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中介變項統計分析	
 

	
 

研究生：陳昱均	
 	
 	
 	
 	
 指導老師：陳鄰安	
 博士	
 

	
 

國立交通大學統計學研究所碩士班	
 

	
 

摘要	
 

	
 	
 	
 	
 我們觀察到，傳統中介變項的分析中的直接影響力和中

介質有關，而我們認為的直接影響力是不經由中介質所產生

的。而後，我們提出了一個新的中介變相分析，此分析中的

影響力可分解出直接影響與間接影響，其中新的直接影響是

不透過中介值的。我們新的假設檢定力相較於傳統	
 Baron	
 和	
 

Kenny 的假設檢定力是有明顯改善。最後我們將中介變項的

分析和交互作用做聯結。	
 

	
 

	
 

關鍵字：中介變項；中介值；分解效應；交互作用。	
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Abstract	
 

	
 	
 	
 	
 We	
 observe	
 that	
 the	
 classical	
 mediation	
 analysis	
 gives	
 the	
 direct	
 

effect	
 involving	
 the	
 inputs	
 of	
 mediated	
 variable	
 leading	
 that	
 the	
 direct	
 

effect	
 and	
 indirect	
 effect	
 do	
 not	
 serve	
 their	
 roles	
 appropriately.	
 We	
 then	
 

propose	
 a	
 new	
 mediation	
 analysis	
 with	
 interaction	
 identification	
 for	
 

determining	
 a	
 clean	
 direct	
 effect	
 for	
 defining	
 the	
 total	
 effect	
 and	
 then	
 the	
 

effect	
 decomposition.	
 Power	
 comparison	
 between	
 the	
 Baron	
 and	
 Kenny’

s	
 test	
 and	
 a	
 new	
 test	
 based	
 on	
 our	
 approach	
 for	
 indirect	
 effect	
 detection	
 

has	
 been	
 done	
 and	
 their	
 corresponding	
 efficiencies	
 for	
 detection	
 are	
 

displayed.	
 A	
 new	
 indirect	
 effect	
 proportion	
 then	
 is	
 proposed	
 for	
 further	
 

investigation.	
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Statistical Mediation Analysis

Abstract

We observe that the classical mediation analysis gives the direct effect involv-

ing the inputs of mediated variable leading that the direct effect and indirect

effect do not serve their roles appropriately. We then propose a new mediation

analysis with an interaction identification for determining a clean direct effect for

defining the total effect and then the effect decomposition. Power comparison

between the Baron and Kenny’s test and a new test based on our approach for

indirect effect detection has been done and their corresponding efficiencies for

detection are displayed. A new indirect effect proportion then is proposed for

further investigation.

1. Introduction

Since Woodworth (1928), effect decomposition (mediation analysis), with de-

compose the total effect of an exposure (independent) variable on the response

(effect) variable into the effect that go directly (direct effect) and the effect that

is influenced by a mediator variable (indirect effect), has been extensively stud-

ied and used in psychological science for more than 80 years. It is now also very

popular in social science (Geneletti (2007)) and fast growing in medical and epi-

demiology studies relevant to the design of clinical and public health interventions

(Laan and Petersen (2008) and Richiardi, Bellocco and Zugna (2013)).

In many studies of estimating and testing the mediation effects, Baron and

Kenny (1986) proposed the causal steps regression approach that requires con-

ditions for establishing mediation. Because of its simplicity for understanding

and implementing, this approach is very influential and widely used. Once these

conditions are satisfied, it needs to quantify the indirect effect to be tested for

significance (Sobel (1982)). There are criticisms for this traditional approach

such as bias effect estimates and without natural extension to non-linear models

are observed (Robins and Greenland (1992) and Richiardi, Bellocco and Zugna

(2013)). In a Monte Caro simulation by MacKinnon et al. (2002), it is ob-

served that the condition requiring that response and exposure variables has to
1
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be correlated is not correct indicating that this approach may miss some true

mediation effects. This problem has also been tackled extensively in the causal

inference literature by using counterfactual framework (Robins and Greenland

(1992), Pearl (2001), Robins (2003) and van der Lann and Petersen (2008)).

This approach is also debatable for that it involves many untestable assumptions

(Geneletti (2007)).

