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Abstract
We observe that the classical mediation analysis gives the direct

effect involving the inputs of mediated variable leading that the direct
effect and indirect effect do not serve their roles appropriately. We then
propose a new mediation analysis with interaction identification for
determining a clean direct effect for defining the total effect and then the
effect decomposition. Power comparison between the Baron and Kenny’
s test and a new test based on our-approach for indirect effect detection
has been done and their corresponding efficiencies for detection are
displayed. A new indirect effect proportion then is proposed for further

investigation.
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Statistical Mediation Analysis

Abstract

We observe that the classical mediation analysis gives the direct effect involv-
ing the inputs of mediated variable leading that the direct effect and indirect
effect do not serve their roles appropriately. We then propose a new mediation
analysis with an interaction identification for determining a clean direct effect for
defining the total effect and then the effect decomposition. Power comparison
between the Baron and Kenny’s test and a new test based on our approach for
indirect effect detection has been'done and their.corresponding efficiencies for
detection are displayed. A"new indirect effect proportion then is proposed for

further investigation.

1. Introduction

Since Woodworth (1928), effect decomposition (mediation analysis), with de-
compose the total'effect of an exposure (independent) variable on the response
(effect) variable intothe effect that go directly (direct effect) and the effect that
is influenced by a mediator variable (indirect effect), has been extensively stud-
ied and used in psychological science for more than 80 years. It is now also very
popular in social science (Geneletti (2007)) and fast-growing in medical and epi-
demiology studies relevant to the design of elinical and public health interventions
(Laan and Petersen (2008) and Richiardi, Bellocco and Zugna (2013)).

In many studies of estimating and testing the mediation effects, Baron and
Kenny (1986) proposed the causal steps regression approach that requires con-
ditions for establishing mediation. Because of its simplicity for understanding
and implementing, this approach is very influential and widely used. Once these
conditions are satisfied, it needs to quantify the indirect effect to be tested for
significance (Sobel (1982)). There are criticisms for this traditional approach
such as bias effect estimates and without natural extension to non-linear models
are observed (Robins and Greenland (1992) and Richiardi, Bellocco and Zugna
(2013)). In a Monte Caro simulation by MacKinnon et al. (2002), it is ob-

served that the condition requiring that response and exposure variables has to
1



be correlated is not correct indicating that this approach may miss some true
mediation effects. This problem has also been tackled extensively in the causal
inference literature by using counterfactual framework (Robins and Greenland
(1992), Pearl (2001), Robins (2003) and van der Lann and Petersen (2008)).
This approach is also debatable for that it involves many untestable assumptions
(Geneletti (2007)).

Although considerable effects has been devoted to the possibility of undesired
behavior in statistical inference for Baron and Kenny’s conditions and induced
inferences methods for indirect effect detection, there is no satisfactory alterna-
tive mediation analysis technique for use. From.our view, the disadvantages are
resulted from the fact that<we have not known enough to the unknown mech-
anism of cuasual relationship for creation of these effects. We propose a para-
metric study of mediation analysis'by introducing the underlying distribution
of involved randomsvariables into-the regression framework, not been treated in
this field, that allows us to structure analysis in two parts. First, for this tra-
ditional mediation-analysis, the correct conditions for presence of indirect effect
can be drawn theoretically. We observe that significance for correlation between
exposure and mediator variables is the only condition to be satisfied when the
underlying distribution is true. This indicates that conditions for this presence
must be case by case and conservative approach of maximizing the number of
conditions in the classical one is not.surprised in sacrificing its power perfor-
mance. We then propose a corrected version of Baron and Kenny’s approach for
effect decomposition and inference methods development. As a consequence of
parametric study, the unknown total, direct and indirect effects can be estimated
with best asymptotically normal estimators and tests for statistical hypotheses

of these effects can be developed with the derived asymptotic distributions.

Second and most importantly, the traditional approach interprets the expo-
sure coefficient for (multiple) regression model with conditioning on values of
exposure and mediator variables as a direct effect. But this parametric approach
shows that the size of this exposure coefficient is dependent on the true values
of the distributional parameters of mediator variable indicating that statistical

mechanism for mediation not only through variable’s given values but also its



parameters. This traditionally unaware unclean direct effect then induce the
indirect effect also unclean. We then develop a refined version of Baron and
Kenny’s approach for developing conditions for clean indirect effect and use them

to construct inference methods for this indirect effect.

