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摘要

所謂的消圈集或反饋點集，是無向圖或有向圖裡的一個

點集合，滿足扣掉這個點集合後，圖上沒有圈。一個圖

的消圈數是最小的消圈集的數目。

決定一個一般圖的消圈數已經被證明是 NP 完備 (NP-
complete)，甚至在平面圖，二部圖以及完美圖中，找它
們的消圈數的複雜度也不會降低。

在圖上破壞圈的問題，一開始是應用在組合設計電路。

接著也發現可以應用在作業系統中預防死結、約束補償

問題、人工智慧上的貝斯推論、完全控制同步分散式系

統、在光學網路上布置變波器，以及在超大型積體電路

的晶片設計。

在這篇論文中，我們討論了在有向圖及無向圖的消圈

數。在無向圖中，我們考慮了外部平面圖和格子圖。對

於第一類圖，我們利用圈包裝數來刻劃消圈數，對於格

子圖，我們改善了已知結果，使得上下界更靠近，在某

些群組中，我們得到了消圈數的確切值。在有向圖中，

我們考慮了廣義考茨有向圖以及廣義迪布恩有向圖，我

們給了一個有系統的方法來獲得消圈集，進而得到消圈

數的上界，這個方法對所有的有向圖都是可行的。
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Abstract
A set of vertices of a graph or an digraph whose removal in-
duces an acyclic graph is referred as a decycling set, or a
feedback vertex set, of the graph. The minimum cardinality
of a decycling set of a graph G is referred to as the decycling
number of G.
The problem of determining the decycling number has been
proved to be NP-complete for general graphs, which also
shows that even for planar graphs, bipartite graphs and per-
fect graphs, the computation complexity of finding their de-
cycling numbers is not reduced.
The problem of destroying all cycles in a graph by deleting a
set of vertices originated from applications in combinatorial
circuit design. Also, it has found applications in deadlock
prevention in operating systems, the constraint satisfaction
problem and Bayesian inference in artificial intelligence, mo-
nopolies in synchronous distributed systems, the converters’
placement problem in optical networks, and VLSI chip de-
sign.
In this thesis, we study the decycling number of graphs and
also digraphs. The graphs we consider are outerplanar graphs
and grid graphs Pm�Pn. For the first class of graphs, we char-
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acterize their decycling number by way of the cycle packing
number and for grid graphs, we improve the known results
to obtain either tight bounds or exact values. On digraphs,
we consider generalized Kautz digraphs and generalized de
Bruijn digraphs. Mainly, we use a novel idea in which we
find a sequence of subsets of vertex set satisfying certain con-
ditions and then obtain a decycling set. This provides an up-
per bound of the decycling number of digraphs we consider.
Note that this idea can be applied to find the decycling set
of general digraphs.
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

A set of vertices of a graph or an digraph, whose removal leaves an acyclic graph, is

referred as a decycling set [3], or a feedback vertex set [37], of the graph. The minimum

cardinality of a decycling set of a graph G is referred to as the decycling number of G.

The problem of destroying all cycles in a graph by deleting a set of vertices originated

from applications in combinatorial circuit design [19]. Also, it has found applications

in deadlock prevention in operating systems [34, 37], the constraint satisfaction problem

and Bayesian inference in artificial intelligence [1], monopolies in synchronous distributed

systems [28, 29], the converters’ placement problem in optical networks [22], and VLSI

chip design [16].

In 1986, Erdös, Saks and Sós [14] considered the problem of finding a maximum subset

of G that would induce a tree. Meanwhile, the more general problem of finding the size of

maximum subset of G that would induced a forest was also beginning to receive attention.

Determining the decycling number of a graph G is equivalent to finding the maximum

induced forest of G, since the sum of these two numbers are equal to the number of

vertices of G.

The problem of determining the decycling number has been proved to be NP -complete

for general graphs [20], which also shows that even for planar graphs, bipartite graphs

and perfect graphs, the computation complexity of finding their decycling numbers is not

1



reduced.

Besides searching for the value (or an upper bound) of the decycling number in the

order of a graph, another parameter that is closely related to the decycling number is the

cycle packing number, which is the maximum number of vertex-disjoint cycles. A trivial

relation between the decycling number and the cycle packing number is the decycling

number is not less than the cycle packing number. Moreover, the investigation of the

decycling number and cycle packing number on graphs and digraphs is closed related to

learn the structure of the studied graphs. The above facts motivate us to make a careful

study.

1.2 Graphs

First, we introduce the terminologies and definitions of graphs. For details, the readers

may refer to the book “Introduction to Graph Theory” by D. B. West [39].

A graph G is a triple consisting of a vertex set V (G), an edge set E(G) and a relation

that associate each edge with two vertices called its endpoints. The size of the vertex set

V (G), |V (G)|, is called the order of G, and the size of the edge set E(G), |E(G)|, is called

the size of G. In this section, we focus on the undirected graphs in which all the edges

have no directions.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the

same pair of endpoints. A simple graph is a graph having no loops and multiple edges.

We specify a simple graph by its vertex set and edge set as a set of unordered pairs of

vertices and writing e = uv (or e = vu) as an edge e with endpoints u and v.

If e = uv is an edge of G, then e is said to be incident to u and v. We also say that

u and v are adjacent. For each v ∈ V (G), N(v) denotes the neighbors of v; that is, all

vertices of N(v) are adjacent to v. The degree of v in a graph G, written dG(v) or d(v), is

the number of edges incident to v. For the sake of brevity, a vertex of degree d is denoted

by a d-vertex. The maximum degree is ∆(G) and the minimum degree is δ(G). Moreover,

2



G is regular if ∆(G) = δ(G), and it is said to be k-regular if the common degree is k.

a

f

e

d

c

b= 4

= 1

N(c)={a, d, f}

3-regular

Figure 1.1: Degree, neighborhood and regularity

An independent set in a graph is a set of pairwise nonadjacent vertices.

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent

if and only if they are consecutive in the list. A path with n vertices is denoted by Pn.

A graph G is connected if each pair of vertices in G belongs to a path; otherwise, G is

disconnected.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph

of G is a subgraph with vertex set V (G). Given S be a subset of vertex set V (G), the

induced subgraph determined by S, denoted by G[S], is a subgraph of G such that for any

u, v ∈ S, u is adjacent to v in G[S] if u is adjacent to v in G.

The components of a graph G are its maximal connected subgraph. We use c(G) to

denote the number of components of G. An isolated vertex is a vertex of degree 0.

A cycle is a graph with an equal number of vertices and edges whose vertices can

be placed around a circle so that two vertices are adjacent if and only if they appear

consecutively along the circle. A cycle with n vertices is denoted by Cn.

A graph is called triangle-free if it contains no C3 as its subgraph.

In contrast, a graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a

connected acyclic graph.

A separating set or vertex cut of a graph G is a set S ⊆ V (G) such that G−S has more

than one component. The connectivity of G, written κ(G), is the minimum size of vertex

3



set S such that G − S is disconnected or has only one vertex. A graph is k-connected if

its connectivity is at least k.

In a graph G, a subdivision of an edge uv is the operation of replacing uv with a path

u, w, v through a new vertex w. A subdivision of H is a graph obtained from a graph H

by successive subdivision of edges. Two graphs G1, G2 are homeomorphic if G1 can be

transformed into G2 via a finite sequence of subdivisions.

The cartesian product of G and H , written G�H , is the graph with vertex set V (G)×

V (H) specified by putting (u, v) adjacent to (u′, v′) if and only if (1) u = u′ and vv′ ∈

E(H), or (2) v = v′ and uu′ ∈ E(G).

The k-dimensional cube or hypercube Qk is the simple graph whose vertices are the k-

tuples with entries in {0, 1} and whose edges are the pair of k-tuples that differ in exactly

one position.

Figure 1.2: Hypercube Qk for k = 1, 2, 3

A graph is planar if it has a drawing in the plane without any edge crossing. Such a

drawing is a planar embedding of G. The faces of a planar graph are the maximal regions

of the plane that contain no point used in the embedding. A face f of a planar graph is a

circuit that surrounds a region bounded by edges; let ℓf denote the length of f , i.e., the

number of surrounding edges. For a planar graph G, let F (G) be the set of faces of the

embedding. A finite planar graph G has one unbounded face (also called the outer face).
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Euler’s formula states that for every plane graph G,

|V (G)| − |E(G)|+ |F (G)| = 2.

A graph is outerplanar if it has an embedding with every vertex on the boundary of

the unbounded face.

(a) (b)

Figure 1.3: (a) planar, not outerplanar (b) outerplanar

An isomorphism from a graph G to a graph H is a bijection f : V (G) → V (H) such

that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say “G is isomorphic to H”, written

G ∼= H , if there is an isomorphism from G to H .

x1

x10

x9 x8

x7

x6
x5

x4 x3

x2

x1

x5 x6

x2

x9

x8

x7

x4

x3

x10

Figure 1.4: Two isomorphic graphs

1.3 Directed Graphs

A directed graph or digraph D is a triple consisting of a vertex set V (D), an edge set

E(D) and a function assigning each edge an ordered pair of vertices. The first vertex

of the ordered pair is the tail of the edge and the second is the head ; together, they are

endpoints. The terms ”head” and ”tail” come from an arrow used to draw directed graphs.

As with graphs, we assign each vertex a point in the plane and each edge a curve joining its
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endpoints. When drawing a directed graph, the direction of a curve is from the tail to the

head. Figure 1.5 shows a directed graph D with vertex set V (D) = {0, 1, · · · , 7} and edge

set E(D) = {(0, 0), (0, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 0), (4, 1), (5, 2), (5, 3),

(6, 4), (6, 5), (7, 6), (7, 7)}.

0

1

2

3

4

5

6

7

Figure 1.5: A directed graph GB(2, 8)

In a directed graph, a loop is an edge whose endpoints are equal, such as (0, 0), (7, 7)

in Figure 1.5. Multiple edges are edges having the same ordered pair of endpoints. A

directed graph is simple if each ordered pair of vertices have at most one edge; one loop

may be present at each vertex. Therefore, Figure 1.5 is a simple directed graph.

In a simple directed graph, we write uv for an edge with tail u and head v. If there

is an edge from u to v, then v is a successor of u and u is a predecessor of v. We write

u → v for ”there is an edge from u to v”.

A directed graph is a path if it is a simple directed graph whose vertices can be linearly

ordered so that there is an edge with tail u and head v if and only if v is immediately

follows u in the vertex ordering. A cycle is defined similarly using an ordering of the

vertices on a circle.

Let v be a vertex in a digraph. The outdegree d+(v) is the number of edges with

tail v. The indegree d−(v) is the number of edges with head v. The out-neighborhood

or successor set N+(v) is {x ∈ V (D) : v → x}. The in-neighborhood or predecessor set

N−(v) is {x ∈ V (D) : x → v}.
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1.4 Notations and Definitions

A set of vertices of a graph or an digraph whose removal leaves an acyclic graph is

referred to as a decycling set of the graph. The minimum cardinality of a decycling set

of G denoted by ∇(G), is referred to as the decycling number of G.

An acyclic coloring of a graph G is a coloring of its vertices, satisfying the following

two rules:

(1) No two neighboring vertices are assigned the same color (this is also denoted as

proper coloring).

