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Abstract A k-container C(u,v) of a graph G is a set of k disjoint paths between u
and v. A k-container C(u,v) of G is a k∗-container if it contains all vertices of G.
A graph G is k∗-connected if there exists a k∗-container between any two distinct
vertices of G. Therefore, a graph is 1∗-connected (respectively, 2∗-connected) if and
only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super
spanning connected if there exists a k∗-container between any two distinct vertices
of G for every k with 1 ≤ k ≤ κ(G) where κ(G) is the connectivity of G. A bipartite
graph G is k∗-laceable if there exists a k∗-container between any two vertices from
different partite set of G. A bipartite graph G is super spanning laceable if there
exists a k∗-container between any two vertices from different partite set of G for
every k with 1 ≤ k ≤ κ(G). In this paper, we prove that the enhanced hypercube
Qn,m is super spanning laceable if m is an odd integer and super spanning connected
if otherwise.
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1 Introduction

In this paper, a network is represented as a loopless undirected graph. For the graph
definitions and notations, we basically follow [3]. G = (V ,E) is a graph if V is a
finite set and E is a subset of {(u,v) | (u,v) is an unordered pair of V }. We say
that V is the vertex set and E is the edge set. Two vertices u and v are adjacent if
(u,v) ∈ E. The degree dG(u) of a vertex u of G is the number of edges incident
with u. A path is a sequence of vertices represented by 〈v0,v1, . . . ,vk〉 with no re-
peated vertex and (vi ,vi+1) is an edge of G for all 0 ≤ i ≤ k − 1. We also write the
path P = 〈v0, . . . ,vk〉 as 〈v0, . . . ,vi ,Q,vj , . . . ,vk〉, where Q is a path from vi to vj .
We use P −1 to denote the path 〈vk,vk−1, . . . ,v1,v0〉. The length of a path P , l(P ),
is the number of edges in P . A path is a Hamiltonian path if it contains all vertices
of G. A graph G is Hamiltonian connected if there exists a Hamiltonian path join-
ing any two distinct vertices of G. A cycle is a closed path 〈v0, v1, . . . , vk, v0〉 where
〈v0, v1, . . . , vk〉 is a path with k ≥ 2. A Hamiltonian cycle of G is a cycle that tra-
verses every vertex of G exactly once. A graph is Hamiltonian if it has a Hamiltonian
cycle.

The connectivity of G, κ(G), is the minimum number of vertices whose removal
leaves the remaining graph disconnected or trivial. It follows from Menger’s theorem
[16] that there are k internal vertex-disjoint paths joining any two distinct vertices
when k ≤ κ(G). A k-container of a graph G between u and v is a set of k inter-
nal vertex-disjoint paths between u and v. Connectivity and container are impotent
concepts to measure the fault tolerant of a networks [5, 9].

In this paper, we are interested in some special type of containers. A k-container
of G between u and v is a k∗-container if it contains all vertices of G. A graph
G is k∗-connected if there exists a k∗-container between any two distinct vertices.
A 1∗-connected graph except K1 and K2 is 2∗-connected. Thus, the concept of
k∗-connected graph is a hybrid concept of connectivity and Hamiltonicity. The study
of k∗-connected graph is motivated by the globally 3∗-connected graphs proposed
by Albert, Aldred, and Holton [2]. A globally 3∗-connected graph is a cubic graph
that is w∗-connected for all 1 ≤ w ≤ 3. Recently, Lin et al. [12] proved that the pan-
cake graph Pn is w∗-connected for any w with 1 ≤ w ≤ n − 1 if and only if n �= 3.
The spanning connectivity of a graph G, κ∗(G), is the largest integer k such that G

is w∗-connected for all 1 ≤ w ≤ k if G is 1∗-connected graph. There are some in-
teresting results of spanning connectivity [8, 13–15]. A graph G is super spanning
connected if κ∗(G) = κ(G). Obviously, the complete graph Kn is super spanning
connected. Lin et al. [12] studied the n-dimensional pancake graph Pn is super span-
ning connected if and only if n �= 3. Tsai et al. [18] studied the recursive circulant
graphs G(2m,4) is super-connected if and only if m �= 2.

A graph G is bipartite if its vertex set can be partitioned into two subsets V0 and
V1 such that every edge joins vertices of V0 and V1. A bipartite graph is k∗-laceable
graph if there exists a k∗-container between any two vertices from different partite
sets. Note that a 1∗-laceable graph is also known as a Hamiltonian laceable graph.
Moreover, a bipartite graph is 2∗-laceable if and only if it is a Hamiltonian graph and
all 1∗-laceable graphs except K1 and K2 are 2∗-laceable. A Hamiltonian laceable
graph G with partition V0, V1 is hyper-Hamiltonian laceable if we remove any vertex



68 C.-H. Chang et al.

v from a partite set, say V0, there is a Hamiltonian path of G − {v} joining any two
vertices in the other partite set V1. If G is a 1∗-laceable graph, we define the spanning
laceablility of a bipartite graph G, κ∗(G), to be the largest integer k such that G

is w∗-laceable for all 1 ≤ w ≤ k. A bipartite graph G is super spanning laceable
if κ∗(G) = κ(G). Recently, Chang et al. [4] proved that the hypercube graph Qn

is super spanning laceable. All bipartite hypercube-like graphs are super spanning
laceable [14]. The n-dimensional star graph Sn is super spanning laceable if and only
if n �= 3 [12].

Graph containers do exist in engineering designed information and telecommuni-
cation networks or in biological and neural systems ([1, 9] and their references). The
study of w-container and their w∗-container plays a pivotal role in the design and the
implementation of parallel routing and efficient information transmission in a large
scale networking systems. In biological informatics and neural informatics, the exis-
tence of a w∗-container signifies the effects on the signal transduction system and the
reactions in metabolic pathways.

Among all interconnection networks proposed in the literature, the hypercubes Qn

is one of the most popular topologies [10]. Let u = u1u2 · · ·un−1un be an n-bit binary
strings. The hamming weight of u, denoted by w(u), is defined to be the number of
i such that ui = 1. The n-dimensional hypercube Qn consists of all n-bit binary
strings as its vertices and two vertices u = u1u2 · · ·un−1un and v = v1v2 · · ·vn−1vn

are adjacent if and only if u and v differ by exactly one bit, i.e.,
∑n

i=1 |ui − vi | = 1.
Obviously, Qn is a bipartite graph with bipartition W = {u | w(u) is even} and B =
{u | w(u) is odd}. For convenience, the vertices in W are referred as even vertices
and the vertices in B are referred as odd vertices.

Some variations of hypercubes structures have been reported in the literature, for
instance, the folded hypercubes FQn by El-Amawy and Latifi [6] and enhanced
hypercubes Qn,m (2 ≤ m ≤ n) by Tzeng NF and Wei S [19]. The folded hyper-
cubes FQn is obtained from a hypercubes Qn with add on edges defined by join-
ing any vertex u = u1u2 · · ·un−1un to ū = ū1ū2 · · · ūn−1ūn, where ūi = 1 − ui is
the complement of ui . The enhanced hypercube Qn,m is obtained from a hyper-
cubes Qn with add on edges defined by joining any vertex u = u1u2 · · ·un−1un to
(u)c = ū1ū2 · · · ūmum+1um+2 · · ·un−1un. Obviously, FQn = Qn,n and FQn and Qn,m

are (n + 1)-regular. Moreover, FQn is a bipartite graph if and only if n is odd and
Qn,m is a bipartite graph if and only if m is odd.

The rest of the paper is organized as follows. In the next section, we prove some
new spanning properties of the hypercubes Qn. In Sect. 3, we prove that the folded
hypercubes FQn is super spanning laceable if n is an odd integer and super span-
ning connected if otherwise. In Sect. 4, we prove that the enhanced hypercubes Qn,m

is super spanning laceable if m is an odd integer and super spanning connected if
otherwise. In the final section, we give our concluding remark.

2 The super spanning laceability of hypercubes

In this section, we review some known results and prove a new theorem. Let u =
u1u2 · · ·un be a vertex of Qn. We use (u)k = u1 · · ·uk−1ūkuk+1 · · ·un−1un to denote
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the k-th neighbor of u and use (u)k to denote uk . We set Qi
n−1 be the subgraph of

Qn induced by {u ∈ V (Qn) | (u)n = i} for i = 0,1. Obviously, Qi
n−1 is isomorphic

to Qn−1 for i = 0,1. It is well known that Qn is vertex transitive. Furthermore, the
permutation on the coordinates of Qn and the componentwise complement operations
are graph isomorphisms. Readers can refer reference [7, 10] for a survey about the
properties of hypercubes. We have the following lemmas:

Lemma 1 [11] Qn is hyper-Hamiltonian laceable if and only if n ≥ 2.