2. Statistical Theory for Classical Effect Decomposition Methods
2.1. Verification of A New Baron and Kenny’s Conditions

Suppose that we have response (effect) variable Y, exposure (independent)
variable X and mediator (intermediate) variable M.

The paths that exposure variable X _and mediation variable M affect the

response variable Y can be described in the following figure.

M

N

X Y

v

Effect decomposition (mediation analysis) involves to ddentify the total effect
of X on Y, the part of total effect because X influences N which in turn in-
fluences Y (indirect effect) and the.effect of X unexplained by this variables M
(direct effect). The direct and“indirect effect together form the total effect of
X on Y. The approach of Baron and Kenny (1986) for mediation analysis is
most widely-used that considers a series of tests for regression coefficients of all
paths (regression models) for inferencing the existence of indirect effect that is
summarized by Howell (2009) as follows:

Step 1. Test hypothesis Hy, : 814 = 0 vs Hi4 : 14 # 0 for significance of the

simple linear regression model

y(ZC) = BOa + Blax + €a (21)

describing the path (X — Y') requiring Hy, to be rejected to confirm that X is

a significant predictor of the response variable Y.



Step 2. Test hypothesis Hop : 815 = 0 vs Hyp : B1p # 0 for significance of the

simple linear regression model

m(z) = Bop + B1pT + €p. (2.2)

describing the path (X — M — Y) requiring H, to be rejected to confirm that
X is a significant predictor of the mediator M.

Step 3. Consider the following multiple linear regression model

y(z,m) = Boc + B1rcT + Pacm + €. (2.3)

Performing the test for hypothesis - Hy.: B2 = 0.vs Hi. : B2, # 0 requiring
Hy. to be rejected to confirm that the partial effeet. of M must be significant.

The effect relationships among variables following this series of tests may be
explained in the followings (Howell-(2009) and Hayes (2009)):

(a) If it shows significant evidence-to reject Hy, in step 1, it defines 31, as total
effect for possible decomposition into direct and indirect effects.

(b) If one or more hypothesis in steps 1 - 3-are not rejected, researchers usually
conclude that indirect effect does not exist.

(c) If three hypothesis in steps 1 - 3 are rejected, indirect effect exists. If hypoth-
esis Hy. : B1c = 0 vs Hy.: B # 0 is not rejected, there is eomplete mediation
and if it is rejected, thereds partial mediation.

We consider here the problem that hew many conditions is required for pres-
ence of indirect effect. With decision error generated when a hypothesis is tested,
the more tests in order to claim an indirect effect, the more errors to be generated.
This situation of lower power (Fritz and MacKinnon (2007) and MacKinnon et al.
(2002)) could be even worse when number of exposures or mediators increases.
Our concern is correct since as observed by MacKinnon et al. (2002) with Monte
Carol simulation that the condition that Y and X has to be correlated is not
correct.

Within the framework of series of regression models (2.1)-(2.3), it is seen the

following coefficient decomposition

/Bla = ﬁlc + ﬁlbﬁZc (24)



holds when the underlying distribution of variables Y, X and M are jointly nor-
mal. Then, following the path analysis, usage of models leads to the following

effects identification (decomposition):

Total effect: Tpx = Bic + BivP2e
Direct effect: D = Bic (2.5)
Indirect effect: IDpr = B1pS2¢

satisfying that the sum of direct effect and indirect effect is equal to the total
effect.

Now suppose that Y, X and M has a joint normal distribution as

Y fhy 05 Oyz  Oym
X /" NS( Mz , Oxy 0325 Ozm ) (26)
M Um Omy  Oma Ur2n

for verification of Baron and Kenny’s conditions. Denote

= | R

61(9) — O-ymo'g@ U O'ymo'xm, 62(9) — Ume;% B Uymaxm

L VA 22 __4~2
020m, Orm 020m Ozm

where 6 = (uy,ux,um,Jg,ag,ofn,aym,aym,axm).
The following theorem gives parametrized regression parameters of models
(2.1)-(2.3).

