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Abstract

In many studies; the questionnaire is a common tool for surveying. A multiple
response question isra commonly-used question designed in a questionnaire. Recently,
many methods had been proposed-to analyze data of a multiple responses question in
the literature. And ranking responses is one of important issues in analyzing data of a
multiple responses question. In this thesis, we use the methods in-Wang (2008), Wang
and Huang (2014) and Bradley-Terry model with MM (Minorization—Maximization)
algorithm in Hunter DR (2004) to develop a R package. It can provide a useful and

convenient tool to rank responses in a signal response or a multiple response question.
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1 Introduction

Questionnaires are a commonly used tool for surveying in many fields. They are es-
pecially important in marketing or management studies. There are usually two kinds of
questions : single-response questions and multiple-response questions. The analysis of single-
response questions have been investigated in literature. Approaches of analyzing multiple-
response questions have been lacking until recently. Several researchers propose some meth-
ods about analyzing the dependence between a single-response question and a multiple-
response question (Umesh 1995 Loughin-and Scherer.1998, Decady and Thomas 1999, Bilder,
Loughin and Nettleton 2000). However, most researchers are also interested in ranking re-
sponses in a question. Wang (2008)-and Wang and Huang (2014) had proposed methods for
ranking responses in a multiple-response question under the frequentist or Bayesian setup.
Thus, in this thesis, we provide some methods to discuss the problem. They include Wald
test and Generalized score test in. Wang (2008 ), Bayesian ranking response method in Wang
and Huang (2014) and Bradley-Terry model with MM algorithm in Hunter DR, (2004).

For example, a company is designing a marketing survey to help develop a drink product.
The researchers will design a multiple response question and list several factors, including
price, packaging, capacity, taste that could attract consumers to buy this product. Suppose
that a group of individuals are surveyed on purchasing a drink product. They are asked to
write questionnaires which list all the questions. The following is a multiple-response ques-
tion in the questionnaire:

Question 1 : Which factor are important to you when considering the purchase of a

drink? (1) taste (2) capacity (3) packaging (4) price (5) other



According to the number of each response which is chosen, many respondents more care
about price and taste than other factors. Then we can easily rank the response ”price”
first and "taste” second according to the number of responses which are selected. But
it is based on the response selected numbers to rank, is not statistically significant and
we cannot clearly distinguish ”price” is more important than "taste”. In this thesis, we
base on several methods, Wald test, Generalized Score test, Bayesian ranking response
method and Bradley-Terry model with MM algorithm in the literature to develop rank-
ing procedures. These ranking procedures has been written as a package RankResponse
for R. RankResponse is available from the Comprehensive R, Archive Network at http:
//CRAN.R-project.org/package=RankResponse, which include code function rank.wald,
rank.gs, LR, LN, L2R; btmm, btqn and btnr. We review these methods in the Prelimi-
nary section. In Section 3, we propose rules to rank responses. In Section 4, we compare

these methods by a simulation study.In Section 5, we introduce details of these R codes.

2 Preliminary

In this section, we introduce some methods in the literature to rank responses.

2.1 The Wald Test and the Generalized Score Test

First, we consider ranking two specific responses. For the general case, assume that
a multiple-response question has k responses, vq,--- , v, and we interview n respondents.

Each respondent is asked to choose at least one and at most s answers for this question,


http://CRAN.R-project.org/package=RankResponse
http://CRAN.R-project.org/package=RankResponse

where 0 < s < k. If s=1, it is a single-response question. There are total of ¢ = C¥ ...+ CFk
possible kinds of answers that respondents will choose. Let n;,..;, denote the number of
respondents selecting the responses v, and not selecting vy if 7,=1 and 4,y=0, and p;,..;,
denotes the corresponding probability. For example, when k=5, nig19p denotes the number
of respondents selecting the first and the third responses and not selecting the other responses.

