger. However, the effect of the second
point completely depends on the profile of the input text.

5. HARDWARE IMPLEMENTATION AND PERFORMANCE COMPARISON

In this section, Section 5.1 gives the detailed description of hardware imple-
mentation, including the block diagram, finite state machine, components, and
interface of the FSAM hardware. Section 5.2 gives an exhausted comparison
with previous hardware implementations.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:24 • K. K. Tseng et al.

Fig. 13. FPGA Implementation of the double-engine FSAM, (a) block diagram of the double-engine
architecture, (b) finite state machine for the FSAM controller, (c) finite state machine for FSAM.

5.1 Hardware Implementation

Figure 13 illustrates the FPGA implementation of the double-engine FSAM,
and includes (a) a block diagram of the hardware architecture, (b) a finite
state machine for the FSAM controller, and (c) a finite state machine for the
FSAM.

In the double-engine FSAM, two FSAMs perform their matching for different
texts at the same time, and thus, they perform independently without affecting
the other. That is, FSAM1 and FSAM2 have their own texts, Text1 and Text2,
respectively. Also the ping-pong buffers are used for each FSAM. For instance,
the “Select1” signal is used to choose either the Text1A or Text1B buffers as
Text1. At the ping-pong buffers, one buffer is used during the matching and the
other buffer is prepared concurrently by the processor or DMA.

As shown in Figure 13(b), the controller feeds the text to the correspond-
ing FSAM and activate it via the Start FSAM signal at the FSAM START
state. If the FSAM rdy signal is one, representing that the FSAM is idle, the
controller will set the Start FSAM to one to proceed a new matching process
and disable the FSAM rdy. Once the matching process finishes, the FSAM sets
the FSAM rdy to one and sends this signal to the FSAM controller. In this
case, the FSAM control transits from the state FSAM START to FSAM END,
the end of the matching operation. The Select signal switches between 0
and 1 in the FSAM END state to obtain the alternative text in ping-pong
buffers.

This default unit of text handled in the double-engine FSAM is a message.
However, when the granularity is a packet, rather than a message, our FSAM
can still operate well with little modification. The method is keeping the last

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:25

Fig. 14. (a) Components of FSAM Implementation, (b) suggested memory interfaces for the double-
engine FSAM.

AC state of the previous packet for the next packet matching, and thus, the
FSAM can easily do matching across the multiple packets.

The statistics of the FSAM components in Figure 14(a) reveals the detailed
hardware usages. Its circuit size is measured in terms of logic element (LE)
counts. The result demonstrates that the root index and prehash modules
consume less circuit size, memory size, and bandwidth, as compared to the
AC module, representing that AC dominates the hardware cost in FSAM. In
the case of the single-engine implementation, its total circuit size is 329 LE
only.

For the scalability of the storage, Figure 14(b) shows the suggested memory
interfaces for the double-engine FSAM. The suffix “1&2” of the signal sym-
bols denotes the first and second interfaces of each memory bank. Since four
root-index tables are very small, storing them into the internal memory is
recommended. The text and output memories are implemented as the inter-
nal or external memories according to their scales. Finally, since the root-index
next table, prehash vector, and bitmap AC related tables could be large for a
large amount of patterns, they should be implemented as the external memory
for scalability.

For the suggested external memory interface, if the high-speed and high-
capacity memories are used, about two cycles with up to 500MHz clock rate
are obtainable for the QDR-III SRAMs (www.qdrsram.com). Moreover, since
the ASIC hardware can often run at a much higher speed than the FPGA
devices, the ASIC implementation, with the external memories for a large set of
patterns, is quite feasible to maintain the competitive throughput as our FPGA
implementation.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:26 • K. K. Tseng et al.