Theorem 2.1. Suppose that the underlying distribution is normal.

(a) The regression parameters for regression function of Y given X = z of (2.1)

includes
o o
_ yx _ Oya
ﬂOa—,U/y_ 2 MI, /81(1_ 2
O-LE O-ZZ?
2 2 2 _ 9,
J— yxr
and €, ~ N(0,07) where 0; = 0 — o5

(b) The regression parameters for regression function of M given X = x of (2.2)

includes

Bob = pm — —5 Ha, P1v = —3
O-CL' O’m




2
and €, ~ N(0,07) where 0} = 07, — 3=,
x

(¢) The regression function for ¥V given X = x and M =m is

(,m; 6) = Bo(6) + B1 () + Ba(0)m (2.7)

Hence Bo. = Bo(0), B1e = B1(0), B2e = B2(0). and e, ~ N(0,02) where 02 =
9 o2 Oum - Oy
Oy — (Oyz, Oym) O Ugn Tym )

Proof. The result in (c) are induced from Chen et al. (2013) and the others are
trivial. O

We now are ready to give a theoretical verification of Baron and Kenny’s

conditions for existence of indirect effect and-mediation.

Theorem 2.2. Suppose that the underlying distribution issnormal. The effects
can be decomposed following the Baron and Kenny (1986)’s approach as

Total effect (Bic =+ Bipbac) :

(O'ymo';% - aymamm) O zm (nyafn B Uymaxm)

K S e e | T o2t
__Oyz
=2
g 0'2 — O g
Direct effect (8y0).: Dpr = —2* o Lllad” 4 (2.8)

2 _ 42
020m Om

2
(aymgm A Uymawm) Oxm
252 _ 42 2
020m Orm 0%

Indirect effect (B1p02) : IDBr-=

We first examine the Baron and Kenny’s condition for presence of indirect
effect.

Theorem 2.3. The indirect effect under the Baron and Kenny’s conditions are:

Uymo—a:m 3
55 5 lf g =0
0RO =0om Y7
IDpy = 02 it oz =0
Oyzr T, 3 —
if oym =0
oZoZ,—oZ, 1 Tum

Proof. It is straight forward but careful re-arrangements. [J

This shows that the existence of partial mediation or complete mediation

(Howell (2009)) does not require all hypothesis in three steps to be rejected.
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This also confirms the observation of MacKinnon et al. (2002) that Y and X are
not necessary to be associated but in addition that Y and M are not necessary
for presence of indirect effect. Combining the results in (a) and (c), a new Baron

and Kenny’s rule for indirect effect identification is:

Indirect effect I Dpiexists if Hy, for model (2.2) is rejected. (2.9)

We consider (i, i, tm) = (2,3,3) and o) = 03 = o, = 2 to conduct a

Monte Carlo simulation to evaluate the powers of the classical Baron and Kenny’s
three conditions test and the above new test for claiming an indirect effect. The

simulated results are displayed in Table 1.

Table 1. Power performance for refined and classical indirect effect detection

Oum, O = B-K Revised B-K
Opm =0 0 0.0480 0.050
Ozm = 0.2 0.3 0.049 0.081
0.7 0.060 0.081
0.9 0.076 0.081
Ozm = 0.8 0.3 0.055 0.611
0.7 0.127 0.611
0.9 0.250 0.611
Ozm = 1.0 0.3 0.055 0.825
0.7 0.131 0.827
0.9 0.256 0.826
Opm = 1.2 0.3 0.055 0.955
0.7 0.122 0.955
0.9 0.228 0.955

From our investigation, expressing effect decomposition in terms of distribu-
tional parameters is desired for each specific underlying distribution for develop-
ing correct conditions for improving power performance for claiming an indirect
effect.

When both direct and indirect effects are identified, a measure of the propor-
tion mediated is sometimes calculated as the ratio of the indirect effect to the

total effect (Ditlevsen, et al. (2005) and Hafeman (2009)). This measure in some
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sense captures how important the pathway through the intermediate is in ex-
plaining the actual operation of the effect of the exposure on the outcome. This
implicitly assumed that all effects are positive values. In the following table, we

present the total and indirect effect when the underlying distribution is normal.