Lemma 2 [4] Qn is super spanning laceable for any positive integer n.

Chang et al. [4] proved that the following two paths spanning property of hyper-
cube.

Lemma 3 [4] Assume that n ≥ 2. Let x1 and x2 be two distinct even vertices of Qn

and y1 and y2 be two distinct odd vertices of Qn. Then there exist two paths P1 and
P2 of Qn such that (1) Pi joins xi and yi for 1 ≤ i ≤ 2 and (2) P1 ∪ P2 spans Qn.

Lemma 4 [17] Qn − {x,y} is Hamiltonian laceable if x is an even vertex, y is an
odd vertex of Qn, and n ≥ 4.

There is another version of Menger theorem on k-connected graphs, called k-fan
version. Let G be a graph. Let x be a vertex in G and S = {y1,y2, . . . ,yk} be a set of k

vertices not containing x. An (x, S)-fan is a set of disjoint paths {P1,P2, . . . ,Pk} such
that Pi is a path joining x to yi for 1 ≤ i ≤ k. The k-fan version Menger’s theorems
states that there exists an (x, S)-fan of G between any vertex x and any k set S not
containing x with 1 ≤ k ≤ κ(G). With this observation, we define a spanning fan is a
fan that spans G. The following theorem states that there exists a spanning (x, S)-fan,
{P1,P2, . . . ,Pk}, of Qn between any vertex x and S = {y1,y2, . . . ,yk} with yk being
the only vertices in {y1,y2, . . . ,yk} in the partite set not containing x and 1 ≤ k ≤ n.
The requirement that yk is the only vertex in {y1,y2, . . . ,yk} in the partite set not
containing x is needed just because Qn is a bipartite graph with the same number of
vertices in both partite sets.

Theorem 1 Assume that k ≤ n and x is a vertex of Qn. Let U = {y1,y2, . . . ,yk}
be a subset of V (Qn) − {x} with yi �= yj for every i �= j and yk is the only vertex in
{y1,y2, . . . ,yk} such that yk and x are in different partite set. Then there is a spanning
(x,U)-fan of Qn.

Proof By Lemma 2, this statement is holds on every Qn if k = 1. Suppose that k = 2
and n ≥ 2. By Lemma 2, there is a Hamiltonian path P = 〈y1,R1,x,R2,y2〉 of Qn

joining y1 to y2. We set P1 = 〈x,R−1
1 ,y1〉 and P2 = 〈x,R2,y2〉. Then P1 and P2

forms the required paths. Thus, we assume that 3 ≤ k ≤ n, and this theorem is true
for Qn−1. Since Qn is vertex transitive, we assume that x = 0n. Thus, x is an even
vertex and x ∈ Q0

n−1. We have the following cases:
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Fig. 1 Illustration for Theorem 1

Case 1: (yk)i = 0 for some 1 ≤ i ≤ n. Since Qn is edge transitive, we assume that
(yk)n = 0. Thus, yk ∈ Q0

n−1. For 0 ≤ j ≤ 1, we set Uj = {yi | yi ∈ Q
j

n−1 for 1 ≤
i ≤ k}. Without loss of generality, we assume that U0 = {ym+1,ym+2, . . . ,yk} ⊆
Q0

n−1 and U1 = {y1,y2, . . . ,ym} ⊆ Q1
n−1 for some 0 ≤ m ≤ k − 1.

Subcase 1.1: m = 0. Let Ũ = U0 − {yk−1}. Obviously, |Ũ | = k − 1. By induc-
tion, there is a spanning (x, Ũ )-fan, {R1,R2, . . . ,Rk−1}, of Q0

n−1. Without loss of
generality, we assume that yk−1 ∈ Rk−1 where Rk−1 is joining x to yt for some
t ∈ {1,2, . . . , k − 2, k}. We can write Rk−1 as 〈x,H1,yk−1, z,H2,yt 〉. (Note that z
= yk if l(H2) = 0.) By Lemma 2, there is a Hamiltonian path W of Q1

n−1 joining
(x)n to (z)n. We set Pi = Ri for every 1 ≤ i ≤ k − 2, Pk−1 = 〈x,H1,yk−1〉, and
Pk = 〈x, (x)n,W, (z)n, z,H2,yt 〉. Then {P1,P2, . . . ,Pk} forms a set of required paths
of Qn. See Fig. 1(a) for an illustration for k = 6 and t = 6.

Subcase 1.2: m = 1. Thus, y1 ∈ Q1
n−1. By induction, there is a spanning (x,U0)-fan,

{R1,R2, . . . ,Rk−1}, in Q0
n−1 such that Ri joins x to yi+1 for every 1 ≤ i ≤ k − 1. By

Lemma 2, there is a Hamiltonian path W of Q1
n−1 joining (x)n to y1. We set P1 =

〈x, (x)n,W,y1〉 and Pi = Ri−1 for every 2 ≤ i ≤ k. Then {P1,P2, . . . ,Pk} forms a
spanning (x,U)-fan of Qn. See Fig. 1(b) for an illustration for k = 6.
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Subcase 1.3: m = 2. We have {y1,y2} ⊆ Q1
n−1. Since there are 2n−2 even vertices in

Q0
n−1 and 2n−2 − |U0 ∪ {x}| − 1 = 2n−2 − (k − 2) ≥ 2n−2 − n + 2 ≥ 1 if n ≥ 3, we

can choose an even vertex u in Q0
n−1 − (U0 ∪ {x}). By induction, there is a spanning

(x,U0 ∪ {u})-fan, {R1,R2, . . . ,Rk−1} of Q0
n−1 such that (1) Ri joins x to yi+2 for

every 1 ≤ i ≤ k − 2 and (2) Rk−1 joins x to u. By Lemma 3, there exist two disjoint
paths S1 and S2 of Q1

n−1 such that (1) S1 joins (u)n to y1, (2) S2 joins (x)n to y2, and
(3) S1 ∪S2 spans Q1

n−1. We set P1 = 〈x,Rk−1,u, (u)n, S1,y1〉, P2 = 〈x, (x)n, S2,y2〉,
and Pi = Ri−2 for every 3 ≤ i ≤ k. Then {P1,P2, . . . ,Pk} forms a spanning (x,U)-
fan of Qn. See Fig. 1(c) for an illustration for k = 6.

Subcase 1.4: 3 ≤ m ≤ k − 2. We have k ≥ 5. Hence, n ≥ 5. Since m ≥ 3 and k ≤ n,
|U0 − {yk}| = k − m − 1 ≤ k − 4 ≤ n − 4.

We claim that there exists an even vertex u in Q1
n−1 − U1 such that (yi )

n /∈
NQ1

n−1
(u) for every m + 1 ≤ i ≤ k − 1. Such claim holds because (n − 1)|U0 −

{yk}| + |U1| ≤ (n − 1)(n − 4) + (n − 2) ≤ (n − 1)(n − 3) − 1 < 2n−2 for all n ≥ 5.
Since m ≤ k − 2 and k ≤ n, m + 1 ≤ n − 1. By induction, there is a spanning

(u,U1 ∪ {(x)n})-fan, {W1,W2, . . . ,Wm+1} in Q1
n−1 such that (1) Wi joins u to yi

for every 1 ≤ i ≤ m and (2) Wm+1 joins u to (x)n. We write Wi as 〈u,vi ,W
′
i ,yi〉

for every 1 ≤ i ≤ m − 1. Since u is an even vertex in Q1
n−1, vi is an odd ver-

tex in Q1
n−1 and (vi )

n is an even vertex in Q0
n−1 for every 1 ≤ i ≤ m − 1. Let

Ũ0 = U0 ∪ {(vi )
n|1 ≤ i ≤ m − 1}. Obviously, |Ũ0| = (k − m) + (m − 1) = k − 1.

By induction, there is a spanning (x, Ũ0)-fan, {R1,R2, . . . ,Rk−1}, of Q0
n−1 such

that (1) Ri joins x to (vi )
n for every 1 ≤ i ≤ m − 1 and (2) Ri joins x to yi+1 for

every m ≤ i ≤ k − 1. We set Pi = 〈x,Ri, (vi )
n,vi ,W

′
i ,yi〉 for every 1 ≤ i ≤ m − 1,

Pm = 〈x, (x)n,W−1
m+1,u,Wm,ym〉, and Pi = Ri−1 for every m + 1 ≤ i ≤ k. Then

{P1,P2, . . . ,Pk} forms a spanning (x,U)-fan of Qn. See Fig. 1(d) for an illustration
for k = 6 and m = 3.

