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摘 要 

 

在本篇論文中,系使用內嵌介面法把一個二維橢圓介面問題推廣

到三維。此方法為調整過的有限差分法，其修正項透過介面上的不連

續條件而得。藉由由法向量方向所展開的泰勒展開式，在介面附近的

網格點，離散差分方程會被調整。因為在介面上不連續條件型態的關

係， 在解橢圓介面問題的過程中，必須要解一個線性系統。首先用

重新初始化水平集方法來找網格點在界面上的正交投影，接下來我們

運用內嵌介面法，廣義最小殘量方法，和最小平方法來解橢圓介面問

題。  
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Abstract

In this thesis, we extend the immersed interface method for a 2D
elliptic interface problem to 3D. The numerical method is a finite
difference method modified with some correction terms from the jump
conditions. By using Taylor’s expansions along the normal direction,
the discrete difference equation is modified at the gird point close to
interface. Because of the types of the jump condition, we have to
solve a linear system in the process of solving the elliptic interface
problem. We first use the reinitialization of level set method to find
the orthogonal projection of the grid point and perform it to check
its accuracy. Then, we solve the elliptic interface problem by the
immersed interface method, GMRES and least squares method, and
make some numerical tests to check the rate of convergence.
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1 Introduction

Elliptic interface problems have many applications in science and en-
gineering, such as multi-material problems, two-phase problems, fluid
problems. We focus on elliptic interface problems with variable coeffi-
cients. Along the interface, there exist the jump conditions of solution
and flux across the interface. For example, this can applied in electro-
hydrodynamics [2, 15].

Peskin used the immersed boundary method [1] to simply describe
the fluid motion interacting with complicated interface at the Carte-
sian grid. Many methods can solve elliptic interface problems, such
as finite element method [5, 10], boundary integral method [13], ghost
fluid method [3, 12], sharp interface method [7].

In this thesis, we use the immersed interface method [8, 15] to solve
the problem from 2D to 3D. We have to find the orthogonal projec-
tion to the interface. In 2D, we can use polynomials to interpolate
the interface by picking some point and use these approximation to
find the orthogonal projection, such as cubic spline representation [4].
However, it is difficult to use this method in 3D. Therefore, we use
reinitialization of level set method [9, 11, 14].

In Section 2, we introduce the elliptic interface equation to study
how to use the immersed interface method to solve this equation. In
Section 3, we can see how to find the orthogonal projection to the
interface by reinitialization of level set method. In Section 4, since
we do not have [un], we have to get the solution through Poisson
solver and solve a linear system. In Section 5, a method to modify
the equation s.t. [u] = 0 is introduced. Finally, some conclusions are
displayed in Section 6.
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2 Elliptic interface equation and the

immersed interface method

2.1 Elliptic interface equation

We consider a rectangular domain Ω = [xℓ, xr]× [yℓ, yr]× [zℓ, zr] with
a closed interface Γ. Since the interface Γ divides the domain Ω into
two regions, we denote the inside region by Ω− and the outside region
by Ω+, and with piecewise constant coefficient, σ− on Ω− and σ+ on
Ω+. Along Γ, there exist the jump conditions of solution and flux
across Γ.
We solve the following elliptic interface equation















▽ · (σ ▽ u) = f in Ω− Γ,
[u](X) = ω(X) on Γ,
[σun](X) = ν(X) on Γ,
u = ub on ∂Ω

(1)

where un = ∂u
∂n

.
Since σ is a piecewise constant, we can rewrite the elliptic interface

equation as

∆u = f in Ω− Γ

where f = f/σ, i.e.















∆u = f in Ω− Γ,
[u](X) = ω(X) on Γ,
[σun](X) = ν(X) on Γ,
u = ub on ∂Ω.

(2)

Figure 1: The interface Γ divides the domain into Ω+ and Ω−
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2.2 The interpolation of the jump condition

To solve this problem, we use the immersed interface method devel-
oped in [8, 15]. We use a uniform Cartesian grid in Ω with the mesh
width h = ∆x = ∆y = ∆z, and use xi,j,k = (xl + i∆x, yl + j∆y, zl +
k∆z) to denote the mesh grid point and denote discretized solution
at the mesh grid point by ui,j,k. Since we have the jump condition
on the interface Γ, we determine whether the grid point is a regular
point or an irregular point. If the seven-point Laplacian of a grid
point uses some points in Ω− and some points in Ω+ simultaneously,
the grid point is called the irregular point. Otherwise, when the grid
point uses either points in Ω− or points in Ω+, it is the regular point.
At the irregular point, because of the jump conditions, we have to
change the approximations according to the jump condition on the
interface. For example, we let xi,j,k,xi+1,j,k,xi,j+1,k,xi,j,k+1 be in the
inside region, xi−1,j,k,xi,j−1,k,xi,j,k−1 in the outside region, then xi,j,k

is an irregular point, and the modified seven-point Laplacian ∆hu is
written as follows.

