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Abstract

A set of vertices of a graph or an digraph whose removal in-
duces an acyclic graph is referred as a decycling set, or a
feedback vertex set, of the graph. The minimum cardinality
of a decycling set of a graph G is referred to as the decycling
number of G.

The problem of determining the decycling number has been
proved to be NP-complete for general graphs, which also
shows that even for‘planar graphs, bipartite graphs and per-
fect graphs, the computation complexity of finding their de-
cycling numbers.is not reduced:

The problem of destroying all cycles.in a graph by deleting a
set of vertices originated from applications in combinatorial
circuit design. Also, it‘has found applications in deadlock
prevention in operating systems, the constraint satisfaction
problem and Bayesian inference in artificial intelligence, mo-
nopolies in synchronous distributed systems, the converters’
placement problem in optical networks, and VLSI chip de-
S1gn.

In this thesis, we study the decycling number of graphs and
also digraphs. The graphs we consider are outerplanar graphs

and grid graphs P,,[1P,. For the first class of graphs, we char-



.V'-

acterize their decycling number by way of the cycle packing
number and for grid graphs, we improve the known results
to obtain either tight bounds or exact values. On digraphs,
we consider generalized Kautz digraphs and generalized de
Bruijn digraphs. Mainly, we use a novel idea in which we
find a sequence of subsets of vertex set satisfying certain con-
ditions and then obtain a decycling set. This provides an up-
per bound of the decycling number of digraphs we consider.
Note that this idea can be applied to find the decycling set
of general digraphs:
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

A set of vertices of a graph or an digraph, whose removal leaves an acyclic graph, is
referred as a decycling set [3], or'a feedback vertex set [37],0f the graph. The minimum
cardinality of a decycling set of a graph G is referred to as the decycling number of G.

The problem of destroying.all cycles in a graph by deleting a set of vertices originated
from applications in €ombinatorial circuit design [19]. Also, it has found applications
in deadlock prevention in operating systems [34, 37|, the constraint satisfaction problem
and Bayesian inference in‘artificial intelligence [1]; monopolies in:synchronous distributed
systems [28, 29], the converters’ placement problem in optical networks [22], and VLSI
chip design [16].

In 1986, Erdos, Saks and Sés [14] considered the problem of finding a maximum subset
of GG that would induce a tree. Meanwhile, the more general problem of finding the size of
maximum subset of G that would induced a forest was also beginning to receive attention.
Determining the decycling number of a graph G is equivalent to finding the maximum
induced forest of (G, since the sum of these two numbers are equal to the number of
vertices of G.

The problem of determining the decycling number has been proved to be NP-complete
for general graphs [20], which also shows that even for planar graphs, bipartite graphs

and perfect graphs, the computation complexity of finding their decycling numbers is not



reduced.

Besides searching for the value (or an upper bound) of the decycling number in the
order of a graph, another parameter that is closely related to the decycling number is the
cycle packing number, which is the maximum number of vertex-disjoint cycles. A trivial
relation between the decycling number and the cycle packing number is the decycling
number is not less than the cycle packing number. Moreover, the investigation of the
decycling number and cycle packing number on graphs and digraphs is closed related to
learn the structure of the studied graphs. The above facts motivate us to make a careful

study.

1.2 Graphs

First, we introduce the terminologies and definitions of graphs:  For details, the readers
may refer to the book “Introduction to Graph Theory” by D. B. West [39].

A graph G is a triple consisting of a verter set V(G), an' edge set F(G) and a relation
that associate each edge'with two vertices called its endpoints. The size of the vertex set
V(G), |V(GQ)|, is called the order of G and the size of the edge set E(G), |E(G)], is called
the size of G. In this section, we focus on the undirected graphs in which all the edges
have no directions.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the
same pair of endpoints. A simple graph is a graph having no loops and multiple edges.
We specify a simple graph by its vertex set and edge set as a set of unordered pairs of
vertices and writing e = uv (or e = vu) as an edge e with endpoints u and v.

If e = wv is an edge of GG, then e is said to be incident to u and v. We also say that
u and v are adjacent. For each v € V(G), N(v) denotes the neighbors of v; that is, all
vertices of N(v) are adjacent to v. The degree of v in a graph G, written dg(v) or d(v), is
the number of edges incident to v. For the sake of brevity, a vertex of degree d is denoted

by a d-vertex. The maximum degree is A(G) and the minimum degree is 6(G). Moreover,



G is regular if A(G) = §(G), and it is said to be k-regular if the common degree is k.

A=4 f b
0=1 3-regularity
e c
N(e)={a, d, f
d

Figure 1.1: Degree, neighborhood and regularity

An independent set in a graph is a set of pairwise nonadjacent vertices.

A path is a simple graph whose vertices ¢an beordered so that two vertices are adjacent
if and only if they are consecutive in'the list. A path with . n vertices is denoted by P,.
A graph G is connected if each pair of vertices in' G' belongs to a path; otherwise, G is
disconnected.

A subgraph of a graph G'is a graph H such that V(H) C V(G) and E(H) C E(G)
and the assignment of endpoints to edges in H is the same as in G. A spanning subgraph
of G is a subgraph with-vertex set V(G). Given S be a subsetiof vertex set V(G), the
induced subgraph determined by.S, denoted by G[5], is a sulbgraph of G such that for any
u,v € S, u is adjacent to v in G[S] if u is-adjacent to v in G.

The components of a graph G are its maximal connected subgraph. We use ¢(G) to
denote the number of components of G. An isolated vertex is a vertex of degree 0.

A cycle is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. A cycle with n vertices is denoted by C),.

A graph is called triangle-free if it contains no Cj as its subgraph.

In contrast, a graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a
connected acyclic graph.

A separating set or vertex cut of a graph G is a set S C V(G) such that G— S has more

than one component. The connectivity of G, written x(G), is the minimum size of vertex

3



set S such that G — S is disconnected or has only one vertex. A graph is k-connected if
its connectivity is at least k.

In a graph G, a subdivision of an edge uv is the operation of replacing uv with a path
u, w, v through a new vertex w. A subdivision of H is a graph obtained from a graph H
by successive subdivision of edges. Two graphs GG, G2 are homeomorphic if G; can be
transformed into G5 via a finite sequence of subdivisions.

The cartesian product of G and H, written GOIH, is the graph with vertex set V(G) x
V(H) specified by putting (u,v) adjacent to (u’,v’) if and only if (1) v = v’ and vv’ €
E(H), or (2) v =" and wu’ € E(G).

The k-dimensional cube or hypercube &y is-the simple graph whose vertices are the k-
tuples with entries in {0, 1} and whose edges are the pair of k-tuples that differ in exactly

one position.

Figure 1.2: Hypercube Q) for k =1,2,3

A graph is planar if it has a drawing in the plane without any edge crossing. Such a
drawing is a planar embedding of G. The faces of a planar graph are the maximal regions
of the plane that contain no point used in the embedding. A face f of a planar graph is a
circuit that surrounds a region bounded by edges; let ¢; denote the length of f, i.e., the
number of surrounding edges. For a planar graph G, let F'(G) be the set of faces of the

embedding. A finite planar graph G has one unbounded face (also called the outer face).



FEuler’s formula states that for every plane graph G,
V(G = [E(G)] + |[F(G)] =2.

A graph is outerplanar if it has an embedding with every vertex on the boundary of

(@) (b)

Figure 1.3: (a) planar;not outerplanar (b) outerplanar

the unbounded face.

An isomorphism frompa graph-G-to a graph # is a bijection'f : V(G) — V(H) such
that wv € F(G) if and only if f(u)f(v) € E(H). We say “G-is isomorphic to H”, written

G = H, if there is an isomorphism from G to H.

Iy

e

Figure 1.4: Two isomorphic graphs

1.3 Directed Graphs

A directed graph or digraph D is a triple consisting of a vertex set V (D), an edge set
E(D) and a function assigning each edge an ordered pair of vertices. The first vertex
of the ordered pair is the tail of the edge and the second is the head; together, they are
endpoints. The terms "head” and "tail” come from an arrow used to draw directed graphs.

As with graphs, we assign each vertex a point in the plane and each edge a curve joining its



endpoints. When drawing a directed graph, the direction of a curve is from the tail to the
head. Figure 1.5 shows a directed graph D with vertex set V(D) = {0,1,---,7} and edge
set E(D) ={(0,0),(0,1),(1,2),(1,3),(2,4),(2,5),(3,6),(3,7),(4,0), (4,1),(5,2), (5,3),

(6,4),(6,5),(7,6),(7,7)}.

Figure 1.5: A directed graph G'z(2,8)

In a directed graph, adeop is an edge whose endpoints.are‘equal, such as (0,0), (7,7)
in Figure 1.5. Multiple edges are edges having the same ordered pair of endpoints. A
directed graph is simple if each ordered pair of vertices have at meost one edge; one loop
may be present at eachivertex. Therefore, Figure 1.5 is a simple directed graph.

In a simple directed graph, we write uw for-an-edge with tail v and head v. If there
is an edge from u to v, then v.is a<successor of u and u is a predecessor of v. We write
u — v for "there is an edge from w.tow”.

A directed graph is a path if it is a simple directed graph whose vertices can be linearly
ordered so that there is an edge with tail v and head v if and only if v is immediately
follows u in the vertex ordering. A cycle is defined similarly using an ordering of the
vertices on a circle.