Subcase 1.5: m = k − 1 and k − 1 ≥ 3. Let Ũ1 = (U1 − {y1}) ∪ {(x)n}. Obviously,
|Ũ1| = k − 1. By induction, there is a spanning (y1, Ũ1)-fan, {W1,W2, . . . ,Wk−1}, in
Q1

n−1 such that (1) W1 joins y1 to (x)n and (2) Wi joins y1 to yi for every 2 ≤ i ≤
k − 1. We write Wi as 〈y1,vi ,W

′
i ,yi〉 for every 2 ≤ i ≤ k − 1. Since y1 is an even

vertex in Q1
n−1, vi is an odd vertex in Q1

n−1 and (vi )
n is an even vertex in Q0

n−1

for every 2 ≤ i ≤ k − 1. Let Ũ0 = {yk} ∪ {(vi )
n|2 ≤ i ≤ k − 1}. Obviously, |Ũ0| =

k − 1. By induction, there is a spanning (x, Ũ0)-fan, {R1,R2, . . . ,Rk−1}, in Q0
n−1

such that (1) R1 joins x to yk and (2) Ri joins x to (vi )
n for every 2 ≤ i ≤ k − 1. We

set P1 = 〈x, (x)n,W−1
1 ,y1〉, Pi = 〈x,Ri, (vi )

n,vi ,W
′
i ,yi〉 for every 2 ≤ i ≤ k − 1,

and Pk = R1. Then {P1,P2, . . . ,Pk} forms a (x,U)-fan of Qn. See Fig. 1(e) for an
illustration for k = 6.

Case 2: (yk)i = 1 for every 1 ≤ i ≤ n. Obviously, n is odd with n ≥ 3 and yk ∈ Q1
n−1.

Since Qn is edge transitive, we assume that U0 = {y1,y2, . . . ,ym} ⊆ Q0
n−1 and U1 =

{ym+1,ym+2, . . . ,yk} ⊆ Q1
n−1 for some 1 ≤ m ≤ k − 2.

Subcase 2.1: m = k − 2. We have {yk−1,yk} ⊆ Q1
n−1. Let H be a Hamiltonian

path of Q1
n−1 joining yk−1 to yk . We write H as 〈yk−1,H1,u, (x)n,H2,yk〉. Since
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(x)n is an odd vertex, u is an even vertex and (u)n is an odd vertex in Q0
n−1.

(Note that yk−1 = u if l(H1) = 0 or (x)n = yk if l(H2) = 0.) By induction, there
is a spanning (x,U0 ∪ {(u)n})-fan, {R1,R2, . . . ,Rk−1} in Q0

n−1 such that (1) Ri

joins x to yi for 1 ≤ i ≤ k − 2 and (2) Rk−1 joins x to (u)n. We set Pi = Ri for
1 ≤ i ≤ k − 2, Pk−1 = 〈x,Rk−1, (u)n,u,H−1

1 ,yk−1〉, and Pk = 〈x, (x)n,H2,yk〉.
Then {P1,P2, . . . ,Pk} forms a spanning (x,U)-fan of Qn. See Fig. 1(f) for an il-
lustration for k = 6.

Subcase 2.2: m = k −3. We have n ≥ 5 and {yk−2,yk−1,yk} ⊆ Q1
n−1. Since m+1 ≤

n− 2 < 2n−2, we can pick an even vertex z ∈ Q0
n−1 − ({yi | 1 ≤ i ≤ k − 3} ∪ {x}). By

Lemma 3, there exist two disjoint paths S1 and S2 of Q1
n−1 such that (1) S1 joins (z)n

to yk−2, (2) S2 joins (x)n to yk−1, and (3) S1 ∪S2 spans Q1
n−1. Obviously, yk ∈ Si for

some 1 ≤ i ≤ 2.

Subcase 2.2.1: yk ∈ S1. We write S1 as 〈(z)n,H1,yk,u,H2,yk−2〉. Obviously, u is an
even vertex and (u)n is an odd vertex in Q0

n−1. Let Ũ0 = U0 ∪ {z, (u)n}. Obviously,

|Ũ0| = k − 1. By induction, there is a spanning (x, Ũ0)-fan, {R1,R2, . . . ,Rk−1},
in Q0

n−1 such that (1) Ri joins x to yi for 1 ≤ i ≤ k − 3, (2) Rk−2 joins x
to z, and (3) Rk−1 joins x to (u)n. We set Pi = Ri for 1 ≤ i ≤ k − 3, Pk−2 =
〈x,Rk−1, (u)n,u,H2,yk−2〉, Pk−1 = 〈x, (x)n, S2,yk−1〉, and Pk = 〈x,Rk−2, z, (z)n,
H1,yk〉. Then {P1,P2, . . . ,Pk} forms a spanning (x,U)-fan of Qn. See Fig. 1(g) for
an illustration for k = 6.

Subcase 2.2.2: yk ∈ S2. Similar to Subcase 2.2.1, there is a spanning (x,U)-fan
of Qn.

Subcase 2.3: 1 ≤ m ≤ k − 4. We have k ≥ 5. Moreover, n ≥ 5. Since m ≤ k − 4 and
k ≤ n, |U0| = m ≤ k − 4 ≤ n − 4.

We claim that there exists an even vertex u in Q1
n−1 − U1 such that (yi )

n /∈
NQ1

n−1
(u) for every 1 ≤ i ≤ m. Such claim holds because (n−1)|U0|+ |U1 −{yk}| =

(n− 1)m+ (k −m)− 1 = (n− 2)m+ k − 1 ≤ (n− 2)(n− 4)+n− 1 = (n− 1)(n−
4) + 3 < 2n−2 for all n ≥ 5.

Let Ũ1 = (U1 − {yk}) ∪ {(x)n}. Obviously, |Ũ1| = k − m. By induction, there is
a spanning (u, Ũ1)-fan, {Wm+1,Wm+2, . . . ,Wk}, in Q1

n−1 joining u to Ũ1 such that
(1) Wi joins u to yi for every m + 1 ≤ i ≤ k − 1 and (2) Wk joins u to (x)n. We
write Wi as 〈u,vi ,W

′
i ,yi〉 for every m + 1 ≤ i ≤ k − 1. Since u is an even vertex

in Q1
n−1, vi is an odd vertex in Q1

n−1 and (vi )
n is an even vertex in Q0

n−1 for every
m + 1 ≤ i ≤ k − 2.

Subcase 2.3.1: yk ∈ Wk . We write Wk as 〈u,H1, z,yk,H2, (x)n〉. Since yk is an
odd vertex in Q1

n−1, z is an even vertex in Q1
n−1, and (z)n is an odd vertex

in Q0
n−1. Let Ũ0 = U0 ∪ {(vi )

n|m + 1 ≤ i ≤ k − 2} ∪ {(z)n}. Obviously, |Ũ0| =
m + (k − m − 2) + 1 = k − 1. By induction, there is a spanning (x, Ũ0)-fan,
{R1,R2, . . . ,Rk−1}, in Q0

n−1 such that (1) Ri joins x to yi for 1 ≤ i ≤ m, (2) Ri joins
x to (vi )

n for every m + 1 ≤ i ≤ k − 2, and (3) Rk−1 joins x to (z)n. We set Pi = Ri

for every 1 ≤ i ≤ m, Pi = 〈x,Ri, (vi )
n,vi ,W

′
i ,yi〉 for every m + 1 ≤ i ≤ k − 2,

Pk−1 = 〈x,Rk−1, (z)n, z,H−1
1 ,u,vk−1,W

′
k−1,yk−1〉, and Pk = 〈x, (x)n,H−1

2 ,yk〉.
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Then {P1,P2, . . . ,Pk} forms a spanning (x,U)-fan of Qn. See Fig. 1(h) for an il-
lustration for k = 6 and m = 2.

Subcase 2.3.2: yk ∈ Wi for some 1 ≤ i ≤ k − 1. Without loss of generality, we as-
sume that yk ∈ Wk−1. We write Wk−1 as 〈u,vk−1,H1,yk, z,H2,yk−1〉. Since yk is an
odd vertex in Q1

n−1, z is an even vertex in Q1
n−1 and (z)n is an odd vertex in Q0

n−1.