Figure 2: The seven-point Laplacian of the irregular point xi,j,k
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∆hu(xi,j,k) :=
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2

+
ui,j−1,k − 2ui,j,k + ui,j+1,k

h2

+
ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2

=
u+i−1,j,k − 2u−i,j,k + u−i+1,j,k

h2

+
u+i,j−1,k − 2u−i,j,k + u−i,j+1,k

h2

+
u+i,j,k−1 − 2u−i,j,k + u−i,j,k+1

h2

=
u−i−1,j,k − 2u−i,j,k + u−i+1,j,k

h2
+

u+i−1,j,k − u−i−1,j,k

h2

+
u−i,j−1,k − 2u−i,j,k + u−i,j+1,k

h2
+

u+i,j−1,k − u−i,j−1,k

h2

+
u−i,j,k−1 − 2u−i,j,k + u−i,j,k+1

h2
+

u+i,j,k−1 − u−i,j,k−1

h2

= uxx(xi,j,k) + uyy(xi,j,k) + uzz(xi,j,k) +O(h2)

+
uci−1,j,k

h2
+

uci,j−1,k

h2
+

uci,j,k−1

h2

= f i,j,k +
1

h2
(

uci−1,j,k + uci,j−1,k + uci,j,k−1

)

+O(h2)

(3)

where uci,j,k = u+i,j,k − u−i,j,k.
To compute the correction term uci,j,k, we define the foot X∗

i,j,k of
xi,j,k. It means that X∗

i,j,k is the orthogonal projection to the interface
of xi,j,k. By Taylor’s expression, we can write

uci,j,k = u+i,j,k − u−i,j,k

=

(

u+ + α
∂u+

∂n
+

α2

2

∂2u+

∂n2

)
∣

∣

∣

∣

X
∗
i,j,k

+O(h3)

−
(

u− + α
∂u−

∂n
+

α2

2

∂2u−

∂n2

)∣

∣

∣

∣

X
∗
i,j,k

+O(h3)

= [u]X∗
i,j,k

+ α

[

∂u

∂n

]

X∗
i,j,k

+
α2

2

[

∂2u

∂n2

]

X∗
i,j,k

+O(h3). (4)

4



Figure 3: The foot X∗ of the irregular point x

The |α| is the distance between xi,j,k and X∗
i,j,k. If xi,j,k is in the

inside region, then α is positive. Otherwise, if xi,j,k is in the outside
region, then α is negative. (i.e., α is the signed distance between xi,j,k

and X∗
i,j,k)

Instead of finding
[

∂2u
∂n2

]

X
∗
i,j,k

, we use this equation

∆u =
∂2u

∂n2
+ κ

∂u

∂n
+∆ssu (5)

where κ = 2H = ∇ · n, H is the mean curvature. ∆ssu is the surface
laplacian operator of u. Then, we can write

[

∂2u

∂n2

]

X∗
i,j,k

=
[

f
]

X
∗
i,j,k

− κX∗
i,j,k

[

∂u

∂n

]

X∗
i,j,k

−∆ss[u]X∗
i,j,k

. (6)

Hence, the correction term can be written as

uci,j,k = [u]X∗
i,j,k

+ α

[

∂u

∂n

]

X
∗
i,j,k

+
α2

2

[

∂2u

∂n2

]

X
∗
i,j,k

+O(h3)

= [u]X∗
i,j,k

+ α

[

∂u

∂n

]

X
∗
i,j,k

+
α2

2

(

[

f
]

X
∗
i,j,k

− κX∗
i,j,k

[

∂u

∂n

]

X
∗
i,j,k

−∆ss[u]X∗
i,j,k

)

+O(h3)

= [u]X∗
i,j,k

+ α[un]X∗
i,j,k

+
α2

2

(

[

f
]

X
∗
i,j,k

− κX∗
i,j,k

[un]X∗
i,j,k

−∆ss[u]X∗
i,j,k

)

+O(h3).

(7)
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3 Find the foot of an irregular point

using reinitialization of level set method

3.1 The reinitialization of level set method

For finding irregular points, we use reinitialization of level set method
developed in [9, 11, 14]. First, we have to find signed-distance function
φ : Ω → R where

φ(x) =







d(x,Γ) in Ω+,
0 on Γ,
−d(x,Γ) on Ω−.

(8)

Now, we consider a level set φ0 : Ω → R where

φ0(x)







> 0 in Ω+,
= 0 on Γ,
< 0 on Ω−.