Let v be a vertex in a digraph. The outdegree d*(v) is the number of edges with
tail v. The indegree d~(v) is the number of edges with head v. The out-neighborhood
or successor set Nt (v) is {x € V(D) : v = x}. The in-neighborhood or predecessor set

N (v)is {x € V(D) : x — v}.



1.4 Notations and Definitions

A set of vertices of a graph or an digraph whose removal leaves an acyclic graph is
referred to as a decycling set of the graph. The minimum cardinality of a decycling set
of G denoted by V(G), is referred to as the decycling number of G.

An acyclic coloring of a graph G is a coloring of its vertices, satisfying the following

two rules:

(1) No two neighboring vertices are assigned the same color (this is also denoted as

proper coloring).

(2) Let V, C V(G) be the set of vertices of G that are assigned color a. Then for any

a # b, the induced subgraph G[V, U V3] must-be acyelic:

The minimum number of colors necessary to-color (7 is called the acyclic chromatic number
of G, and is denoted a(G).
The cycle packing mumber v(G) is the maximum number of vertex disjoint cycles.
The grid P,,00P, has vertex set V(P,0P,) = {v;;7:1 <4 <m,1 < j <n} and edge
set E(Pn,0P,) = {(vij,vis1g) 21 <i<m—1,1 <j <atU{(w;;vij+1): 1 <i<m,1<

j<n-—1}

Figure 1.6: PP

A k-dimension butterfly is a graph By, = (V, E)) composed of (k-+1)2* vertices organized

in k+1 levels of 2% vertices each, where v; ; denotes the jth vertex at level 7, with 0 <7 < &



and 0 < j < 2¥ — 1. Fori > 0, v;,; is connected with the two vertices v;_;; and v; ,,
where 7; denotes the integer whose binary representation differs from that of j in only the

1th position from right.

Figure 1.7: Butterfly Bs

For convenience, we use [a,b] = [a,a+ 1, ++ - 0] for a < b and Z; for the representation
of {0,1,---,d—1}.

For X, Y C V(G), an‘X, Y-path is a path having one endpoint in X, the other one
in Y, and no other vertices in X UY. A {v},Y-path.s simply written as a v,Y-path.
Similarly, we use u, v-path to represent a path from « to v in G.

For x € R, the floor |x| is the greatest integer less or equal to'x. The ceiling [x] is
the smallest integer greater than or equal to z:

A g-nary code C of length.n is'a set of ¢g-nary n-tuples and the Hamming distance
between two strings of equal length (eodewords).is*the mumber of positions at which the
corresponding symbols are different.

Let n and [ be two positive integers with n > 2[. For any two numbers i, j where

1 <4,j <n, we define a function (difference) x by

-] if i —j| <%,
X(i—J) = { n —|i —j| otherwise.

A circular graph G = C(n,l) of order n is one spanned by n-cycle C,, = (1,2,---,n)
together with the chords (i,7) € E(G) if and only if x(i — j) = I(l > 1).
The Euler totient function p(n) is the number of integers less than n that are relatively

prime to n.



1.5 de Bruijn Digraphs, de Bruijn Undirected Graphs
and Generalized de Bruijn Digraphs

Graphs are widely used in the design and analysis of parallel computer network sys-
tems. A vertex in the graph denotes a node (or processor) in the corresponding network,
and an edge represents a communication link between two nodes. We will not discuss the
difference between network and graph in this thesis.

The de Bruin interconnection network is modeled by the de Bruijn digraph, which is
named after N. G. de Bruijn for his work in counting d-ary sequences of maximal period
[5]. The de Bruijn digraph was widely studied as a communication network model, and
was proposed as a suitable processor-interconnection network for VLSI implementation
[33].

The de Bruijn digraphs have good properties such®as it is regular, eulerian, hamil-
tonian, and has small'diameter, nearly optimal connectivity, simple recursive structure,
simple routing algorithm, contains some other useful topologies as its subgraphs (see [40])
and, thus, been thought of as a good candidate for the next generation of parallel system
architectures, after the hypercube network [6].

The de Bruijn digraphs B(d, n) (d >2,n.>-1) is defined as follows. The de Bruijn
digraph has vertex set
V(B(d,n)) ={x1xa--- 2 12, €{0,1,--- ,d—1},1<i<n}
and a directed edge set F(B(d,n)), where © = x1x9 -+ Ty, y = Y192+ - yn € V(B(d,n)),
xy € E(B(d,n)) if and only if y; = z;41 for : =1,2,---n — 1. Figure 1.8 is the de Bruijn
digraphs B(2, 3).

The de Bruijn undirected graph, denoted by U B(d, n), is an undirected graph obtained
from B(d,n) by deleting the orientation of all edges and omitting multiple edges.

However, one of the disadvantage of B(d, n) is the restriction on the number of vertices
[12]. From B(d,n) to B(d + 1,n), the number of vertices will increase from d" to d"*!.

As d or n increased, the gap between d" and d"*! becomes larger and larger, which also



001 011
100 110
Figure 1.8: A de Bruijn digraph B(2, 3)

poses the problem of smooth expansion. Therefore, this increases the difficulty for its
applications.

In 1981, Tmase and Itoh [17] propsed a generalization of de Bruijn digraphs to include
any number of vertices. Reddy, Pradhadn and Kuhl [32] also proposed the same graph
independently in 1980. Wedse G'5(d, n) to denote the generalized de Bruijn graphs.

For n > d > 2, the generalized de Bruijn digraph Gg(d,n) is defined by congruence
equations as follows: V(Gp(dyn))=40,1,2,--- n= 1} and A(Gg(d,n)) = {(z,y)|ly =
dx +i (mod n),0 <i'<d}. Figure 1.9 shows the generalized de Bruijn digraph Gg(2,7).
Clearly, if n = dP, Gg(d,n) is the de Bruijn digraph B(d, D). Figure 1.10 represent the

generalized de Bruijn digraph Gp(2,8). Figure 1.8 and Figure 1.10 show that B(2,3) =

0 9

Figure 1.9: A generalized de Bruijn digraph Gp(2,7)

Gp(2,8).
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Figure 1.10: A generalized de Bruijn digraph Gp(2,8)

1.6 Kautz Digraphs, Kautz Undirected Graphs and
Generalized Kautz Digraphs

In this section, we will introduce the Kautz digraphs and generalized Kautz digraphs.
The Kautz digraphs are also an‘important class ofintersection networks first proposed by
Kautz in 1969 [21].

Structurally, Kautz networks are very similarto de Bruijn networks, and thus contain
as many desirable properties as those of de Bruijn networks (see [40]). Moreover, Kautz
networks are an imprevement over de Bruijn networks, and haveralso been thought of
as good candidates for the next generation of parallel system architectures, after the
hypercube networks [6].

For two given integers d > 2 and.n > 1, the-Kautz digraph K(d,n) is defined as
follows. The vertex set of K (d,n) is
V(K(d,n)) ={xixe-- 2, 2, € {0,1,--+ ,d},x; # xi41,1 <i<n—1}
and the edge set EF(K(d,n)) consists of all edges from zyz5---x, to d other vertices
Toxg -+ xya where o € {0, 1, -+ d} and « # x,,. Figure 1.11 is a Kautz digraph K(2,2).

The Kautz undirected graph, denoted by UK (d,n), is an undirected graph obtained
from K (d,n) by deleting the orientation of all edges and omitting multiple edges.

Similarly the Kautz digraphs have the same restriction on the number of vertices as
de Bruijn digraphs. Imase and Itoh [17, 18] generalized the Kautz digraphs in 1981.
The generalization removes the restrict on the cardinality of vertex and retains all of the

properties of graphs. Thus, these graphs are also good networks for the next generation

11
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Figure 1.11: A Kautz digraph K(2,2)

Figure 1.12: A-Kautz undirected-graph UK(2,2)

of parallel system architecture.
For n > d > 2, the generalized Kautz.digraph G (d,n) is defined by congruence

equations as follows:

{ V(Gr(d,n))=H{01, 25 .n — 1}
A(Gg(d,n)) = {(zy)ly==de=17 (modn),1 <i<d}.

In particular, K(d, D) = Gg(d,d? + dP~1).

Figure 1.13: A generalized Kautz digraph Gk (2,5)

In this thesis, we study the decycling number on graphs and digraphs, and the thesis

is organized as follows. In Chapter 2, we make a survey of all the known results which

12
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Figure 1.14: A generalized Kautz digraph Gk (2, 6)

are related to the classes of graphs we focus on. Then, in Chapter 3, we consider the

decycling number of outerplanar graphs and grid graph P,,[JF,. The main results on

13



Chapter 2

Known Results

From the literatures, there are many studies which focus on determining the decycling

number of graphs. In this chapter, we will give an overview of these results.

2.1 In Graphs

In the beginning of this section; we present the general lower bound of graph G.

Lemma 2.1.1. [3] Let G be a connected graph with p vertices and q edges, and degrees

di,ds, -+ ,d, in non-deereasing order. If V(G) = s, then
Sdi—1)>q—p+1.

i=1

As an indication of how this result can be used, we have the following corollary.

Corollary 2.1.2. [3] If G is a connected graph with p vertices, q edges, and maximum

degree d, then

q—p—+1
P L S —
V(G) > T

In the following, we present the results about outerplanar graphs. Bau et al. [2] found

formulas of decycling number for maximal outerplanar graphs.

Theorem 2.1.3. [2] If G is a mazximal outerplanar graph of order n,

then



In 2002, Fertin, Godard and Raspaud [15] proved the same result by the acyclic

coloring argument. They proved the following lemma.