(2) Let Va ⊆ V (G) be the set of vertices of G that are assigned color a. Then for any

a 6= b, the induced subgraph G[Va ∪ Vb] must be acyclic.

The minimum number of colors necessary to color G is called the acyclic chromatic number

of G, and is denoted a(G).

The cycle packing number ν(G) is the maximum number of vertex disjoint cycles.

The grid Pm�Pn has vertex set V (Pm�Pn) = {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge

set E(Pm�Pn) = {(vi,j, vi+1,j) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}∪ {(vi,j, vi,j+1) : 1 ≤ i ≤ m, 1 ≤

j ≤ n− 1}.

Figure 1.6: P8�P8

A k-dimension butterfly is a graphBk = (V,E) composed of (k+1)2k vertices organized

in k+1 levels of 2k vertices each, where vi,j denotes the jth vertex at level i, with 0 ≤ i ≤ k

7



and 0 ≤ j ≤ 2k − 1. For i > 0, vi,j is connected with the two vertices vi−1,j and vi,ji,

where ji denotes the integer whose binary representation differs from that of j in only the

ith position from right.

Figure 1.7: Butterfly B2

For convenience, we use [a, b] = [a, a+1, · · · , b] for a ≤ b and Zd for the representation

of {0, 1, · · · , d− 1}.

For X, Y ⊆ V (G), an X, Y -path is a path having one endpoint in X , the other one

in Y , and no other vertices in X ∪ Y . A {v}, Y -path is simply written as a v, Y -path.

Similarly, we use u, v-path to represent a path from u to v in G.

For x ∈ R, the floor ⌊x⌋ is the greatest integer less or equal to x. The ceiling ⌈x⌉ is

the smallest integer greater than or equal to x.

A q-nary code C of length n is a set of q-nary n-tuples and the Hamming distance

between two strings of equal length (codewords) is the number of positions at which the

corresponding symbols are different.

Let n and l be two positive integers with n ≥ 2l. For any two numbers i, j where

1 ≤ i, j ≤ n, we define a function (difference) χ by

χ(i− j) =

{

|i− j| if |i− j| ≤ n
2
,

n− |i− j| otherwise.

A circular graph G = C(n, l) of order n is one spanned by n-cycle Cn = (1, 2, · · · , n)

together with the chords (i, j) ∈ E(G) if and only if χ(i− j) = l(l > 1).

The Euler totient function ϕ(n) is the number of integers less than n that are relatively

prime to n.
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1.5 de Bruijn Digraphs, de Bruijn Undirected Graphs

and Generalized de Bruijn Digraphs

Graphs are widely used in the design and analysis of parallel computer network sys-

tems. A vertex in the graph denotes a node (or processor) in the corresponding network,

and an edge represents a communication link between two nodes. We will not discuss the

difference between network and graph in this thesis.

The de Bruijn interconnection network is modeled by the de Bruijn digraph, which is

named after N. G. de Bruijn for his work in counting d-ary sequences of maximal period

[5]. The de Bruijn digraph was widely studied as a communication network model, and

was proposed as a suitable processor interconnection network for VLSI implementation

[33].

The de Bruijn digraphs have good properties such as it is regular, eulerian, hamil-

tonian, and has small diameter, nearly optimal connectivity, simple recursive structure,

simple routing algorithm, contains some other useful topologies as its subgraphs (see [40])

and, thus, been thought of as a good candidate for the next generation of parallel system

architectures, after the hypercube network [6].

The de Bruijn digraphs B(d, n) (d ≥ 2, n ≥ 1) is defined as follows. The de Bruijn

digraph has vertex set

V (B(d, n)) = {x1x2 · · · , xn : xi ∈ {0, 1, · · · , d− 1}, 1 ≤ i ≤ n}

and a directed edge set E(B(d, n)), where x = x1x2 · · ·xn, y = y1y2 · · · yn ∈ V (B(d, n)),

xy ∈ E(B(d, n)) if and only if yi = xi+1 for i = 1, 2, · · ·n− 1. Figure 1.8 is the de Bruijn

digraphs B(2, 3).

The de Bruijn undirected graph, denoted by UB(d, n), is an undirected graph obtained

from B(d, n) by deleting the orientation of all edges and omitting multiple edges.

However, one of the disadvantage of B(d, n) is the restriction on the number of vertices

[12]. From B(d, n) to B(d + 1, n), the number of vertices will increase from dn to dn+1.

As d or n increased, the gap between dn and dn+1 becomes larger and larger, which also

9
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Figure 1.8: A de Bruijn digraph B(2, 3)

poses the problem of smooth expansion. Therefore, this increases the difficulty for its

applications.

In 1981, Imase and Itoh [17] propsed a generalization of de Bruijn digraphs to include

any number of vertices. Reddy, Pradhadn and Kuhl [32] also proposed the same graph

independently in 1980. We use GB(d, n) to denote the generalized de Bruijn graphs.

For n ≥ d ≥ 2, the generalized de Bruijn digraph GB(d, n) is defined by congruence

equations as follows: V (GB(d, n)) = {0, 1, 2, · · · , n − 1} and A(GB(d, n)) = {(x, y)|y ≡

dx+ i (mod n), 0 ≤ i < d}. Figure 1.9 shows the generalized de Bruijn digraph GB(2, 7).

Clearly, if n = dD, GB(d, n) is the de Bruijn digraph B(d,D). Figure 1.10 represent the

generalized de Bruijn digraph GB(2, 8). Figure 1.8 and Figure 1.10 show that B(2, 3) ∼=

GB(2, 8).

0

1 2

3 4

5

Figure 1.9: A generalized de Bruijn digraph GB(2, 7)
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Figure 1.10: A generalized de Bruijn digraph GB(2, 8)

1.6 Kautz Digraphs, Kautz Undirected Graphs and

Generalized Kautz Digraphs

In this section, we will introduce the Kautz digraphs and generalized Kautz digraphs.

The Kautz digraphs are also an important class of intersection networks first proposed by

Kautz in 1969 [21].

Structurally, Kautz networks are very similar to de Bruijn networks, and thus contain

as many desirable properties as those of de Bruijn networks (see [40]). Moreover, Kautz

networks are an improvement over de Bruijn networks, and have also been thought of

as good candidates for the next generation of parallel system architectures, after the

hypercube networks [6].

For two given integers d ≥ 2 and n ≥ 1, the Kautz digraph K(d, n) is defined as

follows. The vertex set of K(d, n) is

V (K(d, n)) = {x1x2 · · ·xn : xi ∈ {0, 1, · · · , d}, xi 6= xi+1, 1 ≤ i ≤ n− 1}

and the edge set E(K(d, n)) consists of all edges from x1x2 · · ·xn to d other vertices

x2x3 · · ·xnα where α ∈ {0, 1, · · · , d} and α 6= xn. Figure 1.11 is a Kautz digraph K(2, 2).

The Kautz undirected graph, denoted by UK(d, n), is an undirected graph obtained

from K(d, n) by deleting the orientation of all edges and omitting multiple edges.

Similarly the Kautz digraphs have the same restriction on the number of vertices as

de Bruijn digraphs. Imase and Itoh [17, 18] generalized the Kautz digraphs in 1981.

The generalization removes the restrict on the cardinality of vertex and retains all of the

properties of graphs. Thus, these graphs are also good networks for the next generation

11
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Figure 1.11: A Kautz digraph K(2, 2)
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Figure 1.12: A Kautz undirected graph UK(2, 2)

of parallel system architecture.

For n > d ≥ 2, the generalized Kautz digraph GK(d, n) is defined by congruence

equations as follows:

{

V (GK(d, n)) = {0, 1, 2, · · · , n− 1};
A(GK(d, n)) = {(x, y)|y ≡ −dx− i (mod n), 1 ≤ i ≤ d}.

In particular, K(d,D) ∼= GK(d, d
D + dD−1).

1

2

3

4 0

Figure 1.13: A generalized Kautz digraph GK(2, 5)

In this thesis, we study the decycling number on graphs and digraphs, and the thesis

is organized as follows. In Chapter 2, we make a survey of all the known results which
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Figure 1.14: A generalized Kautz digraph GK(2, 6)

are related to the classes of graphs we focus on. Then, in Chapter 3, we consider the

decycling number of outerplanar graphs and grid graph Pm�Pn. The main results on

digraphs will be discussed in Chapter 4. The digraphs we consider are generalized Kautz

digraphs and generalized de Bruijn digraphs. Finally, we have a conclusion and a novel

idea about total decycling number will be proposed.
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Chapter 2

Known Results

From the literatures, there are many studies which focus on determining the decycling

number of graphs. In this chapter, we will give an overview of these results.

2.1 In Graphs

In the beginning of this section, we present the general lower bound of graph G.

Lemma 2.1.1. [3] Let G be a connected graph with p vertices and q edges, and degrees

d1, d2, · · · , dp in non-decreasing order. If ∇(G) = s, then

s
∑

i=1

(di − 1) ≥ q − p+ 1.

As an indication of how this result can be used, we have the following corollary.

Corollary 2.1.2. [3] If G is a connected graph with p vertices, q edges, and maximum

degree d, then

∇(G) ≥
q − p+ 1

d− 1
.

In the following, we present the results about outerplanar graphs. Bau et al. [2] found

formulas of decycling number for maximal outerplanar graphs.

Theorem 2.1.3. [2] If G is a maximal outerplanar graph of order n,

then

1 ≤ ∇(G) ≤ ⌊
n

3
⌋.
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In 2002, Fertin, Godard and Raspaud [15] proved the same result by the acyclic

coloring argument. They proved the following lemma.

Lemma 2.1.4. [15] Let G = (V,E) be a graph of order |V | = N . If a(G) ≤ k, then

∇(G) ≤ k−2
k
N , where a(G) is the acyclic chromatic number of G.

Lemma 2.1.4 combined with the following theorem in [35] can also get Theorem 2.1.3.

Theorem 2.1.5. [35] For any outerplanar graph G, a(G) ≤ 3.

Similarly, Bordin[4] given the acyclic chromatic number of planar graph.

Theorem 2.1.6. [4] Every planar graph is acyclically 5-colorable.

Lemma 2.1.4 combined with Theorem 2.1.6 can obtain the following theorem.

Theorem 2.1.7. [15] For any planar graph G of order N , ∇(G) ≤ 3
5
N .

For hypercube, Beineke [3] and Pike [30] gave the results as follows.

Theorem 2.1.8. [3]

(1) ∇(Q3) = 3.

(2) ∇(Q4) = 6.

(3) ∇(Q5) = 14.

(4) ∇(Q6) = 28.

(5) ∇(Q7) = 56.

(6) ∇(Q8) = 112.

Theorem 2.1.9. [30] ∇(Qn) ≤ 2n−1−A(n, 4) where A(n, 4) denotes the size of maximum

binary code of length n with minimum Hamming distance 4.

Theorem 2.1.10. [30] ∇(Qn) = 2n−1 − A(n, 4) if and only if there exists a minimum

decycling set S in Qn that is also an independent set.
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For circular graphs, Wei et al. [38] provided the following theorems.

Theorem 2.1.11. [38] ⌈n+1
3
⌉ ≤ ∇(C(n, l)) ≤ n

2
.

Theorem 2.1.12. [38] ∇(C(n, l)) = ⌈ l+1
2
⌉ where l ≥ 2 and n = 2l.