Table 2. Total and indirect effect

(O-ymvo-yw) TBK IDBK
Oem = 0.2
(0.6,0.8) 0.4 0.026
(0.8,0.2) 0.1 0.039
(0.8,0.4) 0.2 0.038
(0.8,0.8) 0.4 0.036
Oem = 0.6
(0.8,0.2) 0.1 0.122
(0.8,0.4) 0.2 0.112
(0.8,0.6) 0.3 0.102
Oem = 018
(0.2,0.6) 0.3 —0.010
(0.2,0.8) 0.4 —0.029
(0.6,0.2) 0.1 0.124
(0.8,0.2) 0.1 0.171
Opm = —0.2
(0.6,0.6) 0.3 —0.033
(0.6,0.8) 0.4 —0.034
(0.8,0.6) 0.3 —0.043
(0.8,0.8) 0.4 —0.044
Oem = —0.8
(0.2,0.2) 0.1 —0.067
(0.4,0.4) 0.2 —0.133
(0.6,0.6) 0.3 —0.200
(0.8,0.8) 0.4 —0.267

We have two comments:

(a) Indirect effect could be negative value when direct effect is larger than the
total effect. Then the ratio of indirect effect is also negative when (1, is small or
direct effect is large enough.

(b) Indirect effect could have value larger than the total effect such that the ratio
of indirect effect is larger than one when 5. < 0.

We often call the presence of mediation effect (Fairchild and MacKinnon



(2009)) if there is nonzero indirect effect. It is seen that it is not always dangerous

for presence of mediation effect, depending on its sign.

Definition 2.4. We say that there is synergistic mediation effect if IDgg > 0

and antagonistic mediation effect if IDgg < 0.

2.2. Statistical Properties for Estimators of Baron and Kenny’s Effects

Effects of (2.5) are generally estimated by least squares estimators of the
corresponding parameters and hypothesis testing for effect parameters are done
by assuming that the parameter estimators are normally distributed to develop
the scale estimator of the effect estimator. For example, to deal with hypothesis of
presence of indirect effect as Hy : B1p32-= 0y researchers have done (Sobel (1982),
Aroian (1944) and Goodman (1960)) to develop the asymptotic distribution of
the product of two normal distributions of least squares estimators of 31, and
Bae. With our approach scale estimator of any effect, estimator or their functions
are much easier to:develop.

We denote the sample means (g, z,m)" = % S i1 (i, @i, m;)" and the sample

2 - _ /
Sy Syx | Sym ) Yi =Y Yi—Y
. . n = _
covariance matrix "\ sy, S22  sgm | = g Poiey | T T T, — T
Smy.  Sme sfn my; —m m; —m

Let 6 be the maximum likelihood estimator of parameters'¥. The maximum

likelihood estimators of direct.and indirect effect are; respectively,

2
Symsm — Symswm
2g2 _L o2
S25m Srm

DBk mie =

2
(Symsa: - Symsxm) Sxm
2e2 _ o2 2
528m Sam Sz

IDBK mie =

The following theorem states the asymptotic distributional theory for the max-

imum likelihood estimators.

Theorem 2.5. (a) We have nl/Q(DBK,mle — Dpgk) convergent in distribu-
tion to a normal distribution N(0,Y,) with asymptotic covariance matrix ¥4 =

8?%‘/98%3;1(, where Vy = —[E(9%logpn (X,Y)/00060")] 71 is the Cramer-Rao’s

lower bound for 6 and ¢y (Y, X, M) is the probability density function of the nor-

mal distribution for Y, X and M. Hence Dp K mie(x) forms a best asymptotically

normal estimator of unknown Dp ().
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(b) We have nt/ 2(1 Dp i,mie — I Dpr) convergent in distribution to a normal dis-

o . . . . 1D
tribution N (0, ¥;4) with asymptotic covariance matrix ;5 = oI (%?K Vga 50 -

Hence I D BK,mle forms a best asymptotically normal estimator of unknown I Dpg.

Optimal properties of the least squares estimators for direct and indirect effects

are implied from the following theorem when normality assumption holds.