Lemma 2.1.4. [15] Let G = (V, E) be a graph of order |V| = N. If a(G) < k, then

V(G) < 52N, where a(G) is the acyclic chromatic number of G.
Lemma 2.1.4 combined with the following theorem in [35] can also get Theorem 2.1.3.
Theorem 2.1.5. [35] For any outerplanar graph G, a(G) < 3.
Similarly, Bordin[4] given the acyclic chromatic number of planar graph.
Theorem 2.1.6. [4] Every planar graph is acyclically 5-colorable.
Lemma 2.1.4 combined with Theorem 2.1.6 can obtain the following theorem.
Theorem 2.1.7. [15] For any planar-graph G of order N, V(G) < N.
For hypercube, Beineke [3] and Pike [30]| gave the results as follows.
Theorem 2.1.8. [3]
(1) V(Qs) = 3.
(2) V(Q4) = 6.
(3) V(Qs) = 14.
(4) V(Qs) = 28.
(5) V(Qr) = 56.
(6) V(Qs) = 112
Theorem 2.1.9. [30] V(Q,) < 2" ' — A(n, 4) where A(n,4) denotes the size of mazimum
binary code of length n with minimum Hamming distance 4.
Theorem 2.1.10. [30] V(Q,) = 2"' — A(n,4) if and only if there exists a minimum
decycling set S in Q, that is also an independent set.

15



For circular graphs, Wei et al. [38] provided the following theorems.
Theorem 2.1.11. [38] [21] < V(C(n,1)) < 2.

Theorem 2.1.12. [38] V(C(n,1)) = [H1] where | > 2 and n = 21.

Theorem 2.1.13. [38]

27 +1 ifn=2 (mod 6),
otherwise

where n > 5.

2P R Lifn=8k+ 2 and k is odd,
V{Cn.3)) = { f”TH] otherwise
where n > 7.
A [HTHW +1——if w= 3k+ 2<and k is positive integer,
Ve ) 3 { f”THW otherwise

where n > 9.

Theorem 2.1.14. [38|"Suppose v = 3k, | = 3m —1 and (kym) =1 or 2 where k > 3m.

Then V(C(n,1)) =k + 1 =",

Luccio [26] proved the lower and upper bounds of decycling number in both grids and

butterflies in 1998.

Theorem 2.1.15. [26] If m,n > 2, then

(m—1)(n—1)+1

( mn m-+n
3

3 +T+0(m,n)J.

< V(P0R) <[

Theorem 2.1.16. [26] For k-dimensional butterfly,

2 22) < v 5 |

(k+ 3)2F + 4

]

Secondly, Caragiannis, Kaklamanis and Kanellopoulos improved the bounds.

Theorem 2.1.17. [§] V(P,0P,) < [t — min5 |

16



Theorem 2.1.18. [8] For k-dimensional butterfly,

(k—1)2F +1 (k+ 1)2*

( 3

1 <V(B) < | I

Subsequently. Chang et al. [9] both improved Luccio’s analysis of decycling number

in butterflies and exhibited an algorithm which constructed a decycling set in By.

Theorem 2.1.19. [9] For k-dimensional butterfly By,

(3k+1)2k+1j 2k — 1
9 3

V(Bp) < |

if k is even. Otherwise,

8k 12" + 1J ok 9l51 o ol 1+

V(B) £ ¢

Finally, Madelaine and Stewart {27] construct new decycling sets in grids so that for

certain number of pairs (m,n), the size of decycling set in the grid P,,[0P, matches the

(m—1)(n—1

best lower bound [ =

)H-‘ , and for all other pairs the size of decycling set is at most

this lower bound plus 2. We use Table 2:1 to represent:Madelaine and Stewart’s result.

Theorem 2.1.20. [27]

Table 2.1: Madelaine and Stewart’s result

In Table 2.1, A: V(P,OP,) = Fy,, B: V(P,OP,) < F.. +1, C: V(P,0OP,) <

Fon + 2 where F, , = { m—1)(n— 1)“}

17



Pike and Zou [31] determined the decycling number of C,,0C,, for all m and n. And

they also yield a maximum induced tree in C,,L1C},.

Theorem 2.1.21. [31] Let m > 3 and n > 3 be integers. Then

[ ifm =4,
V(C,0C,) =< [P  ifn=4,

2
22 otherwise.

Kralovic et al.[24] determined the decycling number in certain graphs, such as de

Bruijn undirected graphs UB(2,n) and Kautz undirected graphs UK (2, n).
Theorem 2.1.22. [24] V(UB(2,n)) = [3(2" - 2)].
Theorem 2.1.23. [24] V(UK (2,n)) =271
The following theorems show the upper and lower bounds of UB(d,n) and UK (d,n).

Theorem 2.1.24. [44] For any d->-3-and n >.1,

’,dn-kl_d_w_dn_'_l

ST 1SV(UB(d,n))gdn(l_(i)d_1)+(n+d—2).

d+1 d—2

Theorem 2.1.25. [45] For d > 2 and n >3, the following holds:
dnJrl . dnfl > d(d+1) o+

1\ W) 2
[ 2d -1 : d_

4

| <VOK@ )< a4l |+ na=.

In the following, we present the results on digraphs.

Theorem 2.1.26. [43] For d > 2 and n > 1,

= dip(®) for2 <n <4,
V(B(d,n)) =4
d” | O(nd™™*) forn >5,

n

where iln means i divides n, and ¢(i) is the Euler totient function.

Theorem 2.1.27. [41] Ford > 2 and n > 1,

d forn =1,
0 ) (n—1
V(K(dn)={ & @n)(”)l 1 $O )_(”1 ) pr2<n<r,
% + g_ 1+ O(nd™*) forn > 8,

where (9 ® 0)(n) = X, @(i0(n}i)), 6() = d' + (~1)'d, (1) = 1 and (i) = i [T}, (1 -

1/p;) for i > 2 and py,ps, - - -, pr are the distinct prime factors of i, not equal to 1.

18



Theorem 2.1.28. [42] Ford > 2 and n > 1,

(44 7Tm+ 22+ 3] - 5] - 55,
(mod 32), ford =2.
V(Ggp(d <
(Ga(d,n)) < (mod 18), for d = 3.
2+t +d(2d — 3)ym + [{HHLH=L] L],
b~|,n=t (mod d(2d+3)), ford>4.

2.2 Relation with Cycle Packing Number

Review that the cycle packing number of a graph G, v(G), is the maximum number
of vertex-disjoint cycles in G. Therefore,"V(G):>. v(G) for every graph . Dirac and
Gallai wondered if there is any inverse relation between V(G) and v(G). Define V(k) =
maz{V(G)|v(G) = k}. Bollobas [7] proved that V(1) = 3 and the complete graph of
five vertices shows that,this bound is-sharp: Later, Voss [36] showed that V(2) = 6 and
9<V(3)<12.

Erdds and Pdsa [13] proved the following:
Theorem 2.2.1. [13] There are absolute constants ¢, and cs such that
aklogk.< V(k) < esklogk.

Kloks, Lee and Liu [23] in 2002 conjectured following.
Conjecture 2.2.2. [23] For every planar graph G, V(G) < 2v(Q).

And they also proved the following theorems by greedy algorithm.
Theorem 2.2.3. [23]| Let G be an outerplanar graph. Then V(G) < 2v(G).
Theorem 2.2.4. [23]| Let G be a planar graph. Then V(G) < 5v(G).

Subsequently, Chen, Fu and Shih [11] improved this bound for planar graphs by dis-

charging method. First, they give a lemma.
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Lemma 2.2.5. [11] Every 2-edge-connected triangle-free planar graph G with minimum

degree at least three has either a Cy containing a 3-vertex or a Cs containing at least four

3-vertices.

Then, they use the following algorithm to prove the main result. The algorithm starts

with an empty set F and goes step by step as follows.

A.

Remove all vertices and edges not lying on any cycle. Notice that the resulting
graph will be 2-edge-connected. Once no vertex exists, then the process stops and

outputs F.

. Repeatedly remove from ‘the resulting graph-2-vertices (vertices of degree 2) that

have nonadjacent neighbors and connecti an edge between these two neighbors. Go

to the next step.

If there is a C5pthen take these three vertices into £ and remove them from the

remaining graph; and go back step A: Otherwise, do the next step.

. Remark that the process enters this step only when all vertices are of degree at

least 3 and no Cj exists.. By Lemma 2.2.5, there must be either a Cj containing
a 3-vertex or a (5 containing at least four 3-vertices. In the former case, take the
three vertices other than the 3-vertex into F and remove them, then go back step
A. In the later case, there must be at least two 3-vertices that are nonadjacent in
the C5. Take the other three vertices into F and remove them, then go back step

A.

Theorem 2.2.6. [11] For every planar graph G, V(G) < 3v(G).
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Chapter 3

Decycling Number of Graphs

3.1 Outerplanar Graphs

As mentioned in Chapter 2,oTheorem 2.2.3,.Kloks, Lee and Liu [23] proved that
V(G) < 2v(Q) for every outerplanar graph G. Since (@) < V(G), it is nature to
determine when these hounds are-in-fact equalities.

An outerplanar graph G.is.called lower-extremal if V(G) = v(G) and upper-extremal
if V(G) = 2v(G). Inthis section, we provide & necessary and sufficient condition for
an outerplanar graph being upper-extremal. On the other hand; we provide a sufficient
condition for an outerplanar graph being lower-extremal. We find a class S of outerplanar
graphs none of which is lower-extremal and show that.if G has no subdivision of .S for all
S € 8, then G is lower-extremal.