Although considerable effects has been devoted to the possibility of undesired

behavior in statistical inference for Baron and Kenny’s conditions and induced

inferences methods for indirect effect detection, there is no satisfactory alterna-

tive mediation analysis technique for use. From our view, the disadvantages are

resulted from the fact that we have not known enough to the unknown mech-

anism of cuasual relationship for creation of these effects. We propose a para-

metric study of mediation analysis by introducing the underlying distribution

of involved random variables into the regression framework, not been treated in

this field, that allows us to structure analysis in two parts. First, for this tra-

ditional mediation analysis, the correct conditions for presence of indirect effect

can be drawn theoretically. We observe that significance for correlation between

exposure and mediator variables is the only condition to be satisfied when the

underlying distribution is true. This indicates that conditions for this presence

must be case by case and conservative approach of maximizing the number of

conditions in the classical one is not surprised in sacrificing its power perfor-

mance. We then propose a corrected version of Baron and Kenny’s approach for

effect decomposition and inference methods development. As a consequence of

parametric study, the unknown total, direct and indirect effects can be estimated

with best asymptotically normal estimators and tests for statistical hypotheses

of these effects can be developed with the derived asymptotic distributions.

Second and most importantly, the traditional approach interprets the expo-

sure coefficient for (multiple) regression model with conditioning on values of

exposure and mediator variables as a direct effect. But this parametric approach

shows that the size of this exposure coefficient is dependent on the true values

of the distributional parameters of mediator variable indicating that statistical

mechanism for mediation not only through variable’s given values but also its
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parameters. This traditionally unaware unclean direct effect then induce the

indirect effect also unclean. We then develop a refined version of Baron and

Kenny’s approach for developing conditions for clean indirect effect and use them

to construct inference methods for this indirect effect.

2. Statistical Theory for Classical Effect Decomposition Methods

2.1. Verification of A New Baron and Kenny’s Conditions

Suppose that we have response (effect) variable Y , exposure (independent)

variable X and mediator (intermediate) variable M .

The paths that exposure variable X and mediation variable M affect the

response variable Y can be described in the following figure.

Effect decomposition (mediation analysis) involves to identify the total effect

of X on Y , the part of total effect because X influences M which in turn in-

fluences Y (indirect effect) and the effect of X unexplained by this variables M

(direct effect). The direct and indirect effect together form the total effect of

X on Y . The approach of Baron and Kenny (1986) for mediation analysis is

most widely-used that considers a series of tests for regression coefficients of all

paths (regression models) for inferencing the existence of indirect effect that is

summarized by Howell (2009) as follows:

Step 1. Test hypothesis H0a : β1a = 0 vs H1a : β1a ̸= 0 for significance of the

simple linear regression model

y(x) = β0a + β1ax+ ϵa (2.1)

describing the path (X → Y ) requiring H0a to be rejected to confirm that X is

a significant predictor of the response variable Y .



4

Step 2. Test hypothesis H0b : β1b = 0 vs H1b : β1b ̸= 0 for significance of the

simple linear regression model

m(x) = β0b + β1bx+ ϵb. (2.2)

describing the path (X → M → Y ) requiring H0b to be rejected to confirm that

X is a significant predictor of the mediator M .

Step 3. Consider the following multiple linear regression model

y(x,m) = β0c + β1cx+ β2cm+ ϵc. (2.3)

Performing the test for hypothesis H0c : β2c = 0 vs H1c : β2c ̸= 0 requiring

H0c to be rejected to confirm that the partial effect of M must be significant.

The effect relationships among variables following this series of tests may be

explained in the followings (Howell (2009) and Hayes (2009)):

(a) If it shows significant evidence to reject H0a in step 1, it defines β1a as total

effect for possible decomposition into direct and indirect effects.

(b) If one or more hypothesis in steps 1 - 3 are not rejected, researchers usually

conclude that indirect effect does not exist.

(c) If three hypothesis in steps 1 - 3 are rejected, indirect effect exists. If hypoth-

esis H0c : β1c = 0 vs H1c : β1c ̸= 0 is not rejected, there is complete mediation

and if it is rejected, there is partial mediation.

We consider here the problem that how many conditions is required for pres-

ence of indirect effect. With decision error generated when a hypothesis is tested,

the more tests in order to claim an indirect effect, the more errors to be generated.

This situation of lower power (Fritz and MacKinnon (2007) and MacKinnon et al.

(2002)) could be even worse when number of exposures or mediators increases.

Our concern is correct since as observed by MacKinnon et al. (2002) with Monte

Carol simulation that the condition that Y and X has to be correlated is not

correct.

Within the framework of series of regression models (2.1)-(2.3), it is seen the

following coefficient decomposition

β1a = β1c + β1bβ2c (2.4)
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holds when the underlying distribution of variables Y,X and M are jointly nor-

mal. Then, following the path analysis, usage of models leads to the following

effects identification (decomposition):

Total effect: TBK = β1c + β1bβ2c

Direct effect: DBK = β1c (2.5)

Indirect effect: IDBK = β1bβ2c

satisfying that the sum of direct effect and indirect effect is equal to the total

effect.