Theorem 2.1.13. [38]

∇(C(n, 2)) =

{

⌈n+1
3
⌉ + 1 if n ≡ 2 (mod 6),

⌈n+1
3
⌉ otherwise

where n ≥ 5.

∇(C(n, 3)) =

{

⌈n+1
3
⌉ + 1 if n = 3k + 2 and k is odd,

⌈n+1
3
⌉ otherwise

where n ≥ 7.

∇(C(n, 4)) =

{

⌈n+1
3
⌉ + 1 if n = 3k + 2 and k is positive integer,

⌈n+1
3
⌉ otherwise

where n ≥ 9.

Theorem 2.1.14. [38] Suppose n = 3k, l = 3m − 1 and (k,m) = 1 or 2 where k ≥ 3m.

Then ∇(C(n, l)) = k + 1 = ⌈n+1
3
⌉.

Luccio [26] proved the lower and upper bounds of decycling number in both grids and

butterflies in 1998.

Theorem 2.1.15. [26] If m,n ≥ 2, then

⌈
(m− 1)(n− 1) + 1

3
⌉ ≤ ∇(Pm�Pn) ≤ ⌊

mn

3
+

m+ n

6
+ o(m,n)⌋.

Theorem 2.1.16. [26] For k-dimensional butterfly,

2k−1⌊
k + 1

2
⌋ ≤ ∇(Bk) ≤

⌊(k + 1
3
)2k + 1

3

3

⌋

.

Secondly, Caragiannis, Kaklamanis and Kanellopoulos improved the bounds.

Theorem 2.1.17. [8] ∇(Pm�Pn) ≤ ⌊mn
3

− m+n−5
6

⌋
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Theorem 2.1.18. [8] For k-dimensional butterfly,

⌈
(k − 1)2k + 1

3
⌉ ≤ ∇(Bk) ≤ ⌊

(k + 1
2
)2k

3
⌋.

Subsequently. Chang et al. [9] both improved Luccio’s analysis of decycling number

in butterflies and exhibited an algorithm which constructed a decycling set in Bk.

Theorem 2.1.19. [9] For k-dimensional butterfly Bk,

∇(Bk) ≤ ⌊
(3k + 1)2k + 1

9
⌋ −

2k − 1

3

if k is even. Otherwise,

∇(Bk) ≤ ⌊
(3k + 1)2k + 1

9
⌋ −

2k − 2⌈
k

2
⌉ − 2⌊

k

2
⌋+1

3
.

Finally, Madelaine and Stewart [27] construct new decycling sets in grids so that for

certain number of pairs (m,n), the size of decycling set in the grid Pm�Pn matches the

best lower bound
⌈

(m−1)(n−1)+1
3

⌉

, and for all other pairs the size of decycling set is at most

this lower bound plus 2. We use Table 2.1 to represent Madelaine and Stewart’s result.

Theorem 2.1.20. [27]

0 1 2 3 4 5 

0 B A B B A B 

1 A A A A A A 

2 B A B B A B 

3 B A B B A C 

4 A A A A A A 

5 B A B C A C 

n

m

Table 2.1: Madelaine and Stewart’s result

In Table 2.1, A: ∇(Pm�Pn) = Fm,n, B: ∇(Pm�Pn) ≤ Fm,n + 1, C: ∇(Pm�Pn) ≤

Fm,n + 2 where Fm,n =
⌈

(m−1)(n−1)+1
3

⌉

.
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Pike and Zou [31] determined the decycling number of Cm�Cn for all m and n. And

they also yield a maximum induced tree in Cm�Cn.

Theorem 2.1.21. [31] Let m ≥ 3 and n ≥ 3 be integers. Then

∇(Cm�Cn) =







⌈3n
2
⌉ if m = 4,

⌈3m
2
⌉ if n = 4,

⌈mn+2
3

⌉ otherwise.

Královič et al.[24] determined the decycling number in certain graphs, such as de

Bruijn undirected graphs UB(2, n) and Kautz undirected graphs UK(2, n).

Theorem 2.1.22. [24] ∇(UB(2, n)) = ⌈1
3
(2n − 2)⌉.

Theorem 2.1.23. [24] ∇(UK(2, n)) = 2n−1.

The following theorems show the upper and lower bounds of UB(d, n) and UK(d, n).

Theorem 2.1.24. [44] For any d ≥ 3 and n ≥ 1,

⌈dn+1 − d− d(d−1)
2

− dn + 1

2d− 1

⌉

≤ ∇(UB(d, n)) ≤ dn(1− (
d

d+ 1
)d−1) +

(

n+ d− 2

d− 2

)

.

Theorem 2.1.25. [45] For d ≥ 2 and n ≥ 3, the following holds:

⌈dn+1 − dn−1 − d(d+1)
2

+ 1

2d− 1

⌉

≤ ∇(UK(d, n)) ≤ dn − (
⌊d2

4

⌋

+ 1)dn−2.

In the following, we present the results on digraphs.

Theorem 2.1.26. [43] For d ≥ 2 and n ≥ 1,

∇(B(d, n)) =







1
n
∑

i|n

diϕ(n
i
) for 2 ≤ n ≤ 4,

dn
n +O(ndn−4) for n ≥ 5,

where i|n means i divides n, and ϕ(i) is the Euler totient function.

Theorem 2.1.27. [41] For d ≥ 2 and n ≥ 1,

∇(K(d, n)) =















d for n = 1,
(ϕ⊙ θ)(n)

n +
(ϕ⊙ θ)(n− 1)

n− 1 for 2 ≤ n ≤ 7,

dn
n + dn−1

n− 1 +O(ndn−4) for n ≥ 8,

where (ϕ⊙ θ)(n) =
∑

i|n ϕ(iθ(n/i)), θ(i) = di + (−1)id, ϕ(1) = 1 and ϕ(i) = i
∏r

j=1(1−

1/pj) for i ≥ 2 and p1, p2, · · · , pr are the distinct prime factors of i, not equal to 1.
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Theorem 2.1.28. [42] For d ≥ 2 and n ≥ 1,

∇(GB(d, n)) ≤







































4 + 7m+ ⌊5t+3
8

⌋+ ⌊3t
4
⌋ − ⌊5t

8
⌋ − ⌊ t+1

2
⌋,

m = ⌊ n
32
⌋, n ≡ t (mod 32), for d = 2.

4 + 6m+ ⌊7t
9
⌋ − ⌊ t+1

3
⌋,

m = ⌊ n
18
⌋, n ≡ t (mod 18), for d = 3.

2 + t+ d(2d− 3)m+ ⌈ (d+1)t+t−1
d2

⌉ − ⌈ t
d
⌉,

m = ⌊ n
d(2d+3)

⌋, n ≡ t (mod d(2d+ 3)), for d ≥ 4.

2.2 Relation with Cycle Packing Number

Review that the cycle packing number of a graph G, ν(G), is the maximum number

of vertex-disjoint cycles in G. Therefore, ∇(G) ≥ ν(G) for every graph G. Dirac and

Gallai wondered if there is any inverse relation between ∇(G) and ν(G). Define ∇(k) =

max{∇(G)|ν(G) = k}. Bollobás [7] proved that ∇(1) = 3 and the complete graph of

five vertices shows that this bound is sharp. Later, Voss [36] showed that ∇(2) = 6 and

9 ≤ ∇(3) ≤ 12.

Erdös and Pósa [13] proved the following.

Theorem 2.2.1. [13] There are absolute constants c1 and c2 such that

c1k log k ≤ ∇(k) ≤ c2k log k.

Kloks, Lee and Liu [23] in 2002 conjectured following.

Conjecture 2.2.2. [23] For every planar graph G, ∇(G) ≤ 2ν(G).

And they also proved the following theorems by greedy algorithm.

Theorem 2.2.3. [23] Let G be an outerplanar graph. Then ∇(G) ≤ 2ν(G).

Theorem 2.2.4. [23] Let G be a planar graph. Then ∇(G) ≤ 5ν(G).

Subsequently, Chen, Fu and Shih [11] improved this bound for planar graphs by dis-

charging method. First, they give a lemma.
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Lemma 2.2.5. [11] Every 2-edge-connected triangle-free planar graph G with minimum

degree at least three has either a C4 containing a 3-vertex or a C5 containing at least four

3-vertices.

Then, they use the following algorithm to prove the main result. The algorithm starts

with an empty set F and goes step by step as follows.

A. Remove all vertices and edges not lying on any cycle. Notice that the resulting

graph will be 2-edge-connected. Once no vertex exists, then the process stops and

outputs F .

B. Repeatedly remove from the resulting graph 2-vertices (vertices of degree 2) that

have nonadjacent neighbors and connect an edge between these two neighbors. Go

to the next step.

C. If there is a C3, then take these three vertices into F and remove them from the

remaining graph, and go back step A. Otherwise, do the next step.

D. Remark that the process enters this step only when all vertices are of degree at

least 3 and no C3 exists. By Lemma 2.2.5, there must be either a C4 containing

a 3-vertex or a C5 containing at least four 3-vertices. In the former case, take the

three vertices other than the 3-vertex into F and remove them, then go back step

A. In the later case, there must be at least two 3-vertices that are nonadjacent in

the C5. Take the other three vertices into F and remove them, then go back step

A.

Theorem 2.2.6. [11] For every planar graph G, ∇(G) ≤ 3ν(G).
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Chapter 3

Decycling Number of Graphs

3.1 Outerplanar Graphs

As mentioned in Chapter 2, Theorem 2.2.3, Kloks, Lee and Liu [23] proved that

∇(G) ≤ 2ν(G) for every outerplanar graph G. Since ν(G) ≤ ∇(G), it is nature to

determine when these bounds are in fact equalities.

An outerplanar graph G is called lower-extremal if ∇(G) = ν(G) and upper-extremal

if ∇(G) = 2ν(G). In this section, we provide a necessary and sufficient condition for

an outerplanar graph being upper-extremal. On the other hand, we provide a sufficient

condition for an outerplanar graph being lower-extremal. We find a class S of outerplanar

graphs none of which is lower-extremal and show that if G has no subdivision of S for all

S ∈ S, then G is lower-extremal.

We start by presenting an upper-extremal graph with simplest structure.

Definition 3.1.1. Sk is a graph with vertex set V = {0, 1, · · · , 2k − 1} and edge set

E = {i(i+ 1) : 0 ≤ i ≤ 2k − 1} ∪ {i(i+ 2) : i is even} (the indices are under modulo 2k).

Then ∇(Sk) = ⌈k
2
⌉ and ν(Sk) = ⌊k

2
⌋. S3 is clearly an upper-extremal graph; indeed, its

subdivisions are the only 2-edge-connected outerplanar graphs that are upper-extremal

and have cycle packing number one. We define the simplified graph of a graph G to be

the graph obtained from G by continuously deleting vertices of degree one until there is

no more degree one vertex and denote it by ⌊G⌋.
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Let F (G) denote the outer face of an outerplanar G. An edge uv is called a basic edge

of G if uv and some u, v-path on the boundary of F (G) form the boundary of a face of

G. Then, we have

Lemma 3.1.2. For an outerplanar graph G with ν(G) = 1, G is upper-extremal if and

only if ⌊G⌋ is an S3-subdivision.