We start by presenting an upper-extremal graph with simplest structure.

Definition 3.1.1. Sy is a graph with vertex set V' = {0,1,---,2k — 1} and edge set

E={i(i+1):0<i<2k—1}U{i(i+2) : i is even} (the indices are under modulo 2k).

Then V(Sx) = [£] and v(Sy) = | 4]. S; is clearly an upper-extremal graph; indeed, its
subdivisions are the only 2-edge-connected outerplanar graphs that are upper-extremal
and have cycle packing number one. We define the simplified graph of a graph G to be
the graph obtained from G by continuously deleting vertices of degree one until there is

no more degree one vertex and denote it by |G].
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Let F'(G) denote the outer face of an outerplanar G. An edge uv is called a basic edge
of G if wv and some wu, v-path on the boundary of F'(G) form the boundary of a face of

G. Then, we have

Lemma 3.1.2. For an outerplanar graph G with v(G) = 1, G is upper-extremal if and

only if |G| is an Ss-subdivision.

Proof. It suffices to prove the necessity. If |G| has a cut-vertex v, then v belongs
to two blocks of |G, say Gy and Go, and |G| — v has a cycle which is vertex-disjoint
with Gy or Go. Then |G] has two vertex-disjoint cycles, a contradiction. Thus |G| is
2-connected. Any two basic edges of |G |-have a commeon vertex; otherwise, we can find
two vertex-disjoint cycles. This implies that |G| has at mostthree basic edges. Then |G|
has exactly three basic edges; otherwise we can decycle it by deleting one vertex. Hence

it is an Ss-subdivision. [

To characterize the upper-extremal graphs; we first define a class of special upper-
extremal graphs — Ss-trees. A graph is an Ss-tree of order t if it has exactly ¢ vertex-
disjoint Ss-subdivisions and every edge not on these Ss-subdivisions belongs to no cycle

(see Figure 3.1 for an example).

Figure 3.1: An Ss-tree G of order 3, where V(G) = 6 = 2v(G).

It is easy to verify that any Ss-tree of order ¢ has exactly ¢ vertex-disjoint cycles, and to
decycle an Ss-tree, we have to delete two vertices from each S3-subdivision. Hence, all S3-
trees are upper-extremal. We will show that there is no other upper-extremal outerplanar

graph.
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Lemma 3.1.3. An outerplanar graph G comprised of a connected Ss-tree H of order t

and two internally disjoint v,V (H)-paths has t + 1 vertex-disjoint cycles for v ¢ V(H).

Proof. Suppose that v;,ve € V(H) are the endpoints of these two v, V(H)-paths. Let
C' be the cycle comprised of these two v, V(H )-paths and the vy, ve-path in H such that C'
is the boundary of some face of G. Then the intersection (vertex and edge) of C' and any
Ss-subdivision S in H is either an edge on the boundary of the outer face of S or a vertex
of S; otherwise, there would be a subdivision of K53 or K4, a contradiction. Hence, we

can easily find a cycle in every S3-subdivision that is vertex-disjoint with C'. [

Theorem 3.1.4. An outerplanar graph G-as-upper-extremal if and only if G is an Ss-tree.

Proof. It suffices to consider the necessity. We prove it by induction on v(G). The
statement is clearly true for G if v(G) = 0. Let G be an upper=extremal graph. Then
we can find a maximalinduced path P with some endpoints v and v such that uv is an
edge of G (u # v since G is upper-extremal). Then G \ {u,v} must be upper-extremal
and v(G \ {u,v}) <v(G)—1. Thus we can assume that G \ {u,v} is an Ss-tree of order
t. Then v(G) >t + 1. Since V(G) < 2t + 2 and G is upper-extremal, v(G) =t + 1 and
thus V(G) = 2t + 2.

Define G* := |G\ {z : « is on some cycle of G \ {u,v} }|. Then v(G*) = 1. If
V(G*) = 2, then by Lemma 3.1.2 G* is an Ss-tree of order one. This implies that G
contains t 4+ 1 vertex-disjoint Ss-subdivisions. By Lemma 3.1.3, there exists at most one
path between any two S3-subdivisions and thus G is an S3-tree. Now, we consider w.l.o.g.
that G* — u is acyclic. Let V* := V(G*). Then G is a graph comprised of G*, |G\ V*],
and some internally disjoint V* V(|G \ V*|)-paths. Notice that there is at most one
w, V*-path if w € V(|G \ V*|) is not on any Ss-subdivision. We classify the vertices
in V*\ V(P) into two disjoint sets A and B where A is the union of the vertex sets of
components of G* —u except the one containing v. Let V' be the vertex set of a component

of |G\ V*|. Then each component of G[A] has at most one path to V' and there is at
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most one B, V’-path; otherwise, by Lemma 3.1.3 v(G) > t + 2 (see Figure 3.2 (a)), a

contradiction. We consider the following cases.

\
u \y
AN led
/ \
\ !
i
(c)

Figure 3.2: Gray edges form some vertex-disjoint cycles.

Case 1: G* has a cycle containing w but notv. Then there is at most one v, V'-path;
otherwise, ¥(G) > t + 2. For the remaining case we have to deal with is that there is
exactly one B, V’-path and one u, V'-path. Let#,y be the endpoints of these two paths in
V'. Then at least one of  and y is on an Sz-subdivision in G[V'] and thus we can decycle
G by deleting u and a minimum decycling set of G \ {u, v} including it, contradicting the
fact that V(G) = 2t + 2.

Case 2: Fvery cycle of G* contains both u and v. Then G* — v is also acyclic. Suppose
that V,, C V' is the set of vertices as the endpoints of some w,V’-paths and V, C V'
is the set of vertices as the endpoints of some B U {v},V’'-paths. If min(|V,],|V,]) > 2
and max(|V,/|,|V,|) > 3, then by Lemma 3.1.3 v(G) > t + 2 (see Figure 3.1.3 (b) for an
example), a contradiction. Thus |V,| =2 = |V,|or |V, =1 or |V,| = 1. If |V,| =1

(or |V,] = 1), and therefore G can be decycled by deleting v (or u) and a minimum
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decycling set of G\ {u, v}, contradicting that V(G) = 2t + 2. It remains to consider that
V| =2 =1V,|. fV, NV, =0, then v(G) > t+ 2 (see Figure 3.2 (¢) for an example),
a contradiction. Suppose that V, NV, = {w}. Then w must be on some S3-subdivision.
Therefore, we can decycle G by deleting v and a minimum decycling set of G\ {u, v} with

w included (see Figure 3.2 (d) for an example), again a contradiction. ]

To prove that a property is sufficient for a graph being lower-extremal, we will use
induction. In order to facilitate the proof of the induction step, we need a hereditary
graph property. A graph property is called monotone if it is closed under removal of

vertices. We provide the following general.result that is applicable to all graphs.

Lemma 3.1.5. Suppose that a 2-connected graph is lower-extremal provided that it sat-

i1sfies a monotone property.’P. Then G is lower-extremal if G satisfies P.

Proof. We prove the statement by induction on |G|. The statement is true for graphs
with v(G) = 0 or |V(G)| = 1. For a graph G of connectivity one, let Gy be a leaf block of
G and v be the cut-vertex of G in V(Gy). Let Go. = G\ V(G —=w). Then v(G) is either
v(G1) + v(Gy) or v(Gh) ¥ v(Gg) = 15 and V(G) < V(Gy) + V(G5). Thus suppose to the
contrary that V(G) > v(G). Then (G) = v(G1)+v(Go)=1and V(G) = V(G1)+V(Gy).
The first equality shows that every ‘maximum set of vertex-disjoint cycles of G; must
contain a cycle with v for i = 1,2, and thus v(G; —v) < v(G;) for i = 1,2. The second
equality shows that v does not belong to any minimum decycling set of G* where G* = G
or Gy and thus V(G* —v) = V(G*). Thus by the monotonicity of P and the induction

hypothesis, v(G* —v) = V(G* —v) = V(G*) = v(G*), a contradiction. ]

To introduce a sufficient condition for a graph being lower-extremal, we first classify
all edges of an outerplanar graph. For a 2-connected outerplanar graph G, let Ey(G)
and F1(G) be the set of edges on the boundary of F(G) and the set of basic edges of G,
respectively. For k > 2, define E,(G) to be the set of basic edges of G \ -] Ei(G). For

an edge uwv € Ex(G), we use C'(uv) to denote a cycle generated by uv and a u, v-path on
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the boundary of F(G) such that the cycle is the boundary of a face of G\ U] Ei(G).

=1
We also call it a basic cycle of the graph G\ U;:ll E;(G) generated from edge uv.

Lemma 3.1.6. If G is a 2-connected outerplanar graph with no Sy-subdivision for all odd

number k, then G is lower-extremal.

Proof. We prove the statement by induction on |E(G)|. It is easy to verify that the
statement is true for graphs with at most three edges. It suffices to prove that there exists
a 2-connected subgraph G’ of G that has fewer number of edges and no Sy-subdivision
for all odd number k and satisfies V(G) < V(G') (then V(G) < V(G') = v(G') < v(Q)).

The statement is clearly true for G with |Fy(G)|.= 0. Suppose |Ez(G)| > 1 (and thus
|E1(G)| > 1). Take an edge € =y € E5(G) and a-basic eycle C(e) of G\ Ei(G). Let
E C E1(G) be the set of edges with both endpoints on C'(e). We consider the following
cases.