5.2 Performance Comparison

Since many string-matching hardware [Aldwairi et al 2005; Mosola et al. 2003;
Baker et al. 2004; Cho et al. 2005; Dharmapurikar et al. 2004] store their
patterns in on-chip hardwired circuits and internal memories, we also imple-
mented our FSAM using FPGA internal memories to reach a fair evaluation.
Besides, because several previous matching hardware [Aldwairi et al. 2005;
Tan et al. 2005; Moscola et al. 2003; Baker et al. 2004; Dharmapurikar et al.
2004, etc.,] employed duplicated hardware for parallel processing, comparing
our double-engine architecture with them is still fair in the performance com-
parison. In particular, our optimally utilized dual port block RAM of Xilinx
FPGA not only virtually doubles the performance, but also increases no extra
block RAM.

We synthesized FSAM on various Xilinx FPGA devices and compared it
with the major types of hardware described in related works, as shown in
Table III. The common goals of the hardware are pursuing higher through-
put, larger pattern sizes, and smaller circuit size, which are also our concerned
factors in this comparison. The pattern size is equal to Number of patterns ×
Average length of patterns and used for evaluating scalability. The throughput
is used for measuring performance.

The results demonstrate that FSAM has throughput of 11.1Gbps for the dou-
ble engines and 5.6Gpbs for the single engine in a Xilinx Virtex2P device. For
the storage, FSAM implementation uses an internal memory, Xilinx block RAM,
to store the pattern set. Among all matching hardware, our FPGA implementa-
tion can handle the largest pattern size of 32,634 bytes, which is the truncated
URL patterns and composed of 2,940 patterns with the average length of 11.1
bytes. Thus, our FSAM is superior to all previous string-matching hardware in
term of both space requirement and performance.

Next, the pattern placement column shows the major difference between our
FSAM and the other matching hardware. The architecture of previous hard-
ware often employed hardwired circuits and internal memories for storing their
patterns, thus their amount of patterns was limited by FPGA resources.

6. CONCLUSION AND FUTURE WORKS

In this article, we present a fast and scalable matching automaton (FSAM) with
the novel prehash and root-index techniques. The prehash technique is used
to quickly verify the text in order to avoid AC matching. The prehash tech-
nique has two distinguished enhancements from the previous BFSM. First,
Bloom filter uses all patterns to build a big vector, but our approach builds the
bit vector from partial patterns (suffixes of the current state). Second, BFSM
uses multiple hashing functions, but our approach uses only one hashing func-
tion. Therefore, our prehash significantly reduces the hardware complexity and
makes the hashing technique more feasible in string-matching. In addition to
prehash, our root-index technique is a space-efficient matching technique for
matching multiple bytes in one single matching. Since the root state is fre-
quently visited in the string-matching, it is an effective approach to accelerate
the automaton.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:27

Table III. Comparisons of String-Matching Hardware

Matching Circuit Pattern Throughput Pattern
Type Hardware Device Size (LE) Size (Byte) (Gbps)1 Placement
AC DFA FSAM2 Virtex2P 656 32,634 11.1 Internal

Memory
Virtex2 1000 322 6.5
Virtex2 6000 322 8.9
Virtex2 8000 322 7.3
Virtex4 xc4vlx80 314 6.8
Spartan3

xc3s400
322 5.7

VirtexE 2000 2,928 2.1
Virtex 8003 5,110 1.7

Reconfigurable
Multi-AC
[Aldwairi et al.
2005]

Altera
EP20k400E

45,000 3,000 5.0 Internal
Memory

Bit-split AC [Tan
et al. 2005]

Xilinx FPGA N/A4 2,048 10.0 Internal
Memory

RE DFA DFA+counter
[Lockwood et al.
2001]

VirtextE 1000 98 11 3.8 Hardwired
Circuit

Parallel Regular DFA
[Moscola et al.
2003]

VirtexE 2000E 8,134 420 1.2 Internal
Memory

KMP DFA KMP Comparators
[Baker et al. 2004]

Xilinx Virtex2P 130 32 2.4 Internal
Memory

Comparator
NFA

Comparator NFA
[Sidhu et al. 2001]

Xilinx Virtex 100 1,920 29 0.5 Hardwired
Circuit

Meta Comparator
NFA [Franklin
et al. 2002]

Xilinx VirtexE
2000

20,618 8,003 0.4 Hardwired
Circuit

Decoder NFA Decoder NFA [Clark
et al. 2002]