(9)

using reinitialization equation

φt + S(φ0)(| ▽ φ| − 1) = 0 (10)

where S(φ0) is signed function. (i.e. S(φ0(x)) = 1 when x ∈ Ω+,
S(φ0(x)) = −1 when x ∈ Ω− and S(φ0(x)) = 0 when x ∈ Γ.)
It will converge to signed-distance function. Since the equation con-
verges steady state quickly very much at the points near the Γ, we
only use a few time steps to get the results. For getting better results,
we modify the S(φ0) as

S(φ0) =
φ0

√

φ2
0 + (∆x)2

. (11)

as a numerical approximation. In this thesis, we use TVD-RK and
WENO to compute Eq. (10). Now, we find the foot X∗ of x. Since
X∗ is the foot of x, we have the equation

X∗ = x− φ(x)∇φ(X∗). (12)

Since x is close to X∗, we use this following approximation for sim-
plicity

X∗ ≈ x− φ(x)∇φ(x). (13)

6



3.2 Numerical results

In these numerical experiments, we consider the rectangular domain
Ω = [−1, 1] × [−1, 1] × [−1, 1]. In Example 1 and 2, we perform the
numerical tests for finding the foots by the reinitialization of level set
method.
Example 1

In this example, we consider the interface Γ as a sphere. The surface
equation is

Σ : x2 + y2 + z2 = r20 (14)

where r0 =

√

2

13
.

The initial level set function is chosen to be

φ0(x, y, z) = x2 + y2 + z2 − r20. (15)

The following numerical results are the errors about finding the foot
by reinitialization of level set method. The length of the domain is 2
so we choose h = 2

N
with N = 32, 64, 128, 256. Since the interface is

a sphere, the exact distance and the exact foot of the irregular points
are easy to obtain. Besides, we can choose a level set function φ to
describe the error of the foot to the interface. Since Γ is a sphere, the
signed-distance function φ is known. φ is suited to be the level set
function describing the error of the foot. Therefore, we use φ to be

φ(x, y, z) =
√

x2 + y2 + z2 − r0. (16)

The following table shows the L∞ errors at the irregular points and
the steps of the iteration. The errors are the distance, the foot, and φ
for different N . In this case, we can see that the method has the first
order accuracy.

N distance Order foot Order φ Order step

32 9.5416e-03 - 2.0864e-02 - 2.0861e-02 - 10
64 4.1199e-03 1.2116 8.6686e-03 1.2671 8.6671e-03 1.2672 10

128 2.2089e-03 0.8993 4.5503e-03 0.9298 4.5502e-03 0.9296 10
256 1.1053e-03 0.9989 2.2309e-03 1.0283 2.2309e-03 1.0283 10

Table 1: The L∞ errors and the order of accuracy of distance, foot and
φ on irregular points for different N

7



Example 2

In this example, we consider the interface Γ as an ellipsoid. The
surface equation is

Σ :
x2

a2
+

y2

b2
+

z2

c2
= 1 (17)

where a =

√

2

13
, b =

√

11

43
, c =

√

3

31
.

A problem occurs when the initial level set function is chosen to be

φ0(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1. (18)

Using this φ0 to compute φ, a state happens in the iteration process.
For some iteration step n, there exists some xi,j,k, s.t.

φ0(xi,j,k)φ
n(xi,j,k) < 0, (19)

i.e. for some grid points in the outside region, they are translated to
the inside region in the iteration process, or the opposite situation.
To deal with this problem, we discuss |∇φ| − 1 near the interface. On
Γ,

|∇φ(x, y, z)| =
∣

∣

∣

(

2
x

a2
, 2

y

b2
, 2

z

c2

)∣

∣

∣

= 2

√

x2

a4
+

y2

b4
+

z2

c4

≥ 2

√

1

b2

(

x2

a2
+

y2

b2
+

z2

c2

)

=
2

b

√

x2

a2
+

y2

b2
+

z2

c2

= 2

√

43

11

≃ 4. (20)

Hence, the reason of this occasion may be that |∇φ| − 1 near the
interface is too large.
Here, we scale the initial level set function as

φ0(x, y, z) =

(

a2 + b2 + c2

3

)(

x2

a2
+

y2

b2
+

z2

c2
− 1

)

. (21)

We take h = 2
N

with N = 32, 64, 128, 256. Since the exact distance
and the exact foot of the irregular points can not be obtained directly,

8



we describe the error of the foot to the interface by level set function
Φ. The level set function is chosen to be

Φ(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1. (22)

Table 2 shows the L∞ errors of Φ at the irregular points and the steps
of the iteration for different N . In this table, we can see that the rate
of convergence is first order.