Case 1: E induces an x,y-path of G, say rviv, - -vy. Here, ¢ must be even since G
contains an Sy o-subdivision. Let D be a minimum decycling set of G — e. If D contains
x or y, then D is also a decycling set of G' and thus V(G) < V(G —¢). Suppose z,y ¢ D.
W.lo.g., we can assume that .D.N C'(e) contains only vertices of degree larger than two.
Then |[DNC(e)| > (t+ 2)/2.0 Let D"=(D\-C(e)) U {x,va, 04, ,v:}. Then D' is a
decycling set of G of size at most V(G — €). Thus, V(G) < V(G —e).

Case 2: E generates a maximal path that contains none of r and y, say vivs - - - v;.
We let G’ to denote G\ V(C(e) —x —y) if E = {vjuipq : 1 =1,---,t — 1} and G\
{vivig1 i = 1,--- t — 1} otherwise. Then G’ is clearly 2-connected. Thus we have
V(G) € V(G + 5] = @) + 4] = v(G).

Case 3: FE induces at most two components which are paths as xvive---v; and
Yyujug - - - uy. Suppose t (or t') is odd. Let D be a minimum decycling set of G —e. Similar
to the argument in Case 1, suppose that z,y ¢ D. Then |DN{vy,vg, -, v} > (t+1)/2
and thus (D\{vy,vg, -+ , v })U{z,v9,v4, -+ ,v,_1} is a decycling set of G. Hence V(G) <

V(G —e). It remains to consider that ¢ and ¢’ are even. Let G' = G\ (V(C(e)—z—y)) and
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D be a minimum decycling set of G'. Then D U{vy, v, -+, 0,1} U{ug,us, -+ ,up_1} is a
decycling set of G of size V(G') + (t+1') /2. Since G[V(C(e))] has (t+1')/2 vertex-disjoint
cycles that do not contain z and y, V(G) < V(G')+(t+1t')/2 = v(G")+ (t+1') /2 < v(G).

This concludes the proof. [

The property of being without Si-subdivision is monotone. Therefore, by Lemma

3.1.5 and Lemma 3.1.6, we have

Theorem 3.1.7. For an outerplanar graph G, if G has no Sy-subdivision for all odd

number k, then G is lower-extremal.

We remark here that the results obtained-in.this-section have been included in a joint

work with Chang and Fu [10]:

3.2 P,0P,

Reviewing that the decycling number of the grid P,,[1P, shown by Luccio is at most

{% + ME 4 o(m, n)J and at least {(m_l)(fn_nﬂ—‘ [26].. Subsequently, in [8], Caragiannis,
Kaklamanis and Kanellopoulos improved the upper bound: They showed that the decy-
cling number of the grid P,,,[JP, is atamost L% — %”_SJ . Finally, Madelaine and Stewart
[27] construct new decycling sets in grids so that for certain number of pairs (m,n), the

size of decycling set in the grid P,,[1P, matches the best lower bound [W-‘ , and
for all other pairs the size of decycling set is at most this lower bound plus 2.

In this section, we further improve both the lower and upper bounds of V(P,,00F,)
for several classes of (m,n) such that for more (m,n) the decycling number of P,,00P,
matches the lower bound and for all others it differs from the known lower bound by at
most 1.

Theorem 2.1.15 showed V(P,,0P,) > {ww

m (n—l)—l—l—‘ and =DO=D+1

. -1
For convenience, we use F),, and f,,, to denote P )3 3

spectively. The following proposition is implicit in the proof of Theorem 2.1.15.
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Proposition 3.2.1. If m > 5 and f,,,, is an integer, then each decycling set S of size
fm.n satisfies the following two properties:
(1) S contains exactly one vertex of degree 3 and contains no vertex of degree 2; and

(2) S induces a subgraph of P,,[0P, with no edges.
Now, we have a result on the lower bound of V(P,,00F,).

Theorem 3.2.2. If m > 5, mn is even and f, is an integer, then V(P,0P,) >

fm,n+1:Fm,n+1

Proof. Suppose not. Assume that V(B,0P,) = fn, = Fn, and S is a decycling
set with size f,, . By Proposition.3.2.1;"we may-let v; 1 be the vertex of S with degree
3 where 2 < 1 < L%J Since S is a decycling: set and induices no edges in F,,[1P,,
Um—12 € S and v,,_13 ¢ S. For otherwise, we have a,4-cycle (Vy,—1.1, Vm-12, Um 2, Um1)
Or Upm—12, Um—1,3 is an,edge in (P,,0F,)[S]. Following this observation, we conclude that
S contains vUp,—1.2, Um 54, ** © , Um—1—1 Since S has no other/vertices on the boundary of
P,0P,. Hence, n — 17s even and ® is-oddwSimilarly; v, 3 4 4, Um—5n—1," " ,V2n_1 are

contained in S and therefore, m is also odd. This contradicts to the assumption and we

have the proof. [

Corollary 3.2.3. For m > 5, if m = 0 (mod 6) and n = 2 (mod 3) or (m,n) =
(3,2) (mod 6), V(P,0P,) > F,,,, + 1.
Proof. By direct checking, f,,, is an integer and m - n is even. [

Using this fact, we can estimate V(P,,0JP,) for more pairs (m, n) by using the Theorem
2.1.20 which was obtained by Madelaine and Stewart.

Now, combining Theorem 2.1.20 with Corollary 3.2.3, we have

Theorem 3.2.4. For m > 5, if (m,n) = (0,2),(0,5),(3,2),(2,0),(5,0),(2,3) (mod 6),

then V(P,,0PF,) = F,,, + 1.
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In what follows, we prove that for cases in class “C” mentioned in Table 2.1 V(P,,00P,) <
F,,, +1for m > 6. Before we go any further, we need to introduce a couple of new no-
tations. We shall use P,,0P,. | P,0P, to represent that P,[JP,,; 1 can be separated

into P,,00P, and P,,[0P; with a common vertical path P,, (see Figure 3.3(a)). Similarly,

we use ﬁ;gﬁz to represent that P.,;_1JP, can be separated into P,.L1P, and P[P, and

they overlap a horizontal path P, (see Figure 3.3(b) for an example).

Lok

Lnes

—
Fak, T pop

(@) (5)

Figure 3:3: (a)PsldPy = PsLIPy | Ps@P;; (b) Ps[1Ry= L85

P3P

In order to prove the main theorem, we need the following three smaller cases.
Lemma 3.2.5. For (m,n) = {(6,6),(6,8),(8,8)}, V(P,0F,) < F,, + 1.

Proof. Beineke and Vandell [3] have already proved the first two cases. By direct
checking, the third one is also true. For clearness, we include a decycling set of Ps[1P5 in

Figure 3.4. ]

Figure 3.4: A decycling set of Ps[JF.
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Lemma 3.2.6. (3] If G and H are homeomorphic graphs, then V(G) = V(H).
Theorem 3.2.7. For m,n > 6, V(P,0P,) < F,,,, + 1.

Proof. By Theorem 2.1.20, Lemma 3.2.5 and the symmetry of the graph, it suffices to

consider the following 2 cases.

Case 1. m =5 (mod 6) and n =5 (mod 6).
Let Xekts6r45 = {vi; : ¢ and j are even,1 < i < 6k + 5,1 < j < 6r + 5}. Then
Pr+50P645 \ Xék+5.6r+5 15 homeomorphic to the graph Pspy30Ps, 5. By Lemma

3.2.6, for k,r > 0, V(Pers0Pss)n S (8k + 2)(3r + 2) + [0 4 g —

Fopqs,6r45 + 1.

Case 2. m = 3 (mod 6) and n =5-(mod 6).
First, we can find a decycling set-of PsL1Pyq directly. (See Figure 3.5, V(PyOP;;) <
28 = Fy11 + 1.)Then, we partition this case into 3 subcases and apply the case

m =1 (mod 3) in"[27] to solve the following.

Figure 3.5: Decycling set (black vertices) of Py[1P);.

Subcase 2.1. m =9 and n =5 (mod 6).

Separate Py[dPsj45 into PylIFs—1)11 | PoldPy1. We can find a set of vertices

Xo6(k-1)41 10 PyOPsp_1y41 by using Madelaine and Stewart’s method [27].
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Define X9,6(k71)+1

{v;;:5<i<7,iis0dd,3<j<6(k—1)+1,j5=3,5(mod 6)}
{v;;:5<i<8iiseven,2<j<6(k—1),7=0,2 (mod 6)}
Vo :2< 7 <6(k—1),7is even

J
v3;:3<7<6(k—1)+1,7is odd

7]

{U4’2}.

Cc C C C C C

And we find Xg’ll n PgDPH by lettlng X9711
= {u 2 <i<8iseven, 6(k—1)+1<j<6k+5,jiseven}
U {vs;svageg =6(k=1) +1.6(k =1)+5;6k+ 3}
U {01,6(k71)+3av5,6k+1}-

Define Xg g 45 = Xosr—1)+1 U Xg11. The set- Xy 17 is shown in Figure 3.6.

Figure 3.6: Decycling set of PyJPy;.

We claim that Xggrys is a decycling set. Observe that if there is a cy-
cle in PyOPs45 \ Xoerts, then the cycle must use the perimeter vertices
of PyOPsk-1)11 excluding {vigr—5 : 3 < 7} and a (voer—5, User—5) -path in
PyOPy; \ Xg11. However, there is no (va6x—5, Usek—5) -path in Po0IPy; \ Xog11.