Now suppose that Y,X and M has a joint normal distribution as

⎛

⎝
Y
X
M

⎞

⎠ ∼ N3(

⎛

⎝
µy

µx

µm

⎞

⎠ ,

⎛

⎝
σ2
y σyx σym

σxy σ2
x σxm

σmy σmx σ2
m

⎞

⎠). (2.6)

for verification of Baron and Kenny’s conditions. Denote

β0(θ) = µy −
(σyxσ2

m − σymσxm)µx

σ2
xσ

2
m − σ2

xm

+
(σyxσxm − σymσ2

x)µm

σ2
xσ

2
m − σ2

xm

β1(θ) =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

, β2(θ) =
σymσ2

x − σyxσxm

σ2
xσ

2
m − σ2

xm

where θ = (µy, µx, µm,σ2
y,σ

2
x,σ

2
m,σyx,σym,σxm).

The following theorem gives parametrized regression parameters of models

(2.1)-(2.3).

Theorem 2.1. Suppose that the underlying distribution is normal.

(a) The regression parameters for regression function of Y given X = x of (2.1)

includes

β0a = µy −
σyx

σ2
x

µx, β1a =
σyx

σ2
x

and ϵa ∼ N(0,σ2
a) where σ2

a = σ2
y −

σ2
yx

σ2
x
.

(b) The regression parameters for regression function of M given X = x of (2.2)

includes

β0b = µm − σmx

σ2
x

µx, β1b =
σmx

σ2
x
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and ϵb ∼ N(0,σ2
b ) where σ2

b = σ2
m − σ2

mx
σ2
x
.

(c) The regression function for Y given X = x and M = m is

µ(x,m; θ) = β0(θ) + β1(θ)x+ β2(θ)m (2.7)

Hence β0c = β0(θ),β1c = β1(θ),β2c = β2(θ). and ϵc ∼ N(0,σ2
c ) where σ2

c =

σ2
y − (σyx,σym)

(
σ2
x σxm

σmx σ2
m

)−1 (
σyx

σym

)
.

Proof. The result in (c) are induced from Chen et al. (2013) and the others are

trivial. !

We now are ready to give a theoretical verification of Baron and Kenny’s

conditions for existence of indirect effect and mediation.

Theorem 2.2. Suppose that the underlying distribution is normal. The effects

can be decomposed following the Baron and Kenny (1986)’s approach as

Total effect (β1c + β1bβ2c) :

TBK =
(σymσ2

x − σyxσxm)

σ2
xσ

2
m − σ2

xm

σxm

σ2
x

+
(σyxσ2

m − σymσxm)

σ2
xσ

2
m − σ2

xm

=
σyx

σ2
x

Direct effect (β1c) : DBK =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

(2.8)

Indirect effect (β1bβ2c) : IDBK =
(σymσ2

x − σyxσxm)

σ2
xσ

2
m − σ2

xm

σxm

σ2
x

We first examine the Baron and Kenny’s condition for presence of indirect

effect.

Theorem 2.3. The indirect effect under the Baron and Kenny’s conditions are:

IDBK =

⎧
⎨

⎩

σymσxm

σ2
xσ

2
m−σ2

xm
if σyx = 0

0 if σxm = 0
σyxσ

2
m

σ2
xσ

2
m−σ2

xm
if σym = 0

Proof. It is straight forward but careful re-arrangements. !
This shows that the existence of partial mediation or complete mediation

(Howell (2009)) does not require all hypothesis in three steps to be rejected.
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This also confirms the observation of MacKinnon et al. (2002) that Y and X are

not necessary to be associated but in addition that Y and M are not necessary

for presence of indirect effect. Combining the results in (a) and (c), a new Baron

and Kenny’s rule for indirect effect identification is:

Indirect effect IDBKexists if H0b for model (2.2) is rejected. (2.9)

We consider (µy, µx, µm) = (2, 3, 3) and σ2
y = σ2

x = σ2
m = 2 to conduct a

Monte Carlo simulation to evaluate the powers of the classical Baron and Kenny’s

three conditions test and the above new test for claiming an indirect effect. The

simulated results are displayed in Table 1.