Thus, the p.m.f function of n;,...;, is

k
feipa) =100 < iy < S)W I piik s, 20,0 < iy, <1, (1)
Y

=1 ij=0orl i

where /(-) denotes the indicator function. Let m; denote the sum of the number n;,..;,
such that the jth response.is selected,-and m; denote the corresponding probability, that is
mj = Y N, and mp= 3 p;,.p—Note 7 is ealled a marginal probability of response j.

ij=1 i =1
Also le’]c mj denote the sumjof number n;,..;, such that the j¢h and [th responses are selected,
and 7;; denote the corresponding probability. Thenm;; = > njug and i = Y. Dijoi, -
ij=i;=1 ij=i=1

For ranking the important of two specified responses; say response 1 and response i in Ques-

tion j from the survey data, we will consider the two. sided test:

H037T,L':7Tj ’USH1:7TZ‘7£7TJ' (2)

which is equivalent to

* _ *
Ho.ﬂ'i—ﬂ'ij—ﬂ'j—ﬂ'ij USHl.Wi—WZ'j#’YTj—’ﬂ'Z‘j (3)

If (2) is rejected, then we ca rank the response with larger m; first. The methods for testing

(2) are given in Wang(2008).



2.1.1 Wald Test

A Wald test is a test based on a statistic of the form

where W, is an estimator of m; — 7;, and S,, is a standard error for W,. An unbiased
estimator of p;,..;, is n4,..;,/n, which is also a maximum likelihood estimator(MLE). Let
7; = m;/n,m; = m;/n and 7;; = m;;/n. We can use 7; and 7; as estimators of m; and 7;

respectively, and we have

mi(l —m)/n+m;(1 —m; +2m/n) if s=1,

VCLT’(ﬁ'Z‘ - ﬁ-]) = A (7Ti — Wij)(l = 1 27Tj N Wij)/n—i— (4)

{ (mj — mi5)(1 — 5 4 m5) /n otherwise.

Under the null hypothesis H, in (2) and based on central limit theorem, the statistics

A — 7

= (5)

VCLT’(ﬁ'Z‘ — 7%])

converges in distribution to standard normal.random variable when n large. Since m;,7; and
7;; are unknown,we can use 7;, 7; and ;; to substitute m;, m; and m;; in (4). Thus, for testing
(2), Hy is rejected if absolute value of (5) is greater than z,/2, where 2,2 is upper /2 cutoff

point of the standard normal distribution.

2.1.2 Generalized Score Test

In section 2.1.1, m;, 7; and 7;; in Var(#; — 7;) are replaced by 7;, @; and 7;; in the test

statistic. In this section, we consider the variance under the null hypothesis in (2), that is,



m; = m;. Thus we have

o 2m;/n if s=1
Vary— (T — 7;) = (6)

2(m; — mij)/n otherwise.

By the central limit theorem, under Hy, the statistic

7Ti—7Tj

\/VCLTWZ.:WJ. (’ﬁ'z — 7%])

converges to a standard normal distribution when n is large. We can use (7; + 7;)/2 and
7;; as substitutes for m; and 7;; in the variance. Hence for testing (2), the null hypothesis is

rejected if
V| =]
fri-l—frj
M > 2472 otherwise
A/ 7Ti+7Tj—2ﬂ'¢j

This approach is similar.to the score test of testing a marginal probability equal to a specified

> Za/2 f s =1,

value. Hence we call this approach a generalized score test.

2.2 Bayesian Ranking Responses

In this section we review the Bayesian Ranking methods in Wang and Huang (2014). We

assume parameters p;,..;, have a prior distribution. Thus, we consider the conjugate prior

F( Z Oél'l‘..ik)

k
. ;=0 or 1 Qs
j=1 i0or 1 M/ =0 or 1
=

which is a Dirichlet distribution. The prior information is assumed to be known here.

Under this assumption, we have the posterior distribution

npln) = finlp)n(p)

k r i.fozor 1ai1"'ik+ni1"'ik} N . (8)
. = ) i i
— I(O < Z:lzj < 3) T H llllkk 1
J:

D(0ty iy +1iq iy )
1o i .
i;=0 or 1 k k i;=0 or 1
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Through the form of the posterior distribution, we can derive the Bayes estimator for
each p;, .., under the squared error loss function. The Bayes estimator 7; of 7; is equal to the
summation of the Bayes estimator of p;,..;,, where i; = 1. We can use the Bayes estimator
of m; to rank the significant of 7;. Moreover, if we can associate a testing approach with the
Bayes estimator to rank ;, this method can lead to a more accurate result. Therefore, we
propose several multiple-testing methods for testing the relationship of ;.