Let Ũ0 = U0 ∪ {(vi )
n|m + 1 ≤ i ≤ k − 2} ∪ {(z)n}. Obviously, |Ũ0| = m + (k − m −

2) + 1 = k − 1. By induction, there is a spanning (x, Ũ0)-fan, {R1,R2, . . . ,Rk−1},
in Q0

n−1 such that (1) Ri joins x to yi for every 1 ≤ i ≤ m, (2) Ri joins x to
(vi )

n for every m + 1 ≤ i ≤ k − 2, and (3) Rk−1 joins x to (z)n. We set Pi = Ri

for every 1 ≤ i ≤ m, Pi = 〈x,Ri, (vi )
n,vi ,W

′
i ,yi〉 for every m + 1 ≤ i ≤ k − 2,

Pk−1 = 〈x,Rk−1, (z)n, z,H2,yk−1〉, and Pk = 〈x, (x)n,W−1
k ,u,vk−1,H1,yk〉. Then

{P1,P2, . . . ,Pk} forms a spanning (x,U)-fan of Qn. See Fig. 1(i) for an illustration
for k = 6 and m = 2. �

3 The super spanning properties of folded hypercubes

Let u = u1u2 · · ·un−1un be a vertex of FQn. The c-neighbor of u in FQn, (u)c , is
ū1ū2 · · · ūn. Note that (u)c and u are of the same parity if and only if n is an even
integer. Let Ec = {(u1u2 · · ·un, ū1ū2 · · · ūn) | u1u2 · · ·un ∈ V (FQn)}. By definition,
the n-dimensional folded hypercube FQn is obtained from Qn by adding Ec. Let f

be a function on V (FQn) defined by f (u) = u if (u)n = 0 and f (u) = ((u)c)n if
otherwise. The following theorem can be proved easily.

Theorem 2 The function f is an isomorphism of FQn into itself.

Let FQj

n−1 be the subgraph of FQn induced by {v ∈ V (FQn) | (v)n = j} for 0 ≤
j ≤ 1. Obviously, FQj

n−1 is isomorphic to Qn−1 for 0 ≤ j ≤ 1.

Lemma 5 Let x be an even vertex and y be an odd vertex of FQn for any positive
integer n ≥ 2. Then there exists a k∗-container of FQn between x and y for every
1 ≤ k ≤ n + 1.

Proof Since FQ2 is isomorphic to the complete graph K4, this statement holds for
n = 2. Suppose that n ≥ 3. Since Qn is a spanning subgraph of FQn, by Lemma 2,
there exists a k∗-container between x and y for every 1 ≤ k ≤ n. Thus, we only need
to construct an (n + 1)∗-container of FQn between x and y. Since FQn is vertex
transitive, we assume that x = 0n ∈ V (FQ0

n−1).

Case 1: y ∈ FQ0
n−1. We have the following cases:

Subcase 1.1: n = 3. Without loss of generality, we assume that y = 100. We set
P1 = 〈000,001,101,100〉, P2 = 〈000,010,110,100〉, P3 = 〈000,100〉, and P4 =
〈000,111,011,100〉. Then {P1,P2,P3,P4} forms a 4∗-container of FQ3 between x
and y.
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Fig. 2 Illustration for Lemma 5

Subcase 1.2: n ≥ 4. Since FQ0
n−1 is isomorphic to Qn−1, by Lemma 2, there is an

(n − 1)∗-container {P1,P2, . . . ,Pn−1} of FQ0
n−1 between x and y.

Subcase 1.2.1: (x)c �= (y)n. Obviously, (x)c and (y)c are of different parity. Since
FQ1

n−1 is isomorphic to Qn−1, by Lemma 3, there exist two disjoint paths S1 and S2

of FQ1
n−1 such that (1) S1 joins (x)n to (y)n, (2) S2 joins (x)c to (y)c , and (3) S1 ∪

S2 spans FQ1
n−1. We set Pn = 〈x, (x)n, S1, (y)n,y〉 and Pn+1 = 〈x, (x)c, S2, (y)c,y〉.

Then {P1,P2, . . . ,Pn+1} forms an (n + 1)∗-container of FQn between x and y. See
Fig. 2(a) for illustration for n = 5.

Subcase 1.2.2: (x)c = (y)n. Then (y)c = (x)n and n is even.
Suppose that n = 4. We have x = 0000 and y = 1110. We set P1 = 〈0000,0001,

1110〉, P2 = 〈0000,0010,0110,1110〉, P3 = 〈0000,0100,0101,0111,0011,1011,

1001,1101,1100,1110〉, P4 = 〈0000,1000, 1010,1110〉, and P5 = 〈0000,1111,

1110〉. Then {P1,P2,P3,P4,P5} forms a 5∗-container of FQ4 between x and y.
Since 2n−1 − 2 ≥ 3(n − 1) for n ≥ 6, there is one path Pi in {P1,P2, . . . ,Pn−1}

such that I (Pi) ≥ 3. Without loss of generality, we may assume that I (Pn−1) ≥ 3.
We write Pn−1 as 〈x,u,v,H,y〉 where u is an odd vertex and v is an even ver-
tex. By Lemma 4, there is a Hamiltonian path W of Q1

n−1 − {(x)n, (y)n} joining
(u)n to (v)n. We set P ′

n−1 = 〈x,u, (u)n,W, (v)n,v,H,y〉, Pn = 〈x, (x)n = (y)c,y〉,
and Pn+1 = 〈x, (x)c = (y)n,y〉. Then {P1,P2, . . . ,Pn−2,P

′
n−1,Pn,Pn+1} forms an

(n + 1)∗-container of FQn between x and y. See Fig. 2(b) for illustration for n = 6.

Case 2: y ∈ FQ1
n−1. We have the following cases:

Subcase 2.1: n is odd and y ∈ {(x)n, (x)c}. By Theorem 2, we only consider that
y = (x)c . By Lemma 2, there is an n∗-container {P1,P2, . . . ,Pn} of Qn between x
and y. We set Pn+1 = 〈x,y〉. Then {P1,P2, . . . ,Pn+1} forms an (n+ 1)∗-container of
FQn between x and y.
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Subcase 2.2: n is odd and y /∈ {(x)c, (x)n}. Since y ∈ FQ1
n−1 and y is an odd ver-

tex, we have y = (x)c or y = (x)n if n = 3. Thus, n ≥ 5. Since there are 2n−2

even vertices in FQ0
n−1 and 2n−2 ≥ n − 1 for n ≥ 5, we can choose (n − 4) dis-

tinct even vertices u1, u2, . . . ,un−4 in FQ0
n−1 − {x, (y)c, (y)n} such that (ui )

n �= (x)c

for 1 ≤ i ≤ n − 4. Let v be an odd vertex of FQ0
n−1 and let U0 = {ui |1 ≤ i ≤

n − 4} ∪ {(y)c, (y)n,v}. Obviously, |U0| = n − 1. By Theorem 1, there is a span-
ning (x,U0)-fan, {R1,R2, . . . ,Rn−1}, in FQ0

n−1 such that (1) Ri joins x to ui for
1 ≤ i ≤ n − 4, (2) Rn−3 joins x to (y)c , (3) Rn−2 joins x to (y)n, and (4) Rn−1 joins
x to v. Let U1 = {(ui )

n|1 ≤ i ≤ n − 4} ∪ {(x)c, (x)n, (v)n}. Obviously, |U1| = n − 1.
By Theorem 1, there is a spanning (y,U1)-fan, {H1,H2, . . . ,Hn−1}, in FQ1

n−1 such
that (1) Hi joins (ui )

n to y for 1 ≤ i ≤ n − 4, (2) Hn−3 joins (x)c to y, (3) Hn−2
joins (x)n to y, and (4) Hn−1 joins (v)n to y. We set Pi = 〈x,Ri,ui , (ui )

n,Hi,y〉
for 1 ≤ i ≤ n − 4, Pn−3 = 〈x,Rn−3, (y)c,y〉, Pn−2 = 〈x,Rn−2, (y)n,y〉, Pn−1 =
〈x,Rn−1,v, (v)n,Hn−1,y〉, Pn = 〈x, (x)c,Hn−3,y〉, and Pn+1 = 〈x, (x)n,Hn−2,y〉.
Then {P1,P2, . . . ,Pn+1} forms an (n + 1)∗-container of FQn between x and y. See
Fig. 2(c) for illustration for n = 5.

Subcase 2.3: n is even with n ≥ 4 and y = (x)n. Since there are 2n−2 even vertices
in FQ0

n−1 and 2n−2 ≥ n − 1 for n ≥ 4, we can choose (n − 2) distinct even vertices
u1, u2, . . . ,un−2 in FQ0

n−1 − {x}. Let U0 = {ui |1 ≤ i ≤ n − 2} ∪ {(y)c}. Obviously,
|U0| = n − 1. By Theorem 1, there is a spanning (x,U0)-fan, {R1,R2, . . . ,Rn−1}, in
FQ0

n−1 such that (1) Ri joins x to ui for 1 ≤ i ≤ n−2 and (2) Rn−1 joins x to (y)c . Let
U1 = {(ui )

n|1 ≤ i ≤ n−2}∪{(x)c, }. Obviously, |U1| = n−1. By Theorem 1, there is
a spanning (y,U1)-fan, {H1,H2, . . . ,Hn−1}, in FQ1

n−1 such that (1) Hi joins (ui )
n to

y for 1 ≤ i ≤ n − 2 and (2) Hn−1 joins (x)c to y. We set Pi = 〈x,Ri,ui , (ui )
n,Hi,y〉

for 1 ≤ i ≤ n − 2, Pn−1 = 〈x,Rn−1, (y)c,y〉, Pn = 〈x, (x)c,Hn−1,y〉, and Pn+1 =
〈x,y = (x)n〉. Then {P1,P2, . . . ,Pn+1} forms an (n + 1)∗-container of FQn between
x and y. See Fig. 2(d) for illustration for n = 6.