Hence, Xy ¢x15 is a decycling set of PoldFPgy45. Since vsg(1—1)41 belongs to both
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X9,6(k71)+1 and X9711, the size of X9,6k+5 is

[8~6(k;1)+1-‘+28_1: [ww L1

Subcase 2.2. m =3 (mod 6) and n = 11.

Pe(k—1)+18P11

Similar to Subcase 2.1, we let Py 3P = POPL

and let Xer—1)+1,11

= {v;;:1<i<6(k—1)+1,i=0,2 (mod 6),2<j<7,jiseven}
{vi; :1<i<6(k—1)4+1,i=3,5(mod6),2<j <7, jis odd}
{viz :2<i<6(k=1)+143=1(mod 6)}
{vi2:2<i<6(k—1)+1.i=4(mod6)}

{vifon: 1 < i <6(k-— 1)1 is"even}

{vig 13 €I < 6(k — 1) + 1,1 odd}

{v28}.

Cc C C C C cC

We use a different construction to find Xgqy in PylIP;, where Xo1; = {v;; :
6(k—1)+1<i<6k+3,iiseven,1<j <1l jis even} J {ver—5.9, Ver—3.3,
V6k—3,55 U6k—1,15 V6k—1,95 V6k+1,35 UV6k+1,7) U6k+3,9}-

Define X¢i1311 = Xee—1)+1,11 U Xg,11. The construction of X5, can be visu-
alized as in Figure 3.7. The argument is similar to Subcase 3.1 which yields
that Xex13,11 is a decycling set of P 3l1P;. Since vg(x—1)41,0 belongs to both

Xek—1)+1,11 and Xg 11, the size of Xgp 1311 18

+ 1

6(k—1)10+1
.

—‘%—28—1: [(6k+2)10+1w

Subcase 2.3. m =3 (mod 6) and n =5 (mod 6) and m > 9,n > 11.

Ps(k—1)+10P6r+5 .
Let Psry3UPs15 be PoOPy 1) PP We note that the labeling of each vertex

in the following is the same as the labeling used in the original grid. Now, define
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.......‘..
.......'.'..

Figure 3.7: Decycling set of Pj5L1P;.

XG(k71)+1,6r+5 n P6(k71)+1DP67"+5 as

c C C C C C

{vi; LI <6(k—1)+1,i=0,2 (mod 6)s2 <j<6r+1,jeven}
{vi; 1 <i <6(k=1)+1i=35(moed 6),2< 5 <6r+1,7odd}
{vigigr: 2 <8 < 6(k—1) + 1,4 =1 (mod 6)}
{vig:2<i<6(k=1)+1,i=4 (mod 6)}

{vieife s L < i <6(k— 1), i cven}

{vigr4s B << 6(k—1)+ 1,4 odd

{’02,6r+2}-

Define X976(7‘_1)+1 in P9|:|P6(T’—1)+1 as fOHOWiIlg. X976(7‘_1)+1

c C C C C C

{vi; 1 6k—1<i<6k+1,io0dd,3<j<6r—54=35 (mod6)}
{vi;j 1 6k—1<i<6k+2ieven,2<j<6r—6,7=0,2 (mod6)}
{veh—1)45, :2<j <6(r—1)+1,j =1 (mod 6)}
{V6kt2,:2<j<6(r—1)+1,j=4 (mod 6)}

{vetr—1)+25 :2 < j <6(r—1),j even}

{veh—1)43, 13 < <6(r—1)+ 1,5 odd}

{U6(k71)+4,2}'
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Define Xy 17 in PyJP;; as the following Figure 3.8, the size of Xg1; is 30.

Figure 3.8: Decycling set of Py[(1P;; (Different from Figure 3.5).

Define X6k+3,67‘+5 = X6(k71)+1,67“+5 U X9,6(T'71)+1 U X9,11- The construction is

illustrated for P;51P;; in Figure 3.9.

...Q!ﬂ’.........
POWESSDECAVNODO NG
0008008880009 090
SOPVOVVVL L DS P!
.....OC.........
.....OO...“.“‘
VOO0 SSSS0ERICHOn
DI ST O DOE
...........‘b‘..

Figure 8.9: Decycling set of PisL1P;.

We claim that Xg, 136,45 is a decycling set. Observe that if there is a cycle
in Psps30Psr+5 \ Xek+sers then the cycle must use the perimeter vertices of
Psk—1)+10P6r 15 excluding {UG(k—l)—l—l,Gr-i-j 1j=1,2,3} and a (UG(k;—l)-‘rl,Gra

Vg(k—1)+1,6r+4) -Path in (POPsq_1y+1 | PoOPu) \ (Xggr—1)+1 U Xo11). By
directly checking, there is no path from the right boundary of Py[1P;; to
the left boundary of Py[JP;;. There is 1o (Vg(k—1)41,6rs V6(k—1)+1,6r+4) -Path in
(PQDP6(1~71)+1 | PyOP) \ (X9,6(r71)+1 UX9,11)- Hence X 13,6r+5 is a decycling
set of Pgy3Ps45. Since V6(k—1)+1,6r+15 U6(k—1)+1,6r+3 € X9,11 N XG(k71)+1,6r+5
and V6(k—1)+3,6(r—1)+15 U6(k—1)+5,6(r—1)+1 € X9,110X9,6(r71)+17 the size of X6k+3,6r+5
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is ’76(k1)(§r+4)+1—‘ X ’78-6(r31)+1—‘ 1304 = ’7(6k+2)(§r+4)+1—‘ ey

We complete the proof. [

We use Table 3.1 to represent the improvement of Madelaine and Stewart’s results.

n
0 1 2 3 4 5
m
0 B A ‘ B A ‘ . . .
G e O : increasing the lower bound in
1 AlAalalalala this paper

""" this paper

2 A | B A | B {"‘.."}:decreasing the upper bound in

Table 3.1: Improvement of known results [27]

In Table 3.1, A: V(£,0P,) = F,.,. B: V(P,0P,) < .+ 1, C: V(P,0P,) <
Fon + 2.
Again, we remark that the results obtained in this section have been included in a

joint work with Fu and Shih which'is to appear in Discrete Math., Alg. and Appl. [25].
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Chapter 4

Decycling Number of Digraphs

In this chapter, we study V(Gk(d,n)) and V(Gp(d,n)) for n > d > 2.
4.1 Generalized Kautz Digraphs

First, we presents a systematic-approach of finding a decycling set in a digraph. It is

the key idea in the following.

Lemma 4.1.1. Let S be a set of vertices in a digraph G. Then S is a decycling set of G
if and only if we can find a sequénceof subsets of V(G), S = 89,54, -+, Sy = V(G) such
that

(1) S; C Siyq1; and

(2) N+(SZ+1\SZ) QSZ fOT"L:O,l, ,t—l

Proof. First, we prove the necessity. Since S is a decycling set, G — S is acyclic. Thus,
there exists at least one vertex v that df, ¢(v) = 0. Now, we can partition V(G \ S) into
Vi, Vo, + -+, V; by the following construction. For convenience, we denote Gy = G[V (G)\ S].
Define V; = {v € V(Gi_1)ldf,_ (v) = 0} where G; = G[V(G) \ (S U UZ})(V;)] for
1=1,2,---,t. Let S5 =85,5 =S UV, S;=5_1UV, fori=1,2,---,t. It can be
easily checked that S; C S;.1 and N*(S;41\ S;) € S;fori=0,1,---,¢t— 1.
Subsequently, we consider the sufficiency. Suppose not. Assume that there exists
a directed cycle C = (zg,21,--- ,2) in G — §. Since S; = V(G), z; € S; \ 51 for

ie€{0,1,--- k}and j € {1,2,--- ,t}. (z; ¢ Sp for all i, otherwise C does not exist.) Let
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m = min{jlz; € S;\ S;_1,i = 0,1,--- ,k} and x; € S;, \ Sp—1. Since 1 € N1 (xy),
Zi41 € Sm—1 by (2). This contradicts the assumption that m is minimum. Therefore,

there is no directed cycle in G. We complete the proof. [

Now, we are ready to deal with V(Gg(d,n)). Recall that the generalized Kautz

digraph G (d,n) is defined as follows:

{ V(Gk(d,n)) ={0,1,2,--- ,n—1};
A(Gk(d,n)) ={(z,y)ly= —dx —i (mod n),1 <i<d}.

By definition, for each a € V(G g(d,n)), the set of out-neighbors of « in V(G (d,n))
is {—da—1i (mod n),1 <i < d}, denoted by N*(«). Subsequently, for S C V(Gg(d,n)),

we let NT(S) = U,.q NT(v). Then, it is easy to check N ([a,b]) = {—db — d,—db —

veS
d+1,---,—da — 1} (modin). For example, if d = 3rand'n = 10, then NT({2}) =
{=9,-8,—7} =[1,3] and NF([1,4])={—-15,-14,--- , =4} =[0,9].

Now we consider the decycling set-of G (d,n) for n>d >2.

Theorem 4.1.2. Letn= (d+ 1)m +t, where 0 <t < d and Sy = Ule A; where

Ay = [0, m];
Ag = H%J + L%J,Qm—l— 1]; and
A; = [LWJ L(Z _d31)nj,im+(z'— 1)), fori=3,4,---d.