Table 1. Power performance for refined and classical indirect effect detection

σxm σyx = σym B-K Revised B-K
σxm = 0 0 0.0480 0.050
σxm = 0.2 0.3 0.049 0.081

0.7 0.060 0.081
0.9 0.076 0.081

σxm = 0.8 0.3 0.055 0.611
0.7 0.127 0.611
0.9 0.250 0.611

σxm = 1.0 0.3 0.055 0.825
0.7 0.131 0.827
0.9 0.256 0.826

σxm = 1.2 0.3 0.055 0.955
0.7 0.122 0.955
0.9 0.228 0.955

From our investigation, expressing effect decomposition in terms of distribu-

tional parameters is desired for each specific underlying distribution for develop-

ing correct conditions for improving power performance for claiming an indirect

effect.

When both direct and indirect effects are identified, a measure of the propor-

tion mediated is sometimes calculated as the ratio of the indirect effect to the

total effect (Ditlevsen, et al. (2005) and Hafeman (2009)). This measure in some
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sense captures how important the pathway through the intermediate is in ex-

plaining the actual operation of the effect of the exposure on the outcome. This

implicitly assumed that all effects are positive values. In the following table, we

present the total and indirect effect when the underlying distribution is normal.

Table 2. Total and indirect effect

(σym,σyx) TBK IDBK

σxm = 0.2
(0.6, 0.8) 0.4 0.026
(0.8, 0.2) 0.1 0.039
(0.8, 0.4) 0.2 0.038
(0.8, 0.8) 0.4 0.036
σxm = 0.6
(0.8, 0.2) 0.1 0.122
(0.8, 0.4) 0.2 0.112
(0.8, 0.6) 0.3 0.102
σxm = 0.8
(0.2, 0.6) 0.3 −0.010
(0.2, 0.8) 0.4 −0.029
(0.6, 0.2) 0.1 0.124
(0.8, 0.2) 0.1 0.171

σxm = −0.2
(0.6, 0.6) 0.3 −0.033
(0.6, 0.8) 0.4 −0.034
(0.8, 0.6) 0.3 −0.043
(0.8, 0.8) 0.4 −0.044

σxm = −0.8
(0.2, 0.2) 0.1 −0.067
(0.4, 0.4) 0.2 −0.133
(0.6, 0.6) 0.3 −0.200
(0.8, 0.8) 0.4 −0.267

We have two comments:

(a) Indirect effect could be negative value when direct effect is larger than the

total effect. Then the ratio of indirect effect is also negative when β1b is small or

direct effect is large enough.

(b) Indirect effect could have value larger than the total effect such that the ratio

of indirect effect is larger than one when β1c < 0.

We often call the presence of mediation effect (Fairchild and MacKinnon
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(2009)) if there is nonzero indirect effect. It is seen that it is not always dangerous

for presence of mediation effect, depending on its sign.

Definition 2.4. We say that there is synergistic mediation effect if IDBK > 0

and antagonistic mediation effect if IDBK < 0.

2.2. Statistical Properties for Estimators of Baron and Kenny’s Effects

Effects of (2.5) are generally estimated by least squares estimators of the

corresponding parameters and hypothesis testing for effect parameters are done

by assuming that the parameter estimators are normally distributed to develop

the scale estimator of the effect estimator. For example, to deal with hypothesis of

presence of indirect effect asH0 : β1bβ2c = 0, researchers have done (Sobel (1982),

Aroian (1944) and Goodman (1960)) to develop the asymptotic distribution of

the product of two normal distributions of least squares estimators of β1b and

β2c. With our approach scale estimator of any effect estimator or their functions

are much easier to develop.

We denote the sample means (ȳ, x̄, m̄)′ = 1
n

∑n
i=1(yi, xi,mi)′ and the sample

covariance matrix

⎛

⎝
s2y syx sym
sxy s2x sxm
smy smx s2m

⎞

⎠ = 1
n−1

∑n
i=1

⎛

⎝
yi − ȳ
xi − x̄
mi − m̄

⎞

⎠

⎛

⎝
yi − ȳ
xi − x̄
mi − m̄

⎞

⎠
′

.

Let θ̂ be the maximum likelihood estimator of parameters θ. The maximum

likelihood estimators of direct and indirect effect are, respectively,

D̂BK,mle =
syxs2m − symsxm

s2xs
2
m − s2xm

ˆIDBK,mle =
(syms2x − syxsxm)

s2xs
2
m − s2xm

sxm
s2x

The following theorem states the asymptotic distributional theory for the max-

imum likelihood estimators.