Theorem 2.6. Let Bob and Glb be the least squares estimators of By, and (1p.
Then, under the normality assumption, ﬁBK = Blc and IDBK = BleQC and

then they are also best asymptotically normal.

Proof. The least squares estimators {Boc, Bie, Bgc} for regression model of (2.3)
are also maximum likelihood estimators for this regression model summing that
€. is normal of zero mean and constant variance. On the other hand, the max-
imum likelihood estimator 6,,7s for distribution of Y, X and A in (2.6) makes
{Bo(0), B1(0), B2(0)Y = {Bo(Omic)sB1 Bsmte)sB2(0rmze)} the maximum likelihood
estimator of {5(0);81(0),P=2(0)} for regression model (2.7) that has a normal
error variable. This indicates that {Bg(0),81(6), 52(0)} and {Boc, Bic, Bac} are
identical which further implies that Blc = Bl (0) (direct effect) and Bgc = Bg(@).
Analogous discussion for model of M givenr X©=_x can be done to finish the

theorem. [
We have several comments from the above theorem:

(a) The least squares estimator of the product of coefficients to be best asymp-
totically holds only occasionally. If the distribution of underlying distribution of
variables involved is no-longer normal, the theory may be different. However, the
optimality properties always hold for Dgk and IDpk if they are derived from

the process stated in this paper for any underlying distribution.

(b) The test statistics based on least squares estimators of coefficients such as the
commonly used one of Sobel (1982) and some others as Aroian (1944) and Good-
man (1960) all assume that this product of least squares estimators is asymptoti-
cally normal. However our theory verified that this is certain when the underlying

distribution is normal but not certain for other situations.

Let f]id be the maximum likelihood estimator of ¥;;. A test for hypothesis
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HO . IDBK(.%) =0 is:

1/2717
n IPBK| -

Via :

_ IDpg

rejecting H if

TBK

3. A New Mediation Analysis
Is the classical specification of total, direct and indirect effects statistical ap-
propriate? When the variables Y, X and M follows the normal distribution (2.6),

the direct effect and total effect are respectively as

O 2O g g (oF
~_YyxzUm ymYaxm . Oyx
DBK = 5 o 5 and TBK S (31)
(G o (o=

If there is a unit change in X, it-is expected that the direct effect measures only
the direct (no-mediation) impact on response ¥, unfortunately, the magnitude
of this impact Dpx involves distribution parameters {oym,, Oz, 07271} related to
mediator M indicating that this effect is mixed with effect of association between
X and M. On the other hand, the total effect is supposed to contain effect of X
mediated and not-mediated by variable M. Unfortunately this magnitude influ-
enced by X Tpg dose not.involve distributional parameters related to mediator
M indicating absence of mediation. This ¢lassical effect specification does not
give precise direct and indirect effects. This also indicates that the commonly
used test statistics of Sobel (1982), Aroian (1944) and Goodman (1960) and
many others may lead to in-correct conclusion for indirect effect. Beneficial from
parametrization of regression function, uncontroversial specification of indirect
effect can be specified with correct derivation of statistical interaction.

We assume that Y, X and M have a joint distribution with probability density
function f(y,x, m,0) where 0 is vector of unknown parameters. We further as-
sume that the parameter vector # my be partitioned based on association between
variables into no-association vectors {6,,6,,6,,}, two-variables association vec-
tors {0ye, Oym, Ozm } and three-variables association vector {0y } where 0. .jca

is set of association parameters involved all variables Z;,j € A. This criterion
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for parameters partition work for most interesting multivariate distributions. For
examples, if the joint distribution of Y, X and M is multivariate normal or mul-

tivariate t distribution, the parameter vector 6 is vector of population mean
2

Ky Oy Oyz  Oym
vector | g, | and covariance matrix | o,, 02 0y |- Then we have the
2
Hm Omy Omx (o
no-association parameter vectors {6,,60,,60,,} = {( "5 ), "5 )., "5 |}, two-
oy, o o,

variables association parameter vectors {0y, Oym, Ozm } = {{oyz}, {oym}, {oem}}
and empty set for three-variables association parameters.

Let u(x,m;0) be the conditional mean of Y given X = x and M = m. We
consider additivity of control values X = x and M = m for specification of total

effects of explanatory and:mediation variables.