Proof. It suffices to prove the necessity. If ⌊G⌋ has a cut-vertex v, then v belongs

to two blocks of ⌊G⌋, say G1 and G2, and ⌊G⌋ − v has a cycle which is vertex-disjoint

with G1 or G2. Then ⌊G⌋ has two vertex-disjoint cycles, a contradiction. Thus ⌊G⌋ is

2-connected. Any two basic edges of ⌊G⌋ have a common vertex; otherwise, we can find

two vertex-disjoint cycles. This implies that ⌊G⌋ has at most three basic edges. Then ⌊G⌋

has exactly three basic edges; otherwise we can decycle it by deleting one vertex. Hence

it is an S3-subdivision.

To characterize the upper-extremal graphs, we first define a class of special upper-

extremal graphs – S3-trees. A graph is an S3-tree of order t if it has exactly t vertex-

disjoint S3-subdivisions and every edge not on these S3-subdivisions belongs to no cycle

(see Figure 3.1 for an example).

Figure 3.1: An S3-tree G of order 3, where ∇(G) = 6 = 2ν(G).

It is easy to verify that any S3-tree of order t has exactly t vertex-disjoint cycles, and to

decycle an S3-tree, we have to delete two vertices from each S3-subdivision. Hence, all S3-

trees are upper-extremal. We will show that there is no other upper-extremal outerplanar

graph.
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Lemma 3.1.3. An outerplanar graph G comprised of a connected S3-tree H of order t

and two internally disjoint v, V (H)-paths has t + 1 vertex-disjoint cycles for v /∈ V (H).

Proof. Suppose that v1, v2 ∈ V (H) are the endpoints of these two v, V (H)-paths. Let

C be the cycle comprised of these two v, V (H)-paths and the v1, v2-path in H such that C

is the boundary of some face of G. Then the intersection (vertex and edge) of C and any

S3-subdivision S in H is either an edge on the boundary of the outer face of S or a vertex

of S; otherwise, there would be a subdivision of K2,3 or K4, a contradiction. Hence, we

can easily find a cycle in every S3-subdivision that is vertex-disjoint with C.

Theorem 3.1.4. An outerplanar graph G is upper-extremal if and only if G is an S3-tree.

Proof. It suffices to consider the necessity. We prove it by induction on ν(G). The

statement is clearly true for G if ν(G) = 0. Let G be an upper-extremal graph. Then

we can find a maximal induced path P with some endpoints u and v such that uv is an

edge of G (u 6= v since G is upper-extremal). Then G \ {u, v} must be upper-extremal

and ν(G \ {u, v}) ≤ ν(G)− 1. Thus we can assume that G \ {u, v} is an S3-tree of order

t. Then ν(G) ≥ t + 1. Since ∇(G) ≤ 2t + 2 and G is upper-extremal, ν(G) = t + 1 and

thus ∇(G) = 2t+ 2.

Define G∗ := ⌊G \ {x : x is on some cycle of G \ {u, v} }⌋. Then ν(G∗) = 1. If

∇(G∗) = 2, then by Lemma 3.1.2 G∗ is an S3-tree of order one. This implies that G

contains t + 1 vertex-disjoint S3-subdivisions. By Lemma 3.1.3, there exists at most one

path between any two S3-subdivisions and thus G is an S3-tree. Now, we consider w.l.o.g.

that G∗ − u is acyclic. Let V ∗ := V (G∗). Then G is a graph comprised of G∗, ⌊G \ V ∗⌋,

and some internally disjoint V ∗, V (⌊G \ V ∗⌋)-paths. Notice that there is at most one

w, V ∗-path if w ∈ V (⌊G \ V ∗⌋) is not on any S3-subdivision. We classify the vertices

in V ∗ \ V (P ) into two disjoint sets A and B where A is the union of the vertex sets of

components of G∗−u except the one containing v. Let V ′ be the vertex set of a component

of ⌊G \ V ∗⌋. Then each component of G[A] has at most one path to V ′ and there is at
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most one B, V ′-path; otherwise, by Lemma 3.1.3 ν(G) ≥ t + 2 (see Figure 3.2 (a)), a

contradiction. We consider the following cases.

 !*
G

vu

 !*
G

vu

w

vu

A

B  !*
G

]'[VG

(a)                                                               (b)

 !*
G

vu

(c)                                                               (d)

]'[VG

]'[VG ]'[VG

Figure 3.2: Gray edges form some vertex-disjoint cycles.

Case 1: G∗ has a cycle containing u but not v. Then there is at most one v, V ′-path;

otherwise, ν(G) ≥ t + 2. For the remaining case we have to deal with is that there is

exactly one B, V ′-path and one u, V ′-path. Let x, y be the endpoints of these two paths in

V ′. Then at least one of x and y is on an S3-subdivision in G[V ′] and thus we can decycle

G by deleting u and a minimum decycling set of G \ {u, v} including it, contradicting the

fact that ∇(G) = 2t+ 2.

Case 2: Every cycle of G∗ contains both u and v. Then G∗−v is also acyclic. Suppose

that Vu ⊆ V ′ is the set of vertices as the endpoints of some u,V ′-paths and Vv ⊆ V ′

is the set of vertices as the endpoints of some B ∪ {v},V ′-paths. If min(|Vu|, |Vv|) ≥ 2

and max(|Vu|, |Vv|) ≥ 3, then by Lemma 3.1.3 ν(G) ≥ t + 2 (see Figure 3.1.3 (b) for an

example), a contradiction. Thus |Vu| = 2 = |Vv| or |Vu| = 1 or |Vv| = 1. If |Vu| = 1

(or |Vv| = 1), and therefore G can be decycled by deleting v (or u) and a minimum
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decycling set of G \ {u, v}, contradicting that ∇(G) = 2t+2. It remains to consider that

|Vu| = 2 = |Vv|. If Vu ∩ Vv = ∅, then ν(G) ≥ t + 2 (see Figure 3.2 (c) for an example),

a contradiction. Suppose that Vu ∩ Vv = {w}. Then w must be on some S3-subdivision.

Therefore, we can decycle G by deleting u and a minimum decycling set of G\{u, v} with

w included (see Figure 3.2 (d) for an example), again a contradiction.

To prove that a property is sufficient for a graph being lower-extremal, we will use

induction. In order to facilitate the proof of the induction step, we need a hereditary

graph property. A graph property is called monotone if it is closed under removal of

vertices. We provide the following general result that is applicable to all graphs.

Lemma 3.1.5. Suppose that a 2-connected graph is lower-extremal provided that it sat-

isfies a monotone property P. Then G is lower-extremal if G satisfies P.

Proof. We prove the statement by induction on |G|. The statement is true for graphs

with ν(G) = 0 or |V (G)| = 1. For a graph G of connectivity one, let G1 be a leaf block of

G and v be the cut-vertex of G in V (G1). Let G2 = G \ V (G1 − v). Then ν(G) is either

ν(G1) + ν(G2) or ν(G1) + ν(G2)− 1, and ∇(G) ≤ ∇(G1) +∇(G2). Thus suppose to the

contrary that ∇(G) > ν(G). Then ν(G) = ν(G1)+ν(G2)−1 and ∇(G) = ∇(G1)+∇(G2).

The first equality shows that every maximum set of vertex-disjoint cycles of Gi must

contain a cycle with v for i = 1, 2, and thus ν(Gi − v) < ν(Gi) for i = 1, 2. The second

equality shows that v does not belong to any minimum decycling set of G∗ where G∗ = G1

or G2 and thus ∇(G∗ − v) = ∇(G∗). Thus by the monotonicity of P and the induction

hypothesis, ν(G∗ − v) = ∇(G∗ − v) = ∇(G∗) = ν(G∗), a contradiction.

To introduce a sufficient condition for a graph being lower-extremal, we first classify

all edges of an outerplanar graph. For a 2-connected outerplanar graph G, let E0(G)

and E1(G) be the set of edges on the boundary of F (G) and the set of basic edges of G,

respectively. For k ≥ 2, define Ek(G) to be the set of basic edges of G \
⋃k−1

i=1 Ei(G). For

an edge uv ∈ Ek(G), we use C(uv) to denote a cycle generated by uv and a u, v-path on
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the boundary of F (G) such that the cycle is the boundary of a face of G \
⋃k−1

i=1 Ei(G).

We also call it a basic cycle of the graph G \
⋃k−1

i=1 Ei(G) generated from edge uv.

Lemma 3.1.6. If G is a 2-connected outerplanar graph with no Sk-subdivision for all odd

number k, then G is lower-extremal.

Proof. We prove the statement by induction on |E(G)|. It is easy to verify that the

statement is true for graphs with at most three edges. It suffices to prove that there exists

a 2-connected subgraph G′ of G that has fewer number of edges and no Sk-subdivision

for all odd number k and satisfies ∇(G) ≤ ∇(G′) (then ∇(G) ≤ ∇(G′) = ν(G′) ≤ ν(G)).

The statement is clearly true for G with |E2(G)| = 0. Suppose |E2(G)| ≥ 1 (and thus

|E1(G)| ≥ 1). Take an edge e = xy ∈ E2(G) and a basic cycle C(e) of G \ E1(G). Let

E ⊆ E1(G) be the set of edges with both endpoints on C(e). We consider the following

cases.

Case 1: E induces an x, y-path of G, say xv1v2 · · · vty. Here, t must be even since G

contains an St+2-subdivision. Let D be a minimum decycling set of G− e. If D contains

x or y, then D is also a decycling set of G and thus ∇(G) ≤ ∇(G− e). Suppose x, y /∈ D.

W.l.o.g., we can assume that D ∩ C(e) contains only vertices of degree larger than two.

Then |D ∩ C(e)| ≥ (t + 2)/2. Let D′ = (D \ C(e)) ∪ {x, v2, v4, · · · , vt}. Then D′ is a

decycling set of G of size at most ∇(G− e). Thus, ∇(G) ≤ ∇(G− e).

Case 2: E generates a maximal path that contains none of x and y, say v1v2 · · · vt.

We let G′ to denote G \ V (C(e) − x − y) if E = {vivi+1 : i = 1, · · · , t − 1} and G \

{vivi+1 : i = 1, · · · , t − 1} otherwise. Then G′ is clearly 2-connected. Thus we have

∇(G) ≤ ∇(G′) + ⌊ t
2
⌋ = ν(G′) + ⌊ t

2
⌋ = ν(G).

Case 3: E induces at most two components which are paths as xv1v2 · · · vt and

yu1u2 · · ·ut′. Suppose t (or t
′) is odd. Let D be a minimum decycling set of G−e. Similar

to the argument in Case 1, suppose that x, y /∈ D. Then |D∩{v1, v2, · · · , vt}| ≥ (t+1)/2

and thus (D\{v1, v2, · · · , vt})∪{x, v2, v4, · · · , vt−1} is a decycling set of G. Hence ∇(G) ≤

∇(G−e). It remains to consider that t and t′ are even. Let G′ = G\(V (C(e)−x−y)) and
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D be a minimum decycling set of G′. Then D∪{v1, v3, · · · , vt−1}∪{u1, u3, · · · , ut′−1} is a

decycling set of G of size ∇(G′)+(t+ t′)/2. Since G[V (C(e))] has (t+ t′)/2 vertex-disjoint

cycles that do not contain x and y, ∇(G) ≤ ∇(G′)+(t+ t′)/2 = ν(G′)+(t+ t′)/2 ≤ ν(G).

