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An Immersed Interface Method for
3D Elliptic Interface Problems

Student: Po-Chun Kuo Advisor: Prof. Ming-Chih Lai

Department (Institute) of Applied Mathematics
National Chiao Tung University

Abstract

In this thesis, we extend-the immersed interface method for a 2D
elliptic interface problem to 3D. The numerical method is a finite
difference method modified with some correction terms from the jump
conditions. By using Taylor’s expansions along the normal direction,
the discrete difference equation is-modified at the gird point close to
interface. Because of thetypes of the jump condition; . we have to
solve a linear system in the process of solving the/elliptic interface
problem. We'first use the reinitialization of level set method to find
the orthogonal projection of the grid point and perform it to check
its accuracy. Then, we solve the elliptic interface problem by the
immersed interface method; GMRES and least squares method, and
make some numerical tests to check the rate of convergence.
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1 Introduction

Elliptic interface problems have many applications in science and en-
gineering, such as multi-material problems, two-phase problems, fluid
problems. We focus on elliptic interface problems with variable coeffi-
cients. Along the interface, there exist the jump conditions of solution
and flux across the interface. For example, this can applied in electro-
hydrodynamics [2, 15].

Peskin used the immersed boundary method [1] to simply describe
the fluid motion interacting with complicated interface at the Carte-
sian grid. Many methods can solve elliptic interface problems, such
as finite element method [5, 10], boundary integral method [13], ghost
fluid method [3, 12], sharp interface method [7].

In this thesis, we use thé immersed interface method [8, 15] to solve
the problem from 2D to-3D. -We have to find the orthogonal projec-
tion to the interface. In 2D, we can use polynoemials to interpolate
the interface by picking some pointrand use these approximation to
find the orthogenal projection; such as cubic spline representation [4].
However, it is difficult to-use this method in,3D. Therefore, we use
reinitialization of level set-method (9,711, 14].

In Section 2, we introduce the elliptic interface equation to study
how to use the immersed interface method to solve this equation. In
Section 3,"we can see how to find-the orthogonal projection to the
interface by reinitialization of devel set method. In Section 4, since
we do not have [u,], we have to get the solution threugh Poisson
solver and solve a linear system. In Section b, a method to modify
the equation s't. {u]'= 0 is introduced. Finally, some conclusions are
displayed in Section 6.



2 Elliptic interface equation and the
immersed interface method

2.1 Elliptic interface equation

We consider a rectangular domain Q = [z, 2| X [y, yr] X [2¢, 2] With
a closed interface I'. Since the interface I' divides the domain €2 into
two regions, we denote the inside region by 2~ and the outside region
by O, and with piecewise constant coefficient, o~ on 2~ and o™ on
QF. Along T', there exist the jump conditions of solution and flux
across I'.

We solve the following elliptic interface equation

Gloww =, inQ_ T,

[u](X)="w(X) on I, (1)
lou,)(X) =v(X) onl}

u = uy on 0f)

where u,, = g—g.

Since o is-a. pilecewise constant, we can rewrite the elliptic interface
equation as

Au=f nQ-T

where f =f/a, i.c.

Au= f in Q-1

[uh(X) = w(X) on I @)
GO0 = (X)), oo

U= Uup on 0f).

Figure 1: The interface I" divides the domain into Q" and Q~



2.2 The interpolation of the jump condition

To solve this problem, we use the immersed interface method devel-
oped in [8, 15]. We use a uniform Cartesian grid in € with the mesh
width h = Az = Ay = Az, and use x; ;1 = (1 + 1Az, y; + jAY, 2 +
kAz) to denote the mesh grid point and denote discretized solution
at the mesh grid point by w; ;. Since we have the jump condition
on the interface I', we determine whether the grid point is a regular
point or an irregular point. If the seven-point Laplacian of a grid
point uses some points in 2~ and some points in Q" simultaneously,
the grid point is called the irregular point. Otherwise, when the grid
point uses either points in Q= or points in Q7T it is the regular point.
At the irregular point, because of the jump conditions, we have to
change the approximations: acécording to sthe jump condition on the
interface. For example, wedet X; s Xir1 7.4, X4, 41,k Xi,jk+1 be in the
inside region, x;_1 ik, Xi521,k, Xi j,k—1 in the'outside region, then x; ;
is an irregular point; and the modified seven-point Laplacian Apu is
written as follows.