Definition 3.1 We say that regression function is total effect decomposable if

the regression function is
p(x,m;0) = g(0) + T, (0)x + T, (6)m. (3.2)

In this case, we say that T, (0) and T,,(0) are, respectively, the total effects of

exposure and mediator variables.

A common feature of decomposition in linear model of effects contributed by
explanatory variables is that their combined effect” (sum of separated effects)
has to be the conditional mean of response variable ¥ . For example, the group
mean in analysis of variance is the sum of main effects and interactions and, in
multiple linear regression model, the regression function is the sum of univariate
terms 7 and x5 (for main effects) and product term ziz5 (for interaction). The
specification of total effects in (3.2) does confirm this expectation. But the Baron
and Kenny’s framework does not indicates this expectation.

If the total effect T, (f) involves distributional parameters of mediator M, it
contains effect mediated by M requiring for disentangling the interrelationships
between variables from total effect decomposable regression function of (3.2).
Denoting parameter sets 6,, = {0,,0,,} and 6y, = {0, 0yn}, obviously 6,,
and 6, respectively are sets of distributional parameters that are considered

with contribution of X on Y and of M on Y, not mediated by other variables.
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An application for interaction identification in Chen et al. (2013) is to used for

direct and indirect effects identification.

Definition 3.2. (a)Suppose that there exists a minimal function of parameters
G(0), denoting its dimension as ¢, such that the regression function given G(6) =

0. can be decomposed as
p(z,m,0|G(0) =0.) = g(8) + Dy(8yz)x + Dy (Oym)m. (3.3)

We say that p(x,m,0|G(0) = 0.) is the no-interaction regression function
and G(0) is the intercorrelation parameter set. We call D, (6,,) and D,,(0ym),
respectively, the direct effectsof exposure and mediator variables.

(b) We call ID, =T, —.Dy(0yz) and ID,,, = T}, —Dpm(0y,) the indirect effects
of X and M.
(c) We say that thereiis no mediation effect it T, = D, (6,») leading to ID, = 0.

The intercorrelation parameter set-contributes the indirect effects of exposure
X and mediator M. But I D, is pure indirect effect of exposure X.

Now, consider the normal distribution for variables Y, X and M of (2.6).

Theorem 3.3. (a) Under the normality assumption, we hayve the total effects as

2 2
Oyz0 — O0ymOzm OymOs — OyzOxm
v, o 2t and T,, = L= =4

A o N 200 " 2
020%m, Orm 92%m Ozm

Renoting T, = T'(#), hence, T}, is the total effect.
(b) The ineraction parameter is G(0) = {ozm } and the induced regression func-
tion is

g g
u(wym,;0) = py + —5 (@ = prz) + —5=(m — pim)

€T m

indicating that the direct effect is

D, = 2% and D,, = 24" (3.4)

which is a function of 0,, only and the indirect effects are ID, =T, — D, with

2 2
OyxO — OymOzm Oyx OymOy; — OyxOzxm Oym
IDx — “Yr"m Y Yy and IDm — Y T Y Y

242 _ 42 2 242 _ 42 2
0z0m Ozm 0% 0z0m Ozm Om
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Proof. The conditional mean of M given X = z is u(z,0) = pim + 22 (2 — py)

that gives (a). O

This direct effect D, = oy, /02 is identical to (81, of (2.1) that makes sense
for it measures the effect of X on Y in the environment that mediator is not
involved. Similarly, D,, = oym/ afn is identical to the regression coefficient (514

in model y = Bog + Biam + €. that measures the effect of mediator M on Y in

the environment that X is not involved.

We denote the total effect as a ratio between the new total effect and classical

total effect in the following

Tk

re = .