This concludes the proof.

The property of being without Sk-subdivision is monotone. Therefore, by Lemma

3.1.5 and Lemma 3.1.6, we have

Theorem 3.1.7. For an outerplanar graph G, if G has no Sk-subdivision for all odd

number k, then G is lower-extremal.

We remark here that the results obtained in this section have been included in a joint

work with Chang and Fu [10].

3.2 Pm�Pn

Reviewing that the decycling number of the grid Pm�Pn shown by Luccio is at most
⌊

mn
3
+ m+n

6
+ o(m,n)

⌋

and at least
⌈

(m−1)(n−1)+1
3

⌉

[26]. Subsequently, in [8], Caragiannis,

Kaklamanis and Kanellopoulos improved the upper bound. They showed that the decy-

cling number of the grid Pm�Pn is at most
⌊

mn
3
−m+n−5

6

⌋

. Finally, Madelaine and Stewart

[27] construct new decycling sets in grids so that for certain number of pairs (m,n), the

size of decycling set in the grid Pm�Pn matches the best lower bound
⌈

(m−1)(n−1)+1
3

⌉

, and

for all other pairs the size of decycling set is at most this lower bound plus 2.

In this section, we further improve both the lower and upper bounds of ∇(Pm�Pn)

for several classes of (m,n) such that for more (m,n) the decycling number of Pm�Pn

matches the lower bound and for all others it differs from the known lower bound by at

most 1.

Theorem 2.1.15 showed ∇(Pm�Pn) ≥
⌈

(m−1)(n−1)+1
3

⌉

.

For convenience, we use Fm,n and fm,n to denote
⌈

(m−1)(n−1)+1
3

⌉

and (m−1)(n−1)+1
3

re-

spectively. The following proposition is implicit in the proof of Theorem 2.1.15.
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Proposition 3.2.1. If m ≥ 5 and fm,n is an integer, then each decycling set S of size

fm,n satisfies the following two properties:

(1) S contains exactly one vertex of degree 3 and contains no vertex of degree 2; and

(2) S induces a subgraph of Pm�Pn with no edges.

Now, we have a result on the lower bound of ∇(Pm�Pn).

Theorem 3.2.2. If m ≥ 5, mn is even and fm,n is an integer, then ∇(Pm�Pn) ≥

fm,n + 1 = Fm,n + 1.

Proof. Suppose not. Assume that ∇(Pm�Pn) = fm,n = Fm,n and S is a decycling

set with size fm,n. By Proposition 3.2.1, we may let vi,1 be the vertex of S with degree

3 where 2 ≤ i ≤
⌊

m
2

⌋

. Since S is a decycling set and induces no edges in Pm�Pn,

vm−1,2 ∈ S and vm−1,3 /∈ S. For otherwise, we have a 4-cycle (vm−1,1, vm−1,2, vm,2, vm,1)

or vm−1,2, vm−1,3 is an edge in (Pm�Pn)[S]. Following this observation, we conclude that

S contains vm−1,2, vm−1,4, · · · , vm−1,n−1 since S has no other vertices on the boundary of

Pm�Pn. Hence, n − 1 is even and n is odd. Similarly, vm−3,n−1, vm−5,n−1, · · · , v2,n−1 are

contained in S and therefore, m is also odd. This contradicts to the assumption and we

have the proof.

Corollary 3.2.3. For m ≥ 5, if m ≡ 0 (mod 6) and n ≡ 2 (mod 3) or (m,n) ≡

(3, 2) (mod 6), ∇(Pm�Pn) ≥ Fm,n + 1.

Proof. By direct checking, fm,n is an integer and m · n is even.

Using this fact, we can estimate∇(Pm�Pn) for more pairs (m,n) by using the Theorem

2.1.20 which was obtained by Madelaine and Stewart.

Now, combining Theorem 2.1.20 with Corollary 3.2.3, we have

Theorem 3.2.4. For m ≥ 5, if (m,n) ≡ (0, 2), (0, 5), (3, 2), (2, 0), (5, 0), (2, 3) (mod 6),

then ∇(Pm�Pn) = Fm,n + 1.
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In what follows, we prove that for cases in class “C” mentioned in Table 2.1∇(Pm�Pn) ≤

Fm,n + 1 for m ≥ 6. Before we go any further, we need to introduce a couple of new no-

tations. We shall use Pm�Pr | Pm�Pk to represent that Pm�Pr+k−1 can be separated

into Pm�Pr and Pm�Pk with a common vertical path Pm (see Figure 3.3(a)). Similarly,

we use Pr�Pn

Pk�Pn
to represent that Pr+k−1�Pn can be separated into Pr�Pn and Pk�Pn and

they overlap a horizontal path Pn (see Figure 3.3(b) for an example).

6P 4P 6P 3P

4P 6P

3P 6P

)(a )(b

Figure 3.3: (a)P6�P6 = P6�P4 | P6�P3; (b)P6�P6 =
P4�P6

P3�P6

In order to prove the main theorem, we need the following three smaller cases.

Lemma 3.2.5. For (m,n) = {(6, 6), (6, 8), (8, 8)}, ∇(Pm�Pn) ≤ Fm,n + 1.

Proof. Beineke and Vandell [3] have already proved the first two cases. By direct

checking, the third one is also true. For clearness, we include a decycling set of P8�P8 in

Figure 3.4.

Figure 3.4: A decycling set of P8�P8.
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Lemma 3.2.6. [3] If G and H are homeomorphic graphs, then ∇(G) = ∇(H).

Theorem 3.2.7. For m,n ≥ 6, ∇(Pm�Pn) ≤ Fm,n + 1.

Proof. By Theorem 2.1.20, Lemma 3.2.5 and the symmetry of the graph, it suffices to

consider the following 2 cases.

Case 1. m ≡ 5 (mod 6) and n ≡ 5 (mod 6).

Let X6k+5,6r+5 = {vi,j : i and j are even, 1 ≤ i ≤ 6k + 5, 1 ≤ j ≤ 6r + 5}. Then

P6k+5�P6r+5 \ X6k+5,6r+5 is homeomorphic to the graph P3k+3�P3r+3. By Lemma

3.2.6, for k, r ≥ 0,∇(P6k+5�P6r+5) ≤ (3k + 2)(3r + 2) + ⌈ (3k+2)(3r+2)+1
3

⌉ + 1 =

F6k+5,6r+5 + 1.

Case 2. m ≡ 3 (mod 6) and n ≡ 5 (mod 6).

First, we can find a decycling set of P9�P11 directly. (See Figure 3.5, ∇(P9�P11) ≤

28 = F9,11 + 1.) Then, we partition this case into 3 subcases and apply the case

m ≡ 1 (mod 3) in [27] to solve the following.

Figure 3.5: Decycling set (black vertices) of P9�P11.

Subcase 2.1. m = 9 and n ≡ 5 (mod 6).

Separate P9�P6k+5 into P9�P6(k−1)+1 | P9�P11. We can find a set of vertices

X9,6(k−1)+1 in P9�P6(k−1)+1 by using Madelaine and Stewart’s method [27].
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Define X9,6(k−1)+1

= {vi,j : 5 ≤ i ≤ 7, i is odd, 3 ≤ j ≤ 6(k − 1) + 1, j ≡ 3, 5 (mod 6)}

⋃

{vi,j : 5 ≤ i ≤ 8, i is even, 2 ≤ j ≤ 6(k − 1), j ≡ 0, 2 (mod 6)}

⋃

{v5,j : 2 ≤ j ≤ 6(k − 1) + 1, j ≡ 1 (mod 6)}

⋃

{v8,j : 2 ≤ j ≤ 6(k − 1) + 1, j ≡ 4 (mod 6)}

⋃

{v2,j : 2 ≤ j ≤ 6(k − 1), j is even}

⋃

{v3,j : 3 ≤ j ≤ 6(k − 1) + 1, j is odd}

⋃

{v4,2}.

And we find X9,11 in P9�P11 by letting X9,11

= {vi,j : 2 ≤ i ≤ 8, i is even, 6(k − 1) + 1 ≤ j ≤ 6k + 5, j is even}

⋃

{v3,j, v7,j : j = 6(k − 1) + 1, 6(k − 1) + 5, 6k + 3}

⋃

{v1,6(k−1)+3, v5,6k+1}.

Define X9,6k+5 = X9,6(k−1)+1 ∪X9,11. The set X9,17 is shown in Figure 3.6.

Figure 3.6: Decycling set of P9�P17.

We claim that X9,6k+5 is a decycling set. Observe that if there is a cy-

cle in P9�P6k+5 \ X9,6k+5, then the cycle must use the perimeter vertices

of P9�P6(k−1)+1 excluding {vi,6k−5 : 3 ≤ 7} and a (v2,6k−5, v8,6k−5) -path in

P9�P11 \X9,11. However, there is no (v2,6k−5, v8,6k−5) -path in P9�P11 \X9,11.

Hence, X9,6k+5 is a decycling set of P9�P6k+5. Since v3,6(k−1)+1 belongs to both
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X9,6(k−1)+1 and X9,11, the size of X9,6k+5 is

⌈

8 · 6(k − 1) + 1

3

⌉

+ 28− 1 =

⌈

8(6k + 4) + 1

3

⌉

+ 1.

Subcase 2.2. m ≡ 3 (mod 6) and n = 11.

Similar to Subcase 2.1, we let P6k+3�P11 =
P6(k−1)+1�P11

P9�P11
and let X6(k−1)+1,11

= {vi,j : 1 ≤ i ≤ 6(k − 1) + 1, i ≡ 0, 2 (mod 6), 2 ≤ j ≤ 7, j is even}

⋃

{vi,j : 1 ≤ i ≤ 6(k − 1) + 1, i ≡ 3, 5 (mod 6), 2 ≤ j ≤ 7, j is odd}

⋃

{vi,7 : 2 ≤ i ≤ 6(k − 1) + 1, i ≡ 1 (mod 6)}

⋃

{vi,2 : 2 ≤ i ≤ 6(k − 1) + 1, i ≡ 4 (mod 6)}

⋃

{vi,10 : 1 ≤ i ≤ 6(k − 1), i is even}

⋃

{vi,9 : 3 ≤ i ≤ 6(k − 1) + 1, i is odd}

⋃

{v2,8}.

We use a different construction to find X9,11 in P9�P11, where X9,11 = {vi,j :

6(k − 1) + 1 ≤ i ≤ 6k + 3, i is even, 1 ≤ j ≤ 11, j is even}
⋃

{v6k−5,9, v6k−3,3,

v6k−3,5, v6k−1,1, v6k−1,9, v6k+1,3, v6k+1,7, v6k+3,9}.

Define X6k+3,11 = X6(k−1)+1,11 ∪X9,11. The construction of X15,11 can be visu-

alized as in Figure 3.7. The argument is similar to Subcase 3.1 which yields

that X6k+3,11 is a decycling set of P6k+3�P11. Since v6(k−1)+1,9 belongs to both

X6(k−1)+1,11 and X9,11, the size of X6k+3,11 is

⌈

6(k − 1)10 + 1

3

⌉

+ 28− 1 =

⌈

(6k + 2)10 + 1

3

⌉

+ 1.