Assume we have k responses and we are interested in testing

Hoy : mo) £y versus « Hyy's mg) > T,

Hup @ mzy < mg) versus  Hyp: m(g) > 7(2),

Hor—1 ey € Tg=1) versus  Hopq : Tgy> T(k—1)

For testing expressions (9), the decision rules that are considered here are to control
the posterior false discovery rate. The concept of the false discovery rate was proposed
by Benjamini and Hochberg (1995) to determine optimal thresholds for a multiple-testing
setting.

Then we define the false discovery rate, posterior false discovery rate, false negative
rate and posterior false negative rate for the frequentist and Bayesian setting based on the
literature as follows.

First, some notation and definitions are given. Let z; denote an indicator that the ith
hypothesis Hy; is false and let u; = P(z; = 1|n) denote the marginal posterior probability of

mir1 > ;. The rejection of Hy; is denoted by d;=1; otherwise d;=0. Let the false discovery



rate and false negative rate are denoted by FDR(d, z) and FNR(d, z) respectively,where

k—1
i=1

FDR(d,z) = =5

and
k-1

FNR(d, 2) = = —F=r

)

k—1

D = )" d; and ¢ is a small constant to avoid a zero denominator, so we choose e=0.00001.
i=1

Let the posterior expected false discovery rate denoted by F'DR(d,n) and the posterior

expected false negative rate F'NR(d;n); where

k=1
1

FDR@.p) = F5

and
k—1

7 e =y

Let posterior expected false discovery count F'D(d, n).aud the posterior expected false

negative count FN(d,n) are defined as

k-1

FD(d,n) =Y di(1-u)

1=

and
k—1

FN(d,n) =) (1 —dy)u;

i=1

Then we propose three multiple-testing procedures from Berger(1985) and Muller et

al.(2004) for testing expressions (9).



2.2.1 Method 1

The decision to accept or reject the null hypothesis according to a loss function that was

proposed by Berger (1985), which is defined as

0 if the decision taken is right,

-~

¢ if we reject Hy; when it is true,

1 if we accept Hy; when it is false,
Vs

where ¢(>0) and 1 represent the losses for making a wrong decision because of a false positive

and a false negative error respectively. In this eriterion, the loss function can be written as

Ly(d,ny=cED+FN (10)

2.2.2 Method 2
The second method isiconsider the loss function

Lp(dn) = ¢FDR-£ FNR (11)

2.2.3 Method 3
We consider the third loss function is a bivariate function
Lor(d,n) = (FDR, FNR) (12)

We can define the optimal decisions under Lyg as the minimization of F'N R subject to FDR
< e2pR.
From Muller et al.(2004), under the three loss functions, the optimal decision that min-

imizes the loss function takes the form



where t are ty = ¢/(c+1), tr(n) = u(n—p+) and top(n)=min{s : FDR(s,n) < ey} under the
loss function Ly,Lr and Lok respectively. To obtain the value of u;, the code is available in
http://www.stat.nctu.edu.tw/hwang/ranking.htm. In the expressions for ¢tz and tyR, u;
is the ith order statistic of {us,...,u,}, and D* is the optimal number of discoveries found
by the function in Muller et al.(2004). Then we according to these d; to decide expressions

(9) whether reject or not.

2.3 Ranking Responses with.Bradley-Terry Models

In this section, we introduce Bradley-Terry models with MM method (Hunter DR 2004).
Then according to result. of the method, we can rank responses sequentially. We review this

method in Section 2.3.1and 2.3.2.

2.3.1 Bradley-Terry Models

In a situation in which the individuals in a group are repeatedly compared with one

another in pairs, Bradley-Terry(1952).suggested the model

Vi
Y+

P(individual i beats individual j) = (13)

where 7; is positive-values parameter associated with individual ¢, for each of the comparisons
pitting individual ¢ against individual j. As a concrete example, consider the individuals to
be sports teams, where ~; represent the overall skill of team i.