Figure 2: The seven-point Laplacian of the irregular point x; j
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3 Find the foot of an irregular point
using reinitialization of level set method

3.1 The reinitialization of level set method

For finding irregular points, we use reinitialization of level set method
developed in [9, 11, 14]. First, we have to find signed-distance function
¢ : Q0 = R where

d(x,T') inQT,
bx) =4 0 onT, ®)
—d(x,T') on Q.

Now, we consider a level.set ¢ : 2 — R where

>0 in Q%
¢o(x)< .=0_on I (9)
<0 on Q.

using reinitialization equation

¢+ S(¢o)(| v ¢l —1) =0 (10)

where S(dp) 18 signed function: (ie. S(¢p(x)) = 1 when x € Q7
S(¢po(x)) = =1'when x € Q7 and S(¢y(x)) =0 whenx € T)

It will converge to signed-distance function.. Since the equation con-
verges steady state quickly very much at the points near the I', we
only use a few time steps to get the results. For getfing better results,
we modify the S(¢o) as

Po
V& + (Ax)?
as a numerical approximation. In this thesis, we use TVD-RK and

WENO to compute Eq. (10). Now, we find the foot X* of x. Since
X* is the foot of x, we have the equation

S(¢0) = (11)

X* = x — $(x)V(X*). (12)

Since x is close to X*, we use this following approximation for sim-
plicity

X* ~x — ¢p(x)Vo(x). (13)



3.2 Numerical results

In these numerical experiments, we consider the rectangular domain
Q=[-1,1] x [-1,1] x [-1,1]. In Example 1 and 2, we perform the
numerical tests for finding the foots by the reinitialization of level set
method.

Example 1

In this example, we consider the interface I' as a sphere. The surface
equation is

Yoty =03 (14)
2
where rg = 4/ —.
13

The initial level set function is chosen to be
d)O(:L'vyvz) ::E2+y2—|—z2—7‘g. (15)

The following numerical results are the errors about finding the foot
by reinitialization of level-set method:, The length of the domain is 2
so we choose h = % with-V = 32,64, 128,256: Since theinterface is
a sphere, the exact distance and the exact foot of the irregular points
are easy to obtain. Besides, we can choose a level sef function ¢ to
describe the error of the foot to the interface. Since I' is a sphere, the
signed-distance function ¢'is known. ¢ is suited to be the level set
function deseribing the error of the foot. I'herefore, we use ¢ to be

oz, y,2) = Va2 + y? + 22 — 1. (16)

The following table/shows the.L>° errors at the irregular points and
the steps of the iteration. The errors are the distance, the foot, and ¢
for different N. In this case, we can see that the method has the first
order accuracy.

N  distance  Order foot Order 10} Order step
32 9.5416e-03 - 2.0864e-02 - 2.0861e-02 - 10
64 4.1199¢-03 1.2116 8.6686e-03 1.2671 8.6671e-03 1.2672 10

128 2.2089¢-03  0.8993 4.5503e-03 0.9298 4.5502e-03 0.9296 10
256  1.1053e-03  0.9989 2.2309e-03 1.0283 2.2309e-03 1.0283 10

Table 1: The L™ errors and the order of accuracy of distance, foot and
¢ on irregular points for different N



Example 2
In this example, we consider the interface I' as an ellipsoid. The
surface equation is

x y z
Prptptac! (17)
2 /11 /3
where a = 3 b= TR c= ETR

A problem occurs when the initial level set function is chosen to be

2 2 2
o Yy z
¢0($ay’z)—§+b—2+g—1- (18)
Using this ¢g to compute ¢; a sta D i in the iteration process.