Size Φ Order step

32 1.1443e-01 - 10
64 5.4037e-02 1.0824 10
128 2.5760e-02 1.0688 10
256 1.2700e-02 1.0203 10

Table 2: The L∞ errors and the order of accuracy of Φ on
irregular points for different N

4 Solve the elliptic interface problem

4.1 Solve the elliptic interface equation

We follow these steps developed in [15] to solve the equation (2). Since
we only know [σun] instead of [un], we use these equations

[un] =
1

σ−

(

[σun]− [σ]u+
)

when σ− > σ+, (23)

[un] =
1

σ+

(

[σun]− [σ]u−
)

when σ+ > σ−. (24)

We will explain why we choose the equation in Eq. (44).
We let Ci,j,k be the correction term, then we can write Eq. (3) as

∆hui,j,k = f i,j,k + Ci,j,k. (25)

And we let Ci,j,k be the correction term without [un] term, i.e., Ci,j,k

does not have [un] term, and according to the interpolation of the
jump condition, there exists a linear operator A s.t.

C +A [un] = C. (26)

Therefore,

∆hu = f + C +A [un] . (27)

From Eq. (23) and (24), since we do not know the u+, u− on the
interface Γ, we must approximate u+ from the grid points in Ω+ , and

9



u− from the grid points in Ω−. The approximation method is written
in the following.

Suppose we want to approximate u+(X∗
i0,j0,k0

). First, we set a
square number SN . Then, we collect a set S written as

S = {xi,j,k ∈ Ω+|i = i0 − sn, . . . , i0 + (SN − sn− 1),

j = j0 − sn, . . . , j0 + (SN − sn− 1),

k = k0 − sn, . . . , k0 + (SN − sn− 1)} (28)

where sn is the largest integer not greater than SN−1
2 .

Figure 4: The set S of X∗ with SN = 7

Given a polynomial P3(x, y, z) with degree 3, we determine the coeffi-
cients of P3(x, y, z) by least squares method approximating u+(x, y, z)
on S. So we approximate u+(X∗

i0,j0,k0
) by

u+n (X
∗
i0,j0,k0

) ≈ ∇P3(X
∗
i0,j0,k0

) · n(X∗
i0,j0,k0

). (29)

Similarly, we can approximate u−(X∗
i0,j0,k0

) by the above method.
Since the approximation is linear for ui,j,k, we can obtain two linear
operators B+, B− s.t.

u+n ≈ B+u, (30)

u−n ≈ B−u. (31)

And with the approximation, we rewrite Eq. (23) and (24) as

[un] =
1

σ−

(

[σun]− [σ]B+u
)

when σ− > σ+, (32)

[un] =
1

σ+

(

[σun]− [σ]B−u
)

when σ+ > σ−. (33)

10



B+u+
σ−

[σ]
[un] =

[σun]

[σ]
, (34)

B−u+
σ+

[σ]
[un] =

[σun]

[σ]
. (35)

From Eq. (27), (34) and (35), we get a linear system as

[

∆h −A

B± σ∓

[σ]

]

[

u
[un]

]

=

[

f + C
[σun]
[σ]

]

. (36)

To solve Eq. (36), we use Schur-complement method, i.e., we solve
u and [un] separately. In this method, we have to use Poisson solver.
In this thesis, we use the public software package MUDPACK to solve
Poisson equation. The details are written as follows.
First, we solve a Poisson equation u∗ for

∆hu
∗ = f + C, (37)

u∗ = ub on ∂Ω. (38)

Second, we compare u and u∗

∆hu−A [un] = f + C, (39)

∆hu
∗ = f + C, (40)

u = u∗ = ub on ∂Ω. (41)

∆h(u− u∗)−A [un] = 0, (42)

u− u∗ = 0 on ∂Ω. (43)

(u− u∗)−∆−1
h A [un] = 0,

u−∆−1
h A [un] = u∗,

B±u−B±∆−1
h A [un] = B±u∗,

−σ∓

[σ]
[un] +

[σun]

[σ]
−B±∆−1

h A [un] = B±u∗,

(

−B±∆−1
h A− σ∓

[σ]
I

)

[un] = B±u∗ − [σun]

[σ]
. (44)

When σ− > σ+,
∣

∣

∣

σ−

[σ]

∣

∣

∣
is larger than

∣

∣

∣

σ+

[σ]

∣

∣

∣
. Since σ∓

[σ] affects the coef-

ficient of diagonal term, Eq. (34) is better than Eq. (35). Similarly,
when σ+ > σ−, for solving the linear system Eq. (44) ,choosing Eq.
(35) is better than Eq. (34). To solve the linear system Eq. (44), we
use the iterative method GMRES. Using GMRES has an advantage,

11



this is, we do not have to construct the matrix −B±∆−1
h A. We can

use the poission solver to replace ∆−1
h , and do not need to write the

explicit form of A and B±. For the iteration, we let the stopping crite-
ria be h2. We can do this setting for the following reasons. The error
of [un] is O(h2) and d is O(h), so the error of [un] makes an error O(h)
in the correction term. The correction term originally has an error
O(h). Hence, The error of [un] does not affect the overall accuracy.
Once we know [un], then we can solve u by

∆hu = f + C +A [un] , (45)

u = ub on ∂Ω. (46)

In summary, we write the following steps of the method solving
Eq. (36).
Step 1.
Solving the Poisson equation u∗ for

∆hu
∗ = f + C, (47)

u∗ = ub on ∂Ω. (48)

Step 2.
Using GMRES with the stopping criteria h2 to solve [un] in the below
linear system

(

−B±∆−1
h A− σ∓

[σ]
I

)

[un] = B±u∗ − [σun]

[σ]
(49)

where ∆−1
h is poisson solver with zero Dirichlet boundary condition.