T

Table 3. Total effect ratio and indirect effects of new. decompositions

(Oyms Oya) T ID,
Ozm = 0.6

(0.4,0.4) 0.765 —0.046
(0.4,0.6) 0.87 —0.036
(0.4,0.8) 0.932 —0.026
(0.6,0.2) 0.1 —0.089
(0.6,0.4) 0.6 —0.079
(0.6,0.6) 0.76 —0.069
Ozm = 0.8

(0.6,0.4) 0.45 —0.104
(0.6,0.6) 0.7 —0.085
(0.6,0.8) 0.832 —0.066
(0.8,0.2) 0.235 —0.171
(0.8,0.6) 0.553 —0.133

The total, direct and indirect effects adjusted with interaction are generally
varying in the underlying distribution. The derived indirect effect allows us to es-

tablish new Baron and Kenny’s conditions of mediation analysis for identification

of clean indirect effect.

Theorem 3.4. Baron and Kenny’s conditions are true for o, = 0 and o4, = 0.

In specific, we have the followings:
(a) When o, = 0 we have ID, =
(b) When o, = 0 we have ID, = 0.

OymTxm

T 5252 _52
ozo o

m Tm
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(c) When o, = 0 we have

o2 1

ID, =0yp(—5""— — —
=l — o, o)
This study gives a refined two steps tests of Baron and Kenny’s approach to

identify the clean indirect effect as follows:
If hypotheses for model (2.2) is rejected, indirect effect exists. (3.5)

This refined direct and indirect effects are no longer equal to (1. and B1p0B2c,
respectively. Hence, their asymptotic distributions are varied. The maximum

likelihood estimators of direct and indirect effect may be defined as:

~ S
Dey 9
2
A S 1
1D, = s, (-t <0 Y

202 _ G2 2
Sz5m Szm Sz

Theorem 3.5. (a) We have n/2(D,—D;) convergent in distribution to a normal
distribution N (0, ¥;) with asymptotic covariance matrix 3; = %%Vg 88%, where
Vo = —[E(0%logpn(X,Y)/0000")] 7! is the Cramer-Rao’s lower bound for § and
on (Y, X, M) is the probability density function of the normal distribution for
Y, X and M. Hence D, forms a best asymptotically normal estimator of unknown
D,.

(b) We have n'/2(ID, —I Dj)'convergent in distribution toa normal distribution

N(0,%;4) with asymptotic‘covariance-matrix ;g = 8(%),90 Vg%. Hence ID,
forms a best asymptotically normal ‘estimator of unknown ID,..
Let ﬁlid be the maximum likelihood estimator of ;4. A new test for presence

of indirect effect based on estimator ID, is as follows;

rejecting Ho if v/n|IDy|/\/ Sia >t (3.6)
where t is the threshold assuring the size of the test is the significance level a.
We define the efficiencies of the test based on Baron and Kerry’s condition
and new test as

Power for B-K test
Effpr =

max{Powers for B-K test and new test}’

Power for new test

EffNew =

max{Powers for B-K test and new test}’
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In the following, we display the efficiencies with a = 0.05.

Table 4. Power performance for B-K condition test and test for presence of

clean indirect effect

Oxm Oyx = Oym EffBK EffNew

Oxm = —0.5 0.3 0.283 1
0.5 0.052 1
0.7 0.049 1
0.9 0.269 1
Ogm = —1 0.3 0.953 1
0.5 0.874 1
0.7 0.846 1
0.9 0.835 1
Oxm = 0.5 0.3 0.493 1
0.5 0.377 1
0.7 0.335 1
0.9 0.311 1

Oxm = 1 0.3 1 0.174

0.5 1 0.320

0.7 1 0.440

0.9 1 0.549

Verify the situations that the indirect effect is negative showing that the direct

effect needs not be smaller than the total effect.

4. Statistical Interaction Identification

It is a consensus that the statistical interaction represents the effect of inter-
correlation between explanatory variables on the conditional mean of Y given
the values of explanatory variables. Suppose that Y, X and M be respectively
the response, explanatory and mediation variable. We denote p(z, m;6) the con-

ditional mean of Y given values X = x and M = m. The direct effect, indirect
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effect and interaction effect must characterize are generally defined in the follow-

ing way.

Definition 4.1. We consider X and M all explanatory variables.

(a) The direct effect of an explanatory variable is the change of mean function
that is not mediated by the other one variable when this explanatory variable
increases one unit and the other variable is held fixed.

(b) The indirect effect of an explanatory variable is the change of mean function
that is purely mediated by other one variable when this variable increases one
unit and the other variable is held fixed.