. . L .m :
For some iteration ), the - ome s.t.

(19)
i.e. for someg ints in t 51d 0 3 anslated to
the inside [ > situation.
To deal with thisiproblem; we discu ea > erface. On
T,
B 43
STV 11
~ 4. (20)

Hence, the reason of this occasion may be that |V¢| — 1 near the
interface is too large.
Here, we scale the initial level set function as

¢o(z,y,2) = (M> (x—2 + v + = 1) .21

3 a? b2 2

We take h = % with N = 32,64, 128,256. Since the exact distance
and the exact foot of the irregular points can not be obtained directly,

8



we describe the error of the foot to the interface by level set function
®. The level set function is chosen to be

332 y2 22

@(x,y,z):¥+b—2+c—2—1. (22)
Table 2 shows the L errors of ® at the irregular points and the steps
of the iteration for different V. In this table, we can see that the rate

of convergence is first order.

Size P Order step
32 1.1443e-01 - 10
64 5.4037e-02 1.0824 10
128  2.5760e-02 1.0688 10
256 1.2700e-02 [1:0203 10

Table 2: The L*> errors and the order of accuracy of ® on
irregular points for different N

4 Solve the elliptic interface problem

4.1 Solve the elliptic interface equation

We follow these steps developed in [15] to solve the equationy(2). Since
we only know [ou,| instead of [uz], we use these equations

= ai_ P when o /> 8+, (23)
[un] = & ([ow,) — [o]u™) when ¢ > 0. (24)

We will explain why we choosethe-equation in Eq. (44).
We let C; ;i be the correction term, then we can write Eq. (3) as

Apuijr = fijr+ Cijk- (25)

And we let Um,k be the correction term without [u,] term, i.e., UMJC
does not have [u,]| term, and according to the interpolation of the
jump condition, there exists a linear operator A s.t.

C+ Alu,) =C. (26)
Therefore,
Apu=f+C+ Aluy). (27)

From Eq. (23) and (24), since we do not know the u™, u~ on the
interface I", we must approximate u™ from the grid points in Q% , and



u~ from the grid points in Q7. The approximation method is written
in the following.
Suppose we want to approximate u—i—(X:o,jo,ko)' First, we set a

square number SNN. Then, we collect a set S written as
S ={x;jr €QF|i=1ip—sn,...,io+ (SN —sn — 1),
Jj=Jo—sn,...,50+ (SN —sn —1),
k=ko—sn,...,ko+ (SN —sn—1)} (28)

SN—-1
57 -

where sn is the largest integer not greater than

on S. So we approximate

iy (

~VPy(X: ) n(X

10,70,k0

;o Joyko) ;o ,jo,ko)' (29)

Similarly, we can approximate u_(X;‘ko,jo,ko) by the above method.
Since the approximation is linear for u; j;, we can obtain two linear
operators BT, B~ s.t.

S oS4
2

Q

ul ~ BT, (30)
U B u

And with the approximation, we rewrite Eq. (23) and (24) as
1
[un] = e ([oun) — [0]Btu) when ¢~ > o, (32)

[un] = 0_% ([oun) — [0]B™ ) when o > o7 (33)

10



[0ty

tu up] = ——-,
BTu+ o ][ ] o] (34)
B u+ i[un] = M. (35)
[o] [o]
From Eq. (27), (34) and (35), we get a linear system as
A, —A u f+C
Bt & [ [ty ] = [0[:]"] (36)

To solve Eq. (36), we use Schur-complement method, i.e., we solve
u and [uy,] separately. In this method, we have to use Poisson solver.
In thls the31s we use the pubhc software package MUDPACK to solve

ot [oun)

o] BEA M Alu,] = BFu,

_pEA-L _i w,] = :I:u*_[aun]
(B AA MI)[,,,] B o (44)