Subcase 2.4: n is even with n ≥ 4 and y �= (x)n. Since there are 2n−2 even vertices in
FQ0

n−1 and 2n−2 ≥ n − 1 for n ≥ 4, we can choose (n − 3) distinct even vertices u1,
u2, . . . ,un−3 in FQ0

n−1 −{x, (y)n} such that (ui )
n �= (x)n for 1 ≤ i ≤ n−3. Let U0 =

{ui |1 ≤ i ≤ n − 3} ∪ {(y)n, (y)c} and let U1 = {(ui )
n|1 ≤ i ≤ n − 3} ∪ {(x)n, (x)c}.

Obviously, |U0| = |U1| = n−1. Similar to Subcase 2.2, there is an (n+1)∗-container
of FQn between x and y. �

Theorem 3 FQn is super spanning laceable if n is an odd integer and FQn is super
spanning connected if n is an even integer.

Proof Since FQ1 is isomorphic to Q1, this statement holds for n = 1. By Lemma 5,
this statement holds if n is odd and n ≥ 3. Thus, we assume that n is even. Let x and y
be any two different vertices of FQn. We need to find a k∗-container of FQn between
x and y for 1 ≤ k ≤ n + 1. Without loss of generality, we assume that x is an even
vertex. By Lemma 5, this statement holds if y is an odd vertex. Thus, we assume that
y is an even vertex. Without loss of generality, we assume that (x)n = 0 and (y)n = 1.
Let f be the function on V (FQn) defined by f (u) = u if (u)n = 0 and f (u) = ((u)c)n

if otherwise. By Theorem 2, f is an isomorphism from FQn into itself. In other
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words, we still get FQn if we relabel all the vertices u with f (u). However, f (x) = x
is an even vertex and f (y) = ((y)c)n is an odd vertex. By Lemma 5, there exists a
k∗-container of FQn between f (x) and f (y) for every 1 ≤ k ≤ n + 1. Thus, there
exists a k∗-container of FQn between x and y for every 1 ≤ k ≤ n + 1. This theorem
is proved. �

4 The super spanning properties of enhanced hypercubes

Let u = u1u2 · · ·un−1un be a vertex of Qn,m. Similar to before, c-neighbor of u
in Qn,m, (u)c , is ū1ū2 · · · ūmum+1um+2 · · ·un−1un. Note that (u)c and u are of the
same parity if and only if m is even. Let Ec = {(u1u2 · · ·un, ū1ū2 · · · ūmum+1um+2 · · ·
un−1un)|u1u2 · · ·un ∈ V (Qn,m)}. By definition, the n-dimensional enhanced hyper-
cube Qn,m is obtained from Qn by adding Ec. Obviously, Qn,m is FQn if m = n.
We use Q

j
n,m to denote the subgraph of Qn,m induced by {v ∈ V (Qn,m) | (v)n = j}

for 0 ≤ j ≤ 1. Moreover, we use Q
ij
n,m to denote the subgraph of Qn,m induced by

{v ∈ V (Qn,m)|(v)n−1 = i and (v)n = j} for 0 ≤ i, j ≤ 1.

Lemma 6 Let x and y be any two distinct vertices of Q
j
n,m with n − m ≥ 1 for

some j . Suppose that there is a k∗-container of Q
j
n,m between x and y and there is

an 1∗-container of Q
1−j
n,m between (x)n and (y)n. Then there is a (k + 1)∗-container

of Qn,m between x and y.

Proof Let {P1,P2, . . . ,Pk} be a k∗-container of Q
j
n,m between x and y and W be

a Hamiltonian path of Q
1−j
n,m joining (x)n to (y)n. Set Pk+1 = 〈x, (x)n,W, (y)n,y〉.

Then {P1,P2, . . . ,Pk+1} forms a (k + 1)∗-container of Qn,m between x and y. �

Lemma 7 Let x be an even vertex and y be an odd vertex of Qn,n−1 for any positive
integer n ≥ 3. Then there exists a k∗-container of Qn,n−1 between x and y for every
1 ≤ k ≤ n + 1.

Proof Since Qn is a spanning subgraph of Qn,n−1, by Lemma 2, there exists a k∗-
container of Qn,n−1 between x and y for every 1 ≤ k ≤ n. Thus, we only need to
construct an (n + 1)∗-container of Qn,n−1 between x and y. Without loss of general-
ity, we assume that x ∈ Q00

n,n−1. We have the following cases:

Case 1: y ∈ Q00
n,n−1 ∪ Q10

n,n−1. Since Q00
n,n−1 ∪ Q10

n,n−1 = Q0
n,n−1 is isomorphic to

FQn−1, by Lemma 5, there exists an n∗-container of Q0
n,n−1 between x and y. Since

Q01
n,n−1 ∪ Q11

n,n−1 = Q1
n,n−1 is isomorphic to FQn−1, by Lemma 5, there exists a

Hamiltonian path of Q1
n,n−1 joining (x)n to (y)n. By Lemma 6, there exists an

(n + 1)∗-container of Qn,n−1 between x and y.

Case 2: y ∈ Q01
n,n−1. Suppose that n = 3. We have x = 000 and y = 001. We set

P1 = 〈000,001〉, P2 = 〈000,010,011,001〉, P3 = 〈000,100,101,001〉, and P4 =
〈000,110,111,001〉. Then {P1,P2,P3,P4} forms a 4∗-container of Q3,2 between
x and y.
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Now, we consider n ≥ 4. Since Q00
n,n−1 ∪ Q01

n,n−1 is isomorphic to Qn−1, by

Lemma 2, there exists an (n − 1)∗-container {P1,P2, . . . ,Pn−1} of Q00
n,n−1 ∪ Q01

n,n−1

joining x to y. Obviously, (x)c and (y)c are different parity. Note that (x)n−1 is
an odd vertex and (y)n−1 is an even vertex. By Lemma 3, there exist two dis-
joint paths S1 and S2 of Q10

n,n−1 ∪ Q11
n,n−1 such that (1) S1 joins (x)n−1 to (y)n−1,

(2) S2 joins (x)c to (y)c , and (3) S1 ∪ S2 spans Q10
n,n−1 ∪ Q11

n,n−1. We set Pn =
〈x, (x)n−1, S1, (y)n−1,y〉 and Pn+1 = 〈x, (x)c, S2, (y)c,y〉. Then {P1,P2, . . . ,Pn+1}
forms an (n + 1)∗-container of Qn,m between x and y. See Fig. 3(a) for illustration.

Case 3: y ∈ Q11
n,n−1. Suppose that n = 3. We have x = 000 and y = 111. We

set P1 = 〈000,100,101,111〉, P2 = 〈000,010,011,111〉, P3 = 〈000,001,111〉, and
P4 = 〈000,110,111〉. Then {P1,P2,P3,P4} forms a 4∗-container of Q3,2 between x
and y.

Now, we consider n ≥ 4. Since y is adjacent to (n − 2) even vertices in Q11
n,n−1,

we can choose an even vertex z ∈ Q11
n,n−1 which is a neighbor of y such that

(z)n �= (x)c and (z)n �= (x)n−1. Let v = (z)n. Obviously, v is an odd vertex. Since
Q00

n,n−1 ∪ Q10
n,n−1 = Q0

n,n−1 is isomorphic to FQn−1, by Lemma 5, there exists an

n∗-container {R1,R2, . . . ,Rn} of Q00
n,n−1 ∪ Q10

n,n−1 between x and v. Since v is adja-

cent to n vertices in Q00
n,n−1 ∪Q10

n,n−1, by relabeling, we can write Ri as 〈x,R′
i ,ui ,v〉

for 1 ≤ i ≤ n − 3, write Rn−2 as 〈x,R′
n−2, (y)n,v〉, write Rn−1 as 〈x,R′

n−1, (v)c,v〉,
and write Rn as 〈x,R′

n, (v)n−1,v〉. Let A = {(ui )
n | 1 ≤ i ≤ n − 3}. Obviously, A is

a set of (n − 3) odd vertices of Q11
n,n−1. Since Q11

n,n−1 is isomorphic to Qn−2, by

Theorem 1, there is a spanning (y,A ∪ {z})-fan, {H1,H2, . . . ,Hn−2} in Q11
n,n−1 such

that (1) Hi joins (ui )
n to y for 1 ≤ i ≤ n − 3 and (2) Hn−2 joins z to y. We set

Pi = 〈x,R′
i ,ui , (ui )

n,Hi,y〉 for 1 ≤ i ≤ n − 3 and Pn−2 = 〈x,R′
n−2, (y)n,y〉.