Suppose we observe a number of pairing s among m individuals or teams and we wish
to estimate the parameters 74, ..., 7, using maximum likelihood estimation. If outcomes of

different pairings are assumed to be independent, the log-likelihood based on the Bradley-


http://www.stat.nctu.edu.tw/hwang/ranking.htm

Terry model (13) is
U(y) = Z Z[wij Iny; — wi; In(y; +75)], (14)

=1 j=1

where w;; denotes the number of times individual ¢ gas beaten individual j and we assume
w;=0 by convention. Since ¢(y)={(avy) for a>0, the parameter space should be regarded as
the set of equivalence classes R, where two vectors are equivalent if one is a scalar multiple
of the other. This is most easily accomplished by putting a constraint on the parameter
space; to this end, we assume that ), v,=1.

Now we describe an iterative algorithm to maximize ¢(y). Start with an initial parameter
vector v, There are many‘ways to select starting points;in this paper, we assume that ~("

is chosen arbitrarily. Fork=1,2,.. let

1
(k+1) " f
T Z k k 7 (15)
L«éi ey

where W; denotes the number od wins by individual ¢ and N;; =w,; + wj; is the number
of pairing between i and j. If the sesulting v*+1 vector does not satisfy the constraint

S 7<k+1) = 1, it should simply be renormalized.

K3 K3

2.3.2 Minorizing functions and MM algorithm

The strict concavity of the logarithm function implies for positive x and y that
—Inz>1-Iny — (z/y) with equality if and only if z =y (16)
Therefore, as shown in Lange, Hunter and Yang (2000), if we fix 4*) and define the function

O Vi k k
Qe(y) =D wy 1ﬂ%—m—ln(%()+7§ N+1], (17)

i=1 j=1 i j

10



we may conclude that

Qu(7) < U(v)  with equality if v = y® (18)

where ¢(7) is the log-likehood of (14). A function Qg(7) satisfying conditions (18) is said
minorize £(7) at the point v*). It is easy to verify that, for any Qu(7) satisfying the

minorizing conditions (18),

Qr(v) = Qr(v")  implies () > (W) (19)

Property (19) suggests an iterative algorithm.in which we let v*) denote the value of the
parameter vector before thetkth iteration and define 41 to'be the maximizer of Q(7);
thus v+ of (15) maximizes Qy(~)-Since this algorithm consists.of alternately creating a
minorizing function Q. (%) ‘and then maximizing it, Hunter and Lange (2000) call it an MM

algorithm.

3 Ranking Rule

In this section we introduce a criterion to rank the responses using the methods intro-
duced in Section 2. The ranking rule for the Wald test, the Generalized Score test and the
Bayesian ranking methods are similar, but they are different from the rank method with
Bradley-Terry model.

Now we first illustrate the ranking rule of the Wald test, the Generalized Score test
and the Bayesian ranking methods. Assume that we have %k responses and corresponding m,

11



value, j = 1,..., k. Let m(; be the order statistics, that is, mu) < m) <,...,m). Let
v(;) be the response corresponding to my;). It is natural to rank the importance of responses
in order of m;. That is, the most important response is v, and the second important
response is v(;—1). The proposed testing methods in Section 2.1 and Section 2.2 can be used
to rank the responses. If the hypothesis w4y = 741 is rejected, we may claim that v, is
the most important response. If it is not rejected, the two responses have same rank, that
is, the response v() is as important as the response v(;_1), and next to test the hypothesis
T(k—1) = Tr—2). Similarly, if it is rejected, we rank response v(._1) first and response v(;_o)
second. If it is not rejected, response v(,_1) and v(;_o) have same rank.