Theorem 2.5. (a) We have n1/2(D̂BK,mle − DBK) convergent in distribu-

tion to a normal distribution N(0,Σd) with asymptotic covariance matrix Σd =
∂DBK
∂θ′ Vθ

∂D′
BK

∂θ , where Vθ = −[E(∂2logφN (X,Y )/∂θ∂θ′)]−1 is the Cramer-Rao’s

lower bound for θ and φN (Y,X,M) is the probability density function of the nor-

mal distribution for Y,X and M . Hence D̂BK,mle(x) forms a best asymptotically

normal estimator of unknown DBK(x).
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(b) We have n1/2( ˆIDBK,mle−IDBK) convergent in distribution to a normal dis-

tribution N(0,Σid) with asymptotic covariance matrix Σid = ∂IDBK
∂θ′ Vθ

∂ID′
BK

∂θ .

Hence ˆIDBK,mle forms a best asymptotically normal estimator of unknown IDBK .

Optimal properties of the least squares estimators for direct and indirect effects

are implied from the following theorem when normality assumption holds.

Theorem 2.6. Let β̂0b and β̂1b be the least squares estimators of β0b and β1b.

Then, under the normality assumption, D̂BK = β̂1c and ˆIDBK = β̂1bβ̂2c and

then they are also best asymptotically normal.

Proof. The least squares estimators {β̂0c, β̂1c, β̂2c} for regression model of (2.3)

are also maximum likelihood estimators for this regression model summing that

ϵc is normal of zero mean and constant variance. On the other hand, the max-

imum likelihood estimator θ̂mle for distribution of Y,X and M in (2.6) makes

{β̂0(θ), β̂1(θ), β̂2(θ)} = {β0(θ̂mle),β1(θ̂mle),β2(θ̂mle)} the maximum likelihood

estimator of {β0(θ),β1(θ),β2(θ)} for regression model (2.7) that has a normal

error variable. This indicates that {β̂0(θ), β̂1(θ), β̂2(θ)} and {β̂0c, β̂1c, β̂2c} are

identical which further implies that β̂1c = β̂1(θ) (direct effect) and β̂2c = β̂2(θ).

Analogous discussion for model of M given X = x can be done to finish the

theorem. !
We have several comments from the above theorem:

(a) The least squares estimator of the product of coefficients to be best asymp-

totically holds only occasionally. If the distribution of underlying distribution of

variables involved is no-longer normal, the theory may be different. However, the

optimality properties always hold for D̂BK and ˆIDBK if they are derived from

the process stated in this paper for any underlying distribution.

(b) The test statistics based on least squares estimators of coefficients such as the

commonly used one of Sobel (1982) and some others as Aroian (1944) and Good-

man (1960) all assume that this product of least squares estimators is asymptoti-

cally normal. However our theory verified that this is certain when the underlying

distribution is normal but not certain for other situations.

Let Σ̂id be the maximum likelihood estimator of Σid. A test for hypothesis
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H0 : IDBK(x) = 0 is:

rejecting H0 if
|n1/2 ˆIDBK |√

Σ̂id

≥ tα

γ =
IDBK

TBK

3. A New Mediation Analysis

Is the classical specification of total, direct and indirect effects statistical ap-

propriate? When the variables Y,X and M follows the normal distribution (2.6),

the direct effect and total effect are respectively as

DBK =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

and TBK =
σyx

σ2
x

(3.1)

If there is a unit change inX, it is expected that the direct effect measures only

the direct (no-mediation) impact on response Y , unfortunately, the magnitude

of this impact DBK involves distribution parameters {σym,σxm,σ2
m} related to

mediator M indicating that this effect is mixed with effect of association between

X and M . On the other hand, the total effect is supposed to contain effect of X

mediated and not-mediated by variable M . Unfortunately this magnitude influ-

enced by X TBK dose not involve distributional parameters related to mediator

M indicating absence of mediation. This classical effect specification does not

give precise direct and indirect effects. This also indicates that the commonly

used test statistics of Sobel (1982), Aroian (1944) and Goodman (1960) and

many others may lead to in-correct conclusion for indirect effect. Beneficial from

parametrization of regression function, uncontroversial specification of indirect

effect can be specified with correct derivation of statistical interaction.

We assume that Y,X and M have a joint distribution with probability density

function f(y, x,m, θ) where θ is vector of unknown parameters. We further as-

sume that the parameter vector θ my be partitioned based on association between

variables into no-association vectors {θy, θx, θm}, two-variables association vec-

tors {θyx, θym, θxm} and three-variables association vector {θyxm} where θzj :j∈A

is set of association parameters involved all variables Zj , j ∈ A. This criterion
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for parameters partition work for most interesting multivariate distributions. For

examples, if the joint distribution of Y,X and M is multivariate normal or mul-

tivariate t distribution, the parameter vector θ is vector of population mean

vector

⎛

⎝
µy

µx

µm

⎞

⎠ and covariance matrix

⎛

⎝
σ2
y σyx σym

σxy σ2
x σxm

σmy σmx σ2
m

⎞

⎠. Then we have the

no-association parameter vectors {θy, θx, θm} = {
(
µy

σ2
y

)
,

(
µx

σ2
x

)
,

(
µm

σ2
m

)
}, two-

variables association parameter vectors {θyx, θym, θxm} = {{σyx}, {σym}, {σxm}}
and empty set for three-variables association parameters.