When 0~ > o™, ‘%‘ is larger than ‘%‘ Since % affects the coef-
ficient of diagonal term, Eq. (34) is better than Eq. (35). Similarly,
when o > o7, for solving the linear system Eq. (44) ,choosing Eq.
(35) is better than Eq. (34). To solve the linear system Eq. (44), we
use the iterative method GMRES. Using GMRES has an advantage,

11



this is, we do not have to construct the matrix —BiAglA. We can
use the poission solver to replace A,:l, and do not need to write the
explicit form of A and B*. For the iteration, we let the stopping crite-
ria be h2. We can do this setting for the following reasons. The error
of [uy,] is O(h?) and d is O(h), so the error of [u,] makes an error O(h)
in the correction term. The correction term originally has an error
O(h). Hence, The error of [u,| does not affect the overall accuracy.
Once we know [u,], then we can solve u by

Apu=f+C+ Aluy], (45)
u = uy on 0. (46)

In summary, we write the following steps of the method solving
Eq. (36).
Step 1.
Solving the Pois

(47)
(48)
Step 2
Using G in the below
linear syst
(49)
where A ary condition.
Step 3
Solving the Poisson equs
Apu=f+C+ Aluy], (50)
u = uy on 0. (51)

12



4.2 Numerical results

Considering the rectangular domain 2 = [—1,1] x [-1,1] x [-1, 1], we
display the numerical results of the immersed interface method for the
elliptic interface equation (2).

Example 3

We consider an interface and an exact solution as

Yoo yP 42 =g, (52)
ut =2+ y? + 22 (53)
u” = sin(z? 4+ y? + 2?) (54)
2
h =4/—.
where 79 T

The force f, curvatdre k and the boundary ¢onditions can be calcu-
lated as

ub = 28002 & vz

uy = Wa? + y2F22cos(w a2,

-t

I =06

f =bcos(z2 + y? + 22) — 42?45y et 22) sin(z? b + 2?),
2

i —rvrve
(55)
Therefore, the equation (2)'is written -as
Au =6 in QF,
Au = 6 cos(x? £ y%e?) — 4(z? +y? + 22)sin(? + v +2%) in Q7
[u] = rg — sin(rd) on T,
[oun] = 2rg (oF — o cos(r§)) on T,
w=x%+y?+2° on 0.
(56)

Here, [u] is constant on T, so Agfu] = 0. We take h = % with differ-
ent N. Since the interface is a sphere, the exact foot of the irregular
point is known. Two methods are used to solve Eq. (56)

Method 1:  solve u by the exact foots of the irregular points
Method 2: solve u by the foots obtained by reinitialization of
level set method

About o1 and o~, we choose two cases. They are ot = 2, 0~ = 23
and o7 = 23, 0~ = 2. The exact u is known, so we can compute the
error between the numerical uy and the exact v. The L>, L', L?

13



errors, the order of accuracy and the iteration steps for different IV,
oT, o~ are displayed in the following tables.

Method 1
Size L™ Order LT Order L? Order step
32 7.6125e-05 - 8.0125e-06 - 1.4937e-05 - 2

64 3.1095e-05  1.2936  3.4919e-06 1.1982 6.2259¢-06 1.2625 3
128 1.0722e-05 1.5343 6.8645e-07 2.3468 1.4433e-06 2.1089 5

Table 3: The L*°, L' and L? errors and the order of accuracy for different
N with ot =2, 0= = 23 by method 1
Size L™ Order LT Order L? Order step
32 1.0930e-03 - 1.7164e-04 - 2.9306e-04 - 2
64 2.6165e-04 2.0625 4.0319e-05 / 2:0898 6.7259e-05 2.1234 2
128  2.1928e-05 < 3.5768 2.9699¢-06. 3.7630 = 4.8823e-06 3.7841 2
256  1.1043e-06 4.3116 6.8618e-08 5.4357 1.2182e-07 5.3247 2

Table 4: ThenL>, Ltand-L? errors and the order of accuracy for different
N with o7 =23, 07 =2-by method 1