We use Question 1 as an example to illustrate the rule. For example, let m;=>54, my=49,
m3=28, my=T71, mz=23; and _then we have m =23, 2)=28, m@g=49, m4)=54, mx=T71.
It is natural to rank the importance of responsesin order of m;). 'We may claim that price
is more important than taste for consumers to purchase. However; this rank method based
on the order of m(; is not _statistically significant.  Hence, we follow the proposed rule and
use one of these methods to rank all'zresponse. First, we rank response v(s) and response
v(4), i.e. rank the response "taste” and response ”price”. If Hy; : m5) = m(4) is not reject, it
means that the response "taste” and the response "price” are equally important. Then we
test Hop : may = m(3) versus Hyp : myy # (). If Hpg is rejected ,we rank responses v(s)anduvy)
first and response v(s) third. And when hypothesis Hoz : 73y = 7o) and Hyy @ 7o) = 7,
we reject Hypz and do not reject Hypy. Then we denote the ranking notations for the above
result as "taste” 1, "capacity” 3, "packaging” 4, "price” 1, "other” 4. Hence, we know that
the response "taste” and the response ”price” are top priorities when consumers purchase a

drink, the response ”capacity” is third important factor, and the response ”packaging” and

12



the response "other” are relatively unimportant for consumers.
Next, we illustrate the ranking rule of the method with Bradley-Terry model. It is easier
than above rule. In this method, we compute all ~ values and according to the size of values,

we can obtain an order with descending. Hence, the order is the rank of these responses.

4 Simulation

In this section, a simulation study is conducted to evaluate the performance of these
methods in this section. Because the-Bayesian ranking method has prior distribution as-
sumption, it is different from other methods: Hence, we do not discuss Bayesian rank-
ing method in the simulation study.. The true rank of these responses is according to
the order of m(;. In this study, we regard two responses have the same rank if |m; —
mjy| < € where € is a constant in a, tolerance region.~We compare the ranks of the 5
methods in terms of consistent rate, which is defined as the proportion that the rank
of these methods and the true rank are consistent for n respondents in 1000 replicates.
For example, let mgo00 = 0.032, 71000 = 0.015, moo100 = 0.087, moo010 = 0.061, 7oopo1 =
0.009, m11000 = 0.008, T19100 = 0.0082, 710010 = 0.068, T10001 = 0.002, Tp1100 = 0.002, 791010 =
0.00005, 1001 = 0.0005, meo110 = 0.0005, T0101 = 0.00006, To0011 = 0.00319 ,0thers equal to
0.044 and € = 0.01, resulting m = 0.626, m, = 0.501, 73 = 0.585, 7y = 0.617, 5 = 0.479.
Thus the true is 1 4 3 1 5. We obtain a sample, and use the Wald test to obtain the

rank 1 3 3 1 5. If the rank of each response derived from the the Wald test is smaller

13



than the true rank, we call this phenomenon is consistent.
ample is consistent. The codes to run « in the Bradley-Terry models can be download
in http://sites.stat.psu.edu/~dhunter/code/btmatlab/. We apply these programs to
rank responses in a multiple response question. Since there are three codes for this method in
http://sites.stat.psu.edu/~dhunter/code/btmatlab/. The first code of using Bradly-
Terry with MM method is denoted as btmm in Tables 1-6 and in the R code section. The
second code of using Bradly-Terry with quasi-Newton accelerated MM method is denoted as
btgn in Tables 1-6 and in the R code section. The third code of using Bradly-Terry with a

Newton-Raphson method is denoted as btnr in Tables 1-6 and.in the R code section.

Then the following table is the-consistent rate for different & and n:

Table 1: The consistent rates of the 5 methods when 7 = 0.77, my = 0.28, 3 = 0.56, 7, =
0.21, w5 = 0.33, k=5 and €=0.05 for all methods and o=0.05 for the Wald test and the

Generalized Score test:

Here, the result of the ex-

VP Wald.test. .G:S._ test btmm btqn btnr
Sample size
n=100 0.997 0.996 0.682 0.682 0.682
n=200 0.999 0.999 0.814 0.814 0.814
n=300 0.999 0.999 0.879 0.879 0.879
n=500 1 1 0.951 0.951 0.951
n=800 1 1 0.968 0.968 0.968
n=1000 1 1 0.992 0.992 0.992

14
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Table 2: The consistent rates of the 5 methods when m; = 0.77, m, = 0.28, 73 = 0.56, m, =
0.21, w5 = 0.34, m = 0.43, k=6 and ¢=0.05 for all methods and a=0.05 for the Wald test

and the Generalized Score test:

Method | ol test G.S. test btmm  btqn  binr
Sample size
n=100 0.098 0998 0578 0578 0.578
n=200 0.999 0999  0.796 0.796 0.796
n=300 1 1 0869 0.869 0.869
n=500 | | 0.95 095 095
n=800 1 | 0.9 099 0.99
n=1000 1 10992 0992 0.992

Table 3: The consistentrrates.of the 5 methods whena = 0.77, o= 0.28, 73 = 0.56, 74 =
0.21, 75 = 0.34, g =043, 7, = 0.12, k=7 and €=0.05 for all methoeds and «=0.05 for the
Wald test and the Generalized Score test:

7\ Wald test  G.S.test btmm btqn btnr
Sample size
n=100 0.999 0.999 0.528 0.528 0.528
n=200 0.999 0.999 0.772 0.772 0.772
n=300 1 1 0.865 0.865 0.865
n=500 1 1 0.946 0.946 0.946
n=800 1 1 0.979 0.979 0.979
n=1000 1 1 099 0.99 0.99
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Table 4: The consistent rates of the 5 methods when m; = 0.77, m, = 0.28, 73 = 0.56, w4 =
0.21, 5 = 0.34, g = 0.43, 7, = 0.12, w5 = 0.5, k=8 and ¢=0.05 for all methods and a=0.05
for the Wald test and the Generalized Score test:

Method | ol test G.S. test btmm  btqn  binr
Sample size
n=100 0.099 0998 0355 0.355 0.355
n=200 0.099 0999  0.626 0.626 0.626
n=300 1 1 0796 0796 0.796
n=500 | | 091 091 0091
n=800 1 1. 4.0972 0972 0972
n=1000 1 1. 0.985 0985 0.985

Table 5: The consistentrrates.of the 5 methods whena = 0.77, o= 0.28, 73 = 0.56, 74 =
0.21, 75 = 0.34, g = 043, 7 =0.12, 78 = 0.5, 19 = 0.9, 719 = 0.62, k=10 and ¢=0.05 for
all methods and =0.05 for the Wald test and the Generalized Score test:

7\ Wald test  G.S.test btmm btqn btnr
Sample size
n=100 0.998 0.998 0.251 0.251 0.251
n=200 0.999 0.999 0.524 0.524 0.524
n=300 1 1 0.684 0.684 0.684
n=500 1 1 0.879 0.879 0.879
n=800 1 1 0.957 0.957 0.957
n=1000 1 1 0.985 0.985 0.985

Next, we compare the Wald test and the Generalized Score test for different . Then
the following tables are the consistent rates of the Wald test and the Generalized Score test

for different «:
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Table 6: The consistent rates of the Wald test and the Generalized Score test when m =
0.77, my = 0.28, m3 = 0.56, my = 0.21, 75 = 0.34, k=5 and ¢=0.05:

Sample size
n=100 n=200
Method Wald test G.S. test | Wald test G.S. test

Significant level a

a=0.15 0.984 0.984 0.996 0.996
a=0.1 0.99 0.991 0.997 0.997
a=0.05 0.997 0.996 0.999 0.999
a=0.01 0.999 0999 1 1

Table 7: The consistent rates of the-Wald test and the. Generalized Score test when
0.77, my = 0.28, w3 = 0.56, mg="0.21, 75 = 0.34, g = 0.43, 77 = 0.12, k=7 and ¢=0.05:

Sample size
n=100 n=200
\X'y Wald test G.S. test | Wald test G.S. test
Significant level a
a=0.15 0.992 0.992 0.997 0.997
a=0.1 0.994 0.994 0.997 0.997
a=0.05 0.999 0.999 0.999 0.999
a=0.01 1 1 1 1
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Table 8: The consistent rates of the Wald test and the Generalized Score test when m =
077, Ty = 028, T3 = 056, Ty = 02]_, s = 0347 g = 043, T = 012, s = 05, g =
0.9, m = 0.62, k=10 and ¢=0.05:

Sample size
n=100 n=200
Method Wald test G.S. test | Wald test G.S. test

Significant level «

a=0.15 0.992 0.992 0.998 0.998
a=0.1 0.997 0.998 0.999 0.999
a=0.05 0.998 0998 0.999 0.999
a=0.01 1 1 1 1

According to above results;we-find that consistent rate decreases as the number of
responses increase for the methods with Bradley-Terry model when n is not enough large.
When the sample size is-large, the results of these methods are almost consistent. In com-
paring the Wald test andthe Generalized Score test for different. cv, consistent rate increases
when « decreases. Although‘the consistent rate is.not high for small sample size case, it
still has good result for large sample size case. It reveals that these methods are feasible in

ranking responses when the sample size is not small.