Suppose that (n−1) is an odd integer. We set Pn−1 = 〈x,R′
n−1, (v)c,v, z,Hn−2,y〉.

Since Q01
n,n−1 is isomorphic to Qn−2, by Lemma 3, there exist two disjoint paths S1

and S2 of Q01
n,n−1 such that (1) S1 joins ((v)n−1)n to (y)c , (2) S2 joins (x)n to (y)n−1,

and (3) S1 ∪ S2 spans Q01
n,n−1. Let Pn = 〈x,R′

n, (v)n−1, ((v)n−1)n, S1, (y)c,y〉, and

Pn+1 = 〈x, (x)n, S2, (y)n−1,y〉. Then {P1,P2, . . . ,Pn+1} forms an (n+1)∗-container
of Qn,n−1 between x and y. See Fig. 3(b) for illustration.

Suppose that (n − 1) is an even integer. We set Pn−1 = 〈x,R′
n, (v)n−1,v, z,

Hn−2,y〉. Suppose that (y)c = (x)n. By Lemma 1, there exists a Hamiltonian path
S of Q01

n,n−1 − {(x)n} joining ((v)c)n to (y)n−1. Set Pn = 〈x,R′
n−1, (v)c, ((v)c)n, S,

(y)n−1,y〉 and Pn+1 = 〈x, (x)n = (y)c,y〉. Then {P1,P2, . . . ,Pn+1} forms an
(n + 1)∗-container of Qn,n−1 between x and y. See Fig. 3(c) for illustration. Thus,
we assume that (y)c �= (x)n. By Lemma 3, there exist two disjoint paths S1 and
S2 of Q01

n,n−1 such that (1) S1 joins ((v)c)n to (y)c , (2) S2 joins (x)n to (y)n−1,

and (3) S1 ∪ S2 spans Q01
n,n−1. Let Pn = 〈x,R′

n−1, (v)c, ((v)c)n, S1, (y)c,y〉 and

Pn+1 = 〈x, (x)n, S2, (y)n−1,y〉. Then {P1,P2, . . . ,Pn+1} forms an (n+1)∗-container
of Qn,n−1 between x and y. See Fig. 3(d) for illustration. �
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Fig. 3 Illustration for Lemma 7

Lemma 8 Let x be an even vertex and y be an odd vertex of Qn,m for any two
positive integers n ≥ m ≥ 2. Then there exists a k∗-container of Qn,m between x and
y for every 1 ≤ k ≤ n + 1.

Proof Since Q2,2 is isomorphic to complete graph K4, this statement holds for n = 2.
Suppose that n ≥ 3.

Since Qn is a spanning subgraph of Qn,m, by Lemma 2, there exists a k∗-container
of Qn,m between x and y for every 1 ≤ k ≤ n. Thus, we only need to construct an
(n + 1)∗-container of Qn,m between x and y. Without loss of generality, we assume
that x ∈ Q00

n,m. We prove our claim by induction on t = n − m. The induction bases
are t = 0 and 1. By Lemma 5, our claim holds for t = 0. With Lemma 7, our claim
holds for t = 1. Consider t ≥ 2 and assume that our claim holds for (t − 1). We have
the following cases:

Case 1: y ∈ Q00
n,m ∪Q10

n,m. Since Q00
n,m ∪Q10

n,m is isomorphic to Qn−1,m, by induction,
there exists an n∗-container of Q00

n,m ∪ Q10
n,m between x and y. Since Q01

n,m ∪ Q11
n,m

is isomorphic to Qn−1,m, by induction, there is a Hamiltonian path of Q01
n,m ∪ Q11

n,m

joining (x)n to (y)n. Thus, by Lemma 6, there exists an (n + 1)∗-container of Qn,m

between x and y.
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Fig. 4 Illustration for Lemma 8

Case 2: y ∈ Q01
n,m. Note that Q01

n,m and Q10
n,m are symmetric with respect to Qn,m

and Q00
n,m ∪ Q01

n,m is isomorphic to Qn−1,m. Similar to Case 1, there is an (n + 1)∗-
container of Qn,m between x and y.

Case 3: y ∈ Q11
n,m. Since y is adjacent to (n − 1) vertices in Q11

n,m, we can choose
a neighbor z of y in Q11

n,m such that z �= (y)c and (z)n �= (x)n−1. Let v = (z)n. Ob-
viously, v is an odd vertex. Since Q00

n,m ∪ Q10
n,m is isomorphic to Qn−1,m, by induc-

tion, there exists an n∗-container {R1,R2, . . . ,Rn} of Q00
n,m ∪ Q10

n,m joining x to v.
Since v is adjacent to n vertices in Q00

n,m ∪ Q10
n,m, by relabeling, we can write Ri

as 〈x,R′
i ,ui ,v〉 for 1 ≤ i ≤ n − 2, write Rn−1 as 〈x,R′

n−1, (y)n,v〉, and write Rn

as 〈x,R′
n, (v)n−1,v〉. Since Q11

n,m is isomorphic to Qn−2,m, by induction, there ex-
ists an (n − 1)∗-container {H1,H2, . . . ,Hn−1} of Q11

n,m joining z to y. Since y is
adjacent to (n − 1) vertices in Q11

n,m and (z,y) ∈ E(Q11
n,m), one of these paths is

〈z,y〉. Without loss of generality, we assume that Hi = 〈z, (ui )
n,H ′

i ,y〉 for 1 ≤ i ≤
n − 2 and Hn−1 = 〈z,y〉. We set Pi = 〈x,R′

i ,ui , (ui )
n,H ′

i ,y〉 for 1 ≤ i ≤ n − 2,
Pn−1 = 〈x,R′

n−1, (y)n,y〉, and Pn = 〈x,R′
n, (v)n−1,v, z,y〉. Since Q01

n,m is isomor-
phic to Qn−2,m, by induction, there exists a Hamiltonian path W in Q01

n,m joining (x)n

to (y)n−1. We set Pn+1 = 〈x, (x)n,W, (y)n−1,y〉. Then {P1,P2, . . . ,Pn+1} forms an
(n + 1)∗-container of Qn,m between x and y. See Fig. 4 for illustration. �

Lemma 9 Qn,n−1 is 1∗-connected and 2∗-connected if n is an odd integer with
n ≥ 3.

Proof Since any 1∗-connected graph with more than 3 vertices is 2∗-connected. Thus,
we only need to show Qn,n−1 is 1∗-connected. Suppose that x and y are two distinct
vertices of Qn,n−1. Without loss of generality, we assume that x ∈ Q0

n,n−1.

Suppose that y ∈ Q0
n,n−1. By Theorem 3, there exists a Hamiltonian path R =

〈x,v,R′,y〉 in Q0
n,n−1 joining x to y and there exists a Hamiltonian path H in Q1

n,n−1
joining (x)n to (v)n. Set P = 〈x, (x)n,H, (v)n,v,R′,y〉. Thus, P forms a Hamil-
tonian path in Qn,n−1 joining x to y. See Fig. 5(a) for illustration.

Suppose that y ∈ Q1
n,n−1. Note that there are (2n−1 − 1) vertices in Q0

n,n−1 − {x}
and 2n−1 − 1 ≥ 3 for n ≥ 3. We can pick a vertex z in Q0

n,n−1 such that (z)n �= y. By



80 C.-H. Chang et al.

Fig. 5 Illustration for Lemma 9

Theorem 3, there exists a Hamiltonian path R in Q0
n,n−1 joining x to z and there exists

a Hamiltonian path H in Q1
n,n−1 joining (z)n to y. Set P = 〈x,R, z, (z)n,H,y〉. Thus,

P forms a Hamiltonian path in Qn,n−1 joining x to y. See Fig. 5(b) for illustration. �

Lemma 10 Q3,2 is super spanning connected.

Proof Let x and y be any two different vertices of Q3,2. By Lemma 9, Q3,2 is
1∗-connected and 2∗-connected. Hence, we need to construct a 3∗-container and a
4∗-container between x and y. Without loss of generality, we assume that x = 000.
By Lemma 7, this statement holds if y is an odd vertex. Thus, we assume that y is an
even vertex. We list all possible cases as follows:

y 3∗-container 4∗-container

110
〈000,010,110〉
〈000,100,110〉
〈000,001,011,101,111,110〉

〈000,010,110〉
〈000,100,110〉
〈000,001,011,101,111,110〉
〈000,110〉

011
〈000,010,011〉
〈000,100,101,001,011〉
〈000,110,111,011〉

〈000,001,011〉
〈000,010,011〉
〈000,100,101,011〉
〈000,110,111,011〉

101
〈000,001,011,101〉
〈000,010,110,111,101〉
〈000,100,101〉

〈000,001,101〉
〈000,010,011,101〉
〈000,100,101〉
〈000,110,111,101〉

�

Lemma 11 Suppose that n ≥ 3 is an odd integer. Let x and y be any two different
even vertices of Qn,n−1. Then there exists a k∗-container of Qn,n−1 between x and y
for every 1 ≤ k ≤ n + 1.