Step 3.
Solving the Poisson equation u

∆hu = f + C +A [un] , (50)

u = ub on ∂Ω. (51)

12



4.2 Numerical results

Considering the rectangular domain Ω = [−1, 1]× [−1, 1]× [−1, 1], we
display the numerical results of the immersed interface method for the
elliptic interface equation (2).
Example 3

We consider an interface and an exact solution as

Σ : x2 + y2 + z2 = r20, (52)

u+ = x2 + y2 + z2, (53)

u− = sin(x2 + y2 + z2) (54)

where r0 =

√

2

13
.

The force f , curvature κ and the boundary conditions can be calcu-
lated as






























u+n = 2
√

x2 + y2 + z2,

u−n = 2
√

x2 + y2 + z2 cos(x2 + y2 + z2),

f
+

= 6,

f
−

= 6cos(x2 + y2 + z2)− 4(x2 + y2 + z2) sin(x2 + y2 + z2),
κ = 2√

x2+y2+z2
.

(55)

Therefore, the equation (2) is written as























∆u = 6 in Ω+,
∆u = 6cos(x2 + y2 + z2)− 4(x2 + y2 + z2) sin(x2 + y2 + z2) in Ω−,
[u] = r20 − sin(r20) on Γ,
[σun] = 2r0

(

σ+ − σ− cos(r20)
)

on Γ,
u = x2 + y2 + z2 on ∂Ω.

(56)

Here, [u] is constant on Γ, so ∆ss[u] = 0. We take h = 2
N

with differ-
ent N . Since the interface is a sphere, the exact foot of the irregular
point is known. Two methods are used to solve Eq. (56)

Method 1: solve u by the exact foots of the irregular points
Method 2: solve u by the foots obtained by reinitialization of

level set method

About σ+ and σ−, we choose two cases. They are σ+ = 2, σ− = 23
and σ+ = 23, σ− = 2. The exact u is known, so we can compute the
error between the numerical uN and the exact u. The L∞, L1, L2
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errors, the order of accuracy and the iteration steps for different N ,
σ+, σ− are displayed in the following tables.
Method 1

Size L∞ Order L1 Order L2 Order step

32 7.6125e-05 - 8.0125e-06 - 1.4937e-05 - 2
64 3.1055e-05 1.2936 3.4919e-06 1.1982 6.2259e-06 1.2625 3
128 1.0722e-05 1.5343 6.8645e-07 2.3468 1.4433e-06 2.1089 5

Table 3: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23 by method 1

Size L∞ Order L1 Order L2 Order step

32 1.0930e-03 - 1.7164e-04 - 2.9306e-04 - 2
64 2.6165e-04 2.0625 4.0319e-05 2.0898 6.7259e-05 2.1234 2
128 2.1928e-05 3.5768 2.9699e-06 3.7630 4.8823e-06 3.7841 2
256 1.1043e-06 4.3116 6.8618e-08 5.4357 1.2182e-07 5.3247 2

Table 4: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2 by method 1

Method 2

Size L∞ Order L1 Order L2 Order step

32 1.1487e-04 - 1.4585e-05 - 2.6055e-05 - 2
64 3.7705e-05 1.6071 5.1938e-06 1.4896 8.9480e-06 1.5419 2
128 1.1889e-05 1.6652 1.5597e-06 1.7356 2.6672e-06 1.7463 3
256 3.3990e-06 1.8064 4.9160e-07 1.6657 8.2544e-07 1.6921 4

Table 5: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23 by method 2

Size L∞ Order L1 Order L2 Order step

32 7.4238e-04 - 1.1580e-04 - 1.9781e-04 - 1
64 1.8352e-04 2.0162 2.8322e-05 2.0316 4.7207e-05 2.0670 2
128 1.4103e-05 3.7018 1.8714e-06 3.9197 3.0544e-06 3.9500 2
256 1.1318e-06 3.6393 8.3163e-08 4.4920 1.6270e-07 4.2306 3

Table 6: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2 by method 2
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Example 4

In this example, an interface and an exact solution are chosen to be

Σ : x2 + y2 + z2 = r20, (57)

u+ = ex+y+z, (58)

u− = sin(x+ y + z) (59)

where r0 =

√

2

13
.