5 R code

These ranking procedures has been written as a package RankResponse for R. RankRe-

sponse is available from the Comprehensive R Archive Network at http://CRAN.R-project.
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http://CRAN.R-project.org/package=RankResponse

org/package=RankResponse, which include code function rank.wald, rank.gs, rank.LR, rank.LN,

rank.L2R, rank.btmm, rank.btqn and rank.btnr.

rank.wald Rank responses based on the Wald test

Description

Rank responses of a single response question or a multiple response question by the Wald
test procedure.
Usage

rank.wald(data,alpha,type=2)

Argument

data A m X numatrix (d;;), where d;; = 0.or 1. If the ith respondent
selects the jth response, then'd;; =1, otherwise dj; = 0.

alpha The significance level used in the Wald test.

type type=1 for a single respense question;

type=2 for a multiple response question.
Value

The rank.wald returns the estimated probabilities of the responses being selected and
the ranks of the responses by the Wald test procedure.
References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied
Statistics, 35, 465-474.

Examples
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## This is an example to rank three responses in a multiple response
## question when the number of respondents is 1000 and the signifi-
#+# cance level is 0.05.In this example,we do not use a real data, but

#+# generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.wald(data,alpha,type=2)

rank.gs Rank responses based on the Generalized score test

Description

Rank responses of a single response question or a multiple response question by the
generalized score test procedure.
Usage

rank.gs(data,alpha,type=2)

Argument
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data A m X n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
alpha The significance level used in the Generalized score test. Value
type type=l1 for a single response question ;

type=2 for a multiple response question .

The rank.gs returns the estimated probabilities of the responses being selected and the
ranks of the responses by the Generalized score procedure.
References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied
Statistics, 35, 465-474.
Examples

#+# This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000 and the signifi-

#+# cance level is 0.05.In this example,we donot use a real data, but

## generate data in thefirst.three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.gs(data,alpha,type=2)
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rank.btmm Rank responses based on the Bradley-Terry model with the

MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in
a multiple response question with the MM method. This method associates each response
with a value v, and use the v value to rank responses.
Usage

rank.btmm(data)

Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btmm returns the associated 4 values in the first line and the ranks ofthe
responses in the second line.
References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples

#+# This is an example to rank three responses in a multiple response

#+# question when the number of respondents is 1000. In this example,

#+# we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)
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B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)
C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)
D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btmm(data)

rank.btgn Rank responses based on the Bradley-Terry model with the

quasi-Newton accelerated MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question orin a
multiple response question with quasi-Newton and the MM method. This method associates
each response with a value 7, and use the « value to rank responses.
Usage

rank.btqgn(data)

Argument

data A m X n matrix (d;;), where d;; = 0 or 1. If the sth respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btqn returns the associated v values in the first line and the ranks of the re-
sponses in the second line.

References
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Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples
#+# This is an example to rank three responses in a multiple response
#+# question when the number of respondents is 1000. In this example,
## we do not use a real data, but generate data in the first three lines.
A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)
B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)
C <-sample(c(0,1),1000,p=¢(0.22,0.78),replace=T)
D <-cbind(A,B,C)
data <-matrix(D,nrow=1000,ncol=3)
# or upload the true data

rank.btqn(data)

rank.btnr Rank responses based-on the Bradley-"Terry model with New-

ton Raphson method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in
a multiple response question with Newton-Raphson method. This method associates each
response with a value v, and use the v value to rank responses.
Usage

rank.btnr (data)
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Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btnr returns the associated v values in the first line and the ranks of the re-
sponses in the second line.
References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples

## This is an example to rank three responses in a, multiple response

## question when:the number of respondents is 1000. In this example,

## we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0:78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btnr(data)

rank.LN Rank responses under the Bayesian framework according to

the loss function Ly(d,n) = cFD + FN
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Description

Rank responses of a single response question or a multiple response question under the

Bayesian framework according to the loss function Ly(d,n) = ¢cFD + FN.