Method 2
Size L Order L' Order L? Order step
32 1.1487e-04 - 1.4585¢-05 - 2.6055e-05 - 2
64 3.7705e-05 1.60717 5.1938e-06 ~1.4896 8.9480e-06 1.5419 2
128 1.1889e-05 . 1.6652> 1.5597e-06 ~1.7356 2.6672e-06 1.7463 3
256 3.3990e-06 -~ 1.8064 4.9160e-07 1.6657 « 8.2544e-07 1.6921 4

Table 5: The L*°, LY and L errors and the order of accuracy for different
N with o7 =2, 07 = 23'by method 2
Size L™ Order LT Order L? Order step
32 7.4238e-04 - 1.1580e-04 - 1.9781e-04 - 1
64 1.8352e-04 2.0162 2.8322e-05 2.0316 4.7207e-05 2.0670 2
128 1.4103e-05 3.7018 1.8714e-06 3.9197 3.0544e-06 3.9500 2
256  1.1318e-06 3.6393 &8.3163e-08 4.4920 1.6270e-07 4.2306 3

Table 6: The L*°, L' and L? errors and the order of accuracy for different
N with o = 23, 0~ = 2 by method 2

14



Example 4
In this example, an interface and an exact solution are chosen to be

Y o 224yt 2=, (57)
ut ="tV (58)
u” =sin(z+y+ 2) (59)
2
where rog = 3

The force f, curvature x and the boundary conditions are calculated
as

(60)
The equat
(61)
o9.
Since the interfa
Ags[u] =2cos(z +y+ 2 - n| _rytyz+zw
7
1 Qertyts (1_$y+y2+2f2+x+y+z). (62)
0

We choose h = % with different NV = 32,64, 128, 256. Since the inter-
face is a sphere, two methods are used to solve Eq. (61)

Method 1: solve u by the exact foots of the irregular points
Method 2:  solve u by the foots obtained by reinitialization of
level set method

About ¢t and o~, we choose 0T =2, 0~ =23 and 0" =23, 0~ =2
to be the cases in this example. Since the exact u is known, the error
between the numerical uy and the exact u is available. The following

15



tables show the L>, L', L? errors, the order of accuracy and the it-
eration steps.

Method 1
Size L™ Order LT Order L? Order step
32 4.7880e-03 - 5.0982¢-04 - 9.5825e-04 - 4

64 3.7523e-03  0.3516 4.8873e-04 0.0610 8.4660e-04 0.1787 6
128 1.9643e-03 0.9338 2.5085e-04 0.9622 4.2371e-04 0.9986 8
256  5.1709e-04 1.9255 6.4666e-05 1.9558 1.0849e-04 1.9655 10

Table 7: The L*°, L' and L? errors and the order of accuracy for different
N with o™ =2, 0~ = 23 by method 1
Size L Order L' Order L? Order step
32 6.3817e-04 - 9.7196e-05 - 1.3414e-04 - 4
64 1.9205e-04  «1.7325 -2:4062e-05.2.0141 " 3.1806e-05 2.0764
128 3.2468e-05" 2.5644 6.4305e-06 1.9037  9:0349e-06 1.8157
256  1.0633e-05 <1.6104 1.6876¢-06 «1.9299 " 24299¢-06 1.8946

U >

Table 8: The I°, L' and-Z? errors and the order of accuracy for different
N with ot = 23, 0~ =2-by method1

Method 2

Size L= Order d Order L? Order step
32 2.5791e-03 - 2:0105e-04 - 4.2491e-04 - 3

64 1.3330e-03 0.95227 1.2981e-04 =0.6311 2.4516e-04 0.7935 5
128  5.2778e-04 . 1.3367 4.1144e-05 "1.6577 ~7.8304e-05 1.6465 7
256 1.6009e-04 + 1.7211 1.0226e-05 2.0085 < 2.0025e-05 1.9673 8