The force f , curvature κ and the boundary conditions are calculated
as



































u+n = ex+y+z x+y+z√
x2+y2+z2

,

u−n = sin(x+ y + z) x+y+z√
x2+y2+z2

,

f
+

= 0,

f
−

= −3 sin(x+ y + z),
κ = 2√

x2+y2+z2
.

(60)

The equation (2) is written as























∆u = ex+y+z in Ω+,
∆u = −3 sin(x+ y + z) in Ω−,
[u] = ex+y+z − sin(x+ y + z) on Γ,

[σun] =
x+y+z

r0
(σ+ex+y+z − σ− cos(x+ y + z)) on Γ,

u = ex+y+z on ∂Ω.

(61)

Since the interface Γ is a sphere, ∆ss[u] is available.

∆ss[u] = 2 cos(x+ y + z)
x+ y + z

r20
+ 2 sin(x+ y + z)

(

1− xy + yz + zx

r20

)

+ 2ex+y+z

(

1− xy + yz + zx+ x+ y + z

r20

)

. (62)

We choose h = 2
N

with different N = 32, 64, 128, 256. Since the inter-
face is a sphere, two methods are used to solve Eq. (61)

Method 1: solve u by the exact foots of the irregular points
Method 2: solve u by the foots obtained by reinitialization of

level set method

About σ+ and σ−, we choose σ+ = 2, σ− = 23 and σ+ = 23, σ− = 2
to be the cases in this example. Since the exact u is known, the error
between the numerical uN and the exact u is available. The following
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tables show the L∞, L1, L2 errors, the order of accuracy and the it-
eration steps.
Method 1

Size L∞ Order L1 Order L2 Order step

32 4.7880e-03 - 5.0982e-04 - 9.5825e-04 - 4
64 3.7523e-03 0.3516 4.8873e-04 0.0610 8.4660e-04 0.1787 6
128 1.9643e-03 0.9338 2.5085e-04 0.9622 4.2371e-04 0.9986 8
256 5.1709e-04 1.9255 6.4666e-05 1.9558 1.0849e-04 1.9655 10

Table 7: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23 by method 1

Size L∞ Order L1 Order L2 Order step

32 6.3817e-04 - 9.7196e-05 - 1.3414e-04 - 4
64 1.9205e-04 1.7325 2.4062e-05 2.0141 3.1806e-05 2.0764 4
128 3.2468e-05 2.5644 6.4305e-06 1.9037 9.0349e-06 1.8157 4
256 1.0633e-05 1.6104 1.6876e-06 1.9299 2.4299e-06 1.8946 5

Table 8: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2 by method 1

Method 2

Size L∞ Order L1 Order L2 Order step

32 2.5791e-03 - 2.0105e-04 - 4.2491e-04 - 3
64 1.3330e-03 0.9522 1.2981e-04 0.6311 2.4516e-04 0.7935 5
128 5.2778e-04 1.3367 4.1144e-05 1.6577 7.8304e-05 1.6465 7
256 1.6009e-04 1.7211 1.0226e-05 2.0085 2.0025e-05 1.9673 8

Table 9: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23 by method 2

Size L∞ Order L1 Order L2 Order step

32 7.0015e-04 - 1.0703e-04 - 1.4639e-04 - 3
64 1.8356e-04 1.9314 2.3551e-05 2.1842 3.2243e-05 2.1828 4
128 8.5021e-05 1.1103 5.0232e-06 2.2291 8.0645e-06 1.9993 5
256 7.4797e-05 0.1848 2.0646e-06 1.2827 4.6048e-06 0.8085 6

Table 10: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2 by method 2
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Example 5

Considering an interface and an exact solution as

Σ :
x2

a2
+

y2

b2
+

z2

c2
= 1, (63)

u+ =
x2

a2
+

y2

b2
+

z2

c2
, (64)

u− = sin

(

x2

a2
+

y2

b2
+

z2

c2

)

, (65)

where a =

√

2

13
, b =

√

11

43
, c =

√

3

31
.

We calculate the force f , curvature κ and the boundary conditions































































u+n = 2
√

x2

a4
+ y2

b4
+ z2

c4
,

u−n = 2
√

x2

a4
+ y2

b4
+ z2

c4
cos
(

x2

a2
+ y2

b2
+ z2

c2

)

,

f
+

= 2
(

1
a2

+ 1
b2

+ 1
c2

)

,

f
−

= 2
(

1
a2

+ 1
b2

+ 1
c2

)

cos
(

x2

a2
+ y2

b2
+ z2

c2

)

−4
(

x2

a4
+ y2

b4
+ z2

c4

)

sin
(

x2

a2
+ y2

b2
+ z2

c2

)

,

κ =

(

1

a2
+ 1

b2
+ 1

c2

)

(

x2

a4
+ y2

b4
+ z2

c4

)

−

(

x2

a6
+ y2

b6
+ z2

c6

)

(

x2

a4
+ y2

b4
+ z2

c4

) 3
2

.