Let µ(x,m; θ) be the conditional mean of Y given X = x and M = m. We

consider additivity of control values X = x and M = m for specification of total

effects of explanatory and mediation variables.

Definition 3.1 We say that regression function is total effect decomposable if

the regression function is

µ(x,m; θ) = g(θ) + Tx(θ)x+ Tm(θ)m. (3.2)

In this case, we say that Tx(θ) and Tm(θ) are, respectively, the total effects of

exposure and mediator variables.

A common feature of decomposition in linear model of effects contributed by

explanatory variables is that their combined effect (sum of separated effects)

has to be the conditional mean of response variable Y . For example, the group

mean in analysis of variance is the sum of main effects and interactions and, in

multiple linear regression model, the regression function is the sum of univariate

terms x1 and x2 (for main effects) and product term x1x2 (for interaction). The

specification of total effects in (3.2) does confirm this expectation. But the Baron

and Kenny’s framework does not indicates this expectation.

If the total effect Tx(θ) involves distributional parameters of mediator M , it

contains effect mediated by M requiring for disentangling the interrelationships

between variables from total effect decomposable regression function of (3.2).

Denoting parameter sets θyx = {θx, θyx} and θym = {θm, θym}, obviously θyx

and θym respectively are sets of distributional parameters that are considered

with contribution of X on Y and of M on Y , not mediated by other variables.
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An application for interaction identification in Chen et al. (2013) is to used for

direct and indirect effects identification.

Definition 3.2. (a)Suppose that there exists a minimal function of parameters

G(θ), denoting its dimension as c, such that the regression function given G(θ) =

0c can be decomposed as

µ(x,m, θ|G(θ) = 0c) = g(θ) +Dx(θyx)x+Dm(θym)m. (3.3)

We say that µ(x,m, θ|G(θ) = 0c) is the no-interaction regression function

and G(θ) is the intercorrelation parameter set. We call Dx(θyx) and Dm(θym),

respectively, the direct effects of exposure and mediator variables.

(b) We call IDx = Tx −Dx(θyx) and IDm = Tm −Dm(θym) the indirect effects

of X and M .

(c) We say that there is no mediation effect if Tx = Dx(θyx) leading to IDx = 0.

The intercorrelation parameter set contributes the indirect effects of exposure

X and mediator M . But IDx is pure indirect effect of exposure X.

Now, consider the normal distribution for variables Y,X and M of (2.6).

Theorem 3.3. (a) Under the normality assumption, we have the total effects as

Tx =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

and Tm =
σymσ2

x − σyxσxm

σ2
xσ

2
m − σ2

xm

Renoting Tx = T (θ), hence, Tx is the total effect.

(b) The ineraction parameter is G(θ) = {σxm} and the induced regression func-

tion is

µ(x,m, ; θ) = µy +
σyx

σ2
x

(x− µx) +
σym

σ2
m

(m− µm)

indicating that the direct effect is

Dx =
σyx

σ2
x

and Dm =
σym

σ2
m

(3.4)

which is a function of θyx only and the indirect effects are IDx = Tx −Dx with

IDx =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

− σyx

σ2
x

and IDm =
σymσ2

x − σyxσxm

σ2
xσ

2
m − σ2

xm

− σym

σ2
m
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Proof. The conditional mean of M given X = x is µ(x, θ) = µm + σxm
σ2
x
(x − µx)

that gives (a). !
This direct effect Dx = σyx/σ2

x is identical to β1a of (2.1) that makes sense

for it measures the effect of X on Y in the environment that mediator is not

involved. Similarly, Dm = σym/σ2
m is identical to the regression coefficient β1d

in model y = β0d + β1dm + ϵc that measures the effect of mediator M on Y in

the environment that X is not involved.

We denote the total effect as a ratio between the new total effect and classical

total effect in the following

rt =
TBK

Tx
.