Subcase 2.3. m ≡ 3 (mod 6) and n ≡ 5 (mod 6) and m > 9, n > 11.

Let P6k+3�P6r+5 be
P6(k−1)+1�P6r+5

P9�P6(r−1)+1|P9�P11
. We note that the labeling of each vertex

in the following is the same as the labeling used in the original grid. Now, define
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Figure 3.7: Decycling set of P15�P11.

X6(k−1)+1,6r+5 in P6(k−1)+1�P6r+5 as

{vi,j : 1 ≤ i ≤ 6(k − 1) + 1, i ≡ 0, 2 (mod 6), 2 ≤ j ≤ 6r + 1, j even}

⋃

{vi,j : 1 ≤ i ≤ 6(k − 1) + 1, i ≡ 3, 5 (mod 6), 2 ≤ j ≤ 6r + 1, j odd}

⋃

{vi,6r+1 : 2 ≤ i ≤ 6(k − 1) + 1, i ≡ 1 (mod 6)}

⋃

{vi,2 : 2 ≤ i ≤ 6(k − 1) + 1, i ≡ 4 (mod 6)}

⋃

{vi,6r+4 : 1 ≤ i ≤ 6(k − 1), i even}

⋃

{vi,6r+3 : 3 ≤ i ≤ 6(k − 1) + 1, i odd

⋃

{v2,6r+2}.

Define X9,6(r−1)+1 in P9�P6(r−1)+1 as following. X9,6(r−1)+1

= {vi,j : 6k − 1 ≤ i ≤ 6k + 1, i odd, 3 ≤ j ≤ 6r − 5, j ≡ 3, 5 (mod 6)}

⋃

{vi,j : 6k − 1 ≤ i ≤ 6k + 2, i even, 2 ≤ j ≤ 6r − 6, j ≡ 0, 2 (mod 6)}

⋃

{v6(k−1)+5,j : 2 ≤ j ≤ 6(r − 1) + 1, j ≡ 1 (mod 6)}

⋃

{v6k+2,j : 2 ≤ j ≤ 6(r − 1) + 1, j ≡ 4 (mod 6)}

⋃

{v6(k−1)+2,j : 2 ≤ j ≤ 6(r − 1), j even}

⋃

{v6(k−1)+3,j : 3 ≤ j ≤ 6(r − 1) + 1, j odd}

⋃

{v6(k−1)+4,2}.
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Define X9,11 in P9�P11 as the following Figure 3.8, the size of X9,11 is 30.

Figure 3.8: Decycling set of P9�P11 (Different from Figure 3.5).

Define X6k+3,6r+5 = X6(k−1)+1,6r+5 ∪ X9,6(r−1)+1 ∪ X9,11. The construction is

illustrated for P15�P17 in Figure 3.9.

Figure 3.9: Decycling set of P15�P17.

We claim that X6k+3,6r+5 is a decycling set. Observe that if there is a cycle

in P6k+3�P6r+5 \X6k+3,6r+5 then the cycle must use the perimeter vertices of

P6(k−1)+1�P6r+5 excluding {v6(k−1)+1,6r+j : j = 1, 2, 3} and a (v6(k−1)+1,6r,

v6(k−1)+1,6r+4) -path in (P9�P6(r−1)+1 | P9�P11) \ (X9,6(r−1)+1 ∪ X9,11). By

directly checking, there is no path from the right boundary of P9�P11 to

the left boundary of P9�P11. There is no (v6(k−1)+1,6r, v6(k−1)+1,6r+4) -path in

(P9�P6(r−1)+1 | P9�P11) \ (X9,6(r−1)+1 ∪X9,11). Hence X6k+3,6r+5 is a decycling

set of P6k+3�P6r+5. Since v6(k−1)+1,6r+1, v6(k−1)+1,6r+3 ∈ X9,11 ∩ X6(k−1)+1,6r+5

and v6(k−1)+3,6(r−1)+1, v6(k−1)+5,6(r−1)+1 ∈ X9,11∩X9,6(r−1)+1, the size ofX6k+3,6r+5
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is

⌈

6(k−1)(6r+4)+1
3

⌉

+

⌈

8·6(r−1)+1
3

⌉

+ 30− 4 =

⌈

(6k+2)(6r+4)+1
3

⌉

+ 1.

We complete the proof.

We use Table 3.1 to represent the improvement of Madelaine and Stewart’s results.

: increasing the lower bound in 

this paper

: decreasing the upper bound in

this paper

0 1 2 3 4 5 

0 B A B B A B 

1 A A A A A A 

2 B A B B A B 

3 B A B B A C 

4 A A A A A A 

5 B A B C A C 

n

m

Table 3.1: Improvement of known results [27]

In Table 3.1, A: ∇(Pm�Pn) = Fm,n, B: ∇(Pm�Pn) ≤ Fm,n + 1, C: ∇(Pm�Pn) ≤

Fm,n + 2.

Again, we remark that the results obtained in this section have been included in a

joint work with Fu and Shih which is to appear in Discrete Math., Alg. and Appl. [25].
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Chapter 4

Decycling Number of Digraphs

In this chapter, we study ∇(GK(d, n)) and ∇(GB(d, n)) for n ≥ d ≥ 2.

4.1 Generalized Kautz Digraphs

First, we presents a systematic approach of finding a decycling set in a digraph. It is

the key idea in the following.

Lemma 4.1.1. Let S be a set of vertices in a digraph G. Then S is a decycling set of G

if and only if we can find a sequence of subsets of V (G), S = S0, S1, · · · , St = V (G) such

that

(1) Si ⊆ Si+1; and

(2) N+(Si+1 \ Si) ⊆ Si for i = 0, 1, · · · , t− 1.

Proof. First, we prove the necessity. Since S is a decycling set, G−S is acyclic. Thus,

there exists at least one vertex v that d+G−S(v) = 0. Now, we can partition V (G \ S) into

V1, V2, · · · , Vt by the following construction. For convenience, we denoteG0 = G[V (G)\S].

Define Vi = {v ∈ V (Gi−1)|d
+
Gi−1

(v) = 0} where Gi = G[V (G) \ (S ∪ ∪i−1
j=1)(Vj)] for

i = 1, 2, · · · , t. Let S0 = S, S1 = S0 ∪ V1, Si = Si−1 ∪ Vi for i = 1, 2, · · · , t. It can be

easily checked that Si ⊆ Si+1 and N+(Si+1 \ Si) ⊆ Si for i = 0, 1, · · · , t− 1.

Subsequently, we consider the sufficiency. Suppose not. Assume that there exists

a directed cycle C = (x0, x1, · · · , xk) in G − S. Since St = V (G), xi ∈ Sj \ Sj−1 for

i ∈ {0, 1, · · · , k} and j ∈ {1, 2, · · · , t}. (xi /∈ S0 for all i, otherwise C does not exist.) Let
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m = min{j|xi ∈ Sj \ Sj−1, i = 0, 1, · · · , k} and xl ∈ Sm \ Sm−1. Since xl+1 ∈ N+(xl),

xl+1 ∈ Sm−1 by (2). This contradicts the assumption that m is minimum. Therefore,

there is no directed cycle in G. We complete the proof.

Now, we are ready to deal with ∇(GK(d, n)). Recall that the generalized Kautz

digraph GK(d, n) is defined as follows:

{

V (GK(d, n)) = {0, 1, 2, · · · , n− 1};
A(GK(d, n)) = {(x, y)|y ≡ −dx− i (mod n), 1 ≤ i ≤ d}.

By definition, for each α ∈ V (GK(d, n)), the set of out-neighbors of α in V (GK(d, n))

is {−dα− i (mod n), 1 ≤ i ≤ d}, denoted by N+(α). Subsequently, for S ⊆ V (GK(d, n)),

we let N+(S) =
⋃

v∈S N
+(v). Then, it is easy to check N+([a, b]) = {−db − d,−db −

d + 1, · · · ,−da − 1} (mod n). For example, if d = 3 and n = 10, then N+({2}) =

{−9,−8,−7} = [1, 3] and N+([1, 4]) = {−15,−14, · · · ,−4} = [0, 9].

Now we consider the decycling set of GK(d, n) for n ≥ d ≥ 2.

Theorem 4.1.2. Let n = (d+ 1)m+ t, where 0 ≤ t ≤ d and S0 =
⋃d

i=1Ai where

A1 = [0, m];

A2 = [⌊
n

d
⌋+ ⌊

n

d3
⌋, 2m+ 1]; and

Ai = [⌊
(i− 1)n

d
⌋ + ⌊

(i− 1)n

d3
⌋, im+ (i− 1)], for i = 3, 4, · · ·d.

Then S0 is a decycling set of GK(d, n).

Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

Step 1. Let S1 = S0 ∪W1 ∪X1 ∪ Y1, where W1 = [m+1, ⌊n
d
⌋− 1], X1 = [n−⌊ n

d2
⌋, n− 1]

and Y1 = [⌊n
d
⌋, ⌊n

d
⌋ + ⌊ n

d3
⌋ − 1].

It’s routine to check

N+(W1) = [n− d⌊n
d
⌋, m− (d− t)− 1] ⊆ S0,

N+(X1) = [0, d⌊ n
d2
⌋ − 1] ⊆ S0 ∪W1 and

N+(Y1) = [2n− d⌊n
d
⌋ − d⌊ n

d3
⌋, 2n− d⌊n

d
⌋ − 1] ⊆ S0 ∪W1 ∪X1.

Now, we have S1 = [0, 2m+ 1] ∪ [n− ⌊ n
d2
⌋, n− 1] ∪

⋃d

i=3 Ai.
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Step 2. Now, we add more vertices to S1.

Let S2 = S1∪W2∪X2∪Y2, whereW2 = [2m+2, ⌊2n
d
⌋−1], X2 = [n−⌊2n

d2
⌋, n−⌊ n

d2
⌋−1]

and Y2 = [⌊2n
d
⌋, ⌊2n

d
⌋+ ⌊2n

d3
⌋ − 1].

It’s easy to check

N+(W2) = [2n− d⌊2n
d
⌋, 2m− 2(d− t)− 1] ⊆ S1,

N+(X2) = [d⌊ n
d2
⌋, d⌊2n

d2
⌋ − 1] ⊆ S1 ∪W2 and

N+(Y2) = [3n− d⌊2n
d
⌋ − d⌊2n

d3
⌋, 3n− d⌊2n

d
⌋ − 1] ⊆ S1 ∪W2 ∪X2.

After this step, S2 = [0, 3m+ 2] ∪ [n− ⌊2n
d2
⌋, n− 1] ∪

⋃d

i=4 Ai.

Step k. For d ≥ k ≥ 3, let Sk = Sk−1∪Wk∪Xk∪Yk, where Sk−1 = [0, km+(k−1)]∪ [n−

⌊ (k−1)n
d2

⌋, n−1]∪
⋃d

i=k+1Ai, Wk = [km+k, ⌊kn
d
⌋−1], Xk = [n−⌊kn

d2
⌋, n−⌊ (k−1)n

d2
⌋−1]

and Yk = [⌊kn
d
⌋, ⌊kn

d
⌋+ ⌊kn

d3
⌋ − 1].