Virtex 1000 19,660 17,550 0.8 Hardwired
Circuit

Multi-character
decoder NFA
[Clark et al. 2003]

Xilinx Virtex2 29,281 17,537 7.3 Hardwired
Circuit

Approximate Decoder
NFA [Clark et al.
2004]

Virtex2 6000 6,478 17,537 2.0 Hardwired
Circuit

Parallel
Comparator

Offset Index
Comparators [Cho
et al. 2005]

Spartan3 400 1,163 20,800 1.9 Internal
Memory

Discrete
Comparators
[Sourdis et al.
2003]

Virtex2 6000 76,032 2,457 8.0 Hardwired
Circuit

Pre-decoded CAM
Comparators
[Sourdis et al.
2004]

Virtex2 6000 64,268 18,032 9.7 Hardwired
Circuit

CAM Comparators
[Gokhale 2002]

VirtexE 1000 9,722 640 2.2 CAM5

(continued on next page)

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:28 • K. K. Tseng et al.

Table III. (continued)

Hashing Parallel Bloom Filter
[Dharmapurikar
et al. 2004]

VirtexE 2000 6,048 9,800 0.6 Internal
Memory

PHmem [Sourdis
et al. 2005]

Virtex2 1000 8,115 20,911 2.9 Hardwired
and
Internal
Memory

Hash-Mem
[Papadopoulos
et al. 2005]

Virtex2 1000 2,570 18,636 2.0 Internal
Memory

1. Throughput is an average performance. The hardware except FSAM and BFSM has the worst-case throughput
equal to the average-case throughput.

2. The single-engine FSAM requires 329, 159, 154, 1,426, and 2,430 LE, while it performs 5.6, 3.2, 3.4, 1.0, and
0.8 Gbps for the Virtex2P, Virtex2 1000, Virtex4 xc4vlx80, VirtexE 2000, and Virtex 800 devices, respectively.

3. Since FSAM cannot be fit into Virtex 100, we performed the Virtex 800 device instead. Since the Virtex 800
and VirtexE series do not support block RAM, the bitmap table is placed in the external memories with the
dedicated bus, which should be acceptable in the evaluation.

4. Since we lack the matching hardware to provide sufficient information, N/A represents that information is
not available.

5. CAM is the content address memory, which can match content against data in parallel.

Substantial evaluation exhibited that the proposed FSAM can achieve the
573% and 233% increases in speedup compared to bitmap AC for 21,302 URL
and 10,000 virus patterns, respectively. Moreover, our FSAM has the same
worst-case time as bitmap AC when performing the prehash, root-index, and
bitmap AC matching in parallel. For the space requirements, our FSAM in-
creases by only 4 bytes of the bit vector for each state and the root-index tables
for the root state. Therefore, the extra space requirements of 10.73MB and
5.22MB for 21,302 URL and 10,000 virus patterns, respectively, are quite ac-
ceptable with the currently available technologies.

In the implementation with a Xilinx Virtex2P device, the result demonstrates
that our FSAM surpasses all other existing hardware in terms of the pattern
size and throughput. Our FSAM can support the largest pattern size of 32,634
bytes and run at the high throughput of 11.1Gpbs. Furthermore, since our
architecture works for both external and internal memories, and the external
ASIC memories often run at a much higher clock rate than FPGA memories,
our architecture is scalable to a large amount of patterns. If the high-speed
external memories are employed, FSAM can support up to 21,302 patterns
while maintaining similar high performance.

There are two possible future directions for this work. First, for broaden-
ing the applications using FSAM, our prehash and root-index techniques can
be applied to the other automaton matching algorithms such as the regular
expression automaton and the suffix automaton. Second, our FSAM for the
content-filtering service can be integrated into a network gateway for field trial
evaluation.

ACKNOWLEDGMENTS

Many thanks to anonymous reviewers who gave their time and helpful advices.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

FSAM Accelerator for Embedded Content Processors • 19:29

REFERENCES

AHO, A. V. AND CORASICK, M. J. 1975. Efficient string matching: an aid to bibliographic search.
Comm. ACM, 333–340.