Table 9: The L*°, LY and,L*errors-and the order of accuracy for different
N with o = 2, 0~ = 23/by method 2
Size L*> Order L' Order L? Order step
32 7.0015e-04 - 1.0703e-04 - 1.4639e-04 - 3
64 1.8356e-04 1.9314 2.3551e-05 2.1842 3.2243e-05 2.1828
128  8.5021e-05 1.1103 5.0232e-06 2.2291 8.0645e-06 1.9993
256 7.4797e-05 0.1848 2.0646e-06 1.2827 4.6048e-06 0.8085

Oy U

Table 10: The L*°, L' and L? errors and the order of accuracy for different
N with ¢™ = 23, 0~ = 2 by method 2
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Example 5
Considering an interface and an exact solution as

$2 y2 22

2 2 2
_|__.’L‘ y z
u —E+b—2+g, (64)
_ ) x? y2 22

111 b2 C2
/2 /11 /3
where a = 13’ b= 3 =\ 3

We calculate the force f, curva d the boundary conditions

(66)

Here, [u] is constant on T, so Agsfu] = 0. We take h = % with differ-
ent N = 32,64,128,256. We choose 07 = 2, 0~ = 23 and o™ = 23,
0~ = 2 in this test. The exact u is known, so we can compute the
error between the numerical uy and the exact u. The L, L', L?
errors, the order of accuracy and the iteration steps for different IV,
oT, o~ are displayed in the following tables.
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Size L™ Order LT Order L? Order step
32 2.5842¢-02 - 2.8891e-03 - 5.2446e-03 - 3
64 8.8586e-03 1.5445 9.8525e-04 1.5521 1.7558e-03 1.5787 6
128 3.2733e-03 1.4363 3.2026e-04 1.6213 5.8850e-04 1.5771 9
256 9.5019e-04 1.7844 1.0107e-04 1.6639 1.7713e-04 1.7323 11

Table 11: The L*°, L' and L? errors and the order of accuracy for different
N with o™ =2, 07 =23
Size L™ Order LT Order L? Order step
32 3.6022e-01 - 4.2028e-02 - 7.2799e-02 - 4
64 9.3078e-02 1.9524 9.8860e-03 2.0879 1.6791e-02 2.1162 6
128 7.7633e-03 3.5837 6.2775e-04 3.9771 1.0806e-03 3.9578 7
256  3.6076e-04 4.4275 3.2838e-05 4.2567 6.1427e-05 4.1368 8

Table 12: The L*° L' and L*errors-and the order of accuracy for different
N with o™ = 23,67 =2

Example 6

In this example; we consider an interface and an exact solution as

x2 mi N
n==tE L (68)
ut = e$+y+z (69)
u” =sin(@+4+ 2) (70)

N\ N GErreiters /7

We calculate theforce. f, curvature x and the bounidary conditions

T z
( ut = 2+b2+c2 pTFY+2
n 2 "
j+7+7
l i i
_ 2+b2+ 2
u, = cos(x +y+2),
B o A
Fro=3ertuts (71)
f =-3 sm( +y+2),
2 2 2 2 2 2
(B+4+%) (1—4+§—4+z—4)—(z—6+§—6+j—6)
K = - 3 .
\ ( it 4)

18



Therefore, the equation (2) is written as

( Ay = 3e*TVT= in QF,
Au = —3sin(z +y + 2) in Q,
[u] = €Y% —sin(z +y + 2) onT,
x y z
[ou,] = % (ote™v+* — g~ cos(xz +y+2)) onT,
sttt
| u=e"Tut? on 0.
(72)

Since the interface I" is an ellipsoid, Ags[u] is available.