(66)

Therefore, the equation (2) is written as































∆u = 2
(

1
a2

+ 1
b2

+ 1
c2

)

in Ω+,

∆u = 2
(

1
a2

+ 1
b2

+ 1
c2

)

cos
(

x2

a2
+ y2

b2
+ z2

c2

)

in Ω−,

[u] = 1− sin(1) on Γ,

[σun] = 2
√

x2

a4
+ y2

b4
+ z2

c4
(σ+ − σ− cos(1)) on Γ,

u = x2

a2
+ y2

b2
+ z2

c2
on ∂Ω.

(67)

Here, [u] is constant on Γ, so ∆ss[u] = 0. We take h = 2
N

with differ-
ent N = 32, 64, 128, 256. We choose σ+ = 2, σ− = 23 and σ+ = 23,
σ− = 2 in this test. The exact u is known, so we can compute the
error between the numerical uN and the exact u. The L∞, L1, L2

errors, the order of accuracy and the iteration steps for different N ,
σ+, σ− are displayed in the following tables.
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Size L∞ Order L1 Order L2 Order step

32 2.5842e-02 - 2.8891e-03 - 5.2446e-03 - 3
64 8.8586e-03 1.5445 9.8525e-04 1.5521 1.7558e-03 1.5787 6
128 3.2733e-03 1.4363 3.2026e-04 1.6213 5.8850e-04 1.5771 9
256 9.5019e-04 1.7844 1.0107e-04 1.6639 1.7713e-04 1.7323 11

Table 11: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23

Size L∞ Order L1 Order L2 Order step

32 3.6022e-01 - 4.2028e-02 - 7.2799e-02 - 4
64 9.3078e-02 1.9524 9.8860e-03 2.0879 1.6791e-02 2.1162 6
128 7.7633e-03 3.5837 6.2775e-04 3.9771 1.0806e-03 3.9578 7
256 3.6076e-04 4.4275 3.2838e-05 4.2567 6.1427e-05 4.1368 8

Table 12: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2
Example 6

In this example, we consider an interface and an exact solution as

Σ :
x2

a2
+

y2

b2
+

z2

c2
= 1, (68)

u+ = ex+y+z, (69)

u− = sin(x+ y + z) (70)

where a =

√

2

13
, b =

√

11

43
, c =

√

3

31
.

We calculate the force f , curvature κ and the boundary conditions























































u+n =
x

a2
+ y

b2
+ z

c2
√

x2

a4
+ y2

b4
+ z2

c4

ex+y+z,

u−n =
x

a2
+ y

b2
+ z

c2
√

x2

a4
+ y2

b4
+ z2

c4

cos (x+ y + z) ,

f
+

= 3ex+y+z,

f
−

= −3 sin(x+ y + z),

κ =

(

1

a2
+ 1

b2
+ 1

c2

)

(

x2

a4
+ y2

b4
+ z2

c4

)

−

(

x2

a6
+ y2

b6
+ z2

c6

)

(

x2

a4
+ y2

b4
+ z2

c4

) 3
2

.

(71)
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Therefore, the equation (2) is written as































∆u = 3ex+y+z in Ω+,
∆u = −3 sin(x+ y + z) in Ω−,
[u] = ex+y+z − sin(x+ y + z) on Γ,

[σun] =
x

a2
+ y

b2
+ z

c2
√

x2

a4
+ y2

b4
+ z2

c4

(σ+ex+y+z − σ− cos(x+ y + z)) on Γ,

u = ex+y+z on ∂Ω.

(72)

Since the interface Γ is an ellipsoid, ∆ss[u] is available.

∆ss[u] = ex+y+z

(

2−
(

1
a2

+ 1
b2

+ 1
c2

)

α3 + 2α1

α2
+

α3α4

α2
2

)

− 2

(

1− α1

α2

)

sin(x+ y + z)

− α3

α2
2

[(

1

a2
+

1

b2
+

1

c2

)

α2 − α4

]

cos(x+ y + z) (73)

where

α1 =
xy

a2b2
+

yz

b2c2
+

zx

c2a2
, (74)

α2 =
x2

a4
+

y2

b4
+

z2

c4
, (75)

α3 =
x

a2
+

y

b2
+

z

c2
, (76)

α4 =
x2

a6
+

y2

b6
+

z2

c6
. (77)

We choose σ+ = 2, σ− = 23 and σ+ = 23, σ− = 2 to be the cases
in this example. Since we know the exact u , the error between the
numerical uN and the exact u is available. The following tables show
the L∞, L1, L2 errors, the order of accuracy and the iteration steps
for different N , σ+, σ−.
Size L∞ Order L1 Order L2 Order step