Table 3. Total effect ratio and indirect effects of new decompositions

(σym,σyx) rt IDx

σxm = 0.6
(0.4, 0.4) 0.765 −0.046
(0.4, 0.6) 0.87 −0.036
(0.4, 0.8) 0.932 −0.026
(0.6, 0.2) 0.1 −0.089
(0.6, 0.4) 0.6 −0.079
(0.6, 0.6) 0.76 −0.069
σxm = 0.8
(0.6, 0.4) 0.45 −0.104
(0.6, 0.6) 0.7 −0.085
(0.6, 0.8) 0.832 −0.066
(0.8, 0.2) 0.235 −0.171
(0.8, 0.6) 0.553 −0.133

The total, direct and indirect effects adjusted with interaction are generally

varying in the underlying distribution. The derived indirect effect allows us to es-

tablish new Baron and Kenny’s conditions of mediation analysis for identification

of clean indirect effect.

Theorem 3.4. Baron and Kenny’s conditions are true for σyx = 0 and σxm = 0.

In specific, we have the followings:

(a) When σyx = 0 we have IDx = − σymσxm

σ2
xσ

2
m−σ2

xm
.

(b) When σxm = 0 we have IDx = 0.
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(c) When σym = 0 we have

IDx = σyx(
σ2
m

σ2
xσ

2
m − σ2

xm

− 1

σ2
x

)

This study gives a refined two steps tests of Baron and Kenny’s approach to

identify the clean indirect effect as follows:

If hypotheses for model (2.2) is rejected, indirect effect exists. (3.5)

This refined direct and indirect effects are no longer equal to β1c and β1bβ2c,

respectively. Hence, their asymptotic distributions are varied. The maximum

likelihood estimators of direct and indirect effect may be defined as:

D̂x =
syx
s2x

ˆIDx = syx(
s2m

s2xs
2
m − s2xm

− 1

s2x
)

Theorem 3.5. (a) We have n1/2(D̂x−Dx) convergent in distribution to a normal

distribution N(0,Σd) with asymptotic covariance matrix Σd = ∂Dx
∂θ′ Vθ

∂Dx
∂θ , where

Vθ = −[E(∂2logφN (X,Y )/∂θ∂θ′)]−1 is the Cramer-Rao’s lower bound for θ and

φN (Y,X,M) is the probability density function of the normal distribution for

Y,X andM . Hence D̂x forms a best asymptotically normal estimator of unknown

Dx.

(b) We have n1/2( ˆIDx−IDx) convergent in distribution to a normal distribution

N(0,Σid) with asymptotic covariance matrix Σid = ∂IDx
∂θ′ Vθ

∂IDx
∂θ . Hence ˆIDx

forms a best asymptotically normal estimator of unknown IDx.

Let Σ̂id be the maximum likelihood estimator of Σid. A new test for presence

of indirect effect based on estimator ˆIDx is as follows;

rejecting H0 if
√
n| ˆIDx|/

√
Σ̂id ≥ t (3.6)

where t is the threshold assuring the size of the test is the significance level α.

We define the efficiencies of the test based on Baron and Kerry’s condition

and new test as

EffBK =
Power for B-K test

max{Powers for B-K test and new test} ,

EffNew =
Power for new test

max{Powers for B-K test and new test} .
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In the following, we display the efficiencies with α = 0.05.

Table 4. Power performance for B-K condition test and test for presence of

clean indirect effect

σxm σyx = σym EffBK EffNew

σxm = −0.5 0.3 0.283 1
0.5 0.052 1
0.7 0.049 1
0.9 0.269 1

σxm = −1 0.3 0.953 1
0.5 0.874 1
0.7 0.846 1
0.9 0.835 1

σxm = 0.5 0.3 0.493 1
0.5 0.377 1
0.7 0.335 1
0.9 0.311 1

σxm = 1 0.3 1 0.174
0.5 1 0.320
0.7 1 0.440
0.9 1 0.549

Verify the situations that the indirect effect is negative showing that the direct

effect needs not be smaller than the total effect.

4. Statistical Interaction Identification

It is a consensus that the statistical interaction represents the effect of inter-

correlation between explanatory variables on the conditional mean of Y given

the values of explanatory variables. Suppose that Y,X and M be respectively

the response, explanatory and mediation variable. We denote µ(x,m; θ) the con-

ditional mean of Y given values X = x and M = m. The direct effect, indirect
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effect and interaction effect must characterize are generally defined in the follow-

ing way.

Definition 4.1. We consider X and M all explanatory variables.

(a) The direct effect of an explanatory variable is the change of mean function

that is not mediated by the other one variable when this explanatory variable

increases one unit and the other variable is held fixed.

(b) The indirect effect of an explanatory variable is the change of mean function

that is purely mediated by other one variable when this variable increases one

unit and the other variable is held fixed.