Usage

LN(data,response.number,prior.parameter,c)

Argument

data

response. number

prior.parameter

C
Value

The rank.LN returns the estimated probabilities of the responses being selected in the

A 'm x n matrix (d;; )y where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
d;; = 0

The number of the responses

The parameter vector of the Dirichlet prier distribution,
where the vector«dimension is 2responsgnumber

The value of ¢ in the loss function

first line and the ranks of the responses in the second line.

References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response

Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,

191-208.

Examples

##This is an example to rank three responses in a multiple response
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##question when the number of respondents is 1000 and the value c is
#+#1. In this example, we do not use a real data, but generate data in
#+#the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncel=3)

# or upload the true data

response.number <-3

prior.parameter <s¢(5,98,63,7,42,7,7.7)

c <-1

rank.LN(data,response. number,prior.parameter,c)

rank.LR Rank responses under the-Bayesian framework according to

the loss Lr(d,n) = cFDR+ FNR

Description

Rank responses of a single response question or a multiple response question under the
Bayesian framework according to the loss function Lg(d,n) = cFDR + FNR.
Usage

rank.LR(data,response.number,prior.parameter,c)

Argument
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data A m x n matrix (d;;), where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
d;; = 0.

response.number The number of the responses

prior.parameter The parameter vector of the Dirichlet prior distribution,
where the vector dimension is 2response-number

C The value of ¢ in the loss function

Value

The rank.LR returns the‘estimated probabilities of the responses being selected in the
first line and the ranks of the responses in the second line.
References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response
Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,
191-208.
Examples

##This is an example to rank three responses in a multiple response

#+#question when the number of respondents is 1000 and the value c is

#+0.33. In this example, we do not use a real data, but generate data

#+#in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-chind(A,B,C)
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data <-matrix(D,nrow=1000,ncol=3)
# or upload the true data
response.number <-3

prior.parameter <- ¢(5,98,63,7,42,7,7,7)
¢ <-0.33

rank.LR(data,response.number, prior.parameter,c)

rank.L2R Rank responses. under the Bayesian framework according to

the loss Log(d,n) = (FDR;FNR)

Description

Rank responses of a single response question or a multiple response question under the
Bayesian framework according to, the loss function Log(d,n) = (FDR, FNR).
Usage

rank.L2R(data,response.number;prior.parameter,e)

Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
dij - O

response.number The number of the responses
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prior.parameter The parameter vector of the Dirichlet prior distribution,
where the vector dimension is 2response.number

e A cut point used in the loss function which depends on

the economic costs.
Value

The rank.L2R returns the estimated probabilities of the responses being selected in the
first line and the ranks of the responses in the second line.
References

Wang, H. and Huang, W.“H. (2014). Bayesian Ranking Responses in Multiple Response
Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,
191-208.
Examples

##This is an example to rank three responses in a multiple response

##question when the number of respondents is 1000 and the value e is

#+#0.15. In this example; we domot use a real data, but generate data

#+#in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

response.number <-3

30



prior.parameter <- ¢(5,98,63,7,42,7,7,7)
e <-0.15

rank.L2R(data,response.number,prior.parameter,e)

6 Conclusion

In this thesis, our goal is rankingresponses of a-single response question or a multiple
response question. We proposed some methods to solvethis problem. For ranking responses,
the simulation results in Section 4 show that the proposed methods have good performance.
Although these methods are not consistent for small sample size, their performances are very
good for large sample 'size. In real applications, the sample size of responses is usually not
very small, these methods are feasibledin apply to real applications. According to the simu-
lation results, the consistent rates of the Wald test and the generalized score test are larger
than the method with Bradley-Terrynmodel. Henceywe conclude that the Wald test and
the generalized score test are more powerful than the method with Bradley-Terry model on
ranking responses. We do not discuss Bayesian ranking responses method in the simulation
study, because the other methods are under frequentist setup, but the Bayesian method is
under the Bayesian framework. The codes of these methods has been written as an R package

such that it is more convenient for readers to use them.
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