(a%+b%+c%) as + 20 . a3a4>

Agslu] = e*Tvt? (2 — 5

—2<1—ﬂ>sin(:p+y—|—z)
a2

o 1 1 1
——3{<—+—+C—2>a2—a4] cos(B+y 4 2) (73)

as | \la*>——b?
where
xy Yz zx
OIS 519 2@ " 22 (74)
2 2 2
Y E
Qo — CL4 + b4 + 047 (75)
o E YA
063 y a2 + b2 + CQ’ (76)
22 g2 2
a4_$+b_6+c_6' (77)
We choose o7 = 2, 0~ =/23 and o7 = 23,0~ = 2 to be the cases

in this example. Since we know the exact u , the error between the

numerical uy and the exact u is available. The following tables show

the L>®, L', L? errors, the order of accuracy and the iteration steps

for different N, o, 0.
Size L Order L' Order L? Order step
32 1.0985e-02 - 5.1651e-04 - 1.0907e-03 - 4
64 5.2105e-03 1.0761 3.2198e-04 0.6818 6.2963e-04 0.7927 7
128 2.1972e-03  1.2458 1.2664e-04 1.3462 2.2841e-04 1.4629 10
256  6.5012e-04 1.7569 2.2964e-05 2.4633 4.6245e-05 2.3043 12

Table 13: The L>°, L* and L? errors and the order of accuracy for different
N with o™ =2, 07 =23
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Size L™ Order Lt Order L2 Order

step

32 1.1158e-02 - 3.5443e-04 - 8.5945e-04 -

64 4.0653e-03  1.4566 1.7419¢-04 1.0248 3.8375e-04 1.1632
128 1.6554e-03 1.2962 6.3940e-05 1.4459 1.3586e-04 1.4981
256  8.2041e-04 1.0127 2.9861e-05 1.0984 6.2598e-05 1.1179

5

5
7
8

Table 14: The L*°, L' and L? errors and the order of accuracy for different

N with ot =23,07 =2

5 'Transfer the elliptic interface equa-
tion with zero jump condition [u]

Now, we consider an ellipti¢ interface equation

Ay ="f mQ =T,
[1](X) = w(X) ___ ond,
[oun](X) =v(X) onT,

u =" on 0f)

where w €/@2(I');
In previous sections, if the equation issolved, we must calculate Agg[u).
When the_interface is known, calculating A [u] is'feasible. However,
for some problems, the interface will move with time. When the in-
terface moves in the problem, the interface.is-possible to ' become un-
known. Then, calculating Ag.[u] becomea difficult problem.

If we do nott want toccalculate Agsfu], then we must transfer the
equation s.t. [uJ&= 0. To do that, we can use thisdnethod in [16].
First, we get the signed=distance function-¢(x) as follows

d(x,T') " in QT
p(x)=4 0 on I, (79)
—d(x,T') on Q.

Let us suppose ¢ € C3(Q) and the normal lines of the interface I' do
not intersect in the outside region QF, then every x in the outside
region has only one foot X*, i.e.

VxeQt, IX*el,B>0st x=X*+BVe(X*).  (80)

20



We can define an extension we(x) of w(x) in QT UT

we(x) = we(X* + ¢(x)VP(XT))
= w(X¥) (81)

and we(x) =01in Q.
Since ¢ € C3(Q2) and w € C*(I), w, € C*(Q\T). Now, we define i(x)

0 B(x) <0,
U(x) = H(p(x))we(x) = { %we(x) p(x) =0, (82)
we(x)  P(x) > 0.

(86)
Finally, check [0¢,]. we is constant along the normal line. Therefore,

Owe _ Ow(X)
on X+ N on
=0. (87)
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Hence,

oi(X) = o+ 2| Ot
on |x+ on |x-
_ 4 Owe _0
on |y
=0, (88)

= v(X). (89)

6 Conclusion

In this thesis, we use the immersed interface method to solve the 3D
elliptic interface problem;, and reinitialization of level set method to
find the foet of the irregular point. To deal> with the problem, we
only use assimple interpolation, Poisson solver, least squares method
and GMRES. It is simple to solve the elliptic interface problem by
the present method. There only needsa few GMRES iteration steps.
About approximation of u®, usingpolynomial with degree 3 by least
squares method makes the rates of convergence of the numerical re-
sults in thisthesis are better than first order- Even some results have
high order accuracy.
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