Proof By Lemma 10, this statement holds for Q3,2. Thus, we assume that n ≥ 5. By
Lemma 9, Qn,n−1 is 1∗-connected and 2∗-connected. Thus, we need to construct a
k∗-container between x and y for every 3 ≤ k ≤ n + 1. Without loss of generality, we
assume that x ∈ Q00

n,n−1.
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Case 1: (y)n = 0. Since Q00
n,n−1 ∪ Q10

n,n−1 is isomorphic to FQn−1, by Theorem 3,

there exists a (k − 1)∗-container of Q00
n,n−1 ∪ Q10

n,n−1 between x and y for every
2 ≤ k − 1 ≤ n. By Lemma 6, there is a k∗-container of Qn,n−1 between x and y for
every 3 ≤ k ≤ n + 1.

Case 2: (y)n = 1. Since y is an even vertex, |{i | i �= n and (y)i = 1}| is odd. With-
out loss of generality, we assume that (y)n−1 = 1. Thus, y ∈ Q11

n,n−1. We have the
following cases:

Subcase 2.1: n ≤ k ≤ n + 1. Since y is adjacent to (n − 2) vertices in Q11
n,n−1,

we can choose a neighbor z of y in Q11
n,n−1 such that (z)n �= (x)n−1. Let v =

(z)n. Obviously, v is an even vertex. By Theorem 3, there exists an n∗-container
{R1,R2, . . . ,Rn} of Q00

n,n−1 ∪ Q10
n,n−1 between x and v. Since v is adjacent to n ver-

tices in Q00
n,m∪Q10

n,m, by relabeling, we can write Ri as 〈x,R′
i ,ui ,v〉 for 1 ≤ i ≤ n−3,

write Rn−2 as 〈x,R′
n−2, (v)c,v〉, write Rn−1 as 〈x,R′

n−1, (y)n,v〉, and write Rn as
〈x,R′

n, (v)n−1,v〉. Let A = {(ui )
n|1 ≤ i ≤ n − 3}. Obviously, A is a set of (n − 3)

even vertices of Q11
n,n−1.

Subcase 2.1.1: k = n + 1. Since Qn−2 is a spanning sbgraph of Q11
n,n−1, by The-

orem 1, there is a spanning (y,A ∪ {z})-fan, {H1,H2, . . . ,Hn−2}, in Q11
n,n−1 such

that (1) Hi joins (ui )
n to y for 1 ≤ i ≤ n − 3 and (2) Hn−2 joins z to y. We set

Pi = 〈x,R′
i ,ui , (ui )

n,Hi,y〉 for 1 ≤ i ≤ n−3, Pn−2 = 〈x,R′
n−2, (v)c,v, z,Hn−2,y〉,

and Pn−1 = 〈x,R′
n−1, (y)n,y〉.

Suppose that (y)n−1 = (x)n. Note that Qn−2 is a spanning subgraph of Q01
n,n−1.

By Lemma 1, there exists a Hamiltonian path S of Q01
n,n−1 −{(x)n} joining ((v)n−1)n

to (y)c . We set Pn = 〈x,R′
n, (v)n−1, ((v)n−1)n, S, (y)c,y〉 and Pn+1 = 〈x, (x)n =

(y)n−1,y〉. Then {P1,P2, . . . ,Pn+1} forms an (n + 1)∗-container of Qn,n−1 between
x and y. See Fig. 6(a) for illustration.

Now, we consider (y)n−1 �= (x)n. Since Qn−2 is a spanning subgraph of Q01
n,n−1,

by Lemma 3, there exist two disjoint paths S1 and S2 of Q01
n,n−1 such that (1) S1

joins ((v)n−1)n to (y)n−1, (2) S2 joins (x)n to (y)c , and (3) S1 ∪ S2 spans Q01
n,n−1.

Let Pn = 〈x,R′
n, (v)n−1, ((v)n−1)n, S1, (y)n−1,y〉 and Pn+1 = 〈x, (x)n, S2, (y)c,y〉.

Then {P1,P2, . . . ,Pn+1} forms an (n + 1)∗-container of Qn,n−1 between x and y.
See Fig. 6(b) for illustration.

Subcase 2.1.2: k = n. Obviously, A ∪ {((v)n−1)n} is a set of (n − 2) even vertices
of Q01

n,n−1 ∪ Q11
n,n−1. Since Qn−1 is a spanning subgraph of Q01

n,n−1 ∪ Q11
n,n−1, by

Theorem 1, there is a spanning (y,A ∪ {z, ((v)n−1)n})-fan, {H1,H2, . . . ,Hn−1}, in
Q01

n,n−1 ∪ Q11
n,n−1 such that (1) Hi joins (ui )

n to y for 1 ≤ i ≤ n − 3, (2) Hn−2 joins z
to y, and (3) Hn−1 joins ((v)n−1)n to y. We set Pi = 〈x,R′

i ,ui , (ui )
n,Hi,y〉 for 1 ≤

i ≤ n−3, Pn−2 = 〈x,R′
n−2, (v)c,v, z,Hn−2,y〉, Pn−1 = 〈x,R′

n−1, (y)n,y〉, and Pn =
〈x,R′

n, (v)n−1, ((v)n−1)n,Hn−1,y〉. Then {P1,P2, . . . ,Pn} forms an n∗-container of
Qn,n−1 between x and y. See Fig. 6(c) for illustration.

Subcase 2.2: 3 ≤ k ≤ n − 1. Let v be an even vertex of Q00
n,n−1 ∪ Q10

n,n−1 such that

v �= x and (y)n is not neighbor of v. Since Q00
n,n−1 ∪ Q10

n,n−1 is isomorphic to FQn−1,
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Fig. 6 Illustration for
Lemma 11

by Theorem 3, there exists a k∗-container {R1,R2, . . . ,Rk} of Q00
n,n−1 ∪ Q10

n,n−1 be-
tween x and v. We write Ri = 〈x,R′

i ,ui ,v〉 for 1 ≤ i ≤ k. Let A = {u1,u2, . . . ,uk}.
Since k ≥ 3, at most one vertex of A is an even vertex. Without loss of general-
ity, we assume that {u1,u2, . . . ,uk−1} is a set of (k − 1) odd vertices. Obviously,
{(ui )

n | 1 ≤ i ≤ k − 1} is a set of (k − 1) even vertices of Q01
n,n−1 ∪ Q11

n,n−1. Since

Qn−1 is a spanning subgraph of Q01
n,n−1 ∪Q11

n,n−1, by Theorem 1, there is a spanning

(y, {(ui )
n | 1 ≤ i ≤ k − 1} ∪ {(v)n})-fan, {H1,H2, . . . ,Hk}, of Q01

n,n−1 ∪ Q11
n,n−1 such

that (1) Hi joins (ui )
n to y for 1 ≤ i ≤ k − 1 and (2) Hk joins (v)n to y. We set

Pi = 〈x,R′
i ,ui , (ui )

n,Hi,y〉 for 1 ≤ i ≤ k − 1 and Pk = 〈x,R′
k,uk,v, (v)n,Hk,y〉.

Then {P1,P2, . . . ,Pk} forms a k∗-container of Qn,n−1 between x and y. See Fig. 6(d)
for illustration. �

Lemma 12 Suppose that n ≥ 3 and m is even. Let x and y be any two different even
vertices of Qn,m. Then there exists a Hamiltonian path P of Qn,m between x and y.

Proof For the fixed number m, we prove this statement by induction on t = n − m.
Suppose that x and y be any two different even vertices of Qn,m. By Lemma 10, this
statement holds for t = 1. Consider t ≥ 2 and assume that our claim holds for (t −1).
Without loss of generality, we assume that x ∈ Q0

n,m.
Suppose that y ∈ Q0

n,m. Since Q0
n,m is isomorphic to Qn−1,m, by induction, there

exists a Hamiltonian path R = 〈x,v,R′,y〉 in Q0
n,m joining x to y and there exists a

Hamiltonian path H in Q1
n,m joining (x)n to (v)n. Set P = 〈x, (x)n,H, (v)n,v,R′,y〉.