Then Sy is a decycling set of G (d,n).
Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

Step 1. Let S; = SoUW; U X, UY,, where Wy = [m+1, 2] —1], X; =[n— | %], n—1]

d z
and ¥i = (2], 3] + &) — 1]

It’s routine to check

Nt(Wy) = [n—d|5],m—(d—1t) —1] C Sy,

Nt(X;)=[0,d|%]| —1] € Sp UW; and

| =1 CSouUXj.

Now, we have Sy = [0,2m + 1JU[n — [ % ],n — 1JU U, A



Step 2. Now, we add more vertices to 5.
Let Sy = SiUW,UX,UYs, where Wy = [2m+2, |28 | —1], X5 = [n—[ 2], n—[ %] —1]
and Yo = (%], %) + [ 5] — 1].
It’s easy to check
NT(Wy) =[2n —d|2],2m —2(d —t) — 1] C Sy,
NT(Xy) =[d|%],d|%2] —1] C S UW, and
Nt (Yo) =[3n—d|2| —d|%],3n —d| %] —1] C S; UW, U X,

After this step, Sy =[0,3m + 2] U [n— [32],n — 1] U Uf:4 A;.

Step k. Ford > k > 3, let Sy = Sy_1UWRUXpWY%, where Si_1 = [0, km—+ (k—1)]U[n—

L(k;;)nJan_l]UU?:k—I—l Aia Wk - [km+k> L%J _1]7 Xk = [n_ L%J)n_ L(k;;)nJ _1]
and Yy = [| 5], [ 2] 152 | =1].
We can check that

N+(Wy) = [kn =d| k2 | km — k(d — t) — 1]'CSk 1,

N*(Xy) = [d| 522, d| k2 | 1] €8, 4 U W, and
N*(Ys) = [(k + Do wd 52 = d G ] (h =1)n —d| %7 | ZAhC S, UW, U X
S = [0, (k+ D)m + %O fn— 1% ],n — JUUL, , 4

This concludes the proof.

Corollary 4.1.3. Let d > 2 and n =t (mod d +1). Then V(Gk(d,n)) < (3 — L3 )n+

d(d—t+5)—2.

Proof. Let n = (d+ 1)m+t. Then by Theorem 4.1.2,
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d

=1

=(m+1)+ [(2m+1)—(L%J+L%J)+1]+...
itk o+ (e 1) = (B2 (B2 D) g

+[(dm+ (d = 1) = (=== + =] + 1]

By the facts, 2 —1 < |52 ] < 5 and £2—1 <[22 ] < &2 we conclude that V(G (d, n)) <
3—LHn+4(d—-t+5)—2. u

When d is smaller we can get a_better bound by refining the decycling set.

Theorem 4.1.4. Let n = 36m ¢, where 0 <t < 35 and Sg'= |J>_, A; where

A =128m = 1, = 1];
Ay = [24m, 24m +t — 1]; and

Az =[12m512m + t].
Then Sy is a decycling set of Gk (2, n).

Proof. It suffices to construct a sequence satisfying the eonditions in Lemma 4.1.1.

(1) Let Sy = Wy U Sy, where Wy = [0,4m — 1].
NT(Wy) =[28m +t,n—1] C So.

Now, we have S; = [0,4m — 1] U A; U Ay U A;.

(2) Let Sy = W5 U Sy, where Wy = [16m + t,22m — 1].
Nt (Wy) =[28m +2t,n — 1] U [0,4m —t — 1] C 5.

Now, Sy = [0,4m — 1JU [16m + ¢,22m — 1] U A; U Ay U As.

(3) Let S5 = W3U Sy, where W3 = [Tm +t,10m — 1].
N* (W) = [16m +¢,22m —t — 1] C Ss.

Therefore, Ss = [0,4m — 1] U [Tm +t,10m — 1] U [16m +¢,22m — 1] U A; U Ay U A;.
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(4) Let Sy = W, U S35, where Wy = [25m + t,28m — 1].
N*(Wy) = [16m + 2¢,22m — 1] C S5

Hence, Sy = [0, 4m—1]U[Tm~+t, 10m—1]U[16m+t, 22m—1]U[25m+t, n—1]UAy UA;.

(5) Let k = [logym], then k > log, m, 2¥ > m and let S5 = S5, U{24m —1}U{24m+t},

where Sy is defined as follows.

(5-1) Let S5; = Sy U Ls; U Rsy, where Ly = [22m,24m — 2871 — 1] and Ry =
[24m + 281 +¢,25m +t — 1].
Nt (Lsy) = [24m + 28 + 2, 28m + 2t — 1] C S, since 24m + 2% + 2t > 25m +¢.
N7*(Rs1) = [22m, 24m —2F — 1] € SpULs:
Ss1 = [0, 4m — 1 [TmAt, 10m — 1)U [16m +¢, 24— 252 — 1] U [24m + 21 +

t,n—l]UAQUAg.

(5-2) Let Sso =851 Wiliss WRss, where bsy'= [24m,— 2% 24m — 272 — 1] and
Rsy = [24m + 2872 + ¢, 24m + 281 14 — 1].
NT(Lsy) = [2dm + 2871 42t 24m + 2F 1 2t — 1] C Ssprand
N7T(Rsp) = [24m — 2K, 24mp <= 2875 =1] € S51 U Lss.
Sso = [0,4m — 1 U{Tm44,10m — 1] U [16m+f £ 24m — 282 — 1] U [24m + 2772 +
t,n—1]U Ay U As.
Continuing in this way, we have S5(11) = Ss; U Ls(i11) U Rs(i41) Where Ls(i1) =
[24m — 2871 24m — 28771 — 1], Ryipqy = [24m + 28771 44, 24m 4+ 2 ¢ — 1]
for i = 2,3,--- k=1, and N*(Ls(1)) € Ssiy NT(Rsi41)) C Ssi U Lsiyy.
Since N*({24m — 1}) C S5 and N*({24m + t}) C S5, U {24m — 1}.

We have S5 = [0,4m — 1] U [Tm +¢,10m — 1] U [16m + t,n — 1] U As.

(6) Let Sg = WsU S5, where Wy = [4m, Tm +t — 1].
N*(We) = [22m — t,28m +t — 1] C Ss.

Hence, Sg = [0,10m — 1] U [16m + t,n — 1] U As.
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(7) Let S; = W7 U Sg, where Wy = [13m + t,16m + ¢ — 1].

Hence, S7 = [0,10m — 1] U [13m + t,n — 1] U As.
(8) Let k =logym and Sg = Ssk11), where Sg(1) is defined as follows.

(8-1) Let Sg; = S; U Lg; U Rgy, where Lg; = [10m,12m — 2% — 1] and Rg =
[12m + 2% +¢,13m +t — 1].
N7T(Lg) = [12m + 28 ¢, 16m +t — 1] C Sy, since 12m + 281+ > 13m + 1.
Nt (Rgy) = [10m —t,12m — 281 —t — 1] C S; U Lgy.

Now, Sg; = [0, 12m — 2= 1)U [12m 4+ 2% & t,n — 1] U As.

(8-2) Let Sgy = Sgi Wilgs U Rgy, where Lgo= [12m — 2 12m — 28~1 — 1] and
Rsy = [12m #2877 + £, 12m+ 24 t < 1].
N*(Lgy) =T12m 2k mtgi2m + 25514 1] &,Sg and
N*(Rgs) = [12m — 281 — ¢, 12m= 28— ¢ — 1] CSs, U Lgo.
Consequently; Sgo = [0,12in — 2"t — 1] U [12m + 2878 t,n — 1] U As.
Continuing in this way, we have Sg;11) = Sg U Lg(itn) U Rg(i+1) where Lg(ip1) =
[12m — 26=%1 1208 =985 1], Ry(pyry =120+ 257 + ¢, 12m + 26—+ ¢ — 1]
fori=2,3,--- ,k—1, and N (Lg(i11)) € Ssi, N (Rs@i+1)) € Ssi U Lg(igr).

Finally, we have Sg = [0,n — 1]. This completes the proof.

|
Corollary 4.1.5. Forn >2 and n =t (mod 36), V(Gk(2,n)) < 2n+ 3t + 1.
Proof. Let n=36m +t. Then by Theorem 4.1.4
3
V(Gk(2,n) <Y Al =8m+3t+1< gn +3t+1.
i=1
|
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Theorem 4.1.6. Let n = 36m +t, where 0 <t < 35 and Sy = U?Zl A; where

t t
Ay = [12m + (5}, 18m + (aﬂ,
t
A3 =[9m —1,9m + Lgﬂ;and

3t
Then Sy is a decycling set of Gk (3,n).
Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

(1) Let Sy = Wy U Sy, where Wy ={10myd2m+4 | £] < 1).
N*t(Wh) = [t — 3[£]s6m +t — 1] C S,

Now, we have Sy ZuA{ U [10m2,18m +[£]]J Ag U Ay

(2) Let Sy = Wy U Syywhere Wa = [6m + ¢ +1,8m — 1.

Now, Sy = [0,8m =1]U [10m, 18m + [5]] U A3 U A,.
(3) Let k = [logsm +t| and S3'= S3x—1), where Ssu4y is defined as follows.

(3-0) Let Sso = Sy U Rgo U Lo, where Ryg = [9m + [ 2] + [£] +1,10m — 1] and
Lyo = [8m, 8m + | %] — 1]].
N*t(Rg) = [6m +t,9m = 3|5 |+t — L] —4] C 5.
NT(Lso) = [12m — 32| +t,12m 4+t — 1] C S5 U Ry,.