We can check that

N+(Wk) = [kn− d⌊kn
d
⌋, km− k(d− t)− 1] ⊆ Sk−1,

N+(Xk) = [d⌊ (k−1)n
d2

⌋, d⌊kn
d2
⌋ − 1] ⊆ Sk−1 ∪Wk and

N+(Yk) = [(k + 1)n− d⌊kn
d
⌋ − d⌊kn

d3
⌋, (k + 1)n− d⌊kn

d
⌋ − 1] ⊆ Sk−1 ∪Wk ∪Xk.

Sk = [0, (k + 1)m+ k] ∪ [n− ⌊kn
d2
⌋, n− 1] ∪

⋃d

i=k+2Ai.

This concludes the proof.

Corollary 4.1.3. Let d ≥ 2 and n ≡ t (mod d+ 1). Then ∇(GK(d, n)) ≤ (1
2
− d−1

2d2
)n +

d
2
(d− t+ 5)− 2.

Proof. Let n = (d+ 1)m+ t. Then by Theorem 4.1.2,
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∇(GK(d, n)) ≤
d

∑

i=1

|Ai|

= (m+ 1) + [(2m+ 1)− (⌊
n

d
⌋ + ⌊

n

d3
⌋) + 1] + · · ·

+ [(km+ (k − 1))− (⌊
(k − 1)n

d
⌋ + ⌊

(k − 1)n

d3
⌋) + 1] + · · ·

+ [(dm+ (d− 1))− (⌊
(d− 1)n

d
⌋ + ⌊

(d− 1)n

d3
⌋) + 1].

By the facts, kn
d
−1 ≤ ⌊kn

d
⌋ ≤ kn

d
and kn

d3
−1 ≤ ⌊kn

d3
⌋ ≤ kn

d3
, we conclude that∇(GK(d, n)) ≤

(1
2
− d−1

2d2
)n+ d

2
(d− t+ 5)− 2.

When d is smaller we can get a better bound by refining the decycling set.

Theorem 4.1.4. Let n = 36m+ t, where 0 ≤ t ≤ 35 and S0 =
⋃3

i=1 Ai where

A1 = [28m− 1, n− 1];

A2 = [24m, 24m+ t− 1]; and

A3 = [12m, 12m+ t].

Then S0 is a decycling set of GK(2, n).

Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

(1) Let S1 = W1 ∪ S0, where W1 = [0, 4m− 1].

N+(W1) = [28m+ t, n− 1] ⊆ S0.

Now, we have S1 = [0, 4m− 1] ∪ A1 ∪ A2 ∪A3.

(2) Let S2 = W2 ∪ S1, where W2 = [16m+ t, 22m− 1].

N+(W2) = [28m+ 2t, n− 1] ∪ [0, 4m− t− 1] ⊆ S1.

Now, S2 = [0, 4m− 1] ∪ [16m+ t, 22m− 1] ∪A1 ∪ A2 ∪ A3.

(3) Let S3 = W3 ∪ S2, where W3 = [7m+ t, 10m− 1].

N+(W3) = [16m+ t, 22m− t− 1] ⊆ S2.

Therefore, S3 = [0, 4m− 1]∪ [7m+ t, 10m− 1]∪ [16m+ t, 22m− 1]∪A1 ∪A2 ∪A3.
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(4) Let S4 = W4 ∪ S3, where W4 = [25m+ t, 28m− 1].

N+(W4) = [16m+ 2t, 22m− 1] ⊆ S3.

Hence, S4 = [0, 4m−1]∪[7m+t, 10m−1]∪[16m+t, 22m−1]∪[25m+t, n−1]∪A2∪A3.

(5) Let k = ⌈log2m⌉, then k ≥ log2m, 2k ≥ m and let S5 = S5k∪{24m−1}∪{24m+t},

where S5k is defined as follows.

(5-1) Let S51 = S4 ∪ L51 ∪ R51, where L51 = [22m, 24m − 2k−1 − 1] and R51 =

[24m+ 2k−1 + t, 25m+ t− 1].

N+(L51) = [24m+2k +2t, 28m+2t− 1] ⊆ S4, since 24m+2k +2t ≥ 25m+ t.

N+(R51) = [22m, 24m− 2k − 1] ⊆ S4 ∪ L51.

S51 = [0, 4m−1]∪ [7m+ t, 10m−1]∪ [16m+ t, 24m−2k−2−1]∪ [24m+2k−1+

t, n− 1] ∪A2 ∪ A3.

(5-2) Let S52 = S51 ∪ L52 ∪ R52, where L52 = [24m − 2k−1, 24m − 2k−2 − 1] and

R52 = [24m+ 2k−2 + t, 24m+ 2k−1 + t− 1].

N+(L52) = [24m+ 2k−1 + 2t, 24m+ 2k + 2t− 1] ⊆ S51 and

N+(R52) = [24m− 2k, 24m− 2k−1 − 1] ⊆ S51 ∪ L52.

S52 = [0, 4m−1]∪ [7m+ t, 10m−1]∪ [16m+ t, 24m−2k−2−1]∪ [24m+2k−2+

t, n− 1] ∪A2 ∪ A3.

Continuing in this way, we have S5(i+1) = S5i∪L5(i+1)∪R5(i+1) where L5(i+1) =

[24m− 2k−i, 24m− 2k−i−1− 1], R5(i+1) = [24m+2k−i−1+ t, 24m+2k−i + t− 1]

for i = 2, 3, · · · , k − 1, and N+(L5(i+1)) ⊆ S5i, N
+(R5(i+1)) ⊆ S5i ∪ L5(i+1).

Since N+({24m− 1}) ⊆ S5k and N+({24m+ t}) ⊆ S5k ∪ {24m− 1}.

We have S5 = [0, 4m− 1] ∪ [7m+ t, 10m− 1] ∪ [16m+ t, n− 1] ∪A3.

(6) Let S6 = W6 ∪ S5, where W6 = [4m, 7m+ t− 1].

N+(W6) = [22m− t, 28m+ t− 1] ⊆ S5.

Hence, S6 = [0, 10m− 1] ∪ [16m+ t, n− 1] ∪A3.
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(7) Let S7 = W7 ∪ S6, where W7 = [13m+ t, 16m+ t− 1].

N+(W7) = [4m− t, 10m− t− 1] ⊆ S6.

Hence, S7 = [0, 10m− 1] ∪ [13m+ t, n− 1] ∪A3.

(8) Let k = log2m and S8 = S8(k+1), where S8(k+1) is defined as follows.

(8-1) Let S81 = S7 ∪ L81 ∪ R81, where L81 = [10m, 12m − 2k − 1] and R81 =

[12m+ 2k + t, 13m+ t− 1].

N+(L81) = [12m+2k+1+ t, 16m+ t− 1] ⊆ S7, since 12m+2k+1+ t ≥ 13m+ t.

N+(R81) = [10m− t, 12m− 2k+1 − t− 1] ⊆ S7 ∪ L81.

Now, S81 = [0, 12m− 2k − 1] ∪ [12m+ 2k + t, n− 1] ∪A3.

(8-2) Let S82 = S81 ∪ L82 ∪ R82, where L82 = [12m − 2k, 12m − 2k−1 − 1] and

R82 = [12m+ 2k−1 + t, 12m+ 2k + t− 1].

N+(L82) = [12m+ 2k + t, 12m+ 2k+1 + t− 1] ⊆ S81 and

N+(R82) = [12m− 2k+1 − t, 12m− 2k − t− 1] ⊆ S81 ∪ L82.

Consequently, S82 = [0, 12m− 2k−1 − 1] ∪ [12m+ 2k−1 + t, n− 1] ∪A3.

Continuing in this way, we have S8(i+1) = S8i∪L8(i+1)∪R8(i+1) where L8(i+1) =

[12m− 2k−i+1, 12m− 2k−i− 1], R8(i+1) = [12m+2k−i+ t, 12m+2k−i+1 + t− 1]

for i = 2, 3, · · · , k − 1, and N+(L8(i+1)) ⊆ S8i, N
+(R8(i+1)) ⊆ S8i ∪ L8(i+1).

Finally, we have S8 = [0, n− 1]. This completes the proof.

Corollary 4.1.5. For n ≥ 2 and n ≡ t (mod 36), ∇(GK(2, n)) ≤
2
9
n + 3t+ 1.

Proof. Let n = 36m+ t. Then by Theorem 4.1.4

∇(GK(2, n)) ≤
3

∑

i=1

|Ai| = 8m+ 3t+ 1 ≤
2

9
n + 3t+ 1.
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Theorem 4.1.6. Let n = 36m+ t, where 0 ≤ t ≤ 35 and S0 =
⋃4

i=1 Ai where

A1 = [0, 6m+ t];

A2 = [12m+ ⌈
t

3
⌉, 18m+ ⌈

t

2
⌉];

A3 = [9m− 1, 9m+ ⌊
t

3
⌋]; and

A4 = [27m, 27m+ ⌊
3t

4
⌋].

Then S0 is a decycling set of GK(3, n).

Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

(1) Let S1 = W1 ∪ S0, where W1 = [10m, 12m+ ⌊ t
3
⌋ − 1].

N+(W1) = [t− 3⌊ t
3
⌋, 6m+ t− 1] ⊆ S0.

Now, we have S1 = A1 ∪ [10m, 18m+ ⌈ t
2
⌉] ∪A3 ∪A4.

(2) Let S2 = W2 ∪ S1, where W2 = [6m+ t+ 1, 8m− 1].

N+(W2) = [12m+ t, 18m− 2t− 4] ⊆ S1.

Now, S2 = [0, 8m− 1] ∪ [10m, 18m+ ⌈ t
2
⌉] ∪A3 ∪ A4.

(3) Let k = ⌈log3m+ t⌉ and S3 = S3(k−1), where S3(k−1) is defined as follows.

(3-0) Let S30 = S2 ∪ R30 ∪ L30, where R30 = [9m + ⌊m
3
⌋ + ⌊ t

3
⌋ + 1, 10m − 1] and

L30 = [8m, 8m+ ⌊2m
3
⌋ − 1]].

N+(R30) = [6m+ t, 9m− 3⌊m
3
⌋+ t− ⌊ t

3
⌋ − 4] ⊆ S2.

N+(L30) = [12m− 3⌊2m
3
⌋+ t, 12m+ t− 1] ⊆ S2 ∪R30.

Hence, S30 = [0, 8m+ ⌊2m
3
⌋ − 1] ∪ [9m+ ⌊m

3
⌋+ ⌊ t

3
⌋+ 1, 18m+ ⌈ t

2
⌉] ∪A3 ∪A4.

(3-1) Let S31 = S30 ∪R31 ∪L31, where R31 = [9m+ 3k−2 + ⌊ t
3
⌋+ 1, 9m+3k−1] and

L31 = [9m− 3k−1 − 1, 9m− 3k−2 − 1].

N+(R31) = [9m− 3k + t− 3, 9m− 3k−1 + t− 3⌊ t
3
⌋ − 4] ⊆ S30.

N+(L31) = [9m+ 3k−1 + t, 9m+ 3k + t + 2] ⊆ S30 ∪ R31.

S31 = [0, 9m− 3k−2 − 1] ∪ [9m+ 3k−2 + ⌊ t
3
⌋+ 1, 18m+ ⌈ t

2
⌉] ∪A3 ∪ A4.
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(3-2) Let S32 = S31∪R32∪L32, where R32 = [9m+3k−3+ ⌊ t
3
⌋+1, 9m+3k−2+ ⌊ t

3
⌋]

and L32 = [9m− 3k−2, 9m− 3k−3 − 1].