32 1.0985e-02 - 5.1651e-04 - 1.0907e-03 - 4
64 5.2105e-03 1.0761 3.2198e-04 0.6818 6.2963e-04 0.7927 7
128 2.1972e-03 1.2458 1.2664e-04 1.3462 2.2841e-04 1.4629 10
256 6.5012e-04 1.7569 2.2964e-05 2.4633 4.6245e-05 2.3043 12

Table 13: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 2, σ− = 23

19



Size L∞ Order L1 Order L2 Order step

32 1.1158e-02 - 3.5443e-04 - 8.5945e-04 - 5
64 4.0653e-03 1.4566 1.7419e-04 1.0248 3.8375e-04 1.1632 5
128 1.6554e-03 1.2962 6.3940e-05 1.4459 1.3586e-04 1.4981 7
256 8.2041e-04 1.0127 2.9861e-05 1.0984 6.2598e-05 1.1179 8

Table 14: The L∞, L1 and L2 errors and the order of accuracy for different
N with σ+ = 23, σ− = 2

5 Transfer the elliptic interface equa-

tion with zero jump condition [u]

Now, we consider an elliptic interface equation















∆u = f in Ω− Γ,
[u](X) = ω(X) on Γ,
[σun](X) = ν(X) on Γ,
u = ub on ∂Ω

(78)

where ω ∈ C2(Γ).
In previous sections, if the equation is solved, we must calculate ∆ss[u].
When the interface is known, calculating ∆ss[u] is feasible. However,
for some problems, the interface will move with time. When the in-
terface moves in the problem, the interface is possible to become un-
known. Then, calculating ∆ss[u] become a difficult problem.

If we do not want to calculate ∆ss[u], then we must transfer the
equation s.t. [u] = 0. To do that, we can use this method in [16].
First, we get the signed-distance function φ(x) as follows

φ(x) =







d(x,Γ) in Ω+,
0 on Γ,
−d(x,Γ) on Ω−.

(79)

Let us suppose φ ∈ C3(Ω) and the normal lines of the interface Γ do
not intersect in the outside region Ω+, then every x in the outside
region has only one foot X∗, i.e.

∀x ∈ Ω+, ∃! X∗ ∈ Γ, β ≥ 0 s.t. x = X∗ + β∇φ(X∗). (80)
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We can define an extension ωe(x) of ω(x) in Ω+ ∪ Γ

ωe(x) = ωe(X
∗ + φ(x)∇φ(X∗))

= ω(X∗) (81)

and ωe(x) = 0 in Ω−.
Since φ ∈ C3(Ω) and ω ∈ C2(Γ), ωe ∈ C2(Ω\Γ). Now, we define û(x)

û(x) = H(φ(x))ωe(x) =







0 φ(x) < 0,
1
2ωe(x) φ(x) = 0,
ωe(x) φ(x) > 0.

(82)

where H(·) is the Heaviside function.
Let q(x) = u(x)− û(x), then we can get this equation















∆q = f −H(φ)∆û in Ω− Γ,
[q] = 0 on Γ,
[σqn](X) = ν(X) on Γ,
q = ub − û on ∂Ω.

(83)

Proof :
If x ∈ Ω−, then û(x) = 0. Therefore, ∆û(x) = 0, and H(φ(x)) = 0.
Hence,

∆q(x) = ∆u(x)−∆û(x)

= f(x)− 0

= f(x)−H(φ(x))∆û(x). (84)

If x ∈ Ω+, then H(φ(x)) = 1. Hence,

∆q(x) = ∆u(x)−∆û(x)

= f(x)−H(φ(x))∆û(x). (85)

Then, when X ∈ Γ, [q](X) is

[q](X) = [u](X)− [û](X)

= ω(X)− ωe(X
+)

= ω(X)− ωe(X)

= 0. (86)

Finally, check [σqn]. ωe is constant along the normal line. Therefore,

∂ωe

∂n

∣

∣

∣

∣

X+

=
∂ω(X)

∂n

= 0. (87)
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Hence,

[σûn](X) = σ+ ∂û

∂n

∣

∣

∣

∣

X+

− σ− ∂û

∂n

∣

∣

∣

∣

X−

= σ+∂ωe

∂n

∣

∣

∣

∣

X+

− 0

= 0, (88)

[σqn](X) = [σun](X)− [σûn](X)

= ν(X)− 0

= ν(X). (89)

6 Conclusion

In this thesis, we use the immersed interface method to solve the 3D
elliptic interface problem, and reinitialization of level set method to
find the foot of the irregular point. To deal with the problem, we
only use a simple interpolation, Poisson solver, least squares method
and GMRES. It is simple to solve the elliptic interface problem by
the present method. There only needs a few GMRES iteration steps.
About approximation of u±, using polynomial with degree 3 by least
squares method makes the rates of convergence of the numerical re-
sults in this thesis are better than first order. Even some results have
high order accuracy.
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