ALDWAIRI, M., CONTE, T. AND FRANZON, P. 2005. Configurable string matching hardware for speed-
ing up intrusion detection. ACM SIGARCH Comput. Archit. News.

ANTONATOS S., POLYCHRONAKIS M., AKRITIDIS P., ANAGNOSTAKIS K. D., AND MARKATOS E. P. 2005. Pi-
ranha: fast and memory-efficient pattern matching for intrusion detection. In Proceedings of the
20th IFIP International Information Security Conference. Springer, Berlin, Germany.

ANTONATOS, S., ANAGNOSTAKIS K., AND MARKATOS, E. 2004. Generating realistic workloads for net-
work intrusion detection systems. In Proceeding of the ACM Workshop on Software and Perfor-
mance. ACM, New York.

ATTIG, M., DHARMAPURIKAR, S. AND LOCKWOOD, J. 2004. Implementation results of bloom filters for
string matching. In Proceedings of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE, Los Alamitos, CA.

BAKER, Z. K. AND PRASANNA, V. K. 2004. Time and area efficient pattern matching on FPGAs. In
Proceedings of the ACM/SIGDA 12th International Symposium on Field Programmable Gate
Arrays. ACM, New York.

BLÜTHGEN, H. M., NOLL, T. AND AACHEN, R. 2000. A Programmable processor for approximate
string matching with high throughput rate. In Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures, and Processors. IEEE, Los Alamitos, CA.

BOSE, P., GUO, H., KRANAKIS, E., MAHESHWARI, A., MORIN, P., MORRISON, J., SMID, M., AND TANG, Y. 2005.
On the false-positive rate of bloom filters. http://cg.scs.carleton.ca/∼morin/publications/ds/bloom-
submitted.pdf.

BOYER, R. S., AND MOORE, J. S. 1977. A fast string searching algorithm. Comm. ACM 20, 10,
762–772.

BU, L. AND CHANDY, J. A. 2001. A keyword match processor architecture using content address-
able memory. In Proceedings of the 14th ACM Great Lakes symposium on VLSI. ACM, New
York.

CHO, Y. H. AND MANGIONE-SMITH, W. H. 2005. A pattern matching coprocessor for network security.
In Proceedings of the 42nd Annual Conference on Design Automation. ACM, New York.

CLAM ANTIVIRUS. 2006. Clam Anti-virus. http://www.clamav.net/.
CLARK, C. R. AND SCHIMMEL, D. E. 2003. Efficient reconfigurable logic circuits for matching complex

network intrusion detection patterns. Lecture Notes in Computer Science, vol. 2778.
CLARK, C. R. AND SCHIMMEL, D. E. 2004. A pattern-matching co-processor for network intrusion

detection systems. In Proceedings of the IEEE International Conference on Field-Programmable
Technology (FPT ‘03). IEEE, Los Alamitos, CA.

CLARK, C. R. AND SCHIMMEL, D. E. 2004. Scalable pattern matching for high speed networks. In
Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’04). IEEE, Los Alamitos, CA.

COIT, C., STANIFORD, S., AND MCALERNEY, J. 2002. Towards faster string matching for intrusion
detection. In Proceedings of the DARPA Information Survivability Conference and Exhibition.
ACM, New York, 367–373.

DANS GUARDIAN. 2006. DansGuardian content filter. http://dansguardian.org.
DESAI, N. 2002. Increasing performance in high speed NIDS. http://www.snort.org/

docs/Increasing Performance in High Speed NIDS.pdf.
DHARMAPURIKAR, S. AND KRISHNAMURTHY, P., SPROULL, T. S., AND LOCKWOOD, J. W. 2004. Deep packet

inspection using parallel bloom filters. IEEE Micro 24, 1.
ERDOGAN, O. AND CAO, P. 2006. Hash-AV: fast virus signature scanning by cache-resident filters.

http://crypto.stanford.edu/∼cao/hash-av.html.
FRANKLIN, R., CARVER, D. AND HUTCHINGS, B. L. 2002. Assisting network intrusion detection with

reconfigurable hardware. In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines. IEEE, Los Alamitos, CA.