(c) The interaction effect is the the change of mean function when the explanatory

variables X and M both increase one unit simultaneously.

How to measure these effects? The literature has a consistent treatment in a

wider range of effect decomposition. Summarizing from the direct effect of Baron

and Kenny (1986) and the second order interaction of Mullahy (1999) and Ai and

Norton (2003), the direct effect and interaction are defined from derivatives of

the mean function as follows:

(a) The direct effect of variable X: ∂µ
∂x .

(b) The direct effect of variable M : ∂µ
∂m .

(c) The interaction effect of variables X and M : ∂2µ
∂x∂m .

Example 1. (a) Suppose that we have a regression model

y = βa0 + βa1x+ βa2m+ ϵa.

We have the direct effects Dx = βa1 and Dm = βa2 and interaction effect

IAxm = 0.

(b) Suppose that we have a regression model

y = βb0 + βb1x+ βb2m+ βb3xm+ ϵb.

We have the direct effects Dx = βb1 and Dm = βb2 and interaction effect

IAxm = βb3.

(c) Suppose that we have a regression model

y = βc0 + βc1x+ βc2x
2 + βc3m+ βc4m

3 + βc5xm+ βc6x
2m2 + ϵc.
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We have the direct effects Dx = βc1 + 2βc2x and Dm = βc3 + 3βc4m and

interaction effect IAxm = βc5 + 4βc6xm.

The controversy of this classical way to characterize the interaction is that it

is model dependent - various interaction to be specified when different models

are applied.

Suppose now that Y,X and M have a joint normal distribution of (2.6). The

regression model then is

y = β0(θ) + β1(θ)x+ β2(θ)m+ ϵ (4.1)

where

β0(θ) = µy −
(σyxσ2

m − σymσxm)µx

σ2
xσ

2
m − σ2

xm

+
(σyxσxm − σymσ2

x)µm

σ2
xσ

2
m − σ2

xm

β1(θ) =
σyxσ2

m − σymσxm

σ2
xσ

2
m − σ2

xm

, β2(θ) =
σymσ2

x − σyxσxm

σ2
xσ

2
m − σ2

xm

This is not model dependence since the regression model is solving determined

by the analyzing distribution.

The classical effect decomposition method considers, the direct effects as Dx =

β1(θ) and Dm = β2(θ) indicating that direct effect is not appropriate since

variable X’s direct effect involves the effect mediated by variable M due to the

effect that involves M ’s parameters. Similarly variable M ’s direct effect involves

the effect mediated by variable X.

Definition 4.2. The interaction effect of X and M is defined as the sum of

indirect effects of X and M .

Theorem 4.3. When the normality assumption is made, the effects decomposi-

tion is:

g(θ) = µy

Dx(θyx) =
σyx

σ2
x

, Dm(θym) =
σym

σ2
m

IDx(θ) =
(σyxσ2

m − σymσxm)

σ2
xσ

2
m − σ2

xm

− σyx

σ2
x

IDm(θ) =
(σymσ2

x − σy1σxm)

σ2
xσ

2
m − σ2

xm

− σym

σ2
x
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Hence the size of interaction effect is IDx(θ) + IDm(θ)

Table 5. Full effect decomposition

Effect classified Effect quantity

Combined effect µ(x,m; θ) = g(θ) + Tx(θ)x+ Tm(θ)m

X’s direct effect Dx(θyx)

X’s Total effect Tx(θ)

M ’s direct effect Dm(θym)

M ’s Total effect Tm(θ)

No Interaction
µ(x,m, θ|G(θ) = 0c) = g(θ)
+Dx(θyx)x+Dm(θym)m

X’s indirect effect IDx = Tx(θ)−Dx(θyx)

M ’s indirect effect IDm = Tm(θ)−Dm(θym)

Interaction IAxm = IDx + IDm

The full decomposition model with two direct effects, two driving interactions

and compounding interaction is formulated as

Y =g(θ) +Dx(θyx)x+Dm(θym)m

+ IDx(θ)x+ IDm(θ)m+ ϵ (4.2)

where ϵ has a distribution with mean zero and variance var(Y |X = x,M = m).

5. Concluding Remarks

In this paper, we have shown that the classical effect decomposition method

is not statistically correct due to the fact that the derived direct effect involves

the effect mediated by other variables. Our approach of effect decomposition

not only provide clean effects but there effects can also be estimated this BAN

estimation.
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There are several related topics to be studied. First, a real data analysis to

compare the direct and indirect effects of classical and new versions is desired.

Second, the new concept of interaction is interesting but that requires further

investigation.
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