Hence, S3o = [0,8m + [22] —1JU [9m + [ 2] + |£] +1,18m + [£]] U A3 U A,

(3-1) Let S5y = S30U Ryy U Ly, where Ry = [9m + 32+ [£] +1,9m + 3"!] and
Ly = [9m — 31 —1,9m — 382 — 1].
NT(Rs) =[9m —3F +t —3,9m — 351 +¢ — 3| L] — 4] C Sy
N*t(Lsy) = [9m + 351+, 9m + 3% + ¢t + 2] C S50 U Ra;.

Ss1 =[0,9m — 32 —1JU[9m + 32 + [ L] + 1,18m + [L]] U A3 U A,.
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(3-2) Let S3» = S31UR32U Lso, where Rgo = [9m+3F 34 L] +1,9m+ 382+ |L]]
and Lzy = [9m — 3572 9m — 383 — 1].
N (Rgy) = [9m — 31+t =3[t —3,9m — 3" 2+t —3|L] — 4] C Sy and
N7t (Ls) = [9m + 32+ ¢,9m + 381+t — 1] C S5, U Rsy.

Then, Sz = [0,9m —3"3 —1JU [9m + 3" 3 4+ [£] +1,18m + [L]] U A3 U Ay

Continuing in this way, we have S; = S(;_1)U R3; U Ls; where Rs; = [9m+3k—i_1 +
|21 +1,9m+3""+ [L]], Ly = [9Im =3 9m =31 —1] fori =3,--- k-1
and N*(Rg;) C Ssi-1), N (Ls;) C Sz3-1) U Rs;.

Now, we have S5 = [0, 18m + [ 5]} U.A,.

(4) Let Sy = Wy U Ss, where W= [18m + [ ] + 1,20m/:
N*(Wy) = [12m +2L 58, 18m—+2t — 3[L] —4] & S,

Hence, Sy = [0,20m|U A,.

(5) Let S5 = W5 U Sy, where W5 = [n— [ 24 |sn — 1].
N*(W5) = [0,3( 2] 1] @ 54

Hence, S5 = [0,20m] U A4 O\[n [ |y n=1};

(6) Let S¢ = Ws U S5, wheredWg = [20m.+ 1,26m —1].
Nt (Ws) = [30m + 3t,n — 1] U [0,12m + 2t — 4] C Ss.

Hence, Sg = [0,26m — 1] U Ay U [n — [ 222, n —1].

(7) Let Sy = W7 U Sg, where Wy = [28m + t,n — |22 ] —1].
NT(Wr) = [3[22],24m — 1] C S;.
Hence, S7 = [0,26m — 1] U A4 U [28m + t,n — 1].

(8) Let k = [loggm +t] and Ss = Sgpi1) U {27m — 1}, where Sgy1y is defined as

follows.

Let 581 = 57 U R81 U L81, where R81 = [27771 -+ 3k + t, 27Tm + 3k+1] and L81 =
[27m — 3kt — 1,27m — 3F — 1].
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NT(Rg1) = [27m — 3¥2 43t — 3,27m — 3*1 — 1] C 7, since 27m — 31 —1 <
26m — 1.
N*(Lgy) = [2Tm + 38+ 4+ 3t 27m + 352 4+ 3t + 2] C S; U Ry;.

Now, Sg; = [0,27m — 3¥ —1JU [27m + 3F + t,n — 1] U Ay.

Continuing in this way, we have Sg; = Sgi—1) U Rg; U Lg; where Rg; = [27Tm +
SRt 2Tm 4 38 P27t — 1], Lg; = [27m — 38271 —1,27m — 311 — 1] for
i=2,3,---,k+1, and N*(Rs;) C Ss(—1), N (Lgi) € Sg(i—1) U Rs;. It’s easy
to check N*({27m — 1}) = [27m + 3t,27m + 3t + 2] C Ss(11)-

We have Sy = [0,27m + | 3]] Uf27m +t + 1,n — 1].

(9) Let Sy = Wy U Ss, whete Wy= [27m + [ 2] + 1,27m+ 1.
N*(Wy) = [27Tm —3,2Tm +3t-==3| 3| — 4] C S.

Now, Sy = V(Gk(3,n)). This concludes the proof:

[ |
Corollary 4.1.7. For w>2 and n =t (mod 36), V(G (3,n)) < % + 3t +6.
Proof. Let n=36m + t. Then by Theorem 4.1.6,
! £ 3t 9 n 9
< Al =12 t — — <12 —t < — + —t .
V(GK(S,n))_;| = 12m e (5] 4+ [T 45 < 12m+ 4+ 6< 5+ 11 +6
[ |

4.2 Generalized de Bruijn Digraphs

In this section, we give an upper bound that improves the best known result. Recall
that the the generalized de Bruijn digraph Gp(d,n) is defined by congruence equations
as follows: V(Gg(d,n)) = {0,1,2,--- ;n — 1} and A(Gg(d,n)) = {(z,y)|ly = dz +i
(mod n),0 < i < d}. By definition, for each o € V(Gpg(d,n)), the set of out-neighbors of

ain V(Gp(d,n)) is {da+i (mod n),0 < i < d} denoted by NT(«). That is easy to check
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N*([a,b]) = {da,da+1---,db+ (d —1)} (mod n). For example, if d = 3 and n = 10,
then N+({2}) = {6,7,8} = [6,8] and N*([1,3]) = {3,4,---,11} = [0, 1] U [3,9].

Now we consider the decycling set of Gg(d,n) forn > d > 2.

Theorem 4.2.1. Forn >d > 2 and Sy = Ule A; where

Av=[0,15])
A=Y _dl)nj L4 _dgl)”J, L%J], fori=2.3-.d—1;and
A= Dy

Then Sy is a decycling set of G g(dmn).
Proof. It suffices to construct a sequence satisfying the conditions in Lemma 4.1.1.

Step 1. Let Sy — So Ullh where Wi (|1 #4012+ bz | £
It is routine to check N*[W4] = [d[ 5] + dsd|[ 3] +d| ] - 1J°C So.

Now, we have ST = [0, [2]] U UL oA

Step 2. Find 55.
Let SQ == Sl U WQ, where WQ — H%ZJ + ]_, L%J + LZ—ZJ - ]_]
It’s easy to check NT(Ws) =[d[2d=dyd|2]| +d[%]| — 1] C 5.

After this step, S» = [0, |2*]] U UZ 1A

Step k. For d > k > 3, let S, = Sj_1 UWj, where Sy = [0, [2]] U UL 1 Ai and
Wi =[]+ 1 2]+ L) -1
We can check NT(W,) = [d[ %] +d,d| 5| + d[ 2] — 1] C Si_1.

Sk = [O, L%H U U?:k;+2 A

This concludes the proof.

Proposition 4.2.2. For Gp(d,n),d > 2, we have V(Gp(d,n)) < (L )n +2(d — 1).
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Proof. By Theorem 4.2.1,

U

V(Gald ) < DAl = () + D+ 15 - () + L)+ 1)+
iy oy Dy

(d—1)n

T (e e

1) +1].

By the facts that £2 —1 < |22 < 5 we conclude that V(Gp(d, n)) < (L)n+2(d—1)m

d2’

By considering the order of n with respect to d, the upper bound we obtained asymp-

d+1
2d

totically approaches n, which istbe 3n for d > 6 obtained by Xu

d+3

et al. [42].
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Chapter 5

Conclusion and Remarks

The problem of finding the decycling number has been extensively studied and has
been proved to be NP-complete for general graphs; even for elementary graphs. In this
thesis, we provide the following results.

First, we provide a necessaryrand-sufficient condition for an-outerplanar graphs been
upper-extremal, and given a sufficient condition for an outerplanar graph been lower-
extremal. We find a class S of outerplanar graphs none of which is lower-extremal and
show that if G has nosubdivision of S for all S € §, then G is lower-extremal.

Second, we improve both the lower and uppet bounds of V(P,,[0P,) for several classes
of (m,n) such that for more (myn) the decycling number of .F,,[0P, matches the lower
bound and for all others it differs from-the known-lower bound by at most 1.

Finally, we give a systematic approach of finding a decycling set in a digraph. We give
the bound generalized Kautz digraphs. And improve the best known bound of generalized
be Bruijn digraphs.

Continuing our work in this thesis, we shall focus on the followings.

Problem 1. For every planar graph G, prove that V(G) < 2v(G) (Conjecture 2.2.2).
Problem 2. Determine the V(P,,[0F,) for unsettled (m,n).

Problem 3. For a directed graph G, find the general lower bound of V(G).

In this thesis, we only consider the decycling number of graphs on unweighted ver-
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sion. The weighted version is looking for a minimum-weight set of vertices so that the
remaining graph is acyclic. The problem is known to be NP-complete [20]. In contrast,
the problem of finding a minimum-weight set of edges containing at least one edge of any
cycle is equivalent to finding a maximum spanning tree, which has been shown solvable in
polynomial time. These two problems motivate us to consider a new version of decycling
set, namely total decycling set of graphs .

Let G = (V, E) be a graph, w : V(G) U E(G) — R* U {co} be a weight function on
V(G) U E(G). The total decycling set S of G is a subset of V U E such that G — S is
acyclic. The weight of total decycling set is ) .,z w(z) and a minimum total decycling
set of a weighted graph is a total deeycling set-of G of minimum weight. The minimum

weight of a total decycling.set of G is the total decycling number of G, denoted by V1 (G).

Problem 4. Determine Vi (G) for-any weighted graph @G
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