GOKHALE, M., DUBOIS, D., DUBOIS, A., BOORMAN, M., POOLE, S., AND HOGSETT, V. 2002. Granidt:
towards gigabit rate network intrusion detection technology. Lecture Notes in Computer Science,
vol. 2438.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

19:30 • K. K. Tseng et al.

LOCKWOOD, J. 2001. An open platform for development of network processing modules in reconfig-
urable hardware. In Proceedings of the International Engineering Consortium Design Conference.

MIKE, F. AND GEORGE, V. 2001. Fast Content-Based. Packet Handling for Intrusion Detection.
Tech. rep. CS2001-0670, University of California, San Diego.

MITZENMACHER, M. 2005. Compressed bloom filters. IEEE/ACM Trans. Netw.
MOSCOLA, J., LOCKWOOD, J., LOUI, R. P., AND PACHOS, M. 2003. Implementation of a content-scanning

module for an internet firewall. In Proceedings of the 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines. IEEE, Los Alamitos, CA.

NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33,
31–88.

NAVARRO, G. AND RANOT, M. 2002. Flexible Pattern Matching in Strings. Cambridge University
Press, Cambridge, MA.

PAPADOPOULOS, G. AND PNEVMATIKATOS, D. 2005. Hashing + memory = low cost, exact pattern match-
ing. In Proceedings of the International Conference on Field Programmable Logic and Applica-
tions. Springer, Berlin, Germany.

PARK, J. H. AND GEORGE, K. M. Parallel string matching algorithms based on dataflow. In Pro-
ceedings of the 32nd Annual Hawaii International Conference on System Sciences. IEEE, Los
Alamitos, CA.

RAFFINOT, M. 1997. On the multi backward dawg matching algorithm (MultiBDM). In Proceed-
ings of the 4th South American Workshop on String Processing.

SASTRY, R., RANGANATHAN, N. AND REMEDIOS, K. 1995. CASM: a VLSI chip for approximate string
matching. IEEE Trans. Pattern Anal. Mach. Intell. 17.

SIDHU, R. AND PRASANNA, V. 2001. Fast regular expression matching using FPGAs. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’01). IEEE,
Los Alamitos, CA.

SNORT. 2006. Snort: The Open Source Network Intrusion Detection System. http://www.snort.org.
SOURDIS, I. AND PNEVMATIKATOS, D. 2003. Fast, large-scale string match for a 10Gbps FPGA-based

network intrusion detection system. Lecture Notes in Computer Science, vol. 2778.
SOURDIS, I. AND PNEVMATIKATOS, D. 2004. Pre-decoded CAMs for efficient and high-speed NIDS

pattern matching. In Proceedings of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’04). IEEE, Los Alamitos, CA.

SOURDIS, I., PNEVMATIKATOS, D., WONG, S. AND VASSILIADIS, S. 2005. A reconfigurable perfect-hashing
scheme for packet inspection. In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications. Springer, Berlin, Germany.

SPAMASSASSIN. 2006. The Apache SpamAssassin Project. http://spamassassin.apache.org/
SQUIDGUARD. 2006. SquidGuard filter. http://www.squidguard.org/.
TAN, L. AND SHERWOOD, T. 2005. A high throughput string matching architecture for intrusion

detection and prevention. In Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture (ISCA’05). ACM, New York.

TRIPP, G. 2005. A finite-state-machine based string matching system for intrusion detection on
high-speed network. In Proceedings of the EICAR Conference. IEEE, Los Alamitos, CA, 26–40.

TUCK, N., SHERWOOD, T., CALDER, B. AND VARGHESE, G. 2004. Deterministic memory-efficient string
matching algorithms for intrusion detection. In Proceedings of the IEEE INFOCOM Conference.
IEEE, Los Alamitos, CA.

WU, S. AND MANBER, U. 1992. Fast text searching allowing errors. Comm. ACM 35, 83–91.

Received May 2006; revised March 2007, June 2007; accepted August 2007

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 19, Publication date: April 2009.