(c) The interaction effect is the theichange of mean function when the explanatory
variables X and M both increase one unit simultaneously.

How to measure these effects? The literature has a consistent treatment in a
wider range of effect decomposition. Summarizing from the direct effect of Baron
and Kenny (1986) and the second order interaction of Mullahy(1999) and Ai and
Norton (2003), the direct effect and interaction are defined from derivatives of
the mean function as follows:

(a) The direct effectrof variable X g—’;.
(b) The direct effect of variable M.: g—r’;.

(¢) The interaction effect of variables X and M: %9%.

Example 1. (a) Suppose that we have a regression model

y= ﬁaO + ﬂalx + 5a2m + €q.

We have the direct effects D, = [,1 and D,, = (4,2 and interaction effect
IA,,, =0.

(b) Suppose that we have a regression model

Yy = Bro + Brix + Bram + Bpzxm + €.

We have the direct effects D, = (51 and D,, = [ and interaction effect
I Awm = Bbfﬂ-

(c) Suppose that we have a regression model

Y = Beo + Ber® + Bea®® + Beam + Beam® + Beszm + Besr’m? + €.
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We have the direct effects D, = B. + 2802 and D, = B3 + 38.4m and
interaction effect I A, = Bes + 48.62m.

The controversy of this classical way to characterize the interaction is that it
is model dependent - various interaction to be specified when different models
are applied.

Suppose now that Y, X and M have a joint normal distribution of (2.6). The

regression model then is

y = Bo(0)+ 51(0)x + B2(0)m + € (4.1)
where
(O'ywagn P O'yma'mm),ulm (ayxaxm - o'ymo-a%):um
Bo(0) = py — 0202 — o2 T o202 — o2

2 2
- OyxOpy = OymOazm OymOg — OyxOam
61 (9) - 2m2 2 ) ﬁ2(0) o 2 wg 2
020m — 92m 020m — Tzm

This is not model dependence since the regression model is solving determined
by the analyzing distribution.

The classical effect decomposition method considers, the direct effects as D, =
p1(0) and D,, = B2(f) indicating that direct-effect is not appropriate since
variable X’s direct effect involves the effect mediated by variable M due to the
effect that involves M’s parameters. Similarly variable M’s direct effect involves

the effect mediated by variable X.

Definition 4.2. The interaction effect of ' X and M is defined as the sum of
indirect effects of X and M.

Theorem 4.3. When the normality assumption is made, the effects decomposi-

tion is:
g9(0) = Ky
Oyx Oym
Dw(ey:r) = a_ygv meym) = Uy_z

(o e mOzm)  Oyzx
ID (0) — Y m Yy Y
= ke o, o2

_ (0ymTs — Ty102m) _ Oym

2
x

2 _ 52 2
0505, — 04 o



Hence the size of interaction effect is 1D,.(0) + ID,,,(6)

Table 5. Full effect decomposition
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Effect classified

Effect quantity

Combined effect

X’s direct effect

X'’s Total effect

M’s direct effect

M’s Total effect

No Interaction

X'’s indirect effect

M’s indirect-effect

Interaction

p(z,m;0) = g(0) + Tp(0)x + T, (0)m

@, 1, 0| G(0) =0
+D;(0yz)r + D,

_
I
K«
—~
Y
~

Oym)m
ID, =T;(0) = Dy(0,:)
IDy, = T,,(0) — Dis(0ym,)

IA.,, =1D,+1ID,,

The full decomposition model with two direct effects; two driving interactions

and compounding interaction is:formulated as

Y =g(0) + Dz (0yz)x + Dy, (0ym)m
+1ID,(0)x + ID,,(0)m + €

(4.2)

where € has a distribution with mean zero and variance var(Y|X =z, M = m).

5. Concluding Remarks

In this paper, we have shown that the classical effect decomposition method
is not statistically correct due to the fact that the derived direct effect involves
the effect mediated by other variables. Our approach of effect decomposition

not only provide clean effects but there effects can also be estimated this BAN

estimation.
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There are several related topics to be studied. First, a real data analysis to
compare the direct and indirect effects of classical and new versions is desired.
Second, the new concept of interaction is interesting but that requires further

investigation.
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