Thus, P forms a Hamiltonian path in Qn,m joining x to y.
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Suppose that y ∈ Q1
n,m. We pick an even vertex z in Q0

n,m such that z �= x.
By induction, there exists a Hamiltonian path R in Q0

n,m joining x to z. Obvi-
ously, (z)n is an odd vertex of Q1

n,m. Since Qn−1 is a spanning subgraph of Q1
n,m,

by Lemma 2, there exists a Hamiltonian path H in Q1
n,m joining (z)n to y. Set

P = 〈x,R, z, (z)n,H,y〉. Thus, P forms a Hamiltonian path in Qn,m joining x to y. �

Lemma 13 Suppose that n ≥ 3 and m is even. Let x and y be any two different even
vertices of Qn,m. Then there exists a k∗-container of Qn,m between x and y for every
1 ≤ k ≤ n + 1.

Proof By Lemma 10, this statement holds for n = 3. Suppose that n ≥ 4. We claim
that there exists a k∗-container between x and y for every 1 ≤ k ≤ n + 1. By
Lemma 12, this statement holds for k = 1. Note that Qn is a spanning subgraph
of Qn,m and Qn is Hamiltonian. So, this statement holds for k = 2. We claim that
there exists a k∗-container between x and y for every 3 ≤ k ≤ n + 1. Without loss of
generality, we assume that x ∈ Q00

n,m. We prove our claim by induction on t = n − m.
The induction bases are t = 0 and 1. By Theorem 3, our claim holds for t = 0. With
Lemma 11, this statement holds for t = 1. Consider t ≥ 2 and assume that this state-
ment holds for (t − 1). We have the following cases.

Case 1: y ∈ Q00
n,m ∪Q10

n,m. Since Q00
n,m ∪Q10

n,m is isomorphic to Qn−1,m, by induction,
there exists a (k − 1)∗-container {P1,P2, . . . ,Pk−1} of Q00

n,m ∪ Q10
n,m between x and

y for every 2 ≤ k − 1 ≤ n. By Lemma 6, there exists a k∗-container of Qn,m between
x and y.

Case 2: y ∈ Q01
n,m. Note that Q01

n,m and Q10
n,m are symmetric with respect to Qn,m and

Q00
n,m ∪ Q01

n,m is isomorphic to Qn−1,m. Similar to Case 1, there is a k∗-container of
Qn,m between x and y for every 3 ≤ k ≤ n + 1.

Case 3: y ∈ Q11
n,m.

Subcase 3.1: 3 ≤ k ≤ n. Let v be an even vertex of Q00
n,m ∪ Q10

n,m such that v �= x and
(y)n is not a neighbor of v. By induction, there exists a k∗-container {R1,R2, . . . ,Rk}
of Q00

n,m ∪ Q10
n,m between x and v. We write Ri = 〈x,R′

i ,ui ,v〉 for 1 ≤ i ≤ k. Let
A = {u1,u2, . . . ,uk}. Since k ≥ 3, at most one vertex of A is an even vertex. With-
out loss of generality, we assume that {u1,u2, . . . ,uk−1} is a set of (k − 1) odd
vertices. Obviously, {(ui )

n | 1 ≤ i ≤ k − 1} is a set of (k − 1) even vertices of
Q01

n,m ∪Q11
n,m. By Theorem 1, there is a spanning (y, {(ui )

n | 1 ≤ i ≤ k −1}∪ {(v)n})-
fan, {H1,H2, . . . ,Hk}, of Q01

n,m ∪ Q11
n,m such that (1) Hi joins (ui )

n to y for 1 ≤ i ≤
k−1 and (2) Hk joins (v)n to y. We set Pi = 〈x,R′

i ,ui , (ui )
n,Hi,y〉 for 1 ≤ i ≤ k−1

and Pk = 〈x,R′
k,uk,v, (v)n,Hk,y〉. Then {P1,P2, . . . ,Pk} forms a k∗-container of

Qn,m between x and y.

Subcase 3.2: k = n + 1. Since y is adjacent to (n − 1) vertices in Q11
n,m, we can

choose a neighbor z of y in Q11
n,m such that z �= (y)c and (z)n �= (x)n−1. Let v = (z)n.

Obviously, both v and ((v)n−1)n are even vertices. By induction, there exists an
n∗-container {R1,R2, . . . ,Rn} of Q00

n,m ∪ Q10
n,m between x and v. Since v is adja-

cent to n vertices in Q00
n,m ∪ Q10

n,m, by relabeling, we can write Ri as 〈x,R′
i ,ui ,v〉 for
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Fig. 7 Illustration for
Lemma 13

1 ≤ i ≤ n − 3, write Rn−2 as 〈x,R′
n−2, (v)c,v〉, write Rn−1 as 〈x,R′

n−1, (y)n,v〉, and
write Rn as 〈x,R′

n, (v)n−1,v〉. Let A = {(ui )
n | 1 ≤ i ≤ n − 3}. Obviously, A is a set

of (n − 3) even vertices of Q11
n,m.

By Lemma 2, there exists an (n − 2)∗-container {H1,H2, . . . ,Hn−2} of Q11
n,m be-

tween z and y. Since y is adjacent to (n − 1) vertices in Q11
n,m and (z,y) ∈ E(Q11

n,m),
one of these paths is 〈z,y〉 and (y)c ∈ Hi for some 1 ≤ i ≤ n − 2. Without loss of
generality, we assume that (y)c ∈ Hn−3. We can write Hi as 〈z, (ui )

n,H ′
i ,y〉 for

1 ≤ i ≤ n−4, write Hn−3 as 〈z, (un−3)
n,H ′

n−3, (y)c,w,H ′′
n−3,y〉, and write Hn−2 as

〈z,y〉. Obviously, w is an odd vertex. We set Pi = 〈x,R′
i ,ui , (ui )

n,H ′
i ,y〉 for 1 ≤ i ≤

n − 4, Pn−3 = 〈x,R′
n−3,un−3, (un−3)

n,H ′
n−3, (y)c,y〉, Pn−2 = 〈x,R′

n−2, (v)c,v, z,
Hn−2,y〉, and Pn−1 = 〈x, R′

n−1, (y)n,y〉.
Suppose that (y)n−1 = (x)n. By Lemma 1, there exists a Hamiltonian path S of

Q01
n,m − {(x)n} joining ((v)n−1)n to (w)n−1. Set Pn = 〈x,R′

n, (v)n−1, ((v)n−1)n, S,

(w)n−1,w,H ′′
n−3,y〉 and Pn+1 = 〈x, (x)n = (y)n−1,y〉. Then {P1,P2, . . . ,Pn+1}

forms an (n + 1)∗-container of Qn,m between x and y. See Fig. 7(a) for illustration.
Now, we consider (y)n−1 �= (x)n. By Lemma 3, there exist two disjoint paths S1

and S2 of Q11
m,n such that (1) S1 joins ((v)n−1)n to (y)n−1, (2) S2 joins (x)n to (w)n−1,

and (3) S1 ∪ S2 spans Q01
n,n−1. Set Pn = 〈x,R′

n, (v)n−1, ((v)n−1)n, S1, (y)n−1,y〉
and Pn+1 = 〈x, (x)n, S2, (w)n−1,w,H ′′

n−3,y〉. Then {P1,P2, . . . ,Pn+1} forms an
(n + 1)∗-container of Qn,m between x and y. See Fig. 7(b) for illustration. �

With Lemma 8 and Lemma 13, we have the following theorem.

Theorem 4 The enhanced hypercube Qn,m is super spanning laceable if m is an odd
integer and Qn,m is super spanning connected if m is an even integer.

Proof Since Q2,2 is isomorphic to complete graph K4. Obviously, this theorem holds
for n = 2. By Lemma 8, this theorem holds if n ≥ 3 and m is an odd integer. Thus,
we suppose that n ≥ 3 and m is an even integer. Let x and y be any two different
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vertices of Qn,m. We need to find a k∗-container of Qn,m between x and y for every
1 ≤ k ≤ n + 1. Without loss of generality, we assume that x is an even vertex. By
Lemma 8, this theorem holds if y is an odd vertex. By Lemma 13, this theorem holds
if y is an even vertex. Thus, this theorem is proved. �

5 Conclusion

With Theorem 1, we can easily prove again that Qn is super spanning laceable in [4].
Let x and y be any two vertices in the different partite set of Qn. Assume 1 ≤ k ≤ n.
Let y1,y2, . . . ,yk−1 be any (k − 1) neighbor of y with yi �= x for 1 ≤ i ≤ k − 1. Let
yk = y and S = {y1,y2, . . . ,yk}. By Theorem 1, there exists a spanning (x, S)-fan
{R1,R2, . . . ,Rk} such that Ri is a path joining x to yi . Then we set Pi = 〈x,Ri,yi ,y〉
for 1 ≤ i ≤ k − 1 and Pk = Rk . Obviously, {P1,P2, . . . ,Pk} forms a k∗-container be-
tween x and y. Thus, the existence of spanning k-fan implies the existence of span-
ning k-container. However, the converse is not correct. Thus, there is a lot of work to
be done on spanning k-fan.
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