N+(R32) = [9m− 3k−1 + t− 3⌊ t
3
⌋ − 3, 9m− 3k−2 + t− 3⌊ t

3
⌋ − 4] ⊆ S31 and

N+(L32) = [9m+ 3k−2 + t, 9m+ 3k−1 + t− 1] ⊆ S31 ∪ R32.

Then, S32 = [0, 9m− 3k−3 − 1] ∪ [9m+ 3k−3 + ⌊ t
3
⌋+ 1, 18m+ ⌈ t

2
⌉] ∪A3 ∪A4.

Continuing in this way, we have S3i = S3(i−1)∪R3i∪L3i where R3i = [9m+3k−i−1+

⌊ t
3
⌋+1, 9m+3k−i+⌊ t

3
⌋], L3i = [9m−3k−i, 9m−3k−i−1−1] for i = 3, · · · , k−1

and N+(R3i) ⊆ S3(i−1), N
+(L3i) ⊆ S3(i−1) ∪ R3i.

Now, we have S3 = [0, 18m+ ⌈ t
2
⌉] ∪A4.

(4) Let S4 = W4 ∪ S3, where W4 = [18m+ ⌈ t
2
⌉ + 1, 20m].

N+(W4) = [12m+ 2t− 3, 18m+ 2t− 3⌈ t
2
⌉ − 4] ⊆ S3.

Hence, S4 = [0, 20m] ∪A4.

(5) Let S5 = W5 ∪ S4, where W5 = [n− ⌊20m
3
⌋, n− 1].

N+(W5) = [0, 3⌊20m
3
⌋ − 1] ⊆ S4.

Hence, S5 = [0, 20m] ∪A4 ∪ [n− ⌊20m
3
⌋, n− 1].

(6) Let S6 = W6 ∪ S5, where W6 = [20m+ 1, 26m− 1].

N+(W6) = [30m+ 3t, n− 1] ∪ [0, 12m+ 2t− 4] ⊆ S5.

Hence, S6 = [0, 26m− 1] ∪ A4 ∪ [n− ⌊20m
3
⌋, n− 1].

(7) Let S7 = W7 ∪ S6, where W7 = [28m+ t, n− ⌊20m
3
⌋ − 1].

N+(W7) = [3⌊20m
3
⌋, 24m− 1] ⊆ S6.

Hence, S7 = [0, 26m− 1] ∪ A4 ∪ [28m+ t, n− 1].

(8) Let k = ⌈log3m+ t⌉ and S8 = S8(k+1) ∪ {27m − 1}, where S8(k+1) is defined as

follows.

Let S81 = S7 ∪ R81 ∪ L81, where R81 = [27m + 3k + t, 27m + 3k+1] and L81 =

[27m− 3k+1 − 1, 27m− 3k − 1].
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N+(R81) = [27m− 3k+2+3t− 3, 27m− 3k+1− 1] ⊆ S7, since 27m− 3k+1− 1 ≤

26m− 1.

N+(L81) = [27m+ 3k+1 + 3t, 27m+ 3k+2 + 3t+ 2] ⊆ S7 ∪ R81.

Now, S81 = [0, 27m− 3k − 1] ∪ [27m+ 3k + t, n− 1] ∪A4.

Continuing in this way, we have S8i = S8(i−1) ∪ R8i ∪ L8i where R8i = [27m +

3k+1−i+ t, 27m+3k+2−i+ t− 1], L8i = [27m− 3k+2−i− 1, 27m− 3k+1−i− 1] for

i = 2, 3, · · · , k + 1, and N+(R8i) ⊆ S8(i−1), N
+(L8i) ⊆ S8(i−1) ∪ R8i. It’s easy

to check N+({27m− 1}) = [27m+ 3t, 27m+ 3t + 2] ⊆ S8(k+1).

We have S8 = [0, 27m+ ⌊3t
4
⌋] ∪ [27m+ t + 1, n− 1].

(9) Let S9 = W9 ∪ S8, where W9 = [27m+ ⌊3t
4
⌋+ 1, 27m+ t].

N+(W9) = [27m− 3, 27m+ 3t− 3⌊3t
4
⌋ − 4] ⊆ S8.

Now, S9 = V (GK(3, n)). This concludes the proof.

Corollary 4.1.7. For n ≥ 2 and n ≡ t (mod 36), ∇(GK(3, n)) ≤
n
3
+ 9

4
t + 6.

Proof. Let n = 36m+ t. Then by Theorem 4.1.6,

∇(GK(3, n)) ≤
4

∑

i=1

|Ai| = 12m+ t+ ⌈
t

2
⌉+ ⌊

3t

4
⌋+ 5 ≤ 12m+

9

4
t + 6 ≤

n

3
+

9

4
t + 6.

4.2 Generalized de Bruijn Digraphs

In this section, we give an upper bound that improves the best known result. Recall

that the the generalized de Bruijn digraph GB(d, n) is defined by congruence equations

as follows: V (GB(d, n)) = {0, 1, 2, · · · , n − 1} and A(GB(d, n)) = {(x, y)|y ≡ dx + i

(mod n), 0 ≤ i < d}. By definition, for each α ∈ V (GB(d, n)), the set of out-neighbors of

α in V (GB(d, n)) is {dα+ i (mod n), 0 ≤ i < d} denoted by N+(α). That is easy to check

44



N+([a, b]) = {da, da + 1 · · · , db + (d − 1)} (mod n). For example, if d = 3 and n = 10,

then N+({2}) = {6, 7, 8} = [6, 8] and N+([1, 3]) = {3, 4, · · · , 11} = [0, 1] ∪ [3, 9].

Now we consider the decycling set of GB(d, n) for n ≥ d ≥ 2.

Theorem 4.2.1. For n ≥ d ≥ 2 and S0 =
⋃d

i=1 Ai where

A1 = [0, ⌊
n

d
⌋];

Ai = [⌊
(i− 1)n

d
⌋+ ⌊

(i− 1)n

d2
⌋, ⌊

in

d
⌋], for i = 2, 3, · · ·d− 1; and

Ad = [⌊
(d− 1)n

d
⌋+ ⌊

(d− 1)n

d2
⌋, n− 1].

Then S0 is a decycling set of GB(d, n).

Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

Step 1. Let S1 = S0 ∪W1, where W1 = [⌊n
d
⌋ + 1, ⌊n

d
⌋ + ⌊ n

d2
⌋ − 1].

It is routine to check N+[W1] = [d⌊n
d
⌋ + d, d⌊n

d
⌋+ d⌊ n

d2
⌋ − 1] ⊆ S0.

Now, we have S1 = [0, ⌊2n
d
⌋] ∪

⋃d

i=3 Ai.

Step 2. Find S2.

Let S2 = S1 ∪W2, where W2 = [⌊2n
d
⌋+ 1, ⌊2n

d
⌋ + ⌊2n

d2
⌋ − 1].

It’s easy to check N+(W2) = [d⌊2n
d
⌋ + d, d⌊2n

d
⌉ + d⌊2n

d2
⌋ − 1] ⊆ S1.

After this step, S2 = [0, ⌊3n
d
⌋] ∪

⋃d

i=4 Ai.

Step k. For d ≥ k ≥ 3, let Sk = Sk−1 ∪ Wk, where Sk−1 = [0, ⌊kn
d
⌋] ∪

⋃d

i=k+1Ai and

Wk = [⌊kn
d
⌋+ 1, ⌊kn

d
⌋ + ⌊kn

d2
⌋ − 1].

We can check N+(Wk) = [d⌊kn
d
⌋+ d, d⌊kn

d
⌋+ d⌊kn

d2
⌋ − 1] ⊆ Sk−1.

Sk = [0, ⌊k+1
n
⌋] ∪

⋃d

i=k+2Ai.

This concludes the proof.

Proposition 4.2.2. For GB(d, n), d ≥ 2, we have ∇(GB(d, n)) ≤ (d+1
2d

)n+ 2(d− 1).

45



Proof. By Theorem 4.2.1,

∇(GB(d, n)) ≤
d

∑

i=1

|Ai| = (⌊
n

d
⌋ + 1) + [⌊

2n

d
⌋ − (⌊

n

d
⌋ + ⌊

n

d2
⌋) + 1] + · · ·

+ [⌊
kn

d
⌋ − (⌊

(k − 1)n

d
⌋+ ⌊

(k − 1)n

d2
⌋) + 1] + · · ·

+ [(n− 1))− (⌊
(d− 1)n

d
⌋ + ⌊

(d− 1)n

d2
⌋) + 1].

By the facts that kn
d2
−1 ≤ ⌊kn

d2
⌋ ≤ kn

d2
, we conclude that ∇(GB(d, n)) ≤ (d+1

2d
)n+2(d−1).

By considering the order of n with respect to d, the upper bound we obtained asymp-

totically approaches d+1
2d

n, which is better (smaller) than 2d−3
2d+3

n for d ≥ 6 obtained by Xu

et al. [42].
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Chapter 5

Conclusion and Remarks

The problem of finding the decycling number has been extensively studied and has

been proved to be NP-complete for general graphs, even for elementary graphs. In this

thesis, we provide the following results.

First, we provide a necessary and sufficient condition for an outerplanar graphs been

upper-extremal, and given a sufficient condition for an outerplanar graph been lower-

extremal. We find a class S of outerplanar graphs none of which is lower-extremal and

show that if G has no subdivision of S for all S ∈ S, then G is lower-extremal.

Second, we improve both the lower and upper bounds of ∇(Pm�Pn) for several classes

of (m,n) such that for more (m,n) the decycling number of Pm�Pn matches the lower

bound and for all others it differs from the known lower bound by at most 1.

Finally, we give a systematic approach of finding a decycling set in a digraph. We give

the bound generalized Kautz digraphs. And improve the best known bound of generalized

be Bruijn digraphs.

Continuing our work in this thesis, we shall focus on the followings.

Problem 1. For every planar graph G, prove that ∇(G) ≤ 2ν(G) (Conjecture 2.2.2).

Problem 2. Determine the ∇(Pm�Pn) for unsettled (m,n).

Problem 3. For a directed graph G, find the general lower bound of ∇(G).

In this thesis, we only consider the decycling number of graphs on unweighted ver-
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sion. The weighted version is looking for a minimum-weight set of vertices so that the

remaining graph is acyclic. The problem is known to be NP-complete [20]. In contrast,

the problem of finding a minimum-weight set of edges containing at least one edge of any

cycle is equivalent to finding a maximum spanning tree, which has been shown solvable in

polynomial time. These two problems motivate us to consider a new version of decycling

set, namely total decycling set of graphs .

Let G = (V,E) be a graph, w : V (G) ∪ E(G) → R
+ ∪ {∞} be a weight function on

V (G) ∪ E(G). The total decycling set S of G is a subset of V ∪ E such that G − S is

acyclic. The weight of total decycling set is
∑

x∈V ∪E w(x) and a minimum total decycling

set of a weighted graph is a total decycling set of G of minimum weight. The minimum

weight of a total decycling set of G is the total decycling number of G, denoted by ∇T (G).

Problem 4. Determine ∇T (G) for any weighted graph G.
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